Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Decl nodes as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGDebugInfo.h"
     16 #include "CGOpenCLRuntime.h"
     17 #include "CodeGenModule.h"
     18 #include "clang/AST/ASTContext.h"
     19 #include "clang/AST/CharUnits.h"
     20 #include "clang/AST/Decl.h"
     21 #include "clang/AST/DeclObjC.h"
     22 #include "clang/Basic/SourceManager.h"
     23 #include "clang/Basic/TargetInfo.h"
     24 #include "clang/CodeGen/CGFunctionInfo.h"
     25 #include "clang/Frontend/CodeGenOptions.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/GlobalVariable.h"
     28 #include "llvm/IR/Intrinsics.h"
     29 #include "llvm/IR/Type.h"
     30 using namespace clang;
     31 using namespace CodeGen;
     32 
     33 
     34 void CodeGenFunction::EmitDecl(const Decl &D) {
     35   switch (D.getKind()) {
     36   case Decl::TranslationUnit:
     37   case Decl::ExternCContext:
     38   case Decl::Namespace:
     39   case Decl::UnresolvedUsingTypename:
     40   case Decl::ClassTemplateSpecialization:
     41   case Decl::ClassTemplatePartialSpecialization:
     42   case Decl::VarTemplateSpecialization:
     43   case Decl::VarTemplatePartialSpecialization:
     44   case Decl::TemplateTypeParm:
     45   case Decl::UnresolvedUsingValue:
     46   case Decl::NonTypeTemplateParm:
     47   case Decl::CXXMethod:
     48   case Decl::CXXConstructor:
     49   case Decl::CXXDestructor:
     50   case Decl::CXXConversion:
     51   case Decl::Field:
     52   case Decl::MSProperty:
     53   case Decl::IndirectField:
     54   case Decl::ObjCIvar:
     55   case Decl::ObjCAtDefsField:
     56   case Decl::ParmVar:
     57   case Decl::ImplicitParam:
     58   case Decl::ClassTemplate:
     59   case Decl::VarTemplate:
     60   case Decl::FunctionTemplate:
     61   case Decl::TypeAliasTemplate:
     62   case Decl::TemplateTemplateParm:
     63   case Decl::ObjCMethod:
     64   case Decl::ObjCCategory:
     65   case Decl::ObjCProtocol:
     66   case Decl::ObjCInterface:
     67   case Decl::ObjCCategoryImpl:
     68   case Decl::ObjCImplementation:
     69   case Decl::ObjCProperty:
     70   case Decl::ObjCCompatibleAlias:
     71   case Decl::AccessSpec:
     72   case Decl::LinkageSpec:
     73   case Decl::ObjCPropertyImpl:
     74   case Decl::FileScopeAsm:
     75   case Decl::Friend:
     76   case Decl::FriendTemplate:
     77   case Decl::Block:
     78   case Decl::Captured:
     79   case Decl::ClassScopeFunctionSpecialization:
     80   case Decl::UsingShadow:
     81     llvm_unreachable("Declaration should not be in declstmts!");
     82   case Decl::Function:  // void X();
     83   case Decl::Record:    // struct/union/class X;
     84   case Decl::Enum:      // enum X;
     85   case Decl::EnumConstant: // enum ? { X = ? }
     86   case Decl::CXXRecord: // struct/union/class X; [C++]
     87   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
     88   case Decl::Label:        // __label__ x;
     89   case Decl::Import:
     90   case Decl::OMPThreadPrivate:
     91   case Decl::Empty:
     92     // None of these decls require codegen support.
     93     return;
     94 
     95   case Decl::NamespaceAlias:
     96     if (CGDebugInfo *DI = getDebugInfo())
     97         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
     98     return;
     99   case Decl::Using:          // using X; [C++]
    100     if (CGDebugInfo *DI = getDebugInfo())
    101         DI->EmitUsingDecl(cast<UsingDecl>(D));
    102     return;
    103   case Decl::UsingDirective: // using namespace X; [C++]
    104     if (CGDebugInfo *DI = getDebugInfo())
    105       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
    106     return;
    107   case Decl::Var: {
    108     const VarDecl &VD = cast<VarDecl>(D);
    109     assert(VD.isLocalVarDecl() &&
    110            "Should not see file-scope variables inside a function!");
    111     return EmitVarDecl(VD);
    112   }
    113 
    114   case Decl::Typedef:      // typedef int X;
    115   case Decl::TypeAlias: {  // using X = int; [C++0x]
    116     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
    117     QualType Ty = TD.getUnderlyingType();
    118 
    119     if (Ty->isVariablyModifiedType())
    120       EmitVariablyModifiedType(Ty);
    121   }
    122   }
    123 }
    124 
    125 /// EmitVarDecl - This method handles emission of any variable declaration
    126 /// inside a function, including static vars etc.
    127 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
    128   if (D.isStaticLocal()) {
    129     llvm::GlobalValue::LinkageTypes Linkage =
    130         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
    131 
    132     // FIXME: We need to force the emission/use of a guard variable for
    133     // some variables even if we can constant-evaluate them because
    134     // we can't guarantee every translation unit will constant-evaluate them.
    135 
    136     return EmitStaticVarDecl(D, Linkage);
    137   }
    138 
    139   if (D.hasExternalStorage())
    140     // Don't emit it now, allow it to be emitted lazily on its first use.
    141     return;
    142 
    143   if (D.getStorageClass() == SC_OpenCLWorkGroupLocal)
    144     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
    145 
    146   assert(D.hasLocalStorage());
    147   return EmitAutoVarDecl(D);
    148 }
    149 
    150 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
    151   if (CGM.getLangOpts().CPlusPlus)
    152     return CGM.getMangledName(&D).str();
    153 
    154   // If this isn't C++, we don't need a mangled name, just a pretty one.
    155   assert(!D.isExternallyVisible() && "name shouldn't matter");
    156   std::string ContextName;
    157   const DeclContext *DC = D.getDeclContext();
    158   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
    159     ContextName = CGM.getMangledName(FD);
    160   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
    161     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
    162   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
    163     ContextName = OMD->getSelector().getAsString();
    164   else
    165     llvm_unreachable("Unknown context for static var decl");
    166 
    167   ContextName += "." + D.getNameAsString();
    168   return ContextName;
    169 }
    170 
    171 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
    172     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
    173   // In general, we don't always emit static var decls once before we reference
    174   // them. It is possible to reference them before emitting the function that
    175   // contains them, and it is possible to emit the containing function multiple
    176   // times.
    177   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
    178     return ExistingGV;
    179 
    180   QualType Ty = D.getType();
    181   assert(Ty->isConstantSizeType() && "VLAs can't be static");
    182 
    183   // Use the label if the variable is renamed with the asm-label extension.
    184   std::string Name;
    185   if (D.hasAttr<AsmLabelAttr>())
    186     Name = getMangledName(&D);
    187   else
    188     Name = getStaticDeclName(*this, D);
    189 
    190   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
    191   unsigned AddrSpace =
    192       GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty));
    193 
    194   // Local address space cannot have an initializer.
    195   llvm::Constant *Init = nullptr;
    196   if (Ty.getAddressSpace() != LangAS::opencl_local)
    197     Init = EmitNullConstant(Ty);
    198   else
    199     Init = llvm::UndefValue::get(LTy);
    200 
    201   llvm::GlobalVariable *GV =
    202     new llvm::GlobalVariable(getModule(), LTy,
    203                              Ty.isConstant(getContext()), Linkage,
    204                              Init, Name, nullptr,
    205                              llvm::GlobalVariable::NotThreadLocal,
    206                              AddrSpace);
    207   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
    208   setGlobalVisibility(GV, &D);
    209 
    210   if (supportsCOMDAT() && GV->isWeakForLinker())
    211     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
    212 
    213   if (D.getTLSKind())
    214     setTLSMode(GV, D);
    215 
    216   if (D.isExternallyVisible()) {
    217     if (D.hasAttr<DLLImportAttr>())
    218       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
    219     else if (D.hasAttr<DLLExportAttr>())
    220       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
    221   }
    222 
    223   // Make sure the result is of the correct type.
