Home | History | Annotate | Download | only in gpu
      1 /*
      2  * Copyright 2015 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "GrTessellatingPathRenderer.h"
      9 
     10 #include "GrBatch.h"
     11 #include "GrBatchTarget.h"
     12 #include "GrBatchTest.h"
     13 #include "GrDefaultGeoProcFactory.h"
     14 #include "GrPathUtils.h"
     15 #include "GrVertices.h"
     16 #include "SkChunkAlloc.h"
     17 #include "SkGeometry.h"
     18 
     19 #include <stdio.h>
     20 
     21 /*
     22  * This path renderer tessellates the path into triangles, uploads the triangles to a
     23  * vertex buffer, and renders them with a single draw call. It does not currently do
     24  * antialiasing, so it must be used in conjunction with multisampling.
     25  *
     26  * There are six stages to the algorithm:
     27  *
     28  * 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
     29  * 2) Build a mesh of edges connecting the vertices (build_edges()).
     30  * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()).
     31  * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()).
     32  * 5) Tessellate the simplified mesh into monotone polygons (tessellate()).
     33  * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()).
     34  *
     35  * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list
     36  * of vertices (and the necessity of inserting new vertices on intersection).
     37  *
     38  * Stages (4) and (5) use an active edge list, which a list of all edges for which the
     39  * sweep line has crossed the top vertex, but not the bottom vertex.  It's sorted
     40  * left-to-right based on the point where both edges are active (when both top vertices
     41  * have been seen, so the "lower" top vertex of the two). If the top vertices are equal
     42  * (shared), it's sorted based on the last point where both edges are active, so the
     43  * "upper" bottom vertex.
     44  *
     45  * The most complex step is the simplification (4). It's based on the Bentley-Ottman
     46  * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are
     47  * not exact and may violate the mesh topology or active edge list ordering. We
     48  * accommodate this by adjusting the topology of the mesh and AEL to match the intersection
     49  * points. This occurs in three ways:
     50  *
     51  * A) Intersections may cause a shortened edge to no longer be ordered with respect to its
     52  *    neighbouring edges at the top or bottom vertex. This is handled by merging the
     53  *    edges (merge_collinear_edges()).
     54  * B) Intersections may cause an edge to violate the left-to-right ordering of the
     55  *    active edge list. This is handled by splitting the neighbour edge on the
     56  *    intersected vertex (cleanup_active_edges()).
     57  * C) Shortening an edge may cause an active edge to become inactive or an inactive edge
     58  *    to become active. This is handled by removing or inserting the edge in the active
     59  *    edge list (fix_active_state()).
     60  *
     61  * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and
     62  * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it
     63  * currently uses a linked list for the active edge list, rather than a 2-3 tree as the
     64  * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also
     65  * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N)
     66  * insertions and removals was greater than the cost of infrequent O(N) lookups with the
     67  * linked list implementation. With the latter, all removals are O(1), and most insertions
     68  * are O(1), since we know the adjacent edge in the active edge list based on the topology.
     69  * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less
     70  * frequent. There may be other data structures worth investigating, however.
     71  *
     72  * Note that the orientation of the line sweep algorithms is determined by the aspect ratio of the
     73  * path bounds. When the path is taller than it is wide, we sort vertices based on increasing Y
     74  * coordinate, and secondarily by increasing X coordinate. When the path is wider than it is tall,
     75  * we sort by increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so
     76  * that the "left" and "right" orientation in the code remains correct (edges to the left are
     77  * increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90
     78  * degrees counterclockwise, rather that transposing.
     79  */
     80 #define LOGGING_ENABLED 0
     81 #define WIREFRAME 0
     82 
     83 #if LOGGING_ENABLED
     84 #define LOG printf
     85 #else
     86 #define LOG(...)
     87 #endif
     88 
     89 #define ALLOC_NEW(Type, args, alloc) \
     90     SkNEW_PLACEMENT_ARGS(alloc.allocThrow(sizeof(Type)), Type, args)
     91 
     92 namespace {
     93 
     94 struct Vertex;
     95 struct Edge;
     96 struct Poly;
     97 
     98 template <class T, T* T::*Prev, T* T::*Next>
     99 void insert(T* t, T* prev, T* next, T** head, T** tail) {
    100     t->*Prev = prev;
    101     t->*Next = next;
    102     if (prev) {
    103         prev->*Next = t;
    104     } else if (head) {
    105         *head = t;
    106     }
    107     if (next) {
    108         next->*Prev = t;
    109     } else if (tail) {
    110         *tail = t;
    111     }
    112 }
    113 
    114 template <class T, T* T::*Prev, T* T::*Next>
    115 void remove(T* t, T** head, T** tail) {
    116     if (t->*Prev) {
    117         t->*Prev->*Next = t->*Next;
    118     } else if (head) {
    119         *head = t->*Next;
    120     }
    121     if (t->*Next) {
    122         t->*Next->*Prev = t->*Prev;
    123     } else if (tail) {
    124         *tail = t->*Prev;
    125     }
    126     t->*Prev = t->*Next = NULL;
    127 }
    128 
    129 /**
    130  * Vertices are used in three ways: first, the path contours are converted into a
    131  * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
    132  * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
    133  * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
    134  * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
    135  * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
    136  * an individual Vertex from the path mesh may belong to multiple
    137  * MonotonePolys, so the original Vertices cannot be re-used.
    138  */
    139 
    140 struct Vertex {
    141   Vertex(const SkPoint& point)
    142     : fPoint(point), fPrev(NULL), fNext(NULL)
    143     , fFirstEdgeAbove(NULL), fLastEdgeAbove(NULL)
    144     , fFirstEdgeBelow(NULL), fLastEdgeBelow(NULL)
    145     , fProcessed(false)
    146 #if LOGGING_ENABLED
    147     , fID (-1.0f)
    148 #endif
    149     {}
    150     SkPoint fPoint;           // Vertex position
    151     Vertex* fPrev;            // Linked list of contours, then Y-sorted vertices.
    152     Vertex* fNext;            // "
    153     Edge*   fFirstEdgeAbove;  // Linked list of edges above this vertex.
    154     Edge*   fLastEdgeAbove;   // "
    155     Edge*   fFirstEdgeBelow;  // Linked list of edges below this vertex.
    156     Edge*   fLastEdgeBelow;   // "
    157     bool    fProcessed;       // Has this vertex been seen in simplify()?
    158 #if LOGGING_ENABLED
    159     float   fID;              // Identifier used for logging.
    160 #endif
    161 };
    162 
    163 /***************************************************************************************/
    164 
    165 typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
    166 
    167 struct Comparator {
    168     CompareFunc sweep_lt;
    169     CompareFunc sweep_gt;
    170 };
    171 
    172 bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
    173     return a.fX == b.fX ? a.fY > b.fY : a.fX < b.fX;
    174 }
    175 
    176 bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
    177     return a.fY == b.fY ? a.fX < b.fX : a.fY < b.fY;
    178 }
    179 
    180 bool sweep_gt_horiz(const SkPoint& a, const SkPoint& b) {
    181     return a.fX == b.fX ? a.fY < b.fY : a.fX > b.fX;
    182 }
    183 
    184 bool sweep_gt_vert(const SkPoint& a, const SkPoint& b) {
    185     return a.fY == b.fY ? a.fX > b.fX : a.fY > b.fY;
    186 }
    187 
    188 inline SkPoint* emit_vertex(Vertex* v, SkPoint* data) {
    189     *data++ = v->fPoint;
    190     return data;
    191 }
    192 
    193 SkPoint* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, SkPoint* data) {
    194 #if WIREFRAME
    195     data = emit_vertex(v0, data);
    196     data = emit_vertex(v1, data);
    197     data = emit_vertex(v1, data);
    198     data = emit_vertex(v2, data);
    199     data = emit_vertex(v2, data);
    200     data = emit_vertex(v0, data);
    201 #else
    202     data = emit_vertex(v0, data);
    203     data = emit_vertex(v1, data);
    204     data = emit_vertex(v2, data);
    205 #endif
    206     return data;
    207 }
    208 
    209 struct EdgeList {
    210     EdgeList() : fHead(NULL), fTail(NULL) {}
    211     Edge* fHead;
    212     Edge* fTail;
    213 };
    214 
    215 /**
    216  * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
    217  * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
    218  * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating
    219  * point). For speed, that case is only tested by the callers which require it (e.g.,
    220  * cleanup_active_edges()). Edges also handle checking for intersection with other edges.
