Home | History | Annotate | Download | only in Scalar
      1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements Loop Rotation Pass.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Transforms/Scalar.h"
     15 #include "llvm/ADT/Statistic.h"
     16 #include "llvm/Analysis/AssumptionCache.h"
     17 #include "llvm/Analysis/CodeMetrics.h"
     18 #include "llvm/Analysis/InstructionSimplify.h"
     19 #include "llvm/Analysis/LoopPass.h"
     20 #include "llvm/Analysis/ScalarEvolution.h"
     21 #include "llvm/Analysis/TargetTransformInfo.h"
     22 #include "llvm/Analysis/ValueTracking.h"
     23 #include "llvm/IR/CFG.h"
     24 #include "llvm/IR/Dominators.h"
     25 #include "llvm/IR/Function.h"
     26 #include "llvm/IR/IntrinsicInst.h"
     27 #include "llvm/IR/Module.h"
     28 #include "llvm/Support/CommandLine.h"
     29 #include "llvm/Support/Debug.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     32 #include "llvm/Transforms/Utils/Local.h"
     33 #include "llvm/Transforms/Utils/SSAUpdater.h"
     34 #include "llvm/Transforms/Utils/ValueMapper.h"
     35 using namespace llvm;
     36 
     37 #define DEBUG_TYPE "loop-rotate"
     38 
     39 static cl::opt<unsigned>
     40 DefaultRotationThreshold("rotation-max-header-size", cl::init(16), cl::Hidden,
     41        cl::desc("The default maximum header size for automatic loop rotation"));
     42 
     43 STATISTIC(NumRotated, "Number of loops rotated");
     44 namespace {
     45 
     46   class LoopRotate : public LoopPass {
     47   public:
     48     static char ID; // Pass ID, replacement for typeid
     49     LoopRotate(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) {
     50       initializeLoopRotatePass(*PassRegistry::getPassRegistry());
     51       if (SpecifiedMaxHeaderSize == -1)
     52         MaxHeaderSize = DefaultRotationThreshold;
     53       else
     54         MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize);
     55     }
     56 
     57     // LCSSA form makes instruction renaming easier.
     58     void getAnalysisUsage(AnalysisUsage &AU) const override {
     59       AU.addRequired<AssumptionCacheTracker>();
     60       AU.addPreserved<DominatorTreeWrapperPass>();
     61       AU.addRequired<LoopInfoWrapperPass>();
     62       AU.addPreserved<LoopInfoWrapperPass>();
     63       AU.addRequiredID(LoopSimplifyID);
     64       AU.addPreservedID(LoopSimplifyID);
     65       AU.addRequiredID(LCSSAID);
     66       AU.addPreservedID(LCSSAID);
     67       AU.addPreserved<ScalarEvolution>();
     68       AU.addRequired<TargetTransformInfoWrapperPass>();
     69     }
     70 
     71     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
     72     bool simplifyLoopLatch(Loop *L);
     73     bool rotateLoop(Loop *L, bool SimplifiedLatch);
     74 
     75   private:
     76     unsigned MaxHeaderSize;
     77     LoopInfo *LI;
     78     const TargetTransformInfo *TTI;
     79     AssumptionCache *AC;
     80     DominatorTree *DT;
     81   };
     82 }
     83 
     84 char LoopRotate::ID = 0;
     85 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
     86 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
     87 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
     88 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
     89 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
     90 INITIALIZE_PASS_DEPENDENCY(LCSSA)
     91 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
     92 
     93 Pass *llvm::createLoopRotatePass(int MaxHeaderSize) {
     94   return new LoopRotate(MaxHeaderSize);
     95 }
     96 
     97 /// Rotate Loop L as many times as possible. Return true if
     98 /// the loop is rotated at least once.
     99 bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
    100   if (skipOptnoneFunction(L))
    101     return false;
    102 
    103   // Save the loop metadata.
