Home | History | Annotate | Download | only in CodeGen
      1 //===- lib/CodeGen/MachineTraceMetrics.cpp ----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/CodeGen/MachineTraceMetrics.h"
     11 #include "llvm/ADT/PostOrderIterator.h"
     12 #include "llvm/ADT/SparseSet.h"
     13 #include "llvm/CodeGen/MachineBasicBlock.h"
     14 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
     15 #include "llvm/CodeGen/MachineLoopInfo.h"
     16 #include "llvm/CodeGen/MachineRegisterInfo.h"
     17 #include "llvm/CodeGen/Passes.h"
     18 #include "llvm/MC/MCSubtargetInfo.h"
     19 #include "llvm/Support/Debug.h"
     20 #include "llvm/Support/Format.h"
     21 #include "llvm/Support/raw_ostream.h"
     22 #include "llvm/Target/TargetInstrInfo.h"
     23 #include "llvm/Target/TargetRegisterInfo.h"
     24 #include "llvm/Target/TargetSubtargetInfo.h"
     25 
     26 using namespace llvm;
     27 
     28 #define DEBUG_TYPE "machine-trace-metrics"
     29 
     30 char MachineTraceMetrics::ID = 0;
     31 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID;
     32 
     33 INITIALIZE_PASS_BEGIN(MachineTraceMetrics,
     34                   "machine-trace-metrics", "Machine Trace Metrics", false, true)
     35 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
     36 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
     37 INITIALIZE_PASS_END(MachineTraceMetrics,
     38                   "machine-trace-metrics", "Machine Trace Metrics", false, true)
     39 
     40 MachineTraceMetrics::MachineTraceMetrics()
     41   : MachineFunctionPass(ID), MF(nullptr), TII(nullptr), TRI(nullptr),
     42     MRI(nullptr), Loops(nullptr) {
     43   std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr);
     44 }
     45 
     46 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const {
     47   AU.setPreservesAll();
     48   AU.addRequired<MachineBranchProbabilityInfo>();
     49   AU.addRequired<MachineLoopInfo>();
     50   MachineFunctionPass::getAnalysisUsage(AU);
     51 }
     52 
     53 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) {
     54   MF = &Func;
     55   const TargetSubtargetInfo &ST = MF->getSubtarget();
     56   TII = ST.getInstrInfo();
     57   TRI = ST.getRegisterInfo();
     58   MRI = &MF->getRegInfo();
     59   Loops = &getAnalysis<MachineLoopInfo>();
     60   SchedModel.init(ST.getSchedModel(), &ST, TII);
     61   BlockInfo.resize(MF->getNumBlockIDs());
     62   ProcResourceCycles.resize(MF->getNumBlockIDs() *
     63                             SchedModel.getNumProcResourceKinds());
     64   return false;
     65 }
     66 
     67 void MachineTraceMetrics::releaseMemory() {
     68   MF = nullptr;
     69   BlockInfo.clear();
     70   for (unsigned i = 0; i != TS_NumStrategies; ++i) {
     71     delete Ensembles[i];
     72     Ensembles[i] = nullptr;
     73   }
     74 }
     75 
     76 //===----------------------------------------------------------------------===//
     77 //                          Fixed block information
     78 //===----------------------------------------------------------------------===//
     79 //
     80 // The number of instructions in a basic block and the CPU resources used by
     81 // those instructions don't depend on any given trace strategy.
     82 
     83 /// Compute the resource usage in basic block MBB.
     84 const MachineTraceMetrics::FixedBlockInfo*
     85 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) {
     86   assert(MBB && "No basic block");
     87   FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()];
     88   if (FBI->hasResources())
     89     return FBI;
     90 
     91   // Compute resource usage in the block.
     92   FBI->HasCalls = false;
     93   unsigned InstrCount = 0;
     94 
     95   // Add up per-processor resource cycles as well.
     96   unsigned PRKinds = SchedModel.getNumProcResourceKinds();
     97   SmallVector<unsigned, 32> PRCycles(PRKinds);
     98 
     99   for (const auto &MI : *MBB) {
    100     if (MI.isTransient())
    101       continue;
    102     ++InstrCount;
    103     if (MI.isCall())
    104       FBI->HasCalls = true;
    105 
    106     // Count processor resources used.
    107     if (!SchedModel.hasInstrSchedModel())
    108       continue;
    109     const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI);
    110     if (!SC->isValid())
    111       continue;
    112 
    113     for (TargetSchedModel::ProcResIter
    114          PI = SchedModel.getWriteProcResBegin(SC),
    115          PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
    116       assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind");
    117       PRCycles[PI->ProcResourceIdx] += PI->Cycles;
    118     }
    119   }
    120   FBI->InstrCount = InstrCount;
    121 
    122   // Scale the resource cycles so they are comparable.
    123   unsigned PROffset = MBB->getNumber() * PRKinds;
    124   for (unsigned K = 0; K != PRKinds; ++K)
    125     ProcResourceCycles[PROffset + K] =
    126       PRCycles[K] * SchedModel.getResourceFactor(K);
    127 
    128   return FBI;
    129 }
    130 
    131 ArrayRef<unsigned>
    132 MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const {
    133   assert(BlockInfo[MBBNum].hasResources() &&
    134          "getResources() must be called before getProcResourceCycles()");
    135   unsigned PRKinds = SchedModel.getNumProcResourceKinds();
    136   assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size());
    137   return makeArrayRef(ProcResourceCycles.data() + MBBNum * PRKinds, PRKinds);
    138 }
    139 
    140 
    141 //===----------------------------------------------------------------------===//
    142 //                         Ensemble utility functions
    143 //===----------------------------------------------------------------------===//
    144 
    145 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct)
    146   : MTM(*ct) {
    147   BlockInfo.resize(MTM.BlockInfo.size());
    148   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
    149   ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds);
    150   ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds);
    151 }
    152 
    153 // Virtual destructor serves as an anchor.
    154 MachineTraceMetrics::Ensemble::~Ensemble() {}
    155 
    156 const MachineLoop*
    157 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const {
    158   return MTM.Loops->getLoopFor(MBB);
    159 }
    160 
    161 // Update resource-related information in the TraceBlockInfo for MBB.
    162 // Only update resources related to the trace above MBB.
    163 void MachineTraceMetrics::Ensemble::
    164 computeDepthResources(const MachineBasicBlock *MBB) {
    165   TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
    166   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
    167   unsigned PROffset = MBB->getNumber() * PRKinds;
    168 
    169   // Compute resources from trace above. The top block is simple.
    170   if (!TBI->Pred) {
    171     TBI->InstrDepth = 0;
    172     TBI->Head = MBB->getNumber();
    173     std::fill(ProcResourceDepths.begin() + PROffset,
    174               ProcResourceDepths.begin() + PROffset + PRKinds, 0);
    175     return;
    176   }
    177 
    178   // Compute from the block above. A post-order traversal ensures the
    179   // predecessor is always computed first.
