Home | History | Annotate | Download | only in Hexagon
      1 //===----- HexagonPacketizer.cpp - vliw packetizer ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements a simple VLIW packetizer using DFA. The packetizer works on
     11 // machine basic blocks. For each instruction I in BB, the packetizer consults
     12 // the DFA to see if machine resources are available to execute I. If so, the
     13 // packetizer checks if I depends on any instruction J in the current packet.
     14 // If no dependency is found, I is added to current packet and machine resource
     15 // is marked as taken. If any dependency is found, a target API call is made to
     16 // prune the dependence.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 #include "llvm/CodeGen/DFAPacketizer.h"
     20 #include "Hexagon.h"
     21 #include "HexagonMachineFunctionInfo.h"
     22 #include "HexagonRegisterInfo.h"
     23 #include "HexagonSubtarget.h"
     24 #include "HexagonTargetMachine.h"
     25 #include "llvm/ADT/DenseMap.h"
     26 #include "llvm/ADT/Statistic.h"
     27 #include "llvm/CodeGen/LatencyPriorityQueue.h"
     28 #include "llvm/CodeGen/MachineDominators.h"
     29 #include "llvm/CodeGen/MachineFrameInfo.h"
     30 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
     31 #include "llvm/CodeGen/MachineFunctionPass.h"
     32 #include "llvm/CodeGen/MachineInstrBuilder.h"
     33 #include "llvm/CodeGen/MachineLoopInfo.h"
     34 #include "llvm/CodeGen/MachineRegisterInfo.h"
     35 #include "llvm/CodeGen/Passes.h"
     36 #include "llvm/CodeGen/ScheduleDAG.h"
     37 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
     38 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     39 #include "llvm/CodeGen/SchedulerRegistry.h"
     40 #include "llvm/MC/MCInstrItineraries.h"
     41 #include "llvm/Support/CommandLine.h"
     42 #include "llvm/Support/Compiler.h"
     43 #include "llvm/Support/Debug.h"
     44 #include "llvm/Support/MathExtras.h"
     45 #include "llvm/Target/TargetInstrInfo.h"
     46 #include "llvm/Target/TargetMachine.h"
     47 #include "llvm/Target/TargetRegisterInfo.h"
     48 #include <map>
     49 #include <vector>
     50 
     51 using namespace llvm;
     52 
     53 #define DEBUG_TYPE "packets"
     54 
     55 static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles",
     56       cl::ZeroOrMore, cl::Hidden, cl::init(true),
     57       cl::desc("Allow non-solo packetization of volatile memory references"));
     58 
     59 namespace llvm {
     60   void initializeHexagonPacketizerPass(PassRegistry&);
     61 }
     62 
     63 
     64 namespace {
     65   class HexagonPacketizer : public MachineFunctionPass {
     66 
     67   public:
     68     static char ID;
     69     HexagonPacketizer() : MachineFunctionPass(ID) {
     70       initializeHexagonPacketizerPass(*PassRegistry::getPassRegistry());
     71     }
     72 
     73     void getAnalysisUsage(AnalysisUsage &AU) const override {
     74       AU.setPreservesCFG();
     75       AU.addRequired<MachineDominatorTree>();
     76       AU.addRequired<MachineBranchProbabilityInfo>();
     77       AU.addPreserved<MachineDominatorTree>();
     78       AU.addRequired<MachineLoopInfo>();
     79       AU.addPreserved<MachineLoopInfo>();
     80       MachineFunctionPass::getAnalysisUsage(AU);
     81     }
     82 
     83     const char *getPassName() const override {
     84       return "Hexagon Packetizer";
     85     }
     86 
     87     bool runOnMachineFunction(MachineFunction &Fn) override;
     88   };
     89   char HexagonPacketizer::ID = 0;
     90 
     91   class HexagonPacketizerList : public VLIWPacketizerList {
     92 
     93   private:
     94 
     95     // Has the instruction been promoted to a dot-new instruction.
     96     bool PromotedToDotNew;
     97 
     98     // Has the instruction been glued to allocframe.
     99     bool GlueAllocframeStore;
    100 
    101     // Has the feeder instruction been glued to new value jump.
    102     bool GlueToNewValueJump;
    103 
    104     // Check if there is a dependence between some instruction already in this
    105     // packet and this instruction.
    106     bool Dependence;
    107 
    108     // Only check for dependence if there are resources available to
    109     // schedule this instruction.
    110     bool FoundSequentialDependence;
    111 
    112     /// \brief A handle to the branch probability pass.
    113    const MachineBranchProbabilityInfo *MBPI;
    114 
    115    // Track MIs with ignored dependece.
    116    std::vector<MachineInstr*> IgnoreDepMIs;
    117 
    118   public:
    119     // Ctor.
    120     HexagonPacketizerList(MachineFunction &MF, MachineLoopInfo &MLI,
    121                           const MachineBranchProbabilityInfo *MBPI);
    122 
    123     // initPacketizerState - initialize some internal flags.
    124     void initPacketizerState() override;
    125 
    126     // ignorePseudoInstruction - Ignore bundling of pseudo instructions.
    127     bool ignorePseudoInstruction(MachineInstr *MI,
    128                                  MachineBasicBlock *MBB) override;
    129 
    130     // isSoloInstruction - return true if instruction MI can not be packetized
    131     // with any other instruction, which means that MI itself is a packet.
    132     bool isSoloInstruction(MachineInstr *MI) override;
    133 
    134     // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ
    135     // together.
    136     bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) override;
    137 
    138     // isLegalToPruneDependencies - Is it legal to prune dependece between SUI
    139     // and SUJ.
    140     bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) override;
    141 
    142     MachineBasicBlock::iterator addToPacket(MachineInstr *MI) override;
    143   private:
    144     bool IsCallDependent(MachineInstr* MI, SDep::Kind DepType, unsigned DepReg);
    145     bool PromoteToDotNew(MachineInstr* MI, SDep::Kind DepType,
    146                          MachineBasicBlock::iterator &MII,
    147                          const TargetRegisterClass* RC);
    148     bool CanPromoteToDotNew(MachineInstr *MI, SUnit *PacketSU, unsigned DepReg,
    149                             const std::map<MachineInstr *, SUnit *> &MIToSUnit,
    150                             MachineBasicBlock::iterator &MII,
    151                             const TargetRegisterClass *RC);
    152     bool
    153     CanPromoteToNewValue(MachineInstr *MI, SUnit *PacketSU, unsigned DepReg,
    154                          const std::map<MachineInstr *, SUnit *> &MIToSUnit,
    155                          MachineBasicBlock::iterator &MII);
    156     bool CanPromoteToNewValueStore(
    157         MachineInstr *MI, MachineInstr *PacketMI, unsigned DepReg,
    158         const std::map<MachineInstr *, SUnit *> &MIToSUnit);
    159     bool DemoteToDotOld(MachineInstr *MI);
    160     bool ArePredicatesComplements(
    161         MachineInstr *MI1, MachineInstr *MI2,
    162         const std::map<MachineInstr *, SUnit *> &MIToSUnit);
    163     bool RestrictingDepExistInPacket(MachineInstr *, unsigned,
    164                                      const std::map<MachineInstr *, SUnit *> &);
    165     bool isNewifiable(MachineInstr* MI);
    166     bool isCondInst(MachineInstr* MI);
    167     bool tryAllocateResourcesForConstExt(MachineInstr* MI);
    168     bool canReserveResourcesForConstExt(MachineInstr *MI);
    169     void reserveResourcesForConstExt(MachineInstr* MI);
    170     bool isNewValueInst(MachineInstr* MI);
    171   };
    172 }
    173 
    174 INITIALIZE_PASS_BEGIN(HexagonPacketizer, "packets", "Hexagon Packetizer",
    175                       false, false)
    176 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    177 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
    178 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    179 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    180 INITIALIZE_PASS_END(HexagonPacketizer, "packets", "Hexagon Packetizer",
    181                     false, false)
    182 
    183 
    184 // HexagonPacketizerList Ctor.
