1 /* 2 ******************************************************************************* 3 * Copyright (C) 1996-2015, International Business Machines Corporation and * 4 * others. All Rights Reserved. * 5 ******************************************************************************* 6 */ 7 8 #include "unicode/utypes.h" 9 10 #if !UCONFIG_NO_FORMATTING 11 12 #include "itrbnf.h" 13 14 #include "unicode/umachine.h" 15 16 #include "unicode/tblcoll.h" 17 #include "unicode/coleitr.h" 18 #include "unicode/ures.h" 19 #include "unicode/ustring.h" 20 #include "unicode/decimfmt.h" 21 #include "unicode/udata.h" 22 #include "testutil.h" 23 24 #include <string.h> 25 26 // import com.ibm.text.RuleBasedNumberFormat; 27 // import com.ibm.test.TestFmwk; 28 29 // import java.util.Locale; 30 // import java.text.NumberFormat; 31 32 // current macro not in icu1.8.1 33 #define TESTCASE(id,test) \ 34 case id: \ 35 name = #test; \ 36 if (exec) { \ 37 logln(#test "---"); \ 38 logln(); \ 39 test(); \ 40 } \ 41 break 42 43 void IntlTestRBNF::runIndexedTest(int32_t index, UBool exec, const char* &name, char* /*par*/) 44 { 45 if (exec) logln("TestSuite RuleBasedNumberFormat"); 46 switch (index) { 47 #if U_HAVE_RBNF 48 TESTCASE(0, TestEnglishSpellout); 49 TESTCASE(1, TestOrdinalAbbreviations); 50 TESTCASE(2, TestDurations); 51 TESTCASE(3, TestSpanishSpellout); 52 TESTCASE(4, TestFrenchSpellout); 53 TESTCASE(5, TestSwissFrenchSpellout); 54 TESTCASE(6, TestItalianSpellout); 55 TESTCASE(7, TestGermanSpellout); 56 TESTCASE(8, TestThaiSpellout); 57 TESTCASE(9, TestAPI); 58 TESTCASE(10, TestFractionalRuleSet); 59 TESTCASE(11, TestSwedishSpellout); 60 TESTCASE(12, TestBelgianFrenchSpellout); 61 TESTCASE(13, TestSmallValues); 62 TESTCASE(14, TestLocalizations); 63 TESTCASE(15, TestAllLocales); 64 TESTCASE(16, TestHebrewFraction); 65 TESTCASE(17, TestPortugueseSpellout); 66 TESTCASE(18, TestMultiplierSubstitution); 67 TESTCASE(19, TestSetDecimalFormatSymbols); 68 TESTCASE(20, TestPluralRules); 69 TESTCASE(21, TestMultiplePluralRules); 70 #else 71 TESTCASE(0, TestRBNFDisabled); 72 #endif 73 default: 74 name = ""; 75 break; 76 } 77 } 78 79 #if U_HAVE_RBNF 80 81 void IntlTestRBNF::TestHebrewFraction() { 82 83 // this is the expected output for 123.45, with no '<' in it. 84 UChar text1[] = { 85 0x05de, 0x05d0, 0x05d4, 0x0020, 86 0x05e2, 0x05e9, 0x05e8, 0x05d9, 0x05dd, 0x0020, 87 0x05d5, 0x05e9, 0x05dc, 0x05d5, 0x05e9, 0x0020, 88 0x05e0, 0x05e7, 0x05d5, 0x05d3, 0x05d4, 0x0020, 89 0x05d0, 0x05e8, 0x05d1, 0x05e2, 0x0020, 90 0x05d7, 0x05de, 0x05e9, 0x0000, 91 }; 92 UChar text2[] = { 93 0x05DE, 0x05D0, 0x05D4, 0x0020, 94 0x05E2, 0x05E9, 0x05E8, 0x05D9, 0x05DD, 0x0020, 95 0x05D5, 0x05E9, 0x05DC, 0x05D5, 0x05E9, 0x0020, 96 0x05E0, 0x05E7, 0x05D5, 0x05D3, 0x05D4, 0x0020, 97 0x05D0, 0x05E4, 0x05E1, 0x0020, 98 0x05D0, 0x05E4, 0x05E1, 0x0020, 99 0x05D0, 0x05E8, 0x05D1, 0x05E2, 0x0020, 100 0x05D7, 0x05DE, 0x05E9, 0x0000, 101 }; 102 UErrorCode status = U_ZERO_ERROR; 103 RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, "he_IL", status); 104 if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) { 105 errcheckln(status, "Failed in constructing RuleBasedNumberFormat - %s", u_errorName(status)); 106 delete formatter; 107 return; 108 } 109 UnicodeString result; 110 Formattable parseResult; 111 ParsePosition pp(0); 112 { 113 UnicodeString expected(text1); 114 formatter->format(123.45, result); 115 if (result != expected) { 116 errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\nbut got: '" + TestUtility::hex(result) + "'"); 117 } else { 118 // formatter->parse(result, parseResult, pp); 119 // if (parseResult.getDouble() != 123.45) { 120 // errln("expected 123.45 but got: %g", parseResult.getDouble()); 121 // } 122 } 123 } 124 { 125 UnicodeString expected(text2); 126 result.remove(); 127 formatter->format(123.0045, result); 128 if (result != expected) { 129 errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\nbut got: '" + TestUtility::hex(result) + "'"); 130 } else { 131 pp.setIndex(0); 132 // formatter->parse(result, parseResult, pp); 133 // if (parseResult.getDouble() != 123.0045) { 134 // errln("expected 123.0045 but got: %g", parseResult.getDouble()); 135 // } 136 } 137 } 138 delete formatter; 139 } 140 141 void 142 IntlTestRBNF::TestAPI() { 143 // This test goes through the APIs that were not tested before. 144 // These tests are too small to have separate test classes/functions 145 146 UErrorCode status = U_ZERO_ERROR; 147 RuleBasedNumberFormat* formatter 148 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status); 149 if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) { 150 dataerrln("Unable to create formatter. - %s", u_errorName(status)); 151 delete formatter; 152 return; 153 } 154 155 logln("RBNF API test starting"); 156 // test clone 157 { 158 logln("Testing Clone"); 159 RuleBasedNumberFormat* rbnfClone = (RuleBasedNumberFormat *)formatter->clone(); 160 if(rbnfClone != NULL) { 161 if(!(*rbnfClone == *formatter)) { 162 errln("Clone should be semantically equivalent to the original!"); 163 } 164 delete rbnfClone; 165 } else { 166 errln("Cloning failed!"); 167 } 168 } 169 170 // test assignment 171 { 172 logln("Testing assignment operator"); 173 RuleBasedNumberFormat assignResult(URBNF_SPELLOUT, Locale("es", "ES", ""), status); 174 assignResult = *formatter; 175 if(!(assignResult == *formatter)) { 176 errln("Assignment result should be semantically equivalent to the original!"); 177 } 178 } 179 180 // test rule constructor 181 { 182 logln("Testing rule constructor"); 183 LocalUResourceBundlePointer en(ures_open(U_ICUDATA_NAME U_TREE_SEPARATOR_STRING "rbnf", "en", &status)); 184 if(U_FAILURE(status)) { 185 errln("Unable to access resource bundle with data!"); 186 } else { 187 int32_t ruleLen = 0; 188 int32_t len = 0; 189 LocalUResourceBundlePointer rbnfRules(ures_getByKey(en.getAlias(), "RBNFRules", NULL, &status)); 190 LocalUResourceBundlePointer ruleSets(ures_getByKey(rbnfRules.getAlias(), "SpelloutRules", NULL, &status)); 191 UnicodeString desc; 192 while (ures_hasNext(ruleSets.getAlias())) { 193 const UChar* currentString = ures_getNextString(ruleSets.getAlias(), &len, NULL, &status); 194 ruleLen += len; 195 desc.append(currentString); 196 } 197 198 const UChar *spelloutRules = desc.getTerminatedBuffer(); 199 200 if(U_FAILURE(status) || ruleLen == 0 || spelloutRules == NULL) { 201 errln("Unable to access the rules string!"); 202 } else { 203 UParseError perror; 204 RuleBasedNumberFormat ruleCtorResult(spelloutRules, Locale::getUS(), perror, status); 205 if(!(ruleCtorResult == *formatter)) { 206 errln("Formatter constructed from the original rules should be semantically equivalent to the original!"); 207 } 208 209 // Jitterbug 4452, for coverage 210 RuleBasedNumberFormat nf(spelloutRules, (UnicodeString)"", Locale::getUS(), perror, status); 211 if(!(nf == *formatter)) { 212 errln("Formatter constructed from the original rules should be semantically equivalent to the original!"); 213 } 214 } 215 } 216 } 217 218 // test getRules 219 { 220 logln("Testing getRules function"); 221 UnicodeString rules = formatter->getRules(); 222 UParseError perror; 223 RuleBasedNumberFormat fromRulesResult(rules, Locale::getUS(), perror, status); 224 225 if(!(fromRulesResult == *formatter)) { 226 errln("Formatter constructed from rules obtained by getRules should be semantically equivalent to the original!"); 227 } 228 } 229 230 231 { 232 logln("Testing copy constructor"); 233 RuleBasedNumberFormat copyCtorResult(*formatter); 234 if(!(copyCtorResult == *formatter)) { 235 errln("Copy constructor result result should be semantically equivalent to the original!"); 236 } 237 } 238 239 #if !UCONFIG_NO_COLLATION 240 // test ruleset names 241 { 242 logln("Testing getNumberOfRuleSetNames, getRuleSetName and format using rule set names"); 243 int32_t noOfRuleSetNames = formatter->getNumberOfRuleSetNames(); 244 if(noOfRuleSetNames == 0) { 245 errln("Number of rule set names should be more than zero"); 246 } 247 UnicodeString ruleSetName; 248 int32_t i = 0; 249 int32_t intFormatNum = 34567; 250 double doubleFormatNum = 893411.234; 251 logln("number of rule set names is %i", noOfRuleSetNames); 252 for(i = 0; i < noOfRuleSetNames; i++) { 253 FieldPosition pos1, pos2; 254 UnicodeString intFormatResult, doubleFormatResult; 255 Formattable intParseResult, doubleParseResult; 256 257 ruleSetName = formatter->getRuleSetName(i); 258 log("Rule set name %i is ", i); 259 log(ruleSetName); 260 logln(". Format results are: "); 261 intFormatResult = formatter->format(intFormatNum, ruleSetName, intFormatResult, pos1, status); 262 doubleFormatResult = formatter->format(doubleFormatNum, ruleSetName, doubleFormatResult, pos2, status); 263 if(U_FAILURE(status)) { 264 errln("Format using a rule set failed"); 265 break; 266 } 267 logln(intFormatResult); 268 logln(doubleFormatResult); 269 formatter->setLenient(TRUE); 270 formatter->parse(intFormatResult, intParseResult, status); 271 formatter->parse(doubleFormatResult, doubleParseResult, status); 272 273 logln("Parse results for lenient = TRUE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble()); 274 275 formatter->setLenient(FALSE); 276 formatter->parse(intFormatResult, intParseResult, status); 277 formatter->parse(doubleFormatResult, doubleParseResult, status); 278 279 logln("Parse results for lenient = FALSE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble()); 280 281 if(U_FAILURE(status)) { 282 errln("Error during parsing"); 283 } 284 285 intFormatResult = formatter->format(intFormatNum, "BLABLA", intFormatResult, pos1, status); 286 if(U_SUCCESS(status)) { 287 errln("Using invalid rule set name should have failed"); 288 break; 289 } 290 status = U_ZERO_ERROR; 291 doubleFormatResult = formatter->format(doubleFormatNum, "TRUC", doubleFormatResult, pos2, status); 292 if(U_SUCCESS(status)) { 293 errln("Using invalid rule set name should have failed"); 294 break; 295 } 296 status = U_ZERO_ERROR; 297 } 298 status = U_ZERO_ERROR; 299 } 300 #endif 301 302 // test API 303 UnicodeString expected("four point five",""); 304 logln("Testing format(double)"); 305 UnicodeString result; 306 formatter->format(4.5,result); 307 if(result != expected) { 308 errln("Formatted 4.5, expected " + expected + " got " + result); 309 } else { 310 logln("Formatted 4.5, expected " + expected + " got " + result); 311 } 312 result.remove(); 313 expected = "four"; 314 formatter->format((int32_t)4,result); 315 if(result != expected) { 316 errln("Formatted 4, expected " + expected + " got " + result); 317 } else { 318 logln("Formatted 4, expected " + expected + " got " + result); 319 } 320 321 result.remove(); 322 FieldPosition pos; 323 formatter->format((int64_t)4, result, pos, status = U_ZERO_ERROR); 324 if(result != expected) { 325 errln("Formatted 4 int64_t, expected " + expected + " got " + result); 326 } else { 327 logln("Formatted 4 int64_t, expected " + expected + " got " + result); 328 } 329 330 //Jitterbug 4452, for coverage 331 result.remove(); 332 FieldPosition pos2; 333 formatter->format((int64_t)4, formatter->getRuleSetName(0), result, pos2, status = U_ZERO_ERROR); 334 if(result != expected) { 335 errln("Formatted 4 int64_t, expected " + expected + " got " + result); 336 } else { 337 logln("Formatted 4 int64_t, expected " + expected + " got " + result); 338 } 339 340 // clean up 341 logln("Cleaning up"); 342 delete formatter; 343 } 344 345 /** 346 * Perform a simple spot check on the parsing going into an infinite loop for alternate rules. 347 */ 348 void IntlTestRBNF::TestMultiplePluralRules() { 349 // This is trying to model the feminine form, but don't worry about the details too much. 350 // We're trying to test the plural rules where there are different prefixes. 351 UnicodeString rules("%spellout-cardinal-feminine-genitive:" 352 "0: zero;" 353 "1: ono;" 354 "1000: << $(cardinal,one{thousand}few{thousanF}other{thousanO})$[ >>];" 355 "%spellout-cardinal-feminine:" 356 "0: zero;" 357 "1: one;" 358 "1000: << $(cardinal,one{thousand}few{thousanF}other{thousanO})$[ >>];"); 359 UErrorCode status = U_ZERO_ERROR; 360 UParseError pError; 361 RuleBasedNumberFormat formatter(rules, Locale("ru"), pError, status); 362 Formattable result; 363 UnicodeString resultStr; 364 FieldPosition pos; 365 366 if (U_FAILURE(status)) { 367 dataerrln("Unable to create formatter - %s", u_errorName(status)); 368 return; 369 } 370 371 formatter.parse(formatter.format(1000.0, resultStr, pos, status), result, status); 372 if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("one thousand")) { 373 errln("RuleBasedNumberFormat did not return the correct value. Got: %d", result.getLong()); 374 errln(resultStr); 375 } 376 resultStr.remove(); 377 formatter.parse(formatter.format(1000.0, UnicodeString("%spellout-cardinal-feminine-genitive"), resultStr, pos, status), result, status); 378 if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("ono thousand")) { 379 errln("RuleBasedNumberFormat(cardinal-feminine-genitive) did not return the correct value. Got: %d", result.getLong()); 380 errln(resultStr); 381 } 382 resultStr.remove(); 383 formatter.parse(formatter.format(1000.0, UnicodeString("%spellout-cardinal-feminine"), resultStr, pos, status), result, status); 384 if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("one thousand")) { 385 errln("RuleBasedNumberFormat(spellout-cardinal-feminine) did not return the correct value. Got: %d", result.getLong()); 386 errln(resultStr); 387 } 388 } 389 390 void IntlTestRBNF::TestFractionalRuleSet() 391 { 392 UnicodeString fracRules( 393 "%main:\n" 394 // this rule formats the number if it's 1 or more. It formats 395 // the integral part using a DecimalFormat ("#,##0" puts 396 // thousands separators in the right places) and the fractional 397 // part using %%frac. If there is no fractional part, it 398 // just shows the integral part. 399 " x.0: <#,##0<[ >%%frac>];\n" 400 // this rule formats the number if it's between 0 and 1. It 401 // shows only the fractional part (0.5 shows up as "1/2," not 402 // "0 1/2") 403 " 0.x: >%%frac>;\n" 404 // the fraction rule set. This works the same way as the one in the 405 // preceding example: We multiply the fractional part of the number 406 // being formatted by each rule's base value and use the rule that 407 // produces the result closest to 0 (or the first rule that produces 0). 408 // Since we only provide rules for the numbers from 2 to 10, we know 409 // we'll get a fraction with a denominator between 2 and 10. 410 // "<0<" causes the numerator of the fraction to be formatted 411 // using numerals 412 "%%frac:\n" 413 " 2: 1/2;\n" 414 " 3: <0</3;\n" 415 " 4: <0</4;\n" 416 " 5: <0</5;\n" 417 " 6: <0</6;\n" 418 " 7: <0</7;\n" 419 " 8: <0</8;\n" 420 " 9: <0</9;\n" 421 " 10: <0</10;\n"); 422 423 // mondo hack 424 int len = fracRules.length(); 425 int change = 2; 426 for (int i = 0; i < len; ++i) { 427 UChar ch = fracRules.charAt(i); 428 if (ch == '\n') { 429 change = 2; // change ok 430 } else if (ch == ':') { 431 change = 1; // change, but once we hit a non-space char, don't change 432 } else if (ch == ' ') { 433 if (change != 0) { 434 fracRules.setCharAt(i, (UChar)0x200e); 435 } 436 } else { 437 if (change == 1) { 438 change = 0; 439 } 440 } 441 } 442 443 UErrorCode status = U_ZERO_ERROR; 444 UParseError perror; 445 RuleBasedNumberFormat formatter(fracRules, Locale::getEnglish(), perror, status); 446 if (U_FAILURE(status)) { 447 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 448 } else { 449 static const char* const testData[][2] = { 450 { "0", "0" }, 451 { ".1", "1/10" }, 452 { ".11", "1/9" }, 453 { ".125", "1/8" }, 454 { ".1428", "1/7" }, 455 { ".1667", "1/6" }, 456 { ".2", "1/5" }, 457 { ".25", "1/4" }, 458 { ".333", "1/3" }, 459 { ".5", "1/2" }, 460 { "1.1", "1 1/10" }, 461 { "2.11", "2 1/9" }, 462 { "3.125", "3 1/8" }, 463 { "4.1428", "4 1/7" }, 464 { "5.1667", "5 1/6" }, 465 { "6.2", "6 1/5" }, 466 { "7.25", "7 1/4" }, 467 { "8.333", "8 1/3" }, 468 { "9.5", "9 1/2" }, 469 { ".2222", "2/9" }, 470 { ".4444", "4/9" }, 471 { ".5555", "5/9" }, 472 { "1.2856", "1 2/7" }, 473 { NULL, NULL } 474 }; 475 doTest(&formatter, testData, FALSE); // exact values aren't parsable from fractions 476 } 477 } 478 479 #if 0 480 #define LLAssert(a) \ 481 if (!(a)) errln("FAIL: " #a) 482 483 void IntlTestRBNF::TestLLongConstructors() 484 { 485 logln("Testing constructors"); 486 487 // constant (shouldn't really be public) 488 LLAssert(llong(llong::kD32).asDouble() == llong::kD32); 489 490 // internal constructor (shouldn't really be public) 491 LLAssert(llong(0, 1).asDouble() == 1); 492 LLAssert(llong(1, 0).asDouble() == llong::kD32); 493 LLAssert(llong((uint32_t)-1, (uint32_t)-1).asDouble() == -1); 494 495 // public empty constructor 496 LLAssert(llong().asDouble() == 0); 497 498 // public int32_t constructor 499 LLAssert(llong((int32_t)0).asInt() == (int32_t)0); 500 LLAssert(llong((int32_t)1).asInt() == (int32_t)1); 501 LLAssert(llong((int32_t)-1).asInt() == (int32_t)-1); 502 LLAssert(llong((int32_t)0x7fffffff).asInt() == (int32_t)0x7fffffff); 503 LLAssert(llong((int32_t)0xffffffff).asInt() == (int32_t)-1); 504 LLAssert(llong((int32_t)0x80000000).asInt() == (int32_t)0x80000000); 505 506 // public int16_t constructor 507 LLAssert(llong((int16_t)0).asInt() == (int16_t)0); 508 LLAssert(llong((int16_t)1).asInt() == (int16_t)1); 509 LLAssert(llong((int16_t)-1).asInt() == (int16_t)-1); 510 LLAssert(llong((int16_t)0x7fff).asInt() == (int16_t)0x7fff); 511 LLAssert(llong((int16_t)0xffff).asInt() == (int16_t)0xffff); 512 LLAssert(llong((int16_t)0x8000).asInt() == (int16_t)0x8000); 513 514 // public int8_t constructor 515 LLAssert(llong((int8_t)0).asInt() == (int8_t)0); 516 LLAssert(llong((int8_t)1).asInt() == (int8_t)1); 517 LLAssert(llong((int8_t)-1).asInt() == (int8_t)-1); 518 LLAssert(llong((int8_t)0x7f).asInt() == (int8_t)0x7f); 519 LLAssert(llong((int8_t)0xff).asInt() == (int8_t)0xff); 520 LLAssert(llong((int8_t)0x80).asInt() == (int8_t)0x80); 521 522 // public uint16_t constructor 523 LLAssert(llong((uint16_t)0).asUInt() == (uint16_t)0); 524 LLAssert(llong((uint16_t)1).asUInt() == (uint16_t)1); 525 LLAssert(llong((uint16_t)-1).asUInt() == (uint16_t)-1); 526 LLAssert(llong((uint16_t)0x7fff).asUInt() == (uint16_t)0x7fff); 527 LLAssert(llong((uint16_t)0xffff).asUInt() == (uint16_t)0xffff); 528 LLAssert(llong((uint16_t)0x8000).asUInt() == (uint16_t)0x8000); 529 530 // public uint32_t constructor 531 LLAssert(llong((uint32_t)0).asUInt() == (uint32_t)0); 532 LLAssert(llong((uint32_t)1).asUInt() == (uint32_t)1); 533 LLAssert(llong((uint32_t)-1).asUInt() == (uint32_t)-1); 534 LLAssert(llong((uint32_t)0x7fffffff).asUInt() == (uint32_t)0x7fffffff); 535 LLAssert(llong((uint32_t)0xffffffff).asUInt() == (uint32_t)-1); 536 LLAssert(llong((uint32_t)0x80000000).asUInt() == (uint32_t)0x80000000); 537 538 // public double constructor 539 LLAssert(llong((double)0).asDouble() == (double)0); 540 LLAssert(llong((double)1).asDouble() == (double)1); 541 LLAssert(llong((double)0x7fffffff).asDouble() == (double)0x7fffffff); 542 LLAssert(llong((double)0x80000000).asDouble() == (double)0x80000000); 543 LLAssert(llong((double)0x80000001).asDouble() == (double)0x80000001); 544 545 // can't access uprv_maxmantissa, so fake it 546 double maxmantissa = (llong((int32_t)1) << 40).asDouble(); 547 LLAssert(llong(maxmantissa).asDouble() == maxmantissa); 548 LLAssert(llong(-maxmantissa).asDouble() == -maxmantissa); 549 550 // copy constructor 551 LLAssert(llong(llong(0, 1)).asDouble() == 1); 552 LLAssert(llong(llong(1, 0)).asDouble() == llong::kD32); 553 LLAssert(llong(llong(-1, (uint32_t)-1)).asDouble() == -1); 554 555 // asInt - test unsigned to signed narrowing conversion 556 LLAssert(llong((uint32_t)-1).asInt() == (int32_t)0x7fffffff); 557 LLAssert(llong(-1, 0).asInt() == (int32_t)0x80000000); 558 559 // asUInt - test signed to unsigned narrowing conversion 560 LLAssert(llong((int32_t)-1).asUInt() == (uint32_t)-1); 561 LLAssert(llong((int32_t)0x80000000).asUInt() == (uint32_t)0x80000000); 562 563 // asDouble already tested 564 565 } 566 567 void IntlTestRBNF::TestLLongSimpleOperators() 568 { 569 logln("Testing simple operators"); 570 571 // operator== 572 LLAssert(llong() == llong(0, 0)); 573 LLAssert(llong(1,0) == llong(1, 0)); 574 LLAssert(llong(0,1) == llong(0, 1)); 575 576 // operator!