Home | History | Annotate | Download | only in MCTargetDesc
      1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains small standalone helper functions and enum definitions for
     11 // the X86 target useful for the compiler back-end and the MC libraries.
     12 // As such, it deliberately does not include references to LLVM core
     13 // code gen types, passes, etc..
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
     18 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
     19 
     20 #include "X86MCTargetDesc.h"
     21 #include "llvm/MC/MCInstrDesc.h"
     22 #include "llvm/Support/DataTypes.h"
     23 #include "llvm/Support/ErrorHandling.h"
     24 
     25 namespace llvm {
     26 
     27 namespace X86 {
     28   // Enums for memory operand decoding.  Each memory operand is represented with
     29   // a 5 operand sequence in the form:
     30   //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
     31   // These enums help decode this.
     32   enum {
     33     AddrBaseReg = 0,
     34     AddrScaleAmt = 1,
     35     AddrIndexReg = 2,
     36     AddrDisp = 3,
     37 
     38     /// AddrSegmentReg - The operand # of the segment in the memory operand.
     39     AddrSegmentReg = 4,
     40 
     41     /// AddrNumOperands - Total number of operands in a memory reference.
     42     AddrNumOperands = 5
     43   };
     44 } // end namespace X86;
     45 
     46 /// X86II - This namespace holds all of the target specific flags that
     47 /// instruction info tracks.
     48 ///
     49 namespace X86II {
     50   /// Target Operand Flag enum.
     51   enum TOF {
     52     //===------------------------------------------------------------------===//
     53     // X86 Specific MachineOperand flags.
     54 
     55     MO_NO_FLAG,
     56 
     57     /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
     58     /// relocation of:
     59     ///    SYMBOL_LABEL + [. - PICBASELABEL]
     60     MO_GOT_ABSOLUTE_ADDRESS,
     61 
     62     /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
     63     /// immediate should get the value of the symbol minus the PIC base label:
     64     ///    SYMBOL_LABEL - PICBASELABEL
     65     MO_PIC_BASE_OFFSET,
     66 
     67     /// MO_GOT - On a symbol operand this indicates that the immediate is the
     68     /// offset to the GOT entry for the symbol name from the base of the GOT.
     69     ///
     70     /// See the X86-64 ELF ABI supplement for more details.
     71     ///    SYMBOL_LABEL @GOT
     72     MO_GOT,
     73 
     74     /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
     75     /// the offset to the location of the symbol name from the base of the GOT.
     76     ///
     77     /// See the X86-64 ELF ABI supplement for more details.
     78     ///    SYMBOL_LABEL @GOTOFF
     79     MO_GOTOFF,
     80 
     81     /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
     82     /// offset to the GOT entry for the symbol name from the current code
     83     /// location.
     84     ///
     85     /// See the X86-64 ELF ABI supplement for more details.
     86     ///    SYMBOL_LABEL @GOTPCREL
     87     MO_GOTPCREL,
     88 
     89     /// MO_PLT - On a symbol operand this indicates that the immediate is
     90     /// offset to the PLT entry of symbol name from the current code location.
     91     ///
     92     /// See the X86-64 ELF ABI supplement for more details.
     93     ///    SYMBOL_LABEL @PLT
     94     MO_PLT,
     95 
     96     /// MO_TLSGD - On a symbol operand this indicates that the immediate is
     97     /// the offset of the GOT entry with the TLS index structure that contains
     98     /// the module number and variable offset for the symbol. Used in the
     99     /// general dynamic TLS access model.
    100     ///
    101     /// See 'ELF Handling for Thread-Local Storage' for more details.
    102     ///    SYMBOL_LABEL @TLSGD
    103     MO_TLSGD,
    104 
    105     /// MO_TLSLD - On a symbol operand this indicates that the immediate is
    106     /// the offset of the GOT entry with the TLS index for the module that
    107     /// contains the symbol. When this index is passed to a call to
    108     /// __tls_get_addr, the function will return the base address of the TLS
    109     /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
    110     ///
    111     /// See 'ELF Handling for Thread-Local Storage' for more details.
