1 /* 2 * Copyright (C) 2009 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 //#define LOG_NDEBUG 0 18 #define LOG_TAG "keystore" 19 20 #include <stdio.h> 21 #include <stdint.h> 22 #include <string.h> 23 #include <strings.h> 24 #include <unistd.h> 25 #include <signal.h> 26 #include <errno.h> 27 #include <dirent.h> 28 #include <errno.h> 29 #include <fcntl.h> 30 #include <limits.h> 31 #include <assert.h> 32 #include <sys/types.h> 33 #include <sys/socket.h> 34 #include <sys/stat.h> 35 #include <sys/time.h> 36 #include <arpa/inet.h> 37 38 #include <openssl/aes.h> 39 #include <openssl/bio.h> 40 #include <openssl/evp.h> 41 #include <openssl/md5.h> 42 #include <openssl/pem.h> 43 44 #include <hardware/keymaster0.h> 45 46 #include <keymaster/soft_keymaster_device.h> 47 #include <keymaster/soft_keymaster_logger.h> 48 #include <keymaster/softkeymaster.h> 49 50 #include <UniquePtr.h> 51 #include <utils/String8.h> 52 #include <utils/Vector.h> 53 54 #include <keystore/IKeystoreService.h> 55 #include <binder/IPCThreadState.h> 56 #include <binder/IServiceManager.h> 57 58 #include <cutils/log.h> 59 #include <cutils/sockets.h> 60 #include <private/android_filesystem_config.h> 61 62 #include <keystore/keystore.h> 63 64 #include <selinux/android.h> 65 66 #include <sstream> 67 68 #include "auth_token_table.h" 69 #include "defaults.h" 70 #include "keystore_keymaster_enforcement.h" 71 #include "operation.h" 72 73 /* KeyStore is a secured storage for key-value pairs. In this implementation, 74 * each file stores one key-value pair. Keys are encoded in file names, and 75 * values are encrypted with checksums. The encryption key is protected by a 76 * user-defined password. To keep things simple, buffers are always larger than 77 * the maximum space we needed, so boundary checks on buffers are omitted. */ 78 79 #define KEY_SIZE ((NAME_MAX - 15) / 2) 80 #define VALUE_SIZE 32768 81 #define PASSWORD_SIZE VALUE_SIZE 82 83 84 struct BIGNUM_Delete { 85 void operator()(BIGNUM* p) const { 86 BN_free(p); 87 } 88 }; 89 typedef UniquePtr<BIGNUM, BIGNUM_Delete> Unique_BIGNUM; 90 91 struct BIO_Delete { 92 void operator()(BIO* p) const { 93 BIO_free(p); 94 } 95 }; 96 typedef UniquePtr<BIO, BIO_Delete> Unique_BIO; 97 98 struct EVP_PKEY_Delete { 99 void operator()(EVP_PKEY* p) const { 100 EVP_PKEY_free(p); 101 } 102 }; 103 typedef UniquePtr<EVP_PKEY, EVP_PKEY_Delete> Unique_EVP_PKEY; 104 105 struct PKCS8_PRIV_KEY_INFO_Delete { 106 void operator()(PKCS8_PRIV_KEY_INFO* p) const { 107 PKCS8_PRIV_KEY_INFO_free(p); 108 } 109 }; 110 typedef UniquePtr<PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_Delete> Unique_PKCS8_PRIV_KEY_INFO; 111 112 static int keymaster_device_initialize(keymaster1_device_t** dev) { 113 int rc; 114 115 const hw_module_t* mod; 116 keymaster::SoftKeymasterDevice* softkeymaster = NULL; 117 rc = hw_get_module_by_class(KEYSTORE_HARDWARE_MODULE_ID, NULL, &mod); 118 if (rc) { 119 ALOGE("could not find any keystore module"); 120 goto out; 121 } 122 123 rc = mod->methods->open(mod, KEYSTORE_KEYMASTER, reinterpret_cast<struct hw_device_t**>(dev)); 124 if (rc) { 125 ALOGE("could not open keymaster device in %s (%s)", 126 KEYSTORE_HARDWARE_MODULE_ID, strerror(-rc)); 127 goto out; 128 } 129 130 // Wrap older hardware modules with a softkeymaster adapter. 131 if ((*dev)->common.module->module_api_version >= KEYMASTER_MODULE_API_VERSION_1_0) { 132 return 0; 133 } 134 softkeymaster = 135 new keymaster::SoftKeymasterDevice(reinterpret_cast<keymaster0_device_t*>(*dev)); 136 *dev = softkeymaster->keymaster_device(); 137 return 0; 138 139 out: 140 *dev = NULL; 141 return rc; 142 } 143 144 // softkeymaster_logger appears not to be used in keystore, but it installs itself as the 145 // logger used by SoftKeymasterDevice. 146 static keymaster::SoftKeymasterLogger softkeymaster_logger; 147 148 static int fallback_keymaster_device_initialize(keymaster1_device_t** dev) { 149 keymaster::SoftKeymasterDevice* softkeymaster = 150 new keymaster::SoftKeymasterDevice(); 151 *dev = softkeymaster->keymaster_device(); 152 // softkeymaster will be freed by *dev->close_device; don't delete here. 153 return 0; 154 } 155 156 static void keymaster_device_release(keymaster1_device_t* dev) { 157 dev->common.close(&dev->common); 158 } 159 160 /*************** 161 * PERMISSIONS * 162 ***************/ 163 164 /* Here are the permissions, actions, users, and the main function. */ 165 typedef enum { 166 P_GET_STATE = 1 << 0, 167 P_GET = 1 << 1, 168 P_INSERT = 1 << 2, 169 P_DELETE = 1 << 3, 170 P_EXIST = 1 << 4, 171 P_LIST = 1 << 5, 172 P_RESET = 1 << 6, 173 P_PASSWORD = 1 << 7, 174 P_LOCK = 1 << 8, 175 P_UNLOCK = 1 << 9, 176 P_IS_EMPTY = 1 << 10, 177 P_SIGN = 1 << 11, 178 P_VERIFY = 1 << 12, 179 P_GRANT = 1 << 13, 180 P_DUPLICATE = 1 << 14, 181 P_CLEAR_UID = 1 << 15, 182 P_ADD_AUTH = 1 << 16, 183 P_USER_CHANGED = 1 << 17, 184 } perm_t; 185 186 static struct user_euid { 187 uid_t uid; 188 uid_t euid; 189 } user_euids[] = { 190 {AID_VPN, AID_SYSTEM}, 191 {AID_WIFI, AID_SYSTEM}, 192 {AID_ROOT, AID_SYSTEM}, 193 }; 194 195 /* perm_labels associcated with keystore_key SELinux class verbs. */ 196 const char *perm_labels[] = { 197 "get_state", 198 "get", 199 "insert", 200 "delete", 201 "exist", 202 "list", 203 "reset", 204 "password", 205 "lock", 206 "unlock", 207 "is_empty", 208 "sign", 209 "verify", 210 "grant", 211 "duplicate", 212 "clear_uid", 213 "add_auth", 214 "user_changed", 215 }; 216 217 static struct user_perm { 218 uid_t uid; 219 perm_t perms; 220 } user_perms[] = { 221 {AID_SYSTEM, static_cast<perm_t>((uint32_t)(~0)) }, 222 {AID_VPN, static_cast<perm_t>(P_GET | P_SIGN | P_VERIFY) }, 223 {AID_WIFI, static_cast<perm_t>(P_GET | P_SIGN | P_VERIFY) }, 224 {AID_ROOT, static_cast<perm_t>(P_GET) }, 225 }; 226 227 static const perm_t DEFAULT_PERMS = static_cast<perm_t>(P_GET_STATE | P_GET | P_INSERT | P_DELETE 228 | P_EXIST | P_LIST | P_SIGN | P_VERIFY); 229 230 static char *tctx; 231 static int ks_is_selinux_enabled; 232 233 static const char *get_perm_label(perm_t perm) { 234 unsigned int index = ffs(perm); 235 if (index > 0 && index <= (sizeof(perm_labels) / sizeof(perm_labels[0]))) { 236 return perm_labels[index - 1]; 237 } else { 238 ALOGE("Keystore: Failed to retrieve permission label.\n"); 239 abort(); 240 } 241 } 242 243 /** 244 * Returns the app ID (in the Android multi-user sense) for the current 245 * UNIX UID. 246 */ 247 static uid_t get_app_id(uid_t uid) { 248 return uid % AID_USER; 249 } 250 251 /** 252 * Returns the user ID (in the Android multi-user sense) for the current 253 * UNIX UID. 254 */ 255 static uid_t get_user_id(uid_t uid) { 256 return uid / AID_USER; 257 } 258 259 static bool keystore_selinux_check_access(uid_t /*uid*/, perm_t perm, pid_t spid) { 260 if (!ks_is_selinux_enabled) { 261 return true; 262 } 263 264 char *sctx = NULL; 265 const char *selinux_class = "keystore_key"; 266 const char *str_perm = get_perm_label(perm); 267 268 if (!str_perm) { 269 return false; 270 } 271 272 if (getpidcon(spid, &sctx) != 0) { 273 ALOGE("SELinux: Failed to get source pid context.\n"); 274 return false; 275 } 276 277 bool allowed = selinux_check_access(sctx, tctx, selinux_class, str_perm, 278 NULL) == 0; 279 freecon(sctx); 280 return allowed; 281 } 282 283 static bool has_permission(uid_t uid, perm_t perm, pid_t spid) { 284 // All system users are equivalent for multi-user support. 285 if (get_app_id(uid) == AID_SYSTEM) { 286 uid = AID_SYSTEM; 287 } 288 289 for (size_t i = 0; i < sizeof(user_perms)/sizeof(user_perms[0]); i++) { 290 struct user_perm user = user_perms[i]; 291 if (user.uid == uid) { 292 return (user.perms & perm) && 293 keystore_selinux_check_access(uid, perm, spid); 294 } 295 } 296 297 return (DEFAULT_PERMS & perm) && 298 keystore_selinux_check_access(uid, perm, spid); 299 } 300 301 /** 302 * Returns the UID that the callingUid should act as. This is here for 303 * legacy support of the WiFi and VPN systems and should be removed 304 * when WiFi can operate in its own namespace. 