Home | History | Annotate | Download | only in Analysis
      1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements an analysis that determines, for a given memory
     11 // operation, what preceding memory operations it depends on.  It builds on
     12 // alias analysis information, and tries to provide a lazy, caching interface to
     13 // a common kind of alias information query.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/AliasAnalysis.h"
     21 #include "llvm/Analysis/AssumptionCache.h"
     22 #include "llvm/Analysis/InstructionSimplify.h"
     23 #include "llvm/Analysis/MemoryBuiltins.h"
     24 #include "llvm/Analysis/PHITransAddr.h"
     25 #include "llvm/Analysis/ValueTracking.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/Dominators.h"
     28 #include "llvm/IR/Function.h"
     29 #include "llvm/IR/Instructions.h"
     30 #include "llvm/IR/IntrinsicInst.h"
     31 #include "llvm/IR/LLVMContext.h"
     32 #include "llvm/IR/PredIteratorCache.h"
     33 #include "llvm/Support/Debug.h"
     34 using namespace llvm;
     35 
     36 #define DEBUG_TYPE "memdep"
     37 
     38 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
     39 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
     40 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
     41 
     42 STATISTIC(NumCacheNonLocalPtr,
     43           "Number of fully cached non-local ptr responses");
     44 STATISTIC(NumCacheDirtyNonLocalPtr,
     45           "Number of cached, but dirty, non-local ptr responses");
     46 STATISTIC(NumUncacheNonLocalPtr,
     47           "Number of uncached non-local ptr responses");
     48 STATISTIC(NumCacheCompleteNonLocalPtr,
     49           "Number of block queries that were completely cached");
     50 
     51 // Limit for the number of instructions to scan in a block.
     52 static const unsigned int BlockScanLimit = 100;
     53 
     54 // Limit on the number of memdep results to process.
     55 static const unsigned int NumResultsLimit = 100;
     56 
     57 char MemoryDependenceAnalysis::ID = 0;
     58 
     59 // Register this pass...
     60 INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
     61                 "Memory Dependence Analysis", false, true)
     62 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
     63 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
     64 INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
     65                       "Memory Dependence Analysis", false, true)
     66 
     67 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
     68     : FunctionPass(ID), PredCache() {
     69   initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
     70 }
     71 MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
     72 }
     73 
     74 /// Clean up memory in between runs
     75 void MemoryDependenceAnalysis::releaseMemory() {
     76   LocalDeps.clear();
     77   NonLocalDeps.clear();
     78   NonLocalPointerDeps.clear();
     79   ReverseLocalDeps.clear();
     80   ReverseNonLocalDeps.clear();
     81   ReverseNonLocalPtrDeps.clear();
     82   PredCache->clear();
     83 }
     84 
     85 /// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
     86 ///
     87 void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
     88   AU.setPreservesAll();
     89   AU.addRequired<AssumptionCacheTracker>();
     90   AU.addRequiredTransitive<AliasAnalysis>();
     91 }
     92 
     93 bool MemoryDependenceAnalysis::runOnFunction(Function &F) {
     94   AA = &getAnalysis<AliasAnalysis>();
     95   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
     96   DominatorTreeWrapperPass *DTWP =
     97       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
     98   DT = DTWP ? &DTWP->getDomTree() : nullptr;
     99   if (!PredCache)
    100     PredCache.reset(new PredIteratorCache());
    101   return false;
    102 }
    103 
    104 /// RemoveFromReverseMap - This is a helper function that removes Val from
    105 /// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
    106 template <typename KeyTy>
    107 static void RemoveFromReverseMap(DenseMap<Instruction*,
    108                                  SmallPtrSet<KeyTy, 4> > &ReverseMap,
    109                                  Instruction *Inst, KeyTy Val) {
    110   typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
    111   InstIt = ReverseMap.find(Inst);
    112   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
    113   bool Found = InstIt->second.erase(Val);
    114   assert(Found && "Invalid reverse map!"); (void)Found;
    115   if (InstIt->second.empty())
    116     ReverseMap.erase(InstIt);
    117 }
    118 
    119 /// GetLocation - If the given instruction references a specific memory
    120 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
    121 /// Return a ModRefInfo value describing the general behavior of the
    122 /// instruction.
    123 static
    124 AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
    125                                         AliasAnalysis::Location &Loc,
    126                                         AliasAnalysis *AA) {
    127   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
    128     if (LI->isUnordered()) {
    129       Loc = AA->getLocation(LI);
    130       return AliasAnalysis::Ref;
    131     }
    132     if (LI->getOrdering() == Monotonic) {
    133       Loc = AA->getLocation(LI);
    134       return AliasAnalysis::ModRef;
    135     }
    136     Loc = AliasAnalysis::Location();
    137     return AliasAnalysis::ModRef;
    138   }
    139 
    140   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    141     if (SI->isUnordered()) {
    142       Loc = AA->getLocation(SI);
    143       return AliasAnalysis::Mod;
    144     }
    145     if (SI->getOrdering() == Monotonic) {
    146       Loc = AA->getLocation(SI);
    147       return AliasAnalysis::ModRef;
    148     }
    149     Loc = AliasAnalysis::Location();
    150     return AliasAnalysis::ModRef;
    151   }
    152 
    153   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
    154     Loc = AA->getLocation(V);
    155     return AliasAnalysis::ModRef;
    156   }
    157 
    158   if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) {
    159     // calls to free() deallocate the entire structure
    160     Loc = AliasAnalysis::Location(CI->getArgOperand(0));
    161     return AliasAnalysis::Mod;
    162   }
    163 
    164   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    165     AAMDNodes AAInfo;
    166 
    167     switch (II->getIntrinsicID()) {
    168     case Intrinsic::lifetime_start:
    169     case Intrinsic::lifetime_end:
    170     case Intrinsic::invariant_start:
    171       II->getAAMetadata(AAInfo);
    172       Loc = AliasAnalysis::Location(II->getArgOperand(1),
    173                                     cast<ConstantInt>(II->getArgOperand(0))
    174                                       ->getZExtValue(), AAInfo);
    175       // These intrinsics don't really modify the memory, but returning Mod
    176       // will allow them to be handled conservatively.
    177       return AliasAnalysis::Mod;
    178     case Intrinsic::invariant_end:
    179       II->getAAMetadata(AAInfo);
    180       Loc = AliasAnalysis::Location(II->getArgOperand(2),
    181                                     cast<ConstantInt>(II->getArgOperand(1))
    182                                       ->getZExtValue(), AAInfo);
    183       // These intrinsics don't really modify the memory, but returning Mod
    184       // will allow them to be handled conservatively.
    185       return AliasAnalysis::Mod;
    186     default:
    187       break;
    188     }
    189   }
    190 
    191   // Otherwise, just do the coarse-grained thing that always works.
    192   if (Inst->mayWriteToMemory())
    193     return AliasAnalysis::ModRef;
    194   if (Inst->mayReadFromMemory())
    195     return AliasAnalysis::Ref;
    196   return AliasAnalysis::NoModRef;
    197 }
    198 
    199 /// getCallSiteDependencyFrom - Private helper for finding the local
    200 /// dependencies of a call site.
    201 MemDepResult MemoryDependenceAnalysis::
    202 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
    203                           BasicBlock::iterator ScanIt, BasicBlock *BB) {
    204   unsigned Limit = BlockScanLimit;
    205 
    206   // Walk backwards through the block, looking for dependencies
    207   while (ScanIt != BB->begin()) {
    208     // Limit the amount of scanning we do so we don't end up with quadratic
    209     // running time on extreme testcases.
    210     --Limit;
    211     if (!Limit)
    212       return MemDepResult::getUnknown();
    213 
    214     Instruction *Inst = --ScanIt;
    215 
    216     // If this inst is a memory op, get the pointer it accessed
    217     AliasAnalysis::Location Loc;
    218     AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
    219     if (Loc.Ptr) {
    220       // A simple instruction.
    221       if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
    222         return MemDepResult::getClobber(Inst);
    223       continue;
    224     }
    225 
    226     if (auto InstCS = CallSite(Inst)) {
    227       // Debug intrinsics don't cause dependences.
    228       if (isa<DbgInfoIntrinsic>(Inst)) continue;
    229       // If these two calls do not interfere, look past it.