    224   unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty);
    225   llvm::Constant *Addr = GV;
    226   if (AddrSpace != ExpectedAddrSpace) {
    227     llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
    228     Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy);
    229   }
    230 
    231   setStaticLocalDeclAddress(&D, Addr);
    232 
    233   // Ensure that the static local gets initialized by making sure the parent
    234   // function gets emitted eventually.
    235   const Decl *DC = cast<Decl>(D.getDeclContext());
    236 
    237   // We can't name blocks or captured statements directly, so try to emit their
    238   // parents.
    239   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
    240     DC = DC->getNonClosureContext();
    241     // FIXME: Ensure that global blocks get emitted.
    242     if (!DC)
    243       return Addr;
    244   }
    245 
    246   GlobalDecl GD;
    247   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
    248     GD = GlobalDecl(CD, Ctor_Base);
    249   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
    250     GD = GlobalDecl(DD, Dtor_Base);
    251   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
    252     GD = GlobalDecl(FD);
    253   else {
    254     // Don't do anything for Obj-C method decls or global closures. We should
    255     // never defer them.
    256     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
    257   }
    258   if (GD.getDecl())
    259     (void)GetAddrOfGlobal(GD);
    260 
    261   return Addr;
    262 }
    263 
    264 /// hasNontrivialDestruction - Determine whether a type's destruction is
    265 /// non-trivial. If so, and the variable uses static initialization, we must
    266 /// register its destructor to run on exit.
    267 static bool hasNontrivialDestruction(QualType T) {
    268   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
    269   return RD && !RD->hasTrivialDestructor();
    270 }
    271 
    272 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
    273 /// global variable that has already been created for it.  If the initializer
    274 /// has a different type than GV does, this may free GV and return a different
    275 /// one.  Otherwise it just returns GV.
    276 llvm::GlobalVariable *
    277 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
    278                                                llvm::GlobalVariable *GV) {
    279   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
    280 
    281   // If constant emission failed, then this should be a C++ static
    282   // initializer.
    283   if (!Init) {
    284     if (!getLangOpts().CPlusPlus)
    285       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
    286     else if (Builder.GetInsertBlock()) {
    287       // Since we have a static initializer, this global variable can't
    288       // be constant.
    289       GV->setConstant(false);
    290 
    291       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
    292     }
    293     return GV;
    294   }
    295 
    296   // The initializer may differ in type from the global. Rewrite
    297   // the global to match the initializer.  (We have to do this
    298   // because some types, like unions, can't be completely represented
    299   // in the LLVM type system.)
    300   if (GV->getType()->getElementType() != Init->getType()) {
    301     llvm::GlobalVariable *OldGV = GV;
    302 
    303     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
    304                                   OldGV->isConstant(),
    305                                   OldGV->getLinkage(), Init, "",
    306                                   /*InsertBefore*/ OldGV,
    307                                   OldGV->getThreadLocalMode(),
    308                            CGM.getContext().getTargetAddressSpace(D.getType()));
    309     GV->setVisibility(OldGV->getVisibility());
    310 
    311     // Steal the name of the old global
    312     GV->takeName(OldGV);
    313 
    314     // Replace all uses of the old global with the new global
    315     llvm::Constant *NewPtrForOldDecl =
    316     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
    317     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
    318 
    319     // Erase the old global, since it is no longer used.
    320     OldGV->eraseFromParent();
    321   }
    322 
    323   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
    324   GV->setInitializer(Init);
    325 
    326   if (hasNontrivialDestruction(D.getType())) {
    327     // We have a constant initializer, but a nontrivial destructor. We still
    328     // need to perform a guarded "initialization" in order to register the
    329     // destructor.
    330     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
    331   }
    332 
    333   return GV;
    334 }
    335 
    336 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
    337                                       llvm::GlobalValue::LinkageTypes Linkage) {
    338   llvm::Value *&DMEntry = LocalDeclMap[&D];
    339   assert(!DMEntry && "Decl already exists in localdeclmap!");
    340 
    341   // Check to see if we already have a global variable for this
    342   // declaration.  This can happen when double-emitting function
    343   // bodies, e.g. with complete and base constructors.
    344   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
    345 
    346   // Store into LocalDeclMap before generating initializer to handle
    347   // circular references.
    348   DMEntry = addr;
    349 
    350   // We can't have a VLA here, but we can have a pointer to a VLA,
    351   // even though that doesn't really make any sense.
    352   // Make sure to evaluate VLA bounds now so that we have them for later.
    353   if (D.getType()->isVariablyModifiedType())
    354     EmitVariablyModifiedType(D.getType());
    355 
    356   // Save the type in case adding the initializer forces a type change.
    357   llvm::Type *expectedType = addr->getType();
    358 
    359   llvm::GlobalVariable *var =
    360     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
    361   // If this value has an initializer, emit it.
    362   if (D.getInit())
    363     var = AddInitializerToStaticVarDecl(D, var);
    364 
    365   var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
    366 
    367   if (D.hasAttr<AnnotateAttr>())
    368     CGM.AddGlobalAnnotations(&D, var);
    369 
    370   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
    371     var->setSection(SA->getName());
    372 
    373   if (D.hasAttr<UsedAttr>())
    374     CGM.addUsedGlobal(var);
    375 
    376   // We may have to cast the constant because of the initializer
    377   // mismatch above.
    378   //
    379   // FIXME: It is really dangerous to store this in the map; if anyone
    380   // RAUW's the GV uses of this constant will be invalid.
    381   llvm::Constant *castedAddr =
    382     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
    383   DMEntry = castedAddr;
    384   CGM.setStaticLocalDeclAddress(&D, castedAddr);
    385 
    386   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
    387 
    388   // Emit global variable debug descriptor for static vars.
    389   CGDebugInfo *DI = getDebugInfo();
    390   if (DI &&
    391       CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
    392     DI->setLocation(D.getLocation());
    393     DI->EmitGlobalVariable(var, &D);
    394   }
    395 }
    396 
    397 namespace {
    398   struct DestroyObject : EHScopeStack::Cleanup {
    399     DestroyObject(llvm::Value *addr, QualType type,
    400                   CodeGenFunction::Destroyer *destroyer,
    401                   bool useEHCleanupForArray)
    402       : addr(addr), type(type), destroyer(destroyer),
    403         useEHCleanupForArray(useEHCleanupForArray) {}
    404 
    405     llvm::Value *addr;
    406     QualType type;
    407     CodeGenFunction::Destroyer *destroyer;
    408     bool useEHCleanupForArray;
    409 
    410     void Emit(CodeGenFunction &CGF, Flags flags) override {
    411       // Don't use an EH cleanup recursively from an EH cleanup.
    412       bool useEHCleanupForArray =
    413         flags.isForNormalCleanup() && this->useEHCleanupForArray;
    414 
    415       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
    416     }
    417   };
    418 
    419   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
    420     DestroyNRVOVariable(llvm::Value *addr,
    421                         const CXXDestructorDecl *Dtor,
    422                         llvm::Value *NRVOFlag)
    423       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
    424 
    425     const CXXDestructorDecl *Dtor;
    426     llvm::Value *NRVOFlag;
    427     llvm::Value *Loc;
    428 
    429     void Emit(CodeGenFunction &CGF, Flags flags) override {
    430       // Along the exceptions path we always execute the dtor.
    431       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
    432 
    433       llvm::BasicBlock *SkipDtorBB = nullptr;
    434       if (NRVO) {
    435         // If we exited via NRVO, we skip the destructor call.