    221  * Currently, this converts the edges to the parametric form, in order to avoid doing a division
    222  * until an intersection has been confirmed. This is slightly slower in the "found" case, but
    223  * a lot faster in the "not found" case.
    224  *
    225  * The coefficients of the line equation stored in double precision to avoid catastrphic
    226  * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is
    227  * correct in float, since it's a polynomial of degree 2. The intersect() function, being
    228  * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its
    229  * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of
    230  * this file).
    231  */
    232 
    233 struct Edge {
    234     Edge(Vertex* top, Vertex* bottom, int winding)
    235         : fWinding(winding)
    236         , fTop(top)
    237         , fBottom(bottom)
    238         , fLeft(NULL)
    239         , fRight(NULL)
    240         , fPrevEdgeAbove(NULL)
    241         , fNextEdgeAbove(NULL)
    242         , fPrevEdgeBelow(NULL)
    243         , fNextEdgeBelow(NULL)
    244         , fLeftPoly(NULL)
    245         , fRightPoly(NULL) {
    246             recompute();
    247         }
    248     int      fWinding;          // 1 == edge goes downward; -1 = edge goes upward.
    249     Vertex*  fTop;              // The top vertex in vertex-sort-order (sweep_lt).
    250     Vertex*  fBottom;           // The bottom vertex in vertex-sort-order.
    251     Edge*    fLeft;             // The linked list of edges in the active edge list.
    252     Edge*    fRight;            // "
    253     Edge*    fPrevEdgeAbove;    // The linked list of edges in the bottom Vertex's "edges above".
    254     Edge*    fNextEdgeAbove;    // "
    255     Edge*    fPrevEdgeBelow;    // The linked list of edges in the top Vertex's "edges below".
    256     Edge*    fNextEdgeBelow;    // "
    257     Poly*    fLeftPoly;         // The Poly to the left of this edge, if any.
    258     Poly*    fRightPoly;        // The Poly to the right of this edge, if any.
    259     double   fDX;               // The line equation for this edge, in implicit form.
    260     double   fDY;               // fDY * x + fDX * y + fC = 0, for point (x, y) on the line.
    261     double   fC;
    262     double dist(const SkPoint& p) const {
    263         return fDY * p.fX - fDX * p.fY + fC;
    264     }
    265     bool isRightOf(Vertex* v) const {
    266         return dist(v->fPoint) < 0.0;
    267     }
    268     bool isLeftOf(Vertex* v) const {
    269         return dist(v->fPoint) > 0.0;
    270     }
    271     void recompute() {
    272         fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX;
    273         fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY;
    274         fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX -
    275              static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY;
    276     }
    277     bool intersect(const Edge& other, SkPoint* p) {
    278         LOG("intersecting %g -> %g with %g -> %g\n",
    279                fTop->fID, fBottom->fID,
    280                other.fTop->fID, other.fBottom->fID);
    281         if (fTop == other.fTop || fBottom == other.fBottom) {
    282             return false;
    283         }
    284         double denom = fDX * other.fDY - fDY * other.fDX;
    285         if (denom == 0.0) {
    286             return false;
    287         }
    288         double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX;
    289         double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY;
    290         double sNumer = dy * other.fDX - dx * other.fDY;
    291         double tNumer = dy * fDX - dx * fDY;
    292         // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
    293         // This saves us doing the divide below unless absolutely necessary.
    294         if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
    295                         : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
    296             return false;
    297         }
    298         double s = sNumer / denom;
    299         SkASSERT(s >= 0.0 && s <= 1.0);
    300         p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX);
    301         p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY);
    302         return true;
    303     }
    304     bool isActive(EdgeList* activeEdges) const {
    305         return activeEdges && (fLeft || fRight || activeEdges->fHead == this);
    306     }
    307 };
    308 
    309 /***************************************************************************************/
    310 
    311 struct Poly {
    312     Poly(int winding)
    313         : fWinding(winding)
    314         , fHead(NULL)
    315         , fTail(NULL)
    316         , fActive(NULL)
    317         , fNext(NULL)
    318         , fPartner(NULL)
    319         , fCount(0)
    320     {
    321 #if LOGGING_ENABLED
    322         static int gID = 0;
    323         fID = gID++;
    324         LOG("*** created Poly %d\n", fID);
    325 #endif
    326     }
    327     typedef enum { kNeither_Side, kLeft_Side, kRight_Side } Side;
    328     struct MonotonePoly {
    329         MonotonePoly()
    330             : fSide(kNeither_Side)
    331             , fHead(NULL)
    332             , fTail(NULL)
    333             , fPrev(NULL)
    334             , fNext(NULL) {}
    335         Side          fSide;
    336         Vertex*       fHead;
    337         Vertex*       fTail;
    338         MonotonePoly* fPrev;
    339         MonotonePoly* fNext;
    340         bool addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
    341             Vertex* newV = ALLOC_NEW(Vertex, (v->fPoint), alloc);
    342             bool done = false;
    343             if (fSide == kNeither_Side) {
    344                 fSide = side;
    345             } else {
    346                 done = side != fSide;
    347             }
    348             if (fHead == NULL) {
    349                 fHead = fTail = newV;
    350             } else if (fSide == kRight_Side) {
    351                 newV->fPrev = fTail;
    352                 fTail->fNext = newV;
    353                 fTail = newV;
    354             } else {
    355                 newV->fNext = fHead;
    356                 fHead->fPrev = newV;
    357                 fHead = newV;
    358             }
    359             return done;
    360         }
    361 
    362         SkPoint* emit(SkPoint* data) {
    363             Vertex* first = fHead;
    364             Vertex* v = first->fNext;
    365             while (v != fTail) {
    366                 SkASSERT(v && v->fPrev && v->fNext);
    367                 Vertex* prev = v->fPrev;
    368                 Vertex* curr = v;
    369                 Vertex* next = v->fNext;
    370                 double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
    371                 double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
    372                 double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
    373                 double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
    374                 if (ax * by - ay * bx >= 0.0) {
    375                     data = emit_triangle(prev, curr, next, data);
    376                     v->fPrev->fNext = v->fNext;
    377                     v->fNext->fPrev = v->fPrev;
    378                     if (v->fPrev == first) {
    379                         v = v->fNext;
    380                     } else {
    381                         v = v->fPrev;
    382                     }
    383                 } else {
    384                     v = v->fNext;
    385                 }
    386             }
    387             return data;
    388         }
    389     };
    390     Poly* addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
    391         LOG("addVertex() to %d at %g (%g, %g), %s side\n", fID, v->fID, v->fPoint.fX, v->fPoint.fY,
    392                side == kLeft_Side ? "left" : side == kRight_Side ? "right" : "neither");
    393         Poly* partner = fPartner;
    394         Poly* poly = this;
    395         if (partner) {
    396             fPartner = partner->fPartner = NULL;
    397         }
    398         if (!fActive) {
    399             fActive = ALLOC_NEW(MonotonePoly, (), alloc);
    400         }
    401         if (fActive->addVertex(v, side, alloc)) {
    402             if (fTail) {
    403                 fActive->fPrev = fTail;
    404                 fTail->fNext = fActive;
    405                 fTail = fActive;
    406             } else {
    407                 fHead = fTail = fActive;
    408             }
    409             if (partner) {
    410                 partner->addVertex(v, side, alloc);
    411                 poly = partner;
