Home | History | Annotate | Download | only in utils
      1 /*
      2  * Copyright 2014 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkPatchUtils.h"
      9 
     10 #include "SkColorPriv.h"
     11 #include "SkGeometry.h"
     12 
     13 /**
     14  * Evaluator to sample the values of a cubic bezier using forward differences.
     15  * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only
     16  * adding precalculated values.
     17  * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h
     18  * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first
     19  * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After
     20  * obtaining this value (mh) we could just add this constant step to our first sampled point
     21  * to compute the next one.
     22  *
     23  * For the cubic case the first difference gives as a result a quadratic polynomial to which we can
     24  * apply again forward differences and get linear function to which we can apply again forward
     25  * differences to get a constant difference. This is why we keep an array of size 4, the 0th
     26  * position keeps the sampled value while the next ones keep the quadratic, linear and constant
     27  * difference values.
     28  */
     29 
     30 class FwDCubicEvaluator {
     31 
     32 public:
     33     FwDCubicEvaluator()
     34     : fMax(0)
     35     , fCurrent(0)
     36     , fDivisions(0) {
     37         memset(fPoints, 0, 4 * sizeof(SkPoint));
     38         memset(fPoints, 0, 4 * sizeof(SkPoint));
     39         memset(fPoints, 0, 4 * sizeof(SkPoint));
     40     }
     41 
     42     /**
     43      * Receives the 4 control points of the cubic bezier.
     44      */
     45     FwDCubicEvaluator(SkPoint a, SkPoint b, SkPoint c, SkPoint d) {
     46         fPoints[0] = a;
     47         fPoints[1] = b;
     48         fPoints[2] = c;
     49         fPoints[3] = d;
     50 
     51         SkCubicToCoeff(fPoints, fCoefs);
     52 
     53         this->restart(1);
     54     }
     55 
     56     explicit FwDCubicEvaluator(const SkPoint points[4])  {
     57         memcpy(fPoints, points, 4 * sizeof(SkPoint));
     58 
     59         SkCubicToCoeff(fPoints, fCoefs);
     60 
     61         this->restart(1);
     62     }
     63 
     64     /**
     65      * Restarts the forward differences evaluator to the first value of t = 0.
     66      */
     67     void restart(int divisions)  {
     68         fDivisions = divisions;
     69         SkScalar h  = 1.f / fDivisions;
     70         fCurrent    = 0;
     71         fMax        = fDivisions + 1;
     72         fFwDiff[0]  = fCoefs[3];
     73         SkScalar h2 = h * h;
     74         SkScalar h3 = h2 * h;
     75 
     76         fFwDiff[3].set(6.f * fCoefs[0].x() * h3, 6.f * fCoefs[0].y() * h3); //6ah^3
     77         fFwDiff[2].set(fFwDiff[3].x() + 2.f * fCoefs[1].x() * h2, //6ah^3 + 2bh^2
     78                        fFwDiff[3].y() + 2.f * fCoefs[1].y() * h2);
     79         fFwDiff[1].set(fCoefs[0].x() * h3 + fCoefs[1].x() * h2 + fCoefs[2].x() * h,//ah^3 + bh^2 +ch
     80                        fCoefs[0].y() * h3 + fCoefs[1].y() * h2 + fCoefs[2].y() * h);
     81     }
     82 
     83     /**
     84      * Check if the evaluator is still within the range of 0<=t<=1
     85      */
     86     bool done() const {
     87         return fCurrent > fMax;
     88     }
     89 
     90     /**
     91      * Call next to obtain the SkPoint sampled and move to the next one.
     92      */
     93     SkPoint next() {
     94         SkPoint point = fFwDiff[0];
     95         fFwDiff[0]    += fFwDiff[1];
     96         fFwDiff[1]    += fFwDiff[2];
     97         fFwDiff[2]    += fFwDiff[3];
     98         fCurrent++;
     99         return point;
    100     }
    101 
    102     const SkPoint* getCtrlPoints() const {
    103         return fPoints;
    104     }
    105 
    106 private:
    107     int fMax, fCurrent, fDivisions;
    108     SkPoint fFwDiff[4], fCoefs[4], fPoints[4];
    109 };
    110 
    111 ////////////////////////////////////////////////////////////////////////////////
    112 
    113 // size in pixels of each partition per axis, adjust this knob
    114 static const int kPartitionSize = 10;
    115 
    116 /**
    117  * Calculate the approximate arc length given a bezier curve's control points.
