Home | History | Annotate | Download | only in intltest
      1 /*
      2  *******************************************************************************
      3  * Copyright (C) 1996-2015, International Business Machines Corporation and    *
      4  * others. All Rights Reserved.                                                *
      5  *******************************************************************************
      6  */
      7 
      8 #include "unicode/utypes.h"
      9 
     10 #if !UCONFIG_NO_FORMATTING
     11 
     12 #include "itrbnf.h"
     13 
     14 #include "unicode/umachine.h"
     15 
     16 #include "unicode/tblcoll.h"
     17 #include "unicode/coleitr.h"
     18 #include "unicode/ures.h"
     19 #include "unicode/ustring.h"
     20 #include "unicode/decimfmt.h"
     21 #include "unicode/udata.h"
     22 #include "testutil.h"
     23 
     24 #include <string.h>
     25 
     26 // import com.ibm.text.RuleBasedNumberFormat;
     27 // import com.ibm.test.TestFmwk;
     28 
     29 // import java.util.Locale;
     30 // import java.text.NumberFormat;
     31 
     32 // current macro not in icu1.8.1
     33 #define TESTCASE(id,test)             \
     34     case id:                          \
     35         name = #test;                 \
     36         if (exec) {                   \
     37             logln(#test "---");       \
     38             logln();                  \
     39             test();                   \
     40         }                             \
     41         break
     42 
     43 void IntlTestRBNF::runIndexedTest(int32_t index, UBool exec, const char* &name, char* /*par*/)
     44 {
     45     if (exec) logln("TestSuite RuleBasedNumberFormat");
     46     switch (index) {
     47 #if U_HAVE_RBNF
     48         TESTCASE(0, TestEnglishSpellout);
     49         TESTCASE(1, TestOrdinalAbbreviations);
     50         TESTCASE(2, TestDurations);
     51         TESTCASE(3, TestSpanishSpellout);
     52         TESTCASE(4, TestFrenchSpellout);
     53         TESTCASE(5, TestSwissFrenchSpellout);
     54         TESTCASE(6, TestItalianSpellout);
     55         TESTCASE(7, TestGermanSpellout);
     56         TESTCASE(8, TestThaiSpellout);
     57         TESTCASE(9, TestAPI);
     58         TESTCASE(10, TestFractionalRuleSet);
     59         TESTCASE(11, TestSwedishSpellout);
     60         TESTCASE(12, TestBelgianFrenchSpellout);
     61         TESTCASE(13, TestSmallValues);
     62         TESTCASE(14, TestLocalizations);
     63         TESTCASE(15, TestAllLocales);
     64         TESTCASE(16, TestHebrewFraction);
     65         TESTCASE(17, TestPortugueseSpellout);
     66         TESTCASE(18, TestMultiplierSubstitution);
     67         TESTCASE(19, TestSetDecimalFormatSymbols);
     68         TESTCASE(20, TestPluralRules);
     69         TESTCASE(21, TestMultiplePluralRules);
     70 #else
     71         TESTCASE(0, TestRBNFDisabled);
     72 #endif
     73     default:
     74         name = "";
     75         break;
     76     }
     77 }
     78 
     79 #if U_HAVE_RBNF
     80 
     81 void IntlTestRBNF::TestHebrewFraction() {
     82 
     83     // this is the expected output for 123.45, with no '<' in it.
     84     UChar text1[] = {
     85         0x05de, 0x05d0, 0x05d4, 0x0020,
     86         0x05e2, 0x05e9, 0x05e8, 0x05d9, 0x05dd, 0x0020,
     87         0x05d5, 0x05e9, 0x05dc, 0x05d5, 0x05e9, 0x0020,
     88         0x05e0, 0x05e7, 0x05d5, 0x05d3, 0x05d4, 0x0020,
     89         0x05d0, 0x05e8, 0x05d1, 0x05e2, 0x0020,
     90         0x05d7, 0x05de, 0x05e9, 0x0000,
     91     };
     92     UChar text2[] = {
     93         0x05DE, 0x05D0, 0x05D4, 0x0020,
     94         0x05E2, 0x05E9, 0x05E8, 0x05D9, 0x05DD, 0x0020,
     95         0x05D5, 0x05E9, 0x05DC, 0x05D5, 0x05E9, 0x0020,
     96         0x05E0, 0x05E7, 0x05D5, 0x05D3, 0x05D4, 0x0020,
     97         0x05D0, 0x05E4, 0x05E1, 0x0020,
     98         0x05D0, 0x05E4, 0x05E1, 0x0020,
     99         0x05D0, 0x05E8, 0x05D1, 0x05E2, 0x0020,
    100         0x05D7, 0x05DE, 0x05E9, 0x0000,
    101     };
    102     UErrorCode status = U_ZERO_ERROR;
    103     RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, "he_IL", status);
    104     if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) {
    105         errcheckln(status, "Failed in constructing RuleBasedNumberFormat - %s", u_errorName(status));
    106         delete formatter;
    107         return;
    108     }
    109     UnicodeString result;
    110     Formattable parseResult;
    111     ParsePosition pp(0);
    112     {
    113         UnicodeString expected(text1);
    114         formatter->format(123.45, result);
    115         if (result != expected) {
    116             errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\nbut got: '" + TestUtility::hex(result) + "'");
    117         } else {
    118 //            formatter->parse(result, parseResult, pp);
    119 //            if (parseResult.getDouble() != 123.45) {
    120 //                errln("expected 123.45 but got: %g", parseResult.getDouble());
    121 //            }
    122         }
    123     }
    124     {
    125         UnicodeString expected(text2);
    126         result.remove();
    127         formatter->format(123.0045, result);
    128         if (result != expected) {
    129             errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\nbut got: '" + TestUtility::hex(result) + "'");
    130         } else {
    131             pp.setIndex(0);
    132 //            formatter->parse(result, parseResult, pp);
    133 //            if (parseResult.getDouble() != 123.0045) {
    134 //                errln("expected 123.0045 but got: %g", parseResult.getDouble());
    135 //            }
    136         }
    137     }
    138     delete formatter;
    139 }
    140 
    141 void
    142 IntlTestRBNF::TestAPI() {
    143   // This test goes through the APIs that were not tested before.
    144   // These tests are too small to have separate test classes/functions
    145 
    146   UErrorCode status = U_ZERO_ERROR;
    147   RuleBasedNumberFormat* formatter
    148       = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status);
    149   if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) {
    150     dataerrln("Unable to create formatter. - %s", u_errorName(status));
    151     delete formatter;
    152     return;
    153   }
    154 
    155   logln("RBNF API test starting");
    156   // test clone
    157   {
    158     logln("Testing Clone");
    159     RuleBasedNumberFormat* rbnfClone = (RuleBasedNumberFormat *)formatter->clone();
    160     if(rbnfClone != NULL) {
    161       if(!(*rbnfClone == *formatter)) {
    162         errln("Clone should be semantically equivalent to the original!");
    163       }
    164       delete rbnfClone;
    165     } else {
    166       errln("Cloning failed!");
    167     }
    168   }
    169 
    170   // test assignment
    171   {
    172     logln("Testing assignment operator");
    173     RuleBasedNumberFormat assignResult(URBNF_SPELLOUT, Locale("es", "ES", ""), status);
    174     assignResult = *formatter;
    175     if(!(assignResult == *formatter)) {
    176       errln("Assignment result should be semantically equivalent to the original!");
    177     }
    178   }
    179 
    180   // test rule constructor
    181   {
    182     logln("Testing rule constructor");
    183     LocalUResourceBundlePointer en(ures_open(U_ICUDATA_NAME U_TREE_SEPARATOR_STRING "rbnf", "en", &status));
    184     if(U_FAILURE(status)) {
    185       errln("Unable to access resource bundle with data!");
    186     } else {
    187       int32_t ruleLen = 0;
    188       int32_t len = 0;
    189       LocalUResourceBundlePointer rbnfRules(ures_getByKey(en.getAlias(), "RBNFRules", NULL, &status));
    190       LocalUResourceBundlePointer ruleSets(ures_getByKey(rbnfRules.getAlias(), "SpelloutRules", NULL, &status));
    191       UnicodeString desc;
    192       while (ures_hasNext(ruleSets.getAlias())) {
    193            const UChar* currentString = ures_getNextString(ruleSets.getAlias(), &len, NULL, &status);
    194            ruleLen += len;
    195            desc.append(currentString);
    196       }
    197 
    198       const UChar *spelloutRules = desc.getTerminatedBuffer();
    199 
    200       if(U_FAILURE(status) || ruleLen == 0 || spelloutRules == NULL) {
    201         errln("Unable to access the rules string!");
    202       } else {
    203         UParseError perror;
    204         RuleBasedNumberFormat ruleCtorResult(spelloutRules, Locale::getUS(), perror, status);
    205         if(!(ruleCtorResult == *formatter)) {
    206           errln("Formatter constructed from the original rules should be semantically equivalent to the original!");
    207         }
    208 
    209         // Jitterbug 4452, for coverage
    210         RuleBasedNumberFormat nf(spelloutRules, (UnicodeString)"", Locale::getUS(), perror, status);
    211         if(!(nf == *formatter)) {
    212           errln("Formatter constructed from the original rules should be semantically equivalent to the original!");
    213         }
    214       }
    215     }
    216   }
    217 
    218   // test getRules
    219   {
    220     logln("Testing getRules function");
    221     UnicodeString rules = formatter->getRules();
    222     UParseError perror;
    223     RuleBasedNumberFormat fromRulesResult(rules, Locale::getUS(), perror, status);
    224 
    225     if(!(fromRulesResult == *formatter)) {
    226       errln("Formatter constructed from rules obtained by getRules should be semantically equivalent to the original!");
    227     }
    228   }
    229 
    230 
    231   {
    232     logln("Testing copy constructor");
    233     RuleBasedNumberFormat copyCtorResult(*formatter);
    234     if(!(copyCtorResult == *formatter)) {
    235       errln("Copy constructor result result should be semantically equivalent to the original!");
    236     }
    237   }
    238 
    239 #if !UCONFIG_NO_COLLATION
    240   // test ruleset names
    241   {
    242     logln("Testing getNumberOfRuleSetNames, getRuleSetName and format using rule set names");
    243     int32_t noOfRuleSetNames = formatter->getNumberOfRuleSetNames();
    244     if(noOfRuleSetNames == 0) {
    245       errln("Number of rule set names should be more than zero");
    246     }
    247     UnicodeString ruleSetName;
    248     int32_t i = 0;
    249     int32_t intFormatNum = 34567;
    250     double doubleFormatNum = 893411.234;
    251     logln("number of rule set names is %i", noOfRuleSetNames);
    252     for(i = 0; i < noOfRuleSetNames; i++) {
    253       FieldPosition pos1, pos2;
    254       UnicodeString intFormatResult, doubleFormatResult;
    255       Formattable intParseResult, doubleParseResult;
    256 
    257       ruleSetName = formatter->getRuleSetName(i);
    258       log("Rule set name %i is ", i);
    259       log(ruleSetName);
    260       logln(". Format results are: ");
    261       intFormatResult = formatter->format(intFormatNum, ruleSetName, intFormatResult, pos1, status);
    262       doubleFormatResult = formatter->format(doubleFormatNum, ruleSetName, doubleFormatResult, pos2, status);
    263       if(U_FAILURE(status)) {
    264         errln("Format using a rule set failed");
    265         break;
    266       }
    267       logln(intFormatResult);
    268       logln(doubleFormatResult);
    269       formatter->setLenient(TRUE);
    270       formatter->parse(intFormatResult, intParseResult, status);
    271       formatter->parse(doubleFormatResult, doubleParseResult, status);
    272 
    273       logln("Parse results for lenient = TRUE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble());
    274 
    275       formatter->setLenient(FALSE);
    276       formatter->parse(intFormatResult, intParseResult, status);
    277       formatter->parse(doubleFormatResult, doubleParseResult, status);
    278 
    279       logln("Parse results for lenient = FALSE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble());
    280 
    281       if(U_FAILURE(status)) {
    282         errln("Error during parsing");
    283       }
    284 
    285       intFormatResult = formatter->format(intFormatNum, "BLABLA", intFormatResult, pos1, status);
    286       if(U_SUCCESS(status)) {
    287         errln("Using invalid rule set name should have failed");
    288         break;
    289       }
    290       status = U_ZERO_ERROR;
    291       doubleFormatResult = formatter->format(doubleFormatNum, "TRUC", doubleFormatResult, pos2, status);
    292       if(U_SUCCESS(status)) {
    293         errln("Using invalid rule set name should have failed");
    294         break;
    295       }
    296       status = U_ZERO_ERROR;
    297     }
    298     status = U_ZERO_ERROR;
    299   }
    300 #endif
    301 
    302   // test API
    303   UnicodeString expected("four point five","");
    304   logln("Testing format(double)");
    305   UnicodeString result;
    306   formatter->format(4.5,result);
    307   if(result != expected) {
    308       errln("Formatted 4.5, expected " + expected + " got " + result);
    309   } else {
    310       logln("Formatted 4.5, expected " + expected + " got " + result);
    311   }
    312   result.remove();
    313   expected = "four";
    314   formatter->format((int32_t)4,result);
    315   if(result != expected) {
    316       errln("Formatted 4, expected " + expected + " got " + result);
    317   } else {
    318       logln("Formatted 4, expected " + expected + " got " + result);
    319   }
    320 
    321   result.remove();
    322   FieldPosition pos;
    323   formatter->format((int64_t)4, result, pos, status = U_ZERO_ERROR);
    324   if(result != expected) {
    325       errln("Formatted 4 int64_t, expected " + expected + " got " + result);
    326   } else {
    327       logln("Formatted 4 int64_t, expected " + expected + " got " + result);
    328   }
    329 
    330   //Jitterbug 4452, for coverage
    331   result.remove();
    332   FieldPosition pos2;
    333   formatter->format((int64_t)4, formatter->getRuleSetName(0), result, pos2, status = U_ZERO_ERROR);
    334   if(result != expected) {
    335       errln("Formatted 4 int64_t, expected " + expected + " got " + result);
    336   } else {
    337       logln("Formatted 4 int64_t, expected " + expected + " got " + result);
    338   }
    339 
    340   // clean up
    341   logln("Cleaning up");
    342   delete formatter;
    343 }
    344 
    345 /**
    346  * Perform a simple spot check on the parsing going into an infinite loop for alternate rules.