305 */ 306 static uid_t get_keystore_euid(uid_t uid) { 307 for (size_t i = 0; i < sizeof(user_euids)/sizeof(user_euids[0]); i++) { 308 struct user_euid user = user_euids[i]; 309 if (user.uid == uid) { 310 return user.euid; 311 } 312 } 313 314 return uid; 315 } 316 317 /** 318 * Returns true if the callingUid is allowed to interact in the targetUid's 319 * namespace. 320 */ 321 static bool is_granted_to(uid_t callingUid, uid_t targetUid) { 322 if (callingUid == targetUid) { 323 return true; 324 } 325 for (size_t i = 0; i < sizeof(user_euids)/sizeof(user_euids[0]); i++) { 326 struct user_euid user = user_euids[i]; 327 if (user.euid == callingUid && user.uid == targetUid) { 328 return true; 329 } 330 } 331 332 return false; 333 } 334 335 /* Here is the encoding of keys. This is necessary in order to allow arbitrary 336 * characters in keys. Characters in [0-~] are not encoded. Others are encoded 337 * into two bytes. The first byte is one of [+-.] which represents the first 338 * two bits of the character. The second byte encodes the rest of the bits into 339 * [0-o]. Therefore in the worst case the length of a key gets doubled. Note 340 * that Base64 cannot be used here due to the need of prefix match on keys. */ 341 342 static size_t encode_key_length(const android::String8& keyName) { 343 const uint8_t* in = reinterpret_cast<const uint8_t*>(keyName.string()); 344 size_t length = keyName.length(); 345 for (int i = length; i > 0; --i, ++in) { 346 if (*in < '0' || *in > '~') { 347 ++length; 348 } 349 } 350 return length; 351 } 352 353 static int encode_key(char* out, const android::String8& keyName) { 354 const uint8_t* in = reinterpret_cast<const uint8_t*>(keyName.string()); 355 size_t length = keyName.length(); 356 for (int i = length; i > 0; --i, ++in, ++out) { 357 if (*in < '0' || *in > '~') { 358 *out = '+' + (*in >> 6); 359 *++out = '0' + (*in & 0x3F); 360 ++length; 361 } else { 362 *out = *in; 363 } 364 } 365 *out = '\0'; 366 return length; 367 } 368 369 /* 370 * Converts from the "escaped" format on disk to actual name. 371 * This will be smaller than the input string. 372 * 373 * Characters that should combine with the next at the end will be truncated. 374 */ 375 static size_t decode_key_length(const char* in, size_t length) { 376 size_t outLength = 0; 377 378 for (const char* end = in + length; in < end; in++) { 379 /* This combines with the next character. */ 380 if (*in < '0' || *in > '~') { 381 continue; 382 } 383 384 outLength++; 385 } 386 return outLength; 387 } 388 389 static void decode_key(char* out, const char* in, size_t length) { 390 for (const char* end = in + length; in < end; in++) { 391 if (*in < '0' || *in > '~') { 392 /* Truncate combining characters at the end. */ 393 if (in + 1 >= end) { 394 break; 395 } 396 397 *out = (*in++ - '+') << 6; 398 *out++ |= (*in - '0') & 0x3F; 399 } else { 400 *out++ = *in; 401 } 402 } 403 *out = '\0'; 404 } 405 406 static size_t readFully(int fd, uint8_t* data, size_t size) { 407 size_t remaining = size; 408 while (remaining > 0) { 409 ssize_t n = TEMP_FAILURE_RETRY(read(fd, data, remaining)); 410 if (n <= 0) { 411 return size - remaining; 412 } 413 data += n; 414 remaining -= n; 415 } 416 return size; 417 } 418 419 static size_t writeFully(int fd, uint8_t* data, size_t size) { 420 size_t remaining = size; 421 while (remaining > 0) { 422 ssize_t n = TEMP_FAILURE_RETRY(write(fd, data, remaining)); 423 if (n < 0) { 424 ALOGW("write failed: %s", strerror(errno)); 425 return size - remaining; 426 } 427 data += n; 428 remaining -= n; 429 } 430 return size; 431 } 432 433 class Entropy { 434 public: 435 Entropy() : mRandom(-1) {} 436 ~Entropy() { 437 if (mRandom >= 0) { 438 close(mRandom); 439 } 440 } 441 442 bool open() { 443 const char* randomDevice = "/dev/urandom"; 444 mRandom = TEMP_FAILURE_RETRY(::open(randomDevice, O_RDONLY)); 445 if (mRandom < 0) { 446 ALOGE("open: %s: %s", randomDevice, strerror(errno)); 447 return false; 448 } 449 return true; 450 } 451 452 bool generate_random_data(uint8_t* data, size_t size) const { 453 return (readFully(mRandom, data, size) == size); 454 } 455 456 private: 457 int mRandom; 458 }; 459 460 /* Here is the file format. There are two parts in blob.value, the secret and 461 * the description. The secret is stored in ciphertext, and its original size 462 * can be found in blob.length. The description is stored after the secret in 463 * plaintext, and its size is specified in blob.info. The total size of the two 464 * parts must be no more than VALUE_SIZE bytes. The first field is the version, 465 * the second is the blob's type, and the third byte is flags. Fields other 466 * than blob.info, blob.length, and blob.value are modified by encryptBlob() 467 * and decryptBlob(). Thus they should not be accessed from outside. */ 468 469 /* ** Note to future implementors of encryption: ** 470 * Currently this is the construction: 471 * metadata || Enc(MD5(data) || data) 472 * 473 * This should be the construction used for encrypting if re-implementing: 474 * 475 * Derive independent keys for encryption and MAC: 476 * Kenc = AES_encrypt(masterKey, "Encrypt") 477 * Kmac = AES_encrypt(masterKey, "MAC") 478 * 479 * Store this: 480 * metadata || AES_CTR_encrypt(Kenc, rand_IV, data) || 481 * HMAC(Kmac, metadata || Enc(data)) 482 */ 483 struct __attribute__((packed)) blob { 484 uint8_t version; 485 uint8_t type; 486 uint8_t flags; 487 uint8_t info; 488 uint8_t vector[AES_BLOCK_SIZE]; 489 uint8_t encrypted[0]; // Marks offset to encrypted data. 490 uint8_t digest[MD5_DIGEST_LENGTH]; 491 uint8_t digested[0]; // Marks offset to digested data. 492 int32_t length; // in network byte order when encrypted 493 uint8_t value[VALUE_SIZE + AES_BLOCK_SIZE]; 494 }; 495 496 typedef enum { 497 TYPE_ANY = 0, // meta type that matches anything 498 TYPE_GENERIC = 1, 499 TYPE_MASTER_KEY = 2, 500 TYPE_KEY_PAIR = 3, 501 TYPE_KEYMASTER_10 = 4, 502 } BlobType; 503 504 static const uint8_t CURRENT_BLOB_VERSION = 2; 505 506 class Blob { 507 public: 508 Blob(const uint8_t* value, size_t valueLength, const uint8_t* info, uint8_t infoLength, 509 BlobType type) { 510 memset(&mBlob, 0, sizeof(mBlob)); 511 if (valueLength > VALUE_SIZE) { 512 valueLength = VALUE_SIZE; 513 ALOGW("Provided blob length too large"); 514 } 515 if (infoLength + valueLength > VALUE_SIZE) { 516 infoLength = VALUE_SIZE - valueLength; 517 ALOGW("Provided info length too large"); 518 } 519 mBlob.length = valueLength; 520 memcpy(mBlob.value, value, valueLength); 521 522 mBlob.info = infoLength; 523 memcpy(mBlob.value + valueLength, info, infoLength); 524 525 mBlob.version = CURRENT_BLOB_VERSION; 526 mBlob.type = uint8_t(type); 527 528 if (type == TYPE_MASTER_KEY) { 529 mBlob.flags = KEYSTORE_FLAG_ENCRYPTED; 530 } else { 531 mBlob.flags = KEYSTORE_FLAG_NONE; 532 } 533 } 534 535 Blob(blob b) { 536 mBlob = b; 537 } 538 539 Blob() { 540 memset(&mBlob, 0, sizeof(mBlob)); 541 } 542 543 const uint8_t* getValue() const { 544 return mBlob.value; 545 } 546 547 int32_t getLength() const { 548 return mBlob.length; 549 } 550 551 const uint8_t* getInfo() const { 552 return mBlob.value + mBlob.length; 553 } 554 555 uint8_t getInfoLength() const { 556 return mBlob.info; 557 } 558 559 uint8_t getVersion() const { 560 return mBlob.version; 561 } 562 563 bool isEncrypted() const { 564 if (mBlob.version < 2) { 565 return true; 566 } 567 568 return mBlob.flags & KEYSTORE_FLAG_ENCRYPTED; 569 } 570 571 void setEncrypted(bool encrypted) { 572 if (encrypted) { 573 mBlob.flags |= KEYSTORE_FLAG_ENCRYPTED; 574 } else { 575 mBlob.flags &= ~KEYSTORE_FLAG_ENCRYPTED; 576 } 577 } 578 579 bool isFallback() const { 580 return mBlob.flags & KEYSTORE_FLAG_FALLBACK; 581 } 582 583 void setFallback(bool fallback) { 584 if (fallback) { 585 mBlob.flags |= KEYSTORE_FLAG_FALLBACK; 586 } else { 587 mBlob.flags &= ~KEYSTORE_FLAG_FALLBACK; 588 } 589 } 590 591 void setVersion(uint8_t version) { 592 mBlob.version = version; 593 } 594 595 BlobType getType() const { 596 return BlobType(mBlob.type); 597 } 598 599 void setType(BlobType type) { 600 mBlob.type = uint8_t(type); 601 } 602 603 ResponseCode writeBlob(const char* filename, AES_KEY *aes_key, State state, Entropy* entropy) { 604 