    118  */
    119 static SkScalar approx_arc_length(SkPoint* points, int count) {
    120     if (count < 2) {
    121         return 0;
    122     }
    123     SkScalar arcLength = 0;
    124     for (int i = 0; i < count - 1; i++) {
    125         arcLength += SkPoint::Distance(points[i], points[i + 1]);
    126     }
    127     return arcLength;
    128 }
    129 
    130 static SkScalar bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01,
    131                       SkScalar c11) {
    132     SkScalar a = c00 * (1.f - tx) + c10 * tx;
    133     SkScalar b = c01 * (1.f - tx) + c11 * tx;
    134     return a * (1.f - ty) + b * ty;
    135 }
    136 
    137 SkISize SkPatchUtils::GetLevelOfDetail(const SkPoint cubics[12], const SkMatrix* matrix) {
    138 
    139     // Approximate length of each cubic.
    140     SkPoint pts[kNumPtsCubic];
    141     SkPatchUtils::getTopCubic(cubics, pts);
    142     matrix->mapPoints(pts, kNumPtsCubic);
    143     SkScalar topLength = approx_arc_length(pts, kNumPtsCubic);
    144 
    145     SkPatchUtils::getBottomCubic(cubics, pts);
    146     matrix->mapPoints(pts, kNumPtsCubic);
    147     SkScalar bottomLength = approx_arc_length(pts, kNumPtsCubic);
    148 
    149     SkPatchUtils::getLeftCubic(cubics, pts);
    150     matrix->mapPoints(pts, kNumPtsCubic);
    151     SkScalar leftLength = approx_arc_length(pts, kNumPtsCubic);
    152 
    153     SkPatchUtils::getRightCubic(cubics, pts);
    154     matrix->mapPoints(pts, kNumPtsCubic);
    155     SkScalar rightLength = approx_arc_length(pts, kNumPtsCubic);
    156 
    157     // Level of detail per axis, based on the larger side between top and bottom or left and right
    158     int lodX = static_cast<int>(SkMaxScalar(topLength, bottomLength) / kPartitionSize);
    159     int lodY = static_cast<int>(SkMaxScalar(leftLength, rightLength) / kPartitionSize);
    160 
    161     return SkISize::Make(SkMax32(8, lodX), SkMax32(8, lodY));
    162 }
    163 
    164 void SkPatchUtils::getTopCubic(const SkPoint cubics[12], SkPoint points[4]) {
    165     points[0] = cubics[kTopP0_CubicCtrlPts];
    166     points[1] = cubics[kTopP1_CubicCtrlPts];
    167     points[2] = cubics[kTopP2_CubicCtrlPts];
    168     points[3] = cubics[kTopP3_CubicCtrlPts];
    169 }
    170 
    171 void SkPatchUtils::getBottomCubic(const SkPoint cubics[12], SkPoint points[4]) {
    172     points[0] = cubics[kBottomP0_CubicCtrlPts];
    173     points[1] = cubics[kBottomP1_CubicCtrlPts];
    174     points[2] = cubics[kBottomP2_CubicCtrlPts];
    175     points[3] = cubics[kBottomP3_CubicCtrlPts];
    176 }
    177 
    178 void SkPatchUtils::getLeftCubic(const SkPoint cubics[12], SkPoint points[4]) {
    179     points[0] = cubics[kLeftP0_CubicCtrlPts];
    180     points[1] = cubics[kLeftP1_CubicCtrlPts];
    181     points[2] = cubics[kLeftP2_CubicCtrlPts];
    182     points[3] = cubics[kLeftP3_CubicCtrlPts];
    183 }
    184 
    185 void SkPatchUtils::getRightCubic(const SkPoint cubics[12], SkPoint points[4]) {
    186     points[0] = cubics[kRightP0_CubicCtrlPts];
    187     points[1] = cubics[kRightP1_CubicCtrlPts];
    188     points[2] = cubics[kRightP2_CubicCtrlPts];
    189     points[3] = cubics[kRightP3_CubicCtrlPts];
    190 }
    191 
    192 bool SkPatchUtils::getVertexData(SkPatchUtils::VertexData* data, const SkPoint cubics[12],
    193                    const SkColor colors[4], const SkPoint texCoords[4], int lodX, int lodY) {
    194     if (lodX < 1 || lodY < 1 || NULL == cubics || NULL == data) {
    195         return false;
    196     }
    197 
    198     // check for overflow in multiplication
    199     const int64_t lodX64 = (lodX + 1),
    200                    lodY64 = (lodY + 1),
    201                    mult64 = lodX64 * lodY64;