    185 HexagonPacketizerList::HexagonPacketizerList(
    186     MachineFunction &MF, MachineLoopInfo &MLI,
    187     const MachineBranchProbabilityInfo *MBPI)
    188     : VLIWPacketizerList(MF, MLI, true) {
    189   this->MBPI = MBPI;
    190 }
    191 
    192 bool HexagonPacketizer::runOnMachineFunction(MachineFunction &Fn) {
    193   const TargetInstrInfo *TII = Fn.getSubtarget().getInstrInfo();
    194   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
    195   const MachineBranchProbabilityInfo *MBPI =
    196     &getAnalysis<MachineBranchProbabilityInfo>();
    197   // Instantiate the packetizer.
    198   HexagonPacketizerList Packetizer(Fn, MLI, MBPI);
    199 
    200   // DFA state table should not be empty.
    201   assert(Packetizer.getResourceTracker() && "Empty DFA table!");
    202 
    203   //
    204   // Loop over all basic blocks and remove KILL pseudo-instructions
    205   // These instructions confuse the dependence analysis. Consider:
    206   // D0 = ...   (Insn 0)
    207   // R0 = KILL R0, D0 (Insn 1)
    208   // R0 = ... (Insn 2)
    209   // Here, Insn 1 will result in the dependence graph not emitting an output
    210   // dependence between Insn 0 and Insn 2. This can lead to incorrect
    211   // packetization
    212   //
    213   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
    214        MBB != MBBe; ++MBB) {
    215     MachineBasicBlock::iterator End = MBB->end();
    216     MachineBasicBlock::iterator MI = MBB->begin();
    217     while (MI != End) {
    218       if (MI->isKill()) {
    219         MachineBasicBlock::iterator DeleteMI = MI;
    220         ++MI;
    221         MBB->erase(DeleteMI);
    222         End = MBB->end();
    223         continue;
    224       }
    225       ++MI;
    226     }
    227   }
    228 
    229   // Loop over all of the basic blocks.
    230   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
    231        MBB != MBBe; ++MBB) {
    232     // Find scheduling regions and schedule / packetize each region.
    233     unsigned RemainingCount = MBB->size();
    234     for(MachineBasicBlock::iterator RegionEnd = MBB->end();
    235         RegionEnd != MBB->begin();) {
    236       // The next region starts above the previous region. Look backward in the
    237       // instruction stream until we find the nearest boundary.
    238       MachineBasicBlock::iterator I = RegionEnd;
    239       for(;I != MBB->begin(); --I, --RemainingCount) {
    240         if (TII->isSchedulingBoundary(std::prev(I), MBB, Fn))
    241           break;
    242       }
    243       I = MBB->begin();
    244 
    245       // Skip empty scheduling regions.
    246       if (I == RegionEnd) {
    247         RegionEnd = std::prev(RegionEnd);
    248         --RemainingCount;
    249         continue;
    250       }
    251       // Skip regions with one instruction.
    252       if (I == std::prev(RegionEnd)) {
    253         RegionEnd = std::prev(RegionEnd);
    254         continue;
    255       }
    256 
    257       Packetizer.PacketizeMIs(MBB, I, RegionEnd);
    258       RegionEnd = I;
    259     }
    260   }
    261 
    262   return true;
    263 }
    264 
    265 
    266 static bool IsIndirectCall(MachineInstr* MI) {
    267   return MI->getOpcode() == Hexagon::J2_callr;
    268 }
    269 
    270 // Reserve resources for constant extender. Trigure an assertion if
    271 // reservation fail.
    272 void HexagonPacketizerList::reserveResourcesForConstExt(MachineInstr* MI) {
    273   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
    274   MachineFunction *MF = MI->getParent()->getParent();
    275   MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::A4_ext),
    276                                                   MI->getDebugLoc());
    277 
    278   if (ResourceTracker->canReserveResources(PseudoMI)) {
    279     ResourceTracker->reserveResources(PseudoMI);
    280     MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
    281   } else {
    282     MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
    283     llvm_unreachable("can not reserve resources for constant extender.");
    284   }
    285   return;
    286 }
    287 
    288 bool HexagonPacketizerList::canReserveResourcesForConstExt(MachineInstr *MI) {
    289   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
    290   assert((QII->isExtended(MI) || QII->isConstExtended(MI)) &&
    291          "Should only be called for constant extended instructions");
    292   MachineFunction *MF = MI->getParent()->getParent();
    293   MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::A4_ext),
    294                                                   MI->getDebugLoc());
    295   bool CanReserve = ResourceTracker->canReserveResources(PseudoMI);
    296   MF->DeleteMachineInstr(PseudoMI);
    297   return CanReserve;
    298 }
    299 
    300 // Allocate resources (i.e. 4 bytes) for constant extender. If succeed, return
    301 // true, otherwise, return false.
    302 bool HexagonPacketizerList::tryAllocateResourcesForConstExt(MachineInstr* MI) {
    303   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
    304   MachineFunction *MF = MI->getParent()->getParent();
    305   MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::A4_ext),
    306                                                   MI->getDebugLoc());
    307 
    308   if (ResourceTracker->canReserveResources(PseudoMI)) {
    309     ResourceTracker->reserveResources(PseudoMI);
    310     MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
    311     return true;
    312   } else {
    313     MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
    314     return false;
    315   }
    316 }
    317 
    318 
    319 bool HexagonPacketizerList::IsCallDependent(MachineInstr* MI,
    320                                           SDep::Kind DepType,
    321                                           unsigned DepReg) {
    322 
    323   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
    324   const HexagonRegisterInfo *QRI =
    325       (const HexagonRegisterInfo *)MF.getSubtarget().getRegisterInfo();
    326 
    327   // Check for lr dependence
    328   if (DepReg == QRI->getRARegister()) {
    329     return true;
    330   }
    331 
    332   if (QII->isDeallocRet(MI)) {
    333     if (DepReg == QRI->getFrameRegister() ||
    334         DepReg == QRI->getStackRegister())
    335       return true;
    336   }
    337 
    338   // Check if this is a predicate dependence
    339   const TargetRegisterClass* RC = QRI->getMinimalPhysRegClass(DepReg);
    340   if (RC == &Hexagon::PredRegsRegClass) {
    341     return true;
    342   }
    343 
    344   //
    345   // Lastly check for an operand used in an indirect call
    346   // If we had an attribute for checking if an instruction is an indirect call,
    347   // then we could have avoided this relatively brittle implementation of
    348   // IsIndirectCall()
    349   //
    350   // Assumes that the first operand of the CALLr is the function address
    351   //
    352   if (IsIndirectCall(MI) && (DepType == SDep::Data)) {
    353     MachineOperand MO = MI->getOperand(0);
    354     if (MO.isReg() && MO.isUse() && (MO.getReg() == DepReg)) {
    355       return true;
    356     }
    357   }
    358 
    359   return false;
    360 }
    361 
    362 static bool IsRegDependence(const SDep::Kind DepType) {
    363   return (DepType == SDep::Data || DepType == SDep::Anti ||
    364           DepType == SDep::Output);
    365 }
    366 
    367 static bool IsDirectJump(MachineInstr* MI) {
    368   return (MI->getOpcode() == Hexagon::J2_jump);
    369 }
    370 
    371 static bool IsSchedBarrier(MachineInstr* MI) {
    372   switch (MI->getOpcode()) {
    373   case Hexagon::Y2_barrier:
    374     return true;
    375   }
    376   return false;
    377 }
    378 
    379 static bool IsControlFlow(MachineInstr* MI) {
    380   return (MI->getDesc().isTerminator() || MI->getDesc().isCall());
    381 }
    382 
    383 static bool IsLoopN(MachineInstr *MI) {
    384   return (MI->getOpcode() == Hexagon::J2_loop0i ||
    385           MI->getOpcode() == Hexagon::J2_loop0r);
    386 }
    387 
    388 /// DoesModifyCalleeSavedReg - Returns true if the instruction modifies a
    389 /// callee-saved register.