    230       switch (AA->getModRefInfo(CS, InstCS)) {
    231       case AliasAnalysis::NoModRef:
    232         // If the two calls are the same, return InstCS as a Def, so that
    233         // CS can be found redundant and eliminated.
    234         if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
    235             CS.getInstruction()->isIdenticalToWhenDefined(Inst))
    236           return MemDepResult::getDef(Inst);
    237 
    238         // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
    239         // keep scanning.
    240         continue;
    241       default:
    242         return MemDepResult::getClobber(Inst);
    243       }
    244     }
    245 
    246     // If we could not obtain a pointer for the instruction and the instruction
    247     // touches memory then assume that this is a dependency.
    248     if (MR != AliasAnalysis::NoModRef)
    249       return MemDepResult::getClobber(Inst);
    250   }
    251 
    252   // No dependence found.  If this is the entry block of the function, it is
    253   // unknown, otherwise it is non-local.
    254   if (BB != &BB->getParent()->getEntryBlock())
    255     return MemDepResult::getNonLocal();
    256   return MemDepResult::getNonFuncLocal();
    257 }
    258 
    259 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
    260 /// would fully overlap MemLoc if done as a wider legal integer load.
    261 ///
    262 /// MemLocBase, MemLocOffset are lazily computed here the first time the
    263 /// base/offs of memloc is needed.
    264 static bool isLoadLoadClobberIfExtendedToFullWidth(
    265     const AliasAnalysis::Location &MemLoc, const Value *&MemLocBase,
    266     int64_t &MemLocOffs, const LoadInst *LI) {
    267   const DataLayout &DL = LI->getModule()->getDataLayout();
    268 
    269   // If we haven't already computed the base/offset of MemLoc, do so now.
    270   if (!MemLocBase)
    271     MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL);
    272 
    273   unsigned Size = MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize(
    274       MemLocBase, MemLocOffs, MemLoc.Size, LI);
    275   return Size != 0;
    276 }
    277 
    278 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
    279 /// looks at a memory location for a load (specified by MemLocBase, Offs,
    280 /// and Size) and compares it against a load.  If the specified load could
    281 /// be safely widened to a larger integer load that is 1) still efficient,
    282 /// 2) safe for the target, and 3) would provide the specified memory
    283 /// location value, then this function returns the size in bytes of the
    284 /// load width to use.  If not, this returns zero.
    285 unsigned MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize(
    286     const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize,
    287     const LoadInst *LI) {
    288   // We can only extend simple integer loads.
    289   if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
    290 
    291   // Load widening is hostile to ThreadSanitizer: it may cause false positives
    292   // or make the reports more cryptic (access sizes are wrong).
    293   if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
    294     return 0;
    295 
    296   const DataLayout &DL = LI->getModule()->getDataLayout();
    297 
    298   // Get the base of this load.
    299   int64_t LIOffs = 0;
    300   const Value *LIBase =
    301       GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
    302 
    303   // If the two pointers are not based on the same pointer, we can't tell that
    304   // they are related.
    305   if (LIBase != MemLocBase) return 0;
    306 
    307   // Okay, the two values are based on the same pointer, but returned as
    308   // no-alias.  This happens when we have things like two byte loads at "P+1"
    309   // and "P+3".  Check to see if increasing the size of the "LI" load up to its
    310   // alignment (or the largest native integer type) will allow us to load all
    311   // the bits required by MemLoc.
    312 
    313   // If MemLoc is before LI, then no widening of LI will help us out.
    314   if (MemLocOffs < LIOffs) return 0;
    315 
    316   // Get the alignment of the load in bytes.  We assume that it is safe to load
    317   // any legal integer up to this size without a problem.  For example, if we're
    318   // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
    319   // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
    320   // to i16.
    321   unsigned LoadAlign = LI->getAlignment();
    322 
    323   int64_t MemLocEnd = MemLocOffs+MemLocSize;
    324 
    325   // If no amount of rounding up will let MemLoc fit into LI, then bail out.
    326   if (LIOffs+LoadAlign < MemLocEnd) return 0;
    327 
    328   // This is the size of the load to try.  Start with the next larger power of
    329   // two.
    330   unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
    331   NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
    332 
    333   while (1) {
    334     // If this load size is bigger than our known alignment or would not fit
    335     // into a native integer register, then we fail.
    336     if (NewLoadByteSize > LoadAlign ||
    337         !DL.fitsInLegalInteger(NewLoadByteSize*8))
    338       return 0;
    339 
    340     if (LIOffs + NewLoadByteSize > MemLocEnd &&
    341         LI->getParent()->getParent()->hasFnAttribute(
    342             Attribute::SanitizeAddress))
    343       // We will be reading past the location accessed by the original program.
    344       // While this is safe in a regular build, Address Safety analysis tools
    345       // may start reporting false warnings. So, don't do widening.
    346       return 0;
    347 
    348     // If a load of this width would include all of MemLoc, then we succeed.
    349     if (LIOffs+NewLoadByteSize >= MemLocEnd)
    350       return NewLoadByteSize;
    351 
    352     NewLoadByteSize <<= 1;
    353   }
    354 }
    355 
    356 static bool isVolatile(Instruction *Inst) {
    357   if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
    358     return LI->isVolatile();
    359   else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
    360     return SI->isVolatile();
    361   else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
    362     return AI->isVolatile();
    363   return false;
    364 }
    365 
    366 
    367 /// getPointerDependencyFrom - Return the instruction on which a memory
    368 /// location depends.  If isLoad is true, this routine ignores may-aliases with
    369 /// read-only operations.  If isLoad is false, this routine ignores may-aliases
    370 /// with reads from read-only locations.  If possible, pass the query
    371 /// instruction as well; this function may take advantage of the metadata
    372 /// annotated to the query instruction to refine the result.
    373 MemDepResult MemoryDependenceAnalysis::
    374 getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
    375                          BasicBlock::iterator ScanIt, BasicBlock *BB,
    376                          Instruction *QueryInst) {
    377 
    378   const Value *MemLocBase = nullptr;
    379   int64_t MemLocOffset = 0;
    380   unsigned Limit = BlockScanLimit;
    381   bool isInvariantLoad = false;
    382 
    383   // We must be careful with atomic accesses, as they may allow another thread
    384   //   to touch this location, cloberring it. We are conservative: if the
    385   //   QueryInst is not a simple (non-atomic) memory access, we automatically
    386   //   return getClobber.
    387   // If it is simple, we know based on the results of
    388   // "Compiler testing via a theory of sound optimisations in the C11/C++11
    389   //   memory model" in PLDI 2013, that a non-atomic location can only be
    390   //   clobbered between a pair of a release and an acquire action, with no
    391   //   access to the location in between.
    392   // Here is an example for giving the general intuition behind this rule.
    393   // In the following code:
    394   //   store x 0;
    395   //   release action; [1]
    396   //   acquire action; [4]
    397   //   %val = load x;
    398   // It is unsafe to replace %val by 0 because another thread may be running:
    399   //   acquire action; [2]
    400   //   store x 42;
    401   //   release action; [3]
    402   // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
    403   // being 42. A key property of this program however is that if either
    404   // 1 or 4 were missing, there would be a race between the store of 42
    405   // either the store of 0 or the load (making the whole progam racy).
    406   // The paper mentionned above shows that the same property is respected
    407   // by every program that can detect any optimisation of that kind: either
    408   // it is racy (undefined) or there is a release followed by an acquire
    409   // between the pair of accesses under consideration.
    410 
    411   // If the load is invariant, we "know" that it doesn't alias *any* write. We
    412   // do want to respect mustalias results since defs are useful for value
    413   // forwarding, but any mayalias write can be assumed to be noalias.
    414   // Arguably, this logic should be pushed inside AliasAnalysis itself.
    415   if (isLoad && QueryInst) {
    416     LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
    417     if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
    418       isInvariantLoad = true;
    419   }
    420 
    421   const DataLayout &DL = BB->getModule()->getDataLayout();
    422 
    423   // Walk backwards through the basic block, looking for dependencies.
    424   while (ScanIt != BB->begin()) {
    425     Instruction *Inst = --ScanIt;
    426 
    427     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
    428       // Debug intrinsics don't (and can't) cause dependencies.