    202     if (mult64 > SK_MaxS32) {
    203         return false;
    204     }
    205     data->fVertexCount = SkToS32(mult64);
    206 
    207     // it is recommended to generate draw calls of no more than 65536 indices, so we never generate
    208     // more than 60000 indices. To accomplish that we resize the LOD and vertex count
    209     if (data->fVertexCount > 10000 || lodX > 200 || lodY > 200) {
    210         SkScalar weightX = static_cast<SkScalar>(lodX) / (lodX + lodY);
    211         SkScalar weightY = static_cast<SkScalar>(lodY) / (lodX + lodY);
    212 
    213         // 200 comes from the 100 * 2 which is the max value of vertices because of the limit of
    214         // 60000 indices ( sqrt(60000 / 6) that comes from data->fIndexCount = lodX * lodY * 6)
    215         lodX = static_cast<int>(weightX * 200);
    216         lodY = static_cast<int>(weightY * 200);
    217         data->fVertexCount = (lodX + 1) * (lodY + 1);
    218     }
    219     data->fIndexCount = lodX * lodY * 6;
    220 
    221     data->fPoints = SkNEW_ARRAY(SkPoint, data->fVertexCount);
    222     data->fIndices = SkNEW_ARRAY(uint16_t, data->fIndexCount);
    223 
    224     // if colors is not null then create array for colors
    225     SkPMColor colorsPM[kNumCorners];
    226     if (colors) {
    227         // premultiply colors to avoid color bleeding.
    228         for (int i = 0; i < kNumCorners; i++) {
    229             colorsPM[i] = SkPreMultiplyColor(colors[i]);
    230         }
    231         data->fColors = SkNEW_ARRAY(uint32_t, data->fVertexCount);
    232     }
    233 
    234     // if texture coordinates are not null then create array for them
    235     if (texCoords) {
    236         data->fTexCoords = SkNEW_ARRAY(SkPoint, data->fVertexCount);
    237     }
    238 
    239     SkPoint pts[kNumPtsCubic];
    240     SkPatchUtils::getBottomCubic(cubics, pts);
    241     FwDCubicEvaluator fBottom(pts);
    242     SkPatchUtils::getTopCubic(cubics, pts);
    243     FwDCubicEvaluator fTop(pts);
    244     SkPatchUtils::getLeftCubic(cubics, pts);
    245     FwDCubicEvaluator fLeft(pts);
    246     SkPatchUtils::getRightCubic(cubics, pts);
    247     FwDCubicEvaluator fRight(pts);
    248 
    249     fBottom.restart(lodX);
    250     fTop.restart(lodX);
    251 
    252     SkScalar u = 0.0f;
    253     int stride = lodY + 1;
    254     for (int x = 0; x <= lodX; x++) {
    255         SkPoint bottom = fBottom.next(), top = fTop.next();
    256         fLeft.restart(lodY);
    257         fRight.restart(lodY);
    258         SkScalar v = 0.f;
    259         for (int y = 0; y <= lodY; y++) {
    260             int dataIndex = x * (lodY + 1) + y;
    261 
    262             SkPoint left = fLeft.next(), right = fRight.next();
    263 
    264             SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(),
    265                                        (1.0f - v) * top.y() + v * bottom.y());
    266             SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(),
    267                                        (1.0f - u) * left.y() + u * right.y());
    268             SkPoint s2 = SkPoint::Make(
    269                                        (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x()
    270                                                      + u * fTop.getCtrlPoints()[3].x())
    271                                        + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x()
    272                                               + u * fBottom.getCtrlPoints()[3].x()),
    273                                        (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y()
    274                                                      + u * fTop.getCtrlPoints()[3].y())