    412             } else {
    413                 Vertex* prev = fActive->fSide == Poly::kLeft_Side ?
    414                                fActive->fHead->fNext : fActive->fTail->fPrev;
    415                 fActive = ALLOC_NEW(MonotonePoly, , alloc);
    416                 fActive->addVertex(prev, Poly::kNeither_Side, alloc);
    417                 fActive->addVertex(v, side, alloc);
    418             }
    419         }
    420         fCount++;
    421         return poly;
    422     }
    423     void end(Vertex* v, SkChunkAlloc& alloc) {
    424         LOG("end() %d at %g, %g\n", fID, v->fPoint.fX, v->fPoint.fY);
    425         if (fPartner) {
    426             fPartner = fPartner->fPartner = NULL;
    427         }
    428         addVertex(v, fActive->fSide == kLeft_Side ? kRight_Side : kLeft_Side, alloc);
    429     }
    430     SkPoint* emit(SkPoint *data) {
    431         if (fCount < 3) {
    432             return data;
    433         }
    434         LOG("emit() %d, size %d\n", fID, fCount);
    435         for (MonotonePoly* m = fHead; m != NULL; m = m->fNext) {
    436             data = m->emit(data);
    437         }
    438         return data;
    439     }
    440     int fWinding;
    441     MonotonePoly* fHead;
    442     MonotonePoly* fTail;
    443     MonotonePoly* fActive;
    444     Poly* fNext;
    445     Poly* fPartner;
    446     int fCount;
    447 #if LOGGING_ENABLED
    448     int fID;
    449 #endif
    450 };
    451 
    452 /***************************************************************************************/
    453 
    454 bool coincident(const SkPoint& a, const SkPoint& b) {
    455     return a == b;
    456 }
    457 
    458 Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) {
    459     Poly* poly = ALLOC_NEW(Poly, (winding), alloc);
    460     poly->addVertex(v, Poly::kNeither_Side, alloc);
    461     poly->fNext = *head;
    462     *head = poly;
    463     return poly;
    464 }
    465 
    466 Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head,
    467                                 SkChunkAlloc& alloc) {
    468     Vertex* v = ALLOC_NEW(Vertex, (p), alloc);
    469 #if LOGGING_ENABLED
    470     static float gID = 0.0f;
    471     v->fID = gID++;
    472 #endif
    473     if (prev) {
    474         prev->fNext = v;
    475         v->fPrev = prev;
    476     } else {
    477         *head = v;
    478     }
    479     return v;
    480 }
    481 
    482 Vertex* generate_quadratic_points(const SkPoint& p0,
    483                                   const SkPoint& p1,
    484                                   const SkPoint& p2,
    485                                   SkScalar tolSqd,
    486                                   Vertex* prev,
    487                                   Vertex** head,
    488                                   int pointsLeft,
    489                                   SkChunkAlloc& alloc) {
    490     SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2);
    491     if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) {
    492         return append_point_to_contour(p2, prev, head, alloc);
    493     }
    494 
    495     const SkPoint q[] = {
    496         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
    497         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
    498     };
    499     const SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
    500 
    501     pointsLeft >>= 1;
    502     prev = generate_quadratic_points(p0, q[0], r, tolSqd, prev, head, pointsLeft, alloc);
    503     prev = generate_quadratic_points(r, q[1], p2, tolSqd, prev, head, pointsLeft, alloc);
    504     return prev;
    505 }
    506 
    507 Vertex* generate_cubic_points(const SkPoint& p0,
    508                               const SkPoint& p1,
    509                               const SkPoint& p2,
    510                               const SkPoint& p3,
    511                               SkScalar tolSqd,
    512                               Vertex* prev,
    513                               Vertex** head,
    514                               int pointsLeft,
    515                               SkChunkAlloc& alloc) {
    516     SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3);
    517     SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3);
    518     if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
    519         !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
    520         return append_point_to_contour(p3, prev, head, alloc);
    521     }
    522     const SkPoint q[] = {
    523         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
    524         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
    525         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
    526     };
    527     const SkPoint r[] = {
    528         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
    529         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
    530     };
    531     const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
    532     pointsLeft >>= 1;
    533     prev = generate_cubic_points(p0, q[0], r[0], s, tolSqd, prev, head, pointsLeft, alloc);
    534     prev = generate_cubic_points(s, r[1], q[2], p3, tolSqd, prev, head, pointsLeft, alloc);
    535     return prev;
    536 }
    537 
    538 // Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
    539 
    540 void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
    541                       Vertex** contours, SkChunkAlloc& alloc) {
    542 
    543     SkScalar toleranceSqd = tolerance * tolerance;
    544 
    545     SkPoint pts[4];
    546     bool done = false;
    547     SkPath::Iter iter(path, false);
    548     Vertex* prev = NULL;
    549     Vertex* head = NULL;
    550     if (path.isInverseFillType()) {
    551         SkPoint quad[4];
    552         clipBounds.toQuad(quad);
    553         for (int i = 3; i >= 0; i--) {
    554             prev = append_point_to_contour(quad[i], prev, &head, alloc);
    555         }
    556         head->fPrev = prev;
    557         prev->fNext = head;
    558         *contours++ = head;
    559         head = prev = NULL;
    560     }
    561     SkAutoConicToQuads converter;
    562     while (!done) {
    563         SkPath::Verb verb = iter.next(pts);
    564         switch (verb) {
    565             case SkPath::kConic_Verb: {
    566                 SkScalar weight = iter.conicWeight();
    567                 const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
    568                 for (int i = 0; i < converter.countQuads(); ++i) {
    569                     int pointsLeft = GrPathUtils::quadraticPointCount(quadPts, tolerance);
    570                     prev = generate_quadratic_points(quadPts[0], quadPts[1], quadPts[2],
    571                                                      toleranceSqd, prev, &head, pointsLeft, alloc);
    572                     quadPts += 2;
    573                 }
    574                 break;
    575             }
    576             case SkPath::kMove_Verb:
    577                 if (head) {
    578                     head->fPrev = prev;
    579                     prev->fNext = head;
    580                     *contours++ = head;
    581                 }
    582                 head = prev = NULL;
    583                 prev = append_point_to_contour(pts[0], prev, &head, alloc);
    584                 break;
    585             case SkPath::kLine_Verb: {
    586                 prev = append_point_to_contour(pts[1], prev, &head, alloc);
    587                 break;
    588             }
    589             case SkPath::kQuad_Verb: {
    590                 int pointsLeft = GrPathUtils::quadraticPointCount(pts, tolerance);
    591                 prev = generate_quadratic_points(pts[0], pts[1], pts[2], toleranceSqd, prev,
    592                                                  &head, pointsLeft, alloc);
    593                 break;
    594             }
    595             case SkPath::kCubic_Verb: {
    596                 int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
    597                 prev = generate_cubic_points(pts[0], pts[1], pts[2], pts[3],
    598                                 toleranceSqd, prev, &head, pointsLeft, alloc);
    599                 break;
    600             }
    601             case SkPath::kClose_Verb:
    602                 if (head) {
    603                     head->fPrev = prev;
    604                     prev->fNext = head;
    605                     *contours++ = head;
    606                 }
    607                 head = prev = NULL;
    608                 break;
    609             case SkPath::kDone_Verb:
    610                 if (head) {
    611                     head->fPrev = prev;
    612                     prev->fNext = head;
    613                     *contours++ = head;
    614                 }
    615                 done = true;
    616                 break;
    617         }