    112     ///    SYMBOL_LABEL @TLSLD
    113     MO_TLSLD,
    114 
    115     /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
    116     /// the offset of the GOT entry with the TLS index for the module that
    117     /// contains the symbol. When this index is passed to a call to
    118     /// ___tls_get_addr, the function will return the base address of the TLS
    119     /// block for the symbol. Used in the IA32 local dynamic TLS access model.
    120     ///
    121     /// See 'ELF Handling for Thread-Local Storage' for more details.
    122     ///    SYMBOL_LABEL @TLSLDM
    123     MO_TLSLDM,
    124 
    125     /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
    126     /// the offset of the GOT entry with the thread-pointer offset for the
    127     /// symbol. Used in the x86-64 initial exec TLS access model.
    128     ///
    129     /// See 'ELF Handling for Thread-Local Storage' for more details.
    130     ///    SYMBOL_LABEL @GOTTPOFF
    131     MO_GOTTPOFF,
    132 
    133     /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
    134     /// the absolute address of the GOT entry with the negative thread-pointer
    135     /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
    136     /// model.
    137     ///
    138     /// See 'ELF Handling for Thread-Local Storage' for more details.
    139     ///    SYMBOL_LABEL @INDNTPOFF
    140     MO_INDNTPOFF,
    141 
    142     /// MO_TPOFF - On a symbol operand this indicates that the immediate is
    143     /// the thread-pointer offset for the symbol. Used in the x86-64 local
    144     /// exec TLS access model.
    145     ///
    146     /// See 'ELF Handling for Thread-Local Storage' for more details.
    147     ///    SYMBOL_LABEL @TPOFF
    148     MO_TPOFF,
    149 
    150     /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
    151     /// the offset of the GOT entry with the TLS offset of the symbol. Used
    152     /// in the local dynamic TLS access model.
    153     ///
    154     /// See 'ELF Handling for Thread-Local Storage' for more details.
    155     ///    SYMBOL_LABEL @DTPOFF
    156     MO_DTPOFF,
    157 
    158     /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
    159     /// the negative thread-pointer offset for the symbol. Used in the IA32
    160     /// local exec TLS access model.
    161     ///
    162     /// See 'ELF Handling for Thread-Local Storage' for more details.
    163     ///    SYMBOL_LABEL @NTPOFF
    164     MO_NTPOFF,
    165 
    166     /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
    167     /// the offset of the GOT entry with the negative thread-pointer offset for
    168     /// the symbol. Used in the PIC IA32 initial exec TLS access model.
    169     ///
    170     /// See 'ELF Handling for Thread-Local Storage' for more details.
    171     ///    SYMBOL_LABEL @GOTNTPOFF
    172     MO_GOTNTPOFF,
    173 
    174     /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
    175     /// reference is actually to the "__imp_FOO" symbol.  This is used for
    176     /// dllimport linkage on windows.
    177     MO_DLLIMPORT,
    178 
    179     /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
    180     /// reference is actually to the "FOO$stub" symbol.  This is used for calls
    181     /// and jumps to external functions on Tiger and earlier.
    182     MO_DARWIN_STUB,
    183 
    184     /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
    185     /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
    186     /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
    187     MO_DARWIN_NONLAZY,
    188 
    189     /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
    190     /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
    191     /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
    192     MO_DARWIN_NONLAZY_PIC_BASE,
    193 
    194     /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
    195     /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
    196     /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
    197     /// stub.
    198     MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
    199 
    200     /// MO_TLVP - On a symbol operand this indicates that the immediate is
    201     /// some TLS offset.
    202     ///
    203     /// This is the TLS offset for the Darwin TLS mechanism.
    204     MO_TLVP,
    205 
    206     /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
    207     /// is some TLS offset from the picbase.
    208     ///
    209     /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
    210     MO_TLVP_PIC_BASE,
    211 
    212     /// MO_SECREL - On a symbol operand this indicates that the immediate is
    213     /// the offset from beginning of section.
    214     ///
    215     /// This is the TLS offset for the COFF/Windows TLS mechanism.