    104   MDNode *LoopMD = L->getLoopID();
    105 
    106   Function &F = *L->getHeader()->getParent();
    107 
    108   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    109   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    110   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    111   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
    112   DT = DTWP ? &DTWP->getDomTree() : nullptr;
    113 
    114   // Simplify the loop latch before attempting to rotate the header
    115   // upward. Rotation may not be needed if the loop tail can be folded into the
    116   // loop exit.
    117   bool SimplifiedLatch = simplifyLoopLatch(L);
    118 
    119   // One loop can be rotated multiple times.
    120   bool MadeChange = false;
    121   while (rotateLoop(L, SimplifiedLatch)) {
    122     MadeChange = true;
    123     SimplifiedLatch = false;
    124   }
    125 
    126   // Restore the loop metadata.
    127   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
    128   if ((MadeChange || SimplifiedLatch) && LoopMD)
    129     L->setLoopID(LoopMD);
    130 
    131   return MadeChange;
    132 }
    133 
    134 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
    135 /// old header into the preheader.  If there were uses of the values produced by
    136 /// these instruction that were outside of the loop, we have to insert PHI nodes
    137 /// to merge the two values.  Do this now.
    138 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
    139                                             BasicBlock *OrigPreheader,
    140                                             ValueToValueMapTy &ValueMap) {
    141   // Remove PHI node entries that are no longer live.
    142   BasicBlock::iterator I, E = OrigHeader->end();
    143   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
    144     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
    145 
    146   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
    147   // as necessary.
    148   SSAUpdater SSA;
    149   for (I = OrigHeader->begin(); I != E; ++I) {
    150     Value *OrigHeaderVal = I;
    151 
    152     // If there are no uses of the value (e.g. because it returns void), there
    153     // is nothing to rewrite.
    154     if (OrigHeaderVal->use_empty())
    155       continue;
    156 
    157     Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
    158 
    159     // The value now exits in two versions: the initial value in the preheader
    160     // and the loop "next" value in the original header.
    161     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
    162     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
    163     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
    164 
    165     // Visit each use of the OrigHeader instruction.
    166     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
    167          UE = OrigHeaderVal->use_end(); UI != UE; ) {
    168       // Grab the use before incrementing the iterator.
    169       Use &U = *UI;
    170 
    171       // Increment the iterator before removing the use from the list.
    172       ++UI;
    173 
    174       // SSAUpdater can't handle a non-PHI use in the same block as an
    175       // earlier def. We can easily handle those cases manually.
    176       Instruction *UserInst = cast<Instruction>(U.getUser());
    177       if (!isa<PHINode>(UserInst)) {
    178         BasicBlock *UserBB = UserInst->getParent();
    179 
    180         // The original users in the OrigHeader are already using the
    181         // original definitions.
    182         if (UserBB == OrigHeader)
    183           continue;
    184 
    185         // Users in the OrigPreHeader need to use the value to which the
    186         // original definitions are mapped.
    187         if (UserBB == OrigPreheader) {
    188           U = OrigPreHeaderVal;
    189           continue;
    190         }
    191       }
    192 
    193       // Anything else can be handled by SSAUpdater.
    194       SSA.RewriteUse(U);
    195     }
    196   }
    197 }
    198 
    199 /// Determine whether the instructions in this range may be safely and cheaply
    200 /// speculated. This is not an important enough situation to develop complex
    201 /// heuristics. We handle a single arithmetic instruction along with any type
    202 /// conversions.
    203 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
    204                                   BasicBlock::iterator End, Loop *L) {
    205   bool seenIncrement = false;
    206   bool MultiExitLoop = false;
    207 
    208   if (!L->getExitingBlock())
    209     MultiExitLoop = true;
    210 
    211   for (BasicBlock::iterator I = Begin; I != End; ++I) {
    212 
    213     if (!isSafeToSpeculativelyExecute(I))
    214       return false;
    215 
    216     if (isa<DbgInfoIntrinsic>(I))
    217       continue;
    218 
    219     switch (I->getOpcode()) {
    220     default:
    221       return false;
    222     case Instruction::GetElementPtr:
    223       // GEPs are cheap if all indices are constant.