= 577 LLAssert(llong(1,0) != llong(1,1)); 578 LLAssert(llong(0,1) != llong(1,1)); 579 LLAssert(llong(0xffffffff,0xffffffff) != llong(0x7fffffff, 0xffffffff)); 580 581 // unsigned > 582 LLAssert(llong((int32_t)-1).ugt(llong(0x7fffffff, 0xffffffff))); 583 584 // unsigned < 585 LLAssert(llong(0x7fffffff, 0xffffffff).ult(llong((int32_t)-1))); 586 587 // unsigned >= 588 LLAssert(llong((int32_t)-1).uge(llong(0x7fffffff, 0xffffffff))); 589 LLAssert(llong((int32_t)-1).uge(llong((int32_t)-1))); 590 591 // unsigned <= 592 LLAssert(llong(0x7fffffff, 0xffffffff).ule(llong((int32_t)-1))); 593 LLAssert(llong((int32_t)-1).ule(llong((int32_t)-1))); 594 595 // operator> 596 LLAssert(llong(1, 1) > llong(1, 0)); 597 LLAssert(llong(0, 0x80000000) > llong(0, 0x7fffffff)); 598 LLAssert(llong(0x80000000, 1) > llong(0x80000000, 0)); 599 LLAssert(llong(1, 0) > llong(0, 0x7fffffff)); 600 LLAssert(llong(1, 0) > llong(0, 0xffffffff)); 601 LLAssert(llong(0, 0) > llong(0x80000000, 1)); 602 603 // operator< 604 LLAssert(llong(1, 0) < llong(1, 1)); 605 LLAssert(llong(0, 0x7fffffff) < llong(0, 0x80000000)); 606 LLAssert(llong(0x80000000, 0) < llong(0x80000000, 1)); 607 LLAssert(llong(0, 0x7fffffff) < llong(1, 0)); 608 LLAssert(llong(0, 0xffffffff) < llong(1, 0)); 609 LLAssert(llong(0x80000000, 1) < llong(0, 0)); 610 611 // operator>= 612 LLAssert(llong(1, 1) >= llong(1, 0)); 613 LLAssert(llong(0, 0x80000000) >= llong(0, 0x7fffffff)); 614 LLAssert(llong(0x80000000, 1) >= llong(0x80000000, 0)); 615 LLAssert(llong(1, 0) >= llong(0, 0x7fffffff)); 616 LLAssert(llong(1, 0) >= llong(0, 0xffffffff)); 617 LLAssert(llong(0, 0) >= llong(0x80000000, 1)); 618 LLAssert(llong() >= llong(0, 0)); 619 LLAssert(llong(1,0) >= llong(1, 0)); 620 LLAssert(llong(0,1) >= llong(0, 1)); 621 622 // operator<= 623 LLAssert(llong(1, 0) <= llong(1, 1)); 624 LLAssert(llong(0, 0x7fffffff) <= llong(0, 0x80000000)); 625 LLAssert(llong(0x80000000, 0) <= llong(0x80000000, 1)); 626 LLAssert(llong(0, 0x7fffffff) <= llong(1, 0)); 627 LLAssert(llong(0, 0xffffffff) <= llong(1, 0)); 628 LLAssert(llong(0x80000000, 1) <= llong(0, 0)); 629 LLAssert(llong() <= llong(0, 0)); 630 LLAssert(llong(1,0) <= llong(1, 0)); 631 LLAssert(llong(0,1) <= llong(0, 1)); 632 633 // operator==(int32) 634 LLAssert(llong() == (int32_t)0); 635 LLAssert(llong(0,1) == (int32_t)1); 636 637 // operator!=(int32) 638 LLAssert(llong(1,0) != (int32_t)0); 639 LLAssert(llong(0,1) != (int32_t)2); 640 LLAssert(llong(0,0xffffffff) != (int32_t)-1); 641 642 llong negOne(0xffffffff, 0xffffffff); 643 644 // operator>(int32) 645 LLAssert(llong(0, 0x80000000) > (int32_t)0x7fffffff); 646 LLAssert(negOne > (int32_t)-2); 647 LLAssert(llong(1, 0) > (int32_t)0x7fffffff); 648 LLAssert(llong(0, 0) > (int32_t)-1); 649 650 // operator<(int32) 651 LLAssert(llong(0, 0x7ffffffe) < (int32_t)0x7fffffff); 652 LLAssert(llong(0xffffffff, 0xfffffffe) < (int32_t)-1); 653 654 // operator>=(int32) 655 LLAssert(llong(0, 0x80000000) >= (int32_t)0x7fffffff); 656 LLAssert(negOne >= (int32_t)-2); 657 LLAssert(llong(1, 0) >= (int32_t)0x7fffffff); 658 LLAssert(llong(0, 0) >= (int32_t)-1); 659 LLAssert(llong() >= (int32_t)0); 660 LLAssert(llong(0,1) >= (int32_t)1); 661 662 // operator<=(int32) 663 LLAssert(llong(0, 0x7ffffffe) <= (int32_t)0x7fffffff); 664 LLAssert(llong(0xffffffff, 0xfffffffe) <= (int32_t)-1); 665 LLAssert(llong() <= (int32_t)0); 666 LLAssert(llong(0,1) <= (int32_t)1); 667 668 // operator= 669 LLAssert((llong(2,3) = llong((uint32_t)-1)).asUInt() == (uint32_t)-1); 670 671 // operator <<= 672 LLAssert((llong(1, 1) <<= 0) == llong(1, 1)); 673 LLAssert((llong(1, 1) <<= 31) == llong(0x80000000, 0x80000000)); 674 LLAssert((llong(1, 1) <<= 32) == llong(1, 0)); 675 LLAssert((llong(1, 1) <<= 63) == llong(0x80000000, 0)); 676 LLAssert((llong(1, 1) <<= 64) == llong(1, 1)); // only lower 6 bits are used 677 LLAssert((llong(1, 1) <<= -1) == llong(0x80000000, 0)); // only lower 6 bits are used 678 679 // operator << 680 LLAssert((llong((int32_t)1) << 5).asUInt() == 32); 681 682 // operator >>= (sign extended) 683 LLAssert((llong(0x7fffa0a0, 0xbcbcdfdf) >>= 16) == llong(0x7fff,0xa0a0bcbc)); 684 LLAssert((llong(0x8000789a, 0xbcde0000) >>= 16) == llong(0xffff8000,0x789abcde)); 685 LLAssert((llong(0x80000000, 0) >>= 63) == llong(0xffffffff, 0xffffffff)); 686 LLAssert((llong(0x80000000, 0) >>= 47) == llong(0xffffffff, 0xffff0000)); 687 LLAssert((llong(0x80000000, 0x80000000) >> 64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used 688 LLAssert((llong(0x80000000, 0) >>= -1) == llong(0xffffffff, 0xffffffff)); // only lower 6 bits are used 689 690 // operator >> sign extended) 691 LLAssert((llong(0x8000789a, 0xbcde0000) >> 16) == llong(0xffff8000,0x789abcde)); 692 693 // ushr (right shift without sign extension) 694 LLAssert(llong(0x7fffa0a0, 0xbcbcdfdf).ushr(16) == llong(0x7fff,0xa0a0bcbc)); 695 LLAssert(llong(0x8000789a, 0xbcde0000).ushr(16) == llong(0x00008000,0x789abcde)); 696 LLAssert(llong(0x80000000, 0).ushr(63) == llong(0, 1)); 697 LLAssert(llong(0x80000000, 0).ushr(47) == llong(0, 0x10000)); 698 LLAssert(llong(0x80000000, 0x80000000).ushr(64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used 699 LLAssert(llong(0x80000000, 0).ushr(-1) == llong(0, 1)); // only lower 6 bits are used 700 701 // operator&(llong) 702 LLAssert((llong(0x55555555, 0x55555555) & llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000)); 703 704 // operator|(llong) 705 LLAssert((llong(0x55555555, 0x55555555) | llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff)); 706 707 // operator^(llong) 708 LLAssert((llong(0x55555555, 0x55555555) ^ llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff)); 709 710 // operator&(uint32) 711 LLAssert((llong(0x55555555, 0x55555555) & (uint32_t)0xffffaaaa) == llong(0, 0x55550000)); 712 713 // operator|(uint32) 714 LLAssert((llong(0x55555555, 0x55555555) | (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff)); 715 716 // operator^(uint32) 717 LLAssert((llong(0x55555555, 0x55555555) ^ (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff)); 718 719 // operator~ 720 LLAssert(~llong(0x55555555, 0x55555555) == llong(0xaaaaaaaa, 0xaaaaaaaa)); 721 722 // operator&=(llong) 723 LLAssert((llong(0x55555555, 0x55555555) &= llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000)); 724 725 // operator|=(llong) 726 LLAssert((llong(0x55555555, 0x55555555) |= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff)); 727 728 // operator^=(llong) 729 LLAssert((llong(0x55555555, 0x55555555) ^= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff)); 730 731 // operator&=(uint32) 732 LLAssert((llong(0x55555555, 0x55555555) &= (uint32_t)0xffffaaaa) == llong(0, 0x55550000)); 733 734 // operator|=(uint32) 735 LLAssert((llong(0x55555555, 0x55555555) |= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff)); 736 737 // operator^=(uint32) 738 LLAssert((llong(0x55555555, 0x55555555) ^= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff)); 739 740 // prefix inc 741 LLAssert(llong(1, 0) == ++llong(0,0xffffffff)); 742 743 // prefix dec 744 LLAssert(llong(0,0xffffffff) == --llong(1, 0)); 745 746 // postfix inc 747 { 748 llong n(0, 0xffffffff); 749 LLAssert(llong(0, 0xffffffff) == n++); 750 LLAssert(llong(1, 0) == n); 751 } 752 753 // postfix dec 754 { 755 llong n(1, 0); 756 LLAssert(llong(1, 0) == n--); 757 LLAssert(llong(0, 0xffffffff) == n); 758 } 759 760 // unary minus 761 LLAssert(llong(0, 0) == -llong(0, 0)); 762 LLAssert(llong(0xffffffff, 0xffffffff) == -llong(0, 1)); 763 LLAssert(llong(0, 1) == -llong(0xffffffff, 0xffffffff)); 764 LLAssert(llong(0x7fffffff, 0xffffffff) == -llong(0x80000000, 1)); 765 LLAssert(llong(0x80000000, 0) == -llong(0x80000000, 0)); // !!! we don't handle overflow 766 767 // operator-= 768 { 769 llong n; 770 LLAssert((n -= llong(0, 1)) == llong(0xffffffff, 0xffffffff)); 771 LLAssert(n == llong(0xffffffff, 0xffffffff)); 772 773 n = llong(1, 0); 774 LLAssert((n -= llong(0, 1)) == llong(0, 0xffffffff)); 775 LLAssert(n == llong(0, 0xffffffff)); 776 } 777 778 // operator- 779 { 780 llong n; 781 LLAssert((n - llong(0, 1)) == llong(0xffffffff, 0xffffffff)); 782 LLAssert(n == llong(0, 0)); 783 784 n = llong(1, 0); 785 LLAssert((n - llong(0, 1)) == llong(0, 0xffffffff)); 786 LLAssert(n == llong(1, 0)); 787 } 788 789 // operator+= 790 { 791 llong n(0xffffffff, 0xffffffff); 792 LLAssert((n += llong(0, 1)) == llong(0, 0)); 793 LLAssert(n == llong(0, 0)); 794 795 n = llong(0, 0xffffffff); 796 LLAssert((n += llong(0, 1)) == llong(1, 0)); 797 LLAssert(n == llong(1, 0)); 798 } 799 800 // operator+ 801 { 802 llong n(0xffffffff, 0xffffffff); 803 LLAssert((n + llong(0, 1)) == llong(0, 0)); 804 LLAssert(n == llong(0xffffffff, 0xffffffff)); 805 806 n = llong(0, 0xffffffff); 807 LLAssert((n + llong(0, 1)) == llong(1, 0)); 808 LLAssert(n == llong(0, 0xffffffff)); 809 } 810 811 } 812 813 void IntlTestRBNF::TestLLong() 814 { 815 logln("Starting TestLLong"); 816 817 TestLLongConstructors(); 818 819 TestLLongSimpleOperators(); 820 821 logln("Testing operator*=, operator*"); 822 823 // operator*=, operator* 824 // small and large values, positive, &NEGative, zero 825 // also test commutivity 826 { 827 const llong ZERO; 828 const llong ONE(0, 1); 829 const llong NEG_ONE((int32_t)-1); 830 const llong THREE(0, 3); 831 const llong NEG_THREE((int32_t)-3); 832 const llong TWO_TO_16(0, 0x10000); 833 const llong NEG_TWO_TO_16 = -TWO_TO_16; 834 const llong TWO_TO_32(1, 0); 835 const llong NEG_TWO_TO_32 = -TWO_TO_32; 836 837 const llong NINE(0, 9); 838 const llong NEG_NINE = -NINE; 839 840 const llong TWO_TO_16X3(0, 0x00030000); 841 const llong