    436         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
    437         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
    438         llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
    439         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
    440         CGF.EmitBlock(RunDtorBB);
    441       }
    442 
    443       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
    444                                 /*ForVirtualBase=*/false,
    445                                 /*Delegating=*/false,
    446                                 Loc);
    447 
    448       if (NRVO) CGF.EmitBlock(SkipDtorBB);
    449     }
    450   };
    451 
    452   struct CallStackRestore : EHScopeStack::Cleanup {
    453     llvm::Value *Stack;
    454     CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
    455     void Emit(CodeGenFunction &CGF, Flags flags) override {
    456       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
    457       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
    458       CGF.Builder.CreateCall(F, V);
    459     }
    460   };
    461 
    462   struct ExtendGCLifetime : EHScopeStack::Cleanup {
    463     const VarDecl &Var;
    464     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
    465 
    466     void Emit(CodeGenFunction &CGF, Flags flags) override {
    467       // Compute the address of the local variable, in case it's a
    468       // byref or something.
    469       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
    470                       Var.getType(), VK_LValue, SourceLocation());
    471       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
    472                                                 SourceLocation());
    473       CGF.EmitExtendGCLifetime(value);
    474     }
    475   };
    476 
    477   struct CallCleanupFunction : EHScopeStack::Cleanup {
    478     llvm::Constant *CleanupFn;
    479     const CGFunctionInfo &FnInfo;
    480     const VarDecl &Var;
    481 
    482     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
    483                         const VarDecl *Var)
    484       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
    485 
    486     void Emit(CodeGenFunction &CGF, Flags flags) override {
    487       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
    488                       Var.getType(), VK_LValue, SourceLocation());
    489       // Compute the address of the local variable, in case it's a byref
    490       // or something.
    491       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
    492 
    493       // In some cases, the type of the function argument will be different from
    494       // the type of the pointer. An example of this is
    495       // void f(void* arg);
    496       // __attribute__((cleanup(f))) void *g;
    497       //
    498       // To fix this we insert a bitcast here.
    499       QualType ArgTy = FnInfo.arg_begin()->type;
    500       llvm::Value *Arg =
    501         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
    502 
    503       CallArgList Args;
    504       Args.add(RValue::get(Arg),
    505                CGF.getContext().getPointerType(Var.getType()));
    506       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
    507     }
    508   };
    509 
    510   /// A cleanup to call @llvm.lifetime.end.
    511   class CallLifetimeEnd : public EHScopeStack::Cleanup {
    512     llvm::Value *Addr;
    513     llvm::Value *Size;
    514   public:
    515     CallLifetimeEnd(llvm::Value *addr, llvm::Value *size)
    516       : Addr(addr), Size(size) {}
    517 
    518     void Emit(CodeGenFunction &CGF, Flags flags) override {
    519       llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy);
    520       CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(),
    521                               Size, castAddr)
    522         ->setDoesNotThrow();
    523     }
    524   };
    525 }
    526 
    527 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
    528 /// variable with lifetime.
    529 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
    530                                     llvm::Value *addr,
    531                                     Qualifiers::ObjCLifetime lifetime) {
    532   switch (lifetime) {
    533   case Qualifiers::OCL_None:
    534     llvm_unreachable("present but none");
    535 
    536   case Qualifiers::OCL_ExplicitNone:
    537     // nothing to do
    538     break;
    539 
    540   case Qualifiers::OCL_Strong: {
    541     CodeGenFunction::Destroyer *destroyer =
    542       (var.hasAttr<ObjCPreciseLifetimeAttr>()
    543        ? CodeGenFunction::destroyARCStrongPrecise
    544        : CodeGenFunction::destroyARCStrongImprecise);
    545 
    546     CleanupKind cleanupKind = CGF.getARCCleanupKind();
    547     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
    548                     cleanupKind & EHCleanup);
    549     break;
    550   }
    551   case Qualifiers::OCL_Autoreleasing:
    552     // nothing to do
    553     break;
    554 
    555   case Qualifiers::OCL_Weak:
    556     // __weak objects always get EH cleanups; otherwise, exceptions
    557     // could cause really nasty crashes instead of mere leaks.
    558     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
    559                     CodeGenFunction::destroyARCWeak,
    560                     /*useEHCleanup*/ true);
    561     break;
    562   }
    563 }
    564 
    565 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
    566   if (const Expr *e = dyn_cast<Expr>(s)) {
    567     // Skip the most common kinds of expressions that make
    568     // hierarchy-walking expensive.
    569     s = e = e->IgnoreParenCasts();
    570 
    571     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
    572       return (ref->getDecl() == &var);
    573     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
    574       const BlockDecl *block = be->getBlockDecl();
    575       for (const auto &I : block->captures()) {
    576         if (I.getVariable() == &var)
    577           return true;
    578       }
    579     }
    580   }
    581 
    582   for (Stmt::const_child_range children = s->children(); children; ++children)
    583     // children might be null; as in missing decl or conditional of an if-stmt.
    584     if ((*children) && isAccessedBy(var, *children))
    585       return true;
    586 
    587   return false;
    588 }
    589 
    590 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
    591   if (!decl) return false;
    592   if (!isa<VarDecl>(decl)) return false;
    593   const VarDecl *var = cast<VarDecl>(decl);
    594   return isAccessedBy(*var, e);
    595 }
    596 
    597 static void drillIntoBlockVariable(CodeGenFunction &CGF,
    598                                    LValue &lvalue,
    599                                    const VarDecl *var) {
    600   lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
    601 }
    602 
    603 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
    604                                      LValue lvalue, bool capturedByInit) {
    605   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
    606   if (!lifetime) {
    607     llvm::Value *value = EmitScalarExpr(init);
    608     if (capturedByInit)
    609       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
    610     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
    611     return;
    612   }
    613 
    614   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
    615     init = DIE->getExpr();
    616 
    617   // If we're emitting a value with lifetime, we have to do the
    618   // initialization *before* we leave the cleanup scopes.
    619   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
    620     enterFullExpression(ewc);
    621     init = ewc->getSubExpr();
    622   }
    623   CodeGenFunction::RunCleanupsScope Scope(*this);
    624 
    625   // We have to maintain the illusion that the variable is
    626   // zero-initialized.  If the variable might be accessed in its
    627   // initializer, zero-initialize before running the initializer, then
    628   // actually perform the initialization with an assign.
    629   bool accessedByInit = false;
    630   if (lifetime != Qualifiers::OCL_ExplicitNone)
    631     accessedByInit = (capturedByInit || isAccessedBy(D, init));
    632   if (accessedByInit) {
    633     LValue tempLV = lvalue;
    634     // Drill down to the __block object if necessary.
    635     if (capturedByInit) {
    636       // We can use a simple GEP for this because it can't have been
    637       // moved yet.
    638       tempLV.setAddress(Builder.CreateStructGEP(
    639           nullptr, tempLV.getAddress(),
    640           getByRefValueLLVMField(cast<VarDecl>(D)).second));
    641     }
    642 
    643     llvm::PointerType *ty
    644       = cast<llvm::PointerType>(tempLV.getAddress()->getType());
    645     ty = cast<llvm::PointerType>(ty->getElementType());
    646 
    647     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
    648 
    649     // If __weak, we want to use a barrier under certain conditions.
    650     if (lifetime == Qualifiers::OCL_Weak)
    651       EmitARCInitWeak(tempLV.getAddress(), zero);
    652 
    653     // Otherwise just do a simple store.
    654     else
    655       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
    656   }
    657 
    658   // Emit the initializer.
    659   llvm::Value *value = nullptr;
    660 
    661   switch (lifetime) {
    662   case Qualifiers::OCL_None:
    663     llvm_unreachable("present but none");
    664 
    665   case Qualifiers::OCL_ExplicitNone:
    666     // nothing to do
    667     value = EmitScalarExpr(init);
    668     break;
    669 
    670   case Qualifiers::OCL_Strong: {
    671     value = EmitARCRetainScalarExpr(init);
    672     break;
    673   }
    674 
    675   case Qualifiers::OCL_Weak: {
    676     // No way to optimize a producing initializer into this.  It's not
    677     // worth optimizing for, because the value will immediately
    678     // disappear in the common case.