    224       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
    225         return false;
    226       // fall-thru to increment case
    227     case Instruction::Add:
    228     case Instruction::Sub:
    229     case Instruction::And:
    230     case Instruction::Or:
    231     case Instruction::Xor:
    232     case Instruction::Shl:
    233     case Instruction::LShr:
    234     case Instruction::AShr: {
    235       Value *IVOpnd = !isa<Constant>(I->getOperand(0))
    236                           ? I->getOperand(0)
    237                           : !isa<Constant>(I->getOperand(1))
    238                                 ? I->getOperand(1)
    239                                 : nullptr;
    240       if (!IVOpnd)
    241         return false;
    242 
    243       // If increment operand is used outside of the loop, this speculation
    244       // could cause extra live range interference.
    245       if (MultiExitLoop) {
    246         for (User *UseI : IVOpnd->users()) {
    247           auto *UserInst = cast<Instruction>(UseI);
    248           if (!L->contains(UserInst))
    249             return false;
    250         }
    251       }
    252 
    253       if (seenIncrement)
    254         return false;
    255       seenIncrement = true;
    256       break;
    257     }
    258     case Instruction::Trunc:
    259     case Instruction::ZExt:
    260     case Instruction::SExt:
    261       // ignore type conversions
    262       break;
    263     }
    264   }
    265   return true;
    266 }
    267 
    268 /// Fold the loop tail into the loop exit by speculating the loop tail
    269 /// instructions. Typically, this is a single post-increment. In the case of a
    270 /// simple 2-block loop, hoisting the increment can be much better than
    271 /// duplicating the entire loop header. In the case of loops with early exits,
    272 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
    273 /// canonical form so downstream passes can handle it.
    274 ///
    275 /// I don't believe this invalidates SCEV.
    276 bool LoopRotate::simplifyLoopLatch(Loop *L) {
    277   BasicBlock *Latch = L->getLoopLatch();
    278   if (!Latch || Latch->hasAddressTaken())
    279     return false;
    280 
    281   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
    282   if (!Jmp || !Jmp->isUnconditional())
    283     return false;
    284 
    285   BasicBlock *LastExit = Latch->getSinglePredecessor();
    286   if (!LastExit || !L->isLoopExiting(LastExit))
    287     return false;
    288 
    289   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
    290   if (!BI)
    291     return false;
    292 
    293   if (!shouldSpeculateInstrs(Latch->begin(), Jmp, L))
    294     return false;
    295 
    296   DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
    297         << LastExit->getName() << "\n");
    298 
    299   // Hoist the instructions from Latch into LastExit.
    300   LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp);
    301 
    302   unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
    303   BasicBlock *Header = Jmp->getSuccessor(0);
    304   assert(Header == L->getHeader() && "expected a backward branch");
    305 
    306   // Remove Latch from the CFG so that LastExit becomes the new Latch.
    307   BI->setSuccessor(FallThruPath, Header);
    308   Latch->replaceSuccessorsPhiUsesWith(LastExit);
    309   Jmp->eraseFromParent();
    310 
    311   // Nuke the Latch block.
    312   assert(Latch->empty() && "unable to evacuate Latch");
    313   LI->removeBlock(Latch);
    314   if (DT)
    315     DT->eraseNode(Latch);
    316   Latch->eraseFromParent();
    317   return true;
    318 }
    319 
    320 /// Rotate loop LP. Return true if the loop is rotated.