    429       if (isa<DbgInfoIntrinsic>(II)) continue;
    430 
    431     // Limit the amount of scanning we do so we don't end up with quadratic
    432     // running time on extreme testcases.
    433     --Limit;
    434     if (!Limit)
    435       return MemDepResult::getUnknown();
    436 
    437     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    438       // If we reach a lifetime begin or end marker, then the query ends here
    439       // because the value is undefined.
    440       if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
    441         // FIXME: This only considers queries directly on the invariant-tagged
    442         // pointer, not on query pointers that are indexed off of them.  It'd
    443         // be nice to handle that at some point (the right approach is to use
    444         // GetPointerBaseWithConstantOffset).
    445         if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)),
    446                             MemLoc))
    447           return MemDepResult::getDef(II);
    448         continue;
    449       }
    450     }
    451 
    452     // Values depend on loads if the pointers are must aliased.  This means that
    453     // a load depends on another must aliased load from the same value.
    454     // One exception is atomic loads: a value can depend on an atomic load that it
    455     // does not alias with when this atomic load indicates that another thread may
    456     // be accessing the location.
    457     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
    458 
    459       // While volatile access cannot be eliminated, they do not have to clobber
    460       // non-aliasing locations, as normal accesses, for example, can be safely
    461       // reordered with volatile accesses.
    462       if (LI->isVolatile()) {
    463         if (!QueryInst)
    464           // Original QueryInst *may* be volatile
    465           return MemDepResult::getClobber(LI);
    466         if (isVolatile(QueryInst))
    467           // Ordering required if QueryInst is itself volatile
    468           return MemDepResult::getClobber(LI);
    469         // Otherwise, volatile doesn't imply any special ordering
    470       }
    471 
    472       // Atomic loads have complications involved.
    473       // A Monotonic (or higher) load is OK if the query inst is itself not atomic.
    474       // FIXME: This is overly conservative.
    475       if (LI->isAtomic() && LI->getOrdering() > Unordered) {
    476         if (!QueryInst)
    477           return MemDepResult::getClobber(LI);
    478         if (LI->getOrdering() != Monotonic)
    479           return MemDepResult::getClobber(LI);
    480         if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) {
    481           if (!QueryLI->isSimple())
    482             return MemDepResult::getClobber(LI);
    483         } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) {
    484           if (!QuerySI->isSimple())
    485             return MemDepResult::getClobber(LI);
    486         } else if (QueryInst->mayReadOrWriteMemory()) {
    487           return MemDepResult::getClobber(LI);
    488         }
    489       }
    490 
    491       AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
    492 
    493       // If we found a pointer, check if it could be the same as our pointer.
    494       AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
    495 
    496       if (isLoad) {
    497         if (R == AliasAnalysis::NoAlias) {
    498           // If this is an over-aligned integer load (for example,
    499           // "load i8* %P, align 4") see if it would obviously overlap with the
    500           // queried location if widened to a larger load (e.g. if the queried
    501           // location is 1 byte at P+1).  If so, return it as a load/load
    502           // clobber result, allowing the client to decide to widen the load if
    503           // it wants to.
    504           if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
    505             if (LI->getAlignment() * 8 > ITy->getPrimitiveSizeInBits() &&
    506                 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
    507                                                        MemLocOffset, LI))
    508               return MemDepResult::getClobber(Inst);
    509           }
    510           continue;
    511         }
    512 
    513         // Must aliased loads are defs of each other.
    514         if (R == AliasAnalysis::MustAlias)
    515           return MemDepResult::getDef(Inst);
    516 
    517 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
    518       // in terms of clobbering loads, but since it does this by looking
    519       // at the clobbering load directly, it doesn't know about any
    520       // phi translation that may have happened along the way.
    521 
    522         // If we have a partial alias, then return this as a clobber for the
    523         // client to handle.
    524         if (R == AliasAnalysis::PartialAlias)
    525           return MemDepResult::getClobber(Inst);
    526 #endif
    527 
    528         // Random may-alias loads don't depend on each other without a
    529         // dependence.
    530         continue;
    531       }
    532 
    533       // Stores don't depend on other no-aliased accesses.
    534       if (R == AliasAnalysis::NoAlias)
    535         continue;
    536 
    537       // Stores don't alias loads from read-only memory.
    538       if (AA->pointsToConstantMemory(LoadLoc))
    539         continue;
    540 
    541       // Stores depend on may/must aliased loads.
    542       return MemDepResult::getDef(Inst);
    543     }
    544 
    545     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    546       // Atomic stores have complications involved.
    547       // A Monotonic store is OK if the query inst is itself not atomic.
    548       // FIXME: This is overly conservative.
    549       if (!SI->isUnordered()) {
    550         if (!QueryInst)
    551           return MemDepResult::getClobber(SI);
    552         if (SI->getOrdering() != Monotonic)
    553           return MemDepResult::getClobber(SI);
    554         if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) {
    555           if (!QueryLI->isSimple())
    556             return MemDepResult::getClobber(SI);
    557         } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) {
    558           if (!QuerySI->isSimple())
    559             return MemDepResult::getClobber(SI);
    560         } else if (QueryInst->mayReadOrWriteMemory()) {
    561           return MemDepResult::getClobber(SI);
    562         }
    563       }
    564 
    565       // FIXME: this is overly conservative.
    566       // While volatile access cannot be eliminated, they do not have to clobber
    567       // non-aliasing locations, as normal accesses can for example be reordered
    568       // with volatile accesses.
    569       if (SI->isVolatile())
    570         return MemDepResult::getClobber(SI);
    571 
    572       // If alias analysis can tell that this store is guaranteed to not modify
    573       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
    574       // the query pointer points to constant memory etc.
    575       if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
    576         continue;
    577 
    578       // Ok, this store might clobber the query pointer.  Check to see if it is
    579       // a must alias: in this case, we want to return this as a def.
    580       AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
    581 
    582       // If we found a pointer, check if it could be the same as our pointer.
    583       AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
    584 
    585       if (R == AliasAnalysis::NoAlias)
    586         continue;
    587       if (R == AliasAnalysis::MustAlias)
    588         return MemDepResult::getDef(Inst);
    589       if (isInvariantLoad)
    590        continue;
    591       return MemDepResult::getClobber(Inst);
    592     }
    593 
    594     // If this is an allocation, and if we know that the accessed pointer is to
    595     // the allocation, return Def.  This means that there is no dependence and
    596     // the access can be optimized based on that.  For example, a load could
    597     // turn into undef.
    598     // Note: Only determine this to be a malloc if Inst is the malloc call, not
    599     // a subsequent bitcast of the malloc call result.  There can be stores to
    600     // the malloced memory between the malloc call and its bitcast uses, and we
    601     // need to continue scanning until the malloc call.
    602     const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo();
    603     if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) {
    604       const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
    605 
    606       if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
    607         return MemDepResult::getDef(Inst);
    608       if (isInvariantLoad)
    609         continue;
    610       // Be conservative if the accessed pointer may alias the allocation.
    611       if (AA->alias(Inst, AccessPtr) != AliasAnalysis::NoAlias)
    612         return MemDepResult::getClobber(Inst);
    613       // If the allocation is not aliased and does not read memory (like
    614       // strdup), it is safe to ignore.
    615       if (isa<AllocaInst>(Inst) ||
    616           isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI))
    617         continue;
    618     }
    619 
    620     if (isInvariantLoad)
    621        continue;
    622 
    623     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
    624     AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc);
    625     // If necessary, perform additional analysis.
    626     if (MR == AliasAnalysis::ModRef)
    627       MR = AA->callCapturesBefore(Inst, MemLoc, DT);
    628     switch (MR) {
    629     case AliasAnalysis::NoModRef:
    630       // If the call has no effect on the queried pointer, just ignore it.
    631       continue;
    632     case AliasAnalysis::Mod:
    633       return MemDepResult::getClobber(Inst);
    634     case AliasAnalysis::Ref:
    635       // If the call is known to never store to the pointer, and if this is a
    636       // load query, we can safely ignore it (scan past it).
    637       if (isLoad)
    638         continue;
    639     default:
    640       // Otherwise, there is a potential dependence.  Return a clobber.
    641       return MemDepResult::getClobber(Inst);
    642     }
    643   }
    644 
    645   // No dependence found.  If this is the entry block of the function, it is
    646   // unknown, otherwise it is non-local.