    216     MO_SECREL
    217   };
    218 
    219   enum : uint64_t {
    220     //===------------------------------------------------------------------===//
    221     // Instruction encodings.  These are the standard/most common forms for X86
    222     // instructions.
    223     //
    224 
    225     // PseudoFrm - This represents an instruction that is a pseudo instruction
    226     // or one that has not been implemented yet.  It is illegal to code generate
    227     // it, but tolerated for intermediate implementation stages.
    228     Pseudo         = 0,
    229 
    230     /// Raw - This form is for instructions that don't have any operands, so
    231     /// they are just a fixed opcode value, like 'leave'.
    232     RawFrm         = 1,
    233 
    234     /// AddRegFrm - This form is used for instructions like 'push r32' that have
    235     /// their one register operand added to their opcode.
    236     AddRegFrm      = 2,
    237 
    238     /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
    239     /// to specify a destination, which in this case is a register.
    240     ///
    241     MRMDestReg     = 3,
    242 
    243     /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
    244     /// to specify a destination, which in this case is memory.
    245     ///
    246     MRMDestMem     = 4,
    247 
    248     /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
    249     /// to specify a source, which in this case is a register.
    250     ///
    251     MRMSrcReg      = 5,
    252 
    253     /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
    254     /// to specify a source, which in this case is memory.
    255     ///
    256     MRMSrcMem      = 6,
    257 
    258     /// RawFrmMemOffs - This form is for instructions that store an absolute
    259     /// memory offset as an immediate with a possible segment override.
    260     RawFrmMemOffs  = 7,
    261 
    262     /// RawFrmSrc - This form is for instructions that use the source index
    263     /// register SI/ESI/RSI with a possible segment override.
    264     RawFrmSrc      = 8,
    265 
    266     /// RawFrmDst - This form is for instructions that use the destination index
    267     /// register DI/EDI/ESI.
    268     RawFrmDst      = 9,
    269 
    270     /// RawFrmSrc - This form is for instructions that use the the source index
    271     /// register SI/ESI/ERI with a possible segment override, and also the
    272     /// destination index register DI/ESI/RDI.
    273     RawFrmDstSrc   = 10,
    274 
    275     /// RawFrmImm8 - This is used for the ENTER instruction, which has two
    276     /// immediates, the first of which is a 16-bit immediate (specified by
    277     /// the imm encoding) and the second is a 8-bit fixed value.
    278     RawFrmImm8 = 11,
    279 
    280     /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
    281     /// immediates, the first of which is a 16 or 32-bit immediate (specified by
    282     /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
    283     /// manual, this operand is described as pntr16:32 and pntr16:16
    284     RawFrmImm16 = 12,
    285 
    286     /// MRMX[rm] - The forms are used to represent instructions that use a
    287     /// Mod/RM byte, and don't use the middle field for anything.
    288     MRMXr = 14, MRMXm = 15,
    289 
    290     /// MRM[0-7][rm] - These forms are used to represent instructions that use
    291     /// a Mod/RM byte, and use the middle field to hold extended opcode
    292     /// information.  In the intel manual these are represented as /0, /1, ...
    293     ///
    294 
    295     // First, instructions that operate on a register r/m operand...
    296     MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
    297     MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
    298 
    299     // Next, instructions that operate on a memory r/m operand...
    300     MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
    301     MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
    302 
    303     //// MRM_XX - A mod/rm byte of exactly 0xXX.
