Home | History | Annotate | Download | only in verifier
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "method_verifier-inl.h"
     18 
     19 #include <iostream>
     20 
     21 #include "art_field-inl.h"
     22 #include "art_method-inl.h"
     23 #include "base/logging.h"
     24 #include "base/mutex-inl.h"
     25 #include "base/time_utils.h"
     26 #include "class_linker.h"
     27 #include "compiler_callbacks.h"
     28 #include "dex_file-inl.h"
     29 #include "dex_instruction-inl.h"
     30 #include "dex_instruction_utils.h"
     31 #include "dex_instruction_visitor.h"
     32 #include "gc/accounting/card_table-inl.h"
     33 #include "indenter.h"
     34 #include "intern_table.h"
     35 #include "leb128.h"
     36 #include "mirror/class.h"
     37 #include "mirror/class-inl.h"
     38 #include "mirror/dex_cache-inl.h"
     39 #include "mirror/object-inl.h"
     40 #include "mirror/object_array-inl.h"
     41 #include "reg_type-inl.h"
     42 #include "register_line-inl.h"
     43 #include "runtime.h"
     44 #include "scoped_thread_state_change.h"
     45 #include "utils.h"
     46 #include "handle_scope-inl.h"
     47 #include "verifier/dex_gc_map.h"
     48 
     49 namespace art {
     50 namespace verifier {
     51 
     52 static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
     53 static constexpr bool gDebugVerify = false;
     54 // TODO: Add a constant to method_verifier to turn on verbose logging?
     55 
     56 void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
     57                                  uint32_t insns_size, uint16_t registers_size,
     58                                  MethodVerifier* verifier) {
     59   DCHECK_GT(insns_size, 0U);
     60   register_lines_.reset(new RegisterLine*[insns_size]());
     61   size_ = insns_size;
     62   for (uint32_t i = 0; i < insns_size; i++) {
     63     bool interesting = false;
     64     switch (mode) {
     65       case kTrackRegsAll:
     66         interesting = flags[i].IsOpcode();
     67         break;
     68       case kTrackCompilerInterestPoints:
     69         interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
     70         break;
     71       case kTrackRegsBranches:
     72         interesting = flags[i].IsBranchTarget();
     73         break;
     74       default:
     75         break;
     76     }
     77     if (interesting) {
     78       register_lines_[i] = RegisterLine::Create(registers_size, verifier);
     79     }
     80   }
     81 }
     82 
     83 PcToRegisterLineTable::~PcToRegisterLineTable() {
     84   for (size_t i = 0; i < size_; i++) {
     85     delete register_lines_[i];
     86     if (kIsDebugBuild) {
     87       register_lines_[i] = nullptr;
     88     }
     89   }
     90 }
     91 
     92 // Note: returns true on failure.
     93 ALWAYS_INLINE static inline bool FailOrAbort(MethodVerifier* verifier, bool condition,
     94                                              const char* error_msg, uint32_t work_insn_idx) {
     95   if (kIsDebugBuild) {
     96     // In a debug build, abort if the error condition is wrong.
     97     DCHECK(condition) << error_msg << work_insn_idx;
     98   } else {
     99     // In a non-debug build, just fail the class.
    100     if (!condition) {
    101       verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
    102       return true;
    103     }
    104   }
    105 
    106   return false;
    107 }
    108 
    109 static void SafelyMarkAllRegistersAsConflicts(MethodVerifier* verifier, RegisterLine* reg_line) {
    110   if (verifier->IsInstanceConstructor()) {
    111     // Before we mark all regs as conflicts, check that we don't have an uninitialized this.
    112     reg_line->CheckConstructorReturn(verifier);
    113   }
    114   reg_line->MarkAllRegistersAsConflicts(verifier);
    115 }
    116 
    117 MethodVerifier::FailureKind MethodVerifier::VerifyMethod(
    118     ArtMethod* method, bool allow_soft_failures, std::string* error ATTRIBUTE_UNUSED) {
    119   StackHandleScope<2> hs(Thread::Current());
    120   mirror::Class* klass = method->GetDeclaringClass();
    121   auto h_dex_cache(hs.NewHandle(klass->GetDexCache()));
    122   auto h_class_loader(hs.NewHandle(klass->GetClassLoader()));
    123   return VerifyMethod(hs.Self(), method->GetDexMethodIndex(), method->GetDexFile(), h_dex_cache,
    124                       h_class_loader, klass->GetClassDef(), method->GetCodeItem(), method,
    125                       method->GetAccessFlags(), allow_soft_failures, false);
    126 }
    127 
    128 
    129 MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
    130                                                         mirror::Class* klass,
    131                                                         bool allow_soft_failures,
    132                                                         std::string* error) {
    133   if (klass->IsVerified()) {
    134     return kNoFailure;
    135   }
    136   bool early_failure = false;
    137   std::string failure_message;
    138   const DexFile& dex_file = klass->GetDexFile();
    139   const DexFile::ClassDef* class_def = klass->GetClassDef();
    140   mirror::Class* super = klass->GetSuperClass();
    141   std::string temp;
    142   if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
    143     early_failure = true;
    144     failure_message = " that has no super class";
    145   } else if (super != nullptr && super->IsFinal()) {
    146     early_failure = true;
    147     failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
    148   } else if (class_def == nullptr) {
    149     early_failure = true;
    150     failure_message = " that isn't present in dex file " + dex_file.GetLocation();
    151   }
    152   if (early_failure) {
    153     *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
    154     if (Runtime::Current()->IsAotCompiler()) {
    155       ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
    156       Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
    157     }
    158     return kHardFailure;
    159   }
    160   StackHandleScope<2> hs(self);
    161   Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
    162   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
    163   return VerifyClass(
    164       self, &dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
    165 }
    166 
    167 MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
    168                                                         const DexFile* dex_file,
    169                                                         Handle<mirror::DexCache> dex_cache,
    170                                                         Handle<mirror::ClassLoader> class_loader,
    171                                                         const DexFile::ClassDef* class_def,
    172                                                         bool allow_soft_failures,
    173                                                         std::string* error) {
    174   DCHECK(class_def != nullptr);
    175 
    176   // A class must not be abstract and final.
    177   if ((class_def->access_flags_ & (kAccAbstract | kAccFinal)) == (kAccAbstract | kAccFinal)) {
    178     *error = "Verifier rejected class ";
    179     *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
    180     *error += ": class is abstract and final.";
    181     return kHardFailure;
    182   }
    183 
    184   const uint8_t* class_data = dex_file->GetClassData(*class_def);
    185   if (class_data == nullptr) {
    186     // empty class, probably a marker interface
    187     return kNoFailure;
    188   }
    189   ClassDataItemIterator it(*dex_file, class_data);
    190   while (it.HasNextStaticField() || it.HasNextInstanceField()) {
    191     it.Next();
    192   }
    193   size_t error_count = 0;
    194   bool hard_fail = false;
    195   ClassLinker* linker = Runtime::Current()->GetClassLinker();
    196   int64_t previous_direct_method_idx = -1;
    197   while (it.HasNextDirectMethod()) {
    198     self->AllowThreadSuspension();
    199     uint32_t method_idx = it.GetMemberIndex();
    200     if (method_idx == previous_direct_method_idx) {
    201       // smali can create dex files with two encoded_methods sharing the same method_idx
    202       // http://code.google.com/p/smali/issues/detail?id=119
    203       it.Next();
    204       continue;
    205     }
    206     previous_direct_method_idx = method_idx;
    207     InvokeType type = it.GetMethodInvokeType(*class_def);
    208     ArtMethod* method = linker->ResolveMethod(
    209         *dex_file, method_idx, dex_cache, class_loader, nullptr, type);
    210     if (method == nullptr) {
    211       DCHECK(self->IsExceptionPending());
    212       // We couldn't resolve the method, but continue regardless.
    213       self->ClearException();
    214     } else {
    215       DCHECK(method->GetDeclaringClassUnchecked() != nullptr) << type;
    216     }
    217     StackHandleScope<1> hs(self);
    218     MethodVerifier::FailureKind result = VerifyMethod(self,
    219                                                       method_idx,
    220                                                       dex_file,
    221                                                       dex_cache,
    222                                                       class_loader,
    223                                                       class_def,
    224                                                       it.GetMethodCodeItem(),
    225         method, it.GetMethodAccessFlags(), allow_soft_failures, false);
    226     if (result != kNoFailure) {
    227       if (result == kHardFailure) {
    228         hard_fail = true;
    229         if (error_count > 0) {
    230           *error += "\n";
    231         }
    232         *error = "Verifier rejected class ";
    233         *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
    234         *error += " due to bad method ";
    235         *error += PrettyMethod(method_idx, *dex_file);
    236       }
    237       ++error_count;
    238     }
    239     it.Next();
    240   }
    241   int64_t previous_virtual_method_idx = -1;
    242   while (it.HasNextVirtualMethod()) {
    243     self->AllowThreadSuspension();
    244     uint32_t method_idx = it.GetMemberIndex();
    245     if (method_idx == previous_virtual_method_idx) {
    246       // smali can create dex files with two encoded_methods sharing the same method_idx
    247       // http://code.google.com/p/smali/issues/detail?id=119
    248       it.Next();
    249       continue;
    250     }
    251     previous_virtual_method_idx = method_idx;
    252     InvokeType type = it.GetMethodInvokeType(*class_def);
    253     ArtMethod* method = linker->ResolveMethod(
    254         *dex_file, method_idx, dex_cache, class_loader, nullptr, type);
    255     if (method == nullptr) {
    256       DCHECK(self->IsExceptionPending());
    257       // We couldn't resolve the method, but continue regardless.
    258       self->ClearException();
    259     }
    260     StackHandleScope<1> hs(self);
    261     MethodVerifier::FailureKind result = VerifyMethod(self,
    262                                                       method_idx,
    263                                                       dex_file,
    264                                                       dex_cache,
    265                                                       class_loader,
    266                                                       class_def,
    267                                                       it.GetMethodCodeItem(),
    268         method, it.GetMethodAccessFlags(), allow_soft_failures, false);
    269     if (result != kNoFailure) {
    270       if (result == kHardFailure) {
    271         hard_fail = true;
    272         if (error_count > 0) {
    273           *error += "\n";
    274         }
    275         *error = "Verifier rejected class ";
    276         *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
    277         *error += " due to bad method ";
    278         *error += PrettyMethod(method_idx, *dex_file);
    279       }
    280       ++error_count;
    281     }
    282     it.Next();
    283   }
    284   if (error_count == 0) {
    285     return kNoFailure;
    286   } else {
    287     return hard_fail ? kHardFailure : kSoftFailure;
    288   }
    289 }
    290 
    291 static bool IsLargeMethod(const DexFile::CodeItem* const code_item) {
    292   if (code_item == nullptr) {
    293     return false;
    294   }
    295 
    296   uint16_t registers_size = code_item->registers_size_;
    297   uint32_t insns_size = code_item->insns_size_in_code_units_;
    298 
    299   return registers_size * insns_size > 4*1024*1024;
    300 }
    301 
    302 MethodVerifier::FailureKind MethodVerifier::VerifyMethod(Thread* self, uint32_t method_idx,
    303                                                          const DexFile* dex_file,
    304                                                          Handle<mirror::DexCache> dex_cache,
    305                                                          Handle<mirror::ClassLoader> class_loader,
    306                                                          const DexFile::ClassDef* class_def,
    307                                                          const DexFile::CodeItem* code_item,
    308                                                          ArtMethod* method,
    309                                                          uint32_t method_access_flags,
    310                                                          bool allow_soft_failures,
    311                                                          bool need_precise_constants) {
    312   MethodVerifier::FailureKind result = kNoFailure;
    313   uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
    314 
    315   MethodVerifier verifier(self, dex_file, dex_cache, class_loader, class_def, code_item,
    316                           method_idx, method, method_access_flags, true, allow_soft_failures,
    317                           need_precise_constants, true);
    318   if (verifier.Verify()) {
    319     // Verification completed, however failures may be pending that didn't cause the verification
    320     // to hard fail.
    321     CHECK(!verifier.have_pending_hard_failure_);
    322     if (verifier.failures_.size() != 0) {
    323       if (VLOG_IS_ON(verifier)) {
    324           verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
    325                                 << PrettyMethod(method_idx, *dex_file) << "\n");
    326       }
    327       result = kSoftFailure;
    328     }
    329   } else {
    330     // Bad method data.
    331     CHECK_NE(verifier.failures_.size(), 0U);
    332     CHECK(verifier.have_pending_hard_failure_);
    333     verifier.DumpFailures(LOG(INFO) << "Verification error in "
    334                                     << PrettyMethod(method_idx, *dex_file) << "\n");
    335     if (gDebugVerify) {
    336       std::cout << "\n" << verifier.info_messages_.str();
    337       verifier.Dump(std::cout);
    338     }
    339     result = kHardFailure;
    340   }
    341   if (kTimeVerifyMethod) {
    342     uint64_t duration_ns = NanoTime() - start_ns;
    343     if (duration_ns > MsToNs(100)) {
    344       LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
    345                    << " took " << PrettyDuration(duration_ns)
    346                    << (IsLargeMethod(code_item) ? " (large method)" : "");
    347     }
    348   }
    349   return result;
    350 }
    351 
    352 MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self, std::ostream& os, uint32_t dex_method_idx,
    353                                          const DexFile* dex_file,
    354                                          Handle<mirror::DexCache> dex_cache,
    355                                          Handle<mirror::ClassLoader> class_loader,
    356                                          const DexFile::ClassDef* class_def,
    357                                          const DexFile::CodeItem* code_item,
    358                                          ArtMethod* method,
    359                                          uint32_t method_access_flags) {
    360   MethodVerifier* verifier = new MethodVerifier(self, dex_file, dex_cache, class_loader,
    361                                                 class_def, code_item, dex_method_idx, method,
    362                                                 method_access_flags, true, true, true, true);
    363   verifier->Verify();
    364   verifier->DumpFailures(os);
    365   os << verifier->info_messages_.str();
    366   // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
    367   // and querying any info is dangerous/can abort.
    368   if (verifier->have_pending_hard_failure_) {
    369     delete verifier;
    370     return nullptr;
    371   } else {
    372     verifier->Dump(os);
    373     return verifier;
    374   }
    375 }
    376 
    377 MethodVerifier::MethodVerifier(Thread* self,
    378                                const DexFile* dex_file, Handle<mirror::DexCache> dex_cache,
    379                                Handle<mirror::ClassLoader> class_loader,
    380                                const DexFile::ClassDef* class_def,
    381                                const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
    382                                ArtMethod* method, uint32_t method_access_flags,
    383                                bool can_load_classes, bool allow_soft_failures,
    384                                bool need_precise_constants, bool verify_to_dump,
    385                                bool allow_thread_suspension)
    386     : self_(self),
    387       reg_types_(can_load_classes),
    388       work_insn_idx_(DexFile::kDexNoIndex),
    389       dex_method_idx_(dex_method_idx),
    390       mirror_method_(method),
    391       method_access_flags_(method_access_flags),
    392       return_type_(nullptr),
    393       dex_file_(dex_file),
    394       dex_cache_(dex_cache),
    395       class_loader_(class_loader),
    396       class_def_(class_def),
    397       code_item_(code_item),
    398       declaring_class_(nullptr),
    399       interesting_dex_pc_(-1),
    400       monitor_enter_dex_pcs_(nullptr),
    401       have_pending_hard_failure_(false),
    402       have_pending_runtime_throw_failure_(false),
    403       have_any_pending_runtime_throw_failure_(false),
    404       new_instance_count_(0),
    405       monitor_enter_count_(0),
    406       can_load_classes_(can_load_classes),
    407       allow_soft_failures_(allow_soft_failures),
    408       need_precise_constants_(need_precise_constants),
    409       has_check_casts_(false),
    410       has_virtual_or_interface_invokes_(false),
    411       verify_to_dump_(verify_to_dump),
    412       allow_thread_suspension_(allow_thread_suspension),
    413       link_(nullptr) {
    414   self->PushVerifier(this);
    415   DCHECK(class_def != nullptr);
    416 }
    417 
    418 MethodVerifier::~MethodVerifier() {
    419   Thread::Current()->PopVerifier(this);
    420   STLDeleteElements(&failure_messages_);
    421 }
    422 
    423 void MethodVerifier::FindLocksAtDexPc(ArtMethod* m, uint32_t dex_pc,
    424                                       std::vector<uint32_t>* monitor_enter_dex_pcs) {
    425   StackHandleScope<2> hs(Thread::Current());
    426   Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
    427   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
    428   MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
    429                           m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(),
    430                           false, true, false, false);
    431   verifier.interesting_dex_pc_ = dex_pc;
    432   verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
    433   verifier.FindLocksAtDexPc();
    434 }
    435 
    436 static bool HasMonitorEnterInstructions(const DexFile::CodeItem* const code_item) {
    437   const Instruction* inst = Instruction::At(code_item->insns_);
    438 
    439   uint32_t insns_size = code_item->insns_size_in_code_units_;
    440   for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
    441     if (inst->Opcode() == Instruction::MONITOR_ENTER) {
    442       return true;
    443     }
    444 
    445     dex_pc += inst->SizeInCodeUnits();
    446     inst = inst->Next();
    447   }
    448 
    449   return false;
    450 }
    451 
    452 void MethodVerifier::FindLocksAtDexPc() {
    453   CHECK(monitor_enter_dex_pcs_ != nullptr);
    454   CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
    455 
    456   // Quick check whether there are any monitor_enter instructions at all.
    457   if (!HasMonitorEnterInstructions(code_item_)) {
    458     return;
    459   }
    460 
    461   // Strictly speaking, we ought to be able to get away with doing a subset of the full method
    462   // verification. In practice, the phase we want relies on data structures set up by all the
    463   // earlier passes, so we just run the full method verification and bail out early when we've
    464   // got what we wanted.
    465   Verify();
    466 }
    467 
    468 ArtField* MethodVerifier::FindAccessedFieldAtDexPc(ArtMethod* m, uint32_t dex_pc) {
    469   StackHandleScope<2> hs(Thread::Current());
    470   Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
    471   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
    472   MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
    473                           m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
    474                           true, false, true);
    475   return verifier.FindAccessedFieldAtDexPc(dex_pc);
    476 }
    477 
    478 ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
    479   CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
    480 
    481   // Strictly speaking, we ought to be able to get away with doing a subset of the full method
    482   // verification. In practice, the phase we want relies on data structures set up by all the
    483   // earlier passes, so we just run the full method verification and bail out early when we've
    484   // got what we wanted.
    485   bool success = Verify();
    486   if (!success) {
    487     return nullptr;
    488   }
    489   RegisterLine* register_line = reg_table_.GetLine(dex_pc);
    490   if (register_line == nullptr) {
    491     return nullptr;
    492   }
    493   const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
    494   return GetQuickFieldAccess(inst, register_line);
    495 }
    496 
    497 ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(ArtMethod* m, uint32_t dex_pc) {
    498   StackHandleScope<2> hs(Thread::Current());
    499   Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
    500   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
    501   MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
    502                           m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
    503                           true, false, true);
    504   return verifier.FindInvokedMethodAtDexPc(dex_pc);
    505 }
    506 
    507 ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
    508   CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
    509 
    510   // Strictly speaking, we ought to be able to get away with doing a subset of the full method
    511   // verification. In practice, the phase we want relies on data structures set up by all the
    512   // earlier passes, so we just run the full method verification and bail out early when we've
    513   // got what we wanted.
    514   bool success = Verify();
    515   if (!success) {
    516     return nullptr;
    517   }
    518   RegisterLine* register_line = reg_table_.GetLine(dex_pc);
    519   if (register_line == nullptr) {
    520     return nullptr;
    521   }
    522   const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
    523   const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
    524   return GetQuickInvokedMethod(inst, register_line, is_range, false);
    525 }
    526 
    527 SafeMap<uint32_t, std::set<uint32_t>> MethodVerifier::FindStringInitMap(ArtMethod* m) {
    528   Thread* self = Thread::Current();
    529   StackHandleScope<2> hs(self);
    530   Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
    531   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
    532   MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
    533                           m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(),
    534                           true, true, false, true);
    535   return verifier.FindStringInitMap();
    536 }
    537 
    538 SafeMap<uint32_t, std::set<uint32_t>>& MethodVerifier::FindStringInitMap() {
    539   Verify();
    540   return GetStringInitPcRegMap();
    541 }
    542 
    543 bool MethodVerifier::Verify() {
    544   // If there aren't any instructions, make sure that's expected, then exit successfully.