    618     }
    619 }
    620 
    621 inline bool apply_fill_type(SkPath::FillType fillType, int winding) {
    622     switch (fillType) {
    623         case SkPath::kWinding_FillType:
    624             return winding != 0;
    625         case SkPath::kEvenOdd_FillType:
    626             return (winding & 1) != 0;
    627         case SkPath::kInverseWinding_FillType:
    628             return winding == 1;
    629         case SkPath::kInverseEvenOdd_FillType:
    630             return (winding & 1) == 1;
    631         default:
    632             SkASSERT(false);
    633             return false;
    634     }
    635 }
    636 
    637 Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc, Comparator& c) {
    638     int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
    639     Vertex* top = winding < 0 ? next : prev;
    640     Vertex* bottom = winding < 0 ? prev : next;
    641     return ALLOC_NEW(Edge, (top, bottom, winding), alloc);
    642 }
    643 
    644 void remove_edge(Edge* edge, EdgeList* edges) {
    645     LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
    646     SkASSERT(edge->isActive(edges));
    647     remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &edges->fHead, &edges->fTail);
    648 }
    649 
    650 void insert_edge(Edge* edge, Edge* prev, EdgeList* edges) {
    651     LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
    652     SkASSERT(!edge->isActive(edges));
    653     Edge* next = prev ? prev->fRight : edges->fHead;
    654     insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &edges->fHead, &edges->fTail);
    655 }
    656 
    657 void find_enclosing_edges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) {
    658     if (v->fFirstEdgeAbove) {
    659         *left = v->fFirstEdgeAbove->fLeft;
    660         *right = v->fLastEdgeAbove->fRight;
    661         return;
    662     }
    663     Edge* next = NULL;
    664     Edge* prev;
    665     for (prev = edges->fTail; prev != NULL; prev = prev->fLeft) {
    666         if (prev->isLeftOf(v)) {
    667             break;
    668         }
    669         next = prev;
    670     }
    671     *left = prev;
    672     *right = next;
    673     return;
    674 }
    675 
    676 void find_enclosing_edges(Edge* edge, EdgeList* edges, Comparator& c, Edge** left, Edge** right) {
    677     Edge* prev = NULL;
    678     Edge* next;
    679     for (next = edges->fHead; next != NULL; next = next->fRight) {
    680         if ((c.sweep_gt(edge->fTop->fPoint, next->fTop->fPoint) && next->isRightOf(edge->fTop)) ||
    681             (c.sweep_gt(next->fTop->fPoint, edge->fTop->fPoint) && edge->isLeftOf(next->fTop)) ||
    682             (c.sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) &&
    683              next->isRightOf(edge->fBottom)) ||
    684             (c.sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) &&
    685              edge->isLeftOf(next->fBottom))) {
    686             break;
    687         }
    688         prev = next;
    689     }
    690     *left = prev;
    691     *right = next;
    692     return;
    693 }
    694 
    695 void fix_active_state(Edge* edge, EdgeList* activeEdges, Comparator& c) {
    696     if (edge->isActive(activeEdges)) {
    697         if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) {
    698             remove_edge(edge, activeEdges);
    699         }
    700     } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) {
    701         Edge* left;
    702         Edge* right;
    703         find_enclosing_edges(edge, activeEdges, c, &left, &right);
    704         insert_edge(edge, left, activeEdges);
    705     }
    706 }
    707 
    708 void insert_edge_above(Edge* edge, Vertex* v, Comparator& c) {
    709     if (edge->fTop->fPoint == edge->fBottom->fPoint ||
    710         c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
    711         return;
    712     }
    713     LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
    714     Edge* prev = NULL;
    715     Edge* next;
    716     for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
    717         if (next->isRightOf(edge->fTop)) {
    718             break;
    719         }
    720         prev = next;
    721     }
    722     insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
    723         edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
    724 }
    725 
    726 void insert_edge_below(Edge* edge, Vertex* v, Comparator& c) {
    727     if (edge->fTop->fPoint == edge->fBottom->fPoint ||
    728         c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
    729         return;
    730     }
    731     LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
    732     Edge* prev = NULL;
    733     Edge* next;
    734     for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
    735         if (next->isRightOf(edge->fBottom)) {
    736             break;
    737         }
    738         prev = next;
    739     }
    740     insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
    741         edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
    742 }
    743 
    744 void remove_edge_above(Edge* edge) {
    745     LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
    746         edge->fBottom->fID);
    747     remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
    748         edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
    749 }
    750 
    751 void remove_edge_below(Edge* edge) {
    752     LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
    753         edge->fTop->fID);
    754     remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
    755         edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
    756 }
    757 
    758 void erase_edge_if_zero_winding(Edge* edge, EdgeList* edges) {
    759     if (edge->fWinding != 0) {
    760         return;
    761     }
    762     LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID);
    763     remove_edge_above(edge);
    764     remove_edge_below(edge);
    765     if (edge->isActive(edges)) {
    766         remove_edge(edge, edges);
    767     }
    768 }
    769 
    770 void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c);
    771 
    772 void set_top(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
    773     remove_edge_below(edge);
    774     edge->fTop = v;
    775     edge->recompute();
    776     insert_edge_below(edge, v, c);
    777     fix_active_state(edge, activeEdges, c);
    778     merge_collinear_edges(edge, activeEdges, c);
    779 }
    780 
    781 void set_bottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
    782     remove_edge_above(edge);
    783     edge->fBottom = v;
    784     edge->recompute();
    785     insert_edge_above(edge, v, c);
    786     fix_active_state(edge, activeEdges, c);
    787     merge_collinear_edges(edge, activeEdges, c);
    788 }
    789 
    790 void merge_edges_above(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
    791     if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
    792         LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
    793             edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
    794             edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
    795         other->fWinding += edge->fWinding;
    796         erase_edge_if_zero_winding(other, activeEdges);
    797         edge->fWinding = 0;
    798         erase_edge_if_zero_winding(edge, activeEdges);
    799     } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
    800         other->fWinding += edge->fWinding;
    801         erase_edge_if_zero_winding(other, activeEdges);
    802         set_bottom(edge, other->fTop, activeEdges, c);
    803     } else {
    804         edge->fWinding += other->fWinding;
    805         erase_edge_if_zero_winding(edge, activeEdges);
    806         set_bottom(other, edge->fTop, activeEdges, c);
    807     }
    808 }
    809 
    810 void merge_edges_below(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
    811     if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
    812         LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
    813             edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
    814             edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
    815         other->fWinding += edge->fWinding;
    816         erase_edge_if_zero_winding(other, activeEdges);
    817         edge->fWinding = 0;
    818         erase_edge_if_zero_winding(edge, activeEdges);
    819     } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
    820         edge->fWinding += other->fWinding;
    821         erase_edge_if_zero_winding(edge, activeEdges);
    822         set_top(other, edge->fBottom, activeEdges, c);
    823     } else {
    824         other->fWinding += edge->fWinding;
    825         erase_edge_if_zero_winding(other, activeEdges);
    826         set_top(edge, other->fBottom, activeEdges, c);
    827     }
    828 }