    304     MRM_C0 = 32, MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35,
    305     MRM_C4 = 36, MRM_C5 = 37, MRM_C6 = 38, MRM_C7 = 39,
    306     MRM_C8 = 40, MRM_C9 = 41, MRM_CA = 42, MRM_CB = 43,
    307     MRM_CC = 44, MRM_CD = 45, MRM_CE = 46, MRM_CF = 47,
    308     MRM_D0 = 48, MRM_D1 = 49, MRM_D2 = 50, MRM_D3 = 51,
    309     MRM_D4 = 52, MRM_D5 = 53, MRM_D6 = 54, MRM_D7 = 55,
    310     MRM_D8 = 56, MRM_D9 = 57, MRM_DA = 58, MRM_DB = 59,
    311     MRM_DC = 60, MRM_DD = 61, MRM_DE = 62, MRM_DF = 63,
    312     MRM_E0 = 64, MRM_E1 = 65, MRM_E2 = 66, MRM_E3 = 67,
    313     MRM_E4 = 68, MRM_E5 = 69, MRM_E6 = 70, MRM_E7 = 71,
    314     MRM_E8 = 72, MRM_E9 = 73, MRM_EA = 74, MRM_EB = 75,
    315     MRM_EC = 76, MRM_ED = 77, MRM_EE = 78, MRM_EF = 79,
    316     MRM_F0 = 80, MRM_F1 = 81, MRM_F2 = 82, MRM_F3 = 83,
    317     MRM_F4 = 84, MRM_F5 = 85, MRM_F6 = 86, MRM_F7 = 87,
    318     MRM_F8 = 88, MRM_F9 = 89, MRM_FA = 90, MRM_FB = 91,
    319     MRM_FC = 92, MRM_FD = 93, MRM_FE = 94, MRM_FF = 95,
    320 
    321     FormMask       = 127,
    322 
    323     //===------------------------------------------------------------------===//
    324     // Actual flags...
    325 
    326     // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
    327     // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
    328     // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
    329     // prefix in 16-bit mode.
    330     OpSizeShift = 7,
    331     OpSizeMask = 0x3 << OpSizeShift,
    332 
    333     OpSizeFixed = 0 << OpSizeShift,
    334     OpSize16    = 1 << OpSizeShift,
    335     OpSize32    = 2 << OpSizeShift,
    336 
    337     // AsSize - AdSizeX implies this instruction determines its need of 0x67
    338     // prefix from a normal ModRM memory operand. The other types indicate that
    339     // an operand is encoded with a specific width and a prefix is needed if
    340     // it differs from the current mode.
    341     AdSizeShift = OpSizeShift + 2,
    342     AdSizeMask  = 0x3 << AdSizeShift,
    343 
    344     AdSizeX  = 1 << AdSizeShift,
    345     AdSize16 = 1 << AdSizeShift,
    346     AdSize32 = 2 << AdSizeShift,
    347     AdSize64 = 3 << AdSizeShift,
    348 
    349     //===------------------------------------------------------------------===//
    350     // OpPrefix - There are several prefix bytes that are used as opcode
    351     // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
    352     // no prefix.
    353     //
    354     OpPrefixShift = AdSizeShift + 2,
    355     OpPrefixMask  = 0x7 << OpPrefixShift,
    356 
    357     // PS, PD - Prefix code for packed single and double precision vector
    358     // floating point operations performed in the SSE registers.
    359     PS = 1 << OpPrefixShift, PD = 2 << OpPrefixShift,
    360 
    361     // XS, XD - These prefix codes are for single and double precision scalar
    362     // floating point operations performed in the SSE registers.
    363     XS = 3 << OpPrefixShift,  XD = 4 << OpPrefixShift,
    364 
    365     //===------------------------------------------------------------------===//
    366     // OpMap - This field determines which opcode map this instruction
    367     // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
    368     //
    369     OpMapShift = OpPrefixShift + 3,
    370     OpMapMask  = 0x7 << OpMapShift,
    371 
    372     // OB - OneByte - Set if this instruction has a one byte opcode.
    373     OB = 0 << OpMapShift,
    374 
    375     // TB - TwoByte - Set if this instruction has a two byte opcode, which
    376     // starts with a 0x0F byte before the real opcode.
    377     TB = 1 << OpMapShift,
    378 
    379     // T8, TA - Prefix after the 0x0F prefix.
    380     T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,
    381 
    382     // XOP8 - Prefix to include use of imm byte.
    383     XOP8 = 4 << OpMapShift,
    384 
    385     // XOP9 - Prefix to exclude use of imm byte.