ALOGV("writing blob %s", filename); 605 if (isEncrypted()) { 606 if (state != STATE_NO_ERROR) { 607 ALOGD("couldn't insert encrypted blob while not unlocked"); 608 return LOCKED; 609 } 610 611 if (!entropy->generate_random_data(mBlob.vector, AES_BLOCK_SIZE)) { 612 ALOGW("Could not read random data for: %s", filename); 613 return SYSTEM_ERROR; 614 } 615 } 616 617 // data includes the value and the value's length 618 size_t dataLength = mBlob.length + sizeof(mBlob.length); 619 // pad data to the AES_BLOCK_SIZE 620 size_t digestedLength = ((dataLength + AES_BLOCK_SIZE - 1) 621 / AES_BLOCK_SIZE * AES_BLOCK_SIZE); 622 // encrypted data includes the digest value 623 size_t encryptedLength = digestedLength + MD5_DIGEST_LENGTH; 624 // move info after space for padding 625 memmove(&mBlob.encrypted[encryptedLength], &mBlob.value[mBlob.length], mBlob.info); 626 // zero padding area 627 memset(mBlob.value + mBlob.length, 0, digestedLength - dataLength); 628 629 mBlob.length = htonl(mBlob.length); 630 631 if (isEncrypted()) { 632 MD5(mBlob.digested, digestedLength, mBlob.digest); 633 634 uint8_t vector[AES_BLOCK_SIZE]; 635 memcpy(vector, mBlob.vector, AES_BLOCK_SIZE); 636 AES_cbc_encrypt(mBlob.encrypted, mBlob.encrypted, encryptedLength, 637 aes_key, vector, AES_ENCRYPT); 638 } 639 640 size_t headerLength = (mBlob.encrypted - (uint8_t*) &mBlob); 641 size_t fileLength = encryptedLength + headerLength + mBlob.info; 642 643 const char* tmpFileName = ".tmp"; 644 int out = TEMP_FAILURE_RETRY(open(tmpFileName, 645 O_WRONLY | O_TRUNC | O_CREAT, S_IRUSR | S_IWUSR)); 646 if (out < 0) { 647 ALOGW("could not open file: %s: %s", tmpFileName, strerror(errno)); 648 return SYSTEM_ERROR; 649 } 650 size_t writtenBytes = writeFully(out, (uint8_t*) &mBlob, fileLength); 651 if (close(out) != 0) { 652 return SYSTEM_ERROR; 653 } 654 if (writtenBytes != fileLength) { 655 ALOGW("blob not fully written %zu != %zu", writtenBytes, fileLength); 656 unlink(tmpFileName); 657 return SYSTEM_ERROR; 658 } 659 if (rename(tmpFileName, filename) == -1) { 660 ALOGW("could not rename blob to %s: %s", filename, strerror(errno)); 661 return SYSTEM_ERROR; 662 } 663 return NO_ERROR; 664 } 665 666 ResponseCode readBlob(const char* filename, AES_KEY *aes_key, State state) { 667 ALOGV("reading blob %s", filename); 668 int in = TEMP_FAILURE_RETRY(open(filename, O_RDONLY)); 669 if (in < 0) { 670 return (errno == ENOENT) ? KEY_NOT_FOUND : SYSTEM_ERROR; 671 } 672 // fileLength may be less than sizeof(mBlob) since the in 673 // memory version has extra padding to tolerate rounding up to 674 // the AES_BLOCK_SIZE 675 size_t fileLength = readFully(in, (uint8_t*) &mBlob, sizeof(mBlob)); 676 if (close(in) != 0) { 677 return SYSTEM_ERROR; 678 } 679 680 if (fileLength == 0) { 681 return VALUE_CORRUPTED; 682 } 683 684 if (isEncrypted() && (state != STATE_NO_ERROR)) { 685 return LOCKED; 686 } 687 688 size_t headerLength = (mBlob.encrypted - (uint8_t*) &mBlob); 689 if (fileLength < headerLength) { 690 return VALUE_CORRUPTED; 691 } 692 693 ssize_t encryptedLength = fileLength - (headerLength + mBlob.info); 694 if (encryptedLength < 0) { 695 return VALUE_CORRUPTED; 696 } 697 698 ssize_t digestedLength; 699 if (isEncrypted()) { 700 if (encryptedLength % AES_BLOCK_SIZE != 0) { 701 return VALUE_CORRUPTED; 702 } 703 704 AES_cbc_encrypt(mBlob.encrypted, mBlob.encrypted, encryptedLength, aes_key, 705 mBlob.vector, AES_DECRYPT); 706 digestedLength = encryptedLength - MD5_DIGEST_LENGTH; 707 uint8_t computedDigest[MD5_DIGEST_LENGTH]; 708 MD5(mBlob.digested, digestedLength, computedDigest); 709 if (memcmp(mBlob.digest, computedDigest, MD5_DIGEST_LENGTH) != 0) { 710 return VALUE_CORRUPTED; 711 } 712 } else { 713 digestedLength = encryptedLength; 714 } 715 716 ssize_t maxValueLength = digestedLength - sizeof(mBlob.length); 717 mBlob.length = ntohl(mBlob.length); 718 if (mBlob.length < 0 || mBlob.length > maxValueLength) { 719 return VALUE_CORRUPTED; 720 } 721 if (mBlob.info != 0) { 722 // move info from after padding to after data 723 memmove(&mBlob.value[mBlob.length], &mBlob.value[maxValueLength], mBlob.info); 724 } 725 return ::NO_ERROR; 726 } 727 728 private: 729 struct blob mBlob; 730 }; 731 732 class UserState { 733 public: 734 UserState(uid_t userId) : mUserId(userId), mRetry(MAX_RETRY) { 735 asprintf(&mUserDir, "user_%u", mUserId); 736 asprintf(&mMasterKeyFile, "%s/.masterkey", mUserDir); 737 } 738 739 ~UserState() { 740 free(mUserDir); 741 free(mMasterKeyFile); 742 } 743 744 bool initialize() { 745 if ((mkdir(mUserDir, S_IRUSR | S_IWUSR | S_IXUSR) < 0) && (errno != EEXIST)) { 746 ALOGE("Could not create directory '%s'", mUserDir); 747 return false; 748 } 749 750 if (access(mMasterKeyFile, R_OK) == 0) { 751 setState(STATE_LOCKED); 752 } else { 753 setState(STATE_UNINITIALIZED); 754 } 755 756 return true; 757 } 758 759 uid_t getUserId() const { 760 return mUserId; 761 } 762 763 const char* getUserDirName() const { 764 return mUserDir; 765 } 766 767 const char* getMasterKeyFileName() const { 768 return mMasterKeyFile; 769 } 770 771 void setState(State state) { 772 mState = state; 773 if (mState == STATE_NO_ERROR || mState == STATE_UNINITIALIZED) { 774 mRetry = MAX_RETRY; 775 } 776 } 777 778 State getState() const { 779 return mState; 780 } 781 782 int8_t getRetry() const { 783 return mRetry; 784 } 785 786 void zeroizeMasterKeysInMemory() { 787 memset(mMasterKey, 0, sizeof(mMasterKey)); 788 memset(mSalt, 0, sizeof(mSalt)); 789 memset(&mMasterKeyEncryption, 0, sizeof(mMasterKeyEncryption)); 790 memset(&mMasterKeyDecryption, 0, sizeof(mMasterKeyDecryption)); 791 } 792 793 bool deleteMasterKey() { 794 setState(STATE_UNINITIALIZED); 795 zeroizeMasterKeysInMemory(); 796 return unlink(mMasterKeyFile) == 0 || errno == ENOENT; 797 } 798 799 ResponseCode initialize(const android::String8& pw, Entropy* entropy) { 800 if (!generateMasterKey(entropy)) { 801 return SYSTEM_ERROR; 802 } 803 ResponseCode response = writeMasterKey(pw, entropy); 804 if (response != NO_ERROR) { 805 return response; 806 } 807 setupMasterKeys(); 808 return ::NO_ERROR; 809 } 810 811 ResponseCode copyMasterKey(UserState* src) { 812 if (mState != STATE_UNINITIALIZED) { 813 return ::SYSTEM_ERROR; 814 } 815 if (src->getState() != STATE_NO_ERROR) { 816 return ::SYSTEM_ERROR; 817 } 818 memcpy(mMasterKey, src->mMasterKey, MASTER_KEY_SIZE_BYTES); 819 setupMasterKeys(); 820 return ::NO_ERROR; 821 } 822 823 ResponseCode writeMasterKey(const android::String8& pw, Entropy* entropy) { 824 uint8_t passwordKey[MASTER_KEY_SIZE_BYTES]; 825 generateKeyFromPassword(passwordKey, MASTER_KEY_SIZE_BYTES, pw, mSalt); 826 AES_KEY passwordAesKey; 827 AES_set_encrypt_key(passwordKey, MASTER_KEY_SIZE_BITS, &passwordAesKey); 828 Blob masterKeyBlob(mMasterKey, sizeof(mMasterKey), mSalt, sizeof(mSalt), TYPE_MASTER_KEY); 829 return masterKeyBlob.writeBlob(mMasterKeyFile, &passwordAesKey, STATE_NO_ERROR, entropy); 830 } 831 832 ResponseCode readMasterKey(const android::String8& pw, Entropy* entropy) { 833 int in = TEMP_FAILURE_RETRY(open(mMasterKeyFile, O_RDONLY)); 834 if (in < 0) { 835 return SYSTEM_ERROR; 836 } 837 838 // we read the raw blob to just to get the salt to generate 839 // the AES key, then we create the Blob to use with decryptBlob 840 blob rawBlob; 841 size_t length = readFully(in, (uint8_t*) &rawBlob, sizeof(rawBlob)); 842 if (close(in) != 0) { 843 return SYSTEM_ERROR; 844 } 845 // find salt at EOF if present, otherwise we have an old file 846 uint8_t* salt; 847 if (length > SALT_SIZE && rawBlob.info == SALT_SIZE) { 848 salt = (uint8_t*) &rawBlob + length - SALT_SIZE; 849 } else { 850 salt = NULL; 851 } 852 uint8_t passwordKey[MASTER_KEY_SIZE_BYTES]; 853 generateKeyFromPassword(passwordKey, MASTER_KEY_SIZE_BYTES, pw, salt); 854 AES_KEY passwordAesKey; 855 AES_set_decrypt_key(passwordKey, MASTER_KEY_SIZE_BITS, &passwordAesKey); 856 Blob masterKeyBlob(rawBlob); 857 ResponseCode response = masterKeyBlob.readBlob(mMasterKeyFile, &passwordAesKey, 858 STATE_NO_ERROR); 859 if (response == SYSTEM_ERROR) { 860 return response; 861 } 862 if (response == NO_ERROR && masterKeyBlob.getLength() == MASTER_KEY_SIZE_BYTES) { 