    829 
    830 void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c) {
    831     if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop ||
    832                                  !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) {
    833         merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges, c);
    834     } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop ||
    835                                         !edge->isLeftOf(edge->fNextEdgeAbove->fTop))) {
    836         merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges, c);
    837     }
    838     if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom ||
    839                                  !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom))) {
    840         merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges, c);
    841     } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->fBottom ||
    842                                         !edge->isLeftOf(edge->fNextEdgeBelow->fBottom))) {
    843         merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges, c);
    844     }
    845 }
    846 
    847 void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc);
    848 
    849 void cleanup_active_edges(Edge* edge, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc) {
    850     Vertex* top = edge->fTop;
    851     Vertex* bottom = edge->fBottom;
    852     if (edge->fLeft) {
    853         Vertex* leftTop = edge->fLeft->fTop;
    854         Vertex* leftBottom = edge->fLeft->fBottom;
    855         if (c.sweep_gt(top->fPoint, leftTop->fPoint) && !edge->fLeft->isLeftOf(top)) {
    856             split_edge(edge->fLeft, edge->fTop, activeEdges, c, alloc);
    857         } else if (c.sweep_gt(leftTop->fPoint, top->fPoint) && !edge->isRightOf(leftTop)) {
    858             split_edge(edge, leftTop, activeEdges, c, alloc);
    859         } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) &&
    860                    !edge->fLeft->isLeftOf(bottom)) {
    861             split_edge(edge->fLeft, bottom, activeEdges, c, alloc);
    862         } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
    863             split_edge(edge, leftBottom, activeEdges, c, alloc);
    864         }
    865     }
    866     if (edge->fRight) {
    867         Vertex* rightTop = edge->fRight->fTop;
    868         Vertex* rightBottom = edge->fRight->fBottom;
    869         if (c.sweep_gt(top->fPoint, rightTop->fPoint) && !edge->fRight->isRightOf(top)) {
    870             split_edge(edge->fRight, top, activeEdges, c, alloc);
    871         } else if (c.sweep_gt(rightTop->fPoint, top->fPoint) && !edge->isLeftOf(rightTop)) {
    872             split_edge(edge, rightTop, activeEdges, c, alloc);
    873         } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
    874                    !edge->fRight->isRightOf(bottom)) {
    875             split_edge(edge->fRight, bottom, activeEdges, c, alloc);
    876         } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
    877                    !edge->isLeftOf(rightBottom)) {
    878             split_edge(edge, rightBottom, activeEdges, c, alloc);
    879         }
    880     }
    881 }
    882 
    883 void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc) {
    884     LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
    885         edge->fTop->fID, edge->fBottom->fID,
    886         v->fID, v->fPoint.fX, v->fPoint.fY);
    887     if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
    888         set_top(edge, v, activeEdges, c);
    889     } else if (c.sweep_gt(v->fPoint, edge->fBottom->fPoint)) {
    890         set_bottom(edge, v, activeEdges, c);
    891     } else {
    892         Edge* newEdge = ALLOC_NEW(Edge, (v, edge->fBottom, edge->fWinding), alloc);
    893         insert_edge_below(newEdge, v, c);
    894         insert_edge_above(newEdge, edge->fBottom, c);
    895         set_bottom(edge, v, activeEdges, c);
    896         cleanup_active_edges(edge, activeEdges, c, alloc);
    897         fix_active_state(newEdge, activeEdges, c);
    898         merge_collinear_edges(newEdge, activeEdges, c);
    899     }
    900 }
    901 
    902 void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, Comparator& c, SkChunkAlloc& alloc) {
    903     LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY,
    904         src->fID, dst->fID);
    905     for (Edge* edge = src->fFirstEdgeAbove; edge;) {
    906         Edge* next = edge->fNextEdgeAbove;
    907         set_bottom(edge, dst, NULL, c);
    908         edge = next;
    909     }
    910     for (Edge* edge = src->fFirstEdgeBelow; edge;) {
    911         Edge* next = edge->fNextEdgeBelow;
    912         set_top(edge, dst, NULL, c);
    913         edge = next;
    914     }
    915     remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, NULL);
    916 }
    917 
    918 Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c,
    919                                SkChunkAlloc& alloc) {
    920     SkPoint p;
    921     if (!edge || !other) {
    922         return NULL;
    923     }
    924     if (edge->intersect(*other, &p)) {
    925         Vertex* v;
    926         LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
    927         if (p == edge->fTop->fPoint || c.sweep_lt(p, edge->fTop->fPoint)) {
    928             split_edge(other, edge->fTop, activeEdges, c, alloc);
    929             v = edge->fTop;
    930         } else if (p == edge->fBottom->fPoint || c.sweep_gt(p, edge->fBottom->fPoint)) {
    931             split_edge(other, edge->fBottom, activeEdges, c, alloc);
    932             v = edge->fBottom;
    933         } else if (p == other->fTop->fPoint || c.sweep_lt(p, other->fTop->fPoint)) {
    934             split_edge(edge, other->fTop, activeEdges, c, alloc);
    935             v = other->fTop;
    936         } else if (p == other->fBottom->fPoint || c.sweep_gt(p, other->fBottom->fPoint)) {
    937             split_edge(edge, other->fBottom, activeEdges, c, alloc);
    938             v = other->fBottom;
    939         } else {
    940             Vertex* nextV = edge->fTop;
    941             while (c.sweep_lt(p, nextV->fPoint)) {
    942                 nextV = nextV->fPrev;
    943             }
    944             while (c.sweep_lt(nextV->fPoint, p)) {
    945                 nextV = nextV->fNext;
    946             }
    947             Vertex* prevV = nextV->fPrev;
    948             if (coincident(prevV->fPoint, p)) {
    949                 v = prevV;
    950             } else if (coincident(nextV->fPoint, p)) {
    951                 v = nextV;
    952             } else {
    953                 v = ALLOC_NEW(Vertex, (p), alloc);
    954                 LOG("inserting between %g (%g, %g) and %g (%g, %g)\n",
    955                     prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY,
    956                     nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY);
    957 #if LOGGING_ENABLED
    958                 v->fID = (nextV->fID + prevV->fID) * 0.5f;
    959 #endif
    960                 v->fPrev = prevV;
    961                 v->fNext = nextV;
    962                 prevV->fNext = v;
    963                 nextV->fPrev = v;
    964             }
    965             split_edge(edge, v, activeEdges, c, alloc);
    966             split_edge(other, v, activeEdges, c, alloc);
    967         }
    968         return v;
    969     }
    970     return NULL;
    971 }
    972 
    973 void sanitize_contours(Vertex** contours, int contourCnt) {
    974     for (int i = 0; i < contourCnt; ++i) {
    975         SkASSERT(contours[i]);
    976         for (Vertex* v = contours[i];;) {
    977             if (coincident(v->fPrev->fPoint, v->fPoint)) {
    978                 LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
    979                 if (v->fPrev == v) {
    980                     contours[i] = NULL;
    981                     break;
    982                 }
    983                 v->fPrev->fNext = v->fNext;
    984                 v->fNext->fPrev = v->fPrev;
    985                 if (contours[i] == v) {
    986                     contours[i] = v->fNext;
    987                 }
    988                 v = v->fPrev;
    989             } else {
    990                 v = v->fNext;
    991                 if (v == contours[i]) break;
    992             }
    993         }
    994     }
    995 }
    996 
    997 void merge_coincident_vertices(Vertex** vertices, Comparator& c, SkChunkAlloc& alloc) {
    998     for (Vertex* v = (*vertices)->fNext; v != NULL; v = v->fNext) {
    999         if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
   1000             v->fPoint = v->fPrev->fPoint;
   1001         }
   1002         if (coincident(v->fPrev->fPoint, v->fPoint)) {
   1003             merge_vertices(v->fPrev, v, vertices, c, alloc);
   1004         }
   1005     }
   1006 }
   1007 
   1008 // Stage 2: convert the contours to a mesh of edges connecting the vertices.