    347  */
    348 void IntlTestRBNF::TestMultiplePluralRules() {
    349     // This is trying to model the feminine form, but don't worry about the details too much.
    350     // We're trying to test the plural rules where there are different prefixes.
    351     UnicodeString rules("%spellout-cardinal-feminine-genitive:"
    352                 "0: zero;"
    353                 "1: ono;"
    354                 "1000: << $(cardinal,one{thousand}few{thousanF}other{thousanO})$[ >>];"
    355                 "%spellout-cardinal-feminine:"
    356                 "0: zero;"
    357                 "1: one;"
    358                 "1000: << $(cardinal,one{thousand}few{thousanF}other{thousanO})$[ >>];");
    359     UErrorCode status = U_ZERO_ERROR;
    360     UParseError pError;
    361     RuleBasedNumberFormat formatter(rules, Locale("ru"), pError, status);
    362     Formattable result;
    363     UnicodeString resultStr;
    364     FieldPosition pos;
    365 
    366     if (U_FAILURE(status)) {
    367         dataerrln("Unable to create formatter - %s", u_errorName(status));
    368         return;
    369     }
    370 
    371     formatter.parse(formatter.format(1000.0, resultStr, pos, status), result, status);
    372     if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("one thousand")) {
    373         errln("RuleBasedNumberFormat did not return the correct value. Got: %d", result.getLong());
    374         errln(resultStr);
    375     }
    376     resultStr.remove();
    377     formatter.parse(formatter.format(1000.0, UnicodeString("%spellout-cardinal-feminine-genitive"), resultStr, pos, status), result, status);
    378     if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("ono thousand")) {
    379         errln("RuleBasedNumberFormat(cardinal-feminine-genitive) did not return the correct value. Got: %d", result.getLong());
    380         errln(resultStr);
    381     }
    382     resultStr.remove();
    383     formatter.parse(formatter.format(1000.0, UnicodeString("%spellout-cardinal-feminine"), resultStr, pos, status), result, status);
    384     if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("one thousand")) {
    385         errln("RuleBasedNumberFormat(spellout-cardinal-feminine) did not return the correct value. Got: %d", result.getLong());
    386         errln(resultStr);
    387     }
    388 }
    389 
    390 void IntlTestRBNF::TestFractionalRuleSet()
    391 {
    392     UnicodeString fracRules(
    393         "%main:\n"
    394                // this rule formats the number if it's 1 or more.  It formats
    395                // the integral part using a DecimalFormat ("#,##0" puts
    396                // thousands separators in the right places) and the fractional
    397                // part using %%frac.  If there is no fractional part, it
    398                // just shows the integral part.
    399         "    x.0: <#,##0<[ >%%frac>];\n"
    400                // this rule formats the number if it's between 0 and 1.  It
    401                // shows only the fractional part (0.5 shows up as "1/2," not
    402                // "0 1/2")
    403         "    0.x: >%%frac>;\n"
    404         // the fraction rule set.  This works the same way as the one in the
    405         // preceding example: We multiply the fractional part of the number
    406         // being formatted by each rule's base value and use the rule that
    407         // produces the result closest to 0 (or the first rule that produces 0).
    408         // Since we only provide rules for the numbers from 2 to 10, we know
    409         // we'll get a fraction with a denominator between 2 and 10.
    410         // "<0<" causes the numerator of the fraction to be formatted
    411         // using numerals
    412         "%%frac:\n"
    413         "    2: 1/2;\n"
    414         "    3: <0</3;\n"
    415         "    4: <0</4;\n"
    416         "    5: <0</5;\n"
    417         "    6: <0</6;\n"
    418         "    7: <0</7;\n"
    419         "    8: <0</8;\n"
    420         "    9: <0</9;\n"
    421         "   10: <0</10;\n");
    422 
    423     // mondo hack
    424     int len = fracRules.length();
    425     int change = 2;
    426     for (int i = 0; i < len; ++i) {
    427         UChar ch = fracRules.charAt(i);
    428         if (ch == '\n') {
    429             change = 2; // change ok
    430         } else if (ch == ':') {
    431             change = 1; // change, but once we hit a non-space char, don't change
    432         } else if (ch == ' ') {
    433             if (change != 0) {
    434                 fracRules.setCharAt(i, (UChar)0x200e);
    435             }
    436         } else {
    437             if (change == 1) {
    438                 change = 0;
    439             }
    440         }
    441     }
    442 
    443     UErrorCode status = U_ZERO_ERROR;
    444     UParseError perror;
    445     RuleBasedNumberFormat formatter(fracRules, Locale::getEnglish(), perror, status);
    446     if (U_FAILURE(status)) {
    447         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
    448     } else {
    449         static const char* const testData[][2] = {
    450             { "0", "0" },
    451             { ".1", "1/10" },
    452             { ".11", "1/9" },
    453             { ".125", "1/8" },
    454             { ".1428", "1/7" },
    455             { ".1667", "1/6" },
    456             { ".2", "1/5" },
    457             { ".25", "1/4" },
    458             { ".333", "1/3" },
    459             { ".5", "1/2" },
    460             { "1.1", "1 1/10" },
    461             { "2.11", "2 1/9" },
    462             { "3.125", "3 1/8" },
    463             { "4.1428", "4 1/7" },
    464             { "5.1667", "5 1/6" },
    465             { "6.2", "6 1/5" },
    466             { "7.25", "7 1/4" },
    467             { "8.333", "8 1/3" },
    468             { "9.5", "9 1/2" },
    469             { ".2222", "2/9" },
    470             { ".4444", "4/9" },
    471             { ".5555", "5/9" },
    472             { "1.2856", "1 2/7" },
    473             { NULL, NULL }
    474         };
    475        doTest(&formatter, testData, FALSE); // exact values aren't parsable from fractions
    476     }
    477 }
    478 
    479 #if 0
    480 #define LLAssert(a) \
    481   if (!(a)) errln("FAIL: " #a)
    482 
    483 void IntlTestRBNF::TestLLongConstructors()
    484 {
    485     logln("Testing constructors");
    486 
    487     // constant (shouldn't really be public)
    488     LLAssert(llong(llong::kD32).asDouble() == llong::kD32);
    489 
    490     // internal constructor (shouldn't really be public)
    491     LLAssert(llong(0, 1).asDouble() == 1);
    492     LLAssert(llong(1, 0).asDouble() == llong::kD32);
    493     LLAssert(llong((uint32_t)-1, (uint32_t)-1).asDouble() == -1);
    494 
    495     // public empty constructor
    496     LLAssert(llong().asDouble() == 0);
    497 
    498     // public int32_t constructor
    499     LLAssert(llong((int32_t)0).asInt() == (int32_t)0);
    500     LLAssert(llong((int32_t)1).asInt() == (int32_t)1);
    501     LLAssert(llong((int32_t)-1).asInt() == (int32_t)-1);
    502     LLAssert(llong((int32_t)0x7fffffff).asInt() == (int32_t)0x7fffffff);
    503     LLAssert(llong((int32_t)0xffffffff).asInt() == (int32_t)-1);
    504     LLAssert(llong((int32_t)0x80000000).asInt() == (int32_t)0x80000000);
    505 
    506     // public int16_t constructor
    507     LLAssert(llong((int16_t)0).asInt() == (int16_t)0);
    508     LLAssert(llong((int16_t)1).asInt() == (int16_t)1);
    509     LLAssert(llong((int16_t)-1).asInt() == (int16_t)-1);
    510     LLAssert(llong((int16_t)0x7fff).asInt() == (int16_t)0x7fff);
    511     LLAssert(llong((int16_t)0xffff).asInt() == (int16_t)0xffff);
    512     LLAssert(llong((int16_t)0x8000).asInt() == (int16_t)0x8000);
    513 
    514     // public int8_t constructor
    515     LLAssert(llong((int8_t)0).asInt() == (int8_t)0);
    516     LLAssert(llong((int8_t)1).asInt() == (int8_t)1);
    517     LLAssert(llong((int8_t)-1).asInt() == (int8_t)-1);
    518     LLAssert(llong((int8_t)0x7f).asInt() == (int8_t)0x7f);
    519     LLAssert(llong((int8_t)0xff).asInt() == (int8_t)0xff);
    520     LLAssert(llong((int8_t)0x80).asInt() == (int8_t)0x80);
    521 
    522     // public uint16_t constructor
    523     LLAssert(llong((uint16_t)0).asUInt() == (uint16_t)0);
    524     LLAssert(llong((uint16_t)1).asUInt() == (uint16_t)1);
    525     LLAssert(llong((uint16_t)-1).asUInt() == (uint16_t)-1);
    526     LLAssert(llong((uint16_t)0x7fff).asUInt() == (uint16_t)0x7fff);
    527     LLAssert(llong((uint16_t)0xffff).asUInt() == (uint16_t)0xffff);
    528     LLAssert(llong((uint16_t)0x8000).asUInt() == (uint16_t)0x8000);
    529 
    530     // public uint32_t constructor
    531     LLAssert(llong((uint32_t)0).asUInt() == (uint32_t)0);
    532     LLAssert(llong((uint32_t)1).asUInt() == (uint32_t)1);
    533     LLAssert(llong((uint32_t)-1).asUInt() == (uint32_t)-1);
    534     LLAssert(llong((uint32_t)0x7fffffff).asUInt() == (uint32_t)0x7fffffff);
    535     LLAssert(llong((uint32_t)0xffffffff).asUInt() == (uint32_t)-1);
    536     LLAssert(llong((uint32_t)0x80000000).asUInt() == (uint32_t)0x80000000);
    537 
    538     // public double constructor
    539     LLAssert(llong((double)0).asDouble() == (double)0);
    540     LLAssert(llong((double)1).asDouble() == (double)1);
    541     LLAssert(llong((double)0x7fffffff).asDouble() == (double)0x7fffffff);
    542     LLAssert(llong((double)0x80000000).asDouble() == (double)0x80000000);
    543     LLAssert(llong((double)0x80000001).asDouble() == (double)0x80000001);
    544 
    545     // can't access uprv_maxmantissa, so fake it
    546     double maxmantissa = (llong((int32_t)1) << 40).asDouble();
    547     LLAssert(llong(maxmantissa).asDouble() == maxmantissa);
    548     LLAssert(llong(-maxmantissa).asDouble() == -maxmantissa);
    549 
    550     // copy constructor
    551     LLAssert(llong(llong(0, 1)).asDouble() == 1);
    552     LLAssert(llong(llong(1, 0)).asDouble() == llong::kD32);
    553     LLAssert(llong(llong(-1, (uint32_t)-1)).asDouble() == -1);
    554 
    555     // asInt - test unsigned to signed narrowing conversion
    556     LLAssert(llong((uint32_t)-1).asInt() == (int32_t)0x7fffffff);
    557     LLAssert(llong(-1, 0).asInt() == (int32_t)0x80000000);
    558 
    559     // asUInt - test signed to unsigned narrowing conversion
    560     LLAssert(llong((int32_t)-1).asUInt() == (uint32_t)-1);
    561     LLAssert(llong((int32_t)0x80000000).asUInt() == (uint32_t)0x80000000);
    562 
    563     // asDouble already tested
    564 
    565 }
    566 
    567 void IntlTestRBNF::TestLLongSimpleOperators()
    568 {
    569     logln("Testing simple operators");
    570 
    571     // operator==
    572     LLAssert(llong() == llong(0, 0));
    573     LLAssert(llong(1,0) == llong(1, 0));
    574     LLAssert(llong(0,1) == llong(0, 1));
    575 
    576     // operator!=
    577     LLAssert(llong(1,0) != llong(1,1));
    578     LLAssert(llong(0,1) != llong(1,1));
    579     LLAssert(llong(0xffffffff,0xffffffff) != llong(0x7fffffff, 0xffffffff));
    580 
    581     // unsigned >
    582     LLAssert(llong((int32_t)-1).ugt(llong(0x7fffffff, 0xffffffff)));
    583 
    584     // unsigned <
    585     LLAssert(llong(0x7fffffff, 0xffffffff).ult(llong((int32_t)-1)));
    586 
    587     // unsigned >=
    588     LLAssert(llong((int32_t)-1).uge(llong(0x7fffffff, 0xffffffff)));
    589     LLAssert(llong((int32_t)-1).uge(llong((int32_t)-1)));
    590 
    591     // unsigned <=
    592     LLAssert(llong(0x7fffffff, 0xffffffff).ule(llong((int32_t)-1)));
    593     LLAssert(llong((int32_t)-1).ule(llong((int32_t)-1)));
    594 
    595     // operator>
    596     LLAssert(llong(1, 1) > llong(1, 0));
    597     LLAssert(llong(0, 0x80000000) > llong(0, 0x7fffffff));