    545   if (code_item_ == nullptr) {
    546     if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
    547       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
    548       return false;
    549     } else {
    550       return true;
    551     }
    552   }
    553   // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
    554   if (code_item_->ins_size_ > code_item_->registers_size_) {
    555     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
    556                                       << " regs=" << code_item_->registers_size_;
    557     return false;
    558   }
    559   // Allocate and initialize an array to hold instruction data.
    560   insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
    561   // Run through the instructions and see if the width checks out.
    562   bool result = ComputeWidthsAndCountOps();
    563   // Flag instructions guarded by a "try" block and check exception handlers.
    564   result = result && ScanTryCatchBlocks();
    565   // Perform static instruction verification.
    566   result = result && VerifyInstructions();
    567   // Perform code-flow analysis and return.
    568   result = result && VerifyCodeFlow();
    569   // Compute information for compiler.
    570   if (result && Runtime::Current()->IsCompiler()) {
    571     result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
    572   }
    573   return result;
    574 }
    575 
    576 std::ostream& MethodVerifier::Fail(VerifyError error) {
    577   switch (error) {
    578     case VERIFY_ERROR_NO_CLASS:
    579     case VERIFY_ERROR_NO_FIELD:
    580     case VERIFY_ERROR_NO_METHOD:
    581     case VERIFY_ERROR_ACCESS_CLASS:
    582     case VERIFY_ERROR_ACCESS_FIELD:
    583     case VERIFY_ERROR_ACCESS_METHOD:
    584     case VERIFY_ERROR_INSTANTIATION:
    585     case VERIFY_ERROR_CLASS_CHANGE:
    586       if (Runtime::Current()->IsAotCompiler() || !can_load_classes_) {
    587         // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
    588         // class change and instantiation errors into soft verification errors so that we re-verify
    589         // at runtime. We may fail to find or to agree on access because of not yet available class
    590         // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
    591         // affect the soundness of the code being compiled. Instead, the generated code runs "slow
    592         // paths" that dynamically perform the verification and cause the behavior to be that akin
    593         // to an interpreter.
    594         error = VERIFY_ERROR_BAD_CLASS_SOFT;
    595       } else {
    596         // If we fail again at runtime, mark that this instruction would throw and force this
    597         // method to be executed using the interpreter with checks.
    598         have_pending_runtime_throw_failure_ = true;
    599 
    600         // We need to save the work_line if the instruction wasn't throwing before. Otherwise we'll
    601         // try to merge garbage.
    602         // Note: this assumes that Fail is called before we do any work_line modifications.
    603         // Note: this can fail before we touch any instruction, for the signature of a method. So
    604         //       add a check.
    605         if (work_insn_idx_ < DexFile::kDexNoIndex) {
    606           const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
    607           const Instruction* inst = Instruction::At(insns);
    608           int opcode_flags = Instruction::FlagsOf(inst->Opcode());
    609 
    610           if ((opcode_flags & Instruction::kThrow) == 0 && CurrentInsnFlags()->IsInTry()) {
    611             saved_line_->CopyFromLine(work_line_.get());
    612           }
    613         }
    614       }
    615       break;
    616       // Indication that verification should be retried at runtime.
    617     case VERIFY_ERROR_BAD_CLASS_SOFT:
    618       if (!allow_soft_failures_) {
    619         have_pending_hard_failure_ = true;
    620       }
    621       break;
    622       // Hard verification failures at compile time will still fail at runtime, so the class is
    623       // marked as rejected to prevent it from being compiled.
    624     case VERIFY_ERROR_BAD_CLASS_HARD: {
    625       if (Runtime::Current()->IsAotCompiler()) {
    626         ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
    627         Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
    628       }
    629       have_pending_hard_failure_ = true;
    630       break;
    631     }
    632   }
    633   failures_.push_back(error);
    634   std::string location(StringPrintf("%s: [0x%X] ", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
    635                                     work_insn_idx_));
    636   std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
    637   failure_messages_.push_back(failure_message);
    638   return *failure_message;
    639 }
    640 
    641 std::ostream& MethodVerifier::LogVerifyInfo() {
    642   return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
    643                         << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
    644 }
    645 
    646 void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
    647   size_t failure_num = failure_messages_.size();
    648   DCHECK_NE(failure_num, 0U);
    649   std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
    650   prepend += last_fail_message->str();
    651   failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
    652   delete last_fail_message;
    653 }
    654 
    655 void MethodVerifier::AppendToLastFailMessage(std::string append) {
    656   size_t failure_num = failure_messages_.size();
    657   DCHECK_NE(failure_num, 0U);
    658   std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
    659   (*last_fail_message) << append;
    660 }
    661 
    662 bool MethodVerifier::ComputeWidthsAndCountOps() {
    663   const uint16_t* insns = code_item_->insns_;
    664   size_t insns_size = code_item_->insns_size_in_code_units_;
    665   const Instruction* inst = Instruction::At(insns);
    666   size_t new_instance_count = 0;
    667   size_t monitor_enter_count = 0;
    668   size_t dex_pc = 0;
    669 
    670   while (dex_pc < insns_size) {
    671     Instruction::Code opcode = inst->Opcode();
    672     switch (opcode) {
    673       case Instruction::APUT_OBJECT:
    674       case Instruction::CHECK_CAST:
    675         has_check_casts_ = true;
    676         break;
    677       case Instruction::INVOKE_VIRTUAL:
    678       case Instruction::INVOKE_VIRTUAL_RANGE:
    679       case Instruction::INVOKE_INTERFACE:
    680       case Instruction::INVOKE_INTERFACE_RANGE:
    681         has_virtual_or_interface_invokes_ = true;
    682         break;
    683       case Instruction::MONITOR_ENTER:
    684         monitor_enter_count++;
    685         break;
    686       case Instruction::NEW_INSTANCE:
    687         new_instance_count++;
    688         break;
    689       default:
    690         break;
    691     }
    692     size_t inst_size = inst->SizeInCodeUnits();
    693     insn_flags_[dex_pc].SetIsOpcode();
    694     dex_pc += inst_size;
    695     inst = inst->RelativeAt(inst_size);
    696   }
    697 
    698   if (dex_pc != insns_size) {
    699     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
    700                                       << dex_pc << " vs. " << insns_size << ")";
    701     return false;
    702   }
    703 
    704   new_instance_count_ = new_instance_count;
    705   monitor_enter_count_ = monitor_enter_count;
    706   return true;
    707 }
    708 
    709 bool MethodVerifier::ScanTryCatchBlocks() {
    710   uint32_t tries_size = code_item_->tries_size_;
    711   if (tries_size == 0) {
    712     return true;
    713   }
    714   uint32_t insns_size = code_item_->insns_size_in_code_units_;
    715   const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
    716 
    717   for (uint32_t idx = 0; idx < tries_size; idx++) {
    718     const DexFile::TryItem* try_item = &tries[idx];
    719     uint32_t start = try_item->start_addr_;
    720     uint32_t end = start + try_item->insn_count_;
    721     if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
    722       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
    723                                         << " endAddr=" << end << " (size=" << insns_size << ")";
    724       return false;
    725     }
    726     if (!insn_flags_[start].IsOpcode()) {
    727       Fail(VERIFY_ERROR_BAD_CLASS_HARD)
    728           << "'try' block starts inside an instruction (" << start << ")";
    729       return false;
    730     }
    731     uint32_t dex_pc = start;
    732     const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
    733     while (dex_pc < end) {
    734       insn_flags_[dex_pc].SetInTry();
    735       size_t insn_size = inst->SizeInCodeUnits();
    736       dex_pc += insn_size;
    737       inst = inst->RelativeAt(insn_size);
    738     }
    739   }
    740   // Iterate over each of the handlers to verify target addresses.
    741   const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
    742   uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
    743   ClassLinker* linker = Runtime::Current()->GetClassLinker();
    744   for (uint32_t idx = 0; idx < handlers_size; idx++) {
    745     CatchHandlerIterator iterator(handlers_ptr);
    746     for (; iterator.HasNext(); iterator.Next()) {
    747       uint32_t dex_pc= iterator.GetHandlerAddress();
    748       if (!insn_flags_[dex_pc].IsOpcode()) {
    749         Fail(VERIFY_ERROR_BAD_CLASS_HARD)
    750             << "exception handler starts at bad address (" << dex_pc << ")";
    751         return false;
    752       }
    753       if (!CheckNotMoveResult(code_item_->insns_, dex_pc)) {
    754         Fail(VERIFY_ERROR_BAD_CLASS_HARD)
    755             << "exception handler begins with move-result* (" << dex_pc << ")";
    756         return false;
    757       }
    758       insn_flags_[dex_pc].SetBranchTarget();
    759       // Ensure exception types are resolved so that they don't need resolution to be delivered,
    760       // unresolved exception types will be ignored by exception delivery
    761       if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
    762         mirror::Class* exception_type = linker->ResolveType(*dex_file_,
    763                                                             iterator.GetHandlerTypeIndex(),
    764                                                             dex_cache_, class_loader_);
    765         if (exception_type == nullptr) {
    766           DCHECK(self_->IsExceptionPending());
    767           self_->ClearException();
    768         }
    769       }
    770     }
    771     handlers_ptr = iterator.EndDataPointer();
    772   }
    773   return true;
    774 }
    775 
    776 bool MethodVerifier::VerifyInstructions() {
    777   const Instruction* inst = Instruction::At(code_item_->insns_);
    778 
    779   /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
    780   insn_flags_[0].SetBranchTarget();
    781   insn_flags_[0].SetCompileTimeInfoPoint();
    782 
    783   uint32_t insns_size = code_item_->insns_size_in_code_units_;
    784   for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
    785     if (!VerifyInstruction(inst, dex_pc)) {
    786       DCHECK_NE(failures_.size(), 0U);
    787       return false;
    788     }
    789     /* Flag instructions that are garbage collection points */
    790     // All invoke points are marked as "Throw" points already.
    791     // We are relying on this to also count all the invokes as interesting.
    792     if (inst->IsBranch()) {
    793       insn_flags_[dex_pc].SetCompileTimeInfoPoint();
    794       // The compiler also needs safepoints for fall-through to loop heads.
    795       // Such a loop head must be a target of a branch.
    796       int32_t offset = 0;
    797       bool cond, self_ok;
    798       bool target_ok = GetBranchOffset(dex_pc, &offset, &cond, &self_ok);
    799       DCHECK(target_ok);
    800       insn_flags_[dex_pc + offset].SetCompileTimeInfoPoint();
    801     } else if (inst->IsSwitch() || inst->IsThrow()) {
    802       insn_flags_[dex_pc].SetCompileTimeInfoPoint();
    803     } else if (inst->IsReturn()) {
    804       insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
    805     }
    806     dex_pc += inst->SizeInCodeUnits();
    807     inst = inst->Next();
    808   }
    809   return true;
    810 }
    811 
    812 bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
    813   bool result = true;
    814   switch (inst->GetVerifyTypeArgumentA()) {
    815     case Instruction::kVerifyRegA:
    816       result = result && CheckRegisterIndex(inst->VRegA());
    817       break;
    818     case Instruction::kVerifyRegAWide:
    819       result = result && CheckWideRegisterIndex(inst->VRegA());
    820       break;
    821   }
    822   switch (inst->GetVerifyTypeArgumentB()) {
    823     case Instruction::kVerifyRegB:
    824       result = result && CheckRegisterIndex(inst->VRegB());
    825       break;
    826     case Instruction::kVerifyRegBField:
    827       result = result && CheckFieldIndex(inst->VRegB());
    828       break;
    829     case Instruction::kVerifyRegBMethod:
    830       result = result && CheckMethodIndex(inst->VRegB());
    831       break;
    832     case Instruction::kVerifyRegBNewInstance:
    833       result = result && CheckNewInstance(inst->VRegB());
    834       break;
    835     case Instruction::kVerifyRegBString:
    836       result = result && CheckStringIndex(inst->VRegB());
    837       break;
    838     case Instruction::kVerifyRegBType:
    839       result = result && CheckTypeIndex(inst->VRegB());
    840       break;
    841     case Instruction::kVerifyRegBWide:
    842       result = result && CheckWideRegisterIndex(inst->VRegB());
    843       break;
    844   }
    845   switch (inst->GetVerifyTypeArgumentC()) {
    846     case Instruction::kVerifyRegC:
    847       result = result && CheckRegisterIndex(inst->VRegC());
    848       break;
    849     case Instruction::kVerifyRegCField:
    850       result = result && CheckFieldIndex(inst->VRegC());
    851       break;
    852     case Instruction::kVerifyRegCNewArray:
    853       result = result && CheckNewArray(inst->VRegC());
    854       break;
    855     case Instruction::kVerifyRegCType:
    856       result = result && CheckTypeIndex(inst->VRegC());
    857       break;
    858     case Instruction::kVerifyRegCWide:
    859       result = result && CheckWideRegisterIndex(inst->VRegC());
    860       break;
    861   }
    862   switch (inst->GetVerifyExtraFlags()) {
    863     case Instruction::kVerifyArrayData:
    864       result = result && CheckArrayData(code_offset);
    865       break;
    866     case Instruction::kVerifyBranchTarget:
    867       result = result && CheckBranchTarget(code_offset);
    868       break;
    869     case Instruction::kVerifySwitchTargets:
    870       result = result && CheckSwitchTargets(code_offset);
    871       break;
    872     case Instruction::kVerifyVarArgNonZero:
    873       // Fall-through.
    874     case Instruction::kVerifyVarArg: {
    875       // Instructions that can actually return a negative value shouldn't have this flag.
    876       uint32_t v_a = dchecked_integral_cast<uint32_t>(inst->VRegA());
    877       if ((inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && v_a == 0) ||
    878           v_a > Instruction::kMaxVarArgRegs) {
    879         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << v_a << ") in "
    880                                              "non-range invoke";
    881         return false;
    882       }
    883 
    884       uint32_t args[Instruction::kMaxVarArgRegs];
    885       inst->GetVarArgs(args);
    886       result = result && CheckVarArgRegs(v_a, args);
    887       break;
    888     }
    889     case Instruction::kVerifyVarArgRangeNonZero:
    890       // Fall-through.
    891     case Instruction::kVerifyVarArgRange:
    892       if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
    893           inst->VRegA() <= 0) {
    894         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
    895                                              "range invoke";
    896         return false;
    897       }
    898       result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
    899       break;
    900     case Instruction::kVerifyError:
    901       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
    902       result = false;
    903       break;
    904   }
    905   if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsAotCompiler() && !verify_to_dump_) {
    906     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
    907     result = false;
    908   }
    909   return result;
    910 }
    911 
    912 inline bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
    913   if (idx >= code_item_->registers_size_) {
    914     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
    915                                       << code_item_->registers_size_ << ")";
    916     return false;
    917   }
    918   return true;
    919 }
    920 
    921 inline bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
    922   if (idx + 1 >= code_item_->registers_size_) {
    923     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
    924                                       << "+1 >= " << code_item_->registers_size_ << ")";
    925     return false;
    926   }
    927   return true;
    928 }
    929 
    930 inline bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
    931   if (idx >= dex_file_->GetHeader().field_ids_size_) {
    932     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
    933                                       << dex_file_->GetHeader().field_ids_size_ << ")";
    934     return false;
    935   }
    936   return true;
    937 }
    938 
    939 inline bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
    940   if (idx >= dex_file_->GetHeader().method_ids_size_) {
    941     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
    942                                       << dex_file_->GetHeader().method_ids_size_ << ")";
    943     return false;
    944   }
    945   return true;
    946 }
    947 
    948 inline bool MethodVerifier::CheckNewInstance(uint32_t idx) {
    949   if (idx >= dex_file_->GetHeader().type_ids_size_) {
    950     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
    951                                       << dex_file_->GetHeader().type_ids_size_ << ")";
    952     return false;
    953   }
    954   // We don't need the actual class, just a pointer to the class name.
    955   const char* descriptor = dex_file_->StringByTypeIdx(idx);
    956   if (descriptor[0] != 'L') {
    957     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
    958     return false;
    959   }
    960   return true;
    961 }
    962 
    963 inline bool MethodVerifier::CheckStringIndex(uint32_t idx) {
    964   if (idx >= dex_file_->GetHeader().string_ids_size_) {
    965     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
    966                                       << dex_file_->GetHeader().string_ids_size_ << ")";
    967     return false;
    968   }
    969   return true;
    970 }
    971 
    972 inline bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
    973   if (idx >= dex_file_->GetHeader().type_ids_size_) {
    974     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
    975                                       << dex_file_->GetHeader().type_ids_size_ << ")";
    976     return false;
    977   }
    978   return true;
    979 }
    980 
    981 bool MethodVerifier::CheckNewArray(uint32_t idx) {
    982   if (idx >= dex_file_->GetHeader().type_ids_size_) {
    983     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
    984                                       << dex_file_->GetHeader().type_ids_size_ << ")";
    985     return false;
    986   }
    987   int bracket_count = 0;
    988   const char* descriptor = dex_file_->StringByTypeIdx(idx);
    989   const char* cp = descriptor;
    990   while (*cp++ == '[') {
    991     bracket_count++;
    992   }
    993   if (bracket_count == 0) {
    994     /* The given class must be an array type. */
    995     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
    996         << "can't new-array class '" << descriptor << "' (not an array)";
    997     return false;
    998   } else if (bracket_count > 255) {
    999     /* It is illegal to create an array of more than 255 dimensions. */
   1000     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
   1001         << "can't new-array class '" << descriptor << "' (exceeds limit)";
   1002     return false;
   1003   }
   1004   return true;
   1005 }
   1006 
   1007 bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
   1008   const uint32_t insn_count = code_item_->insns_size_in_code_units_;
   1009   const uint16_t* insns = code_item_->insns_ + cur_offset;
   1010   const uint16_t* array_data;
   1011   int32_t array_data_offset;
   1012 
   1013   DCHECK_LT(cur_offset, insn_count);
   1014   /* make sure the start of the array data table is in range */
   1015   array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
   1016   if ((int32_t) cur_offset + array_data_offset < 0 ||
   1017       cur_offset + array_data_offset + 2 >= insn_count) {
   1018     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
   1019                                       << ", data offset " << array_data_offset
   1020                                       << ", count " << insn_count;
   1021     return false;
   1022   }
   1023   /* offset to array data table is a relative branch-style offset */
   1024   array_data = insns + array_data_offset;
   1025   /* make sure the table is 32-bit aligned */
   1026   if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
   1027     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
   1028                                       << ", data offset " << array_data_offset;
   1029     return false;
   1030   }
   1031   uint32_t value_width = array_data[1];
   1032   uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
   1033   uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
   1034   /* make sure the end of the switch is in range */
   1035   if (cur_offset + array_data_offset + table_size > insn_count) {
   1036     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
   1037                                       << ", data offset " << array_data_offset << ", end "
   1038                                       << cur_offset + array_data_offset + table_size
   1039                                       << ", count " << insn_count;
   1040     return false;
   1041   }
   1042   return true;
   1043 }
   1044 
   1045 bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
   1046   int32_t offset;
   1047   bool isConditional, selfOkay;
   1048   if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
   1049     return false;
   1050   }
   1051   if (!selfOkay && offset == 0) {
   1052     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
   1053                                       << reinterpret_cast<void*>(cur_offset);
   1054     return false;
   1055   }
   1056   // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
   1057   // to have identical "wrap-around" behavior, but it's unwise to depend on that.