   1009 
   1010 Vertex* build_edges(Vertex** contours, int contourCnt, Comparator& c, SkChunkAlloc& alloc) {
   1011     Vertex* vertices = NULL;
   1012     Vertex* prev = NULL;
   1013     for (int i = 0; i < contourCnt; ++i) {
   1014         for (Vertex* v = contours[i]; v != NULL;) {
   1015             Vertex* vNext = v->fNext;
   1016             Edge* edge = new_edge(v->fPrev, v, alloc, c);
   1017             if (edge->fWinding > 0) {
   1018                 insert_edge_below(edge, v->fPrev, c);
   1019                 insert_edge_above(edge, v, c);
   1020             } else {
   1021                 insert_edge_below(edge, v, c);
   1022                 insert_edge_above(edge, v->fPrev, c);
   1023             }
   1024             merge_collinear_edges(edge, NULL, c);
   1025             if (prev) {
   1026                 prev->fNext = v;
   1027                 v->fPrev = prev;
   1028             } else {
   1029                 vertices = v;
   1030             }
   1031             prev = v;
   1032             v = vNext;
   1033             if (v == contours[i]) break;
   1034         }
   1035     }
   1036     if (prev) {
   1037         prev->fNext = vertices->fPrev = NULL;
   1038     }
   1039     return vertices;
   1040 }
   1041 
   1042 // Stage 3: sort the vertices by increasing sweep direction.
   1043 
   1044 Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c);
   1045 
   1046 void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) {
   1047     Vertex* fast;
   1048     Vertex* slow;
   1049     if (!v || !v->fNext) {
   1050         *pFront = v;
   1051         *pBack = NULL;
   1052     } else {
   1053         slow = v;
   1054         fast = v->fNext;
   1055 
   1056         while (fast != NULL) {
   1057             fast = fast->fNext;
   1058             if (fast != NULL) {
   1059                 slow = slow->fNext;
   1060                 fast = fast->fNext;
   1061             }
   1062         }
   1063 
   1064         *pFront = v;
   1065         *pBack = slow->fNext;
   1066         slow->fNext->fPrev = NULL;
   1067         slow->fNext = NULL;
   1068     }
   1069 }
   1070 
   1071 void merge_sort(Vertex** head, Comparator& c) {
   1072     if (!*head || !(*head)->fNext) {
   1073         return;
   1074     }
   1075 
   1076     Vertex* a;
   1077     Vertex* b;
   1078     front_back_split(*head, &a, &b);
   1079 
   1080     merge_sort(&a, c);
   1081     merge_sort(&b, c);
   1082 
   1083     *head = sorted_merge(a, b, c);
   1084 }
   1085 
   1086 inline void append_vertex(Vertex* v, Vertex** head, Vertex** tail) {
   1087     insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, *tail, NULL, head, tail);
   1088 }
   1089 
   1090 inline void append_vertex_list(Vertex* v, Vertex** head, Vertex** tail) {
   1091     insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, *tail, v->fNext, head, tail);
   1092 }
   1093 
   1094 Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c) {
   1095     Vertex* head = NULL;
   1096     Vertex* tail = NULL;
   1097 
   1098     while (a && b) {
   1099         if (c.sweep_lt(a->fPoint, b->fPoint)) {
   1100             Vertex* next = a->fNext;
   1101             append_vertex(a, &head, &tail);
   1102             a = next;
   1103         } else {
   1104             Vertex* next = b->fNext;
   1105             append_vertex(b, &head, &tail);
   1106             b = next;
   1107         }
   1108     }
   1109     if (a) {
   1110         append_vertex_list(a, &head, &tail);
   1111     }
   1112     if (b) {
   1113         append_vertex_list(b, &head, &tail);
   1114     }
   1115     return head;
   1116 }
   1117 
   1118 // Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
   1119 
   1120 void simplify(Vertex* vertices, Comparator& c, SkChunkAlloc& alloc) {
   1121     LOG("simplifying complex polygons\n");
   1122     EdgeList activeEdges;
   1123     for (Vertex* v = vertices; v != NULL; v = v->fNext) {
   1124         if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
   1125             continue;
   1126         }
   1127 #if LOGGING_ENABLED
   1128         LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
   1129 #endif
   1130         Edge* leftEnclosingEdge = NULL;
   1131         Edge* rightEnclosingEdge = NULL;
   1132         bool restartChecks;
   1133         do {
   1134             restartChecks = false;
   1135             find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
   1136             if (v->fFirstEdgeBelow) {
   1137                 for (Edge* edge = v->fFirstEdgeBelow; edge != NULL; edge = edge->fNextEdgeBelow) {
   1138                     if (check_for_intersection(edge, leftEnclosingEdge, &activeEdges, c, alloc)) {
   1139                         restartChecks = true;
   1140                         break;
   1141                     }
   1142                     if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, c, alloc)) {
   1143                         restartChecks = true;
   1144                         break;
   1145                     }
   1146                 }
   1147             } else {
   1148                 if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
   1149                                                         &activeEdges, c, alloc)) {
   1150                     if (c.sweep_lt(pv->fPoint, v->fPoint)) {
   1151                         v = pv;
   1152                     }
   1153                     restartChecks = true;
   1154                 }
   1155 
   1156             }
   1157         } while (restartChecks);
   1158         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
   1159             remove_edge(e, &activeEdges);
   1160         }
   1161         Edge* leftEdge = leftEnclosingEdge;
   1162         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
   1163             insert_edge(e, leftEdge, &activeEdges);
   1164             leftEdge = e;
   1165         }
   1166         v->fProcessed = true;
   1167     }
   1168 }
   1169 
   1170 // Stage 5: Tessellate the simplified mesh into monotone polygons.