863 // if salt was missing, generate one and write a new master key file with the salt. 864 if (salt == NULL) { 865 if (!generateSalt(entropy)) { 866 return SYSTEM_ERROR; 867 } 868 response = writeMasterKey(pw, entropy); 869 } 870 if (response == NO_ERROR) { 871 memcpy(mMasterKey, masterKeyBlob.getValue(), MASTER_KEY_SIZE_BYTES); 872 setupMasterKeys(); 873 } 874 return response; 875 } 876 if (mRetry <= 0) { 877 reset(); 878 return UNINITIALIZED; 879 } 880 --mRetry; 881 switch (mRetry) { 882 case 0: return WRONG_PASSWORD_0; 883 case 1: return WRONG_PASSWORD_1; 884 case 2: return WRONG_PASSWORD_2; 885 case 3: return WRONG_PASSWORD_3; 886 default: return WRONG_PASSWORD_3; 887 } 888 } 889 890 AES_KEY* getEncryptionKey() { 891 return &mMasterKeyEncryption; 892 } 893 894 AES_KEY* getDecryptionKey() { 895 return &mMasterKeyDecryption; 896 } 897 898 bool reset() { 899 DIR* dir = opendir(getUserDirName()); 900 if (!dir) { 901 // If the directory doesn't exist then nothing to do. 902 if (errno == ENOENT) { 903 return true; 904 } 905 ALOGW("couldn't open user directory: %s", strerror(errno)); 906 return false; 907 } 908 909 struct dirent* file; 910 while ((file = readdir(dir)) != NULL) { 911 // skip . and .. 912 if (!strcmp(".", file->d_name) || !strcmp("..", file->d_name)) { 913 continue; 914 } 915 916 unlinkat(dirfd(dir), file->d_name, 0); 917 } 918 closedir(dir); 919 return true; 920 } 921 922 private: 923 static const int MASTER_KEY_SIZE_BYTES = 16; 924 static const int MASTER_KEY_SIZE_BITS = MASTER_KEY_SIZE_BYTES * 8; 925 926 static const int MAX_RETRY = 4; 927 static const size_t SALT_SIZE = 16; 928 929 void generateKeyFromPassword(uint8_t* key, ssize_t keySize, const android::String8& pw, 930 uint8_t* salt) { 931 size_t saltSize; 932 if (salt != NULL) { 933 saltSize = SALT_SIZE; 934 } else { 935 // pre-gingerbread used this hardwired salt, readMasterKey will rewrite these when found 936 salt = (uint8_t*) "keystore"; 937 // sizeof = 9, not strlen = 8 938 saltSize = sizeof("keystore"); 939 } 940 941 PKCS5_PBKDF2_HMAC_SHA1(reinterpret_cast<const char*>(pw.string()), pw.length(), salt, 942 saltSize, 8192, keySize, key); 943 } 944 945 bool generateSalt(Entropy* entropy) { 946 return entropy->generate_random_data(mSalt, sizeof(mSalt)); 947 } 948 949 bool generateMasterKey(Entropy* entropy) { 950 if (!entropy->generate_random_data(mMasterKey, sizeof(mMasterKey))) { 951 return false; 952 } 953 if (!generateSalt(entropy)) { 954 return false; 955 } 956 return true; 957 } 958 959 void setupMasterKeys() { 960 AES_set_encrypt_key(mMasterKey, MASTER_KEY_SIZE_BITS, &mMasterKeyEncryption); 961 AES_set_decrypt_key(mMasterKey, MASTER_KEY_SIZE_BITS, &mMasterKeyDecryption); 962 setState(STATE_NO_ERROR); 963 } 964 965 uid_t mUserId; 966 967 char* mUserDir; 968 char* mMasterKeyFile; 969 970 State mState; 971 int8_t mRetry; 972 973 uint8_t mMasterKey[MASTER_KEY_SIZE_BYTES]; 974 uint8_t mSalt[SALT_SIZE]; 975 976 AES_KEY mMasterKeyEncryption; 977 AES_KEY mMasterKeyDecryption; 978 }; 979 980 typedef struct { 981 uint32_t uid; 982 const uint8_t* filename; 983 } grant_t; 984 985 class KeyStore { 986 public: 987 KeyStore(Entropy* entropy, keymaster1_device_t* device, keymaster1_device_t* fallback) 988 : mEntropy(entropy) 989 , mDevice(device) 990 , mFallbackDevice(fallback) 991 { 992 memset(&mMetaData, '\0', sizeof(mMetaData)); 993 } 994 995 ~KeyStore() { 996 for (android::Vector<grant_t*>::iterator it(mGrants.begin()); 997 it != mGrants.end(); it++) { 998 delete *it; 999 } 1000 mGrants.clear(); 1001 1002 for (android::Vector<UserState*>::iterator it(mMasterKeys.begin()); 1003 it != mMasterKeys.end(); it++) { 1004 delete *it; 1005 } 1006 mMasterKeys.clear(); 1007 } 1008 1009 /** 1010 * Depending on the hardware keymaster version is this may return a 1011 * keymaster0_device_t* cast to a keymaster1_device_t*. All methods from 1012 * keymaster0 are safe to call, calls to keymaster1_device_t methods should 1013 * be guarded by a check on the device's version. 1014 */ 1015 keymaster1_device_t *getDevice() const { 1016 return mDevice; 1017 } 1018 1019 keymaster1_device_t *getFallbackDevice() const { 1020 return mFallbackDevice; 1021 } 1022 1023 keymaster1_device_t *getDeviceForBlob(const Blob& blob) const { 1024 return blob.isFallback() ? mFallbackDevice: mDevice; 1025 } 1026 1027 ResponseCode initialize() { 1028 readMetaData(); 1029 if (upgradeKeystore()) { 1030 writeMetaData(); 1031 } 1032 1033 return ::NO_ERROR; 1034 } 1035 1036 State getState(uid_t userId) { 1037 return getUserState(userId)->getState(); 1038 } 1039 1040 ResponseCode initializeUser(const android::String8& pw, uid_t userId) { 1041 UserState* userState = getUserState(userId); 1042 return userState->initialize(pw, mEntropy); 1043 } 1044 1045 ResponseCode copyMasterKey(uid_t srcUser, uid_t dstUser) { 1046 UserState *userState = getUserState(dstUser); 1047 UserState *initState = getUserState(srcUser); 1048 return userState->copyMasterKey(initState); 1049 } 1050 1051 ResponseCode writeMasterKey(const android::String8& pw, uid_t userId) { 1052 UserState* userState = getUserState(userId); 1053 return userState->writeMasterKey(pw, mEntropy); 1054 } 1055 1056 ResponseCode readMasterKey(const android::String8& pw, uid_t userId) { 1057 UserState* userState = getUserState(userId); 1058 return userState->readMasterKey(pw, mEntropy); 1059 } 1060 1061 android::String8 getKeyName(const android::String8& keyName) { 1062 char encoded[encode_key_length(keyName) + 1]; // add 1 for null char 1063 encode_key(encoded, keyName); 1064 return android::String8(encoded); 1065 } 1066 1067 android::String8 getKeyNameForUid(const android::String8& keyName, uid_t uid) { 1068 char encoded[encode_key_length(keyName) + 1]; // add 1 for null char 1069 encode_key(encoded, keyName); 1070 return android::String8::format("%u_%s", uid, encoded); 1071 } 1072 1073 android::String8 getKeyNameForUidWithDir(const android::String8& keyName, uid_t uid) { 1074 char encoded[encode_key_length(keyName) + 1]; // add 1 for null char 1075 encode_key(encoded, keyName); 1076 return android::String8::format("%s/%u_%s", getUserStateByUid(uid)->getUserDirName(), uid, 1077 encoded); 1078 } 1079 1080 /* 1081 * Delete entries owned by userId. If keepUnencryptedEntries is true 1082 * then only encrypted entries will be removed, otherwise all entries will 1083 * be removed. 1084 */ 1085 void resetUser(uid_t userId, bool keepUnenryptedEntries) { 1086 android::String8 prefix(""); 1087 android::Vector<android::String16> aliases; 1088 UserState* userState = getUserState(userId); 1089 if (list(prefix, &aliases, userId) != ::NO_ERROR) { 1090 return; 1091 } 1092 for (uint32_t i = 0; i < aliases.size(); i++) { 1093 android::String8 filename(aliases[i]); 1094 filename = android::String8::format("%s/%s", userState->getUserDirName(), 1095 getKeyName(filename).string()); 1096 bool shouldDelete = true; 1097 if (keepUnenryptedEntries) { 1098 Blob blob; 1099 ResponseCode rc = get(filename, &blob, ::TYPE_ANY, userId); 1100 1101 /* get can fail if the blob is encrypted and the state is 1102 * not unlocked, only skip deleting blobs that were loaded and 1103 * who are not encrypted. If there are blobs we fail to read for 1104 * other reasons err on the safe side and delete them since we 1105 * can't tell if they're encrypted. 1106 */ 1107 shouldDelete = !(rc == ::NO_ERROR && !blob.isEncrypted()); 1108 } 1109 if (shouldDelete) { 1110 del(filename, ::TYPE_ANY, userId); 1111 } 1112 } 1113 if (!userState->deleteMasterKey()) { 1114 ALOGE("Failed to delete user %d's master key", userId); 1115 } 1116 if (!keepUnenryptedEntries) { 1117 if(!userState->reset()) { 1118 ALOGE("Failed to remove user %d's directory", userId); 1119 } 1120 } 1121 } 1122 1123 bool isEmpty(uid_t userId) const { 1124 const UserState* userState = getUserState(userId); 1125 if (userState == NULL) { 1126 return true; 1127 } 1128 1129 DIR* dir = opendir(userState->getUserDirName()); 1130 if (!dir) { 1131 return true; 1132 } 1133 1134 bool result = true; 1135 struct dirent* file; 1136 while ((file = readdir(dir)) != NULL) { 1137 // We only care about files. 