NEG_TWO_TO_16X3 = -TWO_TO_16X3; 842 843 const llong TWO_TO_32X3(3, 0); 844 const llong NEG_TWO_TO_32X3 = -TWO_TO_32X3; 845 846 const llong TWO_TO_48(0x10000, 0); 847 const llong NEG_TWO_TO_48 = -TWO_TO_48; 848 849 const int32_t VALUE_WIDTH = 9; 850 const llong* values[VALUE_WIDTH] = { 851 &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32 852 }; 853 854 const llong* answers[VALUE_WIDTH*VALUE_WIDTH] = { 855 &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, 856 &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32, 857 &ZERO, &NEG_ONE, &ONE, &NEG_THREE, &THREE, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_32, &TWO_TO_32, 858 &ZERO, &THREE, &NEG_THREE, &NINE, &NEG_NINE, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32X3, &NEG_TWO_TO_32X3, 859 &ZERO, &NEG_THREE, &THREE, &NEG_NINE, &NINE, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32X3, &TWO_TO_32X3, 860 &ZERO, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_48, &NEG_TWO_TO_48, 861 &ZERO, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_48, &TWO_TO_48, 862 &ZERO, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_32X3, &NEG_TWO_TO_32X3, &TWO_TO_48, &NEG_TWO_TO_48, &ZERO, &ZERO, 863 &ZERO, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_32X3, &TWO_TO_32X3, &NEG_TWO_TO_48, &TWO_TO_48, &ZERO, &ZERO 864 }; 865 866 for (int i = 0; i < VALUE_WIDTH; ++i) { 867 for (int j = 0; j < VALUE_WIDTH; ++j) { 868 llong lhs = *values[i]; 869 llong rhs = *values[j]; 870 llong ans = *answers[i*VALUE_WIDTH + j]; 871 872 llong n = lhs; 873 874 LLAssert((n *= rhs) == ans); 875 LLAssert(n == ans); 876 877 n = lhs; 878 LLAssert((n * rhs) == ans); 879 LLAssert(n == lhs); 880 } 881 } 882 } 883 884 logln("Testing operator/=, operator/"); 885 // operator/=, operator/ 886 // test num = 0, div = 0, pos/neg, > 2^32, div > num 887 { 888 const llong ZERO; 889 const llong ONE(0, 1); 890 const llong NEG_ONE = -ONE; 891 const llong MAX(0x7fffffff, 0xffffffff); 892 const llong MIN(0x80000000, 0); 893 const llong TWO(0, 2); 894 const llong NEG_TWO = -TWO; 895 const llong FIVE(0, 5); 896 const llong NEG_FIVE = -FIVE; 897 const llong TWO_TO_32(1, 0); 898 const llong NEG_TWO_TO_32 = -TWO_TO_32; 899 const llong TWO_TO_32d5 = llong(TWO_TO_32.asDouble()/5.0); 900 const llong NEG_TWO_TO_32d5 = -TWO_TO_32d5; 901 const llong TWO_TO_32X5 = TWO_TO_32 * FIVE; 902 const llong NEG_TWO_TO_32X5 = -TWO_TO_32X5; 903 904 const llong* tuples[] = { // lhs, rhs, ans 905 &ZERO, &ZERO, &ZERO, 906 &ONE, &ZERO,&MAX, 907 &NEG_ONE, &ZERO, &MIN, 908 &ONE, &ONE, &ONE, 909 &ONE, &NEG_ONE, &NEG_ONE, 910 &NEG_ONE, &ONE, &NEG_ONE, 911 &NEG_ONE, &NEG_ONE, &ONE, 912 &FIVE, &TWO, &TWO, 913 &FIVE, &NEG_TWO, &NEG_TWO, 914 &NEG_FIVE, &TWO, &NEG_TWO, 915 &NEG_FIVE, &NEG_TWO, &TWO, 916 &TWO, &FIVE, &ZERO, 917 &TWO, &NEG_FIVE, &ZERO, 918 &NEG_TWO, &FIVE, &ZERO, 919 &NEG_TWO, &NEG_FIVE, &ZERO, 920 &TWO_TO_32, &TWO_TO_32, &ONE, 921 &TWO_TO_32, &NEG_TWO_TO_32, &NEG_ONE, 922 &NEG_TWO_TO_32, &TWO_TO_32, &NEG_ONE, 923 &NEG_TWO_TO_32, &NEG_TWO_TO_32, &ONE, 924 &TWO_TO_32, &FIVE, &TWO_TO_32d5, 925 &TWO_TO_32, &NEG_FIVE, &NEG_TWO_TO_32d5, 926 &NEG_TWO_TO_32, &FIVE, &NEG_TWO_TO_32d5, 927 &NEG_TWO_TO_32, &NEG_FIVE, &TWO_TO_32d5, 928 &TWO_TO_32X5, &FIVE, &TWO_TO_32, 929 &TWO_TO_32X5, &NEG_FIVE, &NEG_TWO_TO_32, 930 &NEG_TWO_TO_32X5, &FIVE, &NEG_TWO_TO_32, 931 &NEG_TWO_TO_32X5, &NEG_FIVE, &TWO_TO_32, 932 &TWO_TO_32X5, &TWO_TO_32, &FIVE, 933 &TWO_TO_32X5, &NEG_TWO_TO_32, &NEG_FIVE, 934 &NEG_TWO_TO_32X5, &NEG_TWO_TO_32, &FIVE, 935 &NEG_TWO_TO_32X5, &TWO_TO_32, &NEG_FIVE 936 }; 937 const int TUPLE_WIDTH = 3; 938 const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WIDTH; 939 for (int i = 0; i < TUPLE_COUNT; ++i) { 940 const llong lhs = *tuples[i*TUPLE_WIDTH+0]; 941 const llong rhs = *tuples[i*TUPLE_WIDTH+1]; 942 const llong ans = *tuples[i*TUPLE_WIDTH+2]; 943 944 llong n = lhs; 945 if (!((n /= rhs) == ans)) { 946 errln("fail: (n /= rhs) == ans"); 947 } 948 LLAssert(n == ans); 949 950 n = lhs; 951 LLAssert((n / rhs) == ans); 952 LLAssert(n == lhs); 953 } 954 } 955 956 logln("Testing operator%%=, operator%%"); 957 //operator%=, operator% 958 { 959 const llong ZERO; 960 const llong ONE(0, 1); 961 const llong TWO(0, 2); 962 const llong THREE(0,3); 963 const llong FOUR(0, 4); 964 const llong FIVE(0, 5); 965 const llong SIX(0, 6); 966 967 const llong NEG_ONE = -ONE; 968 const llong NEG_TWO = -TWO; 969 const llong NEG_THREE = -THREE; 970 const llong NEG_FOUR = -FOUR; 971 const llong NEG_FIVE = -FIVE; 972 const llong NEG_SIX = -SIX; 973 974 const llong NINETY_NINE(0, 99); 975 const llong HUNDRED(0, 100); 976 const llong HUNDRED_ONE(0, 101); 977 978 const llong BIG(0x12345678, 0x9abcdef0); 979 const llong BIG_FIVE(BIG * FIVE); 980 const llong BIG_FIVEm1 = BIG_FIVE - ONE; 981 const llong BIG_FIVEp1 = BIG_FIVE + ONE; 982 983 const llong* tuples[] = { 984 &ZERO, &FIVE, &ZERO, 985 &ONE, &FIVE, &ONE, 986 &TWO, &FIVE, &TWO, 987 &THREE, &FIVE, &THREE, 988 &FOUR, &FIVE, &FOUR, 989 &FIVE, &FIVE, &ZERO, 990 &SIX, &FIVE, &ONE, 991 &ZERO, &NEG_FIVE, &ZERO, 992 &ONE, &NEG_FIVE, &ONE, 993 &TWO, &NEG_FIVE, &TWO, 994 &THREE, &NEG_FIVE, &THREE, 995 &FOUR, &NEG_FIVE, &FOUR, 996 &FIVE, &NEG_FIVE, &ZERO, 997 &SIX, &NEG_FIVE, &ONE, 998 &NEG_ONE, &FIVE, &NEG_ONE, 999 &NEG_TWO, &FIVE, &NEG_TWO, 1000 &NEG_THREE, &FIVE, &NEG_THREE, 1001 &NEG_FOUR, &FIVE, &NEG_FOUR, 1002 &NEG_FIVE, &FIVE, &ZERO, 1003 &NEG_SIX, &FIVE, &NEG_ONE, 1004 &NEG_ONE, &NEG_FIVE, &NEG_ONE, 1005 &NEG_TWO, &NEG_FIVE, &NEG_TWO, 1006 &NEG_THREE, &NEG_FIVE, &NEG_THREE, 1007 &NEG_FOUR, &NEG_FIVE, &NEG_FOUR, 1008 &NEG_FIVE, &NEG_FIVE, &ZERO, 1009 &NEG_SIX, &NEG_FIVE, &NEG_ONE, 1010 &NINETY_NINE, &FIVE, &FOUR, 1011 &HUNDRED, &FIVE, &ZERO, 1012 &HUNDRED_ONE, &FIVE, &ONE, 1013 &BIG_FIVEm1, &FIVE, &FOUR, 1014 &BIG_FIVE, &FIVE, &ZERO, 1015 &BIG_FIVEp1, &FIVE, &ONE 1016 }; 1017 const int TUPLE_WIDTH = 3; 1018 const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WIDTH; 1019 for (int i = 0; i < TUPLE_COUNT; ++i) { 1020 const llong lhs = *tuples[i*TUPLE_WIDTH+0]; 1021 const llong rhs = *tuples[i*TUPLE_WIDTH+1]; 1022 const llong ans = *tuples[i*TUPLE_WIDTH+2]; 1023 1024 llong n = lhs; 1025 if (!((n %= rhs) == ans)) { 1026 errln("fail: (n %= rhs) == ans"); 1027 } 1028 LLAssert(n == ans); 1029 1030 n = lhs; 1031 LLAssert((n % rhs) == ans); 1032 LLAssert(n == lhs); 1033 } 1034 } 1035 1036 logln("Testing pow"); 1037 // pow 1038 LLAssert(llong(0, 0).pow(0) == llong(0, 0)); 1039 LLAssert(llong(0, 0).pow(2) == llong(0, 0)); 1040 LLAssert(llong(0, 2).pow(0) == llong(0, 1)); 1041 LLAssert(llong(0, 2).pow(2) == llong(0, 4)); 1042 LLAssert(llong(0, 2).pow(32) == llong(1, 0)); 1043 LLAssert(llong(0, 5).pow(10) == llong((double)5.0 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5)); 1044 1045 // absolute value 1046 { 1047 const llong n(0xffffffff,0xffffffff); 1048 LLAssert(n.abs() == llong(0, 1)); 1049 } 1050 1051 #ifdef RBNF_DEBUG 1052 logln("Testing atoll"); 1053 // atoll 1054 const char empty[] = ""; 1055 const char zero[] = "0"; 1056 const char neg_one[] = "-1"; 1057 const char neg_12345[] = "-12345"; 1058 const char big1[] = "123456789abcdef0"; 1059 const char big2[] = "fFfFfFfFfFfFfFfF"; 1060 LLAssert(llong::atoll(empty) == llong(0, 0)); 1061 LLAssert(llong::atoll(zero) == llong(0, 0)); 1062 LLAssert(llong::atoll(neg_one) == llong(0xffffffff, 0xffffffff)); 1063 LLAssert(llong::atoll(neg_12345) == -llong(0, 12345)); 1064 LLAssert(llong::atoll(big1, 16) == llong(0x12345678, 0x9abcdef0)); 1065 LLAssert(llong::atoll(big2, 16) == llong(0xffffffff, 0xffffffff)); 1066 #endif 1067 1068 // u_atoll 1069 const UChar uempty[] = { 0 }; 1070 const UChar uzero[] = { 0x30, 0 }; 1071 const UChar uneg_one[] = { 0x2d, 0x31, 0 }; 1072 const UChar uneg_12345[] = { 0x2d, 0x31, 0x32, 0x33, 0x34, 0x35, 0 }; 1073 const UChar ubig1[] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0 }; 1074 const UChar ubig2[] = { 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0 }; 1075 LLAssert(llong::utoll(uempty) == llong(0, 0)); 1076 LLAssert(llong::utoll(uzero) == llong(0, 0)); 1077 LLAssert(llong::utoll(uneg_one) == llong(0xffffffff, 0xffffffff)); 1078 LLAssert(llong::utoll(uneg_12345) == -llong(0, 12345)); 1079 LLAssert(llong::utoll(ubig1, 16) == llong(0x12345678, 0x9abcdef0)); 1080 LLAssert(llong::utoll(ubig2, 16) == llong(0xffffffff, 0xffffffff)); 1081 1082 #ifdef RBNF_DEBUG 1083 logln("Testing lltoa"); 1084 // lltoa 1085 { 1086 char buf[64]; // ascii 1087 LLAssert((llong(0, 0).lltoa(buf, (uint32_t)sizeof(buf)) == 1) && (strcmp(buf, zero) == 0)); 1088 LLAssert((llong(0xffffffff, 0xffffffff).lltoa(buf, (uint32_t)sizeof(buf)) == 2) && (strcmp(buf, neg_one) == 0)); 1089 LLAssert(((-llong(0, 12345)).lltoa(buf, (uint32_t)sizeof(buf)) == 6) && (strcmp(buf, neg_12345) == 0)); 1090 LLAssert((llong(0x12345678, 0x9abcdef0).lltoa(buf, (uint32_t)sizeof(buf), 16) == 16) && (strcmp(buf, big1) == 0)); 1091 } 1092 #endif 1093 1094 logln("Testing u_lltoa"); 1095 // u_lltoa 1096 { 1097 UChar buf[64]; 1098 LLAssert((llong(0, 0).lltou(buf, (uint32_t)sizeof(buf)) == 1) && (u_strcmp(buf, uzero) == 0)); 1099 LLAssert((llong(0xffffffff, 0xffffffff).lltou(buf, (uint32_t)sizeof(buf)) == 2) && (u_strcmp(buf, uneg_one) == 0)); 1100 LLAssert(((-llong(0, 12345)).lltou(buf, (uint32_t)sizeof(buf)) == 6) && (u_strcmp(buf, uneg_12345) == 0)); 1101 LLAssert((llong(0x12345678, 0x9abcdef0).lltou(buf, (uint32_t)sizeof(buf), 16) == 16) && (u_strcmp(buf, ubig1) == 0)); 1102 } 1103 } 1104 1105 /* if 0 */ 1106 #endif 1107 1108 void 1109 IntlTestRBNF::TestEnglishSpellout() 1110 { 1111 UErrorCode status = U_ZERO_ERROR; 1112 RuleBasedNumberFormat* formatter 1113 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status); 1114 if (U_FAILURE(status)) { 1115 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1116 } else { 1117 static const char* const testData[][2] = { 1118 { "1", "one" }, 1119 { "2", "two" }, 1120 { "15", "fifteen" }, 1121 { "20", "twenty" }, 1122 { "23", "twenty-three" }, 1123 { "73", "seventy-three" }, 1124 { "88", "eighty-eight" }, 1125 { "100", "one hundred" }, 1126 { "106", "one hundred six" }, 1127 { "127", "one hundred twenty-seven" }, 1128 { "200", "two hundred" }, 1129 { "579", "five hundred seventy-nine" }, 1130 { "1,000", "one thousand" }, 1131 { "2,000", "two thousand" }, 1132 { "3,004", "three thousand four" }, 1133 { "4,567", "four thousand five hundred sixty-seven" }, 1134 { "15,943", "fifteen thousand nine hundred forty-three" }, 1135 { "2,345,678", "two million three hundred forty-five thousand six hundred seventy-eight" }, 1136 { "-36", "minus thirty-six" }, 1137 { "234.567", "two hundred thirty-four point five six seven" }, 1138 { NULL, NULL} 1139 }; 1140 1141 doTest(formatter, testData, TRUE); 1142 1143 #if !UCONFIG_NO_COLLATION 1144 if( !logKnownIssue("9503") ) { 1145 formatter->setLenient(TRUE); 1146 static const char* lpTestData[][2] = { 1147 { "fifty-7", "57" }, 1148 { " fifty-7", "57" }, 1149 { " fifty-7", "57" }, 1150 { "2 thousand six HUNDRED fifty-7", "2,657" }, 1151 { "fifteen hundred and zero", "1,500" }, 1152 { "FOurhundred thiRTY six", "436" }, 1153 { NULL, NULL} 1154 }; 1155 doLenientParseTest(formatter, lpTestData); 1156 } 1157 #endif 1158 } 1159 delete formatter; 1160 } 1161 1162 void 1163 IntlTestRBNF::TestOrdinalAbbreviations() 1164 { 1165 UErrorCode status = U_ZERO_ERROR; 1166 RuleBasedNumberFormat* formatter 1167 = new RuleBasedNumberFormat(URBNF_ORDINAL, Locale::getUS(), status); 1168 1169 if (U_FAILURE(status)) { 1170 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1171 } else { 1172 static const char* const testData[][2] = { 1173 { "1", "1st" }, 1174 { "2", "2nd" }, 1175 { "3", "3rd" }, 1176 { "4", "4th" }, 1177 { "7", "7th" }, 1178 { "10", "10th" }, 1179 { "11", "11th" }, 1180 { "13", "13th" }, 1181 { "20", "20th" }, 1182 { "21", "21st" }, 1183 { "22", "22nd" }, 1184 { "23", "23rd" }, 1185 { "24", "24th" }, 1186 { "33", "33rd" }, 1187 { "102", "102nd" }, 1188 { "312", "312th" }, 1189 { "12,345", "12,345th" }, 1190 { NULL, NULL} 1191 }; 1192 1193 doTest(formatter, testData, FALSE); 1194 } 1195 delete formatter; 1196 } 1197 1198 void 1199 IntlTestRBNF::TestDurations() 1200 { 1201 UErrorCode status = U_ZERO_ERROR; 1202 RuleBasedNumberFormat* formatter 1203 = new RuleBasedNumberFormat(URBNF_DURATION, Locale::getUS(), status); 1204 1205 if (U_FAILURE(status)) { 1206 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1207 } else { 1208 static const char* const testData[][2] = { 1209 { "3,600", "1:00:00" }, //move me and I fail 1210 { "0", "0 sec." }, 1211 { "1", "1 sec." }, 1212 { "24", "24 sec." }, 1213 { "60", "1:00" }, 1214 { "73", "1:13" }, 1215 { "145", "2:25" }, 1216 { "666", "11:06" }, 1217 // { "3,600", "1:00:00" }, 1218 { "3,740", "1:02:20" }, 1219 { "10,293", "2:51:33" }, 1220 { NULL, NULL} 1221 }; 1222 1223 doTest(formatter, testData, TRUE); 1224 1225 #if !UCONFIG_NO_COLLATION 1226 formatter->setLenient(TRUE); 1227 static const char* lpTestData[][2] = { 1228 { "2-51-33", "10,293" }, 1229 { NULL, NULL} 1230 }; 1231 doLenientParseTest(formatter, lpTestData); 1232 #endif 1233 } 1234 delete formatter; 1235 } 1236 1237 void 1238 IntlTestRBNF::TestSpanishSpellout() 1239 { 1240 UErrorCode status = U_ZERO_ERROR; 1241 RuleBasedNumberFormat* formatter 1242 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("es", "ES", ""), status); 1243 1244 if (U_FAILURE(status)) { 1245 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1246 } else { 1247 static const char* const testData[][2] = { 1248 { "1", "uno" }, 1249 { "6", "seis" }, 1250 { "16", "diecis\\u00e9is" }, 1251 { "20", "veinte" }, 1252 { "24", "veinticuatro" }, 1253 { "26", "veintis\\u00e9is" }, 1254 { "73", "setenta y tres" }, 1255 { "88", "ochenta y ocho" }, 1256 { "100", "cien" }, 1257 { "106", "ciento seis" }, 1258 { "127", "ciento veintisiete" }, 1259 { "200", "doscientos" }, 1260 { "579", "quinientos setenta y nueve" }, 1261 { "1,000", "mil" }, 1262 { "2,000", "dos mil" }, 1263 { "3,004", "tres mil cuatro" }, 1264 { "4,567", "cuatro mil quinientos sesenta y siete" }, 1265 { "15,943", "quince mil novecientos cuarenta y tres" }, 1266 { "2,345,678", "dos millones trescientos cuarenta y cinco mil seiscientos setenta y ocho"}, 1267 { "-36", "menos treinta y seis" }, 1268 { "234.567", "doscientos treinta y cuatro coma cinco seis siete" }, 1269 { NULL, NULL} 1270 }; 1271 1272 doTest(formatter, testData, TRUE); 1273 } 1274 delete formatter; 1275 } 1276 1277 void 1278 IntlTestRBNF::TestFrenchSpellout() 1279 { 1280 UErrorCode status = U_ZERO_ERROR; 1281 RuleBasedNumberFormat* formatter 1282 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getFrance(), status); 1283 1284 if (U_FAILURE(status)) { 1285 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1286 } else { 1287 static const char* const testData[][2] = { 1288 { "1", "un" }, 1289 { "15", "quinze" }, 1290 { "20", "vingt" }, 1291 { "21", "vingt-et-un" }, 1292 { "23", "vingt-trois" }, 1293 { "62", "soixante-deux" }, 1294 { "70", "soixante-dix" }, 1295 { "71", "soixante-et-onze" }, 1296 { "73", "soixante-treize" }, 1297 { "80", "quatre-vingts" }, 1298 { "88", "quatre-vingt-huit" }, 1299 { "100", "cent" }, 1300 { "106", "cent six" }, 1301 { "127", "cent vingt-sept" }, 1302 { "200", "deux cents" }, 1303 { "579", "cinq cent soixante-dix-neuf" }, 1304 { "1,000", "mille" }, 1305 { "1,123", "mille cent vingt-trois" }, 1306 { "1,594", "mille cinq cent quatre-vingt-quatorze" }, 1307 { "2,000", "deux mille" }, 1308 { "3,004", "trois mille quatre" }, 1309 { "4,567", "quatre mille cinq cent soixante-sept" }, 1310 { "15,943", "quinze mille neuf cent quarante-trois" }, 1311 { "2,345,678", "deux millions trois cent quarante-cinq mille six cent soixante-dix-huit" }, 1312 { "-36", "moins trente-six" }, 1313 { "234.567", "deux cent trente-quatre virgule cinq six sept" }, 1314 { NULL, NULL} 1315 }; 1316 1317 doTest(formatter, testData, TRUE); 1318 1319 #if !UCONFIG_NO_COLLATION 1320 formatter->setLenient(TRUE); 1321 static const char* lpTestData[][2] = { 1322 { "trente-et-un", "31" }, 1323 { "un cent quatre vingt dix huit", "198" }, 1324 { NULL, NULL} 1325 }; 1326 doLenientParseTest(formatter, lpTestData); 1327 #endif 1328 } 1329 delete formatter; 1330 } 1331 1332 static const char* const swissFrenchTestData[][2] = { 1333 { "1", "un" }, 1334 { "15", "quinze" }, 1335 { "20", "vingt" }, 1336 { "21", "vingt-et-un" }, 1337 { "23", "vingt-trois" }, 1338 { "62", "soixante-deux" }, 1339 { "70", "septante" }, 1340 { "71", "septante-et-un" }, 1341 { "73", "septante-trois" }, 1342 { "80", "huitante" }, 1343 { "88", "huitante-huit" }, 1344 { "100", "cent" }, 1345 { "106", "cent six" }, 1346 { "127", "cent vingt-sept" }, 1347 { "200", "deux cents" }, 1348 { "579", "cinq cent septante-neuf" }, 1349 { "1,000", "mille" }, 1350 { "1,123", "mille cent vingt-trois" }, 1351 { "1,594", "mille cinq cent nonante-quatre" }, 1352 { "2,000", "deux mille" }, 1353 { "3,004", "trois mille quatre" }, 1354 { "4,567", "quatre mille cinq cent soixante-sept" }, 1355 { "15,943", "quinze mille neuf cent quarante-trois" }, 1356 { "2,345,678", "deux millions trois cent quarante-cinq mille six cent septante-huit" }, 1357 { "-36", "moins trente-six" }, 1358 { "234.567", "deux cent trente-quatre virgule cinq six sept" }, 1359 { NULL, NULL} 1360 }; 1361 1362 void 1363 IntlTestRBNF::TestSwissFrenchSpellout() 1364 { 1365 UErrorCode status = U_ZERO_ERROR; 1366 RuleBasedNumberFormat* formatter 1367 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "CH", ""), status); 1368 1369 if (U_FAILURE(status)) { 1370 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1371 } else { 1372 doTest(formatter, swissFrenchTestData, TRUE); 1373 } 1374 delete formatter; 1375 } 1376 1377 static const char* const belgianFrenchTestData[][2] = { 1378 { "1", "un" }, 1379 { "15", "quinze" }, 1380 { "20", "vingt" }, 1381 { "21", "vingt-et-un" }, 1382 { "23", "vingt-trois" }, 1383 { "62", "soixante-deux" }, 1384 { "70", "septante" }, 1385 { "71", "septante-et-un" }, 1386 { "73", "septante-trois" }, 1387 { "80", "quatre-vingts" }, 1388 { "88", "quatre-vingt huit" }, 1389 { "90", "nonante" }, 1390 { "91", "nonante-et-un" }, 1391 { "95", "nonante-cinq" }, 1392 { "100", "cent" }, 1393 { "106", "cent six" }, 1394 { "127", "cent vingt-sept" }, 1395 { "200", "deux cents" }, 1396 { "579", "cinq cent septante-neuf" }, 1397 { "1,000", "mille" }, 1398 { "1,123", "mille cent vingt-trois" }, 1399 { "1,594", "mille cinq cent nonante-quatre" }, 1400 { "2,000", "deux mille" }, 1401 { "3,004", "trois mille quatre" }, 1402 { "4,567", "quatre mille cinq cent soixante-sept" }, 1403 { "15,943", "quinze mille neuf cent quarante-trois" }, 1404 { "2,345,678", "deux millions trois cent quarante-cinq mille six cent septante-huit" }, 1405 { "-36", "moins trente-six" }, 1406 { "234.567", "deux cent trente-quatre virgule cinq six sept" }, 1407 { NULL, NULL} 1408 }; 1409 1410 1411 void 1412 IntlTestRBNF::TestBelgianFrenchSpellout() 1413 { 1414 UErrorCode status = U_ZERO_ERROR; 1415 RuleBasedNumberFormat* formatter 1416 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "BE", ""), status); 1417 1418 if (U_FAILURE(status)) { 1419 errcheckln(status, "rbnf status: 0x%x (%s)\n", status, u_errorName(status)); 1420 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1421 } else { 1422 // Belgian french should match Swiss french. 