    679     value = EmitScalarExpr(init);
    680 
    681     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
    682     if (accessedByInit)
    683       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
    684     else
    685       EmitARCInitWeak(lvalue.getAddress(), value);
    686     return;
    687   }
    688 
    689   case Qualifiers::OCL_Autoreleasing:
    690     value = EmitARCRetainAutoreleaseScalarExpr(init);
    691     break;
    692   }
    693 
    694   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
    695 
    696   // If the variable might have been accessed by its initializer, we
    697   // might have to initialize with a barrier.  We have to do this for
    698   // both __weak and __strong, but __weak got filtered out above.
    699   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
    700     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
    701     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
    702     EmitARCRelease(oldValue, ARCImpreciseLifetime);
    703     return;
    704   }
    705 
    706   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
    707 }
    708 
    709 /// EmitScalarInit - Initialize the given lvalue with the given object.
    710 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
    711   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
    712   if (!lifetime)
    713     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
    714 
    715   switch (lifetime) {
    716   case Qualifiers::OCL_None:
    717     llvm_unreachable("present but none");
    718 
    719   case Qualifiers::OCL_ExplicitNone:
    720     // nothing to do
    721     break;
    722 
    723   case Qualifiers::OCL_Strong:
    724     init = EmitARCRetain(lvalue.getType(), init);
    725     break;
    726 
    727   case Qualifiers::OCL_Weak:
    728     // Initialize and then skip the primitive store.
    729     EmitARCInitWeak(lvalue.getAddress(), init);
    730     return;
    731 
    732   case Qualifiers::OCL_Autoreleasing:
    733     init = EmitARCRetainAutorelease(lvalue.getType(), init);
    734     break;
    735   }
    736 
    737   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
    738 }
    739 
    740 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
    741 /// non-zero parts of the specified initializer with equal or fewer than
    742 /// NumStores scalar stores.
    743 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
    744                                                 unsigned &NumStores) {
    745   // Zero and Undef never requires any extra stores.
    746   if (isa<llvm::ConstantAggregateZero>(Init) ||
    747       isa<llvm::ConstantPointerNull>(Init) ||
    748       isa<llvm::UndefValue>(Init))
    749     return true;
    750   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
    751       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
    752       isa<llvm::ConstantExpr>(Init))
    753     return Init->isNullValue() || NumStores--;
    754 
    755   // See if we can emit each element.
    756   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
    757     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
    758       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
    759       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
    760         return false;
    761     }
    762     return true;
    763   }
    764 
    765   if (llvm::ConstantDataSequential *CDS =
    766         dyn_cast<llvm::ConstantDataSequential>(Init)) {
    767     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
    768       llvm::Constant *Elt = CDS->getElementAsConstant(i);
    769       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
    770         return false;
    771     }
    772     return true;
    773   }
    774 
    775   // Anything else is hard and scary.
    776   return false;
    777 }
    778 
    779 /// emitStoresForInitAfterMemset - For inits that
    780 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
    781 /// stores that would be required.
    782 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
    783                                          bool isVolatile, CGBuilderTy &Builder) {
    784   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
    785          "called emitStoresForInitAfterMemset for zero or undef value.");
    786 
    787   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
    788       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
    789       isa<llvm::ConstantExpr>(Init)) {
    790     Builder.CreateStore(Init, Loc, isVolatile);
    791     return;
    792   }
    793 
    794   if (llvm::ConstantDataSequential *CDS =
    795         dyn_cast<llvm::ConstantDataSequential>(Init)) {
    796     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
    797       llvm::Constant *Elt = CDS->getElementAsConstant(i);
    798 
    799       // If necessary, get a pointer to the element and emit it.
    800       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
    801         emitStoresForInitAfterMemset(
    802             Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
    803             isVolatile, Builder);
    804     }
    805     return;
    806   }
    807 
    808   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
    809          "Unknown value type!");
    810 
    811   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
    812     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
    813 
    814     // If necessary, get a pointer to the element and emit it.
    815     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
    816       emitStoresForInitAfterMemset(
    817           Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
    818           isVolatile, Builder);
    819   }
    820 }
    821 
    822 
    823 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
    824 /// plus some stores to initialize a local variable instead of using a memcpy
    825 /// from a constant global.  It is beneficial to use memset if the global is all
    826 /// zeros, or mostly zeros and large.
    827 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
    828                                                   uint64_t GlobalSize) {
    829   // If a global is all zeros, always use a memset.
    830   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
    831 
    832   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
    833   // do it if it will require 6 or fewer scalar stores.
    834   // TODO: Should budget depends on the size?  Avoiding a large global warrants
    835   // plopping in more stores.
    836   unsigned StoreBudget = 6;
    837   uint64_t SizeLimit = 32;
    838 
    839   return GlobalSize > SizeLimit &&
    840          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
    841 }
    842 
    843 /// Should we use the LLVM lifetime intrinsics for the given local variable?
    844 static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D,
    845                                      unsigned Size) {
    846   // For now, only in optimized builds.
    847   if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0)
    848     return false;
    849 
    850   // Limit the size of marked objects to 32 bytes. We don't want to increase
    851   // compile time by marking tiny objects.
    852   unsigned SizeThreshold = 32;
    853 
    854   return Size > SizeThreshold;
    855 }
    856 
    857 
    858 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
    859 /// variable declaration with auto, register, or no storage class specifier.
    860 /// These turn into simple stack objects, or GlobalValues depending on target.
    861 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
    862   AutoVarEmission emission = EmitAutoVarAlloca(D);
    863   EmitAutoVarInit(emission);
    864   EmitAutoVarCleanups(emission);
    865 }
    866 
    867 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
    868 /// local variable.  Does not emit initialization or destruction.
    869 CodeGenFunction::AutoVarEmission
    870 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
    871   QualType Ty = D.getType();
    872 
    873   AutoVarEmission emission(D);
    874 
    875   bool isByRef = D.hasAttr<BlocksAttr>();
    876   emission.IsByRef = isByRef;
    877 
    878   CharUnits alignment = getContext().getDeclAlign(&D);
    879   emission.Alignment = alignment;
    880 
    881   // If the type is variably-modified, emit all the VLA sizes for it.
    882   if (Ty->isVariablyModifiedType())
    883     EmitVariablyModifiedType(Ty);
    884 
    885   llvm::Value *DeclPtr;
    886   if (Ty->isConstantSizeType()) {
    887     bool NRVO = getLangOpts().ElideConstructors &&
    888       D.isNRVOVariable();
    889 
    890     // If this value is an array or struct with a statically determinable
    891     // constant initializer, there are optimizations we can do.
    892     //
    893     // TODO: We should constant-evaluate the initializer of any variable,
    894     // as long as it is initialized by a constant expression. Currently,
    895     // isConstantInitializer produces wrong answers for structs with
    896     // reference or bitfield members, and a few other cases, and checking
    897     // for POD-ness protects us from some of these.
    898     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
    899         (D.isConstexpr() ||
    900          ((Ty.isPODType(getContext()) ||
    901            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
    902           D.getInit()->isConstantInitializer(getContext(), false)))) {
    903 
    904       // If the variable's a const type, and it's neither an NRVO
    905       // candidate nor a __block variable and has no mutable members,
    906       // emit it as a global instead.
    907       if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
    908           CGM.isTypeConstant(Ty, true)) {
    909         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
    910 
    911         emission.Address = nullptr; // signal this condition to later callbacks
    912         assert(emission.wasEmittedAsGlobal());
    913         return emission;
    914       }
    915 
    916       // Otherwise, tell the initialization code that we're in this case.
    917       emission.IsConstantAggregate = true;
    918     }
    919 
    920     // A normal fixed sized variable becomes an alloca in the entry block,
    921     // unless it's an NRVO variable.
    922     llvm::Type *LTy = ConvertTypeForMem(Ty);
    923 
    924     if (NRVO) {
    925       // The named return value optimization: allocate this variable in the
    926       // return slot, so that we can elide the copy when returning this
    927       // variable (C++0x [class.copy]p34).
    928       DeclPtr = ReturnValue;
    929 
    930       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
    931         if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
    932           // Create a flag that is used to indicate when the NRVO was applied
    933           // to this variable. Set it to zero to indicate that NRVO was not
    934           // applied.