1138 if (file->d_type != DT_REG) { 1139 continue; 1140 } 1141 1142 // Skip anything that starts with a "." 1143 if (file->d_name[0] == '.') { 1144 continue; 1145 } 1146 1147 result = false; 1148 break; 1149 } 1150 closedir(dir); 1151 return result; 1152 } 1153 1154 void lock(uid_t userId) { 1155 UserState* userState = getUserState(userId); 1156 userState->zeroizeMasterKeysInMemory(); 1157 userState->setState(STATE_LOCKED); 1158 } 1159 1160 ResponseCode get(const char* filename, Blob* keyBlob, const BlobType type, uid_t userId) { 1161 UserState* userState = getUserState(userId); 1162 ResponseCode rc = keyBlob->readBlob(filename, userState->getDecryptionKey(), 1163 userState->getState()); 1164 if (rc != NO_ERROR) { 1165 return rc; 1166 } 1167 1168 const uint8_t version = keyBlob->getVersion(); 1169 if (version < CURRENT_BLOB_VERSION) { 1170 /* If we upgrade the key, we need to write it to disk again. Then 1171 * it must be read it again since the blob is encrypted each time 1172 * it's written. 1173 */ 1174 if (upgradeBlob(filename, keyBlob, version, type, userId)) { 1175 if ((rc = this->put(filename, keyBlob, userId)) != NO_ERROR 1176 || (rc = keyBlob->readBlob(filename, userState->getDecryptionKey(), 1177 userState->getState())) != NO_ERROR) { 1178 return rc; 1179 } 1180 } 1181 } 1182 1183 /* 1184 * This will upgrade software-backed keys to hardware-backed keys when 1185 * the HAL for the device supports the newer key types. 1186 */ 1187 if (rc == NO_ERROR && type == TYPE_KEY_PAIR 1188 && mDevice->common.module->module_api_version >= KEYMASTER_MODULE_API_VERSION_0_2 1189 && keyBlob->isFallback()) { 1190 ResponseCode imported = importKey(keyBlob->getValue(), keyBlob->getLength(), filename, 1191 userId, keyBlob->isEncrypted() ? KEYSTORE_FLAG_ENCRYPTED : KEYSTORE_FLAG_NONE); 1192 1193 // The HAL allowed the import, reget the key to have the "fresh" 1194 // version. 1195 if (imported == NO_ERROR) { 1196 rc = get(filename, keyBlob, TYPE_KEY_PAIR, userId); 1197 } 1198 } 1199 1200 // Keymaster 0.3 keys are valid keymaster 1.0 keys, so silently upgrade. 1201 if (keyBlob->getType() == TYPE_KEY_PAIR) { 1202 keyBlob->setType(TYPE_KEYMASTER_10); 1203 rc = this->put(filename, keyBlob, userId); 1204 } 1205 1206 if (type != TYPE_ANY && keyBlob->getType() != type) { 1207 ALOGW("key found but type doesn't match: %d vs %d", keyBlob->getType(), type); 1208 return KEY_NOT_FOUND; 1209 } 1210 1211 return rc; 1212 } 1213 1214 ResponseCode put(const char* filename, Blob* keyBlob, uid_t userId) { 1215 UserState* userState = getUserState(userId); 1216 return keyBlob->writeBlob(filename, userState->getEncryptionKey(), userState->getState(), 1217 mEntropy); 1218 } 1219 1220 ResponseCode del(const char *filename, const BlobType type, uid_t userId) { 1221 Blob keyBlob; 1222 ResponseCode rc = get(filename, &keyBlob, type, userId); 1223 if (rc == ::VALUE_CORRUPTED) { 1224 // The file is corrupt, the best we can do is rm it. 1225 return (unlink(filename) && errno != ENOENT) ? ::SYSTEM_ERROR : ::NO_ERROR; 1226 } 1227 if (rc != ::NO_ERROR) { 1228 return rc; 1229 } 1230 1231 if (keyBlob.getType() == ::TYPE_KEY_PAIR) { 1232 // A device doesn't have to implement delete_keypair. 1233 if (mDevice->delete_keypair != NULL && !keyBlob.isFallback()) { 1234 if (mDevice->delete_keypair(mDevice, keyBlob.getValue(), keyBlob.getLength())) { 1235 rc = ::SYSTEM_ERROR; 1236 } 1237 } 1238 } 1239 if (keyBlob.getType() == ::TYPE_KEYMASTER_10) { 1240 keymaster1_device_t* dev = getDeviceForBlob(keyBlob); 1241 if (dev->delete_key) { 1242 keymaster_key_blob_t blob; 1243 blob.key_material = keyBlob.getValue(); 1244 blob.key_material_size = keyBlob.getLength(); 1245 dev->delete_key(dev, &blob); 1246 } 1247 } 1248 if (rc != ::NO_ERROR) { 1249 return rc; 1250 } 1251 1252 return (unlink(filename) && errno != ENOENT) ? ::SYSTEM_ERROR : ::NO_ERROR; 1253 } 1254 1255 ResponseCode list(const android::String8& prefix, android::Vector<android::String16> *matches, 1256 uid_t userId) { 1257 1258 UserState* userState = getUserState(userId); 1259 size_t n = prefix.length(); 1260 1261 DIR* dir = opendir(userState->getUserDirName()); 1262 if (!dir) { 1263 ALOGW("can't open directory for user: %s", strerror(errno)); 1264 return ::SYSTEM_ERROR; 1265 } 1266 1267 struct dirent* file; 1268 while ((file = readdir(dir)) != NULL) { 1269 // We only care about files. 1270 if (file->d_type != DT_REG) { 1271 continue; 1272 } 1273 1274 // Skip anything that starts with a "." 1275 if (file->d_name[0] == '.') { 1276 continue; 1277 } 1278 1279 if (!strncmp(prefix.string(), file->d_name, n)) { 1280 const char* p = &file->d_name[n]; 1281 size_t plen = strlen(p); 1282 1283 size_t extra = decode_key_length(p, plen); 1284 char *match = (char*) malloc(extra + 1); 1285 if (match != NULL) { 1286 decode_key(match, p, plen); 1287 matches->push(android::String16(match, extra)); 1288 free(match); 1289 } else { 1290 ALOGW("could not allocate match of size %zd", extra); 1291 } 1292 } 1293 } 1294 closedir(dir); 1295 return ::NO_ERROR; 1296 } 1297 1298 void addGrant(const char* filename, uid_t granteeUid) { 1299 const grant_t* existing = getGrant(filename, granteeUid); 1300 if (existing == NULL) { 1301 grant_t* grant = new grant_t; 1302 grant->uid = granteeUid; 1303 grant->filename = reinterpret_cast<const uint8_t*>(strdup(filename)); 1304 mGrants.add(grant); 1305 } 1306 } 1307 1308 bool removeGrant(const char* filename, uid_t granteeUid) { 1309 for (android::Vector<grant_t*>::iterator it(mGrants.begin()); 1310 it != mGrants.end(); it++) { 1311 grant_t* grant = *it; 1312 if (grant->uid == granteeUid 1313 && !strcmp(reinterpret_cast<const char*>(grant->filename), filename)) { 1314 mGrants.erase(it); 1315 return true; 1316 } 1317 } 1318 return false; 1319 } 1320 1321 bool hasGrant(const char* filename, const uid_t uid) const { 1322 return getGrant(filename, uid) != NULL; 1323 } 1324 1325 ResponseCode importKey(const uint8_t* key, size_t keyLen, const char* filename, uid_t userId, 1326 int32_t flags) { 1327 uint8_t* data; 1328 size_t dataLength; 1329 int rc; 1330 1331 if (mDevice->import_keypair == NULL) { 1332 ALOGE("Keymaster doesn't support import!"); 1333 return SYSTEM_ERROR; 1334 } 1335 1336 bool isFallback = false; 1337 rc = mDevice->import_keypair(mDevice, key, keyLen, &data, &dataLength); 1338 if (rc) { 1339 /* 1340 * Maybe the device doesn't support this type of key. Try to use the 1341 * software fallback keymaster implementation. This is a little bit 1342 * lazier than checking the PKCS#8 key type, but the software 1343 * implementation will do that anyway. 1344 */ 1345 rc = mFallbackDevice->import_keypair(mFallbackDevice, key, keyLen, &data, &dataLength); 1346 isFallback = true; 1347 1348 if (rc) { 1349 ALOGE("Error while importing keypair: %d", rc); 1350 return SYSTEM_ERROR; 1351 } 1352 } 1353 1354 Blob keyBlob(data, dataLength, NULL, 0, TYPE_KEY_PAIR); 1355 free(data); 1356 1357 keyBlob.setEncrypted(flags & KEYSTORE_FLAG_ENCRYPTED); 1358 keyBlob.setFallback(isFallback); 1359 1360 return put(filename, &keyBlob, userId); 1361 } 1362 1363 bool isHardwareBacked(const android::String16& keyType) const { 1364 if (mDevice == NULL) { 1365 ALOGW("can't get keymaster device"); 1366 return false; 1367 } 1368 1369 if (sRSAKeyType == keyType) { 1370 return (mDevice->flags & KEYMASTER_SOFTWARE_ONLY) == 0; 1371 } else { 1372 return (mDevice->flags & KEYMASTER_SOFTWARE_ONLY) == 0 1373 && (mDevice->common.module->module_api_version 1374 >= KEYMASTER_MODULE_API_VERSION_0_2); 1375 } 1376 } 1377 1378 ResponseCode getKeyForName(Blob* keyBlob, const android::String8& keyName, const uid_t uid, 1379 const BlobType type) { 1380 android::String8 filepath8(getKeyNameForUidWithDir(keyName, uid)); 1381 uid_t userId = get_user_id(uid); 1382 1383 ResponseCode responseCode = get(filepath8.string(), keyBlob, type, userId); 1384 if (responseCode == NO_ERROR) { 1385 return responseCode; 1386 } 1387 1388 // If this is one of the legacy UID->UID mappings, use it. 1389 uid_t euid = get_keystore_euid(uid); 1390 if (euid != uid) { 1391 filepath8 = getKeyNameForUidWithDir(keyName, euid); 1392 responseCode = get(filepath8.string(), keyBlob, type, userId); 1393 if (responseCode == NO_ERROR) { 1394 return responseCode; 1395 } 1396 } 1397 1398 // They might be using a granted key. 1399 android::String8 filename8 = getKeyName(keyName); 1400 char* end; 1401 strtoul(filename8.string(), &end, 10); 1402 if (end[0] != '_' || end[1] == 0) { 1403 return KEY_NOT_FOUND; 1404 } 1405 filepath8 = android::String8::format("%s/%s", getUserState(userId)->getUserDirName(), 1406 filename8.string()); 1407 if (!hasGrant(filepath8.string(), uid)) { 1408 return responseCode; 1409 } 1410 1411 // It is a granted key. Try to load it. 1412 return get(filepath8.string(), keyBlob, type, userId); 1413 } 1414 1415 /** 1416 * Returns any existing UserState or creates it if it doesn't exist. 