   1058   if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
   1059     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
   1060                                       << reinterpret_cast<void*>(cur_offset) << " +" << offset;
   1061     return false;
   1062   }
   1063   const uint32_t insn_count = code_item_->insns_size_in_code_units_;
   1064   int32_t abs_offset = cur_offset + offset;
   1065   if (abs_offset < 0 ||
   1066       (uint32_t) abs_offset >= insn_count ||
   1067       !insn_flags_[abs_offset].IsOpcode()) {
   1068     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
   1069                                       << reinterpret_cast<void*>(abs_offset) << ") at "
   1070                                       << reinterpret_cast<void*>(cur_offset);
   1071     return false;
   1072   }
   1073   insn_flags_[abs_offset].SetBranchTarget();
   1074   return true;
   1075 }
   1076 
   1077 bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
   1078                                   bool* selfOkay) {
   1079   const uint16_t* insns = code_item_->insns_ + cur_offset;
   1080   *pConditional = false;
   1081   *selfOkay = false;
   1082   switch (*insns & 0xff) {
   1083     case Instruction::GOTO:
   1084       *pOffset = ((int16_t) *insns) >> 8;
   1085       break;
   1086     case Instruction::GOTO_32:
   1087       *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
   1088       *selfOkay = true;
   1089       break;
   1090     case Instruction::GOTO_16:
   1091       *pOffset = (int16_t) insns[1];
   1092       break;
   1093     case Instruction::IF_EQ:
   1094     case Instruction::IF_NE:
   1095     case Instruction::IF_LT:
   1096     case Instruction::IF_GE:
   1097     case Instruction::IF_GT:
   1098     case Instruction::IF_LE:
   1099     case Instruction::IF_EQZ:
   1100     case Instruction::IF_NEZ:
   1101     case Instruction::IF_LTZ:
   1102     case Instruction::IF_GEZ:
   1103     case Instruction::IF_GTZ:
   1104     case Instruction::IF_LEZ:
   1105       *pOffset = (int16_t) insns[1];
   1106       *pConditional = true;
   1107       break;
   1108     default:
   1109       return false;
   1110   }
   1111   return true;
   1112 }
   1113 
   1114 bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
   1115   const uint32_t insn_count = code_item_->insns_size_in_code_units_;
   1116   DCHECK_LT(cur_offset, insn_count);
   1117   const uint16_t* insns = code_item_->insns_ + cur_offset;
   1118   /* make sure the start of the switch is in range */
   1119   int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
   1120   if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 > insn_count) {
   1121     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
   1122                                       << ", switch offset " << switch_offset
   1123                                       << ", count " << insn_count;
   1124     return false;
   1125   }
   1126   /* offset to switch table is a relative branch-style offset */
   1127   const uint16_t* switch_insns = insns + switch_offset;
   1128   /* make sure the table is 32-bit aligned */
   1129   if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
   1130     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
   1131                                       << ", switch offset " << switch_offset;
   1132     return false;
   1133   }
   1134   uint32_t switch_count = switch_insns[1];
   1135   int32_t keys_offset, targets_offset;
   1136   uint16_t expected_signature;
   1137   if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
   1138     /* 0=sig, 1=count, 2/3=firstKey */
   1139     targets_offset = 4;
   1140     keys_offset = -1;
   1141     expected_signature = Instruction::kPackedSwitchSignature;
   1142   } else {
   1143     /* 0=sig, 1=count, 2..count*2 = keys */
   1144     keys_offset = 2;
   1145     targets_offset = 2 + 2 * switch_count;
   1146     expected_signature = Instruction::kSparseSwitchSignature;
   1147   }
   1148   uint32_t table_size = targets_offset + switch_count * 2;
   1149   if (switch_insns[0] != expected_signature) {
   1150     Fail(VERIFY_ERROR_BAD_CLASS_HARD)
   1151         << StringPrintf("wrong signature for switch table (%x, wanted %x)",
   1152                         switch_insns[0], expected_signature);
   1153     return false;
   1154   }
   1155   /* make sure the end of the switch is in range */
   1156   if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
   1157     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
   1158                                       << ", switch offset " << switch_offset
   1159                                       << ", end " << (cur_offset + switch_offset + table_size)
   1160                                       << ", count " << insn_count;
   1161     return false;
   1162   }
   1163   /* for a sparse switch, verify the keys are in ascending order */
   1164   if (keys_offset > 0 && switch_count > 1) {
   1165     int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
   1166     for (uint32_t targ = 1; targ < switch_count; targ++) {
   1167       int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
   1168                     (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
   1169       if (key <= last_key) {
   1170         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
   1171                                           << ", this=" << key;
   1172         return false;
   1173       }
   1174       last_key = key;
   1175     }
   1176   }
   1177   /* verify each switch target */
   1178   for (uint32_t targ = 0; targ < switch_count; targ++) {
   1179     int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
   1180                      (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
   1181     int32_t abs_offset = cur_offset + offset;
   1182     if (abs_offset < 0 ||
   1183         abs_offset >= (int32_t) insn_count ||
   1184         !insn_flags_[abs_offset].IsOpcode()) {
   1185       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
   1186                                         << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
   1187                                         << reinterpret_cast<void*>(cur_offset)
   1188                                         << "[" << targ << "]";
   1189       return false;
   1190     }
   1191     insn_flags_[abs_offset].SetBranchTarget();
   1192   }
   1193   return true;
   1194 }
   1195 
   1196 bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
   1197   uint16_t registers_size = code_item_->registers_size_;
   1198   for (uint32_t idx = 0; idx < vA; idx++) {
   1199     if (arg[idx] >= registers_size) {
   1200       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
   1201                                         << ") in non-range invoke (>= " << registers_size << ")";
   1202       return false;
   1203     }
   1204   }
   1205 
   1206   return true;
   1207 }
   1208 
   1209 bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
   1210   uint16_t registers_size = code_item_->registers_size_;
   1211   // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
   1212   // integer overflow when adding them here.
   1213   if (vA + vC > registers_size) {
   1214     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
   1215                                       << " in range invoke (> " << registers_size << ")";
   1216     return false;
   1217   }
   1218   return true;
   1219 }
   1220 
   1221 bool MethodVerifier::VerifyCodeFlow() {
   1222   uint16_t registers_size = code_item_->registers_size_;
   1223   uint32_t insns_size = code_item_->insns_size_in_code_units_;
   1224 
   1225   /* Create and initialize table holding register status */
   1226   reg_table_.Init(kTrackCompilerInterestPoints,
   1227                   insn_flags_.get(),
   1228                   insns_size,
   1229                   registers_size,
   1230                   this);
   1231 
   1232 
   1233   work_line_.reset(RegisterLine::Create(registers_size, this));
   1234   saved_line_.reset(RegisterLine::Create(registers_size, this));
   1235 
   1236   /* Initialize register types of method arguments. */
   1237   if (!SetTypesFromSignature()) {
   1238     DCHECK_NE(failures_.size(), 0U);
   1239     std::string prepend("Bad signature in ");
   1240     prepend += PrettyMethod(dex_method_idx_, *dex_file_);
   1241     PrependToLastFailMessage(prepend);
   1242     return false;
   1243   }
   1244   // We may have a runtime failure here, clear.
   1245   have_pending_runtime_throw_failure_ = false;
   1246 
   1247   /* Perform code flow verification. */
   1248   if (!CodeFlowVerifyMethod()) {
   1249     DCHECK_NE(failures_.size(), 0U);
   1250     return false;
   1251   }
   1252   return true;
   1253 }
   1254 
   1255 std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
   1256   DCHECK_EQ(failures_.size(), failure_messages_.size());
   1257   for (size_t i = 0; i < failures_.size(); ++i) {
   1258       os << failure_messages_[i]->str() << "\n";
   1259   }
   1260   return os;
   1261 }
   1262 
   1263 void MethodVerifier::Dump(std::ostream& os) {
   1264   if (code_item_ == nullptr) {
   1265     os << "Native method\n";
   1266     return;
   1267   }
   1268   {
   1269     os << "Register Types:\n";
   1270     Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
   1271     std::ostream indent_os(&indent_filter);
   1272     reg_types_.Dump(indent_os);
   1273   }
   1274   os << "Dumping instructions and register lines:\n";
   1275   Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
   1276   std::ostream indent_os(&indent_filter);
   1277   const Instruction* inst = Instruction::At(code_item_->insns_);
   1278   for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
   1279       dex_pc += inst->SizeInCodeUnits()) {
   1280     RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
   1281     if (reg_line != nullptr) {
   1282       indent_os << reg_line->Dump(this) << "\n";
   1283     }
   1284     indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
   1285     const bool kDumpHexOfInstruction = false;
   1286     if (kDumpHexOfInstruction) {
   1287       indent_os << inst->DumpHex(5) << " ";
   1288     }
   1289     indent_os << inst->DumpString(dex_file_) << "\n";
   1290     inst = inst->Next();
   1291   }
   1292 }
   1293 
   1294 static bool IsPrimitiveDescriptor(char descriptor) {
   1295   switch (descriptor) {
   1296     case 'I':
   1297     case 'C':
   1298     case 'S':
   1299     case 'B':
   1300     case 'Z':
   1301     case 'F':
   1302     case 'D':
   1303     case 'J':
   1304       return true;
   1305     default:
   1306       return false;
   1307   }
   1308 }
   1309 
   1310 bool MethodVerifier::SetTypesFromSignature() {
   1311   RegisterLine* reg_line = reg_table_.GetLine(0);
   1312 
   1313   // Should have been verified earlier.
   1314   DCHECK_GE(code_item_->registers_size_, code_item_->ins_size_);
   1315 
   1316   uint32_t arg_start = code_item_->registers_size_ - code_item_->ins_size_;
   1317   size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
   1318 
   1319   // Include the "this" pointer.
   1320   size_t cur_arg = 0;
   1321   if (!IsStatic()) {
   1322     if (expected_args == 0) {
   1323       // Expect at least a receiver.
   1324       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected 0 args, but method is not static";
   1325       return false;
   1326     }
   1327 
   1328     // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
   1329     // argument as uninitialized. This restricts field access until the superclass constructor is
   1330     // called.
   1331     const RegType& declaring_class = GetDeclaringClass();
   1332     if (IsConstructor()) {
   1333       if (declaring_class.IsJavaLangObject()) {
   1334         // "this" is implicitly initialized.
   1335         reg_line->SetThisInitialized();
   1336         reg_line->SetRegisterType(this, arg_start + cur_arg, declaring_class);
   1337       } else {
   1338         reg_line->SetRegisterType(this, arg_start + cur_arg,
   1339                                   reg_types_.UninitializedThisArgument(declaring_class));
   1340       }
   1341     } else {
   1342       reg_line->SetRegisterType(this, arg_start + cur_arg, declaring_class);
   1343     }
   1344     cur_arg++;
   1345   }
   1346 
   1347   const DexFile::ProtoId& proto_id =
   1348       dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
   1349   DexFileParameterIterator iterator(*dex_file_, proto_id);
   1350 
   1351   for (; iterator.HasNext(); iterator.Next()) {
   1352     const char* descriptor = iterator.GetDescriptor();
   1353     if (descriptor == nullptr) {
   1354       LOG(FATAL) << "Null descriptor";
   1355     }
   1356     if (cur_arg >= expected_args) {
   1357       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
   1358                                         << " args, found more (" << descriptor << ")";
   1359       return false;
   1360     }
   1361     switch (descriptor[0]) {
   1362       case 'L':
   1363       case '[':
   1364         // We assume that reference arguments are initialized. The only way it could be otherwise
   1365         // (assuming the caller was verified) is if the current method is <init>, but in that case
   1366         // it's effectively considered initialized the instant we reach here (in the sense that we
   1367         // can return without doing anything or call virtual methods).
   1368         {
   1369           const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
   1370           if (!reg_type.IsNonZeroReferenceTypes()) {
   1371             DCHECK(HasFailures());
   1372             return false;
   1373           }
   1374           reg_line->SetRegisterType(this, arg_start + cur_arg, reg_type);
   1375         }
   1376         break;
   1377       case 'Z':
   1378         reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Boolean());
   1379         break;
   1380       case 'C':
   1381         reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Char());
   1382         break;
   1383       case 'B':
   1384         reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Byte());
   1385         break;
   1386       case 'I':
   1387         reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Integer());
   1388         break;
   1389       case 'S':
   1390         reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Short());
   1391         break;
   1392       case 'F':
   1393         reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Float());
   1394         break;
   1395       case 'J':
   1396       case 'D': {
   1397         if (cur_arg + 1 >= expected_args) {
   1398           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
   1399               << " args, found more (" << descriptor << ")";
   1400           return false;
   1401         }
   1402 
   1403         const RegType* lo_half;
   1404         const RegType* hi_half;
   1405         if (descriptor[0] == 'J') {
   1406           lo_half = &reg_types_.LongLo();
   1407           hi_half = &reg_types_.LongHi();
   1408         } else {
   1409           lo_half = &reg_types_.DoubleLo();
   1410           hi_half = &reg_types_.DoubleHi();
   1411         }
   1412         reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half);
   1413         cur_arg++;
   1414         break;
   1415       }
   1416       default:
   1417         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
   1418                                           << descriptor << "'";
   1419         return false;
   1420     }
   1421     cur_arg++;
   1422   }
   1423   if (cur_arg != expected_args) {
   1424     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
   1425                                       << " arguments, found " << cur_arg;
   1426     return false;
   1427   }
   1428   const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
   1429   // Validate return type. We don't do the type lookup; just want to make sure that it has the right
   1430   // format. Only major difference from the method argument format is that 'V' is supported.
   1431   bool result;
   1432   if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
   1433     result = descriptor[1] == '\0';
   1434   } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
   1435     size_t i = 0;
   1436     do {
   1437       i++;
   1438     } while (descriptor[i] == '[');  // process leading [
   1439     if (descriptor[i] == 'L') {  // object array
   1440       do {
   1441         i++;  // find closing ;
   1442       } while (descriptor[i] != ';' && descriptor[i] != '\0');
   1443       result = descriptor[i] == ';';
   1444     } else {  // primitive array
   1445       result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
   1446     }
   1447   } else if (descriptor[0] == 'L') {
   1448     // could be more thorough here, but shouldn't be required
   1449     size_t i = 0;
   1450     do {
   1451       i++;
   1452     } while (descriptor[i] != ';' && descriptor[i] != '\0');
   1453     result = descriptor[i] == ';';
   1454   } else {
   1455     result = false;
   1456   }
   1457   if (!result) {
   1458     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
   1459                                       << descriptor << "'";
   1460   }
   1461   return result;
   1462 }
   1463 
   1464 bool MethodVerifier::CodeFlowVerifyMethod() {
   1465   const uint16_t* insns = code_item_->insns_;
   1466   const uint32_t insns_size = code_item_->insns_size_in_code_units_;
   1467 
   1468   /* Begin by marking the first instruction as "changed". */
   1469   insn_flags_[0].SetChanged();
   1470   uint32_t start_guess = 0;
   1471 
   1472   /* Continue until no instructions are marked "changed". */
   1473   while (true) {
   1474     if (allow_thread_suspension_) {
   1475       self_->AllowThreadSuspension();
   1476     }
   1477     // Find the first marked one. Use "start_guess" as a way to find one quickly.
   1478     uint32_t insn_idx = start_guess;
   1479     for (; insn_idx < insns_size; insn_idx++) {
   1480       if (insn_flags_[insn_idx].IsChanged())
   1481         break;
   1482     }
   1483     if (insn_idx == insns_size) {
   1484       if (start_guess != 0) {
   1485         /* try again, starting from the top */
   1486         start_guess = 0;
   1487         continue;
   1488       } else {
   1489         /* all flags are clear */
   1490         break;
   1491       }
   1492     }
   1493     // We carry the working set of registers from instruction to instruction. If this address can
   1494     // be the target of a branch (or throw) instruction, or if we're skipping around chasing
   1495     // "changed" flags, we need to load the set of registers from the table.
   1496     // Because we always prefer to continue on to the next instruction, we should never have a
   1497     // situation where we have a stray "changed" flag set on an instruction that isn't a branch
   1498     // target.
   1499     work_insn_idx_ = insn_idx;
   1500     if (insn_flags_[insn_idx].IsBranchTarget()) {
   1501       work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
   1502     } else if (kIsDebugBuild) {
   1503       /*
   1504        * Sanity check: retrieve the stored register line (assuming
   1505        * a full table) and make sure it actually matches.
   1506        */
   1507       RegisterLine* register_line = reg_table_.GetLine(insn_idx);
   1508       if (register_line != nullptr) {
   1509         if (work_line_->CompareLine(register_line) != 0) {
   1510           Dump(std::cout);
   1511           std::cout << info_messages_.str();
   1512           LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
   1513                      << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
   1514                      << " work_line=" << work_line_->Dump(this) << "\n"
   1515                      << "  expected=" << register_line->Dump(this);
   1516         }
   1517       }
   1518     }
   1519     if (!CodeFlowVerifyInstruction(&start_guess)) {
   1520       std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
   1521       prepend += " failed to verify: ";
   1522       PrependToLastFailMessage(prepend);
   1523       return false;
   1524     }
   1525     /* Clear "changed" and mark as visited. */
   1526     insn_flags_[insn_idx].SetVisited();
   1527     insn_flags_[insn_idx].ClearChanged();
   1528   }
   1529 
   1530   if (gDebugVerify) {
   1531     /*
   1532      * Scan for dead code. There's nothing "evil" about dead code
   1533      * (besides the wasted space), but it indicates a flaw somewhere
   1534      * down the line, possibly in the verifier.
   1535      *
   1536      * If we've substituted "always throw" instructions into the stream,
   1537      * we are almost certainly going to have some dead code.
   1538      */
   1539     int dead_start = -1;
   1540     uint32_t insn_idx = 0;
   1541     for (; insn_idx < insns_size;
   1542          insn_idx += Instruction::At(code_item_->insns_ + insn_idx)->SizeInCodeUnits()) {
   1543       /*
   1544        * Switch-statement data doesn't get "visited" by scanner. It
   1545        * may or may not be preceded by a padding NOP (for alignment).
   1546        */
   1547       if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
   1548           insns[insn_idx] == Instruction::kSparseSwitchSignature ||
   1549           insns[insn_idx] == Instruction::kArrayDataSignature ||
   1550           (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
   1551            (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
   1552             insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
   1553             insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
   1554         insn_flags_[insn_idx].SetVisited();
   1555       }
   1556 
   1557       if (!insn_flags_[insn_idx].IsVisited()) {
   1558         if (dead_start < 0)
   1559           dead_start = insn_idx;
   1560       } else if (dead_start >= 0) {
   1561         LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
   1562                         << "-" << reinterpret_cast<void*>(insn_idx - 1);
   1563         dead_start = -1;
   1564       }
   1565     }
   1566     if (dead_start >= 0) {
   1567       LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
   1568                       << "-" << reinterpret_cast<void*>(insn_idx - 1);
   1569     }
   1570     // To dump the state of the verify after a method, do something like:
   1571     // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
   1572     //     "boolean java.lang.String.equals(java.lang.Object)") {
   1573     //   LOG(INFO) << info_messages_.str();
   1574     // }
   1575   }
   1576   return true;
   1577 }
   1578 
   1579 // Returns the index of the first final instance field of the given class, or kDexNoIndex if there
   1580 // is no such field.
   1581 static uint32_t GetFirstFinalInstanceFieldIndex(const DexFile& dex_file, uint16_t type_idx) {
   1582   const DexFile::ClassDef* class_def = dex_file.FindClassDef(type_idx);
   1583   DCHECK(class_def != nullptr);
   1584   const uint8_t* class_data = dex_file.GetClassData(*class_def);
   1585   DCHECK(class_data != nullptr);
   1586   ClassDataItemIterator it(dex_file, class_data);
   1587   // Skip static fields.
   1588   while (it.HasNextStaticField()) {
   1589     it.Next();
   1590   }
   1591   while (it.HasNextInstanceField()) {
   1592     if ((it.GetFieldAccessFlags() & kAccFinal) != 0) {
   1593       return it.GetMemberIndex();
   1594     }
   1595     it.Next();
   1596   }
   1597   return DexFile::kDexNoIndex;
   1598 }
   1599 
   1600 bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
   1601   // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
   1602   // We want the state _before_ the instruction, for the case where the dex pc we're
   1603   // interested in is itself a monitor-enter instruction (which is a likely place
   1604   // for a thread to be suspended).
   1605   if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) {
   1606     monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
   1607     for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
   1608       monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
   1609     }
   1610   }
   1611 
   1612   /*
   1613    * Once we finish decoding the instruction, we need to figure out where
   1614    * we can go from here. There are three possible ways to transfer
   1615    * control to another statement:
   1616    *
   1617    * (1) Continue to the next instruction. Applies to all but
   1618    *     unconditional branches, method returns, and exception throws.
   1619    * (2) Branch to one or more possible locations. Applies to branches
   1620    *     and switch statements.
   1621    * (3) Exception handlers. Applies to any instruction that can
   1622    *     throw an exception that is handled by an encompassing "try"
   1623    *     block.
   1624    *
   1625    * We can also return, in which case there is no successor instruction
   1626    * from this point.
   1627    *
   1628    * The behavior can be determined from the opcode flags.
   1629    */
   1630   const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
   1631   const Instruction* inst = Instruction::At(insns);
   1632   int opcode_flags = Instruction::FlagsOf(inst->Opcode());
   1633 
   1634   int32_t branch_target = 0;
   1635   bool just_set_result = false;
   1636   if (gDebugVerify) {
   1637     // Generate processing back trace to debug verifier
   1638     LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
   1639                     << work_line_->Dump(this) << "\n";
   1640   }
   1641 
   1642   /*
   1643    * Make a copy of the previous register state. If the instruction
   1644    * can throw an exception, we will copy/merge this into the "catch"
   1645    * address rather than work_line, because we don't want the result
   1646    * from the "successful" code path (e.g. a check-cast that "improves"
   1647    * a type) to be visible to the exception handler.