    321 ///
    322 /// \param SimplifiedLatch is true if the latch was just folded into the final
    323 /// loop exit. In this case we may want to rotate even though the new latch is
    324 /// now an exiting branch. This rotation would have happened had the latch not
    325 /// been simplified. However, if SimplifiedLatch is false, then we avoid
    326 /// rotating loops in which the latch exits to avoid excessive or endless
    327 /// rotation. LoopRotate should be repeatable and converge to a canonical
    328 /// form. This property is satisfied because simplifying the loop latch can only
    329 /// happen once across multiple invocations of the LoopRotate pass.
    330 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
    331   // If the loop has only one block then there is not much to rotate.
    332   if (L->getBlocks().size() == 1)
    333     return false;
    334 
    335   BasicBlock *OrigHeader = L->getHeader();
    336   BasicBlock *OrigLatch = L->getLoopLatch();
    337 
    338   BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
    339   if (!BI || BI->isUnconditional())
    340     return false;
    341 
    342   // If the loop header is not one of the loop exiting blocks then
    343   // either this loop is already rotated or it is not
    344   // suitable for loop rotation transformations.
    345   if (!L->isLoopExiting(OrigHeader))
    346     return false;
    347 
    348   // If the loop latch already contains a branch that leaves the loop then the
    349   // loop is already rotated.
    350   if (!OrigLatch)
    351     return false;
    352 
    353   // Rotate if either the loop latch does *not* exit the loop, or if the loop
    354   // latch was just simplified.
    355   if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch)
    356     return false;
    357 
    358   // Check size of original header and reject loop if it is very big or we can't
    359   // duplicate blocks inside it.
    360   {
    361     SmallPtrSet<const Value *, 32> EphValues;
    362     CodeMetrics::collectEphemeralValues(L, AC, EphValues);
    363 
    364     CodeMetrics Metrics;
    365     Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
    366     if (Metrics.notDuplicatable) {
    367       DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
    368             << " instructions: "; L->dump());
    369       return false;
    370     }
    371     if (Metrics.NumInsts > MaxHeaderSize)
    372       return false;
    373   }
    374 
    375   // Now, this loop is suitable for rotation.
    376   BasicBlock *OrigPreheader = L->getLoopPreheader();
    377 
    378   // If the loop could not be converted to canonical form, it must have an
    379   // indirectbr in it, just give up.
    380   if (!OrigPreheader)
    381     return false;
    382 
    383   // Anything ScalarEvolution may know about this loop or the PHI nodes
    384   // in its header will soon be invalidated.
    385   if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
    386     SE->forgetLoop(L);
    387 
    388   DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
    389 
    390   // Find new Loop header. NewHeader is a Header's one and only successor
    391   // that is inside loop.  Header's other successor is outside the
    392   // loop.  Otherwise loop is not suitable for rotation.
    393   BasicBlock *Exit = BI->getSuccessor(0);
    394   BasicBlock *NewHeader = BI->getSuccessor(1);
    395   if (L->contains(Exit))
    396     std::swap(Exit, NewHeader);
    397   assert(NewHeader && "Unable to determine new loop header");
    398   assert(L->contains(NewHeader) && !L->contains(Exit) &&
    399          "Unable to determine loop header and exit blocks");
    400 
    401   // This code assumes that the new header has exactly one predecessor.
    402   // Remove any single-entry PHI nodes in it.
    403   assert(NewHeader->getSinglePredecessor() &&
    404          "New header doesn't have one pred!");
    405   FoldSingleEntryPHINodes(NewHeader);
    406 
    407   // Begin by walking OrigHeader and populating ValueMap with an entry for
    408   // each Instruction.
    409   BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
    410   ValueToValueMapTy ValueMap;
    411 
    412   // For PHI nodes, the value available in OldPreHeader is just the
    413   // incoming value from OldPreHeader.
    414   for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
    415     ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
    416 
    417   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
    418 
    419   // For the rest of the instructions, either hoist to the OrigPreheader if
    420   // possible or create a clone in the OldPreHeader if not.