    647   if (BB != &BB->getParent()->getEntryBlock())
    648     return MemDepResult::getNonLocal();
    649   return MemDepResult::getNonFuncLocal();
    650 }
    651 
    652 /// getDependency - Return the instruction on which a memory operation
    653 /// depends.
    654 MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
    655   Instruction *ScanPos = QueryInst;
    656 
    657   // Check for a cached result
    658   MemDepResult &LocalCache = LocalDeps[QueryInst];
    659 
    660   // If the cached entry is non-dirty, just return it.  Note that this depends
    661   // on MemDepResult's default constructing to 'dirty'.
    662   if (!LocalCache.isDirty())
    663     return LocalCache;
    664 
    665   // Otherwise, if we have a dirty entry, we know we can start the scan at that
    666   // instruction, which may save us some work.
    667   if (Instruction *Inst = LocalCache.getInst()) {
    668     ScanPos = Inst;
    669 
    670     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
    671   }
    672 
    673   BasicBlock *QueryParent = QueryInst->getParent();
    674 
    675   // Do the scan.
    676   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
    677     // No dependence found.  If this is the entry block of the function, it is
    678     // unknown, otherwise it is non-local.
    679     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
    680       LocalCache = MemDepResult::getNonLocal();
    681     else
    682       LocalCache = MemDepResult::getNonFuncLocal();
    683   } else {
    684     AliasAnalysis::Location MemLoc;
    685     AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
    686     if (MemLoc.Ptr) {
    687       // If we can do a pointer scan, make it happen.
    688       bool isLoad = !(MR & AliasAnalysis::Mod);
    689       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
    690         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
    691 
    692       LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
    693                                             QueryParent, QueryInst);
    694     } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
    695       CallSite QueryCS(QueryInst);
    696       bool isReadOnly = AA->onlyReadsMemory(QueryCS);
    697       LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
    698                                              QueryParent);
    699     } else
    700       // Non-memory instruction.
    701       LocalCache = MemDepResult::getUnknown();
    702   }
    703 
    704   // Remember the result!
    705   if (Instruction *I = LocalCache.getInst())
    706     ReverseLocalDeps[I].insert(QueryInst);
    707 
    708   return LocalCache;
    709 }
    710 
    711 #ifndef NDEBUG
    712 /// AssertSorted - This method is used when -debug is specified to verify that
    713 /// cache arrays are properly kept sorted.
    714 static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
    715                          int Count = -1) {
    716   if (Count == -1) Count = Cache.size();
    717   if (Count == 0) return;
    718 
    719   for (unsigned i = 1; i != unsigned(Count); ++i)
    720     assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
    721 }
    722 #endif
    723 
    724 /// getNonLocalCallDependency - Perform a full dependency query for the
    725 /// specified call, returning the set of blocks that the value is
    726 /// potentially live across.  The returned set of results will include a
    727 /// "NonLocal" result for all blocks where the value is live across.
    728 ///
    729 /// This method assumes the instruction returns a "NonLocal" dependency
    730 /// within its own block.
    731 ///
    732 /// This returns a reference to an internal data structure that may be
    733 /// invalidated on the next non-local query or when an instruction is
    734 /// removed.  Clients must copy this data if they want it around longer than
    735 /// that.
    736 const MemoryDependenceAnalysis::NonLocalDepInfo &
    737 MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
    738   assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
    739  "getNonLocalCallDependency should only be used on calls with non-local deps!");
    740   PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
    741   NonLocalDepInfo &Cache = CacheP.first;
    742 
    743   /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
    744   /// the cached case, this can happen due to instructions being deleted etc. In
    745   /// the uncached case, this starts out as the set of predecessors we care
    746   /// about.
    747   SmallVector<BasicBlock*, 32> DirtyBlocks;
    748 
    749   if (!Cache.empty()) {
    750     // Okay, we have a cache entry.  If we know it is not dirty, just return it
    751     // with no computation.
    752     if (!CacheP.second) {
    753       ++NumCacheNonLocal;
    754       return Cache;
    755     }
    756 
    757     // If we already have a partially computed set of results, scan them to
    758     // determine what is dirty, seeding our initial DirtyBlocks worklist.
    759     for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
    760        I != E; ++I)
    761       if (I->getResult().isDirty())
    762         DirtyBlocks.push_back(I->getBB());
    763 
    764     // Sort the cache so that we can do fast binary search lookups below.
    765     std::sort(Cache.begin(), Cache.end());
    766 
    767     ++NumCacheDirtyNonLocal;
    768     //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
    769     //     << Cache.size() << " cached: " << *QueryInst;
    770   } else {
    771     // Seed DirtyBlocks with each of the preds of QueryInst's block.
    772     BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
    773     for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
    774       DirtyBlocks.push_back(*PI);
    775     ++NumUncacheNonLocal;
    776   }
    777 
    778   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
    779   bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
    780 
    781   SmallPtrSet<BasicBlock*, 64> Visited;
    782 
    783   unsigned NumSortedEntries = Cache.size();
    784   DEBUG(AssertSorted(Cache));
    785 
    786   // Iterate while we still have blocks to update.
    787   while (!DirtyBlocks.empty()) {
    788     BasicBlock *DirtyBB = DirtyBlocks.back();
    789     DirtyBlocks.pop_back();
    790 
    791     // Already processed this block?
    792     if (!Visited.insert(DirtyBB).second)
    793       continue;
    794 
    795     // Do a binary search to see if we already have an entry for this block in
    796     // the cache set.  If so, find it.
    797     DEBUG(AssertSorted(Cache, NumSortedEntries));
    798     NonLocalDepInfo::iterator Entry =
    799       std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
    800                        NonLocalDepEntry(DirtyBB));
    801     if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
    802       --Entry;
    803 
    804     NonLocalDepEntry *ExistingResult = nullptr;
    805     if (Entry != Cache.begin()+NumSortedEntries &&
    806         Entry->getBB() == DirtyBB) {
    807       // If we already have an entry, and if it isn't already dirty, the block
    808       // is done.
    809       if (!Entry->getResult().isDirty())
    810         continue;
    811 
    812       // Otherwise, remember this slot so we can update the value.
    813       ExistingResult = &*Entry;
    814     }
    815 
    816     // If the dirty entry has a pointer, start scanning from it so we don't have
    817     // to rescan the entire block.
    818     BasicBlock::iterator ScanPos = DirtyBB->end();
    819     if (ExistingResult) {
    820       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
    821         ScanPos = Inst;
    822         // We're removing QueryInst's use of Inst.
    823         RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
    824                              QueryCS.getInstruction());
    825       }
    826     }
    827 
    828     // Find out if this block has a local dependency for QueryInst.
    829     MemDepResult Dep;
    830 
    831     if (ScanPos != DirtyBB->begin()) {
    832       Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
    833     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
    834       // No dependence found.  If this is the entry block of the function, it is
    835       // a clobber, otherwise it is unknown.
    836       Dep = MemDepResult::getNonLocal();
    837     } else {
    838       Dep = MemDepResult::getNonFuncLocal();
    839     }
    840 
    841     // If we had a dirty entry for the block, update it.  Otherwise, just add
    842     // a new entry.
    843     if (ExistingResult)
    844       ExistingResult->setResult(Dep);
    845     else
    846       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
    847 
    848     // If the block has a dependency (i.e. it isn't completely transparent to
    849     // the value), remember the association!
    850     if (!Dep.isNonLocal()) {
    851       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
    852       // update this when we remove instructions.
    853       if (Instruction *Inst = Dep.getInst())
    854         ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
    855     } else {
    856 
    857       // If the block *is* completely transparent to the load, we need to check
    858       // the predecessors of this block.  Add them to our worklist.
    859       for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
    860         DirtyBlocks.push_back(*PI);
    861     }
    862   }
    863 
    864   return Cache;
    865 }
    866 
    867 /// getNonLocalPointerDependency - Perform a full dependency query for an
    868 /// access to the specified (non-volatile) memory location, returning the
    869 /// set of instructions that either define or clobber the value.
    870 ///
    871 /// This method assumes the pointer has a "NonLocal" dependency within its
    872 /// own block.