1423 doTest(formatter, belgianFrenchTestData, TRUE); 1424 } 1425 delete formatter; 1426 } 1427 1428 void 1429 IntlTestRBNF::TestItalianSpellout() 1430 { 1431 UErrorCode status = U_ZERO_ERROR; 1432 RuleBasedNumberFormat* formatter 1433 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getItalian(), status); 1434 1435 if (U_FAILURE(status)) { 1436 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1437 } else { 1438 static const char* const testData[][2] = { 1439 { "1", "uno" }, 1440 { "15", "quindici" }, 1441 { "20", "venti" }, 1442 { "23", "venti\\u00ADtr\\u00E9" }, 1443 { "73", "settanta\\u00ADtr\\u00E9" }, 1444 { "88", "ottant\\u00ADotto" }, 1445 { "100", "cento" }, 1446 { "101", "cento\\u00ADuno" }, 1447 { "103", "cento\\u00ADtr\\u00E9" }, 1448 { "106", "cento\\u00ADsei" }, 1449 { "108", "cent\\u00ADotto" }, 1450 { "127", "cento\\u00ADventi\\u00ADsette" }, 1451 { "181", "cent\\u00ADottant\\u00ADuno" }, 1452 { "200", "due\\u00ADcento" }, 1453 { "579", "cinque\\u00ADcento\\u00ADsettanta\\u00ADnove" }, 1454 { "1,000", "mille" }, 1455 { "2,000", "due\\u00ADmila" }, 1456 { "3,004", "tre\\u00ADmila\\u00ADquattro" }, 1457 { "4,567", "quattro\\u00ADmila\\u00ADcinque\\u00ADcento\\u00ADsessanta\\u00ADsette" }, 1458 { "15,943", "quindici\\u00ADmila\\u00ADnove\\u00ADcento\\u00ADquaranta\\u00ADtr\\u00E9" }, 1459 { "-36", "meno trenta\\u00ADsei" }, 1460 { "234.567", "due\\u00ADcento\\u00ADtrenta\\u00ADquattro virgola cinque sei sette" }, 1461 { NULL, NULL} 1462 }; 1463 1464 doTest(formatter, testData, TRUE); 1465 } 1466 delete formatter; 1467 } 1468 1469 void 1470 IntlTestRBNF::TestPortugueseSpellout() 1471 { 1472 UErrorCode status = U_ZERO_ERROR; 1473 RuleBasedNumberFormat* formatter 1474 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("pt","BR",""), status); 1475 1476 if (U_FAILURE(status)) { 1477 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1478 } else { 1479 static const char* const testData[][2] = { 1480 { "1", "um" }, 1481 { "15", "quinze" }, 1482 { "20", "vinte" }, 1483 { "23", "vinte e tr\\u00EAs" }, 1484 { "73", "setenta e tr\\u00EAs" }, 1485 { "88", "oitenta e oito" }, 1486 { "100", "cem" }, 1487 { "106", "cento e seis" }, 1488 { "108", "cento e oito" }, 1489 { "127", "cento e vinte e sete" }, 1490 { "181", "cento e oitenta e um" }, 1491 { "200", "duzentos" }, 1492 { "579", "quinhentos e setenta e nove" }, 1493 { "1,000", "mil" }, 1494 { "2,000", "dois mil" }, 1495 { "3,004", "tr\\u00EAs mil e quatro" }, 1496 { "4,567", "quatro mil e quinhentos e sessenta e sete" }, 1497 { "15,943", "quinze mil e novecentos e quarenta e tr\\u00EAs" }, 1498 { "-36", "menos trinta e seis" }, 1499 { "234.567", "duzentos e trinta e quatro v\\u00EDrgula cinco seis sete" }, 1500 { NULL, NULL} 1501 }; 1502 1503 doTest(formatter, testData, TRUE); 1504 } 1505 delete formatter; 1506 } 1507 void 1508 IntlTestRBNF::TestGermanSpellout() 1509 { 1510 UErrorCode status = U_ZERO_ERROR; 1511 RuleBasedNumberFormat* formatter 1512 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getGermany(), status); 1513 1514 if (U_FAILURE(status)) { 1515 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1516 } else { 1517 static const char* const testData[][2] = { 1518 { "1", "eins" }, 1519 { "15", "f\\u00fcnfzehn" }, 1520 { "20", "zwanzig" }, 1521 { "23", "drei\\u00ADund\\u00ADzwanzig" }, 1522 { "73", "drei\\u00ADund\\u00ADsiebzig" }, 1523 { "88", "acht\\u00ADund\\u00ADachtzig" }, 1524 { "100", "ein\\u00ADhundert" }, 1525 { "106", "ein\\u00ADhundert\\u00ADsechs" }, 1526 { "127", "ein\\u00ADhundert\\u00ADsieben\\u00ADund\\u00ADzwanzig" }, 1527 { "200", "zwei\\u00ADhundert" }, 1528 { "579", "f\\u00fcnf\\u00ADhundert\\u00ADneun\\u00ADund\\u00ADsiebzig" }, 1529 { "1,000", "ein\\u00ADtausend" }, 1530 { "2,000", "zwei\\u00ADtausend" }, 1531 { "3,004", "drei\\u00ADtausend\\u00ADvier" }, 1532 { "4,567", "vier\\u00ADtausend\\u00ADf\\u00fcnf\\u00ADhundert\\u00ADsieben\\u00ADund\\u00ADsechzig" }, 1533 { "15,943", "f\\u00fcnfzehn\\u00ADtausend\\u00ADneun\\u00ADhundert\\u00ADdrei\\u00ADund\\u00ADvierzig" }, 1534 { "2,345,678", "zwei Millionen drei\\u00ADhundert\\u00ADf\\u00fcnf\\u00ADund\\u00ADvierzig\\u00ADtausend\\u00ADsechs\\u00ADhundert\\u00ADacht\\u00ADund\\u00ADsiebzig" }, 1535 { NULL, NULL} 1536 }; 1537 1538 doTest(formatter, testData, TRUE); 1539 1540 #if !UCONFIG_NO_COLLATION 1541 formatter->setLenient(TRUE); 1542 static const char* lpTestData[][2] = { 1543 { "ein Tausend sechs Hundert fuenfunddreissig", "1,635" }, 1544 { NULL, NULL} 1545 }; 1546 doLenientParseTest(formatter, lpTestData); 1547 #endif 1548 } 1549 delete formatter; 1550 } 1551 1552 void 1553 IntlTestRBNF::TestThaiSpellout() 1554 { 1555 UErrorCode status = U_ZERO_ERROR; 1556 RuleBasedNumberFormat* formatter 1557 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("th"), status); 1558 1559 if (U_FAILURE(status)) { 1560 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1561 } else { 1562 static const char* const testData[][2] = { 1563 { "0", "\\u0e28\\u0e39\\u0e19\\u0e22\\u0e4c" }, 1564 { "1", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" }, 1565 { "10", "\\u0e2a\\u0e34\\u0e1a" }, 1566 { "11", "\\u0e2a\\u0e34\\u0e1a\\u200b\\u0e40\\u0e2d\\u0e47\\u0e14" }, 1567 { "21", "\\u0e22\\u0e35\\u0e48\\u200b\\u0e2a\\u0e34\\u0e1a\\u200b\\u0e40\\u0e2d\\u0e47\\u0e14" }, 1568 { "101", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e23\\u0e49\\u0e2d\\u0e22\\u200b\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" }, 1569 { "1.234", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e08\\u0e38\\u0e14\\u200b\\u0e2a\\u0e2d\\u0e07\\u0e2a\\u0e32\\u0e21\\u0e2a\\u0e35\\u0e48" }, 1570 { NULL, NULL} 1571 }; 1572 1573 doTest(formatter, testData, TRUE); 1574 } 1575 delete formatter; 1576 } 1577 1578 void 1579 IntlTestRBNF::TestSwedishSpellout() 1580 { 1581 UErrorCode status = U_ZERO_ERROR; 1582 RuleBasedNumberFormat* formatter 1583 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("sv"), status); 1584 1585 if (U_FAILURE(status)) { 1586 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1587 } else { 1588 static const char* testDataDefault[][2] = { 1589 { "101", "ett\\u00adhundra\\u00adett" }, 1590 { "123", "ett\\u00adhundra\\u00adtjugo\\u00adtre" }, 1591 { "1,001", "et\\u00adtusen ett" }, 1592 { "1,100", "et\\u00adtusen ett\\u00adhundra" }, 1593 { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" }, 1594 { "1,234", "et\\u00adtusen tv\\u00e5\\u00adhundra\\u00adtrettio\\u00adfyra" }, 1595 { "10,001", "tio\\u00adtusen ett" }, 1596 { "11,000", "elva\\u00adtusen" }, 1597 { "12,000", "tolv\\u00adtusen" }, 1598 { "20,000", "tjugo\\u00adtusen" }, 1599 { "21,000", "tjugo\\u00adet\\u00adtusen" }, 1600 { "21,001", "tjugo\\u00adet\\u00adtusen ett" }, 1601 { "200,000", "tv\\u00e5\\u00adhundra\\u00adtusen" }, 1602 { "201,000", "tv\\u00e5\\u00adhundra\\u00adet\\u00adtusen" }, 1603 { "200,200", "tv\\u00e5\\u00adhundra\\u00adtusen tv\\u00e5\\u00adhundra" }, 1604 { "2,002,000", "tv\\u00e5 miljoner tv\\u00e5\\u00adtusen" }, 1605 { "12,345,678", "tolv miljoner tre\\u00adhundra\\u00adfyrtio\\u00adfem\\u00adtusen sex\\u00adhundra\\u00adsjuttio\\u00ad\\u00e5tta" }, 1606 { "123,456.789", "ett\\u00adhundra\\u00adtjugo\\u00adtre\\u00adtusen fyra\\u00adhundra\\u00adfemtio\\u00adsex komma sju \\u00e5tta nio" }, 1607 { "-12,345.678", "minus tolv\\u00adtusen tre\\u00adhundra\\u00adfyrtio\\u00adfem komma sex sju \\u00e5tta" }, 1608 { NULL, NULL } 1609 }; 1610 doTest(formatter, testDataDefault, TRUE); 1611 1612 static const char* testDataNeutrum[][2] = { 1613 { "101", "ett\\u00adhundra\\u00adett" }, 1614 { "1,001", "et\\u00adtusen ett" }, 1615 { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" }, 1616 { "10,001", "tio\\u00adtusen ett" }, 1617 { "21,001", "tjugo\\u00adet\\u00adtusen ett" }, 1618 { NULL, NULL } 1619 }; 1620 1621 formatter->setDefaultRuleSet("%spellout-cardinal-neuter", status); 1622 if (U_SUCCESS(status)) { 1623 logln(" testing spellout-cardinal-neuter rules"); 1624 doTest(formatter, testDataNeutrum, TRUE); 1625 } 1626 else { 1627 errln("Can't test spellout-cardinal-neuter rules"); 1628 } 1629 1630 static const char* testDataYear[][2] = { 1631 { "101", "ett\\u00adhundra\\u00adett" }, 1632 { "900", "nio\\u00adhundra" }, 1633 { "1,001", "et\\u00adtusen ett" }, 1634 { "1,100", "elva\\u00adhundra" }, 1635 { "1,101", "elva\\u00adhundra\\u00adett" }, 1636 { "1,234", "tolv\\u00adhundra\\u00adtrettio\\u00adfyra" }, 1637 { "2,001", "tjugo\\u00adhundra\\u00adett" }, 1638 { "10,001", "tio\\u00adtusen ett" }, 1639 { NULL, NULL } 1640 }; 1641 1642 status = U_ZERO_ERROR; 1643 formatter->setDefaultRuleSet("%spellout-numbering-year", status); 1644 if (U_SUCCESS(status)) { 1645 logln("testing year rules"); 1646 doTest(formatter, testDataYear, TRUE); 1647 } 1648 else { 1649 errln("Can't test year rules"); 1650 } 1651 1652 } 1653 delete formatter; 1654 } 1655 1656 void 1657 IntlTestRBNF::TestSmallValues() 1658 { 1659 UErrorCode status = U_ZERO_ERROR; 1660 RuleBasedNumberFormat* formatter 1661 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("en_US"), status); 1662 1663 if (U_FAILURE(status)) { 1664 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1665 } else { 1666 static const char* const testDataDefault[][2] = { 1667 { "0.001", "zero point zero zero one" }, 1668 { "0.0001", "zero point zero zero zero one" }, 1669 { "0.00001", "zero point zero zero zero zero one" }, 1670 { "0.000001", "zero point zero zero zero zero zero one" }, 1671 { "0.0000001", "zero point zero zero zero zero zero zero one" }, 1672 { "0.00000001", "zero point zero zero zero zero zero zero zero one" }, 1673 { "0.000000001", "zero point zero zero zero zero zero zero zero zero one" }, 1674 { "0.0000000001", "zero point zero zero zero zero zero zero zero zero zero one" }, 1675 { "0.00000000001", "zero point zero zero zero zero zero zero zero zero zero zero one" }, 1676 { "0.000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero one" }, 1677 { "0.0000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero one" }, 1678 { "0.00000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero zero one" }, 1679 { "0.000000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero zero zero one" }, 1680 { "10,000,000.001", "ten million point zero zero one" }, 1681 { "10,000,000.0001", "ten million point zero zero zero one" }, 1682 { "10,000,000.00001", "ten million point zero zero zero zero one" }, 1683 { "10,000,000.000001", "ten million point zero zero zero zero zero one" }, 1684 { "10,000,000.0000001", "ten million point zero zero zero zero zero zero one" }, 1685 // { "10,000,000.00000001", "ten million point zero zero zero zero zero zero zero