    180   unsigned PredNum = TBI->Pred->getNumber();
    181   TraceBlockInfo *PredTBI = &BlockInfo[PredNum];
    182   assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet");
    183   const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred);
    184   TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount;
    185   TBI->Head = PredTBI->Head;
    186 
    187   // Compute per-resource depths.
    188   ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum);
    189   ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum);
    190   for (unsigned K = 0; K != PRKinds; ++K)
    191     ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K];
    192 }
    193 
    194 // Update resource-related information in the TraceBlockInfo for MBB.
    195 // Only update resources related to the trace below MBB.
    196 void MachineTraceMetrics::Ensemble::
    197 computeHeightResources(const MachineBasicBlock *MBB) {
    198   TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
    199   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
    200   unsigned PROffset = MBB->getNumber() * PRKinds;
    201 
    202   // Compute resources for the current block.
    203   TBI->InstrHeight = MTM.getResources(MBB)->InstrCount;
    204   ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber());
    205 
    206   // The trace tail is done.
    207   if (!TBI->Succ) {
    208     TBI->Tail = MBB->getNumber();
    209     std::copy(PRCycles.begin(), PRCycles.end(),
    210               ProcResourceHeights.begin() + PROffset);
    211     return;
    212   }
    213 
    214   // Compute from the block below. A post-order traversal ensures the
    215   // predecessor is always computed first.
    216   unsigned SuccNum = TBI->Succ->getNumber();
    217   TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum];
    218   assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet");
    219   TBI->InstrHeight += SuccTBI->InstrHeight;
    220   TBI->Tail = SuccTBI->Tail;
    221 
    222   // Compute per-resource heights.
    223   ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum);
    224   for (unsigned K = 0; K != PRKinds; ++K)
    225     ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K];
    226 }
    227 
    228 // Check if depth resources for MBB are valid and return the TBI.
    229 // Return NULL if the resources have been invalidated.
    230 const MachineTraceMetrics::TraceBlockInfo*
    231 MachineTraceMetrics::Ensemble::
    232 getDepthResources(const MachineBasicBlock *MBB) const {
    233   const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
    234   return TBI->hasValidDepth() ? TBI : nullptr;
    235 }
    236 
    237 // Check if height resources for MBB are valid and return the TBI.
    238 // Return NULL if the resources have been invalidated.
    239 const MachineTraceMetrics::TraceBlockInfo*
    240 MachineTraceMetrics::Ensemble::
    241 getHeightResources(const MachineBasicBlock *MBB) const {
    242   const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
    243   return TBI->hasValidHeight() ? TBI : nullptr;
    244 }
    245 
    246 /// Get an array of processor resource depths for MBB. Indexed by processor
    247 /// resource kind, this array contains the scaled processor resources consumed
    248 /// by all blocks preceding MBB in its trace. It does not include instructions
    249 /// in MBB.
    250 ///
    251 /// Compare TraceBlockInfo::InstrDepth.
    252 ArrayRef<unsigned>
    253 MachineTraceMetrics::Ensemble::
    254 getProcResourceDepths(unsigned MBBNum) const {
    255   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
    256   assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size());
    257   return makeArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds);
    258 }
    259 
    260 /// Get an array of processor resource heights for MBB. Indexed by processor
    261 /// resource kind, this array contains the scaled processor resources consumed
    262 /// by this block and all blocks following it in its trace.
    263 ///
    264 /// Compare TraceBlockInfo::InstrHeight.
    265 ArrayRef<unsigned>
    266 MachineTraceMetrics::Ensemble::
    267 getProcResourceHeights(unsigned MBBNum) const {
    268   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
    269   assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size());
    270   return makeArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds);
    271 }
    272 
    273 //===----------------------------------------------------------------------===//
    274 //                         Trace Selection Strategies
    275 //===----------------------------------------------------------------------===//
    276 //
    277 // A trace selection strategy is implemented as a sub-class of Ensemble. The
    278 // trace through a block B is computed by two DFS traversals of the CFG
    279 // starting from B. One upwards, and one downwards. During the upwards DFS,
    280 // pickTracePred() is called on the post-ordered blocks. During the downwards
    281 // DFS, pickTraceSucc() is called in a post-order.
    282 //
    283 
    284 // We never allow traces that leave loops, but we do allow traces to enter
    285 // nested loops. We also never allow traces to contain back-edges.
    286 //
    287 // This means that a loop header can never appear above the center block of a
    288 // trace, except as the trace head. Below the center block, loop exiting edges
    289 // are banned.
    290 //
    291 // Return true if an edge from the From loop to the To loop is leaving a loop.
    292 // Either of To and From can be null.
    293 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) {
    294   return From && !From->contains(To);
    295 }
    296 
    297 // MinInstrCountEnsemble - Pick the trace that executes the least number of
    298 // instructions.
    299 namespace {
    300 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble {
    301   const char *getName() const override { return "MinInstr"; }
    302   const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override;
    303   const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override;
    304 
    305 public:
    306   MinInstrCountEnsemble(MachineTraceMetrics *mtm)
    307     : MachineTraceMetrics::Ensemble(mtm) {}
    308 };
    309 }
    310 
    311 // Select the preferred predecessor for MBB.
    312 const MachineBasicBlock*
    313 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) {
    314   if (MBB->pred_empty())
    315     return nullptr;
    316   const MachineLoop *CurLoop = getLoopFor(MBB);
    317   // Don't leave loops, and never follow back-edges.
    318   if (CurLoop && MBB == CurLoop->getHeader())
    319     return nullptr;
    320   unsigned CurCount = MTM.getResources(MBB)->InstrCount;
    321   const MachineBasicBlock *Best = nullptr;
    322   unsigned BestDepth = 0;
    323   for (MachineBasicBlock::const_pred_iterator
    324        I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) {
    325     const MachineBasicBlock *Pred = *I;
    326     const MachineTraceMetrics::TraceBlockInfo *PredTBI =
    327       getDepthResources(Pred);
    328     // Ignore cycles that aren't natural loops.
    329     if (!PredTBI)
    330       continue;
    331     // Pick the predecessor that would give this block the smallest InstrDepth.
    332     unsigned Depth = PredTBI->InstrDepth + CurCount;
    333     if (!Best || Depth < BestDepth)
    334       Best = Pred, BestDepth = Depth;
    335   }
    336   return Best;
    337 }
    338 
    339 // Select the preferred successor for MBB.