1417 */ 1418 UserState* getUserState(uid_t userId) { 1419 for (android::Vector<UserState*>::iterator it(mMasterKeys.begin()); 1420 it != mMasterKeys.end(); it++) { 1421 UserState* state = *it; 1422 if (state->getUserId() == userId) { 1423 return state; 1424 } 1425 } 1426 1427 UserState* userState = new UserState(userId); 1428 if (!userState->initialize()) { 1429 /* There's not much we can do if initialization fails. Trying to 1430 * unlock the keystore for that user will fail as well, so any 1431 * subsequent request for this user will just return SYSTEM_ERROR. 1432 */ 1433 ALOGE("User initialization failed for %u; subsuquent operations will fail", userId); 1434 } 1435 mMasterKeys.add(userState); 1436 return userState; 1437 } 1438 1439 /** 1440 * Returns any existing UserState or creates it if it doesn't exist. 1441 */ 1442 UserState* getUserStateByUid(uid_t uid) { 1443 uid_t userId = get_user_id(uid); 1444 return getUserState(userId); 1445 } 1446 1447 /** 1448 * Returns NULL if the UserState doesn't already exist. 1449 */ 1450 const UserState* getUserState(uid_t userId) const { 1451 for (android::Vector<UserState*>::const_iterator it(mMasterKeys.begin()); 1452 it != mMasterKeys.end(); it++) { 1453 UserState* state = *it; 1454 if (state->getUserId() == userId) { 1455 return state; 1456 } 1457 } 1458 1459 return NULL; 1460 } 1461 1462 /** 1463 * Returns NULL if the UserState doesn't already exist. 1464 */ 1465 const UserState* getUserStateByUid(uid_t uid) const { 1466 uid_t userId = get_user_id(uid); 1467 return getUserState(userId); 1468 } 1469 1470 private: 1471 static const char* sOldMasterKey; 1472 static const char* sMetaDataFile; 1473 static const android::String16 sRSAKeyType; 1474 Entropy* mEntropy; 1475 1476 keymaster1_device_t* mDevice; 1477 keymaster1_device_t* mFallbackDevice; 1478 1479 android::Vector<UserState*> mMasterKeys; 1480 1481 android::Vector<grant_t*> mGrants; 1482 1483 typedef struct { 1484 uint32_t version; 1485 } keystore_metadata_t; 1486 1487 keystore_metadata_t mMetaData; 1488 1489 const grant_t* getGrant(const char* filename, uid_t uid) const { 1490 for (android::Vector<grant_t*>::const_iterator it(mGrants.begin()); 1491 it != mGrants.end(); it++) { 1492 grant_t* grant = *it; 1493 if (grant->uid == uid 1494 && !strcmp(reinterpret_cast<const char*>(grant->filename), filename)) { 1495 return grant; 1496 } 1497 } 1498 return NULL; 1499 } 1500 1501 /** 1502 * Upgrade code. This will upgrade the key from the current version 1503 * to whatever is newest. 1504 */ 1505 bool upgradeBlob(const char* filename, Blob* blob, const uint8_t oldVersion, 1506 const BlobType type, uid_t uid) { 1507 bool updated = false; 1508 uint8_t version = oldVersion; 1509 1510 /* From V0 -> V1: All old types were unknown */ 1511 if (version == 0) { 1512 ALOGV("upgrading to version 1 and setting type %d", type); 1513 1514 blob->setType(type); 1515 if (type == TYPE_KEY_PAIR) { 1516 importBlobAsKey(blob, filename, uid); 1517 } 1518 version = 1; 1519 updated = true; 1520 } 1521 1522 /* From V1 -> V2: All old keys were encrypted */ 1523 if (version == 1) { 1524 ALOGV("upgrading to version 2"); 1525 1526 blob->setEncrypted(true); 1527 version = 2; 1528 updated = true; 1529 } 1530 1531 /* 1532 * If we've updated, set the key blob to the right version 1533 * and write it. 1534 */ 1535 if (updated) { 1536 ALOGV("updated and writing file %s", filename); 1537 blob->setVersion(version); 1538 } 1539 1540 return updated; 1541 } 1542 1543 /** 1544 * Takes a blob that is an PEM-encoded RSA key as a byte array and 1545 * converts it to a DER-encoded PKCS#8 for import into a keymaster. 1546 * Then it overwrites the original blob with the new blob 1547 * format that is returned from the keymaster. 1548 */ 1549 ResponseCode importBlobAsKey(Blob* blob, const char* filename, uid_t uid) { 1550 // We won't even write to the blob directly with this BIO, so const_cast is okay. 1551 Unique_BIO b(BIO_new_mem_buf(const_cast<uint8_t*>(blob->getValue()), blob->getLength())); 1552 if (b.get() == NULL) { 1553 ALOGE("Problem instantiating BIO"); 1554 return SYSTEM_ERROR; 1555 } 1556 1557 Unique_EVP_PKEY pkey(PEM_read_bio_PrivateKey(b.get(), NULL, NULL, NULL)); 1558 if (pkey.get() == NULL) { 1559 ALOGE("Couldn't read old PEM file"); 1560 return SYSTEM_ERROR; 1561 } 1562 1563 Unique_PKCS8_PRIV_KEY_INFO pkcs8(EVP_PKEY2PKCS8(pkey.get())); 1564 int len = i2d_PKCS8_PRIV_KEY_INFO(pkcs8.get(), NULL); 1565 if (len < 0) { 1566 ALOGE("Couldn't measure PKCS#8 length"); 1567 return SYSTEM_ERROR; 1568 } 1569 1570 UniquePtr<unsigned char[]> pkcs8key(new unsigned char[len]); 1571 uint8_t* tmp = pkcs8key.get(); 1572 if (i2d_PKCS8_PRIV_KEY_INFO(pkcs8.get(), &tmp) != len) { 1573 ALOGE("Couldn't convert to PKCS#8"); 1574 return SYSTEM_ERROR; 1575 } 1576 1577 ResponseCode rc = importKey(pkcs8key.get(), len, filename, get_user_id(uid), 1578 blob->isEncrypted() ? KEYSTORE_FLAG_ENCRYPTED : KEYSTORE_FLAG_NONE); 1579 if (rc != NO_ERROR) { 1580 return rc; 1581 } 1582 1583 return get(filename, blob, TYPE_KEY_PAIR, uid); 1584 } 1585 1586 void readMetaData() { 1587 int in = TEMP_FAILURE_RETRY(open(sMetaDataFile, O_RDONLY)); 1588 if (in < 0) { 1589 return; 1590 } 1591 size_t fileLength = readFully(in, (uint8_t*) &mMetaData, sizeof(mMetaData)); 1592 if (fileLength != sizeof(mMetaData)) { 1593 ALOGI("Metadata file is %zd bytes (%zd experted); upgrade?", fileLength, 1594 sizeof(mMetaData)); 1595 } 1596 close(in); 1597 } 1598 1599 void writeMetaData() { 1600 const char* tmpFileName = ".metadata.tmp"; 1601 int out = TEMP_FAILURE_RETRY(open(tmpFileName, 1602 O_WRONLY | O_TRUNC | O_CREAT, S_IRUSR | S_IWUSR)); 1603 if (out < 0) { 1604 ALOGE("couldn't write metadata file: %s", strerror(errno)); 1605 return; 1606 } 1607 size_t fileLength = writeFully(out, (uint8_t*) &mMetaData, sizeof(mMetaData)); 1608 if (fileLength != sizeof(mMetaData)) { 1609 ALOGI("Could only write %zd bytes to metadata file (%zd expected)", fileLength, 1610 sizeof(mMetaData)); 1611 } 1612 close(out); 1613 rename(tmpFileName, sMetaDataFile); 1614 } 1615 1616 bool upgradeKeystore() { 1617 bool upgraded = false; 1618 1619 if (mMetaData.version == 0) { 1620 UserState* userState = getUserStateByUid(0); 1621 1622 // Initialize first so the directory is made. 1623 userState->initialize(); 1624 1625 // Migrate the old .masterkey file to user 0. 1626 if (access(sOldMasterKey, R_OK) == 0) { 1627 if (rename(sOldMasterKey, userState->getMasterKeyFileName()) < 0) { 1628 ALOGE("couldn't migrate old masterkey: %s", strerror(errno)); 1629 return false; 1630 } 1631 } 1632 1633 // Initialize again in case we had a key. 1634 userState->initialize(); 1635 1636 // Try to migrate existing keys. 1637 DIR* dir = opendir("."); 1638 if (!dir) { 1639 // Give up now; maybe we can upgrade later. 1640 ALOGE("couldn't open keystore's directory; something is wrong"); 1641 return false; 1642 } 1643 1644 struct dirent* file; 1645 while ((file = readdir(dir)) != NULL) { 1646 // We only care about files. 1647 if (file->d_type != DT_REG) { 1648 continue; 1649 } 1650 1651 // Skip anything that starts with a "." 