one" }, 1686 // { "10,000,000.000000002", "ten million point zero zero zero zero zero zero zero zero two" }, 1687 { "10,000,000", "ten million" }, 1688 // { "1,234,567,890.0987654", "one billion, two hundred and thirty-four million, five hundred and sixty-seven thousand, eight hundred and ninety point zero nine eight seven six five four" }, 1689 // { "123,456,789.9876543", "one hundred and twenty-three million, four hundred and fifty-six thousand, seven hundred and eighty-nine point nine eight seven six five four three" }, 1690 // { "12,345,678.87654321", "twelve million, three hundred and forty-five thousand, six hundred and seventy-eight point eight seven six five four three two one" }, 1691 { "1,234,567.7654321", "one million two hundred thirty-four thousand five hundred sixty-seven point seven six five four three two one" }, 1692 { "123,456.654321", "one hundred twenty-three thousand four hundred fifty-six point six five four three two one" }, 1693 { "12,345.54321", "twelve thousand three hundred forty-five point five four three two one" }, 1694 { "1,234.4321", "one thousand two hundred thirty-four point four three two one" }, 1695 { "123.321", "one hundred twenty-three point three two one" }, 1696 { "0.0000000011754944", "zero point zero zero zero zero zero zero zero zero one one seven five four nine four four" }, 1697 { "0.000001175494351", "zero point zero zero zero zero zero one one seven five four nine four three five one" }, 1698 { NULL, NULL } 1699 }; 1700 1701 doTest(formatter, testDataDefault, TRUE); 1702 1703 delete formatter; 1704 } 1705 } 1706 1707 void 1708 IntlTestRBNF::TestLocalizations(void) 1709 { 1710 int i; 1711 UnicodeString rules("%main:0:no;1:some;100:a lot;1000:tons;\n" 1712 "%other:0:nada;1:yah, some;100:plenty;1000:more'n you'll ever need"); 1713 1714 UErrorCode status = U_ZERO_ERROR; 1715 UParseError perror; 1716 RuleBasedNumberFormat formatter(rules, perror, status); 1717 if (U_FAILURE(status)) { 1718 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1719 } else { 1720 { 1721 static const char* const testData[][2] = { 1722 { "0", "nada" }, 1723 { "5", "yah, some" }, 1724 { "423", "plenty" }, 1725 { "12345", "more'n you'll ever need" }, 1726 { NULL, NULL } 1727 }; 1728 doTest(&formatter, testData, FALSE); 1729 } 1730 1731 { 1732 UnicodeString loc("<<%main, %other>,<en, Main, Other>,<fr, leMain, leOther>,<de, 'das Main', 'etwas anderes'>>"); 1733 static const char* const testData[][2] = { 1734 { "0", "no" }, 1735 { "5", "some" }, 1736 { "423", "a lot" }, 1737 { "12345", "tons" }, 1738 { NULL, NULL } 1739 }; 1740 RuleBasedNumberFormat formatter0(rules, loc, perror, status); 1741 if (U_FAILURE(status)) { 1742 errln("failed to build second formatter"); 1743 } else { 1744 doTest(&formatter0, testData, FALSE); 1745 1746 { 1747 // exercise localization info 1748 Locale locale0("en__VALLEY@turkey=gobblegobble"); 1749 Locale locale1("de_DE_FOO"); 1750 Locale locale2("ja_JP"); 1751 UnicodeString name = formatter0.getRuleSetName(0); 1752 if ( formatter0.getRuleSetDisplayName(0, locale0) == "Main" 1753 && formatter0.getRuleSetDisplayName(0, locale1) == "das Main" 1754 && formatter0.getRuleSetDisplayName(0, locale2) == "%main" 1755 && formatter0.getRuleSetDisplayName(name, locale0) == "Main" 1756 && formatter0.getRuleSetDisplayName(name, locale1) == "das Main" 1757 && formatter0.getRuleSetDisplayName(name, locale2) == "%main"){ 1758 logln("getRuleSetDisplayName tested"); 1759 }else { 1760 errln("failed to getRuleSetDisplayName"); 1761 } 1762 } 1763 1764 for (i = 0; i < formatter0.getNumberOfRuleSetDisplayNameLocales(); ++i) { 1765 Locale locale = formatter0.getRuleSetDisplayNameLocale(i, status); 1766 if (U_SUCCESS(status)) { 1767 for (int j = 0; j < formatter0.getNumberOfRuleSetNames(); ++j) { 1768 UnicodeString name = formatter0.getRuleSetName(j); 1769 UnicodeString lname = formatter0.getRuleSetDisplayName(j, locale); 1770 UnicodeString msg = locale.getName(); 1771 msg.append(": "); 1772 msg.append(name); 1773 msg.append(" = "); 1774 msg.append(lname); 1775 logln(msg); 1776 } 1777 } 1778 } 1779 } 1780 } 1781 1782 { 1783 static const char* goodLocs[] = { 1784 "", // zero-length ok, same as providing no localization data 1785 "<<>>", // no public rule sets ok 1786 "<<%main>>", // no localizations ok 1787 "<<%main,>,<en, Main,>>", // comma before close angle ok 1788 "<<%main>,<en, ',<>\" '>>", // quotes everything until next quote 1789 "<<%main>,<'en', \"it's ok\">>", // double quotes work too 1790 " \n <\n <\n %main\n >\n , \t <\t en\t , \tfoo \t\t > \n\n > \n ", // Pattern_White_Space ok 1791 }; 1792 int32_t goodLocsLen = sizeof(goodLocs)/sizeof(goodLocs[0]); 1793 1794 static const char* badLocs[] = { 1795 " ", // non-zero length 1796 "<>", // empty array 1797 "<", // unclosed outer array 1798 "<<", // unclosed inner array 1799 "<<,>>", // unexpected comma 1800 "<<''>>", // empty string 1801 " x<<%main>>", // first non space char not open angle bracket 1802 "<%main>", // missing inner array 1803 "<<%main %other>>", // elements missing separating commma (spaces must be quoted) 1804 "<<%main><en, Main>>", // arrays missing separating comma 1805 "<<%main>,<en, main, foo>>", // too many elements in locale data 1806 "<<%main>,<en>>", // too few elements in locale data 1807 "<<<%main>>>", // unexpected open angle 1808 "<<%main<>>>", // unexpected open angle 1809 "<<%main, %other>,<en,,>>", // implicit empty strings 1810 "<<%main>,<en,''>>", // empty string 1811 "<<%main>, < en, '>>", // unterminated quote 1812 "<<%main>, < en, \"<>>", // unterminated quote 1813 "<<%main\">>", // quote in string 1814 "<<%main'>>", // quote in string 1815 "<<%main<>>", // open angle in string 1816 "<<%main>> x", // extra non-space text at end 1817 1818 }; 1819 int32_t badLocsLen = sizeof(badLocs)/sizeof(badLocs[0]); 1820 1821 for (i = 0; i < goodLocsLen; ++i) { 1822 logln("[%d] '%s'", i, goodLocs[i]); 1823 UErrorCode status = U_ZERO_ERROR; 1824 UnicodeString loc(goodLocs[i]); 1825 RuleBasedNumberFormat fmt(rules, loc, perror, status); 1826 if (U_FAILURE(status)) { 1827 errln("Failed parse of good localization string: '%s'", goodLocs[i]); 1828 } 1829 } 1830 1831 for (i = 0; i < badLocsLen; ++i) { 1832 logln("[%d] '%s'", i, badLocs[i]); 1833 UErrorCode status = U_ZERO_ERROR; 1834 UnicodeString loc(badLocs[i]); 1835 RuleBasedNumberFormat fmt(rules, loc, perror, status); 1836 if (U_SUCCESS(status)) { 1837 errln("Successful parse of bad localization string: '%s'", badLocs[i]); 1838 } 1839 } 1840 } 1841 } 1842 } 1843 1844 void 1845 IntlTestRBNF::TestAllLocales() 1846 { 1847 const char* names[] = { 1848 " (spellout) ", 1849 " (ordinal) " 1850 // " (duration) " // This is English only, and it's not really supported in CLDR anymore. 1851 }; 1852 double numbers[] = {45.678, 1, 2, 10, 11, 100, 110, 200, 1000, 1111, -1111}; 1853 1854 int32_t count = 0; 1855 const Locale* locales = Locale::getAvailableLocales(count); 1856 for (int i = 0; i < count; ++i) { 1857 const Locale* loc = &locales[i]; 1858 1859 for (int j = 0; j < 2; ++j) { 1860 UErrorCode status = U_ZERO_ERROR; 1861 RuleBasedNumberFormat* f = new RuleBasedNumberFormat((URBNFRuleSetTag)j, *loc, status); 1862 1863 if (status == U_USING_DEFAULT_WARNING || status == U_USING_FALLBACK_WARNING) { 1864 // Skip it. 1865 delete f; 1866 break; 1867 } 1868 if (U_FAILURE(status)) { 1869 errln(UnicodeString(loc->getName()) + names[j] 1870 + "ERROR could not instantiate -> " + u_errorName(status)); 1871 continue; 1872 } 1873 #if !UCONFIG_NO_COLLATION 1874 for (unsigned int numidx = 0; numidx < sizeof(numbers)/sizeof(double); numidx++) { 1875 double n = numbers[numidx]; 1876 UnicodeString str; 1877 f->format(n, str); 1878 1879 if (verbose) { 1880 logln(UnicodeString(loc->getName()) + names[j] 1881 + "success: " + n + " -> " + str); 1882 } 1883 1884 // We do not validate the result in this test case, 1885 // because there are cases which do not round trip by design. 1886 Formattable num; 1887 1888 // regular parse 1889 status = U_ZERO_ERROR; 1890 f->setLenient(FALSE); 1891 f->parse(str, num, status); 1892 if (U_FAILURE(status)) { 1893 errln(UnicodeString(loc->getName()) + names[j] 1894 + "ERROR could not parse '" + str + "' -> " + u_errorName(status)); 1895 } 1896 // We only check the spellout. The behavior is undefined for numbers < 1 and fractional numbers. 1897 if (j == 0) { 1898 if (num.getType() == Formattable::kLong && num.getLong() != n) { 1899 errln(UnicodeString(loc->getName()) + names[j] 1900 + UnicodeString("ERROR could not roundtrip ") + n 1901 + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getLong()); 1902 } 1903 else if (num.getType() == Formattable::kDouble && (int64_t)(num.getDouble() * 1000) != (int64_t)(n*1000)) { 1904 // The epsilon difference is too high. 1905 errln(UnicodeString(loc->getName()) + names[j] 1906 + UnicodeString("ERROR could not roundtrip ") + n 1907 + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getDouble()); 1908 } 1909 } 1910 if (!quick && !logKnownIssue("9503") ) { 1911 // lenient parse 1912 status = U_ZERO_ERROR; 1913 f->setLenient(TRUE); 1914 f->parse(str, num, status); 1915 if (U_FAILURE(status)) { 1916 errln(UnicodeString(loc->getName()) + names[j] 1917 + "ERROR could not parse(lenient) '" + str + "' -> " + u_errorName(status)); 1918 } 1919 // We only check the spellout. The behavior is undefined for numbers < 1 and fractional numbers. 1920 if (j == 0) { 1921 if (num.getType() == Formattable::kLong && num.getLong() != n) { 1922 errln(UnicodeString(loc->getName()) + names[j] 1923 + UnicodeString("ERROR could not roundtrip ") + n 1924 + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getLong()); 1925 } 1926 else if (num.getType() == Formattable::kDouble && (int64_t)(num.getDouble() * 1000) != (int64_t)(n*1000)) { 1927 // The epsilon difference is too high. 1928 errln(UnicodeString(loc->getName()) + names[j] 1929 + UnicodeString("ERROR could not roundtrip ") + n 1930 + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getDouble()); 1931 } 1932 } 1933 } 1934 } 1935 #endif 1936 delete f; 1937 } 1938 } 1939 } 1940 1941 void 1942 IntlTestRBNF::TestMultiplierSubstitution(void) { 1943 UnicodeString rules("=#,##0=;1,000,000: <##0.