    340 const MachineBasicBlock*
    341 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) {
    342   if (MBB->pred_empty())
    343     return nullptr;
    344   const MachineLoop *CurLoop = getLoopFor(MBB);
    345   const MachineBasicBlock *Best = nullptr;
    346   unsigned BestHeight = 0;
    347   for (MachineBasicBlock::const_succ_iterator
    348        I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) {
    349     const MachineBasicBlock *Succ = *I;
    350     // Don't consider back-edges.
    351     if (CurLoop && Succ == CurLoop->getHeader())
    352       continue;
    353     // Don't consider successors exiting CurLoop.
    354     if (isExitingLoop(CurLoop, getLoopFor(Succ)))
    355       continue;
    356     const MachineTraceMetrics::TraceBlockInfo *SuccTBI =
    357       getHeightResources(Succ);
    358     // Ignore cycles that aren't natural loops.
    359     if (!SuccTBI)
    360       continue;
    361     // Pick the successor that would give this block the smallest InstrHeight.
    362     unsigned Height = SuccTBI->InstrHeight;
    363     if (!Best || Height < BestHeight)
    364       Best = Succ, BestHeight = Height;
    365   }
    366   return Best;
    367 }
    368 
    369 // Get an Ensemble sub-class for the requested trace strategy.
    370 MachineTraceMetrics::Ensemble *
    371 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) {
    372   assert(strategy < TS_NumStrategies && "Invalid trace strategy enum");
    373   Ensemble *&E = Ensembles[strategy];
    374   if (E)
    375     return E;
    376 
    377   // Allocate new Ensemble on demand.
    378   switch (strategy) {
    379   case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this));
    380   default: llvm_unreachable("Invalid trace strategy enum");
    381   }
    382 }
    383 
    384 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) {
    385   DEBUG(dbgs() << "Invalidate traces through BB#" << MBB->getNumber() << '\n');
    386   BlockInfo[MBB->getNumber()].invalidate();
    387   for (unsigned i = 0; i != TS_NumStrategies; ++i)
    388     if (Ensembles[i])
    389       Ensembles[i]->invalidate(MBB);
    390 }
    391 
    392 void MachineTraceMetrics::verifyAnalysis() const {
    393   if (!MF)
    394     return;
    395 #ifndef NDEBUG
    396   assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size");
    397   for (unsigned i = 0; i != TS_NumStrategies; ++i)
    398     if (Ensembles[i])
    399       Ensembles[i]->verify();
    400 #endif
    401 }
    402 
    403 //===----------------------------------------------------------------------===//
    404 //                               Trace building
    405 //===----------------------------------------------------------------------===//
    406 //
    407 // Traces are built by two CFG traversals. To avoid recomputing too much, use a
    408 // set abstraction that confines the search to the current loop, and doesn't
    409 // revisit blocks.
    410 
    411 namespace {
    412 struct LoopBounds {
    413   MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks;
    414   SmallPtrSet<const MachineBasicBlock*, 8> Visited;
    415   const MachineLoopInfo *Loops;
    416   bool Downward;
    417   LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks,
    418              const MachineLoopInfo *loops)
    419     : Blocks(blocks), Loops(loops), Downward(false) {}
    420 };
    421 }
    422 
    423 // Specialize po_iterator_storage in order to prune the post-order traversal so
    424 // it is limited to the current loop and doesn't traverse the loop back edges.
    425 namespace llvm {
    426 template<>
    427 class po_iterator_storage<LoopBounds, true> {
    428   LoopBounds &LB;
    429 public:
    430   po_iterator_storage(LoopBounds &lb) : LB(lb) {}
    431   void finishPostorder(const MachineBasicBlock*) {}
    432 
    433   bool insertEdge(const MachineBasicBlock *From, const MachineBasicBlock *To) {
    434     // Skip already visited To blocks.
    435     MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()];
    436     if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth())
    437       return false;
    438     // From is null once when To is the trace center block.
    439     if (From) {
    440       if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(From)) {
    441         // Don't follow backedges, don't leave FromLoop when going upwards.
    442         if ((LB.Downward ? To : From) == FromLoop->getHeader())
    443           return false;
    444         // Don't leave FromLoop.
    445         if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To)))
    446           return false;
    447       }
    448     }
    449     // To is a new block. Mark the block as visited in case the CFG has cycles
    450     // that MachineLoopInfo didn't recognize as a natural loop.
    451     return LB.Visited.insert(To).second;
    452   }
    453 };
    454 }
    455 
    456 /// Compute the trace through MBB.
    457 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) {
    458   DEBUG(dbgs() << "Computing " << getName() << " trace through BB#"
    459                << MBB->getNumber() << '\n');
    460   // Set up loop bounds for the backwards post-order traversal.
    461   LoopBounds Bounds(BlockInfo, MTM.Loops);
    462 
    463   // Run an upwards post-order search for the trace start.
    464   Bounds.Downward = false;
    465   Bounds.Visited.clear();
    466   for (auto I : inverse_post_order_ext(MBB, Bounds)) {
    467     DEBUG(dbgs() << "  pred for BB#" << I->getNumber() << ": ");
    468     TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
    469     // All the predecessors have been visited, pick the preferred one.
    470     TBI.Pred = pickTracePred(I);
    471     DEBUG({
    472       if (TBI.Pred)
    473         dbgs() << "BB#" << TBI.Pred->getNumber() << '\n';
    474       else
    475         dbgs() << "null\n";
    476     });
    477     // The trace leading to I is now known, compute the depth resources.
    478     computeDepthResources(I);
    479   }
    480 
    481   // Run a downwards post-order search for the trace end.
    482   Bounds.Downward = true;
    483   Bounds.Visited.clear();
    484   for (auto I : post_order_ext(MBB, Bounds)) {
    485     DEBUG(dbgs() << "  succ for BB#" << I->getNumber() << ": ");
    486     TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
    487     // All the successors have been visited, pick the preferred one.
    488     TBI.Succ = pickTraceSucc(I);
    489     DEBUG({
    490       if (TBI.Succ)
    491         dbgs() << "BB#" << TBI.Succ->getNumber() << '\n';
    492       else
    493         dbgs() << "null\n";
    494     });
    495     // The trace leaving I is now known, compute the height resources.
    496     computeHeightResources(I);
    497   }
    498 }
    499 
    500 /// Invalidate traces through BadMBB.
    501 void
    502 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) {
    503   SmallVector<const MachineBasicBlock*, 16> WorkList;
    504   TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()];
    505 
    506   // Invalidate height resources of blocks above MBB.
    507   if (BadTBI.hasValidHeight()) {
    508     BadTBI.invalidateHeight();
    509     WorkList.push_back(BadMBB);
    510     do {
    511       const MachineBasicBlock *MBB = WorkList.pop_back_val();
    512       DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName()
    513             << " height.\n");
    514       // Find any MBB predecessors that have MBB as their preferred successor.
    515       // They are the only ones that need to be invalidated.