    598     LLAssert(llong(0x80000000, 1) > llong(0x80000000, 0));
    599     LLAssert(llong(1, 0) > llong(0, 0x7fffffff));
    600     LLAssert(llong(1, 0) > llong(0, 0xffffffff));
    601     LLAssert(llong(0, 0) > llong(0x80000000, 1));
    602 
    603     // operator<
    604     LLAssert(llong(1, 0) < llong(1, 1));
    605     LLAssert(llong(0, 0x7fffffff) < llong(0, 0x80000000));
    606     LLAssert(llong(0x80000000, 0) < llong(0x80000000, 1));
    607     LLAssert(llong(0, 0x7fffffff) < llong(1, 0));
    608     LLAssert(llong(0, 0xffffffff) < llong(1, 0));
    609     LLAssert(llong(0x80000000, 1) < llong(0, 0));
    610 
    611     // operator>=
    612     LLAssert(llong(1, 1) >= llong(1, 0));
    613     LLAssert(llong(0, 0x80000000) >= llong(0, 0x7fffffff));
    614     LLAssert(llong(0x80000000, 1) >= llong(0x80000000, 0));
    615     LLAssert(llong(1, 0) >= llong(0, 0x7fffffff));
    616     LLAssert(llong(1, 0) >= llong(0, 0xffffffff));
    617     LLAssert(llong(0, 0) >= llong(0x80000000, 1));
    618     LLAssert(llong() >= llong(0, 0));
    619     LLAssert(llong(1,0) >= llong(1, 0));
    620     LLAssert(llong(0,1) >= llong(0, 1));
    621 
    622     // operator<=
    623     LLAssert(llong(1, 0) <= llong(1, 1));
    624     LLAssert(llong(0, 0x7fffffff) <= llong(0, 0x80000000));
    625     LLAssert(llong(0x80000000, 0) <= llong(0x80000000, 1));
    626     LLAssert(llong(0, 0x7fffffff) <= llong(1, 0));
    627     LLAssert(llong(0, 0xffffffff) <= llong(1, 0));
    628     LLAssert(llong(0x80000000, 1) <= llong(0, 0));
    629     LLAssert(llong() <= llong(0, 0));
    630     LLAssert(llong(1,0) <= llong(1, 0));
    631     LLAssert(llong(0,1) <= llong(0, 1));
    632 
    633     // operator==(int32)
    634     LLAssert(llong() == (int32_t)0);
    635     LLAssert(llong(0,1) == (int32_t)1);
    636 
    637     // operator!=(int32)
    638     LLAssert(llong(1,0) != (int32_t)0);
    639     LLAssert(llong(0,1) != (int32_t)2);
    640     LLAssert(llong(0,0xffffffff) != (int32_t)-1);
    641 
    642     llong negOne(0xffffffff, 0xffffffff);
    643 
    644     // operator>(int32)
    645     LLAssert(llong(0, 0x80000000) > (int32_t)0x7fffffff);
    646     LLAssert(negOne > (int32_t)-2);
    647     LLAssert(llong(1, 0) > (int32_t)0x7fffffff);
    648     LLAssert(llong(0, 0) > (int32_t)-1);
    649 
    650     // operator<(int32)
    651     LLAssert(llong(0, 0x7ffffffe) < (int32_t)0x7fffffff);
    652     LLAssert(llong(0xffffffff, 0xfffffffe) < (int32_t)-1);
    653 
    654     // operator>=(int32)
    655     LLAssert(llong(0, 0x80000000) >= (int32_t)0x7fffffff);
    656     LLAssert(negOne >= (int32_t)-2);
    657     LLAssert(llong(1, 0) >= (int32_t)0x7fffffff);
    658     LLAssert(llong(0, 0) >= (int32_t)-1);
    659     LLAssert(llong() >= (int32_t)0);
    660     LLAssert(llong(0,1) >= (int32_t)1);
    661 
    662     // operator<=(int32)
    663     LLAssert(llong(0, 0x7ffffffe) <= (int32_t)0x7fffffff);
    664     LLAssert(llong(0xffffffff, 0xfffffffe) <= (int32_t)-1);
    665     LLAssert(llong() <= (int32_t)0);
    666     LLAssert(llong(0,1) <= (int32_t)1);
    667 
    668     // operator=
    669     LLAssert((llong(2,3) = llong((uint32_t)-1)).asUInt() == (uint32_t)-1);
    670 
    671     // operator <<=
    672     LLAssert((llong(1, 1) <<= 0) ==  llong(1, 1));
    673     LLAssert((llong(1, 1) <<= 31) == llong(0x80000000, 0x80000000));
    674     LLAssert((llong(1, 1) <<= 32) == llong(1, 0));
    675     LLAssert((llong(1, 1) <<= 63) == llong(0x80000000, 0));
    676     LLAssert((llong(1, 1) <<= 64) == llong(1, 1)); // only lower 6 bits are used
    677     LLAssert((llong(1, 1) <<= -1) == llong(0x80000000, 0)); // only lower 6 bits are used
    678 
    679     // operator <<
    680     LLAssert((llong((int32_t)1) << 5).asUInt() == 32);
    681 
    682     // operator >>= (sign extended)
    683     LLAssert((llong(0x7fffa0a0, 0xbcbcdfdf) >>= 16) == llong(0x7fff,0xa0a0bcbc));
    684     LLAssert((llong(0x8000789a, 0xbcde0000) >>= 16) == llong(0xffff8000,0x789abcde));
    685     LLAssert((llong(0x80000000, 0) >>= 63) == llong(0xffffffff, 0xffffffff));
    686     LLAssert((llong(0x80000000, 0) >>= 47) == llong(0xffffffff, 0xffff0000));
    687     LLAssert((llong(0x80000000, 0x80000000) >> 64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used
    688     LLAssert((llong(0x80000000, 0) >>= -1) == llong(0xffffffff, 0xffffffff)); // only lower 6 bits are used
    689 
    690     // operator >> sign extended)
    691     LLAssert((llong(0x8000789a, 0xbcde0000) >> 16) == llong(0xffff8000,0x789abcde));
    692 
    693     // ushr (right shift without sign extension)
    694     LLAssert(llong(0x7fffa0a0, 0xbcbcdfdf).ushr(16) == llong(0x7fff,0xa0a0bcbc));
    695     LLAssert(llong(0x8000789a, 0xbcde0000).ushr(16) == llong(0x00008000,0x789abcde));
    696     LLAssert(llong(0x80000000, 0).ushr(63) == llong(0, 1));
    697     LLAssert(llong(0x80000000, 0).ushr(47) == llong(0, 0x10000));
    698     LLAssert(llong(0x80000000, 0x80000000).ushr(64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used
    699     LLAssert(llong(0x80000000, 0).ushr(-1) == llong(0, 1)); // only lower 6 bits are used
    700 
    701     // operator&(llong)
    702     LLAssert((llong(0x55555555, 0x55555555) & llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000));
    703 
    704     // operator|(llong)
    705     LLAssert((llong(0x55555555, 0x55555555) | llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff));
    706 
    707     // operator^(llong)
    708     LLAssert((llong(0x55555555, 0x55555555) ^ llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff));
    709 
    710     // operator&(uint32)
    711     LLAssert((llong(0x55555555, 0x55555555) & (uint32_t)0xffffaaaa) == llong(0, 0x55550000));
    712 
    713     // operator|(uint32)
    714     LLAssert((llong(0x55555555, 0x55555555) | (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff));
    715 
    716     // operator^(uint32)
    717     LLAssert((llong(0x55555555, 0x55555555) ^ (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff));
    718 
    719     // operator~
    720     LLAssert(~llong(0x55555555, 0x55555555) == llong(0xaaaaaaaa, 0xaaaaaaaa));
    721 
    722     // operator&=(llong)
    723     LLAssert((llong(0x55555555, 0x55555555) &= llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000));
    724 
    725     // operator|=(llong)
    726     LLAssert((llong(0x55555555, 0x55555555) |= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff));
    727 
    728     // operator^=(llong)
    729     LLAssert((llong(0x55555555, 0x55555555) ^= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff));
    730 
    731     // operator&=(uint32)
    732     LLAssert((llong(0x55555555, 0x55555555) &= (uint32_t)0xffffaaaa) == llong(0, 0x55550000));
    733 
    734     // operator|=(uint32)
    735     LLAssert((llong(0x55555555, 0x55555555) |= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff));
    736 
    737     // operator^=(uint32)
    738     LLAssert((llong(0x55555555, 0x55555555) ^= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff));
    739 
    740     // prefix inc
    741     LLAssert(llong(1, 0) == ++llong(0,0xffffffff));
    742 
    743     // prefix dec
    744     LLAssert(llong(0,0xffffffff) == --llong(1, 0));
    745 
    746     // postfix inc
    747     {
    748         llong n(0, 0xffffffff);
    749         LLAssert(llong(0, 0xffffffff) == n++);
    750         LLAssert(llong(1, 0) == n);
    751     }
    752 
    753     // postfix dec
    754     {
    755         llong n(1, 0);
    756         LLAssert(llong(1, 0) == n--);
    757         LLAssert(llong(0, 0xffffffff) == n);
    758     }
    759 
    760     // unary minus
    761     LLAssert(llong(0, 0) == -llong(0, 0));
    762     LLAssert(llong(0xffffffff, 0xffffffff) == -llong(0, 1));
    763     LLAssert(llong(0, 1) == -llong(0xffffffff, 0xffffffff));
    764     LLAssert(llong(0x7fffffff, 0xffffffff) == -llong(0x80000000, 1));
    765     LLAssert(llong(0x80000000, 0) == -llong(0x80000000, 0)); // !!! we don't handle overflow
    766 
    767     // operator-=
    768     {
    769         llong n;
    770         LLAssert((n -= llong(0, 1)) == llong(0xffffffff, 0xffffffff));
    771         LLAssert(n == llong(0xffffffff, 0xffffffff));
    772 
    773         n = llong(1, 0);
    774         LLAssert((n -= llong(0, 1)) == llong(0, 0xffffffff));
    775         LLAssert(n == llong(0, 0xffffffff));
    776     }
    777 
    778     // operator-
    779     {
    780         llong n;
    781         LLAssert((n - llong(0, 1)) == llong(0xffffffff, 0xffffffff));
    782         LLAssert(n == llong(0, 0));
    783 
    784         n = llong(1, 0);
    785         LLAssert((n - llong(0, 1)) == llong(0, 0xffffffff));
    786         LLAssert(n == llong(1, 0));
    787     }
    788 
    789     // operator+=
    790     {
    791         llong n(0xffffffff, 0xffffffff);
    792         LLAssert((n += llong(0, 1)) == llong(0, 0));
    793         LLAssert(n == llong(0, 0));
    794 
    795         n = llong(0, 0xffffffff);
    796         LLAssert((n += llong(0, 1)) == llong(1, 0));
    797         LLAssert(n == llong(1, 0));
    798     }
    799 
    800     // operator+
    801     {
    802         llong n(0xffffffff, 0xffffffff);
    803         LLAssert((n + llong(0, 1)) == llong(0, 0));
    804         LLAssert(n == llong(0xffffffff, 0xffffffff));
    805 
    806         n = llong(0, 0xffffffff);
    807         LLAssert((n + llong(0, 1)) == llong(1, 0));
    808         LLAssert(n == llong(0, 0xffffffff));
    809     }
    810 
    811 }
    812 
    813 void IntlTestRBNF::TestLLong()
    814 {
    815     logln("Starting TestLLong");
    816 
    817     TestLLongConstructors();
    818 
    819     TestLLongSimpleOperators();
    820 
    821     logln("Testing operator*=, operator*");
    822 
    823     // operator*=, operator*
    824     // small and large values, positive, &NEGative, zero
    825     // also test commutivity
    826     {
    827         const llong ZERO;
    828         const llong ONE(0, 1);
    829         const llong NEG_ONE((int32_t)-1);
    830         const llong THREE(0, 3);
    831         const llong NEG_THREE((int32_t)-3);
    832         const llong TWO_TO_16(0, 0x10000);
    833         const llong NEG_TWO_TO_16 = -TWO_TO_16;
    834         const llong TWO_TO_32(1, 0);
    835         const llong NEG_TWO_TO_32 = -TWO_TO_32;
    836 
    837         const llong NINE(0, 9);
    838         const llong NEG_NINE = -NINE;
    839 
    840         const llong TWO_TO_16X3(0, 0x00030000);
    841         const llong NEG_TWO_TO_16X3 = -TWO_TO_16X3;
    842 
    843         const llong TWO_TO_32X3(3, 0);
    844         const llong NEG_TWO_TO_32X3 = -TWO_TO_32X3;
    845 
    846         const llong TWO_TO_48(0x10000, 0);
    847         const llong NEG_TWO_TO_48 = -TWO_TO_48;
    848 
    849         const int32_t VALUE_WIDTH = 9;
    850         const llong* values[VALUE_WIDTH] = {
    851             &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32
    852         };
    853 
    854         const llong* answers[VALUE_WIDTH*VALUE_WIDTH] = {
    855             &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO,
    856             &ZERO, &ONE,  &NEG_ONE, &THREE, &NEG_THREE,  &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32,
    857             &ZERO, &NEG_ONE, &ONE, &NEG_THREE, &THREE, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_32, &TWO_TO_32,
    858             &ZERO, &THREE, &NEG_THREE, &NINE, &NEG_NINE, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32X3, &NEG_TWO_TO_32X3,
    859             &ZERO, &NEG_THREE, &THREE, &NEG_NINE, &NINE, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32X3, &TWO_TO_32X3,
    860             &ZERO, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_48, &NEG_TWO_TO_48,
    861             &ZERO, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_48, &TWO_TO_48,