    390 static bool DoesModifyCalleeSavedReg(MachineInstr *MI,
    391                                      const TargetRegisterInfo *TRI) {
    392   for (const MCPhysReg *CSR =
    393            TRI->getCalleeSavedRegs(MI->getParent()->getParent());
    394        *CSR; ++CSR) {
    395     unsigned CalleeSavedReg = *CSR;
    396     if (MI->modifiesRegister(CalleeSavedReg, TRI))
    397       return true;
    398   }
    399   return false;
    400 }
    401 
    402 // Returns true if an instruction can be promoted to .new predicate
    403 // or new-value store.
    404 bool HexagonPacketizerList::isNewifiable(MachineInstr* MI) {
    405   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
    406   return isCondInst(MI) || QII->mayBeNewStore(MI);
    407 }
    408 
    409 bool HexagonPacketizerList::isCondInst (MachineInstr* MI) {
    410   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
    411   const MCInstrDesc& TID = MI->getDesc();
    412                                     // bug 5670: until that is fixed,
    413                                     // this portion is disabled.
    414   if (   TID.isConditionalBranch()  // && !IsRegisterJump(MI)) ||
    415       || QII->isConditionalTransfer(MI)
    416       || QII->isConditionalALU32(MI)
    417       || QII->isConditionalLoad(MI)
    418       || QII->isConditionalStore(MI)) {
    419     return true;
    420   }
    421   return false;
    422 }
    423 
    424 
    425 // Promote an instructiont to its .new form.
    426 // At this time, we have already made a call to CanPromoteToDotNew
    427 // and made sure that it can *indeed* be promoted.
    428 bool HexagonPacketizerList::PromoteToDotNew(MachineInstr* MI,
    429                         SDep::Kind DepType, MachineBasicBlock::iterator &MII,
    430                         const TargetRegisterClass* RC) {
    431 
    432   assert (DepType == SDep::Data);
    433   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
    434 
    435   int NewOpcode;
    436   if (RC == &Hexagon::PredRegsRegClass)
    437     NewOpcode = QII->GetDotNewPredOp(MI, MBPI);
    438   else
    439     NewOpcode = QII->GetDotNewOp(MI);
    440   MI->setDesc(QII->get(NewOpcode));
    441 
    442   return true;
    443 }
    444 
    445 bool HexagonPacketizerList::DemoteToDotOld(MachineInstr* MI) {
    446   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
    447   int NewOpcode = QII->GetDotOldOp(MI->getOpcode());
    448   MI->setDesc(QII->get(NewOpcode));
    449   return true;
    450 }
    451 
    452 enum PredicateKind {
    453   PK_False,
    454   PK_True,
    455   PK_Unknown
    456 };
    457 
    458 /// Returns true if an instruction is predicated on p0 and false if it's
    459 /// predicated on !p0.
    460 static PredicateKind getPredicateSense(MachineInstr* MI,
    461                                        const HexagonInstrInfo *QII) {
    462   if (!QII->isPredicated(MI))
    463     return PK_Unknown;
    464 
    465   if (QII->isPredicatedTrue(MI))
    466     return PK_True;
    467 
    468   return PK_False;
    469 }
    470 
    471 static MachineOperand& GetPostIncrementOperand(MachineInstr *MI,
    472                                                const HexagonInstrInfo *QII) {
    473   assert(QII->isPostIncrement(MI) && "Not a post increment operation.");
    474 #ifndef NDEBUG
    475   // Post Increment means duplicates. Use dense map to find duplicates in the
    476   // list. Caution: Densemap initializes with the minimum of 64 buckets,
    477   // whereas there are at most 5 operands in the post increment.
    478   DenseMap<unsigned,  unsigned> DefRegsSet;
    479   for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++)
    480     if (MI->getOperand(opNum).isReg() &&
    481         MI->getOperand(opNum).isDef()) {
    482       DefRegsSet[MI->getOperand(opNum).getReg()] = 1;
    483     }
    484 
    485   for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++)
    486     if (MI->getOperand(opNum).isReg() &&
    487         MI->getOperand(opNum).isUse()) {
    488       if (DefRegsSet[MI->getOperand(opNum).getReg()]) {
    489         return MI->getOperand(opNum);
    490       }
    491     }
    492 #else
    493   if (MI->getDesc().mayLoad()) {
    494     // The 2nd operand is always the post increment operand in load.
    495     assert(MI->getOperand(1).isReg() &&
    496                 "Post increment operand has be to a register.");
    497     return (MI->getOperand(1));
    498   }
    499   if (MI->getDesc().mayStore()) {
    500     // The 1st operand is always the post increment operand in store.
    501     assert(MI->getOperand(0).isReg() &&
    502                 "Post increment operand has be to a register.");
    503     return (MI->getOperand(0));
    504   }
    505 #endif
    506   // we should never come here.
    507   llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
    508 }
    509 
    510 // get the value being stored
    511 static MachineOperand& GetStoreValueOperand(MachineInstr *MI) {
    512   // value being stored is always the last operand.
    513   return (MI->getOperand(MI->getNumOperands()-1));
    514 }
    515 
    516 // can be new value store?
    517 // Following restrictions are to be respected in convert a store into
    518 // a new value store.
    519 // 1. If an instruction uses auto-increment, its address register cannot
    520 //    be a new-value register. Arch Spec 5.4.2.1
    521 // 2. If an instruction uses absolute-set addressing mode,
    522 //    its address register cannot be a new-value register.
    523 //    Arch Spec 5.4.2.1.TODO: This is not enabled as
    524 //    as absolute-set address mode patters are not implemented.
    525 // 3. If an instruction produces a 64-bit result, its registers cannot be used
    526 //    as new-value registers. Arch Spec 5.4.2.2.
    527 // 4. If the instruction that sets a new-value register is conditional, then
    528 //    the instruction that uses the new-value register must also be conditional,
    529 //    and both must always have their predicates evaluate identically.
    530 //    Arch Spec 5.4.2.3.
    531 // 5. There is an implied restriction of a packet can not have another store,
    532 //    if there is a  new value store in the packet. Corollary, if there is
    533 //    already a store in a packet, there can not be a new value store.
    534 //    Arch Spec: 3.4.4.2
    535 bool HexagonPacketizerList::CanPromoteToNewValueStore(
    536     MachineInstr *MI, MachineInstr *PacketMI, unsigned DepReg,
    537     const std::map<MachineInstr *, SUnit *> &MIToSUnit) {
    538   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
    539   // Make sure we are looking at the store, that can be promoted.