1652 if (file->d_name[0] == '.') { 1653 continue; 1654 } 1655 1656 // Find the current file's user. 1657 char* end; 1658 unsigned long thisUid = strtoul(file->d_name, &end, 10); 1659 if (end[0] != '_' || end[1] == 0) { 1660 continue; 1661 } 1662 UserState* otherUser = getUserStateByUid(thisUid); 1663 if (otherUser->getUserId() != 0) { 1664 unlinkat(dirfd(dir), file->d_name, 0); 1665 } 1666 1667 // Rename the file into user directory. 1668 DIR* otherdir = opendir(otherUser->getUserDirName()); 1669 if (otherdir == NULL) { 1670 ALOGW("couldn't open user directory for rename"); 1671 continue; 1672 } 1673 if (renameat(dirfd(dir), file->d_name, dirfd(otherdir), file->d_name) < 0) { 1674 ALOGW("couldn't rename blob: %s: %s", file->d_name, strerror(errno)); 1675 } 1676 closedir(otherdir); 1677 } 1678 closedir(dir); 1679 1680 mMetaData.version = 1; 1681 upgraded = true; 1682 } 1683 1684 return upgraded; 1685 } 1686 }; 1687 1688 const char* KeyStore::sOldMasterKey = ".masterkey"; 1689 const char* KeyStore::sMetaDataFile = ".metadata"; 1690 1691 const android::String16 KeyStore::sRSAKeyType("RSA"); 1692 1693 namespace android { 1694 class KeyStoreProxy : public BnKeystoreService, public IBinder::DeathRecipient { 1695 public: 1696 KeyStoreProxy(KeyStore* keyStore) 1697 : mKeyStore(keyStore), 1698 mOperationMap(this) 1699 { 1700 } 1701 1702 void binderDied(const wp<IBinder>& who) { 1703 auto operations = mOperationMap.getOperationsForToken(who.unsafe_get()); 1704 for (auto token: operations) { 1705 abort(token); 1706 } 1707 } 1708 1709 int32_t getState(int32_t userId) { 1710 if (!checkBinderPermission(P_GET_STATE)) { 1711 return ::PERMISSION_DENIED; 1712 } 1713 1714 return mKeyStore->getState(userId); 1715 } 1716 1717 int32_t get(const String16& name, uint8_t** item, size_t* itemLength) { 1718 if (!checkBinderPermission(P_GET)) { 1719 return ::PERMISSION_DENIED; 1720 } 1721 1722 uid_t callingUid = IPCThreadState::self()->getCallingUid(); 1723 String8 name8(name); 1724 Blob keyBlob; 1725 1726 ResponseCode responseCode = mKeyStore->getKeyForName(&keyBlob, name8, callingUid, 1727 TYPE_GENERIC); 1728 if (responseCode != ::NO_ERROR) { 1729 *item = NULL; 1730 *itemLength = 0; 1731 return responseCode; 1732 } 1733 1734 *item = (uint8_t*) malloc(keyBlob.getLength()); 1735 memcpy(*item, keyBlob.getValue(), keyBlob.getLength()); 1736 *itemLength = keyBlob.getLength(); 1737 1738 return ::NO_ERROR; 1739 } 1740 1741 int32_t insert(const String16& name, const uint8_t* item, size_t itemLength, int targetUid, 1742 int32_t flags) { 1743 targetUid = getEffectiveUid(targetUid); 1744 int32_t result = checkBinderPermissionAndKeystoreState(P_INSERT, targetUid, 1745 flags & KEYSTORE_FLAG_ENCRYPTED); 1746 if (result != ::NO_ERROR) { 1747 return result; 1748 } 1749 1750 String8 name8(name); 1751 String8 filename(mKeyStore->getKeyNameForUidWithDir(name8, targetUid)); 1752 1753 Blob keyBlob(item, itemLength, NULL, 0, ::TYPE_GENERIC); 1754 keyBlob.setEncrypted(flags & KEYSTORE_FLAG_ENCRYPTED); 1755 1756 return mKeyStore->put(filename.string(), &keyBlob, get_user_id(targetUid)); 1757 } 1758 1759 int32_t del(const String16& name, int targetUid) { 1760 targetUid = getEffectiveUid(targetUid); 1761 if (!checkBinderPermission(P_DELETE, targetUid)) { 1762 return ::PERMISSION_DENIED; 1763 } 1764 String8 name8(name); 1765 String8 filename(mKeyStore->getKeyNameForUidWithDir(name8, targetUid)); 1766 return mKeyStore->del(filename.string(), ::TYPE_ANY, get_user_id(targetUid)); 1767 } 1768 1769 int32_t exist(const String16& name, int targetUid) { 1770 targetUid = getEffectiveUid(targetUid); 1771 if (!checkBinderPermission(P_EXIST, targetUid)) { 1772 return ::PERMISSION_DENIED; 1773 } 1774 1775 String8 name8(name); 1776 String8 filename(mKeyStore->getKeyNameForUidWithDir(name8, targetUid)); 1777 1778 if (access(filename.string(), R_OK) == -1) { 1779 return (errno != ENOENT) ? ::SYSTEM_ERROR : ::KEY_NOT_FOUND; 1780 } 1781 return ::NO_ERROR; 1782 } 1783 1784 int32_t list(const String16& prefix, int targetUid, Vector<String16>* matches) { 1785 targetUid = getEffectiveUid(targetUid); 1786 if (!checkBinderPermission(P_LIST, targetUid)) { 1787 return ::PERMISSION_DENIED; 1788 } 1789 const String8 prefix8(prefix); 1790 String8 filename(mKeyStore->getKeyNameForUid(prefix8, targetUid)); 1791 1792 if (mKeyStore->list(filename, matches, get_user_id(targetUid)) != ::NO_ERROR) { 1793 return ::SYSTEM_ERROR; 1794 } 1795 return ::NO_ERROR; 1796 } 1797 1798 int32_t reset() { 1799 if (!checkBinderPermission(P_RESET)) { 1800 return ::PERMISSION_DENIED; 1801 } 1802 1803 uid_t callingUid = IPCThreadState::self()->getCallingUid(); 1804 mKeyStore->resetUser(get_user_id(callingUid), false); 1805 return ::NO_ERROR; 1806 } 1807 1808 int32_t onUserPasswordChanged(int32_t userId, const String16& password) { 1809 if (!checkBinderPermission(P_PASSWORD)) { 1810 return ::PERMISSION_DENIED; 1811 } 1812 1813 const String8 password8(password); 1814 // Flush the auth token table to prevent stale tokens from sticking 1815 // around. 1816 mAuthTokenTable.Clear(); 1817 1818 if (password.size() == 0) { 1819 ALOGI("Secure lockscreen for user %d removed, deleting encrypted entries", userId); 1820 mKeyStore->resetUser(userId, true); 1821 return ::NO_ERROR; 1822 } else { 1823 switch (mKeyStore->getState(userId)) { 1824 case ::STATE_UNINITIALIZED: { 1825 // generate master key, encrypt with password, write to file, 1826 // initialize mMasterKey*. 1827 return mKeyStore->initializeUser(password8, userId); 1828 } 1829 case ::STATE_NO_ERROR: { 1830 // rewrite master key with new password. 1831 return mKeyStore->writeMasterKey(password8, userId); 1832 } 1833 case ::STATE_LOCKED: { 1834 ALOGE("Changing user %d's password while locked, clearing old encryption", 1835 userId); 1836 mKeyStore->resetUser(userId, true); 1837 return mKeyStore->initializeUser(password8, userId); 1838 } 1839 } 1840 return ::SYSTEM_ERROR; 1841 } 1842 } 1843 1844 int32_t onUserAdded(int32_t userId, int32_t parentId) { 1845 if (!checkBinderPermission(P_USER_CHANGED)) { 1846 return ::PERMISSION_DENIED; 1847 } 1848 1849 // Sanity check that the new user has an empty keystore. 1850 if (!mKeyStore->isEmpty(userId)) { 1851 ALOGW("New user %d's keystore not empty. Clearing old entries.", userId); 1852 } 1853 // Unconditionally clear the keystore, just to be safe. 1854 mKeyStore->resetUser(userId, false); 1855 1856 // If the user has a parent user then use the parent's 1857 // masterkey/password, otherwise there's nothing to do. 1858 if (parentId != -1) { 1859 return mKeyStore->copyMasterKey(parentId, userId); 1860 } else { 1861 return ::NO_ERROR; 1862 } 1863 } 1864 1865 int32_t onUserRemoved(int32_t userId) { 1866 if (!checkBinderPermission(P_USER_CHANGED)) { 1867 return ::PERMISSION_DENIED; 1868 } 1869 1870 mKeyStore->resetUser(userId, false); 1871 return ::NO_ERROR; 1872 } 1873 1874 int32_t lock(int32_t userId) { 1875 if (!checkBinderPermission(P_LOCK)) { 1876 return ::PERMISSION_DENIED; 1877 } 1878 1879 State state = mKeyStore->getState(userId); 1880 if (state != ::STATE_NO_ERROR) { 1881 ALOGD("calling lock in state: %d", state); 1882 return state; 1883 } 1884 1885 mKeyStore->lock(userId); 1886 return ::NO_ERROR; 1887 } 1888 1889 int32_t unlock(int32_t userId, const String16& pw) { 1890 if (!checkBinderPermission(P_UNLOCK)) { 1891 return ::PERMISSION_DENIED; 1892 } 1893 1894 State state = mKeyStore->getState(userId); 1895 if (state != ::STATE_LOCKED) { 1896 ALOGI("calling unlock when not locked, ignoring."); 1897 return state; 1898 } 1899 1900 const String8 password8(pw); 1901 // read master key, decrypt with password, initialize mMasterKey*. 