    935           llvm::Value *Zero = Builder.getFalse();
    936           llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
    937           EnsureInsertPoint();
    938           Builder.CreateStore(Zero, NRVOFlag);
    939 
    940           // Record the NRVO flag for this variable.
    941           NRVOFlags[&D] = NRVOFlag;
    942           emission.NRVOFlag = NRVOFlag;
    943         }
    944       }
    945     } else {
    946       if (isByRef)
    947         LTy = BuildByRefType(&D);
    948 
    949       llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
    950       Alloc->setName(D.getName());
    951 
    952       CharUnits allocaAlignment = alignment;
    953       if (isByRef)
    954         allocaAlignment = std::max(allocaAlignment,
    955             getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0)));
    956       Alloc->setAlignment(allocaAlignment.getQuantity());
    957       DeclPtr = Alloc;
    958 
    959       // Emit a lifetime intrinsic if meaningful.  There's no point
    960       // in doing this if we don't have a valid insertion point (?).
    961       uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy);
    962       if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) {
    963         llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size);
    964 
    965         emission.SizeForLifetimeMarkers = sizeV;
    966         llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy);
    967         Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr)
    968           ->setDoesNotThrow();
    969       } else {
    970         assert(!emission.useLifetimeMarkers());
    971       }
    972     }
    973   } else {
    974     EnsureInsertPoint();
    975 
    976     if (!DidCallStackSave) {
    977       // Save the stack.
    978       llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
    979 
    980       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
    981       llvm::Value *V = Builder.CreateCall(F);
    982 
    983       Builder.CreateStore(V, Stack);
    984 
    985       DidCallStackSave = true;
    986 
    987       // Push a cleanup block and restore the stack there.
    988       // FIXME: in general circumstances, this should be an EH cleanup.
    989       pushStackRestore(NormalCleanup, Stack);
    990     }
    991 
    992     llvm::Value *elementCount;
    993     QualType elementType;
    994     std::tie(elementCount, elementType) = getVLASize(Ty);
    995 
    996     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
    997 
    998     // Allocate memory for the array.
    999     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
   1000     vla->setAlignment(alignment.getQuantity());
   1001 
   1002     DeclPtr = vla;
   1003   }
   1004 
   1005   llvm::Value *&DMEntry = LocalDeclMap[&D];
   1006   assert(!DMEntry && "Decl already exists in localdeclmap!");
   1007   DMEntry = DeclPtr;
   1008   emission.Address = DeclPtr;
   1009 
   1010   // Emit debug info for local var declaration.
   1011   if (HaveInsertPoint())
   1012     if (CGDebugInfo *DI = getDebugInfo()) {
   1013       if (CGM.getCodeGenOpts().getDebugInfo()
   1014             >= CodeGenOptions::LimitedDebugInfo) {
   1015         DI->setLocation(D.getLocation());
   1016         DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
   1017       }
   1018     }
   1019 
   1020   if (D.hasAttr<AnnotateAttr>())
   1021       EmitVarAnnotations(&D, emission.Address);
   1022 
   1023   return emission;
   1024 }
   1025 
   1026 /// Determines whether the given __block variable is potentially
   1027 /// captured by the given expression.
   1028 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
   1029   // Skip the most common kinds of expressions that make
   1030   // hierarchy-walking expensive.
   1031   e = e->IgnoreParenCasts();
   1032 
   1033   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
   1034     const BlockDecl *block = be->getBlockDecl();
   1035     for (const auto &I : block->captures()) {
   1036       if (I.getVariable() == &var)
   1037         return true;
   1038     }
   1039 
   1040     // No need to walk into the subexpressions.
   1041     return false;
   1042   }
   1043 
   1044   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
   1045     const CompoundStmt *CS = SE->getSubStmt();
   1046     for (const auto *BI : CS->body())
   1047       if (const auto *E = dyn_cast<Expr>(BI)) {
   1048         if (isCapturedBy(var, E))
   1049             return true;
   1050       }
   1051       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
   1052           // special case declarations
   1053           for (const auto *I : DS->decls()) {
   1054               if (const auto *VD = dyn_cast<VarDecl>((I))) {
   1055                 const Expr *Init = VD->getInit();
   1056                 if (Init && isCapturedBy(var, Init))
   1057                   return true;
   1058               }
   1059           }
   1060       }
   1061       else
   1062         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
   1063         // Later, provide code to poke into statements for capture analysis.
   1064         return true;
   1065     return false;
   1066   }
   1067 
   1068   for (Stmt::const_child_range children = e->children(); children; ++children)
   1069     if (isCapturedBy(var, cast<Expr>(*children)))
   1070       return true;
   1071 
   1072   return false;
   1073 }
   1074 
   1075 /// \brief Determine whether the given initializer is trivial in the sense
   1076 /// that it requires no code to be generated.
   1077 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
   1078   if (!Init)
   1079     return true;
   1080 
   1081   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
   1082     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
   1083       if (Constructor->isTrivial() &&
   1084           Constructor->isDefaultConstructor() &&
   1085           !Construct->requiresZeroInitialization())
   1086         return true;
   1087 
   1088   return false;
   1089 }
   1090 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
   1091   assert(emission.Variable && "emission was not valid!");
   1092 
   1093   // If this was emitted as a global constant, we're done.
   1094   if (emission.wasEmittedAsGlobal()) return;
   1095 
   1096   const VarDecl &D = *emission.Variable;
   1097   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
   1098   QualType type = D.getType();
   1099 
   1100   // If this local has an initializer, emit it now.
   1101   const Expr *Init = D.getInit();
   1102 
   1103   // If we are at an unreachable point, we don't need to emit the initializer
   1104   // unless it contains a label.
   1105   if (!HaveInsertPoint()) {
   1106     if (!Init || !ContainsLabel(Init)) return;
   1107     EnsureInsertPoint();
   1108   }
   1109 
   1110   // Initialize the structure of a __block variable.
   1111   if (emission.IsByRef)
   1112     emitByrefStructureInit(emission);
   1113 
   1114   if (isTrivialInitializer(Init))
   1115     return;
   1116 
   1117   CharUnits alignment = emission.Alignment;
   1118 
   1119   // Check whether this is a byref variable that's potentially
   1120   // captured and moved by its own initializer.  If so, we'll need to
   1121   // emit the initializer first, then copy into the variable.
   1122   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
   1123 
   1124   llvm::Value *Loc =
   1125     capturedByInit ? emission.Address : emission.getObjectAddress(*this);
   1126 
   1127   llvm::Constant *constant = nullptr;
   1128   if (emission.IsConstantAggregate || D.isConstexpr()) {
   1129     assert(!capturedByInit && "constant init contains a capturing block?");
   1130     constant = CGM.EmitConstantInit(D, this);
   1131   }
   1132 
   1133   if (!constant) {
   1134     LValue lv = MakeAddrLValue(Loc, type, alignment);
   1135     lv.setNonGC(true);
   1136     return EmitExprAsInit(Init, &D, lv, capturedByInit);
   1137   }
   1138 
   1139   if (!emission.IsConstantAggregate) {
   1140     // For simple scalar/complex initialization, store the value directly.
   1141     LValue lv = MakeAddrLValue(Loc, type, alignment);
   1142     lv.setNonGC(true);
   1143     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
   1144   }
   1145 
   1146   // If this is a simple aggregate initialization, we can optimize it
   1147   // in various ways.
   1148   bool isVolatile = type.isVolatileQualified();
   1149 
   1150   llvm::Value *SizeVal =
   1151     llvm::ConstantInt::get(IntPtrTy,
   1152                            getContext().getTypeSizeInChars(type).getQuantity());
   1153 
   1154   llvm::Type *BP = Int8PtrTy;
   1155   if (Loc->getType() != BP)
   1156     Loc = Builder.CreateBitCast(Loc, BP);
   1157 
   1158   // If the initializer is all or mostly zeros, codegen with memset then do
   1159   // a few stores afterward.