    540   if (!QII->mayBeNewStore(MI))
    541     return false;
    542 
    543   // Make sure there is dependency and can be new value'ed
    544   if (GetStoreValueOperand(MI).isReg() &&
    545       GetStoreValueOperand(MI).getReg() != DepReg)
    546     return false;
    547 
    548   const HexagonRegisterInfo *QRI =
    549       (const HexagonRegisterInfo *)MF.getSubtarget().getRegisterInfo();
    550   const MCInstrDesc& MCID = PacketMI->getDesc();
    551   // first operand is always the result
    552 
    553   const TargetRegisterClass* PacketRC = QII->getRegClass(MCID, 0, QRI, MF);
    554 
    555   // if there is already an store in the packet, no can do new value store
    556   // Arch Spec 3.4.4.2.
    557   for (std::vector<MachineInstr*>::iterator VI = CurrentPacketMIs.begin(),
    558          VE = CurrentPacketMIs.end();
    559        (VI != VE); ++VI) {
    560     SUnit *PacketSU = MIToSUnit.find(*VI)->second;
    561     if (PacketSU->getInstr()->getDesc().mayStore() ||
    562         // if we have mayStore = 1 set on ALLOCFRAME and DEALLOCFRAME,
    563         // then we don't need this
    564         PacketSU->getInstr()->getOpcode() == Hexagon::S2_allocframe ||
    565         PacketSU->getInstr()->getOpcode() == Hexagon::L2_deallocframe)
    566       return false;
    567   }
    568 
    569   if (PacketRC == &Hexagon::DoubleRegsRegClass) {
    570     // new value store constraint: double regs can not feed into new value store
    571     // arch spec section: 5.4.2.2
    572     return false;
    573   }
    574 
    575   // Make sure it's NOT the post increment register that we are going to
    576   // new value.
    577   if (QII->isPostIncrement(MI) &&
    578       MI->getDesc().mayStore() &&
    579       GetPostIncrementOperand(MI, QII).getReg() == DepReg) {
    580     return false;
    581   }
    582 
    583   if (QII->isPostIncrement(PacketMI) &&
    584       PacketMI->getDesc().mayLoad() &&
    585       GetPostIncrementOperand(PacketMI, QII).getReg() == DepReg) {
    586     // if source is post_inc, or absolute-set addressing,
    587     // it can not feed into new value store
    588     //  r3 = memw(r2++#4)
    589     //  memw(r30 + #-1404) = r2.new -> can not be new value store
    590     // arch spec section: 5.4.2.1
    591     return false;
    592   }
    593 
    594   // If the source that feeds the store is predicated, new value store must
    595   // also be predicated.
    596   if (QII->isPredicated(PacketMI)) {
    597     if (!QII->isPredicated(MI))
    598       return false;
    599 
    600     // Check to make sure that they both will have their predicates
    601     // evaluate identically
    602     unsigned predRegNumSrc = 0;
    603     unsigned predRegNumDst = 0;
    604     const TargetRegisterClass* predRegClass = nullptr;
    605 
    606     // Get predicate register used in the source instruction
    607     for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) {
    608       if ( PacketMI->getOperand(opNum).isReg())
    609       predRegNumSrc = PacketMI->getOperand(opNum).getReg();
    610       predRegClass = QRI->getMinimalPhysRegClass(predRegNumSrc);
    611       if (predRegClass == &Hexagon::PredRegsRegClass) {
    612         break;
    613       }
    614     }
    615     assert ((predRegClass == &Hexagon::PredRegsRegClass ) &&
    616         ("predicate register not found in a predicated PacketMI instruction"));
    617 
    618     // Get predicate register used in new-value store instruction
    619     for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
    620       if ( MI->getOperand(opNum).isReg())
    621       predRegNumDst = MI->getOperand(opNum).getReg();
    622       predRegClass = QRI->getMinimalPhysRegClass(predRegNumDst);
    623       if (predRegClass == &Hexagon::PredRegsRegClass) {
    624         break;
    625       }
    626     }
    627     assert ((predRegClass == &Hexagon::PredRegsRegClass ) &&
    628             ("predicate register not found in a predicated MI instruction"));
    629 
    630     // New-value register producer and user (store) need to satisfy these
    631     // constraints:
    632     // 1) Both instructions should be predicated on the same register.
    633     // 2) If producer of the new-value register is .new predicated then store
    634     // should also be .new predicated and if producer is not .new predicated
    635     // then store should not be .new predicated.
    636     // 3) Both new-value register producer and user should have same predicate
    637     // sense, i.e, either both should be negated or both should be none negated.
    638 
    639     if (( predRegNumDst != predRegNumSrc) ||
    640           QII->isDotNewInst(PacketMI) != QII->isDotNewInst(MI)  ||
    641           getPredicateSense(MI, QII) != getPredicateSense(PacketMI, QII)) {
    642       return false;
    643     }
    644   }
    645 
    646   // Make sure that other than the new-value register no other store instruction
    647   // register has been modified in the same packet. Predicate registers can be
    648   // modified by they should not be modified between the producer and the store
    649   // instruction as it will make them both conditional on different values.
    650   // We already know this to be true for all the instructions before and
    651   // including PacketMI. Howerver, we need to perform the check for the
    652   // remaining instructions in the packet.
    653 
    654   std::vector<MachineInstr*>::iterator VI;
    655   std::vector<MachineInstr*>::iterator VE;
    656   unsigned StartCheck = 0;
    657 
    658   for (VI=CurrentPacketMIs.begin(), VE = CurrentPacketMIs.end();
    659       (VI != VE); ++VI) {
    660     SUnit *TempSU = MIToSUnit.find(*VI)->second;
    661     MachineInstr* TempMI = TempSU->getInstr();
    662 
    663     // Following condition is true for all the instructions until PacketMI is
    664     // reached (StartCheck is set to 0 before the for loop).
    665     // StartCheck flag is 1 for all the instructions after PacketMI.
    666     if (TempMI != PacketMI && !StartCheck) // start processing only after
    667       continue;                            // encountering PacketMI
    668 
    669     StartCheck = 1;
    670     if (TempMI == PacketMI) // We don't want to check PacketMI for dependence
    671       continue;
    672 
    673     for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
    674       if (MI->getOperand(opNum).isReg() &&
    675           TempSU->getInstr()->modifiesRegister(MI->getOperand(opNum).getReg(),
    676                                                QRI))
    677         return false;
    678     }
    679   }
    680 
    681   // Make sure that for non-POST_INC stores:
    682   // 1. The only use of reg is DepReg and no other registers.
    683   //    This handles V4 base+index registers.
    684   //    The following store can not be dot new.
    685   //    Eg.   r0 = add(r0, #3)a
    686   //          memw(r1+r0<<#2) = r0
    687   if (!QII->isPostIncrement(MI) &&
    688       GetStoreValueOperand(MI).isReg() &&
    689       GetStoreValueOperand(MI).getReg() == DepReg) {
    690     for(unsigned opNum = 0; opNum < MI->getNumOperands()-1; opNum++) {
    691       if (MI->getOperand(opNum).isReg() &&
    692           MI->getOperand(opNum).getReg() == DepReg) {
    693         return false;
    694       }
    695     }
    696     // 2. If data definition is because of implicit definition of the register,
    697     //    do not newify the store. Eg.
    698     //    %R9<def> = ZXTH %R12, %D6<imp-use>, %R12<imp-def>
    699     //    STrih_indexed %R8, 2, %R12<kill>; mem:ST2[%scevgep343]
    700     for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) {
    701       if (PacketMI->getOperand(opNum).isReg() &&
    702           PacketMI->getOperand(opNum).getReg() == DepReg &&
    703           PacketMI->getOperand(opNum).isDef() &&
    704           PacketMI->getOperand(opNum).isImplicit()) {
    705         return false;
    706       }
    707     }
    708   }
    709 
    710   // Can be dot new store.