    516       for (MachineBasicBlock::const_pred_iterator
    517            I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) {
    518         TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()];
    519         if (!TBI.hasValidHeight())
    520           continue;
    521         if (TBI.Succ == MBB) {
    522           TBI.invalidateHeight();
    523           WorkList.push_back(*I);
    524           continue;
    525         }
    526         // Verify that TBI.Succ is actually a *I successor.
    527         assert((!TBI.Succ || (*I)->isSuccessor(TBI.Succ)) && "CFG changed");
    528       }
    529     } while (!WorkList.empty());
    530   }
    531 
    532   // Invalidate depth resources of blocks below MBB.
    533   if (BadTBI.hasValidDepth()) {
    534     BadTBI.invalidateDepth();
    535     WorkList.push_back(BadMBB);
    536     do {
    537       const MachineBasicBlock *MBB = WorkList.pop_back_val();
    538       DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName()
    539             << " depth.\n");
    540       // Find any MBB successors that have MBB as their preferred predecessor.
    541       // They are the only ones that need to be invalidated.
    542       for (MachineBasicBlock::const_succ_iterator
    543            I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) {
    544         TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()];
    545         if (!TBI.hasValidDepth())
    546           continue;
    547         if (TBI.Pred == MBB) {
    548           TBI.invalidateDepth();
    549           WorkList.push_back(*I);
    550           continue;
    551         }
    552         // Verify that TBI.Pred is actually a *I predecessor.
    553         assert((!TBI.Pred || (*I)->isPredecessor(TBI.Pred)) && "CFG changed");
    554       }
    555     } while (!WorkList.empty());
    556   }
    557 
    558   // Clear any per-instruction data. We only have to do this for BadMBB itself
    559   // because the instructions in that block may change. Other blocks may be
    560   // invalidated, but their instructions will stay the same, so there is no
    561   // need to erase the Cycle entries. They will be overwritten when we
    562   // recompute.
    563   for (const auto &I : *BadMBB)
    564     Cycles.erase(&I);
    565 }
    566 
    567 void MachineTraceMetrics::Ensemble::verify() const {
    568 #ifndef NDEBUG
    569   assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() &&
    570          "Outdated BlockInfo size");
    571   for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) {
    572     const TraceBlockInfo &TBI = BlockInfo[Num];
    573     if (TBI.hasValidDepth() && TBI.Pred) {
    574       const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
    575       assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace");
    576       assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() &&
    577              "Trace is broken, depth should have been invalidated.");
    578       const MachineLoop *Loop = getLoopFor(MBB);
    579       assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge");
    580     }
    581     if (TBI.hasValidHeight() && TBI.Succ) {
    582       const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
    583       assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace");
    584       assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() &&
    585              "Trace is broken, height should have been invalidated.");
    586       const MachineLoop *Loop = getLoopFor(MBB);
    587       const MachineLoop *SuccLoop = getLoopFor(TBI.Succ);
    588       assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) &&
    589              "Trace contains backedge");
    590     }
    591   }
    592 #endif
    593 }
    594 
    595 //===----------------------------------------------------------------------===//
    596 //                             Data Dependencies
    597 //===----------------------------------------------------------------------===//
    598 //
    599 // Compute the depth and height of each instruction based on data dependencies
    600 // and instruction latencies. These cycle numbers assume that the CPU can issue
    601 // an infinite number of instructions per cycle as long as their dependencies
    602 // are ready.
    603 
    604 // A data dependency is represented as a defining MI and operand numbers on the
    605 // defining and using MI.
    606 namespace {
    607 struct DataDep {
    608   const MachineInstr *DefMI;
    609   unsigned DefOp;
    610   unsigned UseOp;
    611 
    612   DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp)
    613     : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {}
    614 
    615   /// Create a DataDep from an SSA form virtual register.
    616   DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp)
    617     : UseOp(UseOp) {
    618     assert(TargetRegisterInfo::isVirtualRegister(VirtReg));
    619     MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg);
    620     assert(!DefI.atEnd() && "Register has no defs");
    621     DefMI = DefI->getParent();
    622     DefOp = DefI.getOperandNo();
    623     assert((++DefI).atEnd() && "Register has multiple defs");
    624   }
    625 };
    626 }
    627 
    628 // Get the input data dependencies that must be ready before UseMI can issue.
    629 // Return true if UseMI has any physreg operands.
    630 static bool getDataDeps(const MachineInstr *UseMI,
    631                         SmallVectorImpl<DataDep> &Deps,
    632                         const MachineRegisterInfo *MRI) {
    633   bool HasPhysRegs = false;
    634   for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) {
    635     if (!MO->isReg())
    636       continue;
    637     unsigned Reg = MO->getReg();
    638     if (!Reg)
    639       continue;
    640     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    641       HasPhysRegs = true;
    642       continue;
    643     }
    644     // Collect virtual register reads.
    645     if (MO->readsReg())
    646       Deps.push_back(DataDep(MRI, Reg, MO.getOperandNo()));
    647   }
    648   return HasPhysRegs;
    649 }
    650 
    651 // Get the input data dependencies of a PHI instruction, using Pred as the
    652 // preferred predecessor.
    653 // This will add at most one dependency to Deps.
    654 static void getPHIDeps(const MachineInstr *UseMI,
    655                        SmallVectorImpl<DataDep> &Deps,
    656                        const MachineBasicBlock *Pred,
    657                        const MachineRegisterInfo *MRI) {
    658   // No predecessor at the beginning of a trace. Ignore dependencies.
    659   if (!Pred)
    660     return;
    661   assert(UseMI->isPHI() && UseMI->getNumOperands() % 2 && "Bad PHI");
    662   for (unsigned i = 1; i != UseMI->getNumOperands(); i += 2) {
    663     if (UseMI->getOperand(i + 1).getMBB() == Pred) {
    664       unsigned Reg = UseMI->getOperand(i).getReg();
    665       Deps.push_back(DataDep(MRI, Reg, i));
    666       return;
    667     }
    668   }
    669 }
    670 
    671 // Keep track of physreg data dependencies by recording each live register unit.
    672 // Associate each regunit with an instruction operand. Depending on the
    673 // direction instructions are scanned, it could be the operand that defined the
    674 // regunit, or the highest operand to read the regunit.
    675 namespace {
    676 struct LiveRegUnit {
    677   unsigned RegUnit;
    678   unsigned Cycle;
    679   const MachineInstr *MI;
    680   unsigned Op;
    681 
    682   unsigned getSparseSetIndex() const { return RegUnit; }
    683 
    684   LiveRegUnit(unsigned RU) : RegUnit(RU), Cycle(0), MI(nullptr), Op(0) {}
    685 };
    686 }
    687 
    688 // Identify physreg dependencies for UseMI, and update the live regunit
    689 // tracking set when scanning instructions downwards.