    862             &ZERO, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_32X3, &NEG_TWO_TO_32X3, &TWO_TO_48, &NEG_TWO_TO_48, &ZERO, &ZERO,
    863             &ZERO, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_32X3, &TWO_TO_32X3, &NEG_TWO_TO_48, &TWO_TO_48, &ZERO, &ZERO
    864         };
    865 
    866         for (int i = 0; i < VALUE_WIDTH; ++i) {
    867             for (int j = 0; j < VALUE_WIDTH; ++j) {
    868                 llong lhs = *values[i];
    869                 llong rhs = *values[j];
    870                 llong ans = *answers[i*VALUE_WIDTH + j];
    871 
    872                 llong n = lhs;
    873 
    874                 LLAssert((n *= rhs) == ans);
    875                 LLAssert(n == ans);
    876 
    877                 n = lhs;
    878                 LLAssert((n * rhs) == ans);
    879                 LLAssert(n == lhs);
    880             }
    881         }
    882     }
    883 
    884     logln("Testing operator/=, operator/");
    885     // operator/=, operator/
    886     // test num = 0, div = 0, pos/neg, > 2^32, div > num
    887     {
    888         const llong ZERO;
    889         const llong ONE(0, 1);
    890         const llong NEG_ONE = -ONE;
    891         const llong MAX(0x7fffffff, 0xffffffff);
    892         const llong MIN(0x80000000, 0);
    893         const llong TWO(0, 2);
    894         const llong NEG_TWO = -TWO;
    895         const llong FIVE(0, 5);
    896         const llong NEG_FIVE = -FIVE;
    897         const llong TWO_TO_32(1, 0);
    898         const llong NEG_TWO_TO_32 = -TWO_TO_32;
    899         const llong TWO_TO_32d5 = llong(TWO_TO_32.asDouble()/5.0);
    900         const llong NEG_TWO_TO_32d5 = -TWO_TO_32d5;
    901         const llong TWO_TO_32X5 = TWO_TO_32 * FIVE;
    902         const llong NEG_TWO_TO_32X5 = -TWO_TO_32X5;
    903 
    904         const llong* tuples[] = { // lhs, rhs, ans
    905             &ZERO, &ZERO, &ZERO,
    906             &ONE, &ZERO,&MAX,
    907             &NEG_ONE, &ZERO, &MIN,
    908             &ONE, &ONE, &ONE,
    909             &ONE, &NEG_ONE, &NEG_ONE,
    910             &NEG_ONE, &ONE, &NEG_ONE,
    911             &NEG_ONE, &NEG_ONE, &ONE,
    912             &FIVE, &TWO, &TWO,
    913             &FIVE, &NEG_TWO, &NEG_TWO,
    914             &NEG_FIVE, &TWO, &NEG_TWO,
    915             &NEG_FIVE, &NEG_TWO, &TWO,
    916             &TWO, &FIVE, &ZERO,
    917             &TWO, &NEG_FIVE, &ZERO,
    918             &NEG_TWO, &FIVE, &ZERO,
    919             &NEG_TWO, &NEG_FIVE, &ZERO,
    920             &TWO_TO_32, &TWO_TO_32, &ONE,
    921             &TWO_TO_32, &NEG_TWO_TO_32, &NEG_ONE,
    922             &NEG_TWO_TO_32, &TWO_TO_32, &NEG_ONE,
    923             &NEG_TWO_TO_32, &NEG_TWO_TO_32, &ONE,
    924             &TWO_TO_32, &FIVE, &TWO_TO_32d5,
    925             &TWO_TO_32, &NEG_FIVE, &NEG_TWO_TO_32d5,
    926             &NEG_TWO_TO_32, &FIVE, &NEG_TWO_TO_32d5,
    927             &NEG_TWO_TO_32, &NEG_FIVE, &TWO_TO_32d5,
    928             &TWO_TO_32X5, &FIVE, &TWO_TO_32,
    929             &TWO_TO_32X5, &NEG_FIVE, &NEG_TWO_TO_32,
    930             &NEG_TWO_TO_32X5, &FIVE, &NEG_TWO_TO_32,
    931             &NEG_TWO_TO_32X5, &NEG_FIVE, &TWO_TO_32,
    932             &TWO_TO_32X5, &TWO_TO_32, &FIVE,
    933             &TWO_TO_32X5, &NEG_TWO_TO_32, &NEG_FIVE,
    934             &NEG_TWO_TO_32X5, &NEG_TWO_TO_32, &FIVE,
    935             &NEG_TWO_TO_32X5, &TWO_TO_32, &NEG_FIVE
    936         };
    937         const int TUPLE_WIDTH = 3;
    938         const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WIDTH;
    939         for (int i = 0; i < TUPLE_COUNT; ++i) {
    940             const llong lhs = *tuples[i*TUPLE_WIDTH+0];
    941             const llong rhs = *tuples[i*TUPLE_WIDTH+1];
    942             const llong ans = *tuples[i*TUPLE_WIDTH+2];
    943 
    944             llong n = lhs;
    945             if (!((n /= rhs) == ans)) {
    946                 errln("fail: (n /= rhs) == ans");
    947             }
    948             LLAssert(n == ans);
    949 
    950             n = lhs;
    951             LLAssert((n / rhs) == ans);
    952             LLAssert(n == lhs);
    953         }
    954     }
    955 
    956     logln("Testing operator%%=, operator%%");
    957     //operator%=, operator%
    958     {
    959         const llong ZERO;
    960         const llong ONE(0, 1);
    961         const llong TWO(0, 2);
    962         const llong THREE(0,3);
    963         const llong FOUR(0, 4);
    964         const llong FIVE(0, 5);
    965         const llong SIX(0, 6);
    966 
    967         const llong NEG_ONE = -ONE;
    968         const llong NEG_TWO = -TWO;
    969         const llong NEG_THREE = -THREE;
    970         const llong NEG_FOUR = -FOUR;
    971         const llong NEG_FIVE = -FIVE;
    972         const llong NEG_SIX = -SIX;
    973 
    974         const llong NINETY_NINE(0, 99);
    975         const llong HUNDRED(0, 100);
    976         const llong HUNDRED_ONE(0, 101);
    977 
    978         const llong BIG(0x12345678, 0x9abcdef0);
    979         const llong BIG_FIVE(BIG * FIVE);
    980         const llong BIG_FIVEm1 = BIG_FIVE - ONE;
    981         const llong BIG_FIVEp1 = BIG_FIVE + ONE;
    982 
    983         const llong* tuples[] = {
    984             &ZERO, &FIVE, &ZERO,
    985             &ONE, &FIVE, &ONE,
    986             &TWO, &FIVE, &TWO,
    987             &THREE, &FIVE, &THREE,
    988             &FOUR, &FIVE, &FOUR,
    989             &FIVE, &FIVE, &ZERO,
    990             &SIX, &FIVE, &ONE,
    991             &ZERO, &NEG_FIVE, &ZERO,
    992             &ONE, &NEG_FIVE, &ONE,
    993             &TWO, &NEG_FIVE, &TWO,
    994             &THREE, &NEG_FIVE, &THREE,
    995             &FOUR, &NEG_FIVE, &FOUR,
    996             &FIVE, &NEG_FIVE, &ZERO,
    997             &SIX, &NEG_FIVE, &ONE,
    998             &NEG_ONE, &FIVE, &NEG_ONE,
    999             &NEG_TWO, &FIVE, &NEG_TWO,
   1000             &NEG_THREE, &FIVE, &NEG_THREE,
   1001             &NEG_FOUR, &FIVE, &NEG_FOUR,
   1002             &NEG_FIVE, &FIVE, &ZERO,
   1003             &NEG_SIX, &FIVE, &NEG_ONE,
   1004             &NEG_ONE, &NEG_FIVE, &NEG_ONE,
   1005             &NEG_TWO, &NEG_FIVE, &NEG_TWO,
   1006             &NEG_THREE, &NEG_FIVE, &NEG_THREE,
   1007             &NEG_FOUR, &NEG_FIVE, &NEG_FOUR,
   1008             &NEG_FIVE, &NEG_FIVE, &ZERO,
   1009             &NEG_SIX, &NEG_FIVE, &NEG_ONE,
   1010             &NINETY_NINE, &FIVE, &FOUR,
   1011             &HUNDRED, &FIVE, &ZERO,
   1012             &HUNDRED_ONE, &FIVE, &ONE,
   1013             &BIG_FIVEm1, &FIVE, &FOUR,
   1014             &BIG_FIVE, &FIVE, &ZERO,
   1015             &BIG_FIVEp1, &FIVE, &ONE
   1016         };
   1017         const int TUPLE_WIDTH = 3;
   1018         const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WIDTH;
   1019         for (int i = 0; i < TUPLE_COUNT; ++i) {
   1020             const llong lhs = *tuples[i*TUPLE_WIDTH+0];
   1021             const llong rhs = *tuples[i*TUPLE_WIDTH+1];
   1022             const llong ans = *tuples[i*TUPLE_WIDTH+2];
   1023 
   1024             llong n = lhs;
   1025             if (!((n %= rhs) == ans)) {
   1026                 errln("fail: (n %= rhs) == ans");
   1027             }
   1028             LLAssert(n == ans);
   1029 
   1030             n = lhs;
   1031             LLAssert((n % rhs) == ans);
   1032             LLAssert(n == lhs);
   1033         }
   1034     }
   1035 
   1036     logln("Testing pow");
   1037     // pow
   1038     LLAssert(llong(0, 0).pow(0) == llong(0, 0));
   1039     LLAssert(llong(0, 0).pow(2) == llong(0, 0));
   1040     LLAssert(llong(0, 2).pow(0) == llong(0, 1));
   1041     LLAssert(llong(0, 2).pow(2) == llong(0, 4));
   1042     LLAssert(llong(0, 2).pow(32) == llong(1, 0));
   1043     LLAssert(llong(0, 5).pow(10) == llong((double)5.0 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5));
   1044 
   1045     // absolute value
   1046     {
   1047         const llong n(0xffffffff,0xffffffff);
   1048         LLAssert(n.abs() == llong(0, 1));
   1049     }
   1050 
   1051 #ifdef RBNF_DEBUG
   1052     logln("Testing atoll");
   1053     // atoll
   1054     const char empty[] = "";
   1055     const char zero[] = "0";
   1056     const char neg_one[] = "-1";
   1057     const char neg_12345[] = "-12345";
   1058     const char big1[] = "123456789abcdef0";
   1059     const char big2[] = "fFfFfFfFfFfFfFfF";
   1060     LLAssert(llong::atoll(empty) == llong(0, 0));
   1061     LLAssert(llong::atoll(zero) == llong(0, 0));
   1062     LLAssert(llong::atoll(neg_one) == llong(0xffffffff, 0xffffffff));
   1063     LLAssert(llong::atoll(neg_12345) == -llong(0, 12345));
   1064     LLAssert(llong::atoll(big1, 16) == llong(0x12345678, 0x9abcdef0));
   1065     LLAssert(llong::atoll(big2, 16) == llong(0xffffffff, 0xffffffff));
   1066 #endif
   1067 
   1068     // u_atoll
   1069     const UChar uempty[] = { 0 };
   1070     const UChar uzero[] = { 0x30, 0 };
   1071     const UChar uneg_one[] = { 0x2d, 0x31, 0 };
   1072     const UChar uneg_12345[] = { 0x2d, 0x31, 0x32, 0x33, 0x34, 0x35, 0 };
   1073     const UChar ubig1[] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0 };
   1074     const UChar ubig2[] = { 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0 };
   1075     LLAssert(llong::utoll(uempty) == llong(0, 0));
   1076     LLAssert(llong::utoll(uzero) == llong(0, 0));
   1077     LLAssert(llong::utoll(uneg_one) == llong(0xffffffff, 0xffffffff));
   1078     LLAssert(llong::utoll(uneg_12345) == -llong(0, 12345));
   1079     LLAssert(llong::utoll(ubig1, 16) == llong(0x12345678, 0x9abcdef0));
   1080     LLAssert(llong::utoll(ubig2, 16) == llong(0xffffffff, 0xffffffff));
   1081 
   1082 #ifdef RBNF_DEBUG
   1083     logln("Testing lltoa");
   1084     // lltoa
   1085     {
   1086         char buf[64]; // ascii
   1087         LLAssert((llong(0, 0).lltoa(buf, (uint32_t)sizeof(buf)) == 1) && (strcmp(buf, zero) == 0));
   1088         LLAssert((llong(0xffffffff, 0xffffffff).lltoa(buf, (uint32_t)sizeof(buf)) == 2) && (strcmp(buf, neg_one) == 0));
   1089         LLAssert(((-llong(0, 12345)).lltoa(buf, (uint32_t)sizeof(buf)) == 6) && (strcmp(buf, neg_12345) == 0));
   1090         LLAssert((llong(0x12345678, 0x9abcdef0).lltoa(buf, (uint32_t)sizeof(buf), 16) == 16) && (strcmp(buf, big1) == 0));
   1091     }
   1092 #endif
   1093 
   1094     logln("Testing u_lltoa");
   1095     // u_lltoa
   1096     {
   1097         UChar buf[64];
   1098         LLAssert((llong(0, 0).lltou(buf, (uint32_t)sizeof(buf)) == 1) && (u_strcmp(buf, uzero) == 0));
   1099         LLAssert((llong(0xffffffff, 0xffffffff).lltou(buf, (uint32_t)sizeof(buf)) == 2) && (u_strcmp(buf, uneg_one) == 0));
   1100         LLAssert(((-llong(0, 12345)).lltou(buf, (uint32_t)sizeof(buf)) == 6) && (u_strcmp(buf, uneg_12345) == 0));
   1101         LLAssert((llong(0x12345678, 0x9abcdef0).lltou(buf, (uint32_t)sizeof(buf), 16) == 16) && (u_strcmp(buf, ubig1) == 0));
   1102     }
   1103 }
   1104 
   1105 /* if 0 */
   1106 #endif
   1107 
   1108 void
   1109 IntlTestRBNF::TestEnglishSpellout()
   1110 {
   1111     UErrorCode status = U_ZERO_ERROR;
   1112     RuleBasedNumberFormat* formatter
   1113         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status);
   1114     if (U_FAILURE(status)) {
   1115         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1116     } else {
   1117         static const char* const testData[][2] = {
   1118             { "1", "one" },
   1119             { "2", "two" },
   1120             { "15", "fifteen" },
   1121             { "20", "twenty" },
   1122             { "23", "twenty-three" },
   1123             { "73", "seventy-three" },
   1124             { "88", "eighty-eight" },
   1125             { "100", "one hundred" },
   1126             { "106", "one hundred six" },