    873 ///
    874 void MemoryDependenceAnalysis::
    875 getNonLocalPointerDependency(Instruction *QueryInst,
    876                              SmallVectorImpl<NonLocalDepResult> &Result) {
    877   const AliasAnalysis::Location Loc = AA->getLocation(QueryInst);
    878   bool isLoad = isa<LoadInst>(QueryInst);
    879   BasicBlock *FromBB = QueryInst->getParent();
    880   assert(FromBB);
    881 
    882   assert(Loc.Ptr->getType()->isPointerTy() &&
    883          "Can't get pointer deps of a non-pointer!");
    884   Result.clear();
    885 
    886   // This routine does not expect to deal with volatile instructions.
    887   // Doing so would require piping through the QueryInst all the way through.
    888   // TODO: volatiles can't be elided, but they can be reordered with other
    889   // non-volatile accesses.
    890 
    891   // We currently give up on any instruction which is ordered, but we do handle
    892   // atomic instructions which are unordered.
    893   // TODO: Handle ordered instructions
    894   auto isOrdered = [](Instruction *Inst) {
    895     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
    896       return !LI->isUnordered();
    897     } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    898       return !SI->isUnordered();
    899     }
    900     return false;
    901   };
    902   if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
    903     Result.push_back(NonLocalDepResult(FromBB,
    904                                        MemDepResult::getUnknown(),
    905                                        const_cast<Value *>(Loc.Ptr)));
    906     return;
    907   }
    908   const DataLayout &DL = FromBB->getModule()->getDataLayout();
    909   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, AC);
    910 
    911   // This is the set of blocks we've inspected, and the pointer we consider in
    912   // each block.  Because of critical edges, we currently bail out if querying
    913   // a block with multiple different pointers.  This can happen during PHI
    914   // translation.
    915   DenseMap<BasicBlock*, Value*> Visited;
    916   if (!getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
    917                                    Result, Visited, true))
    918     return;
    919   Result.clear();
    920   Result.push_back(NonLocalDepResult(FromBB,
    921                                      MemDepResult::getUnknown(),
    922                                      const_cast<Value *>(Loc.Ptr)));
    923 }
    924 
    925 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
    926 /// Pointer/PointeeSize using either cached information in Cache or by doing a
    927 /// lookup (which may use dirty cache info if available).  If we do a lookup,
    928 /// add the result to the cache.
    929 MemDepResult MemoryDependenceAnalysis::
    930 GetNonLocalInfoForBlock(Instruction *QueryInst,
    931                         const AliasAnalysis::Location &Loc,
    932                         bool isLoad, BasicBlock *BB,
    933                         NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
    934 
    935   // Do a binary search to see if we already have an entry for this block in
    936   // the cache set.  If so, find it.
    937   NonLocalDepInfo::iterator Entry =
    938     std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
    939                      NonLocalDepEntry(BB));
    940   if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
    941     --Entry;
    942 
    943   NonLocalDepEntry *ExistingResult = nullptr;
    944   if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
    945     ExistingResult = &*Entry;
    946 
    947   // If we have a cached entry, and it is non-dirty, use it as the value for
    948   // this dependency.
    949   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
    950     ++NumCacheNonLocalPtr;
    951     return ExistingResult->getResult();
    952   }
    953 
    954   // Otherwise, we have to scan for the value.  If we have a dirty cache
    955   // entry, start scanning from its position, otherwise we scan from the end
    956   // of the block.
    957   BasicBlock::iterator ScanPos = BB->end();
    958   if (ExistingResult && ExistingResult->getResult().getInst()) {
    959     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
    960            "Instruction invalidated?");
    961     ++NumCacheDirtyNonLocalPtr;
    962     ScanPos = ExistingResult->getResult().getInst();
    963 
    964     // Eliminating the dirty entry from 'Cache', so update the reverse info.
    965     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
    966     RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
    967   } else {
    968     ++NumUncacheNonLocalPtr;
    969   }
    970 
    971   // Scan the block for the dependency.
    972   MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB,
    973                                               QueryInst);
    974 
    975   // If we had a dirty entry for the block, update it.  Otherwise, just add
    976   // a new entry.
    977   if (ExistingResult)
    978     ExistingResult->setResult(Dep);
    979   else
    980     Cache->push_back(NonLocalDepEntry(BB, Dep));
    981 
    982   // If the block has a dependency (i.e. it isn't completely transparent to
    983   // the value), remember the reverse association because we just added it
    984   // to Cache!
    985   if (!Dep.isDef() && !Dep.isClobber())
    986     return Dep;
    987 
    988   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
    989   // update MemDep when we remove instructions.
    990   Instruction *Inst = Dep.getInst();
    991   assert(Inst && "Didn't depend on anything?");
    992   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
    993   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
    994   return Dep;
    995 }
    996 
    997 /// SortNonLocalDepInfoCache - Sort the NonLocalDepInfo cache, given a certain
    998 /// number of elements in the array that are already properly ordered.  This is
    999 /// optimized for the case when only a few entries are added.
   1000 static void
   1001 SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
   1002                          unsigned NumSortedEntries) {
   1003   switch (Cache.size() - NumSortedEntries) {
   1004   case 0:
   1005     // done, no new entries.
   1006     break;
   1007   case 2: {
   1008     // Two new entries, insert the last one into place.
   1009     NonLocalDepEntry Val = Cache.back();
   1010     Cache.pop_back();
   1011     MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
   1012       std::upper_bound(Cache.begin(), Cache.end()-1, Val);
   1013     Cache.insert(Entry, Val);
   1014     // FALL THROUGH.
   1015   }
   1016   case 1:
   1017     // One new entry, Just insert the new value at the appropriate position.
   1018     if (Cache.size() != 1) {
   1019       NonLocalDepEntry Val = Cache.back();
   1020       Cache.pop_back();
   1021       MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
   1022         std::upper_bound(Cache.begin(), Cache.end(), Val);
   1023       Cache.insert(Entry, Val);
   1024     }
   1025     break;
   1026   default:
   1027     // Added many values, do a full scale sort.
   1028     std::sort(Cache.begin(), Cache.end());
   1029     break;
   1030   }
   1031 }
   1032 
   1033 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
   1034 /// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
   1035 /// results to the results vector and keep track of which blocks are visited in
   1036 /// 'Visited'.
   1037 ///
   1038 /// This has special behavior for the first block queries (when SkipFirstBlock
   1039 /// is true).  In this special case, it ignores the contents of the specified
   1040 /// block and starts returning dependence info for its predecessors.
   1041 ///
   1042 /// This function returns false on success, or true to indicate that it could
   1043 /// not compute dependence information for some reason.  This should be treated
   1044 /// as a clobber dependence on the first instruction in the predecessor block.
   1045 bool MemoryDependenceAnalysis::
   1046 getNonLocalPointerDepFromBB(Instruction *QueryInst,
   1047                             const PHITransAddr &Pointer,
   1048                             const AliasAnalysis::Location &Loc,
   1049                             bool isLoad, BasicBlock *StartBB,
   1050                             SmallVectorImpl<NonLocalDepResult> &Result,
   1051                             DenseMap<BasicBlock*, Value*> &Visited,
   1052                             bool SkipFirstBlock) {
   1053   // Look up the cached info for Pointer.
   1054   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
   1055 
   1056   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
   1057   // CacheKey, this value will be inserted as the associated value. Otherwise,
   1058   // it'll be ignored, and we'll have to check to see if the cached size and
   1059   // aa tags are consistent with the current query.
   1060   NonLocalPointerInfo InitialNLPI;
   1061   InitialNLPI.Size = Loc.Size;
   1062   InitialNLPI.AATags = Loc.AATags;
   1063 
   1064   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
   1065   // already have one.
   1066   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
   1067     NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
   1068   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
   1069 
   1070   // If we already have a cache entry for this CacheKey, we may need to do some
   1071   // work to reconcile the cache entry and the current query.
   1072   if (!Pair.second) {
   1073     if (CacheInfo->Size < Loc.Size) {
   1074       // The query's Size is greater than the cached one. Throw out the
   1075       // cached data and proceed with the query at the greater size.