    386     XOP9 = 5 << OpMapShift,
    387 
    388     // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
    389     XOPA = 6 << OpMapShift,
    390 
    391     //===------------------------------------------------------------------===//
    392     // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
    393     // They are used to specify GPRs and SSE registers, 64-bit operand size,
    394     // etc. We only cares about REX.W and REX.R bits and only the former is
    395     // statically determined.
    396     //
    397     REXShift    = OpMapShift + 3,
    398     REX_W       = 1 << REXShift,
    399 
    400     //===------------------------------------------------------------------===//
    401     // This three-bit field describes the size of an immediate operand.  Zero is
    402     // unused so that we can tell if we forgot to set a value.
    403     ImmShift = REXShift + 1,
    404     ImmMask    = 15 << ImmShift,
    405     Imm8       = 1 << ImmShift,
    406     Imm8PCRel  = 2 << ImmShift,
    407     Imm16      = 3 << ImmShift,
    408     Imm16PCRel = 4 << ImmShift,
    409     Imm32      = 5 << ImmShift,
    410     Imm32PCRel = 6 << ImmShift,
    411     Imm32S     = 7 << ImmShift,
    412     Imm64      = 8 << ImmShift,
    413 
    414     //===------------------------------------------------------------------===//
    415     // FP Instruction Classification...  Zero is non-fp instruction.
    416 
    417     // FPTypeMask - Mask for all of the FP types...
    418     FPTypeShift = ImmShift + 4,
    419     FPTypeMask  = 7 << FPTypeShift,
    420 
    421     // NotFP - The default, set for instructions that do not use FP registers.
    422     NotFP      = 0 << FPTypeShift,
    423 
    424     // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
    425     ZeroArgFP  = 1 << FPTypeShift,
    426 
    427     // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
    428     OneArgFP   = 2 << FPTypeShift,
    429 
    430     // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
    431     // result back to ST(0).  For example, fcos, fsqrt, etc.
    432     //
    433     OneArgFPRW = 3 << FPTypeShift,
    434 
    435     // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
    436     // explicit argument, storing the result to either ST(0) or the implicit
    437     // argument.  For example: fadd, fsub, fmul, etc...
    438     TwoArgFP   = 4 << FPTypeShift,
    439 
    440     // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
    441     // explicit argument, but have no destination.  Example: fucom, fucomi, ...
    442     CompareFP  = 5 << FPTypeShift,
    443 
    444     // CondMovFP - "2 operand" floating point conditional move instructions.
    445     CondMovFP  = 6 << FPTypeShift,
    446 
    447     // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
    448     SpecialFP  = 7 << FPTypeShift,
    449 
    450     // Lock prefix
    451     LOCKShift = FPTypeShift + 3,
    452     LOCK = 1 << LOCKShift,
    453 
    454     // REP prefix
    455     REPShift = LOCKShift + 1,
    456     REP = 1 << REPShift,
    457 
    458     // Execution domain for SSE instructions.
    459     // 0 means normal, non-SSE instruction.
    460     SSEDomainShift = REPShift + 1,
    461 
    462     // Encoding
    463     EncodingShift = SSEDomainShift + 2,
    464     EncodingMask = 0x3 << EncodingShift,
    465 
    466     // VEX - encoding using 0xC4/0xC5
    467     VEX = 1 << EncodingShift,
    468 
    469     /// XOP - Opcode prefix used by XOP instructions.
    470     XOP = 2 << EncodingShift,
    471 
    472     // VEX_EVEX - Specifies that this instruction use EVEX form which provides
    473     // syntax support up to 32 512-bit register operands and up to 7 16-bit
    474     // mask operands as well as source operand data swizzling/memory operand
    475     // conversion, eviction hint, and rounding mode.
    476     EVEX = 3 << EncodingShift,
    477 
    478     // Opcode
    479     OpcodeShift   = EncodingShift + 2,
    480 
    481     /// VEX_W - Has a opcode specific functionality, but is used in the same
    482     /// way as REX_W is for regular SSE instructions.
    483     VEX_WShift  = OpcodeShift + 8,
    484     VEX_W       = 1ULL << VEX_WShift,
    485 
    486     /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
    487     /// address instructions in SSE are represented as 3 address ones in AVX
    488     /// and the additional register is encoded in VEX_VVVV prefix.