   1171 
   1172 Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) {
   1173     LOG("tessellating simple polygons\n");
   1174     EdgeList activeEdges;
   1175     Poly* polys = NULL;
   1176     for (Vertex* v = vertices; v != NULL; v = v->fNext) {
   1177         if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
   1178             continue;
   1179         }
   1180 #if LOGGING_ENABLED
   1181         LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
   1182 #endif
   1183         Edge* leftEnclosingEdge = NULL;
   1184         Edge* rightEnclosingEdge = NULL;
   1185         find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
   1186         Poly* leftPoly = NULL;
   1187         Poly* rightPoly = NULL;
   1188         if (v->fFirstEdgeAbove) {
   1189             leftPoly = v->fFirstEdgeAbove->fLeftPoly;
   1190             rightPoly = v->fLastEdgeAbove->fRightPoly;
   1191         } else {
   1192             leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : NULL;
   1193             rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : NULL;
   1194         }
   1195 #if LOGGING_ENABLED
   1196         LOG("edges above:\n");
   1197         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
   1198             LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
   1199                 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
   1200         }
   1201         LOG("edges below:\n");
   1202         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
   1203             LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
   1204                 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
   1205         }
   1206 #endif
   1207         if (v->fFirstEdgeAbove) {
   1208             if (leftPoly) {
   1209                 leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc);
   1210             }
   1211             if (rightPoly) {
   1212                 rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
   1213             }
   1214             for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
   1215                 Edge* leftEdge = e;
   1216                 Edge* rightEdge = e->fNextEdgeAbove;
   1217                 SkASSERT(rightEdge->isRightOf(leftEdge->fTop));
   1218                 remove_edge(leftEdge, &activeEdges);
   1219                 if (leftEdge->fRightPoly) {
   1220                     leftEdge->fRightPoly->end(v, alloc);
   1221                 }
   1222                 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != leftEdge->fRightPoly) {
   1223                     rightEdge->fLeftPoly->end(v, alloc);
   1224                 }
   1225             }
   1226             remove_edge(v->fLastEdgeAbove, &activeEdges);
   1227             if (!v->fFirstEdgeBelow) {
   1228                 if (leftPoly && rightPoly && leftPoly != rightPoly) {
   1229                     SkASSERT(leftPoly->fPartner == NULL && rightPoly->fPartner == NULL);
   1230                     rightPoly->fPartner = leftPoly;
   1231                     leftPoly->fPartner = rightPoly;
   1232                 }
   1233             }
   1234         }
   1235         if (v->fFirstEdgeBelow) {
   1236             if (!v->fFirstEdgeAbove) {
   1237                 if (leftPoly && leftPoly == rightPoly) {
   1238                     // Split the poly.
   1239                     if (leftPoly->fActive->fSide == Poly::kLeft_Side) {
   1240                         leftPoly = new_poly(&polys, leftEnclosingEdge->fTop, leftPoly->fWinding,
   1241                                             alloc);
   1242                         leftPoly->addVertex(v, Poly::kRight_Side, alloc);
   1243                         rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
   1244                         leftEnclosingEdge->fRightPoly = leftPoly;
   1245                     } else {
   1246                         rightPoly = new_poly(&polys, rightEnclosingEdge->fTop, rightPoly->fWinding,
   1247                                              alloc);
   1248                         rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
   1249                         leftPoly->addVertex(v, Poly::kRight_Side, alloc);
   1250                         rightEnclosingEdge->fLeftPoly = rightPoly;
   1251                     }
   1252                 } else {
   1253                     if (leftPoly) {
   1254                         leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc);
   1255                     }
   1256                     if (rightPoly) {
   1257                         rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
   1258                     }
   1259                 }
   1260             }
   1261             Edge* leftEdge = v->fFirstEdgeBelow;
   1262             leftEdge->fLeftPoly = leftPoly;
   1263             insert_edge(leftEdge, leftEnclosingEdge, &activeEdges);
   1264             for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
   1265                  rightEdge = rightEdge->fNextEdgeBelow) {
   1266                 insert_edge(rightEdge, leftEdge, &activeEdges);
   1267                 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
   1268                 winding += leftEdge->fWinding;
   1269                 if (winding != 0) {
   1270                     Poly* poly = new_poly(&polys, v, winding, alloc);
   1271                     leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
   1272                 }
   1273                 leftEdge = rightEdge;
   1274             }
   1275             v->fLastEdgeBelow->fRightPoly = rightPoly;
   1276         }
   1277 #if LOGGING_ENABLED
   1278         LOG("\nactive edges:\n");
   1279         for (Edge* e = activeEdges.fHead; e != NULL; e = e->fRight) {
   1280             LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
   1281                 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
   1282         }
   1283 #endif
   1284     }
   1285     return polys;
   1286 }
   1287 
   1288 // This is a driver function which calls stages 2-5 in turn.
   1289 
   1290 Poly* contours_to_polys(Vertex** contours, int contourCnt, Comparator& c, SkChunkAlloc& alloc) {
   1291 #if LOGGING_ENABLED
   1292     for (int i = 0; i < contourCnt; ++i) {
   1293         Vertex* v = contours[i];
   1294         SkASSERT(v);
   1295         LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
   1296         for (v = v->fNext; v != contours[i]; v = v->fNext) {
   1297             LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
   1298         }
   1299     }
   1300 #endif
   1301     sanitize_contours(contours, contourCnt);
   1302     Vertex* vertices = build_edges(contours, contourCnt, c, alloc);
   1303     if (!vertices) {
   1304         return NULL;
   1305     }
   1306 
   1307     // Sort vertices in Y (secondarily in X).
   1308     merge_sort(&vertices, c);
   1309     merge_coincident_vertices(&vertices, c, alloc);
   1310 #if LOGGING_ENABLED
   1311     for (Vertex* v = vertices; v != NULL; v = v->fNext) {
   1312         static float gID = 0.0f;
   1313         v->fID = gID++;
   1314     }
   1315 #endif
   1316     simplify(vertices, c, alloc);
   1317     return tessellate(vertices, alloc);
   1318 }
   1319 
   1320 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
   1321 
   1322 SkPoint* polys_to_triangles(Poly* polys, SkPath::FillType fillType, SkPoint* data) {
   1323     SkPoint* d = data;
   1324     for (Poly* poly = polys; poly; poly = poly->fNext) {
   1325         if (apply_fill_type(fillType, poly->fWinding)) {
   1326             d = poly->emit(d);
   1327         }
   1328     }
   1329     return d;
   1330 }
   1331 
   1332 };
   1333 
   1334 GrTessellatingPathRenderer::GrTessellatingPathRenderer() {
   1335 }
   1336 
   1337 GrPathRenderer::StencilSupport GrTessellatingPathRenderer::onGetStencilSupport(
   1338                                                             const GrDrawTarget*,
   1339                                                             const GrPipelineBuilder*,
   1340                                                             const SkPath&,
   1341                                                             const GrStrokeInfo&) const {
   1342     return GrPathRenderer::kNoSupport_StencilSupport;
   1343 }
   1344 
   1345 bool GrTessellatingPathRenderer::canDrawPath(const GrDrawTarget* target,
   1346                                              const GrPipelineBuilder* pipelineBuilder,
   1347                                              const SkMatrix& viewMatrix,
   1348                                              const SkPath& path,
   1349                                              const GrStrokeInfo& stroke,
   1350                                              bool antiAlias) const {
   1351     // This path renderer can draw all fill styles, but does not do antialiasing. It can do convex
   1352     // and concave paths, but we'll leave the convex ones to simpler algorithms.