###< million;"); 1944 UErrorCode status = U_ZERO_ERROR; 1945 UParseError parse_error; 1946 RuleBasedNumberFormat *rbnf = 1947 new RuleBasedNumberFormat(rules, Locale::getUS(), parse_error, status); 1948 if (U_SUCCESS(status)) { 1949 UnicodeString res; 1950 FieldPosition pos; 1951 double n = 1234000.0; 1952 rbnf->format(n, res, pos); 1953 delete rbnf; 1954 1955 UnicodeString expected(UNICODE_STRING_SIMPLE("1.234 million")); 1956 if (expected != res) { 1957 UnicodeString msg = "Expected: "; 1958 msg.append(expected); 1959 msg.append(" but got "); 1960 msg.append(res); 1961 errln(msg); 1962 } 1963 } 1964 } 1965 1966 void 1967 IntlTestRBNF::TestSetDecimalFormatSymbols() { 1968 UErrorCode status = U_ZERO_ERROR; 1969 1970 RuleBasedNumberFormat rbnf(URBNF_ORDINAL, Locale::getEnglish(), status); 1971 if (U_FAILURE(status)) { 1972 dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); 1973 return; 1974 } 1975 1976 DecimalFormatSymbols dfs(Locale::getEnglish(), status); 1977 if (U_FAILURE(status)) { 1978 errln("Unable to create DecimalFormatSymbols - " + UnicodeString(u_errorName(status))); 1979 return; 1980 } 1981 1982 UnicodeString expected[] = { 1983 UnicodeString("1,001st"), 1984 UnicodeString("1&001st") 1985 }; 1986 1987 double number = 1001; 1988 1989 UnicodeString result; 1990 1991 rbnf.format(number, result); 1992 if (result != expected[0]) { 1993 errln("Format Error - Got: " + result + " Expected: " + expected[0]); 1994 } 1995 1996 result.remove(); 1997 1998 /* Set new symbol for testing */ 1999 dfs.setSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol, UnicodeString("&"), TRUE); 2000 rbnf.setDecimalFormatSymbols(dfs); 2001 2002 rbnf.format(number, result); 2003 if (result != expected[1]) { 2004 errln("Format Error - Got: " + result + " Expected: " + expected[1]); 2005 } 2006 } 2007 2008 void IntlTestRBNF::TestPluralRules() { 2009 UErrorCode status = U_ZERO_ERROR; 2010 UnicodeString enRules("%digits-ordinal:-x: ->>;0: =#,##0=$(ordinal,one{st}two{nd}few{rd}other{th})$;"); 2011 UParseError parseError; 2012 RuleBasedNumberFormat enFormatter(enRules, Locale::getEnglish(), parseError, status); 2013 if (U_FAILURE(status)) { 2014 dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); 2015 return; 2016 } 2017 const char* const enTestData[][2] = { 2018 { "1", "1st" }, 2019 { "2", "2nd" }, 2020 { "3", "3rd" }, 2021 { "4", "4th" }, 2022 { "11", "11th" }, 2023 { "12", "12th" }, 2024 { "13", "13th" }, 2025 { "14", "14th" }, 2026 { "21", "21st" }, 2027 { "22", "22nd" }, 2028 { "23", "23rd" }, 2029 { "24", "24th" }, 2030 { NULL, NULL } 2031 }; 2032 2033 doTest(&enFormatter, enTestData, TRUE); 2034 2035 // This is trying to model the feminine form, but don't worry about the details too much. 2036 // We're trying to test the plural rules. 2037 UnicodeString ruRules("%spellout-numbering:" 2038 "-x: minus >>;" 2039 "x.x: << point >>;" 2040 "0: zero;" 2041 "1: one;" 2042 "2: two;" 2043 "3: three;" 2044 "4: four;" 2045 "5: five;" 2046 "6: six;" 2047 "7: seven;" 2048 "8: eight;" 2049 "9: nine;" 2050 "10: ten;" 2051 "11: eleven;" 2052 "12: twelve;" 2053 "13: thirteen;" 2054 "14: fourteen;" 2055 "15: fifteen;" 2056 "16: sixteen;" 2057 "17: seventeen;" 2058 "18: eighteen;" 2059 "19: nineteen;" 2060 "20: twenty[->>];" 2061 "30: thirty[->>];" 2062 "40: forty[->>];" 2063 "50: fifty[->>];" 2064 "60: sixty[->>];" 2065 "70: seventy[->>];" 2066 "80: eighty[->>];" 2067 "90: ninety[->>];" 2068 "100: hundred[ >>];" 2069 "200: << hundred[ >>];" 2070 "300: << hundreds[ >>];" 2071 "500: << hundredss[ >>];" 2072 "1000: << $(cardinal,one{thousand}few{thousands}other{thousandss})$[ >>];" 2073 "1000000: << $(cardinal,one{million}few{millions}other{millionss})$[ >>];"); 2074 RuleBasedNumberFormat ruFormatter(ruRules, Locale("ru"), parseError, status); 2075 const char* const ruTestData[][2] = { 2076 { "1", "one" }, 2077 { "100", "hundred" }, 2078 { "125", "hundred twenty-five" }, 2079 { "399", "three hundreds ninety-nine" }, 2080 { "1,000", "one thousand" }, 2081 { "1,001", "one thousand one" }, 2082 { "2,000", "two thousands" }, 2083 { "2,001", "two thousands one" }, 2084 { "2,002", "two thousands two" }, 2085 { "3,333", "three thousands three hundreds thirty-three" }, 2086 { "5,000", "five thousandss" }, 2087 { "11,000", "eleven thousandss" }, 2088 { "21,000", "twenty-one thousand" }, 2089 { "22,000", "twenty-two thousands" }, 2090 { "25,001", "twenty-five thousandss one" }, 2091 { NULL, NULL } 2092 }; 2093 2094 if (U_FAILURE(status)) { 2095 errln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); 2096 return; 2097 } 2098 doTest(&ruFormatter, ruTestData, TRUE); 2099 2100 // Make sure there are no divide by 0 errors. 2101 UnicodeString result; 2102 RuleBasedNumberFormat(ruRules, Locale("ru"), parseError, status).format(21000, result); 2103 if (result.compare(UNICODE_STRING_SIMPLE("twenty-one thousand")) != 0) { 2104 errln("Got " + result + " for 21000"); 2105 } 2106 2107 } 2108 2109 void 2110 IntlTestRBNF::doTest(RuleBasedNumberFormat* formatter, const char* const testData[][2], UBool testParsing) 2111 { 2112 // man, error reporting would be easier with printf-style syntax for unicode string and formattable 2113 2114 UErrorCode status = U_ZERO_ERROR; 2115 DecimalFormatSymbols dfs("en", status); 2116 // NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status); 2117 DecimalFormat decFmt("#,###.################", dfs, status); 2118 if (U_FAILURE(status)) { 2119 errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorName(status)); 2120 } else { 2121 for (int i = 0; testData[i][0]; ++i) { 2122 const char* numString = testData[i][0]; 2123 const char* expectedWords = testData[i][1]; 2124 2125 log("[%i] %s = ", i, numString); 2126 Formattable expectedNumber; 2127 decFmt.parse(numString, expectedNumber, status); 2128 if (U_FAILURE(status)) { 2129 errln("FAIL: decFmt could not parse %s", numString); 2130 break; 2131 } else { 2132 UnicodeString actualString; 2133 FieldPosition pos; 2134 formatter->format(expectedNumber, actualString/* , pos*/, status); 2135 if (U_FAILURE(status)) { 2136 UnicodeString msg = "Fail: formatter could not format "; 2137 decFmt.format(expectedNumber, msg, status); 2138 errln(msg); 2139 break; 2140 } else { 2141 UnicodeString expectedString = UnicodeString(expectedWords, -1, US_INV).unescape(); 2142 if (actualString != expectedString) { 2143 UnicodeString msg = "FAIL: check failed for "; 2144 decFmt.format(expectedNumber, msg, status); 2145 msg.append(", expected "); 2146 msg.append(expectedString); 2147 msg.append(" but got "); 2148 msg.append(actualString); 2149 errln(msg); 2150 break; 2151 } else { 2152 logln(actualString); 2153 if (testParsing) { 2154 Formattable parsedNumber; 2155 formatter->parse(actualString, parsedNumber, status); 2156 if (U_FAILURE(status)) { 2157 UnicodeString msg = "FAIL: formatter could not parse "; 2158 msg.append(actualString); 2159 msg.append(" status code: " ); 2160 msg.append(u_errorName(status)); 2161 errln(msg); 2162 break; 2163 } else { 2164 if (parsedNumber != expectedNumber) { 2165 UnicodeString msg = "FAIL: parse failed for "; 2166 msg.append(actualString); 2167 msg.append(", expected "); 2168 decFmt.format(expectedNumber, msg, status); 2169 msg.append(", but got "); 2170 decFmt.format(parsedNumber, msg, status); 2171 errln(msg); 2172 break; 2173 } 2174 } 2175 } 2176 } 2177 } 2178 } 2179 } 2180 } 2181 } 2182 2183 void 2184 IntlTestRBNF::doLenientParseTest(RuleBasedNumberFormat* formatter, const char* testData[][2]) 2185 { 2186 UErrorCode status = U_ZERO_ERROR; 2187 NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status); 2188 if (U_FAILURE(status)) { 2189 errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorName(status)); 2190 } else { 2191 for (int i = 0; testData[i][0]; ++i) { 2192 const char* spelledNumber = testData[i][0]; // spelled-out number 2193 const char* asciiUSNumber = testData[i][1]; // number as ascii digits formatted for US locale 2194 2195 UnicodeString spelledNumberString = UnicodeString(spelledNumber).unescape(); 2196 Formattable actualNumber; 2197 formatter->parse(spelledNumberString, actualNumber, status); 2198 if (U_FAILURE(status)) { 2199 UnicodeString msg = "FAIL: formatter could not parse "; 2200 msg.append(spelledNumberString); 2201 errln(msg); 2202 break; 2203 } else { 2204 // I changed the logic of this test somewhat from Java-- instead of comparing the 2205 // strings, I compare the Formattables. Hmmm, but the Formattables don't compare, 2206 // so change it back. 2207 2208 UnicodeString asciiUSNumberString = asciiUSNumber; 2209 Formattable expectedNumber; 2210 decFmt->parse(asciiUSNumberString, expectedNumber, status); 2211 if (U_FAILURE(status)) { 2212 UnicodeString msg = "FAIL: decFmt could not parse "; 2213 msg.append(asciiUSNumberString); 2214 errln(msg); 2215 break; 2216 } else { 2217 UnicodeString actualNumberString; 2218 UnicodeString expectedNumberString; 2219 decFmt->format(actualNumber, actualNumberString, status); 2220 decFmt->format(expectedNumber, expectedNumberString, status); 2221 if (actualNumberString != expectedNumberString) { 2222 UnicodeString msg = "FAIL: parsing"; 2223 msg.append(asciiUSNumberString); 2224 msg.append("\n"); 2225 msg.append(" lenient parse failed for "); 2226 msg.append(spelledNumberString); 2227 msg.append(", expected "); 2228 msg.append(expectedNumberString); 2229 msg.append(", but got "); 2230 msg.append(actualNumberString); 2231 errln(msg); 2232 break; 2233 } 2234 } 2235 } 2236 } 2237 delete decFmt; 2238 } 2239 } 2240 2241 /* U_HAVE_RBNF */ 2242 #else 2243 2244 void 2245 IntlTestRBNF::TestRBNFDisabled() { 2246 errln("*** RBNF currently disabled on this platform ***\n"); 2247 } 2248 2249 /* U_HAVE_RBNF */ 2250 #endif 2251 2252 #endif /* #if !UCONFIG_NO_FORMATTING */ 2253