    690 static void updatePhysDepsDownwards(const MachineInstr *UseMI,
    691                                     SmallVectorImpl<DataDep> &Deps,
    692                                     SparseSet<LiveRegUnit> &RegUnits,
    693                                     const TargetRegisterInfo *TRI) {
    694   SmallVector<unsigned, 8> Kills;
    695   SmallVector<unsigned, 8> LiveDefOps;
    696 
    697   for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) {
    698     if (!MO->isReg())
    699       continue;
    700     unsigned Reg = MO->getReg();
    701     if (!TargetRegisterInfo::isPhysicalRegister(Reg))
    702       continue;
    703     // Track live defs and kills for updating RegUnits.
    704     if (MO->isDef()) {
    705       if (MO->isDead())
    706         Kills.push_back(Reg);
    707       else
    708         LiveDefOps.push_back(MO.getOperandNo());
    709     } else if (MO->isKill())
    710       Kills.push_back(Reg);
    711     // Identify dependencies.
    712     if (!MO->readsReg())
    713       continue;
    714     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
    715       SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
    716       if (I == RegUnits.end())
    717         continue;
    718       Deps.push_back(DataDep(I->MI, I->Op, MO.getOperandNo()));
    719       break;
    720     }
    721   }
    722 
    723   // Update RegUnits to reflect live registers after UseMI.
    724   // First kills.
    725   for (unsigned i = 0, e = Kills.size(); i != e; ++i)
    726     for (MCRegUnitIterator Units(Kills[i], TRI); Units.isValid(); ++Units)
    727       RegUnits.erase(*Units);
    728 
    729   // Second, live defs.
    730   for (unsigned i = 0, e = LiveDefOps.size(); i != e; ++i) {
    731     unsigned DefOp = LiveDefOps[i];
    732     for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI);
    733          Units.isValid(); ++Units) {
    734       LiveRegUnit &LRU = RegUnits[*Units];
    735       LRU.MI = UseMI;
    736       LRU.Op = DefOp;
    737     }
    738   }
    739 }
    740 
    741 /// The length of the critical path through a trace is the maximum of two path
    742 /// lengths:
    743 ///
    744 /// 1. The maximum height+depth over all instructions in the trace center block.
    745 ///
    746 /// 2. The longest cross-block dependency chain. For small blocks, it is
    747 ///    possible that the critical path through the trace doesn't include any
    748 ///    instructions in the block.
    749 ///
    750 /// This function computes the second number from the live-in list of the
    751 /// center block.
    752 unsigned MachineTraceMetrics::Ensemble::
    753 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) {
    754   assert(TBI.HasValidInstrDepths && "Missing depth info");
    755   assert(TBI.HasValidInstrHeights && "Missing height info");
    756   unsigned MaxLen = 0;
    757   for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) {
    758     const LiveInReg &LIR = TBI.LiveIns[i];
    759     if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg))
    760       continue;
    761     const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
    762     // Ignore dependencies outside the current trace.
    763     const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()];
    764     if (!DefTBI.isUsefulDominator(TBI))
    765       continue;
    766     unsigned Len = LIR.Height + Cycles[DefMI].Depth;
    767     MaxLen = std::max(MaxLen, Len);
    768   }
    769   return MaxLen;
    770 }
    771 
    772 /// Compute instruction depths for all instructions above or in MBB in its
    773 /// trace. This assumes that the trace through MBB has already been computed.
    774 void MachineTraceMetrics::Ensemble::
    775 computeInstrDepths(const MachineBasicBlock *MBB) {
    776   // The top of the trace may already be computed, and HasValidInstrDepths
    777   // implies Head->HasValidInstrDepths, so we only need to start from the first
    778   // block in the trace that needs to be recomputed.
    779   SmallVector<const MachineBasicBlock*, 8> Stack;
    780   do {
    781     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    782     assert(TBI.hasValidDepth() && "Incomplete trace");
    783     if (TBI.HasValidInstrDepths)
    784       break;
    785     Stack.push_back(MBB);
    786     MBB = TBI.Pred;
    787   } while (MBB);
    788 
    789   // FIXME: If MBB is non-null at this point, it is the last pre-computed block
    790   // in the trace. We should track any live-out physregs that were defined in
    791   // the trace. This is quite rare in SSA form, typically created by CSE
    792   // hoisting a compare.
    793   SparseSet<LiveRegUnit> RegUnits;
    794   RegUnits.setUniverse(MTM.TRI->getNumRegUnits());
    795 
    796   // Go through trace blocks in top-down order, stopping after the center block.
    797   SmallVector<DataDep, 8> Deps;
    798   while (!Stack.empty()) {
    799     MBB = Stack.pop_back_val();
    800     DEBUG(dbgs() << "\nDepths for BB#" << MBB->getNumber() << ":\n");
    801     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    802     TBI.HasValidInstrDepths = true;
    803     TBI.CriticalPath = 0;
    804 
    805     // Print out resource depths here as well.
    806     DEBUG({
    807       dbgs() << format("%7u Instructions\n", TBI.InstrDepth);
    808       ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber());
    809       for (unsigned K = 0; K != PRDepths.size(); ++K)
    810         if (PRDepths[K]) {
    811           unsigned Factor = MTM.SchedModel.getResourceFactor(K);
    812           dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K]))
    813                  << MTM.SchedModel.getProcResource(K)->Name << " ("
    814                  << PRDepths[K]/Factor << " ops x" << Factor << ")\n";
    815         }
    816     });
    817 
    818     // Also compute the critical path length through MBB when possible.
    819     if (TBI.HasValidInstrHeights)
    820       TBI.CriticalPath = computeCrossBlockCriticalPath(TBI);
    821 
    822     for (const auto &UseMI : *MBB) {
    823       // Collect all data dependencies.
    824       Deps.clear();
    825       if (UseMI.isPHI())
    826         getPHIDeps(&UseMI, Deps, TBI.Pred, MTM.MRI);
    827       else if (getDataDeps(&UseMI, Deps, MTM.MRI))
    828         updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI);
    829 
    830       // Filter and process dependencies, computing the earliest issue cycle.
    831       unsigned Cycle = 0;
    832       for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
    833         const DataDep &Dep = Deps[i];
    834         const TraceBlockInfo&DepTBI =
    835           BlockInfo[Dep.DefMI->getParent()->getNumber()];
    836         // Ignore dependencies from outside the current trace.
    837         if (!DepTBI.isUsefulDominator(TBI))
    838           continue;
    839         assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency");
    840         unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth;
    841         // Add latency if DefMI is a real instruction. Transients get latency 0.
    842         if (!Dep.DefMI->isTransient())
    843           DepCycle += MTM.SchedModel
    844             .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp);
    845         Cycle = std::max(Cycle, DepCycle);
    846       }
    847       // Remember the instruction depth.