   1076       CacheInfo->Pair = BBSkipFirstBlockPair();
   1077       CacheInfo->Size = Loc.Size;
   1078       for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
   1079            DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
   1080         if (Instruction *Inst = DI->getResult().getInst())
   1081           RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
   1082       CacheInfo->NonLocalDeps.clear();
   1083     } else if (CacheInfo->Size > Loc.Size) {
   1084       // This query's Size is less than the cached one. Conservatively restart
   1085       // the query using the greater size.
   1086       return getNonLocalPointerDepFromBB(QueryInst, Pointer,
   1087                                          Loc.getWithNewSize(CacheInfo->Size),
   1088                                          isLoad, StartBB, Result, Visited,
   1089                                          SkipFirstBlock);
   1090     }
   1091 
   1092     // If the query's AATags are inconsistent with the cached one,
   1093     // conservatively throw out the cached data and restart the query with
   1094     // no tag if needed.
   1095     if (CacheInfo->AATags != Loc.AATags) {
   1096       if (CacheInfo->AATags) {
   1097         CacheInfo->Pair = BBSkipFirstBlockPair();
   1098         CacheInfo->AATags = AAMDNodes();
   1099         for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
   1100              DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
   1101           if (Instruction *Inst = DI->getResult().getInst())
   1102             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
   1103         CacheInfo->NonLocalDeps.clear();
   1104       }
   1105       if (Loc.AATags)
   1106         return getNonLocalPointerDepFromBB(QueryInst,
   1107                                            Pointer, Loc.getWithoutAATags(),
   1108                                            isLoad, StartBB, Result, Visited,
   1109                                            SkipFirstBlock);
   1110     }
   1111   }
   1112 
   1113   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
   1114 
   1115   // If we have valid cached information for exactly the block we are
   1116   // investigating, just return it with no recomputation.
   1117   if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
   1118     // We have a fully cached result for this query then we can just return the
   1119     // cached results and populate the visited set.  However, we have to verify
   1120     // that we don't already have conflicting results for these blocks.  Check
   1121     // to ensure that if a block in the results set is in the visited set that
   1122     // it was for the same pointer query.
   1123     if (!Visited.empty()) {
   1124       for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
   1125            I != E; ++I) {
   1126         DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
   1127         if (VI == Visited.end() || VI->second == Pointer.getAddr())
   1128           continue;
   1129 
   1130         // We have a pointer mismatch in a block.  Just return clobber, saying
   1131         // that something was clobbered in this result.  We could also do a
   1132         // non-fully cached query, but there is little point in doing this.
   1133         return true;
   1134       }
   1135     }
   1136 
   1137     Value *Addr = Pointer.getAddr();
   1138     for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
   1139          I != E; ++I) {
   1140       Visited.insert(std::make_pair(I->getBB(), Addr));
   1141       if (I->getResult().isNonLocal()) {
   1142         continue;
   1143       }
   1144 
   1145       if (!DT) {
   1146         Result.push_back(NonLocalDepResult(I->getBB(),
   1147                                            MemDepResult::getUnknown(),
   1148                                            Addr));
   1149       } else if (DT->isReachableFromEntry(I->getBB())) {
   1150         Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
   1151       }
   1152     }
   1153     ++NumCacheCompleteNonLocalPtr;
   1154     return false;
   1155   }
   1156 
   1157   // Otherwise, either this is a new block, a block with an invalid cache
   1158   // pointer or one that we're about to invalidate by putting more info into it
   1159   // than its valid cache info.  If empty, the result will be valid cache info,
   1160   // otherwise it isn't.
   1161   if (Cache->empty())
   1162     CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
   1163   else
   1164     CacheInfo->Pair = BBSkipFirstBlockPair();
   1165 
   1166   SmallVector<BasicBlock*, 32> Worklist;
   1167   Worklist.push_back(StartBB);
   1168 
   1169   // PredList used inside loop.
   1170   SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
   1171 
   1172   // Keep track of the entries that we know are sorted.  Previously cached
   1173   // entries will all be sorted.  The entries we add we only sort on demand (we
   1174   // don't insert every element into its sorted position).  We know that we
   1175   // won't get any reuse from currently inserted values, because we don't
   1176   // revisit blocks after we insert info for them.
   1177   unsigned NumSortedEntries = Cache->size();
   1178   DEBUG(AssertSorted(*Cache));
   1179 
   1180   while (!Worklist.empty()) {
   1181     BasicBlock *BB = Worklist.pop_back_val();
   1182 
   1183     // If we do process a large number of blocks it becomes very expensive and
   1184     // likely it isn't worth worrying about
   1185     if (Result.size() > NumResultsLimit) {
   1186       Worklist.clear();
   1187       // Sort it now (if needed) so that recursive invocations of
   1188       // getNonLocalPointerDepFromBB and other routines that could reuse the
   1189       // cache value will only see properly sorted cache arrays.
   1190       if (Cache && NumSortedEntries != Cache->size()) {
   1191         SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
   1192       }
   1193       // Since we bail out, the "Cache" set won't contain all of the
   1194       // results for the query.  This is ok (we can still use it to accelerate
   1195       // specific block queries) but we can't do the fastpath "return all
   1196       // results from the set".  Clear out the indicator for this.
   1197       CacheInfo->Pair = BBSkipFirstBlockPair();
   1198       return true;
   1199     }
   1200 
   1201     // Skip the first block if we have it.
   1202     if (!SkipFirstBlock) {
   1203       // Analyze the dependency of *Pointer in FromBB.  See if we already have
   1204       // been here.
   1205       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
   1206 
   1207       // Get the dependency info for Pointer in BB.  If we have cached
   1208       // information, we will use it, otherwise we compute it.
   1209       DEBUG(AssertSorted(*Cache, NumSortedEntries));
   1210       MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst,
   1211                                                  Loc, isLoad, BB, Cache,
   1212                                                  NumSortedEntries);
   1213 
   1214       // If we got a Def or Clobber, add this to the list of results.
   1215       if (!Dep.isNonLocal()) {
   1216         if (!DT) {
   1217           Result.push_back(NonLocalDepResult(BB,
   1218                                              MemDepResult::getUnknown(),
   1219                                              Pointer.getAddr()));
   1220           continue;
   1221         } else if (DT->isReachableFromEntry(BB)) {
   1222           Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
   1223           continue;
   1224         }
   1225       }
   1226     }
   1227 
   1228     // If 'Pointer' is an instruction defined in this block, then we need to do
   1229     // phi translation to change it into a value live in the predecessor block.
   1230     // If not, we just add the predecessors to the worklist and scan them with
   1231     // the same Pointer.
   1232     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
   1233       SkipFirstBlock = false;
   1234       SmallVector<BasicBlock*, 16> NewBlocks;
   1235       for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
   1236         // Verify that we haven't looked at this block yet.
   1237         std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
   1238           InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
   1239         if (InsertRes.second) {
   1240           // First time we've looked at *PI.
   1241           NewBlocks.push_back(*PI);
   1242           continue;
   1243         }
   1244 
   1245         // If we have seen this block before, but it was with a different
   1246         // pointer then we have a phi translation failure and we have to treat
   1247         // this as a clobber.
   1248         if (InsertRes.first->second != Pointer.getAddr()) {
   1249           // Make sure to clean up the Visited map before continuing on to
   1250           // PredTranslationFailure.
   1251           for (unsigned i = 0; i < NewBlocks.size(); i++)
   1252             Visited.erase(NewBlocks[i]);
   1253           goto PredTranslationFailure;
   1254         }
   1255       }
   1256       Worklist.append(NewBlocks.begin(), NewBlocks.end());
   1257       continue;
   1258     }
   1259 
   1260     // We do need to do phi translation, if we know ahead of time we can't phi
   1261     // translate this value, don't even try.
   1262     if (!Pointer.IsPotentiallyPHITranslatable())
   1263       goto PredTranslationFailure;
   1264 
   1265     // We may have added values to the cache list before this PHI translation.
   1266     // If so, we haven't done anything to ensure that the cache remains sorted.
   1267     // Sort it now (if needed) so that recursive invocations of
   1268     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
   1269     // value will only see properly sorted cache arrays.
   1270     if (Cache && NumSortedEntries != Cache->size()) {
   1271       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
   1272       NumSortedEntries = Cache->size();
   1273     }
   1274     Cache = nullptr;
   1275 
   1276     PredList.clear();
   1277     for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
   1278       BasicBlock *Pred = *PI;
   1279       PredList.push_back(std::make_pair(Pred, Pointer));
   1280 
   1281       // Get the PHI translated pointer in this predecessor.  This can fail if
   1282       // not translatable, in which case the getAddr() returns null.