    711   return true;
    712 }
    713 
    714 // can this MI to promoted to either
    715 // new value store or new value jump
    716 bool HexagonPacketizerList::CanPromoteToNewValue(
    717     MachineInstr *MI, SUnit *PacketSU, unsigned DepReg,
    718     const std::map<MachineInstr *, SUnit *> &MIToSUnit,
    719     MachineBasicBlock::iterator &MII) {
    720 
    721   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
    722   if (!QII->mayBeNewStore(MI))
    723     return false;
    724 
    725   MachineInstr *PacketMI = PacketSU->getInstr();
    726 
    727   // Check to see the store can be new value'ed.
    728   if (CanPromoteToNewValueStore(MI, PacketMI, DepReg, MIToSUnit))
    729     return true;
    730 
    731   // Check to see the compare/jump can be new value'ed.
    732   // This is done as a pass on its own. Don't need to check it here.
    733   return false;
    734 }
    735 
    736 // Check to see if an instruction can be dot new
    737 // There are three kinds.
    738 // 1. dot new on predicate - V2/V3/V4
    739 // 2. dot new on stores NV/ST - V4
    740 // 3. dot new on jump NV/J - V4 -- This is generated in a pass.
    741 bool HexagonPacketizerList::CanPromoteToDotNew(
    742     MachineInstr *MI, SUnit *PacketSU, unsigned DepReg,
    743     const std::map<MachineInstr *, SUnit *> &MIToSUnit,
    744     MachineBasicBlock::iterator &MII, const TargetRegisterClass *RC) {
    745   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
    746   // Already a dot new instruction.
    747   if (QII->isDotNewInst(MI) && !QII->mayBeNewStore(MI))
    748     return false;
    749 
    750   if (!isNewifiable(MI))
    751     return false;
    752 
    753   // predicate .new
    754   if (RC == &Hexagon::PredRegsRegClass && isCondInst(MI))
    755       return true;
    756   else if (RC != &Hexagon::PredRegsRegClass &&
    757       !QII->mayBeNewStore(MI)) // MI is not a new-value store
    758     return false;
    759   else {
    760     // Create a dot new machine instruction to see if resources can be
    761     // allocated. If not, bail out now.
    762     int NewOpcode = QII->GetDotNewOp(MI);
    763     const MCInstrDesc &desc = QII->get(NewOpcode);
    764     DebugLoc dl;
    765     MachineInstr *NewMI =
    766                     MI->getParent()->getParent()->CreateMachineInstr(desc, dl);
    767     bool ResourcesAvailable = ResourceTracker->canReserveResources(NewMI);
    768     MI->getParent()->getParent()->DeleteMachineInstr(NewMI);
    769 
    770     if (!ResourcesAvailable)
    771       return false;
    772 
    773     // new value store only
    774     // new new value jump generated as a passes
    775     if (!CanPromoteToNewValue(MI, PacketSU, DepReg, MIToSUnit, MII)) {
    776       return false;
    777     }
    778   }
    779   return true;
    780 }
    781 
    782 // Go through the packet instructions and search for anti dependency
    783 // between them and DepReg from MI
    784 // Consider this case:
    785 // Trying to add
    786 // a) %R1<def> = TFRI_cdNotPt %P3, 2
    787 // to this packet:
    788 // {
    789 //   b) %P0<def> = OR_pp %P3<kill>, %P0<kill>
    790 //   c) %P3<def> = TFR_PdRs %R23
    791 //   d) %R1<def> = TFRI_cdnPt %P3, 4
    792 //  }
    793 // The P3 from a) and d) will be complements after
    794 // a)'s P3 is converted to .new form
    795 // Anti Dep between c) and b) is irrelevant for this case
    796 bool HexagonPacketizerList::RestrictingDepExistInPacket(
    797     MachineInstr *MI, unsigned DepReg,
    798     const std::map<MachineInstr *, SUnit *> &MIToSUnit) {
    799 
    800   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
    801   SUnit *PacketSUDep = MIToSUnit.find(MI)->second;
    802 
    803   for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(),
    804        VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) {
    805 
    806     // We only care for dependencies to predicated instructions
    807     if(!QII->isPredicated(*VIN)) continue;
    808 
    809     // Scheduling Unit for current insn in the packet
    810     SUnit *PacketSU = MIToSUnit.find(*VIN)->second;
    811 
    812     // Look at dependencies between current members of the packet
    813     // and predicate defining instruction MI.
    814     // Make sure that dependency is on the exact register
    815     // we care about.
    816     if (PacketSU->isSucc(PacketSUDep)) {
    817       for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
    818         if ((PacketSU->Succs[i].getSUnit() == PacketSUDep) &&
    819             (PacketSU->Succs[i].getKind() == SDep::Anti) &&
    820             (PacketSU->Succs[i].getReg() == DepReg)) {
    821           return true;
    822         }
    823       }
    824     }
    825   }
    826 
    827   return false;
    828 }
    829 
    830 
    831 /// Gets the predicate register of a predicated instruction.
    832 static unsigned getPredicatedRegister(MachineInstr *MI,
    833                                       const HexagonInstrInfo *QII) {
    834   /// We use the following rule: The first predicate register that is a use is
    835   /// the predicate register of a predicated instruction.
    836 
    837   assert(QII->isPredicated(MI) && "Must be predicated instruction");
    838 
    839   for (MachineInstr::mop_iterator OI = MI->operands_begin(),
    840        OE = MI->operands_end(); OI != OE; ++OI) {
    841     MachineOperand &Op = *OI;
    842     if (Op.isReg() && Op.getReg() && Op.isUse() &&
    843         Hexagon::PredRegsRegClass.contains(Op.getReg()))
    844       return Op.getReg();
    845   }
    846 
    847   llvm_unreachable("Unknown instruction operand layout");
    848 
    849   return 0;
    850 }
    851 
    852 // Given two predicated instructions, this function detects whether
    853 // the predicates are complements
    854 bool HexagonPacketizerList::ArePredicatesComplements(
    855     MachineInstr *MI1, MachineInstr *MI2,
    856     const std::map<MachineInstr *, SUnit *> &MIToSUnit) {
    857 
    858   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
    859 
    860   // If we don't know the predicate sense of the instructions bail out early, we
    861   // need it later.
    862   if (getPredicateSense(MI1, QII) == PK_Unknown ||
    863       getPredicateSense(MI2, QII) == PK_Unknown)
    864     return false;
    865 
    866   // Scheduling unit for candidate
    867   SUnit *SU = MIToSUnit.find(MI1)->second;
    868 
    869   // One corner case deals with the following scenario:
    870   // Trying to add
    871   // a) %R24<def> = TFR_cPt %P0, %R25
    872   // to this packet:
    873   //
    874   // {
    875   //   b) %R25<def> = TFR_cNotPt %P0, %R24
    876   //   c) %P0<def> = CMPEQri %R26, 1
    877   // }
    878   //
    879   // On general check a) and b) are complements, but
    880   // presence of c) will convert a) to .new form, and
    881   // then it is not a complement
    882   // We attempt to detect it by analyzing  existing
    883   // dependencies in the packet
    884 
    885   // Analyze relationships between all existing members of the packet.