   1353     return stroke.isFillStyle() && !antiAlias && !path.isConvex();
   1354 }
   1355 
   1356 class TessellatingPathBatch : public GrBatch {
   1357 public:
   1358 
   1359     static GrBatch* Create(const GrColor& color,
   1360                            const SkPath& path,
   1361                            const SkMatrix& viewMatrix,
   1362                            SkRect clipBounds) {
   1363         return SkNEW_ARGS(TessellatingPathBatch, (color, path, viewMatrix, clipBounds));
   1364     }
   1365 
   1366     const char* name() const override { return "TessellatingPathBatch"; }
   1367 
   1368     void getInvariantOutputColor(GrInitInvariantOutput* out) const override {
   1369         out->setKnownFourComponents(fColor);
   1370     }
   1371 
   1372     void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override {
   1373         out->setUnknownSingleComponent();
   1374     }
   1375 
   1376     void initBatchTracker(const GrPipelineInfo& init) override {
   1377         // Handle any color overrides
   1378         if (init.fColorIgnored) {
   1379             fColor = GrColor_ILLEGAL;
   1380         } else if (GrColor_ILLEGAL != init.fOverrideColor) {
   1381             fColor = init.fOverrideColor;
   1382         }
   1383         fPipelineInfo = init;
   1384     }
   1385 
   1386     void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) override {
   1387         SkRect pathBounds = fPath.getBounds();
   1388         Comparator c;
   1389         if (pathBounds.width() > pathBounds.height()) {
   1390             c.sweep_lt = sweep_lt_horiz;
   1391             c.sweep_gt = sweep_gt_horiz;
   1392         } else {
   1393             c.sweep_lt = sweep_lt_vert;
   1394             c.sweep_gt = sweep_gt_vert;
   1395         }
   1396         SkScalar screenSpaceTol = GrPathUtils::kDefaultTolerance;
   1397         SkScalar tol = GrPathUtils::scaleToleranceToSrc(screenSpaceTol, fViewMatrix, pathBounds);
   1398         int contourCnt;
   1399         int maxPts = GrPathUtils::worstCasePointCount(fPath, &contourCnt, tol);
   1400         if (maxPts <= 0) {
   1401             return;
   1402         }
   1403         if (maxPts > ((int)SK_MaxU16 + 1)) {
   1404             SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
   1405             return;
   1406         }
   1407         SkPath::FillType fillType = fPath.getFillType();
   1408         if (SkPath::IsInverseFillType(fillType)) {
   1409             contourCnt++;
   1410         }
   1411 
   1412         LOG("got %d pts, %d contours\n", maxPts, contourCnt);
   1413         uint32_t flags = GrDefaultGeoProcFactory::kPosition_GPType;
   1414         SkAutoTUnref<const GrGeometryProcessor> gp(
   1415             GrDefaultGeoProcFactory::Create(flags, fColor, fViewMatrix, SkMatrix::I()));
   1416         batchTarget->initDraw(gp, pipeline);
   1417         gp->initBatchTracker(batchTarget->currentBatchTracker(), fPipelineInfo);
   1418 
   1419         SkAutoTDeleteArray<Vertex*> contours(SkNEW_ARRAY(Vertex *, contourCnt));
   1420 
   1421         // For the initial size of the chunk allocator, estimate based on the point count:
   1422         // one vertex per point for the initial passes, plus two for the vertices in the
   1423         // resulting Polys, since the same point may end up in two Polys.  Assume minimal
   1424         // connectivity of one Edge per Vertex (will grow for intersections).
   1425         SkChunkAlloc alloc(maxPts * (3 * sizeof(Vertex) + sizeof(Edge)));
   1426         path_to_contours(fPath, tol, fClipBounds, contours.get(), alloc);
   1427         Poly* polys;
   1428         polys = contours_to_polys(contours.get(), contourCnt, c, alloc);
   1429         int count = 0;
   1430         for (Poly* poly = polys; poly; poly = poly->fNext) {
   1431             if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) {
   1432                 count += (poly->fCount - 2) * (WIREFRAME ? 6 : 3);
   1433             }
   1434         }
   1435         if (0 == count) {
   1436             return;
   1437         }
   1438 
   1439         size_t stride = gp->getVertexStride();
   1440         SkASSERT(stride == sizeof(SkPoint));
   1441         const GrVertexBuffer* vertexBuffer;
   1442         int firstVertex;
   1443         SkPoint* verts = static_cast<SkPoint*>(
   1444             batchTarget->makeVertSpace(stride, count, &vertexBuffer, &firstVertex));
   1445         if (!verts) {
   1446             SkDebugf("Could not allocate vertices\n");
   1447             return;
   1448         }
   1449 
   1450         LOG("emitting %d verts\n", count);
   1451         SkPoint* end = polys_to_triangles(polys, fillType, verts);
   1452         int actualCount = static_cast<int>(end - verts);
   1453         LOG("actual count: %d\n", actualCount);
   1454         SkASSERT(actualCount <= count);
   1455 
   1456         GrPrimitiveType primitiveType = WIREFRAME ? kLines_GrPrimitiveType
   1457                                                   : kTriangles_GrPrimitiveType;
   1458         GrVertices vertices;
   1459         vertices.init(primitiveType, vertexBuffer, firstVertex, actualCount);
   1460         batchTarget->draw(vertices);
   1461 
   1462         batchTarget->putBackVertices((size_t)(count - actualCount), stride);
   1463         return;
   1464     }
   1465 
   1466     bool onCombineIfPossible(GrBatch*) override {
   1467         return false;
   1468     }
   1469 
   1470 private:
   1471     TessellatingPathBatch(const GrColor& color,
   1472                           const SkPath& path,
   1473                           const SkMatrix& viewMatrix,
   1474                           const SkRect& clipBounds)
   1475       : fColor(color)
   1476       , fPath(path)
   1477       , fViewMatrix(viewMatrix)
   1478       , fClipBounds(clipBounds) {
   1479         this->initClassID<TessellatingPathBatch>();
   1480 
   1481         fBounds = path.getBounds();
   1482         viewMatrix.mapRect(&fBounds);
   1483     }
   1484 
   1485     GrColor        fColor;
   1486     SkPath         fPath;
   1487     SkMatrix       fViewMatrix;
   1488     SkRect         fClipBounds; // in source space
   1489     GrPipelineInfo fPipelineInfo;
   1490 };
   1491 
   1492 bool GrTessellatingPathRenderer::onDrawPath(GrDrawTarget* target,
   1493                                             GrPipelineBuilder* pipelineBuilder,
   1494                                             GrColor color,
   1495                                             const SkMatrix& viewM,
   1496                                             const SkPath& path,
   1497                                             const GrStrokeInfo&,
   1498                                             bool antiAlias) {
   1499     SkASSERT(!antiAlias);
   1500     const GrRenderTarget* rt = pipelineBuilder->getRenderTarget();
   1501     if (NULL == rt) {
   1502         return false;
   1503     }
   1504 
   1505     SkIRect clipBoundsI;
   1506     pipelineBuilder->clip().getConservativeBounds(rt, &clipBoundsI);
   1507     SkRect clipBounds = SkRect::Make(clipBoundsI);
   1508     SkMatrix vmi;
   1509     if (!viewM.invert(&vmi)) {
   1510         return false;
   1511     }
   1512     vmi.mapRect(&clipBounds);
   1513     SkAutoTUnref<GrBatch> batch(TessellatingPathBatch::Create(color, path, viewM, clipBounds));
   1514     target->drawBatch(pipelineBuilder, batch);
   1515 
   1516     return true;
   1517 }
   1518 
   1519 ///////////////////////////////////////////////////////////////////////////////////////////////////
   1520 
   1521 #ifdef GR_TEST_UTILS
   1522 
   1523 BATCH_TEST_DEFINE(TesselatingPathBatch) {
   1524     GrColor color = GrRandomColor(random);
   1525     SkMatrix viewMatrix = GrTest::TestMatrixInvertible(random);
   1526     SkPath path = GrTest::TestPath(random);
   1527     SkRect clipBounds = GrTest::TestRect(random);
   1528     SkMatrix vmi;
   1529     bool result = viewMatrix.invert(&vmi);
   1530     if (!result) {
   1531         SkFAIL("Cannot invert matrix\n");
   1532     }
   1533     vmi.mapRect(&clipBounds);
   1534     return TessellatingPathBatch::Create(color, path, viewMatrix, clipBounds);
   1535 }
   1536 
   1537 #endif
   1538