   1283       PHITransAddr &PredPointer = PredList.back().second;
   1284       PredPointer.PHITranslateValue(BB, Pred, nullptr);
   1285 
   1286       Value *PredPtrVal = PredPointer.getAddr();
   1287 
   1288       // Check to see if we have already visited this pred block with another
   1289       // pointer.  If so, we can't do this lookup.  This failure can occur
   1290       // with PHI translation when a critical edge exists and the PHI node in
   1291       // the successor translates to a pointer value different than the
   1292       // pointer the block was first analyzed with.
   1293       std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
   1294         InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
   1295 
   1296       if (!InsertRes.second) {
   1297         // We found the pred; take it off the list of preds to visit.
   1298         PredList.pop_back();
   1299 
   1300         // If the predecessor was visited with PredPtr, then we already did
   1301         // the analysis and can ignore it.
   1302         if (InsertRes.first->second == PredPtrVal)
   1303           continue;
   1304 
   1305         // Otherwise, the block was previously analyzed with a different
   1306         // pointer.  We can't represent the result of this case, so we just
   1307         // treat this as a phi translation failure.
   1308 
   1309         // Make sure to clean up the Visited map before continuing on to
   1310         // PredTranslationFailure.
   1311         for (unsigned i = 0, n = PredList.size(); i < n; ++i)
   1312           Visited.erase(PredList[i].first);
   1313 
   1314         goto PredTranslationFailure;
   1315       }
   1316     }
   1317 
   1318     // Actually process results here; this need to be a separate loop to avoid
   1319     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
   1320     // any results for.  (getNonLocalPointerDepFromBB will modify our
   1321     // datastructures in ways the code after the PredTranslationFailure label
   1322     // doesn't expect.)
   1323     for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
   1324       BasicBlock *Pred = PredList[i].first;
   1325       PHITransAddr &PredPointer = PredList[i].second;
   1326       Value *PredPtrVal = PredPointer.getAddr();
   1327 
   1328       bool CanTranslate = true;
   1329       // If PHI translation was unable to find an available pointer in this
   1330       // predecessor, then we have to assume that the pointer is clobbered in
   1331       // that predecessor.  We can still do PRE of the load, which would insert
   1332       // a computation of the pointer in this predecessor.
   1333       if (!PredPtrVal)
   1334         CanTranslate = false;
   1335 
   1336       // FIXME: it is entirely possible that PHI translating will end up with
   1337       // the same value.  Consider PHI translating something like:
   1338       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
   1339       // to recurse here, pedantically speaking.
   1340 
   1341       // If getNonLocalPointerDepFromBB fails here, that means the cached
   1342       // result conflicted with the Visited list; we have to conservatively
   1343       // assume it is unknown, but this also does not block PRE of the load.
   1344       if (!CanTranslate ||
   1345           getNonLocalPointerDepFromBB(QueryInst, PredPointer,
   1346                                       Loc.getWithNewPtr(PredPtrVal),
   1347                                       isLoad, Pred,
   1348                                       Result, Visited)) {
   1349         // Add the entry to the Result list.
   1350         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
   1351         Result.push_back(Entry);
   1352 
   1353         // Since we had a phi translation failure, the cache for CacheKey won't
   1354         // include all of the entries that we need to immediately satisfy future
   1355         // queries.  Mark this in NonLocalPointerDeps by setting the
   1356         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
   1357         // cached value to do more work but not miss the phi trans failure.
   1358         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
   1359         NLPI.Pair = BBSkipFirstBlockPair();
   1360         continue;
   1361       }
   1362     }
   1363 
   1364     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
   1365     CacheInfo = &NonLocalPointerDeps[CacheKey];
   1366     Cache = &CacheInfo->NonLocalDeps;
   1367     NumSortedEntries = Cache->size();
   1368 
   1369     // Since we did phi translation, the "Cache" set won't contain all of the
   1370     // results for the query.  This is ok (we can still use it to accelerate
   1371     // specific block queries) but we can't do the fastpath "return all
   1372     // results from the set"  Clear out the indicator for this.
   1373     CacheInfo->Pair = BBSkipFirstBlockPair();
   1374     SkipFirstBlock = false;
   1375     continue;
   1376 
   1377   PredTranslationFailure:
   1378     // The following code is "failure"; we can't produce a sane translation
   1379     // for the given block.  It assumes that we haven't modified any of
   1380     // our datastructures while processing the current block.
   1381 
   1382     if (!Cache) {
   1383       // Refresh the CacheInfo/Cache pointer if it got invalidated.
   1384       CacheInfo = &NonLocalPointerDeps[CacheKey];
   1385       Cache = &CacheInfo->NonLocalDeps;
   1386       NumSortedEntries = Cache->size();
   1387     }
   1388 
   1389     // Since we failed phi translation, the "Cache" set won't contain all of the
   1390     // results for the query.  This is ok (we can still use it to accelerate
   1391     // specific block queries) but we can't do the fastpath "return all
   1392     // results from the set".  Clear out the indicator for this.
   1393     CacheInfo->Pair = BBSkipFirstBlockPair();
   1394 
   1395     // If *nothing* works, mark the pointer as unknown.
   1396     //
   1397     // If this is the magic first block, return this as a clobber of the whole
   1398     // incoming value.  Since we can't phi translate to one of the predecessors,
   1399     // we have to bail out.
   1400     if (SkipFirstBlock)
   1401       return true;
   1402 
   1403     for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
   1404       assert(I != Cache->rend() && "Didn't find current block??");
   1405       if (I->getBB() != BB)
   1406         continue;
   1407 
   1408       assert((I->getResult().isNonLocal() || !DT->isReachableFromEntry(BB)) &&
   1409              "Should only be here with transparent block");
   1410       I->setResult(MemDepResult::getUnknown());
   1411       Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
   1412                                          Pointer.getAddr()));
   1413       break;
   1414     }
   1415   }
   1416 
   1417   // Okay, we're done now.  If we added new values to the cache, re-sort it.
   1418   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
   1419   DEBUG(AssertSorted(*Cache));
   1420   return false;
   1421 }
   1422 
   1423 /// RemoveCachedNonLocalPointerDependencies - If P exists in
   1424 /// CachedNonLocalPointerInfo, remove it.
   1425 void MemoryDependenceAnalysis::
   1426 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
   1427   CachedNonLocalPointerInfo::iterator It =
   1428     NonLocalPointerDeps.find(P);
   1429   if (It == NonLocalPointerDeps.end()) return;
   1430 
   1431   // Remove all of the entries in the BB->val map.  This involves removing
   1432   // instructions from the reverse map.
   1433   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
   1434 
   1435   for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
   1436     Instruction *Target = PInfo[i].getResult().getInst();
   1437     if (!Target) continue;  // Ignore non-local dep results.
   1438     assert(Target->getParent() == PInfo[i].getBB());
   1439 
   1440     // Eliminating the dirty entry from 'Cache', so update the reverse info.
   1441     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
   1442   }
   1443 
   1444   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
   1445   NonLocalPointerDeps.erase(It);
   1446 }
   1447 
   1448 
   1449 /// invalidateCachedPointerInfo - This method is used to invalidate cached
   1450 /// information about the specified pointer, because it may be too
   1451 /// conservative in memdep.  This is an optional call that can be used when
   1452 /// the client detects an equivalence between the pointer and some other
   1453 /// value and replaces the other value with ptr. This can make Ptr available
   1454 /// in more places that cached info does not necessarily keep.
   1455 void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
   1456   // If Ptr isn't really a pointer, just ignore it.
   1457   if (!Ptr->getType()->isPointerTy()) return;
   1458   // Flush store info for the pointer.
   1459   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
   1460   // Flush load info for the pointer.
   1461   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
   1462 }
   1463 
   1464 /// invalidateCachedPredecessors - Clear the PredIteratorCache info.
   1465 /// This needs to be done when the CFG changes, e.g., due to splitting
   1466 /// critical edges.
   1467 void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
   1468   PredCache->clear();
   1469 }
   1470 
   1471 /// removeInstruction - Remove an instruction from the dependence analysis,
   1472 /// updating the dependence of instructions that previously depended on it.