    489     VEX_4VShift = VEX_WShift + 1,
    490     VEX_4V      = 1ULL << VEX_4VShift,
    491 
    492     /// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode
    493     /// operand 3 with VEX.vvvv.
    494     VEX_4VOp3Shift = VEX_4VShift + 1,
    495     VEX_4VOp3   = 1ULL << VEX_4VOp3Shift,
    496 
    497     /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
    498     /// must be encoded in the i8 immediate field. This usually happens in
    499     /// instructions with 4 operands.
    500     VEX_I8IMMShift = VEX_4VOp3Shift + 1,
    501     VEX_I8IMM   = 1ULL << VEX_I8IMMShift,
    502 
    503     /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
    504     /// instruction uses 256-bit wide registers. This is usually auto detected
    505     /// if a VR256 register is used, but some AVX instructions also have this
    506     /// field marked when using a f256 memory references.
    507     VEX_LShift = VEX_I8IMMShift + 1,
    508     VEX_L       = 1ULL << VEX_LShift,
    509 
    510     // VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
    511     // prefix. Usually used for scalar instructions. Needed by disassembler.
    512     VEX_LIGShift = VEX_LShift + 1,
    513     VEX_LIG     = 1ULL << VEX_LIGShift,
    514 
    515     // TODO: we should combine VEX_L and VEX_LIG together to form a 2-bit field
    516     // with following encoding:
    517     // - 00 V128
    518     // - 01 V256
    519     // - 10 V512
    520     // - 11 LIG (but, in insn encoding, leave VEX.L and EVEX.L in zeros.
    521     // this will save 1 tsflag bit
    522 
    523     // EVEX_K - Set if this instruction requires masking
    524     EVEX_KShift = VEX_LIGShift + 1,
    525     EVEX_K      = 1ULL << EVEX_KShift,
    526 
    527     // EVEX_Z - Set if this instruction has EVEX.Z field set.
    528     EVEX_ZShift = EVEX_KShift + 1,
    529     EVEX_Z      = 1ULL << EVEX_ZShift,
    530 
    531     // EVEX_L2 - Set if this instruction has EVEX.L' field set.
    532     EVEX_L2Shift = EVEX_ZShift + 1,
    533     EVEX_L2     = 1ULL << EVEX_L2Shift,
    534 
    535     // EVEX_B - Set if this instruction has EVEX.B field set.
    536     EVEX_BShift = EVEX_L2Shift + 1,
    537     EVEX_B      = 1ULL << EVEX_BShift,
    538 
    539     // The scaling factor for the AVX512's 8-bit compressed displacement.
    540     CD8_Scale_Shift = EVEX_BShift + 1,
    541     CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
    542 
    543     /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
    544     /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
    545     /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
    546     /// storing a classifier in the imm8 field.  To simplify our implementation,
    547     /// we handle this by storeing the classifier in the opcode field and using
    548     /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
    549     Has3DNow0F0FOpcodeShift = CD8_Scale_Shift + 7,
    550     Has3DNow0F0FOpcode = 1ULL << Has3DNow0F0FOpcodeShift,
    551 
    552     /// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in
    553     /// ModRM or I8IMM. This is used for FMA4 and XOP instructions.
    554     MemOp4Shift = Has3DNow0F0FOpcodeShift + 1,
    555     MemOp4 = 1ULL << MemOp4Shift,
    556 
    557     /// Explicitly specified rounding control
    558     EVEX_RCShift = MemOp4Shift + 1,
    559     EVEX_RC = 1ULL << EVEX_RCShift
    560   };
    561 
    562   // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
    563   // specified machine instruction.
    564   //
    565   inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
    566     return TSFlags >> X86II::OpcodeShift;
    567   }
    568 
    569   inline bool hasImm(uint64_t TSFlags) {
    570     return (TSFlags & X86II::ImmMask) != 0;
    571   }
    572 
    573   /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
    574   /// of the specified instruction.