   1127             { "127", "one hundred twenty-seven" },
   1128             { "200", "two hundred" },
   1129             { "579", "five hundred seventy-nine" },
   1130             { "1,000", "one thousand" },
   1131             { "2,000", "two thousand" },
   1132             { "3,004", "three thousand four" },
   1133             { "4,567", "four thousand five hundred sixty-seven" },
   1134             { "15,943", "fifteen thousand nine hundred forty-three" },
   1135             { "2,345,678", "two million three hundred forty-five thousand six hundred seventy-eight" },
   1136             { "-36", "minus thirty-six" },
   1137             { "234.567", "two hundred thirty-four point five six seven" },
   1138             { NULL, NULL}
   1139         };
   1140 
   1141         doTest(formatter, testData, TRUE);
   1142 
   1143 #if !UCONFIG_NO_COLLATION
   1144         if( !logKnownIssue("9503") ) {
   1145           formatter->setLenient(TRUE);
   1146           static const char* lpTestData[][2] = {
   1147             { "fifty-7", "57" },
   1148             { " fifty-7", "57" },
   1149             { "  fifty-7", "57" },
   1150             { "2 thousand six    HUNDRED fifty-7", "2,657" },
   1151             { "fifteen hundred and zero", "1,500" },
   1152             { "FOurhundred     thiRTY six", "436" },
   1153             { NULL, NULL}
   1154           };
   1155           doLenientParseTest(formatter, lpTestData);
   1156         }
   1157 #endif
   1158     }
   1159     delete formatter;
   1160 }
   1161 
   1162 void
   1163 IntlTestRBNF::TestOrdinalAbbreviations()
   1164 {
   1165     UErrorCode status = U_ZERO_ERROR;
   1166     RuleBasedNumberFormat* formatter
   1167         = new RuleBasedNumberFormat(URBNF_ORDINAL, Locale::getUS(), status);
   1168 
   1169     if (U_FAILURE(status)) {
   1170         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1171     } else {
   1172         static const char* const testData[][2] = {
   1173             { "1", "1st" },
   1174             { "2", "2nd" },
   1175             { "3", "3rd" },
   1176             { "4", "4th" },
   1177             { "7", "7th" },
   1178             { "10", "10th" },
   1179             { "11", "11th" },
   1180             { "13", "13th" },
   1181             { "20", "20th" },
   1182             { "21", "21st" },
   1183             { "22", "22nd" },
   1184             { "23", "23rd" },
   1185             { "24", "24th" },
   1186             { "33", "33rd" },
   1187             { "102", "102nd" },
   1188             { "312", "312th" },
   1189             { "12,345", "12,345th" },
   1190             { NULL, NULL}
   1191         };
   1192 
   1193         doTest(formatter, testData, FALSE);
   1194     }
   1195     delete formatter;
   1196 }
   1197 
   1198 void
   1199 IntlTestRBNF::TestDurations()
   1200 {
   1201     UErrorCode status = U_ZERO_ERROR;
   1202     RuleBasedNumberFormat* formatter
   1203         = new RuleBasedNumberFormat(URBNF_DURATION, Locale::getUS(), status);
   1204 
   1205     if (U_FAILURE(status)) {
   1206         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1207     } else {
   1208         static const char* const testData[][2] = {
   1209             { "3,600", "1:00:00" },     //move me and I fail
   1210             { "0", "0 sec." },
   1211             { "1", "1 sec." },
   1212             { "24", "24 sec." },
   1213             { "60", "1:00" },
   1214             { "73", "1:13" },
   1215             { "145", "2:25" },
   1216             { "666", "11:06" },
   1217             //            { "3,600", "1:00:00" },
   1218             { "3,740", "1:02:20" },
   1219             { "10,293", "2:51:33" },
   1220             { NULL, NULL}
   1221         };
   1222 
   1223         doTest(formatter, testData, TRUE);
   1224 
   1225 #if !UCONFIG_NO_COLLATION
   1226         formatter->setLenient(TRUE);
   1227         static const char* lpTestData[][2] = {
   1228             { "2-51-33", "10,293" },
   1229             { NULL, NULL}
   1230         };
   1231         doLenientParseTest(formatter, lpTestData);
   1232 #endif
   1233     }
   1234     delete formatter;
   1235 }
   1236 
   1237 void
   1238 IntlTestRBNF::TestSpanishSpellout()
   1239 {
   1240     UErrorCode status = U_ZERO_ERROR;
   1241     RuleBasedNumberFormat* formatter
   1242         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("es", "ES", ""), status);
   1243 
   1244     if (U_FAILURE(status)) {
   1245         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1246     } else {
   1247         static const char* const testData[][2] = {
   1248             { "1", "uno" },
   1249             { "6", "seis" },
   1250             { "16", "diecis\\u00e9is" },
   1251             { "20", "veinte" },
   1252             { "24", "veinticuatro" },
   1253             { "26", "veintis\\u00e9is" },
   1254             { "73", "setenta y tres" },
   1255             { "88", "ochenta y ocho" },
   1256             { "100", "cien" },
   1257             { "106", "ciento seis" },
   1258             { "127", "ciento veintisiete" },
   1259             { "200", "doscientos" },
   1260             { "579", "quinientos setenta y nueve" },
   1261             { "1,000", "mil" },
   1262             { "2,000", "dos mil" },
   1263             { "3,004", "tres mil cuatro" },
   1264             { "4,567", "cuatro mil quinientos sesenta y siete" },
   1265             { "15,943", "quince mil novecientos cuarenta y tres" },
   1266             { "2,345,678", "dos millones trescientos cuarenta y cinco mil seiscientos setenta y ocho"},
   1267             { "-36", "menos treinta y seis" },
   1268             { "234.567", "doscientos treinta y cuatro coma cinco seis siete" },
   1269             { NULL, NULL}
   1270         };
   1271 
   1272         doTest(formatter, testData, TRUE);
   1273     }
   1274     delete formatter;
   1275 }
   1276 
   1277 void
   1278 IntlTestRBNF::TestFrenchSpellout()
   1279 {
   1280     UErrorCode status = U_ZERO_ERROR;
   1281     RuleBasedNumberFormat* formatter
   1282         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getFrance(), status);
   1283 
   1284     if (U_FAILURE(status)) {
   1285         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1286     } else {
   1287         static const char* const testData[][2] = {
   1288             { "1", "un" },
   1289             { "15", "quinze" },
   1290             { "20", "vingt" },
   1291             { "21", "vingt-et-un" },
   1292             { "23", "vingt-trois" },
   1293             { "62", "soixante-deux" },
   1294             { "70", "soixante-dix" },
   1295             { "71", "soixante-et-onze" },
   1296             { "73", "soixante-treize" },
   1297             { "80", "quatre-vingts" },
   1298             { "88", "quatre-vingt-huit" },
   1299             { "100", "cent" },
   1300             { "106", "cent six" },
   1301             { "127", "cent vingt-sept" },
   1302             { "200", "deux cents" },
   1303             { "579", "cinq cent soixante-dix-neuf" },
   1304             { "1,000", "mille" },
   1305             { "1,123", "mille cent vingt-trois" },
   1306             { "1,594", "mille cinq cent quatre-vingt-quatorze" },
   1307             { "2,000", "deux mille" },
   1308             { "3,004", "trois mille quatre" },
   1309             { "4,567", "quatre mille cinq cent soixante-sept" },
   1310             { "15,943", "quinze mille neuf cent quarante-trois" },
   1311             { "2,345,678", "deux millions trois cent quarante-cinq mille six cent soixante-dix-huit" },
   1312             { "-36", "moins trente-six" },
   1313             { "234.567", "deux cent trente-quatre virgule cinq six sept" },
   1314             { NULL, NULL}
   1315         };
   1316 
   1317         doTest(formatter, testData, TRUE);
   1318 
   1319 #if !UCONFIG_NO_COLLATION
   1320         formatter->setLenient(TRUE);
   1321         static const char* lpTestData[][2] = {
   1322             { "trente-et-un", "31" },
   1323             { "un cent quatre vingt dix huit", "198" },
   1324             { NULL, NULL}
   1325         };
   1326         doLenientParseTest(formatter, lpTestData);
   1327 #endif
   1328     }
   1329     delete formatter;
   1330 }
   1331 
   1332 static const char* const swissFrenchTestData[][2] = {
   1333     { "1", "un" },
   1334     { "15", "quinze" },
   1335     { "20", "vingt" },
   1336     { "21", "vingt-et-un" },
   1337     { "23", "vingt-trois" },
   1338     { "62", "soixante-deux" },
   1339     { "70", "septante" },
   1340     { "71", "septante-et-un" },
   1341     { "73", "septante-trois" },
   1342     { "80", "huitante" },
   1343     { "88", "huitante-huit" },
   1344     { "100", "cent" },
   1345     { "106", "cent six" },
   1346     { "127", "cent vingt-sept" },
   1347     { "200", "deux cents" },
   1348     { "579", "cinq cent septante-neuf" },
   1349     { "1,000", "mille" },
   1350     { "1,123", "mille cent vingt-trois" },
   1351     { "1,594", "mille cinq cent nonante-quatre" },
   1352     { "2,000", "deux mille" },
   1353     { "3,004", "trois mille quatre" },
   1354     { "4,567", "quatre mille cinq cent soixante-sept" },
   1355     { "15,943", "quinze mille neuf cent quarante-trois" },
   1356     { "2,345,678", "deux millions trois cent quarante-cinq mille six cent septante-huit" },
   1357     { "-36", "moins trente-six" },
   1358     { "234.567", "deux cent trente-quatre virgule cinq six sept" },
   1359     { NULL, NULL}
   1360 };
   1361 
   1362 void
   1363 IntlTestRBNF::TestSwissFrenchSpellout()
   1364 {
   1365     UErrorCode status = U_ZERO_ERROR;
   1366     RuleBasedNumberFormat* formatter
   1367         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "CH", ""), status);
   1368 
   1369     if (U_FAILURE(status)) {
   1370         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1371     } else {
   1372         doTest(formatter, swissFrenchTestData, TRUE);
   1373     }
   1374     delete formatter;
   1375 }
   1376 
   1377 static const char* const belgianFrenchTestData[][2] = {
   1378     { "1", "un" },
   1379     { "15", "quinze" },
   1380     { "20", "vingt" },
   1381     { "21", "vingt-et-un" },
   1382     { "23", "vingt-trois" },
   1383     { "62", "soixante-deux" },
   1384     { "70", "septante" },
   1385     { "71", "septante-et-un" },
   1386     { "73", "septante-trois" },
   1387     { "80", "quatre-vingts" },
   1388     { "88", "quatre-vingt huit" },
   1389     { "90", "nonante" },
   1390     { "91", "nonante-et-un" },
   1391     { "95", "nonante-cinq" },
   1392     { "100", "cent" },
   1393     { "106", "cent six" },
   1394     { "127", "cent vingt-sept" },
   1395     { "200", "deux cents" },
   1396     { "579", "cinq cent septante-neuf" },
   1397     { "1,000", "mille" },
   1398     { "1,123", "mille cent vingt-trois" },
   1399     { "1,594", "mille cinq cent nonante-quatre" },
   1400     { "2,000", "deux mille" },
   1401     { "3,004", "trois mille quatre" },
   1402     { "4,567", "quatre mille cinq cent soixante-sept" },
   1403     { "15,943", "quinze mille neuf cent quarante-trois" },
   1404     { "2,345,678", "deux millions trois cent quarante-cinq mille six cent septante-huit" },
   1405     { "-36", "moins trente-six" },
   1406     { "234.567", "deux cent trente-quatre virgule cinq six sept" },
   1407     { NULL, NULL}
   1408 };
   1409 
   1410 
   1411 void
   1412 IntlTestRBNF::TestBelgianFrenchSpellout()
   1413 {
   1414     UErrorCode status = U_ZERO_ERROR;
   1415     RuleBasedNumberFormat* formatter
   1416         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "BE", ""), status);
   1417 
   1418     if (U_FAILURE(status)) {
   1419         errcheckln(status, "rbnf status: 0x%x (%s)\n", status, u_errorName(status));
   1420         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1421     } else {
   1422         // Belgian french should match Swiss french.