    275                                        + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y()
    276                                               + u * fBottom.getCtrlPoints()[3].y()));
    277             data->fPoints[dataIndex] = s0 + s1 - s2;
    278 
    279             if (colors) {
    280                 uint8_t a = uint8_t(bilerp(u, v,
    281                                    SkScalar(SkColorGetA(colorsPM[kTopLeft_Corner])),
    282                                    SkScalar(SkColorGetA(colorsPM[kTopRight_Corner])),
    283                                    SkScalar(SkColorGetA(colorsPM[kBottomLeft_Corner])),
    284                                    SkScalar(SkColorGetA(colorsPM[kBottomRight_Corner]))));
    285                 uint8_t r = uint8_t(bilerp(u, v,
    286                                    SkScalar(SkColorGetR(colorsPM[kTopLeft_Corner])),
    287                                    SkScalar(SkColorGetR(colorsPM[kTopRight_Corner])),
    288                                    SkScalar(SkColorGetR(colorsPM[kBottomLeft_Corner])),
    289                                    SkScalar(SkColorGetR(colorsPM[kBottomRight_Corner]))));
    290                 uint8_t g = uint8_t(bilerp(u, v,
    291                                    SkScalar(SkColorGetG(colorsPM[kTopLeft_Corner])),
    292                                    SkScalar(SkColorGetG(colorsPM[kTopRight_Corner])),
    293                                    SkScalar(SkColorGetG(colorsPM[kBottomLeft_Corner])),
    294                                    SkScalar(SkColorGetG(colorsPM[kBottomRight_Corner]))));
    295                 uint8_t b = uint8_t(bilerp(u, v,
    296                                    SkScalar(SkColorGetB(colorsPM[kTopLeft_Corner])),
    297                                    SkScalar(SkColorGetB(colorsPM[kTopRight_Corner])),
    298                                    SkScalar(SkColorGetB(colorsPM[kBottomLeft_Corner])),
    299                                    SkScalar(SkColorGetB(colorsPM[kBottomRight_Corner]))));
    300                 data->fColors[dataIndex] = SkPackARGB32(a,r,g,b);
    301             }
    302 
    303             if (texCoords) {
    304                 data->fTexCoords[dataIndex] = SkPoint::Make(
    305                                             bilerp(u, v, texCoords[kTopLeft_Corner].x(),
    306                                                    texCoords[kTopRight_Corner].x(),
    307                                                    texCoords[kBottomLeft_Corner].x(),
    308                                                    texCoords[kBottomRight_Corner].x()),
    309                                             bilerp(u, v, texCoords[kTopLeft_Corner].y(),
    310                                                    texCoords[kTopRight_Corner].y(),
    311                                                    texCoords[kBottomLeft_Corner].y(),
    312                                                    texCoords[kBottomRight_Corner].y()));
    313 
    314             }
    315 
    316             if(x < lodX && y < lodY) {
    317                 int i = 6 * (x * lodY + y);
    318                 data->fIndices[i] = x * stride + y;
    319                 data->fIndices[i + 1] = x * stride + 1 + y;
    320                 data->fIndices[i + 2] = (x + 1) * stride + 1 + y;
    321                 data->fIndices[i + 3] = data->fIndices[i];
    322                 data->fIndices[i + 4] = data->fIndices[i + 2];
    323                 data->fIndices[i + 5] = (x + 1) * stride + y;
    324             }
    325             v = SkScalarClampMax(v + 1.f / lodY, 1);
    326         }
    327         u = SkScalarClampMax(u + 1.f / lodX, 1);
    328     }
    329     return true;
    330 
    331 }
    332