    575   inline unsigned getSizeOfImm(uint64_t TSFlags) {
    576     switch (TSFlags & X86II::ImmMask) {
    577     default: llvm_unreachable("Unknown immediate size");
    578     case X86II::Imm8:
    579     case X86II::Imm8PCRel:  return 1;
    580     case X86II::Imm16:
    581     case X86II::Imm16PCRel: return 2;
    582     case X86II::Imm32:
    583     case X86II::Imm32S:
    584     case X86II::Imm32PCRel: return 4;
    585     case X86II::Imm64:      return 8;
    586     }
    587   }
    588 
    589   /// isImmPCRel - Return true if the immediate of the specified instruction's
    590   /// TSFlags indicates that it is pc relative.
    591   inline unsigned isImmPCRel(uint64_t TSFlags) {
    592     switch (TSFlags & X86II::ImmMask) {
    593     default: llvm_unreachable("Unknown immediate size");
    594     case X86II::Imm8PCRel:
    595     case X86II::Imm16PCRel:
    596     case X86II::Imm32PCRel:
    597       return true;
    598     case X86II::Imm8:
    599     case X86II::Imm16:
    600     case X86II::Imm32:
    601     case X86II::Imm32S:
    602     case X86II::Imm64:
    603       return false;
    604     }
    605   }
    606 
    607   /// isImmSigned - Return true if the immediate of the specified instruction's
    608   /// TSFlags indicates that it is signed.
    609   inline unsigned isImmSigned(uint64_t TSFlags) {
    610     switch (TSFlags & X86II::ImmMask) {
    611     default: llvm_unreachable("Unknown immediate signedness");
    612     case X86II::Imm32S:
    613       return true;
    614     case X86II::Imm8:
    615     case X86II::Imm8PCRel:
    616     case X86II::Imm16:
    617     case X86II::Imm16PCRel:
    618     case X86II::Imm32:
    619     case X86II::Imm32PCRel:
    620     case X86II::Imm64:
    621       return false;
    622     }
    623   }
    624 
    625   /// getOperandBias - compute any additional adjustment needed to
    626   ///                  the offset to the start of the memory operand
    627   ///                  in this instruction.
    628   /// If this is a two-address instruction,skip one of the register operands.
    629   /// FIXME: This should be handled during MCInst lowering.
    630   inline int getOperandBias(const MCInstrDesc& Desc)
    631   {
    632     unsigned NumOps = Desc.getNumOperands();
    633     unsigned CurOp = 0;
    634     if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
    635       ++CurOp;
    636     else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
    637              Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
    638       // Special case for AVX-512 GATHER with 2 TIED_TO operands
    639       // Skip the first 2 operands: dst, mask_wb
    640       CurOp += 2;
    641     else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
    642              Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
    643       // Special case for GATHER with 2 TIED_TO operands
    644       // Skip the first 2 operands: dst, mask_wb
    645       CurOp += 2;
    646     else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
    647       // SCATTER
    648       ++CurOp;
    649     return CurOp;
    650   }
    651 
    652   /// getMemoryOperandNo - The function returns the MCInst operand # for the
    653   /// first field of the memory operand.  If the instruction doesn't have a
    654   /// memory operand, this returns -1.
    655   ///
    656   /// Note that this ignores tied operands.  If there is a tied register which
    657   /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
    658   /// counted as one operand.
    659   ///
    660   inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) {
    661     bool HasVEX_4V = TSFlags & X86II::VEX_4V;
    662     bool HasMemOp4 = TSFlags & X86II::MemOp4;
    663     bool HasEVEX_K = TSFlags & X86II::EVEX_K;
    664 
    665     switch (TSFlags & X86II::FormMask) {
    666     default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
    667     case X86II::Pseudo:
    668     case X86II::RawFrm:
    669     case X86II::AddRegFrm:
    670     case X86II::MRMDestReg:
    671     case X86II::MRMSrcReg:
    672     case X86II::RawFrmImm8:
    673     case X86II::RawFrmImm16:
    674     case X86II::RawFrmMemOffs:
    675     case X86II::RawFrmSrc:
    676     case X86II::RawFrmDst:
    677     case X86II::RawFrmDstSrc:
    678        return -1;
    679     case X86II::MRMDestMem:
    680       return 0;
    681     case X86II::MRMSrcMem:
    682       // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
    683       // mask register.