    886   // Look for Anti dependecy on the same predicate reg
    887   // as used in the candidate
    888   for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(),
    889        VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) {
    890 
    891     // Scheduling Unit for current insn in the packet
    892     SUnit *PacketSU = MIToSUnit.find(*VIN)->second;
    893 
    894     // If this instruction in the packet is succeeded by the candidate...
    895     if (PacketSU->isSucc(SU)) {
    896       for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
    897         // The corner case exist when there is true data
    898         // dependency between candidate and one of current
    899         // packet members, this dep is on predicate reg, and
    900         // there already exist anti dep on the same pred in
    901         // the packet.
    902         if (PacketSU->Succs[i].getSUnit() == SU &&
    903             PacketSU->Succs[i].getKind() == SDep::Data &&
    904             Hexagon::PredRegsRegClass.contains(
    905               PacketSU->Succs[i].getReg()) &&
    906             // Here I know that *VIN is predicate setting instruction
    907             // with true data dep to candidate on the register
    908             // we care about - c) in the above example.
    909             // Now I need to see if there is an anti dependency
    910             // from c) to any other instruction in the
    911             // same packet on the pred reg of interest
    912             RestrictingDepExistInPacket(*VIN,PacketSU->Succs[i].getReg(),
    913                                         MIToSUnit)) {
    914            return false;
    915         }
    916       }
    917     }
    918   }
    919 
    920   // If the above case does not apply, check regular
    921   // complement condition.
    922   // Check that the predicate register is the same and
    923   // that the predicate sense is different
    924   // We also need to differentiate .old vs. .new:
    925   // !p0 is not complimentary to p0.new
    926   unsigned PReg1 = getPredicatedRegister(MI1, QII);
    927   unsigned PReg2 = getPredicatedRegister(MI2, QII);
    928   return ((PReg1 == PReg2) &&
    929           Hexagon::PredRegsRegClass.contains(PReg1) &&
    930           Hexagon::PredRegsRegClass.contains(PReg2) &&
    931           (getPredicateSense(MI1, QII) != getPredicateSense(MI2, QII)) &&
    932           (QII->isDotNewInst(MI1) == QII->isDotNewInst(MI2)));
    933 }
    934 
    935 // initPacketizerState - Initialize packetizer flags
    936 void HexagonPacketizerList::initPacketizerState() {
    937 
    938   Dependence = false;
    939   PromotedToDotNew = false;
    940   GlueToNewValueJump = false;
    941   GlueAllocframeStore = false;
    942   FoundSequentialDependence = false;
    943 
    944   return;
    945 }
    946 
    947 // ignorePseudoInstruction - Ignore bundling of pseudo instructions.
    948 bool HexagonPacketizerList::ignorePseudoInstruction(MachineInstr *MI,
    949                                                     MachineBasicBlock *MBB) {
    950   if (MI->isDebugValue())
    951     return true;
    952 
    953   // We must print out inline assembly
    954   if (MI->isInlineAsm())
    955     return false;
    956 
    957   // We check if MI has any functional units mapped to it.
    958   // If it doesn't, we ignore the instruction.
    959   const MCInstrDesc& TID = MI->getDesc();
    960   unsigned SchedClass = TID.getSchedClass();
    961   const InstrStage* IS =
    962                     ResourceTracker->getInstrItins()->beginStage(SchedClass);
    963   unsigned FuncUnits = IS->getUnits();
    964   return !FuncUnits;
    965 }
    966 
    967 // isSoloInstruction: - Returns true for instructions that must be
    968 // scheduled in their own packet.
    969 bool HexagonPacketizerList::isSoloInstruction(MachineInstr *MI) {
    970 
    971   if (MI->isInlineAsm())
    972     return true;
    973 
    974   if (MI->isEHLabel())
    975     return true;
    976 
    977   // From Hexagon V4 Programmer's Reference Manual 3.4.4 Grouping constraints:
    978   // trap, pause, barrier, icinva, isync, and syncht are solo instructions.
    979   // They must not be grouped with other instructions in a packet.
    980   if (IsSchedBarrier(MI))
    981     return true;
    982 
    983   return false;
    984 }
    985 
    986 // isLegalToPacketizeTogether:
    987 // SUI is the current instruction that is out side of the current packet.
    988 // SUJ is the current instruction inside the current packet against which that
    989 // SUI will be packetized.
    990 bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
    991   MachineInstr *I = SUI->getInstr();
    992   MachineInstr *J = SUJ->getInstr();
    993   assert(I && J && "Unable to packetize null instruction!");
    994 
    995   const MCInstrDesc &MCIDI = I->getDesc();
    996   const MCInstrDesc &MCIDJ = J->getDesc();
    997 
    998   MachineBasicBlock::iterator II = I;
    999 
   1000   const unsigned FrameSize = MF.getFrameInfo()->getStackSize();
   1001   const HexagonRegisterInfo *QRI =
   1002       (const HexagonRegisterInfo *)MF.getSubtarget().getRegisterInfo();
   1003   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
   1004 
   1005   // Inline asm cannot go in the packet.
   1006   if (I->getOpcode() == Hexagon::INLINEASM)
   1007     llvm_unreachable("Should not meet inline asm here!");
   1008 
   1009   if (isSoloInstruction(I))
   1010     llvm_unreachable("Should not meet solo instr here!");
   1011 
   1012   // A save callee-save register function call can only be in a packet
   1013   // with instructions that don't write to the callee-save registers.
   1014   if ((QII->isSaveCalleeSavedRegsCall(I) &&
   1015        DoesModifyCalleeSavedReg(J, QRI)) ||
   1016       (QII->isSaveCalleeSavedRegsCall(J) &&
   1017        DoesModifyCalleeSavedReg(I, QRI))) {
   1018     Dependence = true;
   1019     return false;
   1020   }
   1021 
   1022   // Two control flow instructions cannot go in the same packet.
   1023   if (IsControlFlow(I) && IsControlFlow(J)) {
   1024     Dependence = true;
   1025     return false;
   1026   }
   1027 
   1028   // A LoopN instruction cannot appear in the same packet as a jump or call.
   1029   if (IsLoopN(I) &&
   1030      (IsDirectJump(J) || MCIDJ.isCall() || QII->isDeallocRet(J))) {
   1031     Dependence = true;
   1032     return false;
   1033   }
   1034   if (IsLoopN(J) &&
   1035      (IsDirectJump(I) || MCIDI.isCall() || QII->isDeallocRet(I))) {
   1036     Dependence = true;
   1037     return false;
   1038   }
   1039 
   1040   // dealloc_return cannot appear in the same packet as a conditional or
   1041   // unconditional jump.
   1042   if (QII->isDeallocRet(I) &&
   1043      (MCIDJ.isBranch() || MCIDJ.isCall() || MCIDJ.isBarrier())) {
   1044     Dependence = true;
   1045     return false;
   1046   }
   1047 
   1048 
   1049   // V4 allows dual store. But does not allow second store, if the
   1050   // first store is not in SLOT0. New value store, new value jump,
   1051   // dealloc_return and memop always take SLOT0.
   1052   // Arch spec 3.4.4.2
   1053   if (MCIDI.mayStore() && MCIDJ.mayStore() &&
   1054       (QII->isNewValueInst(J) || QII->isMemOp(J) || QII->isMemOp(I))) {
   1055     Dependence = true;
   1056     return false;
   1057   }
   1058 
   1059   if ((QII->isMemOp(J) && MCIDI.mayStore())
   1060       || (MCIDJ.mayStore() && QII->isMemOp(I))
   1061       || (QII->isMemOp(J) && QII->isMemOp(I))) {
   1062     Dependence = true;
   1063     return false;
   1064   }
   1065 
   1066   //if dealloc_return
   1067   if (MCIDJ.mayStore() && QII->isDeallocRet(I)) {
   1068     Dependence = true;
   1069     return false;
   1070   }
   1071 
   1072   // If an instruction feeds new value jump, glue it.