   1160   if (shouldUseMemSetPlusStoresToInitialize(constant,
   1161                 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
   1162     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
   1163                          alignment.getQuantity(), isVolatile);
   1164     // Zero and undef don't require a stores.
   1165     if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
   1166       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
   1167       emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
   1168     }
   1169   } else {
   1170     // Otherwise, create a temporary global with the initializer then
   1171     // memcpy from the global to the alloca.
   1172     std::string Name = getStaticDeclName(CGM, D);
   1173     llvm::GlobalVariable *GV =
   1174       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
   1175                                llvm::GlobalValue::PrivateLinkage,
   1176                                constant, Name);
   1177     GV->setAlignment(alignment.getQuantity());
   1178     GV->setUnnamedAddr(true);
   1179 
   1180     llvm::Value *SrcPtr = GV;
   1181     if (SrcPtr->getType() != BP)
   1182       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
   1183 
   1184     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
   1185                          isVolatile);
   1186   }
   1187 }
   1188 
   1189 /// Emit an expression as an initializer for a variable at the given
   1190 /// location.  The expression is not necessarily the normal
   1191 /// initializer for the variable, and the address is not necessarily
   1192 /// its normal location.
   1193 ///
   1194 /// \param init the initializing expression
   1195 /// \param var the variable to act as if we're initializing
   1196 /// \param loc the address to initialize; its type is a pointer
   1197 ///   to the LLVM mapping of the variable's type
   1198 /// \param alignment the alignment of the address
   1199 /// \param capturedByInit true if the variable is a __block variable
   1200 ///   whose address is potentially changed by the initializer
   1201 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
   1202                                      LValue lvalue, bool capturedByInit) {
   1203   QualType type = D->getType();
   1204 
   1205   if (type->isReferenceType()) {
   1206     RValue rvalue = EmitReferenceBindingToExpr(init);
   1207     if (capturedByInit)
   1208       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
   1209     EmitStoreThroughLValue(rvalue, lvalue, true);
   1210     return;
   1211   }
   1212   switch (getEvaluationKind(type)) {
   1213   case TEK_Scalar:
   1214     EmitScalarInit(init, D, lvalue, capturedByInit);
   1215     return;
   1216   case TEK_Complex: {
   1217     ComplexPairTy complex = EmitComplexExpr(init);
   1218     if (capturedByInit)
   1219       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
   1220     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
   1221     return;
   1222   }
   1223   case TEK_Aggregate:
   1224     if (type->isAtomicType()) {
   1225       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
   1226     } else {
   1227       // TODO: how can we delay here if D is captured by its initializer?
   1228       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
   1229                                               AggValueSlot::IsDestructed,
   1230                                          AggValueSlot::DoesNotNeedGCBarriers,
   1231                                               AggValueSlot::IsNotAliased));
   1232     }
   1233     return;
   1234   }
   1235   llvm_unreachable("bad evaluation kind");
   1236 }
   1237 
   1238 /// Enter a destroy cleanup for the given local variable.
   1239 void CodeGenFunction::emitAutoVarTypeCleanup(
   1240                             const CodeGenFunction::AutoVarEmission &emission,
   1241                             QualType::DestructionKind dtorKind) {
   1242   assert(dtorKind != QualType::DK_none);
   1243 
   1244   // Note that for __block variables, we want to destroy the
   1245   // original stack object, not the possibly forwarded object.
   1246   llvm::Value *addr = emission.getObjectAddress(*this);
   1247 
   1248   const VarDecl *var = emission.Variable;
   1249   QualType type = var->getType();
   1250 
   1251   CleanupKind cleanupKind = NormalAndEHCleanup;
   1252   CodeGenFunction::Destroyer *destroyer = nullptr;
   1253 
   1254   switch (dtorKind) {
   1255   case QualType::DK_none:
   1256     llvm_unreachable("no cleanup for trivially-destructible variable");
   1257 
   1258   case QualType::DK_cxx_destructor:
   1259     // If there's an NRVO flag on the emission, we need a different
   1260     // cleanup.
   1261     if (emission.NRVOFlag) {
   1262       assert(!type->isArrayType());
   1263       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
   1264       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
   1265                                                emission.NRVOFlag);
   1266       return;
   1267     }
   1268     break;
   1269 
   1270   case QualType::DK_objc_strong_lifetime:
   1271     // Suppress cleanups for pseudo-strong variables.
   1272     if (var->isARCPseudoStrong()) return;
   1273 
   1274     // Otherwise, consider whether to use an EH cleanup or not.
   1275     cleanupKind = getARCCleanupKind();
   1276 
   1277     // Use the imprecise destroyer by default.
   1278     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
   1279       destroyer = CodeGenFunction::destroyARCStrongImprecise;
   1280     break;
   1281 
   1282   case QualType::DK_objc_weak_lifetime:
   1283     break;
   1284   }
   1285 
   1286   // If we haven't chosen a more specific destroyer, use the default.
   1287   if (!destroyer) destroyer = getDestroyer(dtorKind);
   1288 
   1289   // Use an EH cleanup in array destructors iff the destructor itself
   1290   // is being pushed as an EH cleanup.
   1291   bool useEHCleanup = (cleanupKind & EHCleanup);
   1292   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
   1293                                      useEHCleanup);
   1294 }
   1295 
   1296 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
   1297   assert(emission.Variable && "emission was not valid!");
   1298 
   1299   // If this was emitted as a global constant, we're done.
   1300   if (emission.wasEmittedAsGlobal()) return;
   1301 
   1302   // If we don't have an insertion point, we're done.  Sema prevents
   1303   // us from jumping into any of these scopes anyway.
   1304   if (!HaveInsertPoint()) return;
   1305 
   1306   const VarDecl &D = *emission.Variable;
   1307 
   1308   // Make sure we call @llvm.lifetime.end.  This needs to happen
   1309   // *last*, so the cleanup needs to be pushed *first*.
   1310   if (emission.useLifetimeMarkers()) {
   1311     EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup,
   1312                                          emission.getAllocatedAddress(),
   1313                                          emission.getSizeForLifetimeMarkers());
   1314   }
   1315 
   1316   // Check the type for a cleanup.
   1317   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
   1318     emitAutoVarTypeCleanup(emission, dtorKind);
   1319 
   1320   // In GC mode, honor objc_precise_lifetime.
   1321   if (getLangOpts().getGC() != LangOptions::NonGC &&
   1322       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
   1323     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
   1324   }
   1325 
   1326   // Handle the cleanup attribute.
   1327   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
   1328     const FunctionDecl *FD = CA->getFunctionDecl();
   1329 
   1330     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
   1331     assert(F && "Could not find function!");
   1332 
   1333     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
   1334     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
   1335   }
   1336 
   1337   // If this is a block variable, call _Block_object_destroy
   1338   // (on the unforwarded address).
   1339   if (emission.IsByRef)
   1340     enterByrefCleanup(emission);
   1341 }
   1342 
   1343 CodeGenFunction::Destroyer *
   1344 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
   1345   switch (kind) {
   1346   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
   1347   case QualType::DK_cxx_destructor:
   1348     return destroyCXXObject;
   1349   case QualType::DK_objc_strong_lifetime:
   1350     return destroyARCStrongPrecise;
   1351   case QualType::DK_objc_weak_lifetime:
   1352     return destroyARCWeak;
   1353   }
   1354   llvm_unreachable("Unknown DestructionKind");
   1355 }
   1356 
   1357 /// pushEHDestroy - Push the standard destructor for the given type as
   1358 /// an EH-only cleanup.
   1359 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
   1360                                   llvm::Value *addr, QualType type) {
   1361   assert(dtorKind && "cannot push destructor for trivial type");
   1362   assert(needsEHCleanup(dtorKind));
   1363 
   1364   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
   1365 }
   1366 
   1367 /// pushDestroy - Push the standard destructor for the given type as
   1368 /// at least a normal cleanup.