    848       InstrCycles &MICycles = Cycles[&UseMI];
    849       MICycles.Depth = Cycle;
    850 
    851       if (!TBI.HasValidInstrHeights) {
    852         DEBUG(dbgs() << Cycle << '\t' << UseMI);
    853         continue;
    854       }
    855       // Update critical path length.
    856       TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height);
    857       DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI);
    858     }
    859   }
    860 }
    861 
    862 // Identify physreg dependencies for MI when scanning instructions upwards.
    863 // Return the issue height of MI after considering any live regunits.
    864 // Height is the issue height computed from virtual register dependencies alone.
    865 static unsigned updatePhysDepsUpwards(const MachineInstr *MI, unsigned Height,
    866                                       SparseSet<LiveRegUnit> &RegUnits,
    867                                       const TargetSchedModel &SchedModel,
    868                                       const TargetInstrInfo *TII,
    869                                       const TargetRegisterInfo *TRI) {
    870   SmallVector<unsigned, 8> ReadOps;
    871   for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
    872     if (!MO->isReg())
    873       continue;
    874     unsigned Reg = MO->getReg();
    875     if (!TargetRegisterInfo::isPhysicalRegister(Reg))
    876       continue;
    877     if (MO->readsReg())
    878       ReadOps.push_back(MO.getOperandNo());
    879     if (!MO->isDef())
    880       continue;
    881     // This is a def of Reg. Remove corresponding entries from RegUnits, and
    882     // update MI Height to consider the physreg dependencies.
    883     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
    884       SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
    885       if (I == RegUnits.end())
    886         continue;
    887       unsigned DepHeight = I->Cycle;
    888       if (!MI->isTransient()) {
    889         // We may not know the UseMI of this dependency, if it came from the
    890         // live-in list. SchedModel can handle a NULL UseMI.
    891         DepHeight += SchedModel
    892           .computeOperandLatency(MI, MO.getOperandNo(), I->MI, I->Op);
    893       }
    894       Height = std::max(Height, DepHeight);
    895       // This regunit is dead above MI.
    896       RegUnits.erase(I);
    897     }
    898   }
    899 
    900   // Now we know the height of MI. Update any regunits read.
    901   for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) {
    902     unsigned Reg = MI->getOperand(ReadOps[i]).getReg();
    903     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
    904       LiveRegUnit &LRU = RegUnits[*Units];
    905       // Set the height to the highest reader of the unit.
    906       if (LRU.Cycle <= Height && LRU.MI != MI) {
    907         LRU.Cycle = Height;
    908         LRU.MI = MI;
    909         LRU.Op = ReadOps[i];
    910       }
    911     }
    912   }
    913 
    914   return Height;
    915 }
    916 
    917 
    918 typedef DenseMap<const MachineInstr *, unsigned> MIHeightMap;
    919 
    920 // Push the height of DefMI upwards if required to match UseMI.
    921 // Return true if this is the first time DefMI was seen.
    922 static bool pushDepHeight(const DataDep &Dep,
    923                           const MachineInstr *UseMI, unsigned UseHeight,
    924                           MIHeightMap &Heights,
    925                           const TargetSchedModel &SchedModel,
    926                           const TargetInstrInfo *TII) {
    927   // Adjust height by Dep.DefMI latency.
    928   if (!Dep.DefMI->isTransient())
    929     UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp,
    930                                                   UseMI, Dep.UseOp);
    931 
    932   // Update Heights[DefMI] to be the maximum height seen.
    933   MIHeightMap::iterator I;
    934   bool New;
    935   std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight));
    936   if (New)
    937     return true;
    938 
    939   // DefMI has been pushed before. Give it the max height.
    940   if (I->second < UseHeight)
    941     I->second = UseHeight;
    942   return false;
    943 }
    944 
    945 /// Assuming that the virtual register defined by DefMI:DefOp was used by
    946 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop
    947 /// when reaching the block that contains DefMI.
    948 void MachineTraceMetrics::Ensemble::
    949 addLiveIns(const MachineInstr *DefMI, unsigned DefOp,
    950            ArrayRef<const MachineBasicBlock*> Trace) {
    951   assert(!Trace.empty() && "Trace should contain at least one block");
    952   unsigned Reg = DefMI->getOperand(DefOp).getReg();
    953   assert(TargetRegisterInfo::isVirtualRegister(Reg));
    954   const MachineBasicBlock *DefMBB = DefMI->getParent();
    955 
    956   // Reg is live-in to all blocks in Trace that follow DefMBB.
    957   for (unsigned i = Trace.size(); i; --i) {
    958     const MachineBasicBlock *MBB = Trace[i-1];
    959     if (MBB == DefMBB)
    960       return;
    961     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    962     // Just add the register. The height will be updated later.
    963     TBI.LiveIns.push_back(Reg);
    964   }
    965 }
    966 
    967 /// Compute instruction heights in the trace through MBB. This updates MBB and
    968 /// the blocks below it in the trace. It is assumed that the trace has already
    969 /// been computed.
    970 void MachineTraceMetrics::Ensemble::
    971 computeInstrHeights(const MachineBasicBlock *MBB) {
    972   // The bottom of the trace may already be computed.
    973   // Find the blocks that need updating.
    974   SmallVector<const MachineBasicBlock*, 8> Stack;
    975   do {
    976     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    977     assert(TBI.hasValidHeight() && "Incomplete trace");
    978     if (TBI.HasValidInstrHeights)
    979       break;
    980     Stack.push_back(MBB);
    981     TBI.LiveIns.clear();
    982     MBB = TBI.Succ;
    983   } while (MBB);
    984 
    985   // As we move upwards in the trace, keep track of instructions that are
    986   // required by deeper trace instructions. Map MI -> height required so far.
    987   MIHeightMap Heights;
    988 
    989   // For physregs, the def isn't known when we see the use.
    990   // Instead, keep track of the highest use of each regunit.
    991   SparseSet<LiveRegUnit> RegUnits;
    992   RegUnits.setUniverse(MTM.TRI->getNumRegUnits());
    993 
    994   // If the bottom of the trace was already precomputed, initialize heights
    995   // from its live-in list.
    996   // MBB is the highest precomputed block in the trace.
    997   if (MBB) {
    998     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    999     for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) {
   1000       LiveInReg LI = TBI.LiveIns[i];
   1001       if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) {
   1002         // For virtual registers, the def latency is included.
   1003         unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)];
   1004         if (Height < LI.Height)
   1005           Height = LI.Height;
   1006       } else {
   1007         // For register units, the def latency is not included because we don't
   1008         // know the def yet.
   1009         RegUnits[LI.Reg].Cycle = LI.Height;
   1010       }
   1011     }
   1012   }
   1013 
   1014   // Go through the trace blocks in bottom-up order.