   1073   MachineBasicBlock::iterator NextMII = I;
   1074   ++NextMII;
   1075   if (NextMII != I->getParent()->end() && QII->isNewValueJump(NextMII)) {
   1076     MachineInstr *NextMI = NextMII;
   1077 
   1078     bool secondRegMatch = false;
   1079     bool maintainNewValueJump = false;
   1080 
   1081     if (NextMI->getOperand(1).isReg() &&
   1082         I->getOperand(0).getReg() == NextMI->getOperand(1).getReg()) {
   1083       secondRegMatch = true;
   1084       maintainNewValueJump = true;
   1085     }
   1086 
   1087     if (!secondRegMatch &&
   1088           I->getOperand(0).getReg() == NextMI->getOperand(0).getReg()) {
   1089       maintainNewValueJump = true;
   1090     }
   1091 
   1092     for (std::vector<MachineInstr*>::iterator
   1093           VI = CurrentPacketMIs.begin(),
   1094             VE = CurrentPacketMIs.end();
   1095           (VI != VE && maintainNewValueJump); ++VI) {
   1096       SUnit *PacketSU = MIToSUnit.find(*VI)->second;
   1097 
   1098       // NVJ can not be part of the dual jump - Arch Spec: section 7.8
   1099       if (PacketSU->getInstr()->getDesc().isCall()) {
   1100         Dependence = true;
   1101         break;
   1102       }
   1103       // Validate
   1104       // 1. Packet does not have a store in it.
   1105       // 2. If the first operand of the nvj is newified, and the second
   1106       //    operand is also a reg, it (second reg) is not defined in
   1107       //    the same packet.
   1108       // 3. If the second operand of the nvj is newified, (which means
   1109       //    first operand is also a reg), first reg is not defined in
   1110       //    the same packet.
   1111       if (PacketSU->getInstr()->getDesc().mayStore()               ||
   1112           PacketSU->getInstr()->getOpcode() == Hexagon::S2_allocframe ||
   1113           // Check #2.
   1114           (!secondRegMatch && NextMI->getOperand(1).isReg() &&
   1115             PacketSU->getInstr()->modifiesRegister(
   1116                               NextMI->getOperand(1).getReg(), QRI)) ||
   1117           // Check #3.
   1118           (secondRegMatch &&
   1119             PacketSU->getInstr()->modifiesRegister(
   1120                               NextMI->getOperand(0).getReg(), QRI))) {
   1121         Dependence = true;
   1122         break;
   1123       }
   1124     }
   1125     if (!Dependence)
   1126       GlueToNewValueJump = true;
   1127     else
   1128       return false;
   1129   }
   1130 
   1131   if (SUJ->isSucc(SUI)) {
   1132     for (unsigned i = 0;
   1133          (i < SUJ->Succs.size()) && !FoundSequentialDependence;
   1134          ++i) {
   1135 
   1136       if (SUJ->Succs[i].getSUnit() != SUI) {
   1137         continue;
   1138       }
   1139 
   1140       SDep::Kind DepType = SUJ->Succs[i].getKind();
   1141 
   1142       // For direct calls:
   1143       // Ignore register dependences for call instructions for
   1144       // packetization purposes except for those due to r31 and
   1145       // predicate registers.
   1146       //
   1147       // For indirect calls:
   1148       // Same as direct calls + check for true dependences to the register
   1149       // used in the indirect call.
   1150       //
   1151       // We completely ignore Order dependences for call instructions
   1152       //
   1153       // For returns:
   1154       // Ignore register dependences for return instructions like jumpr,
   1155       // dealloc return unless we have dependencies on the explicit uses
   1156       // of the registers used by jumpr (like r31) or dealloc return
   1157       // (like r29 or r30).
   1158       //
   1159       // TODO: Currently, jumpr is handling only return of r31. So, the
   1160       // following logic (specificaly IsCallDependent) is working fine.
   1161       // We need to enable jumpr for register other than r31 and then,
   1162       // we need to rework the last part, where it handles indirect call
   1163       // of that (IsCallDependent) function. Bug 6216 is opened for this.
   1164       //
   1165       unsigned DepReg = 0;
   1166       const TargetRegisterClass* RC = nullptr;
   1167       if (DepType == SDep::Data) {
   1168         DepReg = SUJ->Succs[i].getReg();
   1169         RC = QRI->getMinimalPhysRegClass(DepReg);
   1170       }
   1171       if ((MCIDI.isCall() || MCIDI.isReturn()) &&
   1172           (!IsRegDependence(DepType) ||
   1173             !IsCallDependent(I, DepType, SUJ->Succs[i].getReg()))) {
   1174         /* do nothing */
   1175       }
   1176 
   1177       // For instructions that can be promoted to dot-new, try to promote.
   1178       else if ((DepType == SDep::Data) &&
   1179                CanPromoteToDotNew(I, SUJ, DepReg, MIToSUnit, II, RC) &&
   1180                PromoteToDotNew(I, DepType, II, RC)) {
   1181         PromotedToDotNew = true;
   1182         /* do nothing */
   1183       }
   1184 
   1185       else if ((DepType == SDep::Data) &&
   1186                (QII->isNewValueJump(I))) {
   1187         /* do nothing */
   1188       }
   1189 
   1190       // For predicated instructions, if the predicates are complements
   1191       // then there can be no dependence.
   1192       else if (QII->isPredicated(I) &&
   1193                QII->isPredicated(J) &&
   1194           ArePredicatesComplements(I, J, MIToSUnit)) {
   1195         /* do nothing */
   1196 
   1197       }
   1198       else if (IsDirectJump(I) &&
   1199                !MCIDJ.isBranch() &&
   1200                !MCIDJ.isCall() &&
   1201                (DepType == SDep::Order)) {
   1202         // Ignore Order dependences between unconditional direct branches
   1203         // and non-control-flow instructions
   1204         /* do nothing */
   1205       }
   1206       else if (MCIDI.isConditionalBranch() && (DepType != SDep::Data) &&
   1207                (DepType != SDep::Output)) {
   1208         // Ignore all dependences for jumps except for true and output
   1209         // dependences
   1210         /* do nothing */
   1211       }
   1212 
   1213       // Ignore output dependences due to superregs. We can
   1214       // write to two different subregisters of R1:0 for instance
   1215       // in the same cycle
   1216       //
   1217 
   1218       //
   1219       // Let the
   1220       // If neither I nor J defines DepReg, then this is a
   1221       // superfluous output dependence. The dependence must be of the
   1222       // form:
   1223       //  R0 = ...
   1224       //  R1 = ...
   1225       // and there is an output dependence between the two instructions
   1226       // with
   1227       // DepReg = D0
   1228       // We want to ignore these dependences.
   1229       // Ideally, the dependence constructor should annotate such
   1230       // dependences. We can then avoid this relatively expensive check.
   1231       //
   1232       else if (DepType == SDep::Output) {
   1233         // DepReg is the register that's responsible for the dependence.
   1234         unsigned DepReg = SUJ->Succs[i].getReg();
   1235 
   1236         // Check if I and J really defines DepReg.
   1237         if (I->definesRegister(DepReg) ||
   1238             J->definesRegister(DepReg)) {
   1239           FoundSequentialDependence = true;
   1240           break;
   1241         }
   1242       }
   1243 
   1244       // We ignore Order dependences for
   1245       // 1. Two loads unless they are volatile.