   1369 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
   1370                                   llvm::Value *addr, QualType type) {
   1371   assert(dtorKind && "cannot push destructor for trivial type");
   1372 
   1373   CleanupKind cleanupKind = getCleanupKind(dtorKind);
   1374   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
   1375               cleanupKind & EHCleanup);
   1376 }
   1377 
   1378 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
   1379                                   QualType type, Destroyer *destroyer,
   1380                                   bool useEHCleanupForArray) {
   1381   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
   1382                                      destroyer, useEHCleanupForArray);
   1383 }
   1384 
   1385 void CodeGenFunction::pushStackRestore(CleanupKind Kind, llvm::Value *SPMem) {
   1386   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
   1387 }
   1388 
   1389 void CodeGenFunction::pushLifetimeExtendedDestroy(
   1390     CleanupKind cleanupKind, llvm::Value *addr, QualType type,
   1391     Destroyer *destroyer, bool useEHCleanupForArray) {
   1392   assert(!isInConditionalBranch() &&
   1393          "performing lifetime extension from within conditional");
   1394 
   1395   // Push an EH-only cleanup for the object now.
   1396   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
   1397   // around in case a temporary's destructor throws an exception.
   1398   if (cleanupKind & EHCleanup)
   1399     EHStack.pushCleanup<DestroyObject>(
   1400         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
   1401         destroyer, useEHCleanupForArray);
   1402 
   1403   // Remember that we need to push a full cleanup for the object at the
   1404   // end of the full-expression.
   1405   pushCleanupAfterFullExpr<DestroyObject>(
   1406       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
   1407 }
   1408 
   1409 /// emitDestroy - Immediately perform the destruction of the given
   1410 /// object.
   1411 ///
   1412 /// \param addr - the address of the object; a type*
   1413 /// \param type - the type of the object; if an array type, all
   1414 ///   objects are destroyed in reverse order
   1415 /// \param destroyer - the function to call to destroy individual
   1416 ///   elements
   1417 /// \param useEHCleanupForArray - whether an EH cleanup should be
   1418 ///   used when destroying array elements, in case one of the
   1419 ///   destructions throws an exception
   1420 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
   1421                                   Destroyer *destroyer,
   1422                                   bool useEHCleanupForArray) {
   1423   const ArrayType *arrayType = getContext().getAsArrayType(type);
   1424   if (!arrayType)
   1425     return destroyer(*this, addr, type);
   1426 
   1427   llvm::Value *begin = addr;
   1428   llvm::Value *length = emitArrayLength(arrayType, type, begin);
   1429 
   1430   // Normally we have to check whether the array is zero-length.
   1431   bool checkZeroLength = true;
   1432 
   1433   // But if the array length is constant, we can suppress that.
   1434   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
   1435     // ...and if it's constant zero, we can just skip the entire thing.
   1436     if (constLength->isZero()) return;
   1437     checkZeroLength = false;
   1438   }
   1439 
   1440   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
   1441   emitArrayDestroy(begin, end, type, destroyer,
   1442                    checkZeroLength, useEHCleanupForArray);
   1443 }
   1444 
   1445 /// emitArrayDestroy - Destroys all the elements of the given array,
   1446 /// beginning from last to first.  The array cannot be zero-length.
   1447 ///
   1448 /// \param begin - a type* denoting the first element of the array
   1449 /// \param end - a type* denoting one past the end of the array
   1450 /// \param type - the element type of the array
   1451 /// \param destroyer - the function to call to destroy elements
   1452 /// \param useEHCleanup - whether to push an EH cleanup to destroy
   1453 ///   the remaining elements in case the destruction of a single
   1454 ///   element throws
   1455 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
   1456                                        llvm::Value *end,
   1457                                        QualType type,
   1458                                        Destroyer *destroyer,
   1459                                        bool checkZeroLength,
   1460                                        bool useEHCleanup) {
   1461   assert(!type->isArrayType());
   1462 
   1463   // The basic structure here is a do-while loop, because we don't
   1464   // need to check for the zero-element case.
   1465   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
   1466   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
   1467 
   1468   if (checkZeroLength) {
   1469     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
   1470                                                 "arraydestroy.isempty");
   1471     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
   1472   }
   1473 
   1474   // Enter the loop body, making that address the current address.
   1475   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
   1476   EmitBlock(bodyBB);
   1477   llvm::PHINode *elementPast =
   1478     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
   1479   elementPast->addIncoming(end, entryBB);
   1480 
   1481   // Shift the address back by one element.
   1482   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
   1483   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
   1484                                                    "arraydestroy.element");
   1485 
   1486   if (useEHCleanup)
   1487     pushRegularPartialArrayCleanup(begin, element, type, destroyer);
   1488 
   1489   // Perform the actual destruction there.
   1490   destroyer(*this, element, type);
   1491 
   1492   if (useEHCleanup)
   1493     PopCleanupBlock();
   1494 
   1495   // Check whether we've reached the end.
   1496   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
   1497   Builder.CreateCondBr(done, doneBB, bodyBB);
   1498   elementPast->addIncoming(element, Builder.GetInsertBlock());
   1499 
   1500   // Done.
   1501   EmitBlock(doneBB);
   1502 }
   1503 
   1504 /// Perform partial array destruction as if in an EH cleanup.  Unlike
   1505 /// emitArrayDestroy, the element type here may still be an array type.
   1506 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
   1507                                     llvm::Value *begin, llvm::Value *end,
   1508                                     QualType type,
   1509                                     CodeGenFunction::Destroyer *destroyer) {
   1510   // If the element type is itself an array, drill down.
   1511   unsigned arrayDepth = 0;
   1512   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
   1513     // VLAs don't require a GEP index to walk into.
   1514     if (!isa<VariableArrayType>(arrayType))
   1515       arrayDepth++;
   1516     type = arrayType->getElementType();
   1517   }
   1518 
   1519   if (arrayDepth) {
   1520     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
   1521 
   1522     SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
   1523     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
   1524     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
   1525   }
   1526 
   1527   // Destroy the array.  We don't ever need an EH cleanup because we
   1528   // assume that we're in an EH cleanup ourselves, so a throwing
   1529   // destructor causes an immediate terminate.
   1530   CGF.emitArrayDestroy(begin, end, type, destroyer,
   1531                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
   1532 }
   1533 
   1534 namespace {
   1535   /// RegularPartialArrayDestroy - a cleanup which performs a partial
   1536   /// array destroy where the end pointer is regularly determined and
   1537   /// does not need to be loaded from a local.
   1538   class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
   1539     llvm::Value *ArrayBegin;
   1540     llvm::Value *ArrayEnd;
   1541     QualType ElementType;
   1542     CodeGenFunction::Destroyer *Destroyer;
   1543   public:
   1544     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
   1545                                QualType elementType,
   1546                                CodeGenFunction::Destroyer *destroyer)
   1547       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
   1548         ElementType(elementType), Destroyer(destroyer) {}
   1549 
   1550     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1551       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
   1552                               ElementType, Destroyer);
   1553     }
   1554   };
   1555 
   1556   /// IrregularPartialArrayDestroy - a cleanup which performs a
   1557   /// partial array destroy where the end pointer is irregularly
   1558   /// determined and must be loaded from a local.
   1559   class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
   1560     llvm::Value *ArrayBegin;
   1561     llvm::Value *ArrayEndPointer;
   1562     QualType ElementType;
   1563     CodeGenFunction::Destroyer *Destroyer;
   1564   public:
   1565     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
   1566                                  llvm::Value *arrayEndPointer,
   1567                                  QualType elementType,
   1568                                  CodeGenFunction::Destroyer *destroyer)
   1569       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
   1570         ElementType(elementType), Destroyer(destroyer) {}
   1571 
   1572     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1573       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
   1574       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
   1575                               ElementType, Destroyer);
   1576     }
   1577   };
   1578 }
   1579 
   1580 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
   1581 /// already-constructed elements of the given array.  The cleanup
   1582 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
   1583 ///
   1584 /// \param elementType - the immediate element type of the array;
   1585 ///   possibly still an array type
   1586 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
   1587                                                  llvm::Value *arrayEndPointer,
   1588                                                        QualType elementType,
   1589                                                        Destroyer *destroyer) {
   1590   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
   1591                                                     arrayBegin, arrayEndPointer,
   1592                                                     elementType, destroyer);
   1593 }
   1594 
   1595 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
   1596 /// already-constructed elements of the given array.  The cleanup
   1597 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
   1598 ///
   1599 /// \param elementType - the immediate element type of the array;
   1600 ///   possibly still an array type
   1601 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
   1602                                                      llvm::Value *arrayEnd,
   1603                                                      QualType elementType,
   1604                                                      Destroyer *destroyer) {
   1605   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
   1606                                                   arrayBegin, arrayEnd,
   1607                                                   elementType, destroyer);
   1608 }
   1609 
   1610 /// Lazily declare the @llvm.lifetime.start intrinsic.