   1648    */
   1649   if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
   1650     saved_line_->CopyFromLine(work_line_.get());
   1651   } else if (kIsDebugBuild) {
   1652     saved_line_->FillWithGarbage();
   1653   }
   1654   DCHECK(!have_pending_runtime_throw_failure_);  // Per-instruction flag, should not be set here.
   1655 
   1656 
   1657   // We need to ensure the work line is consistent while performing validation. When we spot a
   1658   // peephole pattern we compute a new line for either the fallthrough instruction or the
   1659   // branch target.
   1660   std::unique_ptr<RegisterLine> branch_line;
   1661   std::unique_ptr<RegisterLine> fallthrough_line;
   1662 
   1663   switch (inst->Opcode()) {
   1664     case Instruction::NOP:
   1665       /*
   1666        * A "pure" NOP has no effect on anything. Data tables start with
   1667        * a signature that looks like a NOP; if we see one of these in
   1668        * the course of executing code then we have a problem.
   1669        */
   1670       if (inst->VRegA_10x() != 0) {
   1671         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
   1672       }
   1673       break;
   1674 
   1675     case Instruction::MOVE:
   1676       work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
   1677       break;
   1678     case Instruction::MOVE_FROM16:
   1679       work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
   1680       break;
   1681     case Instruction::MOVE_16:
   1682       work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
   1683       break;
   1684     case Instruction::MOVE_WIDE:
   1685       work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
   1686       break;
   1687     case Instruction::MOVE_WIDE_FROM16:
   1688       work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
   1689       break;
   1690     case Instruction::MOVE_WIDE_16:
   1691       work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
   1692       break;
   1693     case Instruction::MOVE_OBJECT:
   1694       work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
   1695       break;
   1696     case Instruction::MOVE_OBJECT_FROM16:
   1697       work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
   1698       break;
   1699     case Instruction::MOVE_OBJECT_16:
   1700       work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
   1701       break;
   1702 
   1703     /*
   1704      * The move-result instructions copy data out of a "pseudo-register"
   1705      * with the results from the last method invocation. In practice we
   1706      * might want to hold the result in an actual CPU register, so the
   1707      * Dalvik spec requires that these only appear immediately after an
   1708      * invoke or filled-new-array.
   1709      *
   1710      * These calls invalidate the "result" register. (This is now
   1711      * redundant with the reset done below, but it can make the debug info
   1712      * easier to read in some cases.)
   1713      */
   1714     case Instruction::MOVE_RESULT:
   1715       work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
   1716       break;
   1717     case Instruction::MOVE_RESULT_WIDE:
   1718       work_line_->CopyResultRegister2(this, inst->VRegA_11x());
   1719       break;
   1720     case Instruction::MOVE_RESULT_OBJECT:
   1721       work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
   1722       break;
   1723 
   1724     case Instruction::MOVE_EXCEPTION: {
   1725       // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
   1726       // where one entrypoint to the catch block is not actually an exception path.
   1727       if (work_insn_idx_ == 0) {
   1728         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
   1729         break;
   1730       }
   1731       /*
   1732        * This statement can only appear as the first instruction in an exception handler. We verify
   1733        * that as part of extracting the exception type from the catch block list.
   1734        */
   1735       const RegType& res_type = GetCaughtExceptionType();
   1736       work_line_->SetRegisterType(this, inst->VRegA_11x(), res_type);
   1737       break;
   1738     }
   1739     case Instruction::RETURN_VOID:
   1740       if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
   1741         if (!GetMethodReturnType().IsConflict()) {
   1742           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
   1743         }
   1744       }
   1745       break;
   1746     case Instruction::RETURN:
   1747       if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
   1748         /* check the method signature */
   1749         const RegType& return_type = GetMethodReturnType();
   1750         if (!return_type.IsCategory1Types()) {
   1751           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
   1752                                             << return_type;
   1753         } else {
   1754           // Compilers may generate synthetic functions that write byte values into boolean fields.
   1755           // Also, it may use integer values for boolean, byte, short, and character return types.
   1756           const uint32_t vregA = inst->VRegA_11x();
   1757           const RegType& src_type = work_line_->GetRegisterType(this, vregA);
   1758           bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
   1759                           ((return_type.IsBoolean() || return_type.IsByte() ||
   1760                            return_type.IsShort() || return_type.IsChar()) &&
   1761                            src_type.IsInteger()));
   1762           /* check the register contents */
   1763           bool success =
   1764               work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
   1765           if (!success) {
   1766             AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
   1767           }
   1768         }
   1769       }
   1770       break;
   1771     case Instruction::RETURN_WIDE:
   1772       if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
   1773         /* check the method signature */
   1774         const RegType& return_type = GetMethodReturnType();
   1775         if (!return_type.IsCategory2Types()) {
   1776           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
   1777         } else {
   1778           /* check the register contents */
   1779           const uint32_t vregA = inst->VRegA_11x();
   1780           bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
   1781           if (!success) {
   1782             AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
   1783           }
   1784         }
   1785       }
   1786       break;
   1787     case Instruction::RETURN_OBJECT:
   1788       if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
   1789         const RegType& return_type = GetMethodReturnType();
   1790         if (!return_type.IsReferenceTypes()) {
   1791           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
   1792         } else {
   1793           /* return_type is the *expected* return type, not register value */
   1794           DCHECK(!return_type.IsZero());
   1795           DCHECK(!return_type.IsUninitializedReference());
   1796           const uint32_t vregA = inst->VRegA_11x();
   1797           const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
   1798           // Disallow returning uninitialized values and verify that the reference in vAA is an
   1799           // instance of the "return_type"
   1800           if (reg_type.IsUninitializedTypes()) {
   1801             Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
   1802                                               << reg_type << "'";
   1803           } else if (!return_type.IsAssignableFrom(reg_type)) {
   1804             if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
   1805               Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
   1806                   << "' or '" << reg_type << "'";
   1807             } else {
   1808               bool soft_error = false;
   1809               // Check whether arrays are involved. They will show a valid class status, even
   1810               // if their components are erroneous.
   1811               if (reg_type.IsArrayTypes() && return_type.IsArrayTypes()) {
   1812                 return_type.CanAssignArray(reg_type, reg_types_, class_loader_, &soft_error);
   1813                 if (soft_error) {
   1814                   Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "array with erroneous component type: "
   1815                         << reg_type << " vs " << return_type;
   1816                 }
   1817               }
   1818 
   1819               if (!soft_error) {
   1820                 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
   1821                     << "', but expected from declaration '" << return_type << "'";
   1822               }
   1823             }
   1824           }
   1825         }
   1826       }
   1827       break;
   1828 
   1829       /* could be boolean, int, float, or a null reference */
   1830     case Instruction::CONST_4: {
   1831       int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
   1832       work_line_->SetRegisterType(this, inst->VRegA_11n(),
   1833                                   DetermineCat1Constant(val, need_precise_constants_));
   1834       break;
   1835     }
   1836     case Instruction::CONST_16: {
   1837       int16_t val = static_cast<int16_t>(inst->VRegB_21s());
   1838       work_line_->SetRegisterType(this, inst->VRegA_21s(),
   1839                                   DetermineCat1Constant(val, need_precise_constants_));
   1840       break;
   1841     }
   1842     case Instruction::CONST: {
   1843       int32_t val = inst->VRegB_31i();
   1844       work_line_->SetRegisterType(this, inst->VRegA_31i(),
   1845                                   DetermineCat1Constant(val, need_precise_constants_));
   1846       break;
   1847     }
   1848     case Instruction::CONST_HIGH16: {
   1849       int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
   1850       work_line_->SetRegisterType(this, inst->VRegA_21h(),
   1851                                   DetermineCat1Constant(val, need_precise_constants_));
   1852       break;
   1853     }
   1854       /* could be long or double; resolved upon use */
   1855     case Instruction::CONST_WIDE_16: {
   1856       int64_t val = static_cast<int16_t>(inst->VRegB_21s());
   1857       const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
   1858       const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
   1859       work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi);
   1860       break;
   1861     }
   1862     case Instruction::CONST_WIDE_32: {
   1863       int64_t val = static_cast<int32_t>(inst->VRegB_31i());
   1864       const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
   1865       const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
   1866       work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi);
   1867       break;
   1868     }
   1869     case Instruction::CONST_WIDE: {
   1870       int64_t val = inst->VRegB_51l();
   1871       const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
   1872       const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
   1873       work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi);
   1874       break;
   1875     }
   1876     case Instruction::CONST_WIDE_HIGH16: {
   1877       int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
   1878       const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
   1879       const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
   1880       work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi);
   1881       break;
   1882     }
   1883     case Instruction::CONST_STRING:
   1884       work_line_->SetRegisterType(this, inst->VRegA_21c(), reg_types_.JavaLangString());
   1885       break;
   1886     case Instruction::CONST_STRING_JUMBO:
   1887       work_line_->SetRegisterType(this, inst->VRegA_31c(), reg_types_.JavaLangString());
   1888       break;
   1889     case Instruction::CONST_CLASS: {
   1890       // Get type from instruction if unresolved then we need an access check
   1891       // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
   1892       const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
   1893       // Register holds class, ie its type is class, on error it will hold Conflict.
   1894       work_line_->SetRegisterType(this, inst->VRegA_21c(),
   1895                                   res_type.IsConflict() ? res_type
   1896                                                         : reg_types_.JavaLangClass());
   1897       break;
   1898     }
   1899     case Instruction::MONITOR_ENTER:
   1900       work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
   1901       break;
   1902     case Instruction::MONITOR_EXIT:
   1903       /*
   1904        * monitor-exit instructions are odd. They can throw exceptions,
   1905        * but when they do they act as if they succeeded and the PC is
   1906        * pointing to the following instruction. (This behavior goes back
   1907        * to the need to handle asynchronous exceptions, a now-deprecated
   1908        * feature that Dalvik doesn't support.)
   1909        *
   1910        * In practice we don't need to worry about this. The only
   1911        * exceptions that can be thrown from monitor-exit are for a
   1912        * null reference and -exit without a matching -enter. If the
   1913        * structured locking checks are working, the former would have
   1914        * failed on the -enter instruction, and the latter is impossible.
   1915        *
   1916        * This is fortunate, because issue 3221411 prevents us from
   1917        * chasing the "can throw" path when monitor verification is
   1918        * enabled. If we can fully verify the locking we can ignore
   1919        * some catch blocks (which will show up as "dead" code when
   1920        * we skip them here); if we can't, then the code path could be
   1921        * "live" so we still need to check it.
   1922        */
   1923       opcode_flags &= ~Instruction::kThrow;
   1924       work_line_->PopMonitor(this, inst->VRegA_11x());
   1925       break;
   1926 
   1927     case Instruction::CHECK_CAST:
   1928     case Instruction::INSTANCE_OF: {
   1929       /*
   1930        * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
   1931        * could be a "upcast" -- not expected, so we don't try to address it.)
   1932        *
   1933        * If it fails, an exception is thrown, which we deal with later by ignoring the update to
   1934        * dec_insn.vA when branching to a handler.
   1935        */
   1936       const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
   1937       const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
   1938       const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
   1939       if (res_type.IsConflict()) {
   1940         // If this is a primitive type, fail HARD.
   1941         mirror::Class* klass = dex_cache_->GetResolvedType(type_idx);
   1942         if (klass != nullptr && klass->IsPrimitive()) {
   1943           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
   1944               << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
   1945               << GetDeclaringClass();
   1946           break;
   1947         }
   1948 
   1949         DCHECK_NE(failures_.size(), 0U);
   1950         if (!is_checkcast) {
   1951           work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
   1952         }
   1953         break;  // bad class
   1954       }
   1955       // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
   1956       uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
   1957       const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
   1958       if (!res_type.IsNonZeroReferenceTypes()) {
   1959         if (is_checkcast) {
   1960           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
   1961         } else {
   1962           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
   1963         }
   1964       } else if (!orig_type.IsReferenceTypes()) {
   1965         if (is_checkcast) {
   1966           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
   1967         } else {
   1968           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
   1969         }
   1970       } else {
   1971         if (is_checkcast) {
   1972           work_line_->SetRegisterType(this, inst->VRegA_21c(), res_type);
   1973         } else {
   1974           work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
   1975         }
   1976       }
   1977       break;
   1978     }
   1979     case Instruction::ARRAY_LENGTH: {
   1980       const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
   1981       if (res_type.IsReferenceTypes()) {
   1982         if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
   1983           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
   1984         } else {
   1985           work_line_->SetRegisterType(this, inst->VRegA_12x(), reg_types_.Integer());
   1986         }
   1987       } else {
   1988         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
   1989       }
   1990       break;
   1991     }
   1992     case Instruction::NEW_INSTANCE: {
   1993       const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
   1994       if (res_type.IsConflict()) {
   1995         DCHECK_NE(failures_.size(), 0U);
   1996         break;  // bad class
   1997       }
   1998       // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
   1999       // can't create an instance of an interface or abstract class */
   2000       if (!res_type.IsInstantiableTypes()) {
   2001         Fail(VERIFY_ERROR_INSTANTIATION)
   2002             << "new-instance on primitive, interface or abstract class" << res_type;
   2003         // Soft failure so carry on to set register type.
   2004       }
   2005       const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
   2006       // Any registers holding previous allocations from this address that have not yet been
   2007       // initialized must be marked invalid.
   2008       work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
   2009       // add the new uninitialized reference to the register state
   2010       work_line_->SetRegisterType(this, inst->VRegA_21c(), uninit_type);
   2011       break;
   2012     }
   2013     case Instruction::NEW_ARRAY:
   2014       VerifyNewArray(inst, false, false);
   2015       break;
   2016     case Instruction::FILLED_NEW_ARRAY:
   2017       VerifyNewArray(inst, true, false);
   2018       just_set_result = true;  // Filled new array sets result register
   2019       break;
   2020     case Instruction::FILLED_NEW_ARRAY_RANGE:
   2021       VerifyNewArray(inst, true, true);
   2022       just_set_result = true;  // Filled new array range sets result register
   2023       break;
   2024     case Instruction::CMPL_FLOAT:
   2025     case Instruction::CMPG_FLOAT:
   2026       if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
   2027         break;
   2028       }
   2029       if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
   2030         break;
   2031       }
   2032       work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
   2033       break;
   2034     case Instruction::CMPL_DOUBLE:
   2035     case Instruction::CMPG_DOUBLE:
   2036       if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
   2037                                               reg_types_.DoubleHi())) {
   2038         break;
   2039       }
   2040       if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
   2041                                               reg_types_.DoubleHi())) {
   2042         break;
   2043       }
   2044       work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
   2045       break;
   2046     case Instruction::CMP_LONG:
   2047       if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
   2048                                               reg_types_.LongHi())) {
   2049         break;
   2050       }
   2051       if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
   2052                                               reg_types_.LongHi())) {
   2053         break;
   2054       }
   2055       work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
   2056       break;
   2057     case Instruction::THROW: {
   2058       const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
   2059       if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
   2060         Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
   2061             << "thrown class " << res_type << " not instanceof Throwable";
   2062       }
   2063       break;
   2064     }
   2065     case Instruction::GOTO:
   2066     case Instruction::GOTO_16:
   2067     case Instruction::GOTO_32:
   2068       /* no effect on or use of registers */
   2069       break;
   2070 
   2071     case Instruction::PACKED_SWITCH:
   2072     case Instruction::SPARSE_SWITCH:
   2073       /* verify that vAA is an integer, or can be converted to one */
   2074       work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
   2075       break;
   2076 
   2077     case Instruction::FILL_ARRAY_DATA: {
   2078       /* Similar to the verification done for APUT */
   2079       const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
   2080       /* array_type can be null if the reg type is Zero */
   2081       if (!array_type.IsZero()) {
   2082         if (!array_type.IsArrayTypes()) {
   2083           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
   2084                                             << array_type;
   2085         } else {
   2086           const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
   2087           DCHECK(!component_type.IsConflict());
   2088           if (component_type.IsNonZeroReferenceTypes()) {
   2089             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
   2090                                               << component_type;
   2091           } else {
   2092             // Now verify if the element width in the table matches the element width declared in
   2093             // the array
   2094             const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
   2095             if (array_data[0] != Instruction::kArrayDataSignature) {
   2096               Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
   2097             } else {
   2098               size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
   2099               // Since we don't compress the data in Dex, expect to see equal width of data stored
   2100               // in the table and expected from the array class.
   2101               if (array_data[1] != elem_width) {
   2102                 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
   2103                                                   << " vs " << elem_width << ")";
   2104               }
   2105             }
   2106           }
   2107         }
   2108       }
   2109       break;
   2110     }
   2111     case Instruction::IF_EQ:
   2112     case Instruction::IF_NE: {
   2113       const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
   2114       const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
   2115       bool mismatch = false;
   2116       if (reg_type1.IsZero()) {  // zero then integral or reference expected
   2117         mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
   2118       } else if (reg_type1.IsReferenceTypes()) {  // both references?
   2119         mismatch = !reg_type2.IsReferenceTypes();
   2120       } else {  // both integral?
   2121         mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
   2122       }
   2123       if (mismatch) {
   2124         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
   2125                                           << reg_type2 << ") must both be references or integral";
   2126       }
   2127       break;
   2128     }
   2129     case Instruction::IF_LT:
   2130     case Instruction::IF_GE:
   2131     case Instruction::IF_GT:
   2132     case Instruction::IF_LE: {
   2133       const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
   2134       const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
   2135       if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
   2136         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
   2137                                           << reg_type2 << ") must be integral";
   2138       }
   2139       break;
   2140     }
   2141     case Instruction::IF_EQZ:
   2142     case Instruction::IF_NEZ: {
   2143       const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
   2144       if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
   2145         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
   2146                                           << " unexpected as arg to if-eqz/if-nez";
   2147       }
   2148 
   2149       // Find previous instruction - its existence is a precondition to peephole optimization.
   2150       uint32_t instance_of_idx = 0;
   2151       if (0 != work_insn_idx_) {
   2152         instance_of_idx = work_insn_idx_ - 1;
   2153         while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
   2154           instance_of_idx--;
   2155         }
   2156         if (FailOrAbort(this, insn_flags_[instance_of_idx].IsOpcode(),
   2157                         "Unable to get previous instruction of if-eqz/if-nez for work index ",
   2158                         work_insn_idx_)) {
   2159           break;
   2160         }
   2161       } else {
   2162         break;
   2163       }
   2164 
   2165       const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
   2166 
   2167       /* Check for peep-hole pattern of:
   2168        *    ...;
   2169        *    instance-of vX, vY, T;
   2170        *    ifXXX vX, label ;
   2171        *    ...;
   2172        * label:
   2173        *    ...;
   2174        * and sharpen the type of vY to be type T.
   2175        * Note, this pattern can't be if:
   2176        *  - if there are other branches to this branch,
   2177        *  - when vX == vY.
   2178        */
   2179       if (!CurrentInsnFlags()->IsBranchTarget() &&
   2180           (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
   2181           (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
   2182           (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
   2183         // Check the type of the instance-of is different than that of registers type, as if they
   2184         // are the same there is no work to be done here. Check that the conversion is not to or
   2185         // from an unresolved type as type information is imprecise. If the instance-of is to an
   2186         // interface then ignore the type information as interfaces can only be treated as Objects
   2187         // and we don't want to disallow field and other operations on the object. If the value
   2188         // being instance-of checked against is known null (zero) then allow the optimization as
   2189         // we didn't have type information. If the merge of the instance-of type with the original
   2190         // type is assignable to the original then allow optimization. This check is performed to
   2191         // ensure that subsequent merges don't lose type information - such as becoming an
   2192         // interface from a class that would lose information relevant to field checks.
   2193         const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst->VRegB_22c());
   2194         const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
   2195 
   2196         if (!orig_type.Equals(cast_type) &&
   2197             !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
   2198             cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
   2199             !cast_type.GetClass()->IsInterface() &&
   2200             (orig_type.IsZero() ||
   2201                 orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, &reg_types_)))) {
   2202           RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
   2203           if (inst->Opcode() == Instruction::IF_EQZ) {
   2204             fallthrough_line.reset(update_line);
   2205           } else {
   2206             branch_line.reset(update_line);
   2207           }
   2208           update_line->CopyFromLine(work_line_.get());
   2209           update_line->SetRegisterType(this, instance_of_inst->VRegB_22c(), cast_type);
   2210           if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
   2211             // See if instance-of was preceded by a move-object operation, common due to the small
   2212             // register encoding space of instance-of, and propagate type information to the source
   2213             // of the move-object.