   1423         doTest(formatter, belgianFrenchTestData, TRUE);
   1424     }
   1425     delete formatter;
   1426 }
   1427 
   1428 void
   1429 IntlTestRBNF::TestItalianSpellout()
   1430 {
   1431     UErrorCode status = U_ZERO_ERROR;
   1432     RuleBasedNumberFormat* formatter
   1433         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getItalian(), status);
   1434 
   1435     if (U_FAILURE(status)) {
   1436         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1437     } else {
   1438         static const char* const testData[][2] = {
   1439             { "1", "uno" },
   1440             { "15", "quindici" },
   1441             { "20", "venti" },
   1442             { "23", "venti\\u00ADtr\\u00E9" },
   1443             { "73", "settanta\\u00ADtr\\u00E9" },
   1444             { "88", "ottant\\u00ADotto" },
   1445             { "100", "cento" },
   1446             { "101", "cento\\u00ADuno" },
   1447             { "103", "cento\\u00ADtr\\u00E9" },
   1448             { "106", "cento\\u00ADsei" },
   1449             { "108", "cent\\u00ADotto" },
   1450             { "127", "cento\\u00ADventi\\u00ADsette" },
   1451             { "181", "cent\\u00ADottant\\u00ADuno" },
   1452             { "200", "due\\u00ADcento" },
   1453             { "579", "cinque\\u00ADcento\\u00ADsettanta\\u00ADnove" },
   1454             { "1,000", "mille" },
   1455             { "2,000", "due\\u00ADmila" },
   1456             { "3,004", "tre\\u00ADmila\\u00ADquattro" },
   1457             { "4,567", "quattro\\u00ADmila\\u00ADcinque\\u00ADcento\\u00ADsessanta\\u00ADsette" },
   1458             { "15,943", "quindici\\u00ADmila\\u00ADnove\\u00ADcento\\u00ADquaranta\\u00ADtr\\u00E9" },
   1459             { "-36", "meno trenta\\u00ADsei" },
   1460             { "234.567", "due\\u00ADcento\\u00ADtrenta\\u00ADquattro virgola cinque sei sette" },
   1461             { NULL, NULL}
   1462         };
   1463 
   1464         doTest(formatter, testData, TRUE);
   1465     }
   1466     delete formatter;
   1467 }
   1468 
   1469 void
   1470 IntlTestRBNF::TestPortugueseSpellout()
   1471 {
   1472     UErrorCode status = U_ZERO_ERROR;
   1473     RuleBasedNumberFormat* formatter
   1474         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("pt","BR",""), status);
   1475 
   1476     if (U_FAILURE(status)) {
   1477         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1478     } else {
   1479         static const char* const testData[][2] = {
   1480             { "1", "um" },
   1481             { "15", "quinze" },
   1482             { "20", "vinte" },
   1483             { "23", "vinte e tr\\u00EAs" },
   1484             { "73", "setenta e tr\\u00EAs" },
   1485             { "88", "oitenta e oito" },
   1486             { "100", "cem" },
   1487             { "106", "cento e seis" },
   1488             { "108", "cento e oito" },
   1489             { "127", "cento e vinte e sete" },
   1490             { "181", "cento e oitenta e um" },
   1491             { "200", "duzentos" },
   1492             { "579", "quinhentos e setenta e nove" },
   1493             { "1,000", "mil" },
   1494             { "2,000", "dois mil" },
   1495             { "3,004", "tr\\u00EAs mil e quatro" },
   1496             { "4,567", "quatro mil e quinhentos e sessenta e sete" },
   1497             { "15,943", "quinze mil e novecentos e quarenta e tr\\u00EAs" },
   1498             { "-36", "menos trinta e seis" },
   1499             { "234.567", "duzentos e trinta e quatro v\\u00EDrgula cinco seis sete" },
   1500             { NULL, NULL}
   1501         };
   1502 
   1503         doTest(formatter, testData, TRUE);
   1504     }
   1505     delete formatter;
   1506 }
   1507 void
   1508 IntlTestRBNF::TestGermanSpellout()
   1509 {
   1510     UErrorCode status = U_ZERO_ERROR;
   1511     RuleBasedNumberFormat* formatter
   1512         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getGermany(), status);
   1513 
   1514     if (U_FAILURE(status)) {
   1515         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1516     } else {
   1517         static const char* const testData[][2] = {
   1518             { "1", "eins" },
   1519             { "15", "f\\u00fcnfzehn" },
   1520             { "20", "zwanzig" },
   1521             { "23", "drei\\u00ADund\\u00ADzwanzig" },
   1522             { "73", "drei\\u00ADund\\u00ADsiebzig" },
   1523             { "88", "acht\\u00ADund\\u00ADachtzig" },
   1524             { "100", "ein\\u00ADhundert" },
   1525             { "106", "ein\\u00ADhundert\\u00ADsechs" },
   1526             { "127", "ein\\u00ADhundert\\u00ADsieben\\u00ADund\\u00ADzwanzig" },
   1527             { "200", "zwei\\u00ADhundert" },
   1528             { "579", "f\\u00fcnf\\u00ADhundert\\u00ADneun\\u00ADund\\u00ADsiebzig" },
   1529             { "1,000", "ein\\u00ADtausend" },
   1530             { "2,000", "zwei\\u00ADtausend" },
   1531             { "3,004", "drei\\u00ADtausend\\u00ADvier" },
   1532             { "4,567", "vier\\u00ADtausend\\u00ADf\\u00fcnf\\u00ADhundert\\u00ADsieben\\u00ADund\\u00ADsechzig" },
   1533             { "15,943", "f\\u00fcnfzehn\\u00ADtausend\\u00ADneun\\u00ADhundert\\u00ADdrei\\u00ADund\\u00ADvierzig" },
   1534             { "2,345,678", "zwei Millionen drei\\u00ADhundert\\u00ADf\\u00fcnf\\u00ADund\\u00ADvierzig\\u00ADtausend\\u00ADsechs\\u00ADhundert\\u00ADacht\\u00ADund\\u00ADsiebzig" },
   1535             { NULL, NULL}
   1536         };
   1537 
   1538         doTest(formatter, testData, TRUE);
   1539 
   1540 #if !UCONFIG_NO_COLLATION
   1541         formatter->setLenient(TRUE);
   1542         static const char* lpTestData[][2] = {
   1543             { "ein Tausend sechs Hundert fuenfunddreissig", "1,635" },
   1544             { NULL, NULL}
   1545         };
   1546         doLenientParseTest(formatter, lpTestData);
   1547 #endif
   1548     }
   1549     delete formatter;
   1550 }
   1551 
   1552 void
   1553 IntlTestRBNF::TestThaiSpellout()
   1554 {
   1555     UErrorCode status = U_ZERO_ERROR;
   1556     RuleBasedNumberFormat* formatter
   1557         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("th"), status);
   1558 
   1559     if (U_FAILURE(status)) {
   1560         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1561     } else {
   1562         static const char* const testData[][2] = {
   1563             { "0", "\\u0e28\\u0e39\\u0e19\\u0e22\\u0e4c" },
   1564             { "1", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" },
   1565             { "10", "\\u0e2a\\u0e34\\u0e1a" },
   1566             { "11", "\\u0e2a\\u0e34\\u0e1a\\u200b\\u0e40\\u0e2d\\u0e47\\u0e14" },
   1567             { "21", "\\u0e22\\u0e35\\u0e48\\u200b\\u0e2a\\u0e34\\u0e1a\\u200b\\u0e40\\u0e2d\\u0e47\\u0e14" },
   1568             { "101", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e23\\u0e49\\u0e2d\\u0e22\\u200b\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" },
   1569             { "1.234", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e08\\u0e38\\u0e14\\u200b\\u0e2a\\u0e2d\\u0e07\\u0e2a\\u0e32\\u0e21\\u0e2a\\u0e35\\u0e48" },
   1570             { NULL, NULL}
   1571         };
   1572 
   1573         doTest(formatter, testData, TRUE);
   1574     }
   1575     delete formatter;
   1576 }
   1577 
   1578 void
   1579 IntlTestRBNF::TestSwedishSpellout()
   1580 {
   1581     UErrorCode status = U_ZERO_ERROR;
   1582     RuleBasedNumberFormat* formatter
   1583         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("sv"), status);
   1584 
   1585     if (U_FAILURE(status)) {
   1586         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1587     } else {
   1588         static const char* testDataDefault[][2] = {
   1589             { "101", "ett\\u00adhundra\\u00adett" },
   1590             { "123", "ett\\u00adhundra\\u00adtjugo\\u00adtre" },
   1591             { "1,001", "et\\u00adtusen ett" },
   1592             { "1,100", "et\\u00adtusen ett\\u00adhundra" },
   1593             { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" },
   1594             { "1,234", "et\\u00adtusen tv\\u00e5\\u00adhundra\\u00adtrettio\\u00adfyra" },
   1595             { "10,001", "tio\\u00adtusen ett" },
   1596             { "11,000", "elva\\u00adtusen" },
   1597             { "12,000", "tolv\\u00adtusen" },
   1598             { "20,000", "tjugo\\u00adtusen" },
   1599             { "21,000", "tjugo\\u00adet\\u00adtusen" },
   1600             { "21,001", "tjugo\\u00adet\\u00adtusen ett" },
   1601             { "200,000", "tv\\u00e5\\u00adhundra\\u00adtusen" },
   1602             { "201,000", "tv\\u00e5\\u00adhundra\\u00adet\\u00adtusen" },
   1603             { "200,200", "tv\\u00e5\\u00adhundra\\u00adtusen tv\\u00e5\\u00adhundra" },
   1604             { "2,002,000", "tv\\u00e5 miljoner tv\\u00e5\\u00adtusen" },
   1605             { "12,345,678", "tolv miljoner tre\\u00adhundra\\u00adfyrtio\\u00adfem\\u00adtusen sex\\u00adhundra\\u00adsjuttio\\u00ad\\u00e5tta" },
   1606             { "123,456.789", "ett\\u00adhundra\\u00adtjugo\\u00adtre\\u00adtusen fyra\\u00adhundra\\u00adfemtio\\u00adsex komma sju \\u00e5tta nio" },
   1607             { "-12,345.678", "minus tolv\\u00adtusen tre\\u00adhundra\\u00adfyrtio\\u00adfem komma sex sju \\u00e5tta" },
   1608             { NULL, NULL }
   1609         };
   1610         doTest(formatter, testDataDefault, TRUE);
   1611 
   1612           static const char* testDataNeutrum[][2] = {
   1613               { "101", "ett\\u00adhundra\\u00adett" },
   1614               { "1,001", "et\\u00adtusen ett" },
   1615               { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" },
   1616               { "10,001", "tio\\u00adtusen ett" },
   1617               { "21,001", "tjugo\\u00adet\\u00adtusen ett" },
   1618               { NULL, NULL }
   1619           };
   1620 
   1621           formatter->setDefaultRuleSet("%spellout-cardinal-neuter", status);
   1622           if (U_SUCCESS(status)) {
   1623           logln("        testing spellout-cardinal-neuter rules");
   1624           doTest(formatter, testDataNeutrum, TRUE);
   1625           }
   1626           else {
   1627           errln("Can't test spellout-cardinal-neuter rules");
   1628           }
   1629 
   1630         static const char* testDataYear[][2] = {
   1631             { "101", "ett\\u00adhundra\\u00adett" },
   1632             { "900", "nio\\u00adhundra" },
   1633             { "1,001", "et\\u00adtusen ett" },
   1634             { "1,100", "elva\\u00adhundra" },
   1635             { "1,101", "elva\\u00adhundra\\u00adett" },
   1636             { "1,234", "tolv\\u00adhundra\\u00adtrettio\\u00adfyra" },
   1637             { "2,001", "tjugo\\u00adhundra\\u00adett" },
   1638             { "10,001", "tio\\u00adtusen ett" },
   1639             { NULL, NULL }
   1640         };
   1641 
   1642         status = U_ZERO_ERROR;
   1643         formatter->setDefaultRuleSet("%spellout-numbering-year", status);
   1644         if (U_SUCCESS(status)) {
   1645             logln("testing year rules");
   1646             doTest(formatter, testDataYear, TRUE);
   1647         }
   1648         else {
   1649             errln("Can't test year rules");
   1650         }
   1651 
   1652     }
   1653     delete formatter;
   1654 }
   1655 
   1656 void
   1657 IntlTestRBNF::TestSmallValues()
   1658 {
   1659     UErrorCode status = U_ZERO_ERROR;
   1660     RuleBasedNumberFormat* formatter
   1661         = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("en_US"), status);
   1662 
   1663     if (U_FAILURE(status)) {
   1664         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1665     } else {
   1666         static const char* const testDataDefault[][2] = {
   1667         { "0.001", "zero point zero zero one" },
   1668         { "0.0001", "zero point zero zero zero one" },
   1669         { "0.00001", "zero point zero zero zero zero one" },
   1670         { "0.000001", "zero point zero zero zero zero zero one" },
   1671         { "0.0000001", "zero point zero zero zero zero zero zero one" },
   1672         { "0.00000001", "zero point zero zero zero zero zero zero zero one" },
   1673         { "0.000000001", "zero point zero zero zero zero zero zero zero zero one" },
   1674         { "0.0000000001", "zero point zero zero zero zero zero zero zero zero zero one" },
   1675         { "0.00000000001", "zero point zero zero zero zero zero zero zero zero zero zero one" },
   1676         { "0.000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero one" },
   1677         { "0.0000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero one" },
   1678         { "0.00000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero zero one" },
   1679         { "0.000000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero zero zero one" },
   1680         { "10,000,000.001", "ten million point zero zero one" },
   1681         { "10,000,000.0001", "ten million point zero zero zero one" },
   1682         { "10,000,000.00001", "ten million point zero zero zero zero one" },
   1683         { "10,000,000.000001", "ten million point zero zero zero zero zero one" },
   1684         { "10,000,000.0000001", "ten million point zero zero zero zero zero zero one" },
   1685 //        { "10,000,000.00000001", "ten million point zero zero zero zero zero zero zero one" },
   1686 //        { "10,000,000.000000002", "ten million point zero zero zero zero zero zero zero zero two" },
   1687         { "10,000,000", "ten million" },