    421   TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
    422   while (I != E) {
    423     Instruction *Inst = I++;
    424 
    425     // If the instruction's operands are invariant and it doesn't read or write
    426     // memory, then it is safe to hoist.  Doing this doesn't change the order of
    427     // execution in the preheader, but does prevent the instruction from
    428     // executing in each iteration of the loop.  This means it is safe to hoist
    429     // something that might trap, but isn't safe to hoist something that reads
    430     // memory (without proving that the loop doesn't write).
    431     if (L->hasLoopInvariantOperands(Inst) &&
    432         !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
    433         !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
    434         !isa<AllocaInst>(Inst)) {
    435       Inst->moveBefore(LoopEntryBranch);
    436       continue;
    437     }
    438 
    439     // Otherwise, create a duplicate of the instruction.
    440     Instruction *C = Inst->clone();
    441 
    442     // Eagerly remap the operands of the instruction.
    443     RemapInstruction(C, ValueMap,
    444                      RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
    445 
    446     // With the operands remapped, see if the instruction constant folds or is
    447     // otherwise simplifyable.  This commonly occurs because the entry from PHI
    448     // nodes allows icmps and other instructions to fold.
    449     // FIXME: Provide TLI, DT, AC to SimplifyInstruction.
    450     Value *V = SimplifyInstruction(C, DL);
    451     if (V && LI->replacementPreservesLCSSAForm(C, V)) {
    452       // If so, then delete the temporary instruction and stick the folded value
    453       // in the map.
    454       delete C;
    455       ValueMap[Inst] = V;
    456     } else {
    457       // Otherwise, stick the new instruction into the new block!
    458       C->setName(Inst->getName());
    459       C->insertBefore(LoopEntryBranch);
    460       ValueMap[Inst] = C;
    461     }
    462   }
    463 
    464   // Along with all the other instructions, we just cloned OrigHeader's
    465   // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
    466   // successors by duplicating their incoming values for OrigHeader.
    467   TerminatorInst *TI = OrigHeader->getTerminator();
    468   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    469     for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
    470          PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
    471       PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
    472 
    473   // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
    474   // OrigPreHeader's old terminator (the original branch into the loop), and
    475   // remove the corresponding incoming values from the PHI nodes in OrigHeader.
    476   LoopEntryBranch->eraseFromParent();
    477 
    478   // If there were any uses of instructions in the duplicated block outside the
    479   // loop, update them, inserting PHI nodes as required
    480   RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
    481 
    482   // NewHeader is now the header of the loop.
    483   L->moveToHeader(NewHeader);
    484   assert(L->getHeader() == NewHeader && "Latch block is our new header");
    485 
    486 
    487   // At this point, we've finished our major CFG changes.  As part of cloning
    488   // the loop into the preheader we've simplified instructions and the
    489   // duplicated conditional branch may now be branching on a constant.  If it is
    490   // branching on a constant and if that constant means that we enter the loop,
    491   // then we fold away the cond branch to an uncond branch.  This simplifies the
    492   // loop in cases important for nested loops, and it also means we don't have
    493   // to split as many edges.
    494   BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
    495   assert(PHBI->isConditional() && "Should be clone of BI condbr!");
    496   if (!isa<ConstantInt>(PHBI->getCondition()) ||
    497       PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
    498           != NewHeader) {
    499     // The conditional branch can't be folded, handle the general case.
    500     // Update DominatorTree to reflect the CFG change we just made.  Then split
    501     // edges as necessary to preserve LoopSimplify form.
    502     if (DT) {
    503       // Everything that was dominated by the old loop header is now dominated
    504       // by the original loop preheader. Conceptually the header was merged
    505       // into the preheader, even though we reuse the actual block as a new
    506       // loop latch.
    507       DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
    508       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
    509                                                    OrigHeaderNode->end());
    510       DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader);
    511       for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I)
    512         DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode);
    513 
    514       assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode);
    515       assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode);
    516 
    517       // Update OrigHeader to be dominated by the new header block.