   2214             uint32_t move_idx = instance_of_idx - 1;
   2215             while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
   2216               move_idx--;
   2217             }
   2218             if (FailOrAbort(this, insn_flags_[move_idx].IsOpcode(),
   2219                             "Unable to get previous instruction of if-eqz/if-nez for work index ",
   2220                             work_insn_idx_)) {
   2221               break;
   2222             }
   2223             const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
   2224             switch (move_inst->Opcode()) {
   2225               case Instruction::MOVE_OBJECT:
   2226                 if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
   2227                   update_line->SetRegisterType(this, move_inst->VRegB_12x(), cast_type);
   2228                 }
   2229                 break;
   2230               case Instruction::MOVE_OBJECT_FROM16:
   2231                 if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
   2232                   update_line->SetRegisterType(this, move_inst->VRegB_22x(), cast_type);
   2233                 }
   2234                 break;
   2235               case Instruction::MOVE_OBJECT_16:
   2236                 if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
   2237                   update_line->SetRegisterType(this, move_inst->VRegB_32x(), cast_type);
   2238                 }
   2239                 break;
   2240               default:
   2241                 break;
   2242             }
   2243           }
   2244         }
   2245       }
   2246 
   2247       break;
   2248     }
   2249     case Instruction::IF_LTZ:
   2250     case Instruction::IF_GEZ:
   2251     case Instruction::IF_GTZ:
   2252     case Instruction::IF_LEZ: {
   2253       const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
   2254       if (!reg_type.IsIntegralTypes()) {
   2255         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
   2256                                           << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
   2257       }
   2258       break;
   2259     }
   2260     case Instruction::AGET_BOOLEAN:
   2261       VerifyAGet(inst, reg_types_.Boolean(), true);
   2262       break;
   2263     case Instruction::AGET_BYTE:
   2264       VerifyAGet(inst, reg_types_.Byte(), true);
   2265       break;
   2266     case Instruction::AGET_CHAR:
   2267       VerifyAGet(inst, reg_types_.Char(), true);
   2268       break;
   2269     case Instruction::AGET_SHORT:
   2270       VerifyAGet(inst, reg_types_.Short(), true);
   2271       break;
   2272     case Instruction::AGET:
   2273       VerifyAGet(inst, reg_types_.Integer(), true);
   2274       break;
   2275     case Instruction::AGET_WIDE:
   2276       VerifyAGet(inst, reg_types_.LongLo(), true);
   2277       break;
   2278     case Instruction::AGET_OBJECT:
   2279       VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
   2280       break;
   2281 
   2282     case Instruction::APUT_BOOLEAN:
   2283       VerifyAPut(inst, reg_types_.Boolean(), true);
   2284       break;
   2285     case Instruction::APUT_BYTE:
   2286       VerifyAPut(inst, reg_types_.Byte(), true);
   2287       break;
   2288     case Instruction::APUT_CHAR:
   2289       VerifyAPut(inst, reg_types_.Char(), true);
   2290       break;
   2291     case Instruction::APUT_SHORT:
   2292       VerifyAPut(inst, reg_types_.Short(), true);
   2293       break;
   2294     case Instruction::APUT:
   2295       VerifyAPut(inst, reg_types_.Integer(), true);
   2296       break;
   2297     case Instruction::APUT_WIDE:
   2298       VerifyAPut(inst, reg_types_.LongLo(), true);
   2299       break;
   2300     case Instruction::APUT_OBJECT:
   2301       VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
   2302       break;
   2303 
   2304     case Instruction::IGET_BOOLEAN:
   2305       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
   2306       break;
   2307     case Instruction::IGET_BYTE:
   2308       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
   2309       break;
   2310     case Instruction::IGET_CHAR:
   2311       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
   2312       break;
   2313     case Instruction::IGET_SHORT:
   2314       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
   2315       break;
   2316     case Instruction::IGET:
   2317       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
   2318       break;
   2319     case Instruction::IGET_WIDE:
   2320       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
   2321       break;
   2322     case Instruction::IGET_OBJECT:
   2323       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
   2324                                                     false);
   2325       break;
   2326 
   2327     case Instruction::IPUT_BOOLEAN:
   2328       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
   2329       break;
   2330     case Instruction::IPUT_BYTE:
   2331       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
   2332       break;
   2333     case Instruction::IPUT_CHAR:
   2334       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
   2335       break;
   2336     case Instruction::IPUT_SHORT:
   2337       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
   2338       break;
   2339     case Instruction::IPUT:
   2340       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
   2341       break;
   2342     case Instruction::IPUT_WIDE:
   2343       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
   2344       break;
   2345     case Instruction::IPUT_OBJECT:
   2346       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
   2347                                                     false);
   2348       break;
   2349 
   2350     case Instruction::SGET_BOOLEAN:
   2351       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
   2352       break;
   2353     case Instruction::SGET_BYTE:
   2354       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
   2355       break;
   2356     case Instruction::SGET_CHAR:
   2357       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
   2358       break;
   2359     case Instruction::SGET_SHORT:
   2360       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
   2361       break;
   2362     case Instruction::SGET:
   2363       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
   2364       break;
   2365     case Instruction::SGET_WIDE:
   2366       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
   2367       break;
   2368     case Instruction::SGET_OBJECT:
   2369       VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
   2370                                                     true);
   2371       break;
   2372 
   2373     case Instruction::SPUT_BOOLEAN:
   2374       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
   2375       break;
   2376     case Instruction::SPUT_BYTE:
   2377       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
   2378       break;
   2379     case Instruction::SPUT_CHAR:
   2380       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
   2381       break;
   2382     case Instruction::SPUT_SHORT:
   2383       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
   2384       break;
   2385     case Instruction::SPUT:
   2386       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
   2387       break;
   2388     case Instruction::SPUT_WIDE:
   2389       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
   2390       break;
   2391     case Instruction::SPUT_OBJECT:
   2392       VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
   2393                                                     true);
   2394       break;
   2395 
   2396     case Instruction::INVOKE_VIRTUAL:
   2397     case Instruction::INVOKE_VIRTUAL_RANGE:
   2398     case Instruction::INVOKE_SUPER:
   2399     case Instruction::INVOKE_SUPER_RANGE: {
   2400       bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
   2401                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
   2402       bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
   2403                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
   2404       ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range, is_super);
   2405       const RegType* return_type = nullptr;
   2406       if (called_method != nullptr) {
   2407         StackHandleScope<1> hs(self_);
   2408         mirror::Class* return_type_class = called_method->GetReturnType(can_load_classes_);
   2409         if (return_type_class != nullptr) {
   2410           return_type = &FromClass(called_method->GetReturnTypeDescriptor(),
   2411                                    return_type_class,
   2412                                    return_type_class->CannotBeAssignedFromOtherTypes());
   2413         } else {
   2414           DCHECK(!can_load_classes_ || self_->IsExceptionPending());
   2415           self_->ClearException();
   2416         }
   2417       }
   2418       if (return_type == nullptr) {
   2419         uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
   2420         const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
   2421         uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
   2422         const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
   2423         return_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
   2424       }
   2425       if (!return_type->IsLowHalf()) {
   2426         work_line_->SetResultRegisterType(this, *return_type);
   2427       } else {
   2428         work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
   2429       }
   2430       just_set_result = true;
   2431       break;
   2432     }
   2433     case Instruction::INVOKE_DIRECT:
   2434     case Instruction::INVOKE_DIRECT_RANGE: {
   2435       bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
   2436       ArtMethod* called_method = VerifyInvocationArgs(inst,
   2437                                                       METHOD_DIRECT,
   2438                                                       is_range,
   2439                                                       false);
   2440       const char* return_type_descriptor;
   2441       bool is_constructor;
   2442       const RegType* return_type = nullptr;
   2443       if (called_method == nullptr) {
   2444         uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
   2445         const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
   2446         is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
   2447         uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
   2448         return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
   2449       } else {
   2450         is_constructor = called_method->IsConstructor();
   2451         return_type_descriptor = called_method->GetReturnTypeDescriptor();
   2452         StackHandleScope<1> hs(self_);
   2453         mirror::Class* return_type_class = called_method->GetReturnType(can_load_classes_);
   2454         if (return_type_class != nullptr) {
   2455           return_type = &FromClass(return_type_descriptor,
   2456                                    return_type_class,
   2457                                    return_type_class->CannotBeAssignedFromOtherTypes());
   2458         } else {
   2459           DCHECK(!can_load_classes_ || self_->IsExceptionPending());
   2460           self_->ClearException();
   2461         }
   2462       }
   2463       if (is_constructor) {
   2464         /*
   2465          * Some additional checks when calling a constructor. We know from the invocation arg check
   2466          * that the "this" argument is an instance of called_method->klass. Now we further restrict
   2467          * that to require that called_method->klass is the same as this->klass or this->super,
   2468          * allowing the latter only if the "this" argument is the same as the "this" argument to
   2469          * this method (which implies that we're in a constructor ourselves).
   2470          */
   2471         const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
   2472         if (this_type.IsConflict())  // failure.
   2473           break;
   2474 
   2475         /* no null refs allowed (?) */
   2476         if (this_type.IsZero()) {
   2477           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
   2478           break;
   2479         }
   2480 
   2481         /* must be in same class or in superclass */
   2482         // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
   2483         // TODO: re-enable constructor type verification
   2484         // if (this_super_klass.IsConflict()) {
   2485           // Unknown super class, fail so we re-check at runtime.
   2486           // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
   2487           // break;
   2488         // }
   2489 
   2490         /* arg must be an uninitialized reference */
   2491         if (!this_type.IsUninitializedTypes()) {
   2492           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
   2493               << this_type;
   2494           break;
   2495         }
   2496 
   2497         /*
   2498          * Replace the uninitialized reference with an initialized one. We need to do this for all
   2499          * registers that have the same object instance in them, not just the "this" register.
   2500          */
   2501         const uint32_t this_reg = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c();
   2502         work_line_->MarkRefsAsInitialized(this, this_type, this_reg, work_insn_idx_);
   2503       }
   2504       if (return_type == nullptr) {
   2505         return_type = &reg_types_.FromDescriptor(GetClassLoader(), return_type_descriptor,
   2506                                                  false);
   2507       }
   2508       if (!return_type->IsLowHalf()) {
   2509         work_line_->SetResultRegisterType(this, *return_type);
   2510       } else {
   2511         work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
   2512       }
   2513       just_set_result = true;
   2514       break;
   2515     }
   2516     case Instruction::INVOKE_STATIC:
   2517     case Instruction::INVOKE_STATIC_RANGE: {
   2518         bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
   2519         ArtMethod* called_method = VerifyInvocationArgs(inst,
   2520                                                         METHOD_STATIC,
   2521                                                         is_range,
   2522                                                         false);
   2523         const char* descriptor;
   2524         if (called_method == nullptr) {
   2525           uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
   2526           const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
   2527           uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
   2528           descriptor = dex_file_->StringByTypeIdx(return_type_idx);
   2529         } else {
   2530           descriptor = called_method->GetReturnTypeDescriptor();
   2531         }
   2532         const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
   2533         if (!return_type.IsLowHalf()) {
   2534           work_line_->SetResultRegisterType(this, return_type);
   2535         } else {
   2536           work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
   2537         }
   2538         just_set_result = true;
   2539       }
   2540       break;
   2541     case Instruction::INVOKE_INTERFACE:
   2542     case Instruction::INVOKE_INTERFACE_RANGE: {
   2543       bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
   2544       ArtMethod* abs_method = VerifyInvocationArgs(inst,
   2545                                                    METHOD_INTERFACE,
   2546                                                    is_range,
   2547                                                    false);
   2548       if (abs_method != nullptr) {
   2549         mirror::Class* called_interface = abs_method->GetDeclaringClass();
   2550         if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
   2551           Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
   2552               << PrettyMethod(abs_method) << "'";
   2553           break;
   2554         }
   2555       }
   2556       /* Get the type of the "this" arg, which should either be a sub-interface of called
   2557        * interface or Object (see comments in RegType::JoinClass).
   2558        */
   2559       const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
   2560       if (this_type.IsZero()) {
   2561         /* null pointer always passes (and always fails at runtime) */
   2562       } else {
   2563         if (this_type.IsUninitializedTypes()) {
   2564           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
   2565               << this_type;
   2566           break;
   2567         }
   2568         // In the past we have tried to assert that "called_interface" is assignable
   2569         // from "this_type.GetClass()", however, as we do an imprecise Join
   2570         // (RegType::JoinClass) we don't have full information on what interfaces are
   2571         // implemented by "this_type". For example, two classes may implement the same
   2572         // interfaces and have a common parent that doesn't implement the interface. The
   2573         // join will set "this_type" to the parent class and a test that this implements
   2574         // the interface will incorrectly fail.
   2575       }
   2576       /*
   2577        * We don't have an object instance, so we can't find the concrete method. However, all of
   2578        * the type information is in the abstract method, so we're good.
   2579        */
   2580       const char* descriptor;
   2581       if (abs_method == nullptr) {
   2582         uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
   2583         const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
   2584         uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
   2585         descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
   2586       } else {
   2587         descriptor = abs_method->GetReturnTypeDescriptor();
   2588       }
   2589       const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
   2590       if (!return_type.IsLowHalf()) {
   2591         work_line_->SetResultRegisterType(this, return_type);
   2592       } else {
   2593         work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
   2594       }
   2595       just_set_result = true;
   2596       break;
   2597     }
   2598     case Instruction::NEG_INT:
   2599     case Instruction::NOT_INT:
   2600       work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
   2601       break;
   2602     case Instruction::NEG_LONG:
   2603     case Instruction::NOT_LONG:
   2604       work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
   2605                                    reg_types_.LongLo(), reg_types_.LongHi());
   2606       break;
   2607     case Instruction::NEG_FLOAT:
   2608       work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
   2609       break;
   2610     case Instruction::NEG_DOUBLE:
   2611       work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
   2612                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
   2613       break;
   2614     case Instruction::INT_TO_LONG:
   2615       work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
   2616                                      reg_types_.Integer());
   2617       break;
   2618     case Instruction::INT_TO_FLOAT:
   2619       work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
   2620       break;
   2621     case Instruction::INT_TO_DOUBLE:
   2622       work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
   2623                                      reg_types_.Integer());
   2624       break;
   2625     case Instruction::LONG_TO_INT:
   2626       work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
   2627                                        reg_types_.LongLo(), reg_types_.LongHi());
   2628       break;
   2629     case Instruction::LONG_TO_FLOAT:
   2630       work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
   2631                                        reg_types_.LongLo(), reg_types_.LongHi());
   2632       break;
   2633     case Instruction::LONG_TO_DOUBLE:
   2634       work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
   2635                                    reg_types_.LongLo(), reg_types_.LongHi());
   2636       break;
   2637     case Instruction::FLOAT_TO_INT:
   2638       work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
   2639       break;
   2640     case Instruction::FLOAT_TO_LONG:
   2641       work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
   2642                                      reg_types_.Float());
   2643       break;
   2644     case Instruction::FLOAT_TO_DOUBLE:
   2645       work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
   2646                                      reg_types_.Float());
   2647       break;
   2648     case Instruction::DOUBLE_TO_INT:
   2649       work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
   2650                                        reg_types_.DoubleLo(), reg_types_.DoubleHi());
   2651       break;
   2652     case Instruction::DOUBLE_TO_LONG:
   2653       work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
   2654                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
   2655       break;
   2656     case Instruction::DOUBLE_TO_FLOAT:
   2657       work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
   2658                                        reg_types_.DoubleLo(), reg_types_.DoubleHi());
   2659       break;
   2660     case Instruction::INT_TO_BYTE:
   2661       work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
   2662       break;
   2663     case Instruction::INT_TO_CHAR:
   2664       work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
   2665       break;
   2666     case Instruction::INT_TO_SHORT:
   2667       work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
   2668       break;
   2669 
   2670     case Instruction::ADD_INT:
   2671     case Instruction::SUB_INT:
   2672     case Instruction::MUL_INT:
   2673     case Instruction::REM_INT:
   2674     case Instruction::DIV_INT:
   2675     case Instruction::SHL_INT:
   2676     case Instruction::SHR_INT:
   2677     case Instruction::USHR_INT:
   2678       work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
   2679                                 reg_types_.Integer(), false);
   2680       break;
   2681     case Instruction::AND_INT:
   2682     case Instruction::OR_INT:
   2683     case Instruction::XOR_INT:
   2684       work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
   2685                                 reg_types_.Integer(), true);
   2686       break;
   2687     case Instruction::ADD_LONG:
   2688     case Instruction::SUB_LONG:
   2689     case Instruction::MUL_LONG:
   2690     case Instruction::DIV_LONG:
   2691     case Instruction::REM_LONG:
   2692     case Instruction::AND_LONG:
   2693     case Instruction::OR_LONG:
   2694     case Instruction::XOR_LONG:
   2695       work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
   2696                                     reg_types_.LongLo(), reg_types_.LongHi(),
   2697                                     reg_types_.LongLo(), reg_types_.LongHi());
   2698       break;
   2699     case Instruction::SHL_LONG:
   2700     case Instruction::SHR_LONG:
   2701     case Instruction::USHR_LONG:
   2702       /* shift distance is Int, making these different from other binary operations */
   2703       work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
   2704                                          reg_types_.Integer());
   2705       break;
   2706     case Instruction::ADD_FLOAT:
   2707     case Instruction::SUB_FLOAT:
   2708     case Instruction::MUL_FLOAT:
   2709     case Instruction::DIV_FLOAT:
   2710     case Instruction::REM_FLOAT:
   2711       work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
   2712                                 reg_types_.Float(), false);
   2713       break;
   2714     case Instruction::ADD_DOUBLE:
   2715     case Instruction::SUB_DOUBLE:
   2716     case Instruction::MUL_DOUBLE:
   2717     case Instruction::DIV_DOUBLE:
   2718     case Instruction::REM_DOUBLE:
   2719       work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
   2720                                     reg_types_.DoubleLo(), reg_types_.DoubleHi(),
   2721                                     reg_types_.DoubleLo(), reg_types_.DoubleHi());
   2722       break;
   2723     case Instruction::ADD_INT_2ADDR:
   2724     case Instruction::SUB_INT_2ADDR:
   2725     case Instruction::MUL_INT_2ADDR:
   2726     case Instruction::REM_INT_2ADDR:
   2727     case Instruction::SHL_INT_2ADDR:
   2728     case Instruction::SHR_INT_2ADDR:
   2729     case Instruction::USHR_INT_2ADDR:
   2730       work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
   2731                                      reg_types_.Integer(), false);
   2732       break;
   2733     case Instruction::AND_INT_2ADDR:
   2734     case Instruction::OR_INT_2ADDR:
   2735     case Instruction::XOR_INT_2ADDR:
   2736       work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
   2737                                      reg_types_.Integer(), true);
   2738       break;
   2739     case Instruction::DIV_INT_2ADDR:
   2740       work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
   2741                                      reg_types_.Integer(), false);
   2742       break;
   2743     case Instruction::ADD_LONG_2ADDR:
   2744     case Instruction::SUB_LONG_2ADDR:
   2745     case Instruction::MUL_LONG_2ADDR:
   2746     case Instruction::DIV_LONG_2ADDR:
   2747     case Instruction::REM_LONG_2ADDR:
   2748     case Instruction::AND_LONG_2ADDR:
   2749     case Instruction::OR_LONG_2ADDR:
   2750     case Instruction::XOR_LONG_2ADDR:
   2751       work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
   2752                                          reg_types_.LongLo(), reg_types_.LongHi(),
   2753                                          reg_types_.LongLo(), reg_types_.LongHi());
   2754       break;
   2755     case Instruction::SHL_LONG_2ADDR:
   2756     case Instruction::SHR_LONG_2ADDR:
   2757     case Instruction::USHR_LONG_2ADDR:
   2758       work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
   2759                                               reg_types_.Integer());
   2760       break;
   2761     case Instruction::ADD_FLOAT_2ADDR:
   2762     case Instruction::SUB_FLOAT_2ADDR:
   2763     case Instruction::MUL_FLOAT_2ADDR:
   2764     case Instruction::DIV_FLOAT_2ADDR:
   2765     case Instruction::REM_FLOAT_2ADDR:
   2766       work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
   2767                                      reg_types_.Float(), false);
   2768       break;
   2769     case Instruction::ADD_DOUBLE_2ADDR:
   2770     case Instruction::SUB_DOUBLE_2ADDR:
   2771     case Instruction::MUL_DOUBLE_2ADDR:
   2772     case Instruction::DIV_DOUBLE_2ADDR:
   2773     case Instruction::REM_DOUBLE_2ADDR:
   2774       work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
   2775                                          reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
   2776                                          reg_types_.DoubleLo(), reg_types_.DoubleHi());
   2777       break;
   2778     case Instruction::ADD_INT_LIT16:
   2779     case Instruction::RSUB_INT_LIT16:
   2780     case Instruction::MUL_INT_LIT16:
   2781     case Instruction::DIV_INT_LIT16:
   2782     case Instruction::REM_INT_LIT16:
   2783       work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
   2784                                  true);
   2785       break;
   2786     case Instruction::AND_INT_LIT16:
   2787     case Instruction::OR_INT_LIT16:
   2788     case Instruction::XOR_INT_LIT16:
   2789       work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
   2790                                  true);
   2791       break;
   2792     case Instruction::ADD_INT_LIT8:
   2793     case Instruction::RSUB_INT_LIT8:
   2794     case Instruction::MUL_INT_LIT8:
   2795     case Instruction::DIV_INT_LIT8:
   2796     case Instruction::REM_INT_LIT8:
   2797     case Instruction::SHL_INT_LIT8:
   2798     case Instruction::SHR_INT_LIT8:
   2799     case Instruction::USHR_INT_LIT8:
   2800       work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
   2801                                  false);
   2802       break;
   2803     case Instruction::AND_INT_LIT8:
   2804     case Instruction::OR_INT_LIT8:
   2805     case Instruction::XOR_INT_LIT8:
   2806       work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
   2807                                  false);
   2808       break;
   2809 
   2810     // Special instructions.