   1688 //        { "1,234,567,890.0987654", "one billion, two hundred and thirty-four million, five hundred and sixty-seven thousand, eight hundred and ninety point zero nine eight seven six five four" },
   1689 //        { "123,456,789.9876543", "one hundred and twenty-three million, four hundred and fifty-six thousand, seven hundred and eighty-nine point nine eight seven six five four three" },
   1690 //        { "12,345,678.87654321", "twelve million, three hundred and forty-five thousand, six hundred and seventy-eight point eight seven six five four three two one" },
   1691         { "1,234,567.7654321", "one million two hundred thirty-four thousand five hundred sixty-seven point seven six five four three two one" },
   1692         { "123,456.654321", "one hundred twenty-three thousand four hundred fifty-six point six five four three two one" },
   1693         { "12,345.54321", "twelve thousand three hundred forty-five point five four three two one" },
   1694         { "1,234.4321", "one thousand two hundred thirty-four point four three two one" },
   1695         { "123.321", "one hundred twenty-three point three two one" },
   1696         { "0.0000000011754944", "zero point zero zero zero zero zero zero zero zero one one seven five four nine four four" },
   1697         { "0.000001175494351", "zero point zero zero zero zero zero one one seven five four nine four three five one" },
   1698         { NULL, NULL }
   1699         };
   1700 
   1701         doTest(formatter, testDataDefault, TRUE);
   1702 
   1703         delete formatter;
   1704     }
   1705 }
   1706 
   1707 void
   1708 IntlTestRBNF::TestLocalizations(void)
   1709 {
   1710     int i;
   1711     UnicodeString rules("%main:0:no;1:some;100:a lot;1000:tons;\n"
   1712         "%other:0:nada;1:yah, some;100:plenty;1000:more'n you'll ever need");
   1713 
   1714     UErrorCode status = U_ZERO_ERROR;
   1715     UParseError perror;
   1716     RuleBasedNumberFormat formatter(rules, perror, status);
   1717     if (U_FAILURE(status)) {
   1718         errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status));
   1719     } else {
   1720         {
   1721             static const char* const testData[][2] = {
   1722                 { "0", "nada" },
   1723                 { "5", "yah, some" },
   1724                 { "423", "plenty" },
   1725                 { "12345", "more'n you'll ever need" },
   1726                 { NULL, NULL }
   1727             };
   1728             doTest(&formatter, testData, FALSE);
   1729         }
   1730 
   1731         {
   1732             UnicodeString loc("<<%main, %other>,<en, Main, Other>,<fr, leMain, leOther>,<de, 'das Main', 'etwas anderes'>>");
   1733             static const char* const testData[][2] = {
   1734                 { "0", "no" },
   1735                 { "5", "some" },
   1736                 { "423", "a lot" },
   1737                 { "12345", "tons" },
   1738                 { NULL, NULL }
   1739             };
   1740             RuleBasedNumberFormat formatter0(rules, loc, perror, status);
   1741             if (U_FAILURE(status)) {
   1742                 errln("failed to build second formatter");
   1743             } else {
   1744                 doTest(&formatter0, testData, FALSE);
   1745 
   1746                 {
   1747                 // exercise localization info
   1748                     Locale locale0("en__VALLEY@turkey=gobblegobble");
   1749                     Locale locale1("de_DE_FOO");
   1750                     Locale locale2("ja_JP");
   1751                     UnicodeString name = formatter0.getRuleSetName(0);
   1752                     if ( formatter0.getRuleSetDisplayName(0, locale0) == "Main"
   1753                       && formatter0.getRuleSetDisplayName(0, locale1) == "das Main"
   1754                       && formatter0.getRuleSetDisplayName(0, locale2) == "%main"
   1755                       && formatter0.getRuleSetDisplayName(name, locale0) == "Main"
   1756                       && formatter0.getRuleSetDisplayName(name, locale1) == "das Main"
   1757                       && formatter0.getRuleSetDisplayName(name, locale2) == "%main"){
   1758                           logln("getRuleSetDisplayName tested");
   1759                     }else {
   1760                         errln("failed to getRuleSetDisplayName");
   1761                     }
   1762                 }
   1763 
   1764                 for (i = 0; i < formatter0.getNumberOfRuleSetDisplayNameLocales(); ++i) {
   1765                     Locale locale = formatter0.getRuleSetDisplayNameLocale(i, status);
   1766                     if (U_SUCCESS(status)) {
   1767                         for (int j = 0; j < formatter0.getNumberOfRuleSetNames(); ++j) {
   1768                             UnicodeString name = formatter0.getRuleSetName(j);
   1769                             UnicodeString lname = formatter0.getRuleSetDisplayName(j, locale);
   1770                             UnicodeString msg = locale.getName();
   1771                             msg.append(": ");
   1772                             msg.append(name);
   1773                             msg.append(" = ");
   1774                             msg.append(lname);
   1775                             logln(msg);
   1776                         }
   1777                     }
   1778                 }
   1779             }
   1780         }
   1781 
   1782         {
   1783             static const char* goodLocs[] = {
   1784                 "", // zero-length ok, same as providing no localization data
   1785                 "<<>>", // no public rule sets ok
   1786                 "<<%main>>", // no localizations ok
   1787                 "<<%main,>,<en, Main,>>", // comma before close angle ok
   1788                 "<<%main>,<en, ',<>\" '>>", // quotes everything until next quote
   1789                 "<<%main>,<'en', \"it's ok\">>", // double quotes work too
   1790                 "  \n <\n  <\n  %main\n  >\n  , \t <\t   en\t  ,  \tfoo \t\t > \n\n >  \n ", // Pattern_White_Space ok
   1791            };
   1792             int32_t goodLocsLen = sizeof(goodLocs)/sizeof(goodLocs[0]);
   1793 
   1794             static const char* badLocs[] = {
   1795                 " ", // non-zero length
   1796                 "<>", // empty array
   1797                 "<", // unclosed outer array
   1798                 "<<", // unclosed inner array
   1799                 "<<,>>", // unexpected comma
   1800                 "<<''>>", // empty string
   1801                 "  x<<%main>>", // first non space char not open angle bracket
   1802                 "<%main>", // missing inner array
   1803                 "<<%main %other>>", // elements missing separating commma (spaces must be quoted)
   1804                 "<<%main><en, Main>>", // arrays missing separating comma
   1805                 "<<%main>,<en, main, foo>>", // too many elements in locale data
   1806                 "<<%main>,<en>>", // too few elements in locale data
   1807                 "<<<%main>>>", // unexpected open angle
   1808                 "<<%main<>>>", // unexpected open angle
   1809                 "<<%main, %other>,<en,,>>", // implicit empty strings
   1810                 "<<%main>,<en,''>>", // empty string
   1811                 "<<%main>, < en, '>>", // unterminated quote
   1812                 "<<%main>, < en, \"<>>", // unterminated quote
   1813                 "<<%main\">>", // quote in string
   1814                 "<<%main'>>", // quote in string
   1815                 "<<%main<>>", // open angle in string
   1816                 "<<%main>> x", // extra non-space text at end
   1817 
   1818             };
   1819             int32_t badLocsLen = sizeof(badLocs)/sizeof(badLocs[0]);
   1820 
   1821             for (i = 0; i < goodLocsLen; ++i) {
   1822                 logln("[%d] '%s'", i, goodLocs[i]);
   1823                 UErrorCode status = U_ZERO_ERROR;
   1824                 UnicodeString loc(goodLocs[i]);
   1825                 RuleBasedNumberFormat fmt(rules, loc, perror, status);
   1826                 if (U_FAILURE(status)) {
   1827                     errln("Failed parse of good localization string: '%s'", goodLocs[i]);
   1828                 }
   1829             }
   1830 
   1831             for (i = 0; i < badLocsLen; ++i) {
   1832                 logln("[%d] '%s'", i, badLocs[i]);
   1833                 UErrorCode status = U_ZERO_ERROR;
   1834                 UnicodeString loc(badLocs[i]);
   1835                 RuleBasedNumberFormat fmt(rules, loc, perror, status);
   1836                 if (U_SUCCESS(status)) {
   1837                     errln("Successful parse of bad localization string: '%s'", badLocs[i]);
   1838                 }
   1839             }
   1840         }
   1841     }
   1842 }
   1843 
   1844 void
   1845 IntlTestRBNF::TestAllLocales()
   1846 {
   1847     const char* names[] = {
   1848         " (spellout) ",
   1849         " (ordinal)  "
   1850         // " (duration) " // This is English only, and it's not really supported in CLDR anymore.
   1851     };
   1852     double numbers[] = {45.678, 1, 2, 10, 11, 100, 110, 200, 1000, 1111, -1111};
   1853 
   1854     int32_t count = 0;
   1855     const Locale* locales = Locale::getAvailableLocales(count);
   1856     for (int i = 0; i < count; ++i) {
   1857         const Locale* loc = &locales[i];
   1858 
   1859         for (int j = 0; j < 2; ++j) {
   1860             UErrorCode status = U_ZERO_ERROR;
   1861             RuleBasedNumberFormat* f = new RuleBasedNumberFormat((URBNFRuleSetTag)j, *loc, status);
   1862 
   1863             if (status == U_USING_DEFAULT_WARNING || status == U_USING_FALLBACK_WARNING) {
   1864                 // Skip it.
   1865                 delete f;
   1866                 break;
   1867             }
   1868             if (U_FAILURE(status)) {
   1869                 errln(UnicodeString(loc->getName()) + names[j]
   1870                     + "ERROR could not instantiate -> " + u_errorName(status));
   1871                 continue;
   1872             }
   1873 #if !UCONFIG_NO_COLLATION
   1874             for (unsigned int numidx = 0; numidx < sizeof(numbers)/sizeof(double); numidx++) {
   1875                 double n = numbers[numidx];
   1876                 UnicodeString str;
   1877                 f->format(n, str);
   1878 
   1879                 if (verbose) {
   1880                     logln(UnicodeString(loc->getName()) + names[j]
   1881                         + "success: " + n + " -> " + str);
   1882                 }
   1883 
   1884                 // We do not validate the result in this test case,
   1885                 // because there are cases which do not round trip by design.
   1886                 Formattable num;
   1887 
   1888                 // regular parse
   1889                 status = U_ZERO_ERROR;
   1890                 f->setLenient(FALSE);
   1891                 f->parse(str, num, status);
   1892                 if (U_FAILURE(status)) {
   1893                     errln(UnicodeString(loc->getName()) + names[j]
   1894                         + "ERROR could not parse '" + str + "' -> " + u_errorName(status));
   1895                 }
   1896                 // We only check the spellout. The behavior is undefined for numbers < 1 and fractional numbers.
   1897                 if (j == 0) {
   1898                     if (num.getType() == Formattable::kLong && num.getLong() != n) {
   1899                         errln(UnicodeString(loc->getName()) + names[j]
   1900                             + UnicodeString("ERROR could not roundtrip ") + n
   1901                             + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getLong());
   1902                     }
   1903                     else if (num.getType() == Formattable::kDouble && (int64_t)(num.getDouble() * 1000) != (int64_t)(n*1000)) {
   1904                         // The epsilon difference is too high.
   1905                         errln(UnicodeString(loc->getName()) + names[j]
   1906                             + UnicodeString("ERROR could not roundtrip ") + n
   1907                             + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getDouble());
   1908                     }
   1909                 }
   1910                 if (!quick && !logKnownIssue("9503") ) {
   1911                     // lenient parse
   1912                     status = U_ZERO_ERROR;
   1913                     f->setLenient(TRUE);
   1914                     f->parse(str, num, status);
   1915                     if (U_FAILURE(status)) {
   1916                         errln(UnicodeString(loc->getName()) + names[j]
   1917                             + "ERROR could not parse(lenient) '" + str + "' -> " + u_errorName(status));
   1918                     }
   1919                     // We only check the spellout. The behavior is undefined for numbers < 1 and fractional numbers.
   1920                     if (j == 0) {
   1921                         if (num.getType() == Formattable::kLong && num.getLong() != n) {
   1922                             errln(UnicodeString(loc->getName()) + names[j]
   1923                                 + UnicodeString("ERROR could not roundtrip ") + n
   1924                                 + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getLong());
   1925                         }
   1926                         else if (num.getType() == Formattable::kDouble && (int64_t)(num.getDouble() * 1000) != (int64_t)(n*1000)) {
   1927                             // The epsilon difference is too high.