    684       return 1 + HasVEX_4V + HasMemOp4 + HasEVEX_K;
    685     case X86II::MRMXr:
    686     case X86II::MRM0r: case X86II::MRM1r:
    687     case X86II::MRM2r: case X86II::MRM3r:
    688     case X86II::MRM4r: case X86II::MRM5r:
    689     case X86II::MRM6r: case X86II::MRM7r:
    690       return -1;
    691     case X86II::MRMXm:
    692     case X86II::MRM0m: case X86II::MRM1m:
    693     case X86II::MRM2m: case X86II::MRM3m:
    694     case X86II::MRM4m: case X86II::MRM5m:
    695     case X86II::MRM6m: case X86II::MRM7m:
    696       // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
    697       return 0 + HasVEX_4V + HasEVEX_K;
    698     case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
    699     case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8:
    700     case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
    701     case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
    702     case X86II::MRM_D4: case X86II::MRM_D5: case X86II::MRM_D6:
    703     case X86II::MRM_D7: case X86II::MRM_D8: case X86II::MRM_D9:
    704     case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC:
    705     case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF:
    706     case X86II::MRM_E0: case X86II::MRM_E1: case X86II::MRM_E2:
    707     case X86II::MRM_E3: case X86II::MRM_E4: case X86II::MRM_E5:
    708     case X86II::MRM_E8: case X86II::MRM_E9: case X86II::MRM_EA:
    709     case X86II::MRM_EB: case X86II::MRM_EC: case X86II::MRM_ED:
    710     case X86II::MRM_EE: case X86II::MRM_F0: case X86II::MRM_F1:
    711     case X86II::MRM_F2: case X86II::MRM_F3: case X86II::MRM_F4:
    712     case X86II::MRM_F5: case X86II::MRM_F6: case X86II::MRM_F7:
    713     case X86II::MRM_F8: case X86II::MRM_F9: case X86II::MRM_FA:
    714     case X86II::MRM_FB: case X86II::MRM_FC: case X86II::MRM_FD:
    715     case X86II::MRM_FE: case X86II::MRM_FF:
    716       return -1;
    717     }
    718   }
    719 
    720   /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
    721   /// higher) register?  e.g. r8, xmm8, xmm13, etc.
    722   inline bool isX86_64ExtendedReg(unsigned RegNo) {
    723     if ((RegNo > X86::XMM7 && RegNo <= X86::XMM15) ||
    724         (RegNo > X86::XMM23 && RegNo <= X86::XMM31) ||
    725         (RegNo > X86::YMM7 && RegNo <= X86::YMM15) ||
    726         (RegNo > X86::YMM23 && RegNo <= X86::YMM31) ||
    727         (RegNo > X86::ZMM7 && RegNo <= X86::ZMM15) ||
    728         (RegNo > X86::ZMM23 && RegNo <= X86::ZMM31))
    729       return true;
    730 
    731     switch (RegNo) {
    732     default: break;
    733     case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
    734     case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
    735     case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
    736     case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
    737     case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
    738     case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
    739     case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
    740     case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
    741     case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
    742     case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
    743         return true;
    744     }
    745     return false;
    746   }
    747 
    748   /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
    749   /// registers? e.g. zmm21, etc.
    750   static inline bool is32ExtendedReg(unsigned RegNo) {
    751     return ((RegNo > X86::XMM15 && RegNo <= X86::XMM31) ||
    752             (RegNo > X86::YMM15 && RegNo <= X86::YMM31) ||
    753             (RegNo > X86::ZMM15 && RegNo <= X86::ZMM31));
    754   }
    755 
    756 
    757   inline bool isX86_64NonExtLowByteReg(unsigned reg) {
    758     return (reg == X86::SPL || reg == X86::BPL ||
    759             reg == X86::SIL || reg == X86::DIL);
    760   }
    761 }
    762 
    763 } // end namespace llvm;
    764 
    765 #endif
    766