   2811     case Instruction::RETURN_VOID_NO_BARRIER:
   2812       if (IsConstructor() && !IsStatic()) {
   2813         auto& declaring_class = GetDeclaringClass();
   2814         if (declaring_class.IsUnresolvedReference()) {
   2815           // We must iterate over the fields, even if we cannot use mirror classes to do so. Do it
   2816           // manually over the underlying dex file.
   2817           uint32_t first_index = GetFirstFinalInstanceFieldIndex(*dex_file_,
   2818               dex_file_->GetMethodId(dex_method_idx_).class_idx_);
   2819           if (first_index != DexFile::kDexNoIndex) {
   2820             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for field "
   2821                               << first_index;
   2822           }
   2823           break;
   2824         }
   2825         auto* klass = declaring_class.GetClass();
   2826         for (uint32_t i = 0, num_fields = klass->NumInstanceFields(); i < num_fields; ++i) {
   2827           if (klass->GetInstanceField(i)->IsFinal()) {
   2828             Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for "
   2829                 << PrettyField(klass->GetInstanceField(i));
   2830             break;
   2831           }
   2832         }
   2833       }
   2834       break;
   2835     // Note: the following instructions encode offsets derived from class linking.
   2836     // As such they use Class*/Field*/AbstractMethod* as these offsets only have
   2837     // meaning if the class linking and resolution were successful.
   2838     case Instruction::IGET_QUICK:
   2839       VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true);
   2840       break;
   2841     case Instruction::IGET_WIDE_QUICK:
   2842       VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true);
   2843       break;
   2844     case Instruction::IGET_OBJECT_QUICK:
   2845       VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false);
   2846       break;
   2847     case Instruction::IGET_BOOLEAN_QUICK:
   2848       VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true);
   2849       break;
   2850     case Instruction::IGET_BYTE_QUICK:
   2851       VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true);
   2852       break;
   2853     case Instruction::IGET_CHAR_QUICK:
   2854       VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true);
   2855       break;
   2856     case Instruction::IGET_SHORT_QUICK:
   2857       VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true);
   2858       break;
   2859     case Instruction::IPUT_QUICK:
   2860       VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true);
   2861       break;
   2862     case Instruction::IPUT_BOOLEAN_QUICK:
   2863       VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true);
   2864       break;
   2865     case Instruction::IPUT_BYTE_QUICK:
   2866       VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true);
   2867       break;
   2868     case Instruction::IPUT_CHAR_QUICK:
   2869       VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true);
   2870       break;
   2871     case Instruction::IPUT_SHORT_QUICK:
   2872       VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true);
   2873       break;
   2874     case Instruction::IPUT_WIDE_QUICK:
   2875       VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true);
   2876       break;
   2877     case Instruction::IPUT_OBJECT_QUICK:
   2878       VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false);
   2879       break;
   2880     case Instruction::INVOKE_VIRTUAL_QUICK:
   2881     case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
   2882       bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
   2883       ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
   2884       if (called_method != nullptr) {
   2885         const char* descriptor = called_method->GetReturnTypeDescriptor();
   2886         const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
   2887         if (!return_type.IsLowHalf()) {
   2888           work_line_->SetResultRegisterType(this, return_type);
   2889         } else {
   2890           work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
   2891         }
   2892         just_set_result = true;
   2893       }
   2894       break;
   2895     }
   2896 
   2897     /* These should never appear during verification. */
   2898     case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
   2899     case Instruction::UNUSED_F3 ... Instruction::UNUSED_FF:
   2900     case Instruction::UNUSED_79:
   2901     case Instruction::UNUSED_7A:
   2902       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
   2903       break;
   2904 
   2905     /*
   2906      * DO NOT add a "default" clause here. Without it the compiler will
   2907      * complain if an instruction is missing (which is desirable).
   2908      */
   2909   }  // end - switch (dec_insn.opcode)
   2910 
   2911   if (have_pending_hard_failure_) {
   2912     if (Runtime::Current()->IsAotCompiler()) {
   2913       /* When AOT compiling, check that the last failure is a hard failure */
   2914       if (failures_[failures_.size() - 1] != VERIFY_ERROR_BAD_CLASS_HARD) {
   2915         LOG(ERROR) << "Pending failures:";
   2916         for (auto& error : failures_) {
   2917           LOG(ERROR) << error;
   2918         }
   2919         for (auto& error_msg : failure_messages_) {
   2920           LOG(ERROR) << error_msg->str();
   2921         }
   2922         LOG(FATAL) << "Pending hard failure, but last failure not hard.";
   2923       }
   2924     }
   2925     /* immediate failure, reject class */
   2926     info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
   2927     return false;
   2928   } else if (have_pending_runtime_throw_failure_) {
   2929     /* checking interpreter will throw, mark following code as unreachable */
   2930     opcode_flags = Instruction::kThrow;
   2931     have_any_pending_runtime_throw_failure_ = true;
   2932     // Reset the pending_runtime_throw flag. The flag is a global to decouple Fail and is per
   2933     // instruction.
   2934     have_pending_runtime_throw_failure_ = false;
   2935   }
   2936   /*
   2937    * If we didn't just set the result register, clear it out. This ensures that you can only use
   2938    * "move-result" immediately after the result is set. (We could check this statically, but it's
   2939    * not expensive and it makes our debugging output cleaner.)
   2940    */
   2941   if (!just_set_result) {
   2942     work_line_->SetResultTypeToUnknown(this);
   2943   }
   2944 
   2945 
   2946 
   2947   /*
   2948    * Handle "branch". Tag the branch target.
   2949    *
   2950    * NOTE: instructions like Instruction::EQZ provide information about the
   2951    * state of the register when the branch is taken or not taken. For example,
   2952    * somebody could get a reference field, check it for zero, and if the
   2953    * branch is taken immediately store that register in a boolean field
   2954    * since the value is known to be zero. We do not currently account for
   2955    * that, and will reject the code.
   2956    *
   2957    * TODO: avoid re-fetching the branch target
   2958    */
   2959   if ((opcode_flags & Instruction::kBranch) != 0) {
   2960     bool isConditional, selfOkay;
   2961     if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
   2962       /* should never happen after static verification */
   2963       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
   2964       return false;
   2965     }
   2966     DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
   2967     if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, work_insn_idx_ + branch_target)) {
   2968       return false;
   2969     }
   2970     /* update branch target, set "changed" if appropriate */
   2971     if (nullptr != branch_line.get()) {
   2972       if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
   2973         return false;
   2974       }
   2975     } else {
   2976       if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
   2977         return false;
   2978       }
   2979     }
   2980   }
   2981 
   2982   /*
   2983    * Handle "switch". Tag all possible branch targets.
   2984    *
   2985    * We've already verified that the table is structurally sound, so we
   2986    * just need to walk through and tag the targets.
   2987    */
   2988   if ((opcode_flags & Instruction::kSwitch) != 0) {
   2989     int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
   2990     const uint16_t* switch_insns = insns + offset_to_switch;
   2991     int switch_count = switch_insns[1];
   2992     int offset_to_targets, targ;
   2993 
   2994     if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
   2995       /* 0 = sig, 1 = count, 2/3 = first key */
   2996       offset_to_targets = 4;
   2997     } else {
   2998       /* 0 = sig, 1 = count, 2..count * 2 = keys */
   2999       DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
   3000       offset_to_targets = 2 + 2 * switch_count;
   3001     }
   3002 
   3003     /* verify each switch target */
   3004     for (targ = 0; targ < switch_count; targ++) {
   3005       int offset;
   3006       uint32_t abs_offset;
   3007 
   3008       /* offsets are 32-bit, and only partly endian-swapped */
   3009       offset = switch_insns[offset_to_targets + targ * 2] |
   3010          (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
   3011       abs_offset = work_insn_idx_ + offset;
   3012       DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
   3013       if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, abs_offset)) {
   3014         return false;
   3015       }
   3016       if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
   3017         return false;
   3018       }
   3019     }
   3020   }
   3021 
   3022   /*
   3023    * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
   3024    * "try" block when they throw, control transfers out of the method.)
   3025    */
   3026   if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
   3027     bool has_catch_all_handler = false;
   3028     CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
   3029 
   3030     // Need the linker to try and resolve the handled class to check if it's Throwable.
   3031     ClassLinker* linker = Runtime::Current()->GetClassLinker();
   3032 
   3033     for (; iterator.HasNext(); iterator.Next()) {
   3034       uint16_t handler_type_idx = iterator.GetHandlerTypeIndex();
   3035       if (handler_type_idx == DexFile::kDexNoIndex16) {
   3036         has_catch_all_handler = true;
   3037       } else {
   3038         // It is also a catch-all if it is java.lang.Throwable.
   3039         mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, dex_cache_,
   3040                                                    class_loader_);
   3041         if (klass != nullptr) {
   3042           if (klass == mirror::Throwable::GetJavaLangThrowable()) {
   3043             has_catch_all_handler = true;
   3044           }
   3045         } else {
   3046           // Clear exception.
   3047           DCHECK(self_->IsExceptionPending());
   3048           self_->ClearException();
   3049         }
   3050       }
   3051       /*
   3052        * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
   3053        * "work_regs", because at runtime the exception will be thrown before the instruction
   3054        * modifies any registers.
   3055        */
   3056       if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
   3057         return false;
   3058       }
   3059     }
   3060 
   3061     /*
   3062      * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
   3063      * instruction. This does apply to monitor-exit because of async exception handling.
   3064      */
   3065     if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
   3066       /*
   3067        * The state in work_line reflects the post-execution state. If the current instruction is a
   3068        * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
   3069        * it will do so before grabbing the lock).
   3070        */
   3071       if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
   3072         Fail(VERIFY_ERROR_BAD_CLASS_HARD)
   3073             << "expected to be within a catch-all for an instruction where a monitor is held";
   3074         return false;
   3075       }
   3076     }
   3077   }
   3078 
   3079   /* Handle "continue". Tag the next consecutive instruction.
   3080    *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
   3081    *        because it changes work_line_ when performing peephole optimization
   3082    *        and this change should not be used in those cases.
   3083    */
   3084   if ((opcode_flags & Instruction::kContinue) != 0) {
   3085     DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
   3086     uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
   3087     if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
   3088       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
   3089       return false;
   3090     }
   3091     // The only way to get to a move-exception instruction is to get thrown there. Make sure the
   3092     // next instruction isn't one.
   3093     if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
   3094       return false;
   3095     }
   3096     if (nullptr != fallthrough_line.get()) {
   3097       // Make workline consistent with fallthrough computed from peephole optimization.
   3098       work_line_->CopyFromLine(fallthrough_line.get());
   3099     }
   3100     if (insn_flags_[next_insn_idx].IsReturn()) {
   3101       // For returns we only care about the operand to the return, all other registers are dead.
   3102       const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
   3103       Instruction::Code opcode = ret_inst->Opcode();
   3104       if (opcode == Instruction::RETURN_VOID || opcode == Instruction::RETURN_VOID_NO_BARRIER) {
   3105         SafelyMarkAllRegistersAsConflicts(this, work_line_.get());
   3106       } else {
   3107         if (opcode == Instruction::RETURN_WIDE) {
   3108           work_line_->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
   3109         } else {
   3110           work_line_->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
   3111         }
   3112       }
   3113     }
   3114     RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
   3115     if (next_line != nullptr) {
   3116       // Merge registers into what we have for the next instruction, and set the "changed" flag if
   3117       // needed. If the merge changes the state of the registers then the work line will be
   3118       // updated.
   3119       if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
   3120         return false;
   3121       }
   3122     } else {
   3123       /*
   3124        * We're not recording register data for the next instruction, so we don't know what the
   3125        * prior state was. We have to assume that something has changed and re-evaluate it.
   3126        */
   3127       insn_flags_[next_insn_idx].SetChanged();
   3128     }
   3129   }
   3130 
   3131   /* If we're returning from the method, make sure monitor stack is empty. */
   3132   if ((opcode_flags & Instruction::kReturn) != 0) {
   3133     if (!work_line_->VerifyMonitorStackEmpty(this)) {
   3134       return false;
   3135     }
   3136   }
   3137 
   3138   /*
   3139    * Update start_guess. Advance to the next instruction of that's
   3140    * possible, otherwise use the branch target if one was found. If
   3141    * neither of those exists we're in a return or throw; leave start_guess
   3142    * alone and let the caller sort it out.
   3143    */
   3144   if ((opcode_flags & Instruction::kContinue) != 0) {
   3145     DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
   3146     *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
   3147   } else if ((opcode_flags & Instruction::kBranch) != 0) {
   3148     /* we're still okay if branch_target is zero */
   3149     *start_guess = work_insn_idx_ + branch_target;
   3150   }
   3151 
   3152   DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
   3153   DCHECK(insn_flags_[*start_guess].IsOpcode());
   3154 
   3155   return true;
   3156 }  // NOLINT(readability/fn_size)
   3157 
   3158 const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
   3159   const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
   3160   const RegType& referrer = GetDeclaringClass();
   3161   mirror::Class* klass = dex_cache_->GetResolvedType(class_idx);
   3162   const RegType& result = klass != nullptr ?
   3163       FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes()) :
   3164       reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
   3165   if (result.IsConflict()) {
   3166     Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
   3167         << "' in " << referrer;
   3168     return result;
   3169   }
   3170   if (klass == nullptr && !result.IsUnresolvedTypes()) {
   3171     dex_cache_->SetResolvedType(class_idx, result.GetClass());
   3172   }
   3173   // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
   3174   // check at runtime if access is allowed and so pass here. If result is
   3175   // primitive, skip the access check.
   3176   if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
   3177       !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
   3178     Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
   3179                                     << referrer << "' -> '" << result << "'";
   3180   }
   3181   return result;
   3182 }
   3183 
   3184 const RegType& MethodVerifier::GetCaughtExceptionType() {
   3185   const RegType* common_super = nullptr;
   3186   if (code_item_->tries_size_ != 0) {
   3187     const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
   3188     uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
   3189     for (uint32_t i = 0; i < handlers_size; i++) {
   3190       CatchHandlerIterator iterator(handlers_ptr);
   3191       for (; iterator.HasNext(); iterator.Next()) {
   3192         if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
   3193           if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
   3194             common_super = &reg_types_.JavaLangThrowable(false);
   3195           } else {
   3196             const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
   3197             if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
   3198               if (exception.IsUnresolvedTypes()) {
   3199                 // We don't know enough about the type. Fail here and let runtime handle it.
   3200                 Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
   3201                 return exception;
   3202               } else {
   3203                 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
   3204                 return reg_types_.Conflict();
   3205               }
   3206             } else if (common_super == nullptr) {
   3207               common_super = &exception;
   3208             } else if (common_super->Equals(exception)) {
   3209               // odd case, but nothing to do
   3210             } else {
   3211               common_super = &common_super->Merge(exception, &reg_types_);
   3212               if (FailOrAbort(this,
   3213                               reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super),
   3214                               "java.lang.Throwable is not assignable-from common_super at ",
   3215                               work_insn_idx_)) {
   3216                 break;
   3217               }
   3218             }
   3219           }
   3220         }
   3221       }
   3222       handlers_ptr = iterator.EndDataPointer();
   3223     }
   3224   }
   3225   if (common_super == nullptr) {
   3226     /* no catch blocks, or no catches with classes we can find */
   3227     Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
   3228     return reg_types_.Conflict();
   3229   }
   3230   return *common_super;
   3231 }
   3232 
   3233 ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(
   3234     uint32_t dex_method_idx, MethodType method_type) {
   3235   const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
   3236   const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
   3237   if (klass_type.IsConflict()) {
   3238     std::string append(" in attempt to access method ");
   3239     append += dex_file_->GetMethodName(method_id);
   3240     AppendToLastFailMessage(append);
   3241     return nullptr;
   3242   }
   3243   if (klass_type.IsUnresolvedTypes()) {
   3244     return nullptr;  // Can't resolve Class so no more to do here
   3245   }
   3246   mirror::Class* klass = klass_type.GetClass();
   3247   const RegType& referrer = GetDeclaringClass();
   3248   auto* cl = Runtime::Current()->GetClassLinker();
   3249   auto pointer_size = cl->GetImagePointerSize();
   3250   ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx, pointer_size);
   3251   if (res_method == nullptr) {
   3252     const char* name = dex_file_->GetMethodName(method_id);
   3253     const Signature signature = dex_file_->GetMethodSignature(method_id);
   3254 
   3255     if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
   3256       res_method = klass->FindDirectMethod(name, signature, pointer_size);
   3257     } else if (method_type == METHOD_INTERFACE) {
   3258       res_method = klass->FindInterfaceMethod(name, signature, pointer_size);
   3259     } else {
   3260       res_method = klass->FindVirtualMethod(name, signature, pointer_size);
   3261     }
   3262     if (res_method != nullptr) {
   3263       dex_cache_->SetResolvedMethod(dex_method_idx, res_method, pointer_size);
   3264     } else {
   3265       // If a virtual or interface method wasn't found with the expected type, look in
   3266       // the direct methods. This can happen when the wrong invoke type is used or when
   3267       // a class has changed, and will be flagged as an error in later checks.
   3268       if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
   3269         res_method = klass->FindDirectMethod(name, signature, pointer_size);
   3270       }
   3271       if (res_method == nullptr) {
   3272         Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
   3273                                      << PrettyDescriptor(klass) << "." << name
   3274                                      << " " << signature;
   3275         return nullptr;
   3276       }
   3277     }
   3278   }
   3279   // Make sure calls to constructors are "direct". There are additional restrictions but we don't
   3280   // enforce them here.
   3281   if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
   3282     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
   3283                                       << PrettyMethod(res_method);
   3284     return nullptr;
   3285   }
   3286   // Disallow any calls to class initializers.
   3287   if (res_method->IsClassInitializer()) {
   3288     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
   3289                                       << PrettyMethod(res_method);
   3290     return nullptr;
   3291   }
   3292   // Check if access is allowed.
   3293   if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
   3294     Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
   3295                                      << " from " << referrer << ")";
   3296     return res_method;
   3297   }
   3298   // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
   3299   if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
   3300     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
   3301                                       << PrettyMethod(res_method);
   3302     return nullptr;
   3303   }
   3304   // Check that interface methods match interface classes.
   3305   if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
   3306     Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
   3307                                     << " is in an interface class " << PrettyClass(klass);
   3308     return nullptr;
   3309   } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
   3310     Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
   3311                                     << " is in a non-interface class " << PrettyClass(klass);
   3312     return nullptr;
   3313   }
   3314   // See if the method type implied by the invoke instruction matches the access flags for the
   3315   // target method.
   3316   if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
   3317       (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
   3318       ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
   3319       ) {
   3320     Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
   3321                                        " type of " << PrettyMethod(res_method);
   3322     return nullptr;
   3323   }
   3324   return res_method;
   3325 }
   3326 
   3327 template <class T>
   3328 ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(
   3329     T* it, const Instruction* inst, MethodType method_type, bool is_range, ArtMethod* res_method) {
   3330   // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
   3331   // match the call to the signature. Also, we might be calling through an abstract method
   3332   // definition (which doesn't have register count values).
   3333   const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
   3334   /* caught by static verifier */
   3335   DCHECK(is_range || expected_args <= 5);
   3336   if (expected_args > code_item_->outs_size_) {
   3337     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
   3338         << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
   3339     return nullptr;
   3340   }
   3341 
   3342   uint32_t arg[5];
   3343   if (!is_range) {
   3344     inst->GetVarArgs(arg);
   3345   }
   3346   uint32_t sig_registers = 0;
   3347 
   3348   /*
   3349    * Check the "this" argument, which must be an instance of the class that declared the method.