   1928                             errln(UnicodeString(loc->getName()) + names[j]
   1929                                 + UnicodeString("ERROR could not roundtrip ") + n
   1930                                 + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getDouble());
   1931                         }
   1932                     }
   1933                 }
   1934             }
   1935 #endif
   1936             delete f;
   1937         }
   1938     }
   1939 }
   1940 
   1941 void
   1942 IntlTestRBNF::TestMultiplierSubstitution(void) {
   1943     UnicodeString rules("=#,##0=;1,000,000: <##0.###< million;");
   1944     UErrorCode status = U_ZERO_ERROR;
   1945     UParseError parse_error;
   1946     RuleBasedNumberFormat *rbnf =
   1947         new RuleBasedNumberFormat(rules, Locale::getUS(), parse_error, status);
   1948     if (U_SUCCESS(status)) {
   1949         UnicodeString res;
   1950         FieldPosition pos;
   1951         double n = 1234000.0;
   1952         rbnf->format(n, res, pos);
   1953         delete rbnf;
   1954 
   1955         UnicodeString expected(UNICODE_STRING_SIMPLE("1.234 million"));
   1956         if (expected != res) {
   1957             UnicodeString msg = "Expected: ";
   1958             msg.append(expected);
   1959             msg.append(" but got ");
   1960             msg.append(res);
   1961             errln(msg);
   1962         }
   1963     }
   1964 }
   1965 
   1966 void
   1967 IntlTestRBNF::TestSetDecimalFormatSymbols() {
   1968     UErrorCode status = U_ZERO_ERROR;
   1969 
   1970     RuleBasedNumberFormat rbnf(URBNF_ORDINAL, Locale::getEnglish(), status);
   1971     if (U_FAILURE(status)) {
   1972         dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status)));
   1973         return;
   1974     }
   1975 
   1976     DecimalFormatSymbols dfs(Locale::getEnglish(), status);
   1977     if (U_FAILURE(status)) {
   1978         errln("Unable to create DecimalFormatSymbols - " + UnicodeString(u_errorName(status)));
   1979         return;
   1980     }
   1981 
   1982     UnicodeString expected[] = {
   1983             UnicodeString("1,001st"),
   1984             UnicodeString("1&001st")
   1985     };
   1986 
   1987     double number = 1001;
   1988 
   1989     UnicodeString result;
   1990 
   1991     rbnf.format(number, result);
   1992     if (result != expected[0]) {
   1993         errln("Format Error - Got: " + result + " Expected: " + expected[0]);
   1994     }
   1995 
   1996     result.remove();
   1997 
   1998     /* Set new symbol for testing */
   1999     dfs.setSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol, UnicodeString("&"), TRUE);
   2000     rbnf.setDecimalFormatSymbols(dfs);
   2001 
   2002     rbnf.format(number, result);
   2003     if (result != expected[1]) {
   2004         errln("Format Error - Got: " + result + " Expected: " + expected[1]);
   2005     }
   2006 }
   2007 
   2008 void IntlTestRBNF::TestPluralRules() {
   2009     UErrorCode status = U_ZERO_ERROR;
   2010     UnicodeString enRules("%digits-ordinal:-x: ->>;0: =#,##0=$(ordinal,one{st}two{nd}few{rd}other{th})$;");
   2011     UParseError parseError;
   2012     RuleBasedNumberFormat enFormatter(enRules, Locale::getEnglish(), parseError, status);
   2013     if (U_FAILURE(status)) {
   2014         dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status)));
   2015         return;
   2016     }
   2017     const char* const enTestData[][2] = {
   2018             { "1", "1st" },
   2019             { "2", "2nd" },
   2020             { "3", "3rd" },
   2021             { "4", "4th" },
   2022             { "11", "11th" },
   2023             { "12", "12th" },
   2024             { "13", "13th" },
   2025             { "14", "14th" },
   2026             { "21", "21st" },
   2027             { "22", "22nd" },
   2028             { "23", "23rd" },
   2029             { "24", "24th" },
   2030             { NULL, NULL }
   2031     };
   2032 
   2033     doTest(&enFormatter, enTestData, TRUE);
   2034 
   2035     // This is trying to model the feminine form, but don't worry about the details too much.
   2036     // We're trying to test the plural rules.
   2037     UnicodeString ruRules("%spellout-numbering:"
   2038             "-x: minus >>;"
   2039             "x.x: << point >>;"
   2040             "0: zero;"
   2041             "1: one;"
   2042             "2: two;"
   2043             "3: three;"
   2044             "4: four;"
   2045             "5: five;"
   2046             "6: six;"
   2047             "7: seven;"
   2048             "8: eight;"
   2049             "9: nine;"
   2050             "10: ten;"
   2051             "11: eleven;"
   2052             "12: twelve;"
   2053             "13: thirteen;"
   2054             "14: fourteen;"
   2055             "15: fifteen;"
   2056             "16: sixteen;"
   2057             "17: seventeen;"
   2058             "18: eighteen;"
   2059             "19: nineteen;"
   2060             "20: twenty[->>];"
   2061             "30: thirty[->>];"
   2062             "40: forty[->>];"
   2063             "50: fifty[->>];"
   2064             "60: sixty[->>];"
   2065             "70: seventy[->>];"
   2066             "80: eighty[->>];"
   2067             "90: ninety[->>];"
   2068             "100: hundred[ >>];"
   2069             "200: << hundred[ >>];"
   2070             "300: << hundreds[ >>];"
   2071             "500: << hundredss[ >>];"
   2072             "1000: << $(cardinal,one{thousand}few{thousands}other{thousandss})$[ >>];"
   2073             "1000000: << $(cardinal,one{million}few{millions}other{millionss})$[ >>];");
   2074     RuleBasedNumberFormat ruFormatter(ruRules, Locale("ru"), parseError, status);
   2075     const char* const ruTestData[][2] = {
   2076             { "1", "one" },
   2077             { "100", "hundred" },
   2078             { "125", "hundred twenty-five" },
   2079             { "399", "three hundreds ninety-nine" },
   2080             { "1,000", "one thousand" },
   2081             { "1,001", "one thousand one" },
   2082             { "2,000", "two thousands" },
   2083             { "2,001", "two thousands one" },
   2084             { "2,002", "two thousands two" },
   2085             { "3,333", "three thousands three hundreds thirty-three" },
   2086             { "5,000", "five thousandss" },
   2087             { "11,000", "eleven thousandss" },
   2088             { "21,000", "twenty-one thousand" },
   2089             { "22,000", "twenty-two thousands" },
   2090             { "25,001", "twenty-five thousandss one" },
   2091             { NULL, NULL }
   2092     };
   2093 
   2094     if (U_FAILURE(status)) {
   2095         errln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status)));
   2096         return;
   2097     }
   2098     doTest(&ruFormatter, ruTestData, TRUE);
   2099 
   2100     // Make sure there are no divide by 0 errors.
   2101     UnicodeString result;
   2102     RuleBasedNumberFormat(ruRules, Locale("ru"), parseError, status).format(21000, result);
   2103     if (result.compare(UNICODE_STRING_SIMPLE("twenty-one thousand")) != 0) {
   2104         errln("Got " + result + " for 21000");
   2105     }
   2106 
   2107 }
   2108 
   2109 void
   2110 IntlTestRBNF::doTest(RuleBasedNumberFormat* formatter, const char* const testData[][2], UBool testParsing)
   2111 {
   2112   // man, error reporting would be easier with printf-style syntax for unicode string and formattable
   2113 
   2114     UErrorCode status = U_ZERO_ERROR;
   2115     DecimalFormatSymbols dfs("en", status);
   2116     // NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status);
   2117     DecimalFormat decFmt("#,###.################", dfs, status);
   2118     if (U_FAILURE(status)) {
   2119         errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorName(status));
   2120     } else {
   2121         for (int i = 0; testData[i][0]; ++i) {
   2122             const char* numString = testData[i][0];
   2123             const char* expectedWords = testData[i][1];
   2124 
   2125             log("[%i] %s = ", i, numString);
   2126             Formattable expectedNumber;
   2127             decFmt.parse(numString, expectedNumber, status);
   2128             if (U_FAILURE(status)) {
   2129                 errln("FAIL: decFmt could not parse %s", numString);
   2130                 break;
   2131             } else {
   2132                 UnicodeString actualString;
   2133                 FieldPosition pos;
   2134                 formatter->format(expectedNumber, actualString/* , pos*/, status);
   2135                 if (U_FAILURE(status)) {
   2136                     UnicodeString msg = "Fail: formatter could not format ";
   2137                     decFmt.format(expectedNumber, msg, status);
   2138                     errln(msg);
   2139                     break;
   2140                 } else {
   2141                     UnicodeString expectedString = UnicodeString(expectedWords, -1, US_INV).unescape();
   2142                     if (actualString != expectedString) {
   2143                         UnicodeString msg = "FAIL: check failed for ";
   2144                         decFmt.format(expectedNumber, msg, status);
   2145                         msg.append(", expected ");
   2146                         msg.append(expectedString);
   2147                         msg.append(" but got ");
   2148                         msg.append(actualString);
   2149                         errln(msg);
   2150                         break;
   2151                     } else {
   2152                         logln(actualString);
   2153                         if (testParsing) {
   2154                             Formattable parsedNumber;
   2155                             formatter->parse(actualString, parsedNumber, status);
   2156                             if (U_FAILURE(status)) {
   2157                                 UnicodeString msg = "FAIL: formatter could not parse ";
   2158                                 msg.append(actualString);
   2159                                 msg.append(" status code: " );
   2160                                 msg.append(u_errorName(status));
   2161                                 errln(msg);
   2162                                 break;
   2163                             } else {
   2164                                 if (parsedNumber != expectedNumber) {
   2165                                     UnicodeString msg = "FAIL: parse failed for ";
   2166                                     msg.append(actualString);
   2167                                     msg.append(", expected ");
   2168                                     decFmt.format(expectedNumber, msg, status);
   2169                                     msg.append(", but got ");
   2170                                     decFmt.format(parsedNumber, msg, status);
   2171                                     errln(msg);
   2172                                     break;
   2173                                 }
   2174                             }
   2175                         }
   2176                     }
   2177                 }
   2178             }
   2179         }
   2180     }
   2181 }
   2182 
   2183 void
   2184 IntlTestRBNF::doLenientParseTest(RuleBasedNumberFormat* formatter, const char* testData[][2])
   2185 {
   2186     UErrorCode status = U_ZERO_ERROR;
   2187     NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status);
   2188     if (U_FAILURE(status)) {
   2189         errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorName(status));
   2190     } else {
   2191         for (int i = 0; testData[i][0]; ++i) {
   2192             const char* spelledNumber = testData[i][0]; // spelled-out number
   2193             const char* asciiUSNumber = testData[i][1]; // number as ascii digits formatted for US locale
   2194 
   2195             UnicodeString spelledNumberString = UnicodeString(spelledNumber).unescape();
   2196             Formattable actualNumber;
   2197             formatter->parse(spelledNumberString, actualNumber, status);
   2198             if (U_FAILURE(status)) {
   2199                 UnicodeString msg = "FAIL: formatter could not parse ";
   2200                 msg.append(spelledNumberString);
   2201                 errln(msg);
   2202                 break;
   2203             } else {
   2204                 // I changed the logic of this test somewhat from Java-- instead of comparing the
   2205                 // strings, I compare the Formattables.  Hmmm, but the Formattables don't compare,
   2206                 // so change it back.
   2207 
   2208                 UnicodeString asciiUSNumberString = asciiUSNumber;
   2209                 Formattable expectedNumber;
   2210                 decFmt->parse(asciiUSNumberString, expectedNumber, status);
   2211                 if (U_FAILURE(status)) {
   2212                     UnicodeString msg = "FAIL: decFmt could not parse ";
   2213                     msg.append(asciiUSNumberString);
   2214                     errln(msg);
   2215                     break;
   2216                 } else {
   2217                     UnicodeString actualNumberString;
   2218                     UnicodeString expectedNumberString;
   2219                     decFmt->format(actualNumber, actualNumberString, status);
   2220                     decFmt->format(expectedNumber, expectedNumberString, status);
   2221                     if (actualNumberString != expectedNumberString) {
   2222                         UnicodeString msg = "FAIL: parsing";
   2223                         msg.append(asciiUSNumberString);
   2224                         msg.append("\n");
   2225                         msg.append("  lenient parse failed for ");
   2226                         msg.append(spelledNumberString);
   2227                         msg.append(", expected ");
   2228                         msg.append(expectedNumberString);
   2229                         msg.append(", but got ");
   2230                         msg.append(actualNumberString);
   2231                         errln(msg);
   2232                         break;
   2233                     }
   2234                 }
   2235             }
   2236         }
   2237         delete decFmt;
   2238     }
   2239 }
   2240 
   2241 /* U_HAVE_RBNF */
   2242 #else
   2243 
   2244 void
   2245 IntlTestRBNF::TestRBNFDisabled() {
   2246     errln("*** RBNF currently disabled on this platform ***\n");
   2247 }
   2248 
   2249 /* U_HAVE_RBNF */
   2250 #endif
   2251 
   2252 #endif /* #if !UCONFIG_NO_FORMATTING */
   2253