   1246       // 2. Two stores in V4 unless they are volatile.
   1247       else if ((DepType == SDep::Order) &&
   1248                !I->hasOrderedMemoryRef() &&
   1249                !J->hasOrderedMemoryRef()) {
   1250         if (MCIDI.mayStore() && MCIDJ.mayStore()) {
   1251           /* do nothing */
   1252         }
   1253         // store followed by store-- not OK on V2
   1254         // store followed by load -- not OK on all (OK if addresses
   1255         // are not aliased)
   1256         // load followed by store -- OK on all
   1257         // load followed by load  -- OK on all
   1258         else if ( !MCIDJ.mayStore()) {
   1259           /* do nothing */
   1260         }
   1261         else {
   1262           FoundSequentialDependence = true;
   1263           break;
   1264         }
   1265       }
   1266 
   1267       // For V4, special case ALLOCFRAME. Even though there is dependency
   1268       // between ALLOCFRAME and subsequent store, allow it to be
   1269       // packetized in a same packet. This implies that the store is using
   1270       // caller's SP. Hence, offset needs to be updated accordingly.
   1271       else if (DepType == SDep::Data
   1272                && J->getOpcode() == Hexagon::S2_allocframe
   1273                && (I->getOpcode() == Hexagon::S2_storerd_io
   1274                    || I->getOpcode() == Hexagon::S2_storeri_io
   1275                    || I->getOpcode() == Hexagon::S2_storerb_io)
   1276                && I->getOperand(0).getReg() == QRI->getStackRegister()
   1277                && QII->isValidOffset(I->getOpcode(),
   1278                                      I->getOperand(1).getImm() -
   1279                                      (FrameSize + HEXAGON_LRFP_SIZE)))
   1280       {
   1281         GlueAllocframeStore = true;
   1282         // Since this store is to be glued with allocframe in the same
   1283         // packet, it will use SP of the previous stack frame, i.e
   1284         // caller's SP. Therefore, we need to recalculate offset according
   1285         // to this change.
   1286         I->getOperand(1).setImm(I->getOperand(1).getImm() -
   1287                                         (FrameSize + HEXAGON_LRFP_SIZE));
   1288       }
   1289 
   1290       //
   1291       // Skip over anti-dependences. Two instructions that are
   1292       // anti-dependent can share a packet
   1293       //
   1294       else if (DepType != SDep::Anti) {
   1295         FoundSequentialDependence = true;
   1296         break;
   1297       }
   1298     }
   1299 
   1300     if (FoundSequentialDependence) {
   1301       Dependence = true;
   1302       return false;
   1303     }
   1304   }
   1305 
   1306   return true;
   1307 }
   1308 
   1309 // isLegalToPruneDependencies
   1310 bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {
   1311   MachineInstr *I = SUI->getInstr();
   1312   assert(I && SUJ->getInstr() && "Unable to packetize null instruction!");
   1313 
   1314   const unsigned FrameSize = MF.getFrameInfo()->getStackSize();
   1315 
   1316   if (Dependence) {
   1317 
   1318     // Check if the instruction was promoted to a dot-new. If so, demote it
   1319     // back into a dot-old.
   1320     if (PromotedToDotNew) {
   1321       DemoteToDotOld(I);
   1322     }
   1323 
   1324     // Check if the instruction (must be a store) was glued with an Allocframe
   1325     // instruction. If so, restore its offset to its original value, i.e. use
   1326     // curent SP instead of caller's SP.
   1327     if (GlueAllocframeStore) {
   1328       I->getOperand(1).setImm(I->getOperand(1).getImm() +
   1329                                              FrameSize + HEXAGON_LRFP_SIZE);
   1330     }
   1331 
   1332     return false;
   1333   }
   1334   return true;
   1335 }
   1336 
   1337 MachineBasicBlock::iterator
   1338 HexagonPacketizerList::addToPacket(MachineInstr *MI) {
   1339 
   1340     MachineBasicBlock::iterator MII = MI;
   1341     MachineBasicBlock *MBB = MI->getParent();
   1342 
   1343     const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
   1344 
   1345     if (GlueToNewValueJump) {
   1346 
   1347       ++MII;
   1348       MachineInstr *nvjMI = MII;
   1349       assert(ResourceTracker->canReserveResources(MI));
   1350       ResourceTracker->reserveResources(MI);
   1351       if ((QII->isExtended(MI) || QII->isConstExtended(MI)) &&
   1352           !tryAllocateResourcesForConstExt(MI)) {
   1353         endPacket(MBB, MI);
   1354         ResourceTracker->reserveResources(MI);
   1355         assert(canReserveResourcesForConstExt(MI) &&
   1356                "Ensure that there is a slot");
   1357         reserveResourcesForConstExt(MI);
   1358         // Reserve resources for new value jump constant extender.
   1359         assert(canReserveResourcesForConstExt(MI) &&
   1360                "Ensure that there is a slot");
   1361         reserveResourcesForConstExt(nvjMI);
   1362         assert(ResourceTracker->canReserveResources(nvjMI) &&
   1363                "Ensure that there is a slot");
   1364 
   1365       } else if (   // Extended instruction takes two slots in the packet.
   1366         // Try reserve and allocate 4-byte in the current packet first.
   1367         (QII->isExtended(nvjMI)
   1368             && (!tryAllocateResourcesForConstExt(nvjMI)
   1369                 || !ResourceTracker->canReserveResources(nvjMI)))
   1370         || // For non-extended instruction, no need to allocate extra 4 bytes.
   1371         (!QII->isExtended(nvjMI) &&
   1372               !ResourceTracker->canReserveResources(nvjMI)))
   1373       {
   1374         endPacket(MBB, MI);
   1375         // A new and empty packet starts.
   1376         // We are sure that the resources requirements can be satisfied.
   1377         // Therefore, do not need to call "canReserveResources" anymore.
   1378         ResourceTracker->reserveResources(MI);
   1379         if (QII->isExtended(nvjMI))
   1380           reserveResourcesForConstExt(nvjMI);
   1381       }
   1382       // Here, we are sure that "reserveResources" would succeed.
   1383       ResourceTracker->reserveResources(nvjMI);
   1384       CurrentPacketMIs.push_back(MI);
   1385       CurrentPacketMIs.push_back(nvjMI);
   1386     } else {
   1387       if (   (QII->isExtended(MI) || QII->isConstExtended(MI))
   1388           && (   !tryAllocateResourcesForConstExt(MI)
   1389               || !ResourceTracker->canReserveResources(MI)))
   1390       {
   1391         endPacket(MBB, MI);
   1392         // Check if the instruction was promoted to a dot-new. If so, demote it
   1393         // back into a dot-old
   1394         if (PromotedToDotNew) {
   1395           DemoteToDotOld(MI);
   1396         }
   1397         reserveResourcesForConstExt(MI);
   1398       }
   1399       // In case that "MI" is not an extended insn,
   1400       // the resource availability has already been checked.
   1401       ResourceTracker->reserveResources(MI);
   1402       CurrentPacketMIs.push_back(MI);
   1403     }
   1404     return MII;
   1405 }
   1406 
   1407 //===----------------------------------------------------------------------===//
   1408 //                         Public Constructor Functions
   1409 //===----------------------------------------------------------------------===//
   1410 
   1411 FunctionPass *llvm::createHexagonPacketizer() {
   1412   return new HexagonPacketizer();
   1413 }
   1414 
   1415