   1015   SmallVector<DataDep, 8> Deps;
   1016   for (;!Stack.empty(); Stack.pop_back()) {
   1017     MBB = Stack.back();
   1018     DEBUG(dbgs() << "Heights for BB#" << MBB->getNumber() << ":\n");
   1019     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
   1020     TBI.HasValidInstrHeights = true;
   1021     TBI.CriticalPath = 0;
   1022 
   1023     DEBUG({
   1024       dbgs() << format("%7u Instructions\n", TBI.InstrHeight);
   1025       ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber());
   1026       for (unsigned K = 0; K != PRHeights.size(); ++K)
   1027         if (PRHeights[K]) {
   1028           unsigned Factor = MTM.SchedModel.getResourceFactor(K);
   1029           dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K]))
   1030                  << MTM.SchedModel.getProcResource(K)->Name << " ("
   1031                  << PRHeights[K]/Factor << " ops x" << Factor << ")\n";
   1032         }
   1033     });
   1034 
   1035     // Get dependencies from PHIs in the trace successor.
   1036     const MachineBasicBlock *Succ = TBI.Succ;
   1037     // If MBB is the last block in the trace, and it has a back-edge to the
   1038     // loop header, get loop-carried dependencies from PHIs in the header. For
   1039     // that purpose, pretend that all the loop header PHIs have height 0.
   1040     if (!Succ)
   1041       if (const MachineLoop *Loop = getLoopFor(MBB))
   1042         if (MBB->isSuccessor(Loop->getHeader()))
   1043           Succ = Loop->getHeader();
   1044 
   1045     if (Succ) {
   1046       for (const auto &PHI : *Succ) {
   1047         if (!PHI.isPHI())
   1048           break;
   1049         Deps.clear();
   1050         getPHIDeps(&PHI, Deps, MBB, MTM.MRI);
   1051         if (!Deps.empty()) {
   1052           // Loop header PHI heights are all 0.
   1053           unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0;
   1054           DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI);
   1055           if (pushDepHeight(Deps.front(), &PHI, Height,
   1056                             Heights, MTM.SchedModel, MTM.TII))
   1057             addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack);
   1058         }
   1059       }
   1060     }
   1061 
   1062     // Go through the block backwards.
   1063     for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin();
   1064          BI != BB;) {
   1065       const MachineInstr *MI = --BI;
   1066 
   1067       // Find the MI height as determined by virtual register uses in the
   1068       // trace below.
   1069       unsigned Cycle = 0;
   1070       MIHeightMap::iterator HeightI = Heights.find(MI);
   1071       if (HeightI != Heights.end()) {
   1072         Cycle = HeightI->second;
   1073         // We won't be seeing any more MI uses.
   1074         Heights.erase(HeightI);
   1075       }
   1076 
   1077       // Don't process PHI deps. They depend on the specific predecessor, and
   1078       // we'll get them when visiting the predecessor.
   1079       Deps.clear();
   1080       bool HasPhysRegs = !MI->isPHI() && getDataDeps(MI, Deps, MTM.MRI);
   1081 
   1082       // There may also be regunit dependencies to include in the height.
   1083       if (HasPhysRegs)
   1084         Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits,
   1085                                       MTM.SchedModel, MTM.TII, MTM.TRI);
   1086 
   1087       // Update the required height of any virtual registers read by MI.
   1088       for (unsigned i = 0, e = Deps.size(); i != e; ++i)
   1089         if (pushDepHeight(Deps[i], MI, Cycle, Heights, MTM.SchedModel, MTM.TII))
   1090           addLiveIns(Deps[i].DefMI, Deps[i].DefOp, Stack);
   1091 
   1092       InstrCycles &MICycles = Cycles[MI];
   1093       MICycles.Height = Cycle;
   1094       if (!TBI.HasValidInstrDepths) {
   1095         DEBUG(dbgs() << Cycle << '\t' << *MI);
   1096         continue;
   1097       }
   1098       // Update critical path length.
   1099       TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth);
   1100       DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *MI);
   1101     }
   1102 
   1103     // Update virtual live-in heights. They were added by addLiveIns() with a 0
   1104     // height because the final height isn't known until now.
   1105     DEBUG(dbgs() << "BB#" << MBB->getNumber() <<  " Live-ins:");
   1106     for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) {
   1107       LiveInReg &LIR = TBI.LiveIns[i];
   1108       const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
   1109       LIR.Height = Heights.lookup(DefMI);
   1110       DEBUG(dbgs() << ' ' << PrintReg(LIR.Reg) << '@' << LIR.Height);
   1111     }
   1112 
   1113     // Transfer the live regunits to the live-in list.
   1114     for (SparseSet<LiveRegUnit>::const_iterator
   1115          RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) {
   1116       TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle));
   1117       DEBUG(dbgs() << ' ' << PrintRegUnit(RI->RegUnit, MTM.TRI)
   1118                    << '@' << RI->Cycle);
   1119     }
   1120     DEBUG(dbgs() << '\n');
   1121 
   1122     if (!TBI.HasValidInstrDepths)
   1123       continue;
   1124     // Add live-ins to the critical path length.
   1125     TBI.CriticalPath = std::max(TBI.CriticalPath,
   1126                                 computeCrossBlockCriticalPath(TBI));
   1127     DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n');
   1128   }
   1129 }
   1130 
   1131 MachineTraceMetrics::Trace
   1132 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) {
   1133   // FIXME: Check cache tags, recompute as needed.
   1134   computeTrace(MBB);
   1135   computeInstrDepths(MBB);
   1136   computeInstrHeights(MBB);
   1137   return Trace(*this, BlockInfo[MBB->getNumber()]);
   1138 }
   1139 
   1140 unsigned
   1141 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr *MI) const {
   1142   assert(MI && "Not an instruction.");
   1143   assert(getBlockNum() == unsigned(MI->getParent()->getNumber()) &&
   1144          "MI must be in the trace center block");
   1145   InstrCycles Cyc = getInstrCycles(MI);
   1146   return getCriticalPath() - (Cyc.Depth + Cyc.Height);
   1147 }
   1148 
   1149 unsigned
   1150 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr *PHI) const {
   1151   const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum());
   1152   SmallVector<DataDep, 1> Deps;
   1153   getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI);
   1154   assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor");
   1155   DataDep &Dep = Deps.front();
   1156   unsigned DepCycle = getInstrCycles(Dep.DefMI).Depth;
   1157   // Add latency if DefMI is a real instruction. Transients get latency 0.
   1158   if (!Dep.DefMI->isTransient())
   1159     DepCycle += TE.MTM.SchedModel
   1160       .computeOperandLatency(Dep.DefMI, Dep.DefOp, PHI, Dep.UseOp);
   1161   return DepCycle;
   1162 }
   1163 
   1164 /// When bottom is set include instructions in current block in estimate.