   3350    * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
   3351    * rigorous check here (which is okay since we have to do it at runtime).
   3352    */
   3353   if (method_type != METHOD_STATIC) {
   3354     const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
   3355     if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
   3356       CHECK(have_pending_hard_failure_);
   3357       return nullptr;
   3358     }
   3359     if (actual_arg_type.IsUninitializedReference()) {
   3360       if (res_method) {
   3361         if (!res_method->IsConstructor()) {
   3362           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
   3363           return nullptr;
   3364         }
   3365       } else {
   3366         // Check whether the name of the called method is "<init>"
   3367         const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
   3368         if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
   3369           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
   3370           return nullptr;
   3371         }
   3372       }
   3373     }
   3374     if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
   3375       const RegType* res_method_class;
   3376       if (res_method != nullptr) {
   3377         mirror::Class* klass = res_method->GetDeclaringClass();
   3378         std::string temp;
   3379         res_method_class = &FromClass(klass->GetDescriptor(&temp), klass,
   3380                                       klass->CannotBeAssignedFromOtherTypes());
   3381       } else {
   3382         const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
   3383         const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
   3384         res_method_class = &reg_types_.FromDescriptor(GetClassLoader(),
   3385                                                       dex_file_->StringByTypeIdx(class_idx),
   3386                                                       false);
   3387       }
   3388       if (!res_method_class->IsAssignableFrom(actual_arg_type)) {
   3389         Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
   3390             VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
   3391                 << "' not instance of '" << *res_method_class << "'";
   3392         // Continue on soft failures. We need to find possible hard failures to avoid problems in
   3393         // the compiler.
   3394         if (have_pending_hard_failure_) {
   3395           return nullptr;
   3396         }
   3397       }
   3398     }
   3399     sig_registers = 1;
   3400   }
   3401 
   3402   for ( ; it->HasNext(); it->Next()) {
   3403     if (sig_registers >= expected_args) {
   3404       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
   3405           " arguments, found " << sig_registers << " or more.";
   3406       return nullptr;
   3407     }
   3408 
   3409     const char* param_descriptor = it->GetDescriptor();
   3410 
   3411     if (param_descriptor == nullptr) {
   3412       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
   3413           "component";
   3414       return nullptr;
   3415     }
   3416 
   3417     const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), param_descriptor, false);
   3418     uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
   3419         arg[sig_registers];
   3420     if (reg_type.IsIntegralTypes()) {
   3421       const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
   3422       if (!src_type.IsIntegralTypes()) {
   3423         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
   3424             << " but expected " << reg_type;
   3425         return nullptr;
   3426       }
   3427     } else if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
   3428       // Continue on soft failures. We need to find possible hard failures to avoid problems in the
   3429       // compiler.
   3430       if (have_pending_hard_failure_) {
   3431         return nullptr;
   3432       }
   3433     }
   3434     sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
   3435   }
   3436   if (expected_args != sig_registers) {
   3437     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
   3438         " arguments, found " << sig_registers;
   3439     return nullptr;
   3440   }
   3441   return res_method;
   3442 }
   3443 
   3444 void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
   3445                                                           MethodType method_type,
   3446                                                           bool is_range) {
   3447   // As the method may not have been resolved, make this static check against what we expect.
   3448   // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
   3449   // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
   3450   const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
   3451   DexFileParameterIterator it(*dex_file_,
   3452                               dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
   3453   VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
   3454                                                              nullptr);
   3455 }
   3456 
   3457 class MethodParamListDescriptorIterator {
   3458  public:
   3459   explicit MethodParamListDescriptorIterator(ArtMethod* res_method) :
   3460       res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
   3461       params_size_(params_ == nullptr ? 0 : params_->Size()) {
   3462   }
   3463 
   3464   bool HasNext() {
   3465     return pos_ < params_size_;
   3466   }
   3467 
   3468   void Next() {
   3469     ++pos_;
   3470   }
   3471 
   3472   const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   3473     return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
   3474   }
   3475 
   3476  private:
   3477   ArtMethod* res_method_;
   3478   size_t pos_;
   3479   const DexFile::TypeList* params_;
   3480   const size_t params_size_;
   3481 };
   3482 
   3483 ArtMethod* MethodVerifier::VerifyInvocationArgs(
   3484     const Instruction* inst, MethodType method_type, bool is_range, bool is_super) {
   3485   // Resolve the method. This could be an abstract or concrete method depending on what sort of call
   3486   // we're making.
   3487   const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
   3488 
   3489   ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
   3490   if (res_method == nullptr) {  // error or class is unresolved
   3491     // Check what we can statically.
   3492     if (!have_pending_hard_failure_) {
   3493       VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
   3494     }
   3495     return nullptr;
   3496   }
   3497 
   3498   // If we're using invoke-super(method), make sure that the executing method's class' superclass
   3499   // has a vtable entry for the target method.
   3500   if (is_super) {
   3501     DCHECK(method_type == METHOD_VIRTUAL);
   3502     const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
   3503     if (super.IsUnresolvedTypes()) {
   3504       Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
   3505                                    << PrettyMethod(dex_method_idx_, *dex_file_)
   3506                                    << " to super " << PrettyMethod(res_method);
   3507       return nullptr;
   3508     }
   3509     mirror::Class* super_klass = super.GetClass();
   3510     if (res_method->GetMethodIndex() >= super_klass->GetVTableLength()) {
   3511       Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
   3512                                    << PrettyMethod(dex_method_idx_, *dex_file_)
   3513                                    << " to super " << super
   3514                                    << "." << res_method->GetName()
   3515                                    << res_method->GetSignature();
   3516       return nullptr;
   3517     }
   3518   }
   3519 
   3520   // Process the target method's signature. This signature may or may not
   3521   MethodParamListDescriptorIterator it(res_method);
   3522   return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
   3523                                                                              is_range, res_method);
   3524 }
   3525 
   3526 ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst, RegisterLine* reg_line,
   3527                                                  bool is_range, bool allow_failure) {
   3528   if (is_range) {
   3529     DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
   3530   } else {
   3531     DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_QUICK);
   3532   }
   3533   const RegType& actual_arg_type = reg_line->GetInvocationThis(this, inst, is_range, allow_failure);
   3534   if (!actual_arg_type.HasClass()) {
   3535     VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
   3536     return nullptr;
   3537   }
   3538   mirror::Class* klass = actual_arg_type.GetClass();
   3539   mirror::Class* dispatch_class;
   3540   if (klass->IsInterface()) {
   3541     // Derive Object.class from Class.class.getSuperclass().
   3542     mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
   3543     if (FailOrAbort(this, object_klass->IsObjectClass(),
   3544                     "Failed to find Object class in quickened invoke receiver", work_insn_idx_)) {
   3545       return nullptr;
   3546     }
   3547     dispatch_class = object_klass;
   3548   } else {
   3549     dispatch_class = klass;
   3550   }
   3551   if (!dispatch_class->HasVTable()) {
   3552     FailOrAbort(this, allow_failure, "Receiver class has no vtable for quickened invoke at ",
   3553                 work_insn_idx_);
   3554     return nullptr;
   3555   }
   3556   uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
   3557   auto* cl = Runtime::Current()->GetClassLinker();
   3558   auto pointer_size = cl->GetImagePointerSize();
   3559   if (static_cast<int32_t>(vtable_index) >= dispatch_class->GetVTableLength()) {
   3560     FailOrAbort(this, allow_failure,
   3561                 "Receiver class has not enough vtable slots for quickened invoke at ",
   3562                 work_insn_idx_);
   3563     return nullptr;
   3564   }
   3565   ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index, pointer_size);
   3566   if (self_->IsExceptionPending()) {
   3567     FailOrAbort(this, allow_failure, "Unexpected exception pending for quickened invoke at ",
   3568                 work_insn_idx_);
   3569     return nullptr;
   3570   }
   3571   return res_method;
   3572 }
   3573 
   3574 ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst, bool is_range) {
   3575   DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_)
   3576       << PrettyMethod(dex_method_idx_, *dex_file_, true) << "@" << work_insn_idx_;
   3577 
   3578   ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(), is_range, false);
   3579   if (res_method == nullptr) {
   3580     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
   3581     return nullptr;
   3582   }
   3583   if (FailOrAbort(this, !res_method->IsDirect(), "Quick-invoked method is direct at ",
   3584                   work_insn_idx_)) {
   3585     return nullptr;
   3586   }
   3587   if (FailOrAbort(this, !res_method->IsStatic(), "Quick-invoked method is static at ",
   3588                   work_insn_idx_)) {
   3589     return nullptr;
   3590   }
   3591 
   3592   // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
   3593   // match the call to the signature. Also, we might be calling through an abstract method
   3594   // definition (which doesn't have register count values).
   3595   const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
   3596   if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
   3597     return nullptr;
   3598   }
   3599   const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
   3600   /* caught by static verifier */
   3601   DCHECK(is_range || expected_args <= 5);
   3602   if (expected_args > code_item_->outs_size_) {
   3603     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
   3604         << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
   3605     return nullptr;
   3606   }
   3607 
   3608   /*
   3609    * Check the "this" argument, which must be an instance of the class that declared the method.
   3610    * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
   3611    * rigorous check here (which is okay since we have to do it at runtime).
   3612    */
   3613   if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
   3614     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
   3615     return nullptr;
   3616   }
   3617   if (!actual_arg_type.IsZero()) {
   3618     mirror::Class* klass = res_method->GetDeclaringClass();
   3619     std::string temp;
   3620     const RegType& res_method_class =
   3621         FromClass(klass->GetDescriptor(&temp), klass, klass->CannotBeAssignedFromOtherTypes());
   3622     if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
   3623       Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
   3624           VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
   3625           << "' not instance of '" << res_method_class << "'";
   3626       return nullptr;
   3627     }
   3628   }
   3629   /*
   3630    * Process the target method's signature. This signature may or may not
   3631    * have been verified, so we can't assume it's properly formed.
   3632    */
   3633   const DexFile::TypeList* params = res_method->GetParameterTypeList();
   3634   size_t params_size = params == nullptr ? 0 : params->Size();
   3635   uint32_t arg[5];
   3636   if (!is_range) {
   3637     inst->GetVarArgs(arg);
   3638   }
   3639   size_t actual_args = 1;
   3640   for (size_t param_index = 0; param_index < params_size; param_index++) {
   3641     if (actual_args >= expected_args) {
   3642       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
   3643                                         << "'. Expected " << expected_args
   3644                                          << " arguments, processing argument " << actual_args
   3645                                         << " (where longs/doubles count twice).";
   3646       return nullptr;
   3647     }
   3648     const char* descriptor =
   3649         res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
   3650     if (descriptor == nullptr) {
   3651       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
   3652                                         << " missing signature component";
   3653       return nullptr;
   3654     }
   3655     const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
   3656     uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
   3657     if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
   3658       return res_method;
   3659     }
   3660     actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
   3661   }
   3662   if (actual_args != expected_args) {
   3663     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
   3664               << " expected " << expected_args << " arguments, found " << actual_args;
   3665     return nullptr;
   3666   } else {
   3667     return res_method;
   3668   }
   3669 }
   3670 
   3671 void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
   3672   uint32_t type_idx;
   3673   if (!is_filled) {
   3674     DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
   3675     type_idx = inst->VRegC_22c();
   3676   } else if (!is_range) {
   3677     DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
   3678     type_idx = inst->VRegB_35c();
   3679   } else {
   3680     DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
   3681     type_idx = inst->VRegB_3rc();
   3682   }
   3683   const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
   3684   if (res_type.IsConflict()) {  // bad class
   3685     DCHECK_NE(failures_.size(), 0U);
   3686   } else {
   3687     // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
   3688     if (!res_type.IsArrayTypes()) {
   3689       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
   3690     } else if (!is_filled) {
   3691       /* make sure "size" register is valid type */
   3692       work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
   3693       /* set register type to array class */
   3694       const RegType& precise_type = reg_types_.FromUninitialized(res_type);
   3695       work_line_->SetRegisterType(this, inst->VRegA_22c(), precise_type);
   3696     } else {
   3697       // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
   3698       // the list and fail. It's legal, if silly, for arg_count to be zero.
   3699       const RegType& expected_type = reg_types_.GetComponentType(res_type, GetClassLoader());
   3700       uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
   3701       uint32_t arg[5];
   3702       if (!is_range) {
   3703         inst->GetVarArgs(arg);
   3704       }
   3705       for (size_t ui = 0; ui < arg_count; ui++) {
   3706         uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
   3707         if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
   3708           work_line_->SetResultRegisterType(this, reg_types_.Conflict());
   3709           return;
   3710         }
   3711       }
   3712       // filled-array result goes into "result" register
   3713       const RegType& precise_type = reg_types_.FromUninitialized(res_type);
   3714       work_line_->SetResultRegisterType(this, precise_type);
   3715     }
   3716   }
   3717 }
   3718 
   3719 void MethodVerifier::VerifyAGet(const Instruction* inst,
   3720                                 const RegType& insn_type, bool is_primitive) {
   3721   const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
   3722   if (!index_type.IsArrayIndexTypes()) {
   3723     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
   3724   } else {
   3725     const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
   3726     if (array_type.IsZero()) {
   3727       have_pending_runtime_throw_failure_ = true;
   3728       // Null array class; this code path will fail at runtime. Infer a merge-able type from the
   3729       // instruction type. TODO: have a proper notion of bottom here.
   3730       if (!is_primitive || insn_type.IsCategory1Types()) {
   3731         // Reference or category 1
   3732         work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Zero());
   3733       } else {
   3734         // Category 2
   3735         work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(),
   3736                                         reg_types_.FromCat2ConstLo(0, false),
   3737                                         reg_types_.FromCat2ConstHi(0, false));
   3738       }
   3739     } else if (!array_type.IsArrayTypes()) {
   3740       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
   3741     } else {
   3742       /* verify the class */
   3743       const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
   3744       if (!component_type.IsReferenceTypes() && !is_primitive) {
   3745         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
   3746             << " source for aget-object";
   3747       } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
   3748         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
   3749             << " source for category 1 aget";
   3750       } else if (is_primitive && !insn_type.Equals(component_type) &&
   3751                  !((insn_type.IsInteger() && component_type.IsFloat()) ||
   3752                  (insn_type.IsLong() && component_type.IsDouble()))) {
   3753         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
   3754             << " incompatible with aget of type " << insn_type;
   3755       } else {
   3756         // Use knowledge of the field type which is stronger than the type inferred from the
   3757         // instruction, which can't differentiate object types and ints from floats, longs from
   3758         // doubles.
   3759         if (!component_type.IsLowHalf()) {
   3760           work_line_->SetRegisterType(this, inst->VRegA_23x(), component_type);
   3761         } else {
   3762           work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type,
   3763                                           component_type.HighHalf(&reg_types_));
   3764         }
   3765       }
   3766     }
   3767   }
   3768 }
   3769 
   3770 void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
   3771                                         const uint32_t vregA) {
   3772   // Primitive assignability rules are weaker than regular assignability rules.
   3773   bool instruction_compatible;
   3774   bool value_compatible;
   3775   const RegType& value_type = work_line_->GetRegisterType(this, vregA);
   3776   if (target_type.IsIntegralTypes()) {
   3777     instruction_compatible = target_type.Equals(insn_type);
   3778     value_compatible = value_type.IsIntegralTypes();
   3779   } else if (target_type.IsFloat()) {
   3780     instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
   3781     value_compatible = value_type.IsFloatTypes();
   3782   } else if (target_type.IsLong()) {
   3783     instruction_compatible = insn_type.IsLong();
   3784     // Additional register check: this is not checked statically (as part of VerifyInstructions),
   3785     // as target_type depends on the resolved type of the field.
   3786     if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
   3787       const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
   3788       value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
   3789     } else {
   3790       value_compatible = false;
   3791     }
   3792   } else if (target_type.IsDouble()) {
   3793     instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
   3794     // Additional register check: this is not checked statically (as part of VerifyInstructions),
   3795     // as target_type depends on the resolved type of the field.
   3796     if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
   3797       const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
   3798       value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
   3799     } else {
   3800       value_compatible = false;
   3801     }
   3802   } else {
   3803     instruction_compatible = false;  // reference with primitive store
   3804     value_compatible = false;  // unused
   3805   }
   3806   if (!instruction_compatible) {
   3807     // This is a global failure rather than a class change failure as the instructions and
   3808     // the descriptors for the type should have been consistent within the same file at
   3809     // compile time.
   3810     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
   3811         << "' but expected type '" << target_type << "'";
   3812     return;
   3813   }
   3814   if (!value_compatible) {
   3815     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
   3816         << " of type " << value_type << " but expected " << target_type << " for put";
   3817     return;
   3818   }
   3819 }
   3820 
   3821 void MethodVerifier::VerifyAPut(const Instruction* inst,
   3822                                 const RegType& insn_type, bool is_primitive) {
   3823   const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
   3824   if (!index_type.IsArrayIndexTypes()) {
   3825     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
   3826   } else {
   3827     const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
   3828     if (array_type.IsZero()) {
   3829       // Null array type; this code path will fail at runtime.
   3830       // Still check that the given value matches the instruction's type.
   3831       // Note: this is, as usual, complicated by the fact the the instruction isn't fully typed
   3832       //       and fits multiple register types.
   3833       const RegType* modified_reg_type = &insn_type;
   3834       if ((modified_reg_type == &reg_types_.Integer()) ||
   3835           (modified_reg_type == &reg_types_.LongLo())) {
   3836         // May be integer or float | long or double. Overwrite insn_type accordingly.
   3837         const RegType& value_type = work_line_->GetRegisterType(this, inst->VRegA_23x());
   3838         if (modified_reg_type == &reg_types_.Integer()) {
   3839           if (&value_type == &reg_types_.Float()) {
   3840             modified_reg_type = &value_type;
   3841           }
   3842         } else {
   3843           if (&value_type == &reg_types_.DoubleLo()) {
   3844             modified_reg_type = &value_type;
   3845           }
   3846         }
   3847       }
   3848       work_line_->VerifyRegisterType(this, inst->VRegA_23x(), *modified_reg_type);
   3849     } else if (!array_type.IsArrayTypes()) {
   3850       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
   3851     } else {
   3852       const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
   3853       const uint32_t vregA = inst->VRegA_23x();
   3854       if (is_primitive) {
   3855         VerifyPrimitivePut(component_type, insn_type, vregA);
   3856       } else {
   3857         if (!component_type.IsReferenceTypes()) {
   3858           Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
   3859               << " source for aput-object";
   3860         } else {
   3861           // The instruction agrees with the type of array, confirm the value to be stored does too
   3862           // Note: we use the instruction type (rather than the component type) for aput-object as
   3863           // incompatible classes will be caught at runtime as an array store exception
   3864           work_line_->VerifyRegisterType(this, vregA, insn_type);
   3865         }
   3866       }
   3867     }
   3868   }
   3869 }
   3870 
   3871 ArtField* MethodVerifier::GetStaticField(int field_idx) {
   3872   const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
   3873   // Check access to class
   3874   const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
   3875   if (klass_type.IsConflict()) {  // bad class
   3876     AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
   3877                                          field_idx, dex_file_->GetFieldName(field_id),
   3878                                          dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
   3879     return nullptr;
   3880   }
   3881   if (klass_type.IsUnresolvedTypes()) {
   3882     return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
   3883   }
   3884   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   3885   ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
   3886                                                   class_loader_);
   3887   if (field == nullptr) {
   3888     VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
   3889               << dex_file_->GetFieldName(field_id) << ") in "
   3890               << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
   3891     DCHECK(self_->IsExceptionPending());
   3892     self_->ClearException();
   3893     return nullptr;
   3894   } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
   3895                                                   field->GetAccessFlags())) {
   3896     Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
   3897                                     << " from " << GetDeclaringClass();
   3898     return nullptr;
   3899   } else if (!field->IsStatic()) {
   3900     Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
   3901     return nullptr;
   3902   }
   3903   return field;
   3904 }
   3905 
   3906 ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
   3907   const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
   3908   // Check access to class
   3909   const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
   3910   if (klass_type.IsConflict()) {
   3911     AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
   3912                                          field_idx, dex_file_->GetFieldName(field_id),
   3913                                          dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
   3914     return nullptr;
   3915   }
   3916   if (klass_type.IsUnresolvedTypes()) {
   3917     return nullptr;  // Can't resolve Class so no more to do here
   3918   }
   3919   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   3920   ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
   3921                                                   class_loader_);
   3922   if (field == nullptr) {
   3923     VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
   3924               << dex_file_->GetFieldName(field_id) << ") in "
   3925               << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
   3926     DCHECK(self_->IsExceptionPending());
   3927     self_->ClearException();
   3928     return nullptr;
   3929   } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
   3930                                                   field->GetAccessFlags())) {
   3931     Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
   3932                                     << " from " << GetDeclaringClass();
   3933     return nullptr;
   3934   } else if (field->IsStatic()) {
   3935     Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
   3936                                     << " to not be static";
   3937     return nullptr;
   3938   } else if (obj_type.IsZero()) {
   3939     // Cannot infer and check type, however, access will cause null pointer exception
   3940     return field;
   3941   } else if (!obj_type.IsReferenceTypes()) {
   3942     // Trying to read a field from something that isn't a reference
   3943     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
   3944                                       << "non-reference type " << obj_type;
   3945     return nullptr;
   3946   } else {
   3947     mirror::Class* klass = field->GetDeclaringClass();
   3948     const RegType& field_klass =
   3949         FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
   3950                   klass, klass->CannotBeAssignedFromOtherTypes());
   3951     if (obj_type.IsUninitializedTypes() &&
   3952         (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
   3953             !field_klass.Equals(GetDeclaringClass()))) {
   3954       // Field accesses through uninitialized references are only allowable for constructors where
   3955       // the field is declared in this class
   3956       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
   3957                                         << " of a not fully initialized object within the context"
   3958                                         << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
   3959       return nullptr;
   3960     } else if (!field_klass.IsAssignableFrom(obj_type)) {
   3961       // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
   3962       // of C1. For resolution to occur the declared class of the field must be compatible with
   3963       // obj_type, we've discovered this wasn't so, so report the field didn't exist.