   1611 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
   1612   if (LifetimeStartFn) return LifetimeStartFn;
   1613   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
   1614                                             llvm::Intrinsic::lifetime_start);
   1615   return LifetimeStartFn;
   1616 }
   1617 
   1618 /// Lazily declare the @llvm.lifetime.end intrinsic.
   1619 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
   1620   if (LifetimeEndFn) return LifetimeEndFn;
   1621   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
   1622                                               llvm::Intrinsic::lifetime_end);
   1623   return LifetimeEndFn;
   1624 }
   1625 
   1626 namespace {
   1627   /// A cleanup to perform a release of an object at the end of a
   1628   /// function.  This is used to balance out the incoming +1 of a
   1629   /// ns_consumed argument when we can't reasonably do that just by
   1630   /// not doing the initial retain for a __block argument.
   1631   struct ConsumeARCParameter : EHScopeStack::Cleanup {
   1632     ConsumeARCParameter(llvm::Value *param,
   1633                         ARCPreciseLifetime_t precise)
   1634       : Param(param), Precise(precise) {}
   1635 
   1636     llvm::Value *Param;
   1637     ARCPreciseLifetime_t Precise;
   1638 
   1639     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1640       CGF.EmitARCRelease(Param, Precise);
   1641     }
   1642   };
   1643 }
   1644 
   1645 /// Emit an alloca (or GlobalValue depending on target)
   1646 /// for the specified parameter and set up LocalDeclMap.
   1647 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
   1648                                    bool ArgIsPointer, unsigned ArgNo) {
   1649   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
   1650   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
   1651          "Invalid argument to EmitParmDecl");
   1652 
   1653   Arg->setName(D.getName());
   1654 
   1655   QualType Ty = D.getType();
   1656 
   1657   // Use better IR generation for certain implicit parameters.
   1658   if (isa<ImplicitParamDecl>(D)) {
   1659     // The only implicit argument a block has is its literal.
   1660     if (BlockInfo) {
   1661       LocalDeclMap[&D] = Arg;
   1662       llvm::Value *LocalAddr = nullptr;
   1663       if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
   1664         // Allocate a stack slot to let the debug info survive the RA.
   1665         llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
   1666                                                    D.getName() + ".addr");
   1667         Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
   1668         LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D));
   1669         EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
   1670         LocalAddr = Builder.CreateLoad(Alloc);
   1671       }
   1672 
   1673       if (CGDebugInfo *DI = getDebugInfo()) {
   1674         if (CGM.getCodeGenOpts().getDebugInfo()
   1675               >= CodeGenOptions::LimitedDebugInfo) {
   1676           DI->setLocation(D.getLocation());
   1677           DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, ArgNo,
   1678                                                    LocalAddr, Builder);
   1679         }
   1680       }
   1681 
   1682       return;
   1683     }
   1684   }
   1685 
   1686   llvm::Value *DeclPtr;
   1687   bool DoStore = false;
   1688   bool IsScalar = hasScalarEvaluationKind(Ty);
   1689   CharUnits Align = getContext().getDeclAlign(&D);
   1690   // If we already have a pointer to the argument, reuse the input pointer.
   1691   if (ArgIsPointer) {
   1692     // If we have a prettier pointer type at this point, bitcast to that.
   1693     unsigned AS = cast<llvm::PointerType>(Arg->getType())->getAddressSpace();
   1694     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
   1695     DeclPtr = Arg->getType() == IRTy ? Arg : Builder.CreateBitCast(Arg, IRTy,
   1696                                                                    D.getName());
   1697     // Push a destructor cleanup for this parameter if the ABI requires it.
   1698     // Don't push a cleanup in a thunk for a method that will also emit a
   1699     // cleanup.
   1700     if (!IsScalar && !CurFuncIsThunk &&
   1701         getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
   1702       const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
   1703       if (RD && RD->hasNonTrivialDestructor())
   1704         pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
   1705     }
   1706   } else {
   1707     // Otherwise, create a temporary to hold the value.
   1708     llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
   1709                                                D.getName() + ".addr");
   1710     Alloc->setAlignment(Align.getQuantity());
   1711     DeclPtr = Alloc;
   1712     DoStore = true;
   1713   }
   1714 
   1715   LValue lv = MakeAddrLValue(DeclPtr, Ty, Align);
   1716   if (IsScalar) {
   1717     Qualifiers qs = Ty.getQualifiers();
   1718     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
   1719       // We honor __attribute__((ns_consumed)) for types with lifetime.
   1720       // For __strong, it's handled by just skipping the initial retain;
   1721       // otherwise we have to balance out the initial +1 with an extra
   1722       // cleanup to do the release at the end of the function.
   1723       bool isConsumed = D.hasAttr<NSConsumedAttr>();
   1724 
   1725       // 'self' is always formally __strong, but if this is not an
   1726       // init method then we don't want to retain it.
   1727       if (D.isARCPseudoStrong()) {
   1728         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
   1729         assert(&D == method->getSelfDecl());
   1730         assert(lt == Qualifiers::OCL_Strong);
   1731         assert(qs.hasConst());
   1732         assert(method->getMethodFamily() != OMF_init);
   1733         (void) method;
   1734         lt = Qualifiers::OCL_ExplicitNone;
   1735       }
   1736 
   1737       if (lt == Qualifiers::OCL_Strong) {
   1738         if (!isConsumed) {
   1739           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
   1740             // use objc_storeStrong(&dest, value) for retaining the
   1741             // object. But first, store a null into 'dest' because
   1742             // objc_storeStrong attempts to release its old value.
   1743             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
   1744             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
   1745             EmitARCStoreStrongCall(lv.getAddress(), Arg, true);
   1746             DoStore = false;
   1747           }
   1748           else
   1749           // Don't use objc_retainBlock for block pointers, because we
   1750           // don't want to Block_copy something just because we got it
   1751           // as a parameter.
   1752             Arg = EmitARCRetainNonBlock(Arg);
   1753         }
   1754       } else {
   1755         // Push the cleanup for a consumed parameter.
   1756         if (isConsumed) {
   1757           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
   1758                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
   1759           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg,
   1760                                                    precise);
   1761         }
   1762 
   1763         if (lt == Qualifiers::OCL_Weak) {
   1764           EmitARCInitWeak(DeclPtr, Arg);
   1765           DoStore = false; // The weak init is a store, no need to do two.
   1766         }
   1767       }
   1768 
   1769       // Enter the cleanup scope.
   1770       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
   1771     }
   1772   }
   1773 
   1774   // Store the initial value into the alloca.
   1775   if (DoStore)
   1776     EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
   1777 
   1778   llvm::Value *&DMEntry = LocalDeclMap[&D];
   1779   assert(!DMEntry && "Decl already exists in localdeclmap!");
   1780   DMEntry = DeclPtr;
   1781 
   1782   // Emit debug info for param declaration.
   1783   if (CGDebugInfo *DI = getDebugInfo()) {
   1784     if (CGM.getCodeGenOpts().getDebugInfo()
   1785           >= CodeGenOptions::LimitedDebugInfo) {
   1786       DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
   1787     }
   1788   }
   1789 
   1790   if (D.hasAttr<AnnotateAttr>())
   1791       EmitVarAnnotations(&D, DeclPtr);
   1792 }
   1793