   1165 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const {
   1166   // Find the limiting processor resource.
   1167   // Numbers have been pre-scaled to be comparable.
   1168   unsigned PRMax = 0;
   1169   ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
   1170   if (Bottom) {
   1171     ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum());
   1172     for (unsigned K = 0; K != PRDepths.size(); ++K)
   1173       PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]);
   1174   } else {
   1175     for (unsigned K = 0; K != PRDepths.size(); ++K)
   1176       PRMax = std::max(PRMax, PRDepths[K]);
   1177   }
   1178   // Convert to cycle count.
   1179   PRMax = TE.MTM.getCycles(PRMax);
   1180 
   1181   /// All instructions before current block
   1182   unsigned Instrs = TBI.InstrDepth;
   1183   // plus instructions in current block
   1184   if (Bottom)
   1185     Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount;
   1186   if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
   1187     Instrs /= IW;
   1188   // Assume issue width 1 without a schedule model.
   1189   return std::max(Instrs, PRMax);
   1190 }
   1191 
   1192 unsigned MachineTraceMetrics::Trace::getResourceLength(
   1193     ArrayRef<const MachineBasicBlock *> Extrablocks,
   1194     ArrayRef<const MCSchedClassDesc *> ExtraInstrs,
   1195     ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const {
   1196   // Add up resources above and below the center block.
   1197   ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
   1198   ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum());
   1199   unsigned PRMax = 0;
   1200 
   1201   // Capture computing cycles from extra instructions
   1202   auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs,
   1203                             unsigned ResourceIdx)
   1204                          ->unsigned {
   1205     unsigned Cycles = 0;
   1206     for (unsigned I = 0; I != Instrs.size(); ++I) {
   1207       const MCSchedClassDesc *SC = Instrs[I];
   1208       if (!SC->isValid())
   1209         continue;
   1210       for (TargetSchedModel::ProcResIter
   1211                PI = TE.MTM.SchedModel.getWriteProcResBegin(SC),
   1212                PE = TE.MTM.SchedModel.getWriteProcResEnd(SC);
   1213            PI != PE; ++PI) {
   1214         if (PI->ProcResourceIdx != ResourceIdx)
   1215           continue;
   1216         Cycles +=
   1217             (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(ResourceIdx));
   1218       }
   1219     }
   1220     return Cycles;
   1221   };
   1222 
   1223   for (unsigned K = 0; K != PRDepths.size(); ++K) {
   1224     unsigned PRCycles = PRDepths[K] + PRHeights[K];
   1225     for (unsigned I = 0; I != Extrablocks.size(); ++I)
   1226       PRCycles += TE.MTM.getProcResourceCycles(Extrablocks[I]->getNumber())[K];
   1227     PRCycles += extraCycles(ExtraInstrs, K);
   1228     PRCycles -= extraCycles(RemoveInstrs, K);
   1229     PRMax = std::max(PRMax, PRCycles);
   1230   }
   1231   // Convert to cycle count.
   1232   PRMax = TE.MTM.getCycles(PRMax);
   1233 
   1234   // Instrs: #instructions in current trace outside current block.
   1235   unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight;
   1236   // Add instruction count from the extra blocks.
   1237   for (unsigned i = 0, e = Extrablocks.size(); i != e; ++i)
   1238     Instrs += TE.MTM.getResources(Extrablocks[i])->InstrCount;
   1239   Instrs += ExtraInstrs.size();
   1240   Instrs -= RemoveInstrs.size();
   1241   if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
   1242     Instrs /= IW;
   1243   // Assume issue width 1 without a schedule model.
   1244   return std::max(Instrs, PRMax);
   1245 }
   1246 
   1247 bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr *DefMI,
   1248                                               const MachineInstr *UseMI) const {
   1249   if (DefMI->getParent() == UseMI->getParent())
   1250     return true;
   1251 
   1252   const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI->getParent()->getNumber()];
   1253   const TraceBlockInfo &TBI = TE.BlockInfo[UseMI->getParent()->getNumber()];
   1254 
   1255   return DepTBI.isUsefulDominator(TBI);
   1256 }
   1257 
   1258 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const {
   1259   OS << getName() << " ensemble:\n";
   1260   for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) {
   1261     OS << "  BB#" << i << '\t';
   1262     BlockInfo[i].print(OS);
   1263     OS << '\n';
   1264   }
   1265 }
   1266 
   1267 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const {
   1268   if (hasValidDepth()) {
   1269     OS << "depth=" << InstrDepth;
   1270     if (Pred)
   1271       OS << " pred=BB#" << Pred->getNumber();
   1272     else
   1273       OS << " pred=null";
   1274     OS << " head=BB#" << Head;
   1275     if (HasValidInstrDepths)
   1276       OS << " +instrs";
   1277   } else
   1278     OS << "depth invalid";
   1279   OS << ", ";
   1280   if (hasValidHeight()) {
   1281     OS << "height=" << InstrHeight;
   1282     if (Succ)
   1283       OS << " succ=BB#" << Succ->getNumber();
   1284     else
   1285       OS << " succ=null";
   1286     OS << " tail=BB#" << Tail;
   1287     if (HasValidInstrHeights)
   1288       OS << " +instrs";
   1289   } else
   1290     OS << "height invalid";
   1291   if (HasValidInstrDepths && HasValidInstrHeights)
   1292     OS << ", crit=" << CriticalPath;
   1293 }
   1294 
   1295 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const {
   1296   unsigned MBBNum = &TBI - &TE.BlockInfo[0];
   1297 
   1298   OS << TE.getName() << " trace BB#" << TBI.Head << " --> BB#" << MBBNum
   1299      << " --> BB#" << TBI.Tail << ':';
   1300   if (TBI.hasValidHeight() && TBI.hasValidDepth())
   1301     OS << ' ' << getInstrCount() << " instrs.";
   1302   if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights)
   1303     OS << ' ' << TBI.CriticalPath << " cycles.";
   1304 
   1305   const MachineTraceMetrics::TraceBlockInfo *Block = &TBI;
   1306   OS << "\nBB#" << MBBNum;
   1307   while (Block->hasValidDepth() && Block->Pred) {
   1308     unsigned Num = Block->Pred->getNumber();
   1309     OS << " <- BB#" << Num;
   1310     Block = &TE.BlockInfo[Num];
   1311   }
   1312 
   1313   Block = &TBI;
   1314   OS << "\n    ";
   1315   while (Block->hasValidHeight() && Block->Succ) {
   1316     unsigned Num = Block->Succ->getNumber();
   1317     OS << " -> BB#" << Num;
   1318     Block = &TE.BlockInfo[Num];
   1319   }
   1320   OS << '\n';
   1321 }
   1322