   3964       Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
   3965                                   << " from object of type " << obj_type;
   3966       return nullptr;
   3967     } else {
   3968       return field;
   3969     }
   3970   }
   3971 }
   3972 
   3973 template <MethodVerifier::FieldAccessType kAccType>
   3974 void MethodVerifier::VerifyISFieldAccess(const Instruction* inst, const RegType& insn_type,
   3975                                          bool is_primitive, bool is_static) {
   3976   uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
   3977   ArtField* field;
   3978   if (is_static) {
   3979     field = GetStaticField(field_idx);
   3980   } else {
   3981     const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
   3982     field = GetInstanceField(object_type, field_idx);
   3983     if (UNLIKELY(have_pending_hard_failure_)) {
   3984       return;
   3985     }
   3986   }
   3987   const RegType* field_type = nullptr;
   3988   if (field != nullptr) {
   3989     if (kAccType == FieldAccessType::kAccPut) {
   3990       if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
   3991         Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
   3992                                         << " from other class " << GetDeclaringClass();
   3993         return;
   3994       }
   3995     }
   3996 
   3997     mirror::Class* field_type_class =
   3998         can_load_classes_ ? field->GetType<true>() : field->GetType<false>();
   3999     if (field_type_class != nullptr) {
   4000       field_type = &FromClass(field->GetTypeDescriptor(), field_type_class,
   4001                               field_type_class->CannotBeAssignedFromOtherTypes());
   4002     } else {
   4003       DCHECK(!can_load_classes_ || self_->IsExceptionPending());
   4004       self_->ClearException();
   4005     }
   4006   }
   4007   if (field_type == nullptr) {
   4008     const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
   4009     const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
   4010     field_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
   4011   }
   4012   DCHECK(field_type != nullptr);
   4013   const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
   4014   static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
   4015                 "Unexpected third access type");
   4016   if (kAccType == FieldAccessType::kAccPut) {
   4017     // sput or iput.
   4018     if (is_primitive) {
   4019       VerifyPrimitivePut(*field_type, insn_type, vregA);
   4020     } else {
   4021       if (!insn_type.IsAssignableFrom(*field_type)) {
   4022         // If the field type is not a reference, this is a global failure rather than
   4023         // a class change failure as the instructions and the descriptors for the type
   4024         // should have been consistent within the same file at compile time.
   4025         VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
   4026                                                            : VERIFY_ERROR_BAD_CLASS_HARD;
   4027         Fail(error) << "expected field " << PrettyField(field)
   4028                     << " to be compatible with type '" << insn_type
   4029                     << "' but found type '" << *field_type
   4030                     << "' in put-object";
   4031         return;
   4032       }
   4033       work_line_->VerifyRegisterType(this, vregA, *field_type);
   4034     }
   4035   } else if (kAccType == FieldAccessType::kAccGet) {
   4036     // sget or iget.
   4037     if (is_primitive) {
   4038       if (field_type->Equals(insn_type) ||
   4039           (field_type->IsFloat() && insn_type.IsInteger()) ||
   4040           (field_type->IsDouble() && insn_type.IsLong())) {
   4041         // expected that read is of the correct primitive type or that int reads are reading
   4042         // floats or long reads are reading doubles
   4043       } else {
   4044         // This is a global failure rather than a class change failure as the instructions and
   4045         // the descriptors for the type should have been consistent within the same file at
   4046         // compile time
   4047         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
   4048                                           << " to be of type '" << insn_type
   4049                                           << "' but found type '" << *field_type << "' in get";
   4050         return;
   4051       }
   4052     } else {
   4053       if (!insn_type.IsAssignableFrom(*field_type)) {
   4054         // If the field type is not a reference, this is a global failure rather than
   4055         // a class change failure as the instructions and the descriptors for the type
   4056         // should have been consistent within the same file at compile time.
   4057         VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
   4058                                                            : VERIFY_ERROR_BAD_CLASS_HARD;
   4059         Fail(error) << "expected field " << PrettyField(field)
   4060                     << " to be compatible with type '" << insn_type
   4061                     << "' but found type '" << *field_type
   4062                     << "' in get-object";
   4063         if (error != VERIFY_ERROR_BAD_CLASS_HARD) {
   4064           work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
   4065         }
   4066         return;
   4067       }
   4068     }
   4069     if (!field_type->IsLowHalf()) {
   4070       work_line_->SetRegisterType(this, vregA, *field_type);
   4071     } else {
   4072       work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
   4073     }
   4074   } else {
   4075     LOG(FATAL) << "Unexpected case.";
   4076   }
   4077 }
   4078 
   4079 ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
   4080                                                       RegisterLine* reg_line) {
   4081   DCHECK(IsInstructionIGetQuickOrIPutQuick(inst->Opcode())) << inst->Opcode();
   4082   const RegType& object_type = reg_line->GetRegisterType(this, inst->VRegB_22c());
   4083   if (!object_type.HasClass()) {
   4084     VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
   4085     return nullptr;
   4086   }
   4087   uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
   4088   ArtField* const f = ArtField::FindInstanceFieldWithOffset(object_type.GetClass(), field_offset);
   4089   DCHECK_EQ(f->GetOffset().Uint32Value(), field_offset);
   4090   if (f == nullptr) {
   4091     VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
   4092                    << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
   4093   }
   4094   return f;
   4095 }
   4096 
   4097 template <MethodVerifier::FieldAccessType kAccType>
   4098 void MethodVerifier::VerifyQuickFieldAccess(const Instruction* inst, const RegType& insn_type,
   4099                                             bool is_primitive) {
   4100   DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
   4101 
   4102   ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
   4103   if (field == nullptr) {
   4104     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
   4105     return;
   4106   }
   4107 
   4108   // For an IPUT_QUICK, we now test for final flag of the field.
   4109   if (kAccType == FieldAccessType::kAccPut) {
   4110     if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
   4111       Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
   4112                                       << " from other class " << GetDeclaringClass();
   4113       return;
   4114     }
   4115   }
   4116 
   4117   // Get the field type.
   4118   const RegType* field_type;
   4119   {
   4120     mirror::Class* field_type_class = can_load_classes_ ? field->GetType<true>() :
   4121         field->GetType<false>();
   4122 
   4123     if (field_type_class != nullptr) {
   4124       field_type = &FromClass(field->GetTypeDescriptor(), field_type_class,
   4125                               field_type_class->CannotBeAssignedFromOtherTypes());
   4126     } else {
   4127       Thread* self = Thread::Current();
   4128       DCHECK(!can_load_classes_ || self->IsExceptionPending());
   4129       self->ClearException();
   4130       field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
   4131                                               field->GetTypeDescriptor(), false);
   4132     }
   4133     if (field_type == nullptr) {
   4134       Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field type from " << inst->Name();
   4135       return;
   4136     }
   4137   }
   4138 
   4139   const uint32_t vregA = inst->VRegA_22c();
   4140   static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
   4141                 "Unexpected third access type");
   4142   if (kAccType == FieldAccessType::kAccPut) {
   4143     if (is_primitive) {
   4144       // Primitive field assignability rules are weaker than regular assignability rules
   4145       bool instruction_compatible;
   4146       bool value_compatible;
   4147       const RegType& value_type = work_line_->GetRegisterType(this, vregA);
   4148       if (field_type->IsIntegralTypes()) {
   4149         instruction_compatible = insn_type.IsIntegralTypes();
   4150         value_compatible = value_type.IsIntegralTypes();
   4151       } else if (field_type->IsFloat()) {
   4152         instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
   4153         value_compatible = value_type.IsFloatTypes();
   4154       } else if (field_type->IsLong()) {
   4155         instruction_compatible = insn_type.IsLong();
   4156         value_compatible = value_type.IsLongTypes();
   4157       } else if (field_type->IsDouble()) {
   4158         instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
   4159         value_compatible = value_type.IsDoubleTypes();
   4160       } else {
   4161         instruction_compatible = false;  // reference field with primitive store
   4162         value_compatible = false;  // unused
   4163       }
   4164       if (!instruction_compatible) {
   4165         // This is a global failure rather than a class change failure as the instructions and
   4166         // the descriptors for the type should have been consistent within the same file at
   4167         // compile time
   4168         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
   4169                                           << " to be of type '" << insn_type
   4170                                           << "' but found type '" << *field_type
   4171                                           << "' in put";
   4172         return;
   4173       }
   4174       if (!value_compatible) {
   4175         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
   4176             << " of type " << value_type
   4177             << " but expected " << *field_type
   4178             << " for store to " << PrettyField(field) << " in put";
   4179         return;
   4180       }
   4181     } else {
   4182       if (!insn_type.IsAssignableFrom(*field_type)) {
   4183         Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
   4184                                           << " to be compatible with type '" << insn_type
   4185                                           << "' but found type '" << *field_type
   4186                                           << "' in put-object";
   4187         return;
   4188       }
   4189       work_line_->VerifyRegisterType(this, vregA, *field_type);
   4190     }
   4191   } else if (kAccType == FieldAccessType::kAccGet) {
   4192     if (is_primitive) {
   4193       if (field_type->Equals(insn_type) ||
   4194           (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
   4195           (field_type->IsDouble() && insn_type.IsLongTypes())) {
   4196         // expected that read is of the correct primitive type or that int reads are reading
   4197         // floats or long reads are reading doubles
   4198       } else {
   4199         // This is a global failure rather than a class change failure as the instructions and
   4200         // the descriptors for the type should have been consistent within the same file at
   4201         // compile time
   4202         Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
   4203                                           << " to be of type '" << insn_type
   4204                                           << "' but found type '" << *field_type << "' in Get";
   4205         return;
   4206       }
   4207     } else {
   4208       if (!insn_type.IsAssignableFrom(*field_type)) {
   4209         Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
   4210                                           << " to be compatible with type '" << insn_type
   4211                                           << "' but found type '" << *field_type
   4212                                           << "' in get-object";
   4213         work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
   4214         return;
   4215       }
   4216     }
   4217     if (!field_type->IsLowHalf()) {
   4218       work_line_->SetRegisterType(this, vregA, *field_type);
   4219     } else {
   4220       work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
   4221     }
   4222   } else {
   4223     LOG(FATAL) << "Unexpected case.";
   4224   }
   4225 }
   4226 
   4227 bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
   4228   if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
   4229     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
   4230     return false;
   4231   }
   4232   return true;
   4233 }
   4234 
   4235 bool MethodVerifier::CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
   4236   if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
   4237       ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
   4238     Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
   4239     return false;
   4240   }
   4241   return true;
   4242 }
   4243 
   4244 bool MethodVerifier::CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
   4245   return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
   4246 }
   4247 
   4248 bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
   4249                                      bool update_merge_line) {
   4250   bool changed = true;
   4251   RegisterLine* target_line = reg_table_.GetLine(next_insn);
   4252   if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
   4253     /*
   4254      * We haven't processed this instruction before, and we haven't touched the registers here, so
   4255      * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
   4256      * only way a register can transition out of "unknown", so this is not just an optimization.)
   4257      */
   4258     if (!insn_flags_[next_insn].IsReturn()) {
   4259       target_line->CopyFromLine(merge_line);
   4260     } else {
   4261       // Verify that the monitor stack is empty on return.
   4262       if (!merge_line->VerifyMonitorStackEmpty(this)) {
   4263         return false;
   4264       }
   4265       // For returns we only care about the operand to the return, all other registers are dead.
   4266       // Initialize them as conflicts so they don't add to GC and deoptimization information.
   4267       const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
   4268       Instruction::Code opcode = ret_inst->Opcode();
   4269       if (opcode == Instruction::RETURN_VOID || opcode == Instruction::RETURN_VOID_NO_BARRIER) {
   4270         // Explicitly copy the this-initialized flag from the merge-line, as we didn't copy its
   4271         // state. Must be done before SafelyMarkAllRegistersAsConflicts as that will do the
   4272         // super-constructor-call checking.
   4273         target_line->CopyThisInitialized(*merge_line);
   4274         SafelyMarkAllRegistersAsConflicts(this, target_line);
   4275       } else {
   4276         target_line->CopyFromLine(merge_line);
   4277         if (opcode == Instruction::RETURN_WIDE) {
   4278           target_line->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
   4279         } else {
   4280           target_line->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
   4281         }
   4282       }
   4283     }
   4284   } else {
   4285     std::unique_ptr<RegisterLine> copy(gDebugVerify ?
   4286                                  RegisterLine::Create(target_line->NumRegs(), this) :
   4287                                  nullptr);
   4288     if (gDebugVerify) {
   4289       copy->CopyFromLine(target_line);
   4290     }
   4291     changed = target_line->MergeRegisters(this, merge_line);
   4292     if (have_pending_hard_failure_) {
   4293       return false;
   4294     }
   4295     if (gDebugVerify && changed) {
   4296       LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
   4297                       << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
   4298                       << copy->Dump(this) << "  MERGE\n"
   4299                       << merge_line->Dump(this) << "  ==\n"
   4300                       << target_line->Dump(this) << "\n";
   4301     }
   4302     if (update_merge_line && changed) {
   4303       merge_line->CopyFromLine(target_line);
   4304     }
   4305   }
   4306   if (changed) {
   4307     insn_flags_[next_insn].SetChanged();
   4308   }
   4309   return true;
   4310 }
   4311 
   4312 InstructionFlags* MethodVerifier::CurrentInsnFlags() {
   4313   return &insn_flags_[work_insn_idx_];
   4314 }
   4315 
   4316 const RegType& MethodVerifier::GetMethodReturnType() {
   4317   if (return_type_ == nullptr) {
   4318     if (mirror_method_ != nullptr) {
   4319       mirror::Class* return_type_class = mirror_method_->GetReturnType(can_load_classes_);
   4320       if (return_type_class != nullptr) {
   4321         return_type_ = &FromClass(mirror_method_->GetReturnTypeDescriptor(),
   4322                                   return_type_class,
   4323                                   return_type_class->CannotBeAssignedFromOtherTypes());
   4324       } else {
   4325         DCHECK(!can_load_classes_ || self_->IsExceptionPending());
   4326         self_->ClearException();
   4327       }
   4328     }
   4329     if (return_type_ == nullptr) {
   4330       const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
   4331       const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
   4332       uint16_t return_type_idx = proto_id.return_type_idx_;
   4333       const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
   4334       return_type_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
   4335     }
   4336   }
   4337   return *return_type_;
   4338 }
   4339 
   4340 const RegType& MethodVerifier::GetDeclaringClass() {
   4341   if (declaring_class_ == nullptr) {
   4342     const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
   4343     const char* descriptor
   4344         = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
   4345     if (mirror_method_ != nullptr) {
   4346       mirror::Class* klass = mirror_method_->GetDeclaringClass();
   4347       declaring_class_ = &FromClass(descriptor, klass,
   4348                                     klass->CannotBeAssignedFromOtherTypes());
   4349     } else {
   4350       declaring_class_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
   4351     }
   4352   }
   4353   return *declaring_class_;
   4354 }
   4355 
   4356 std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
   4357   RegisterLine* line = reg_table_.GetLine(dex_pc);
   4358   DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
   4359   std::vector<int32_t> result;
   4360   for (size_t i = 0; i < line->NumRegs(); ++i) {
   4361     const RegType& type = line->GetRegisterType(this, i);
   4362     if (type.IsConstant()) {
   4363       result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
   4364       const ConstantType* const_val = down_cast<const ConstantType*>(&type);
   4365       result.push_back(const_val->ConstantValue());
   4366     } else if (type.IsConstantLo()) {
   4367       result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
   4368       const ConstantType* const_val = down_cast<const ConstantType*>(&type);
   4369       result.push_back(const_val->ConstantValueLo());
   4370     } else if (type.IsConstantHi()) {
   4371       result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
   4372       const ConstantType* const_val = down_cast<const ConstantType*>(&type);
   4373       result.push_back(const_val->ConstantValueHi());
   4374     } else if (type.IsIntegralTypes()) {
   4375       result.push_back(kIntVReg);
   4376       result.push_back(0);
   4377     } else if (type.IsFloat()) {
   4378       result.push_back(kFloatVReg);
   4379       result.push_back(0);
   4380     } else if (type.IsLong()) {
   4381       result.push_back(kLongLoVReg);
   4382       result.push_back(0);
   4383       result.push_back(kLongHiVReg);
   4384       result.push_back(0);
   4385       ++i;
   4386     } else if (type.IsDouble()) {
   4387       result.push_back(kDoubleLoVReg);
   4388       result.push_back(0);
   4389       result.push_back(kDoubleHiVReg);
   4390       result.push_back(0);
   4391       ++i;
   4392     } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
   4393       result.push_back(kUndefined);
   4394       result.push_back(0);
   4395     } else {
   4396       CHECK(type.IsNonZeroReferenceTypes());
   4397       result.push_back(kReferenceVReg);
   4398       result.push_back(0);
   4399     }
   4400   }
   4401   return result;
   4402 }
   4403 
   4404 const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
   4405   if (precise) {
   4406     // Precise constant type.
   4407     return reg_types_.FromCat1Const(value, true);
   4408   } else {
   4409     // Imprecise constant type.
   4410     if (value < -32768) {
   4411       return reg_types_.IntConstant();
   4412     } else if (value < -128) {
   4413       return reg_types_.ShortConstant();
   4414     } else if (value < 0) {
   4415       return reg_types_.ByteConstant();
   4416     } else if (value == 0) {
   4417       return reg_types_.Zero();
   4418     } else if (value == 1) {
   4419       return reg_types_.One();
   4420     } else if (value < 128) {
   4421       return reg_types_.PosByteConstant();
   4422     } else if (value < 32768) {
   4423       return reg_types_.PosShortConstant();
   4424     } else if (value < 65536) {
   4425       return reg_types_.CharConstant();
   4426     } else {
   4427       return reg_types_.IntConstant();
   4428     }
   4429   }
   4430 }
   4431 
   4432 void MethodVerifier::Init() {
   4433   art::verifier::RegTypeCache::Init();
   4434 }
   4435 
   4436 void MethodVerifier::Shutdown() {
   4437   verifier::RegTypeCache::ShutDown();
   4438 }
   4439 
   4440 void MethodVerifier::VisitStaticRoots(RootVisitor* visitor) {
   4441   RegTypeCache::VisitStaticRoots(visitor);
   4442 }
   4443 
   4444 void MethodVerifier::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
   4445   reg_types_.VisitRoots(visitor, root_info);
   4446 }
   4447 
   4448 const RegType& MethodVerifier::FromClass(const char* descriptor,
   4449                                          mirror::Class* klass,
   4450                                          bool precise) {
   4451   DCHECK(klass != nullptr);
   4452   if (precise && !klass->IsInstantiable() && !klass->IsPrimitive()) {
   4453     Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
   4454         << "non-instantiable klass " << descriptor;
   4455     precise = false;
   4456   }
   4457   return reg_types_.FromClass(descriptor, klass, precise);
   4458 }
   4459 
   4460 }  // namespace verifier
   4461 }  // namespace art
   4462