   1473 /// This method attempts to keep the cache coherent using the reverse map.
   1474 void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
   1475   // Walk through the Non-local dependencies, removing this one as the value
   1476   // for any cached queries.
   1477   NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
   1478   if (NLDI != NonLocalDeps.end()) {
   1479     NonLocalDepInfo &BlockMap = NLDI->second.first;
   1480     for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
   1481          DI != DE; ++DI)
   1482       if (Instruction *Inst = DI->getResult().getInst())
   1483         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
   1484     NonLocalDeps.erase(NLDI);
   1485   }
   1486 
   1487   // If we have a cached local dependence query for this instruction, remove it.
   1488   //
   1489   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
   1490   if (LocalDepEntry != LocalDeps.end()) {
   1491     // Remove us from DepInst's reverse set now that the local dep info is gone.
   1492     if (Instruction *Inst = LocalDepEntry->second.getInst())
   1493       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
   1494 
   1495     // Remove this local dependency info.
   1496     LocalDeps.erase(LocalDepEntry);
   1497   }
   1498 
   1499   // If we have any cached pointer dependencies on this instruction, remove
   1500   // them.  If the instruction has non-pointer type, then it can't be a pointer
   1501   // base.
   1502 
   1503   // Remove it from both the load info and the store info.  The instruction
   1504   // can't be in either of these maps if it is non-pointer.
   1505   if (RemInst->getType()->isPointerTy()) {
   1506     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
   1507     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
   1508   }
   1509 
   1510   // Loop over all of the things that depend on the instruction we're removing.
   1511   //
   1512   SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
   1513 
   1514   // If we find RemInst as a clobber or Def in any of the maps for other values,
   1515   // we need to replace its entry with a dirty version of the instruction after
   1516   // it.  If RemInst is a terminator, we use a null dirty value.
   1517   //
   1518   // Using a dirty version of the instruction after RemInst saves having to scan
   1519   // the entire block to get to this point.
   1520   MemDepResult NewDirtyVal;
   1521   if (!RemInst->isTerminator())
   1522     NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
   1523 
   1524   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
   1525   if (ReverseDepIt != ReverseLocalDeps.end()) {
   1526     // RemInst can't be the terminator if it has local stuff depending on it.
   1527     assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) &&
   1528            "Nothing can locally depend on a terminator");
   1529 
   1530     for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
   1531       assert(InstDependingOnRemInst != RemInst &&
   1532              "Already removed our local dep info");
   1533 
   1534       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
   1535 
   1536       // Make sure to remember that new things depend on NewDepInst.
   1537       assert(NewDirtyVal.getInst() && "There is no way something else can have "
   1538              "a local dep on this if it is a terminator!");
   1539       ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
   1540                                                 InstDependingOnRemInst));
   1541     }
   1542 
   1543     ReverseLocalDeps.erase(ReverseDepIt);
   1544 
   1545     // Add new reverse deps after scanning the set, to avoid invalidating the
   1546     // 'ReverseDeps' reference.
   1547     while (!ReverseDepsToAdd.empty()) {
   1548       ReverseLocalDeps[ReverseDepsToAdd.back().first]
   1549         .insert(ReverseDepsToAdd.back().second);
   1550       ReverseDepsToAdd.pop_back();
   1551     }
   1552   }
   1553 
   1554   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
   1555   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
   1556     for (Instruction *I : ReverseDepIt->second) {
   1557       assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
   1558 
   1559       PerInstNLInfo &INLD = NonLocalDeps[I];
   1560       // The information is now dirty!
   1561       INLD.second = true;
   1562 
   1563       for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
   1564            DE = INLD.first.end(); DI != DE; ++DI) {
   1565         if (DI->getResult().getInst() != RemInst) continue;
   1566 
   1567         // Convert to a dirty entry for the subsequent instruction.
   1568         DI->setResult(NewDirtyVal);
   1569 
   1570         if (Instruction *NextI = NewDirtyVal.getInst())
   1571           ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
   1572       }
   1573     }
   1574 
   1575     ReverseNonLocalDeps.erase(ReverseDepIt);
   1576 
   1577     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
   1578     while (!ReverseDepsToAdd.empty()) {
   1579       ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
   1580         .insert(ReverseDepsToAdd.back().second);
   1581       ReverseDepsToAdd.pop_back();
   1582     }
   1583   }
   1584 
   1585   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
   1586   // value in the NonLocalPointerDeps info.
   1587   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
   1588     ReverseNonLocalPtrDeps.find(RemInst);
   1589   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
   1590     SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
   1591 
   1592     for (ValueIsLoadPair P : ReversePtrDepIt->second) {
   1593       assert(P.getPointer() != RemInst &&
   1594              "Already removed NonLocalPointerDeps info for RemInst");
   1595 
   1596       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
   1597 
   1598       // The cache is not valid for any specific block anymore.
   1599       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
   1600 
   1601       // Update any entries for RemInst to use the instruction after it.
   1602       for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
   1603            DI != DE; ++DI) {
   1604         if (DI->getResult().getInst() != RemInst) continue;
   1605 
   1606         // Convert to a dirty entry for the subsequent instruction.
   1607         DI->setResult(NewDirtyVal);
   1608 
   1609         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
   1610           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
   1611       }
   1612 
   1613       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
   1614       // subsequent value may invalidate the sortedness.
   1615       std::sort(NLPDI.begin(), NLPDI.end());
   1616     }
   1617 
   1618     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
   1619 
   1620     while (!ReversePtrDepsToAdd.empty()) {
   1621       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
   1622         .insert(ReversePtrDepsToAdd.back().second);
   1623       ReversePtrDepsToAdd.pop_back();
   1624     }
   1625   }
   1626 
   1627 
   1628   assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
   1629   AA->deleteValue(RemInst);
   1630   DEBUG(verifyRemoved(RemInst));
   1631 }
   1632 /// verifyRemoved - Verify that the specified instruction does not occur
   1633 /// in our internal data structures. This function verifies by asserting in
   1634 /// debug builds.
   1635 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
   1636 #ifndef NDEBUG
   1637   for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
   1638        E = LocalDeps.end(); I != E; ++I) {
   1639     assert(I->first != D && "Inst occurs in data structures");
   1640     assert(I->second.getInst() != D &&
   1641            "Inst occurs in data structures");
   1642   }
   1643 
   1644   for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
   1645        E = NonLocalPointerDeps.end(); I != E; ++I) {
   1646     assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
   1647     const NonLocalDepInfo &Val = I->second.NonLocalDeps;
   1648     for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
   1649          II != E; ++II)
   1650       assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
   1651   }
   1652 
   1653   for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
   1654        E = NonLocalDeps.end(); I != E; ++I) {
   1655     assert(I->first != D && "Inst occurs in data structures");
   1656     const PerInstNLInfo &INLD = I->second;
   1657     for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
   1658          EE = INLD.first.end(); II  != EE; ++II)
   1659       assert(II->getResult().getInst() != D && "Inst occurs in data structures");
   1660   }
   1661 
   1662   for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
   1663        E = ReverseLocalDeps.end(); I != E; ++I) {
   1664     assert(I->first != D && "Inst occurs in data structures");
   1665     for (Instruction *Inst : I->second)
   1666       assert(Inst != D && "Inst occurs in data structures");
   1667   }
   1668 
   1669   for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
   1670        E = ReverseNonLocalDeps.end();
   1671        I != E; ++I) {
   1672     assert(I->first != D && "Inst occurs in data structures");
   1673     for (Instruction *Inst : I->second)
   1674       assert(Inst != D && "Inst occurs in data structures");
   1675   }
   1676 
   1677   for (ReverseNonLocalPtrDepTy::const_iterator
   1678        I = ReverseNonLocalPtrDeps.begin(),
   1679        E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
   1680     assert(I->first != D && "Inst occurs in rev NLPD map");
   1681 
   1682     for (ValueIsLoadPair P : I->second)
   1683       assert(P != ValueIsLoadPair(D, false) &&
   1684              P != ValueIsLoadPair(D, true) &&
   1685              "Inst occurs in ReverseNonLocalPtrDeps map");
   1686   }
   1687 #endif
   1688 }
   1689