    518       DT->changeImmediateDominator(OrigHeader, OrigLatch);
    519     }
    520 
    521     // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
    522     // thus is not a preheader anymore.
    523     // Split the edge to form a real preheader.
    524     BasicBlock *NewPH = SplitCriticalEdge(
    525         OrigPreheader, NewHeader,
    526         CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
    527     NewPH->setName(NewHeader->getName() + ".lr.ph");
    528 
    529     // Preserve canonical loop form, which means that 'Exit' should have only
    530     // one predecessor. Note that Exit could be an exit block for multiple
    531     // nested loops, causing both of the edges to now be critical and need to
    532     // be split.
    533     SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
    534     bool SplitLatchEdge = false;
    535     for (SmallVectorImpl<BasicBlock *>::iterator PI = ExitPreds.begin(),
    536                                                  PE = ExitPreds.end();
    537          PI != PE; ++PI) {
    538       // We only need to split loop exit edges.
    539       Loop *PredLoop = LI->getLoopFor(*PI);
    540       if (!PredLoop || PredLoop->contains(Exit))
    541         continue;
    542       if (isa<IndirectBrInst>((*PI)->getTerminator()))
    543         continue;
    544       SplitLatchEdge |= L->getLoopLatch() == *PI;
    545       BasicBlock *ExitSplit = SplitCriticalEdge(
    546           *PI, Exit, CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA());
    547       ExitSplit->moveBefore(Exit);
    548     }
    549     assert(SplitLatchEdge &&
    550            "Despite splitting all preds, failed to split latch exit?");
    551   } else {
    552     // We can fold the conditional branch in the preheader, this makes things
    553     // simpler. The first step is to remove the extra edge to the Exit block.
    554     Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
    555     BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
    556     NewBI->setDebugLoc(PHBI->getDebugLoc());
    557     PHBI->eraseFromParent();
    558 
    559     // With our CFG finalized, update DomTree if it is available.
    560     if (DT) {
    561       // Update OrigHeader to be dominated by the new header block.
    562       DT->changeImmediateDominator(NewHeader, OrigPreheader);
    563       DT->changeImmediateDominator(OrigHeader, OrigLatch);
    564 
    565       // Brute force incremental dominator tree update. Call
    566       // findNearestCommonDominator on all CFG predecessors of each child of the
    567       // original header.
    568       DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
    569       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
    570                                                    OrigHeaderNode->end());
    571       bool Changed;
    572       do {
    573         Changed = false;
    574         for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) {
    575           DomTreeNode *Node = HeaderChildren[I];
    576           BasicBlock *BB = Node->getBlock();
    577 
    578           pred_iterator PI = pred_begin(BB);
    579           BasicBlock *NearestDom = *PI;
    580           for (pred_iterator PE = pred_end(BB); PI != PE; ++PI)
    581             NearestDom = DT->findNearestCommonDominator(NearestDom, *PI);
    582 
    583           // Remember if this changes the DomTree.
    584           if (Node->getIDom()->getBlock() != NearestDom) {
    585             DT->changeImmediateDominator(BB, NearestDom);
    586             Changed = true;
    587           }
    588         }
    589 
    590       // If the dominator changed, this may have an effect on other
    591       // predecessors, continue until we reach a fixpoint.
    592       } while (Changed);
    593     }
    594   }
    595 
    596   assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
    597   assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
    598 
    599   // Now that the CFG and DomTree are in a consistent state again, try to merge
    600   // the OrigHeader block into OrigLatch.  This will succeed if they are
    601   // connected by an unconditional branch.  This is just a cleanup so the
    602   // emitted code isn't too gross in this common case.
    603   MergeBlockIntoPredecessor(OrigHeader, DT, LI);
    604 
    605   DEBUG(dbgs() << "LoopRotation: into "; L->dump());
    606 
    607   ++NumRotated;
    608   return true;
    609 }
    610