1902 return mKeyStore->readMasterKey(password8, userId); 1903 } 1904 1905 bool isEmpty(int32_t userId) { 1906 if (!checkBinderPermission(P_IS_EMPTY)) { 1907 return false; 1908 } 1909 1910 return mKeyStore->isEmpty(userId); 1911 } 1912 1913 int32_t generate(const String16& name, int32_t targetUid, int32_t keyType, int32_t keySize, 1914 int32_t flags, Vector<sp<KeystoreArg> >* args) { 1915 targetUid = getEffectiveUid(targetUid); 1916 int32_t result = checkBinderPermissionAndKeystoreState(P_INSERT, targetUid, 1917 flags & KEYSTORE_FLAG_ENCRYPTED); 1918 if (result != ::NO_ERROR) { 1919 return result; 1920 } 1921 1922 KeymasterArguments params; 1923 addLegacyKeyAuthorizations(params.params, keyType); 1924 1925 switch (keyType) { 1926 case EVP_PKEY_EC: { 1927 params.params.push_back(keymaster_param_enum(KM_TAG_ALGORITHM, KM_ALGORITHM_EC)); 1928 if (keySize == -1) { 1929 keySize = EC_DEFAULT_KEY_SIZE; 1930 } else if (keySize < EC_MIN_KEY_SIZE || keySize > EC_MAX_KEY_SIZE) { 1931 ALOGI("invalid key size %d", keySize); 1932 return ::SYSTEM_ERROR; 1933 } 1934 params.params.push_back(keymaster_param_int(KM_TAG_KEY_SIZE, keySize)); 1935 break; 1936 } 1937 case EVP_PKEY_RSA: { 1938 params.params.push_back(keymaster_param_enum(KM_TAG_ALGORITHM, KM_ALGORITHM_RSA)); 1939 if (keySize == -1) { 1940 keySize = RSA_DEFAULT_KEY_SIZE; 1941 } else if (keySize < RSA_MIN_KEY_SIZE || keySize > RSA_MAX_KEY_SIZE) { 1942 ALOGI("invalid key size %d", keySize); 1943 return ::SYSTEM_ERROR; 1944 } 1945 params.params.push_back(keymaster_param_int(KM_TAG_KEY_SIZE, keySize)); 1946 unsigned long exponent = RSA_DEFAULT_EXPONENT; 1947 if (args->size() > 1) { 1948 ALOGI("invalid number of arguments: %zu", args->size()); 1949 return ::SYSTEM_ERROR; 1950 } else if (args->size() == 1) { 1951 sp<KeystoreArg> expArg = args->itemAt(0); 1952 if (expArg != NULL) { 1953 Unique_BIGNUM pubExpBn( 1954 BN_bin2bn(reinterpret_cast<const unsigned char*>(expArg->data()), 1955 expArg->size(), NULL)); 1956 if (pubExpBn.get() == NULL) { 1957 ALOGI("Could not convert public exponent to BN"); 1958 return ::SYSTEM_ERROR; 1959 } 1960 exponent = BN_get_word(pubExpBn.get()); 1961 if (exponent == 0xFFFFFFFFL) { 1962 ALOGW("cannot represent public exponent as a long value"); 1963 return ::SYSTEM_ERROR; 1964 } 1965 } else { 1966 ALOGW("public exponent not read"); 1967 return ::SYSTEM_ERROR; 1968 } 1969 } 1970 params.params.push_back(keymaster_param_long(KM_TAG_RSA_PUBLIC_EXPONENT, 1971 exponent)); 1972 break; 1973 } 1974 default: { 1975 ALOGW("Unsupported key type %d", keyType); 1976 return ::SYSTEM_ERROR; 1977 } 1978 } 1979 1980 int32_t rc = generateKey(name, params, NULL, 0, targetUid, flags, 1981 /*outCharacteristics*/ NULL); 1982 if (rc != ::NO_ERROR) { 1983 ALOGW("generate failed: %d", rc); 1984 } 1985 return translateResultToLegacyResult(rc); 1986 } 1987 1988 int32_t import(const String16& name, const uint8_t* data, size_t length, int targetUid, 1989 int32_t flags) { 1990 const uint8_t* ptr = data; 1991 1992 Unique_PKCS8_PRIV_KEY_INFO pkcs8(d2i_PKCS8_PRIV_KEY_INFO(NULL, &ptr, length)); 1993 if (!pkcs8.get()) { 1994 return ::SYSTEM_ERROR; 1995 } 1996 Unique_EVP_PKEY pkey(EVP_PKCS82PKEY(pkcs8.get())); 1997 if (!pkey.get()) { 1998 return ::SYSTEM_ERROR; 1999 } 2000 int type = EVP_PKEY_type(pkey->type); 2001 KeymasterArguments params; 2002 addLegacyKeyAuthorizations(params.params, type); 2003 switch (type) { 2004 case EVP_PKEY_RSA: 2005 params.params.push_back(keymaster_param_enum(KM_TAG_ALGORITHM, KM_ALGORITHM_RSA)); 2006 break; 2007 case EVP_PKEY_EC: 2008 params.params.push_back(keymaster_param_enum(KM_TAG_ALGORITHM, 2009 KM_ALGORITHM_EC)); 2010 break; 2011 default: 2012 ALOGW("Unsupported key type %d", type); 2013 return ::SYSTEM_ERROR; 2014 } 2015 int32_t rc = importKey(name, params, KM_KEY_FORMAT_PKCS8, data, length, targetUid, flags, 2016 /*outCharacteristics*/ NULL); 2017 if (rc != ::NO_ERROR) { 2018 ALOGW("importKey failed: %d", rc); 2019 } 2020 return translateResultToLegacyResult(rc); 2021 } 2022 2023 int32_t sign(const String16& name, const uint8_t* data, size_t length, uint8_t** out, 2024 size_t* outLength) { 2025 if (!checkBinderPermission(P_SIGN)) { 2026 return ::PERMISSION_DENIED; 2027 } 2028 return doLegacySignVerify(name, data, length, out, outLength, NULL, 0, KM_PURPOSE_SIGN); 2029 } 2030 2031 int32_t verify(const String16& name, const uint8_t* data, size_t dataLength, 2032 const uint8_t* signature, size_t signatureLength) { 2033 if (!checkBinderPermission(P_VERIFY)) { 2034 return ::PERMISSION_DENIED; 2035 } 2036 return doLegacySignVerify(name, data, dataLength, NULL, NULL, signature, signatureLength, 2037 KM_PURPOSE_VERIFY); 2038 } 2039 2040 /* 2041 * TODO: The abstraction between things stored in hardware and regular blobs 2042 * of data stored on the filesystem should be moved down to keystore itself. 2043 * Unfortunately the Java code that calls this has naming conventions that it 2044 * knows about. Ideally keystore shouldn't be used to store random blobs of 2045 * data. 2046 * 2047 * Until that happens, it's necessary to have a separate "get_pubkey" and 2048 * "del_key" since the Java code doesn't really communicate what it's 2049 * intentions are. 2050 */ 2051 int32_t get_pubkey(const String16& name, uint8_t** pubkey, size_t* pubkeyLength) { 2052 ExportResult result; 2053 exportKey(name, KM_KEY_FORMAT_X509, NULL, NULL, &result); 2054 if (result.resultCode != ::NO_ERROR) { 2055 ALOGW("export failed: %d", result.resultCode); 2056 return translateResultToLegacyResult(result.resultCode); 2057 } 2058 2059 *pubkey = result.exportData.release(); 2060 *pubkeyLength = result.dataLength; 2061 return ::NO_ERROR; 2062 } 2063 2064 int32_t grant(const String16& name, int32_t granteeUid) { 2065 uid_t callingUid = IPCThreadState::self()->getCallingUid(); 2066 int32_t result = checkBinderPermissionAndKeystoreState(P_GRANT); 2067 if (result != ::NO_ERROR) { 2068 return result; 2069 } 2070 2071 String8 name8(name); 2072 String8 filename(mKeyStore->getKeyNameForUidWithDir(name8, callingUid)); 2073 2074 if (access(filename.string(), R_OK) == -1) { 2075 return (errno != ENOENT) ? ::SYSTEM_ERROR : ::KEY_NOT_FOUND; 2076 } 2077 2078 mKeyStore->addGrant(filename.string(), granteeUid); 2079 return ::NO_ERROR; 2080 } 2081 2082 int32_t ungrant(const String16& name, int32_t granteeUid) { 2083 uid_t callingUid = IPCThreadState::self()->getCallingUid(); 2084 int32_t result = checkBinderPermissionAndKeystoreState(P_GRANT); 2085 if (result != ::NO_ERROR) { 2086 return result; 2087 } 2088 2089 String8 name8(name); 2090 String8 filename(mKeyStore->getKeyNameForUidWithDir(name8, callingUid)); 2091 2092 if (access(filename.string(), R_OK) == -1) { 2093 return (errno != ENOENT) ? ::SYSTEM_ERROR : ::KEY_NOT_FOUND; 2094 } 2095 2096 return mKeyStore->removeGrant(filename.string(), granteeUid) ? ::NO_ERROR : ::KEY_NOT_FOUND; 2097 } 2098 2099 int64_t getmtime(const String16& name) { 2100 uid_t callingUid = IPCThreadState::self()->getCallingUid(); 2101 if (!checkBinderPermission(P_GET)) { 2102 ALOGW("permission denied for %d: getmtime", callingUid); 2103 return -1L; 2104 } 2105 2106 String8 name8(name); 2107 String8 filename(mKeyStore->getKeyNameForUidWithDir(name8, callingUid)); 2108 2109 if (access(filename.string(), R_OK) == -1) { 2110 ALOGW("could not access %s for getmtime", filename.string()); 2111 return -1L; 2112 } 2113 2114 int fd = TEMP_FAILURE_RETRY(open(filename.string(), O_NOFOLLOW, O_RDONLY)); 2115 if (fd < 0) { 2116 ALOGW("could not open %s for getmtime", filename.string()); 2117 return -1L; 2118 } 2119 2120 struct stat s; 2121 int ret = fstat(fd, &s); 2122 close(fd); 2123 if (ret == -1) { 2124 ALOGW("could not stat %s for getmtime", filename.string()); 2125 return -1L; 2126 } 2127 2128 return static_cast<int64_t>(s.st_mtime); 2129 } 2130 2131 int32_t duplicate(const String16& srcKey, int32_t srcUid, const String16& destKey, 2132 int32_t destUid) { 2133 uid_t callingUid = IPCThreadState::self()->getCallingUid(); 2134 pid_t spid = IPCThreadState::self()->getCallingPid(); 2135 if (!has_permission(callingUid, P_DUPLICATE, spid)) { 2136 ALOGW("permission denied for %d: duplicate", callingUid); 2137 return -1L; 2138 } 2139 2140 State state = mKeyStore->getState(get_user_id(callingUid)); 2141 if (!isKeystoreUnlocked(state)) { 2142 ALOGD("calling duplicate in state: %d", state); 2143 return state; 2144 } 2145 2146 if (srcUid == -1 || static_cast<uid_t>(srcUid) == callingUid) { 2147 srcUid = callingUid; 2148 } else if (!is_granted_to(callingUid, srcUid)) { 2149 ALOGD("migrate not granted from source: %d -> %d", callingUid, srcUid); 2150 return ::PERMISSION_DENIED; 2151 } 2152 2153 if (destUid == -1) { 2154 destUid = callingUid; 2155 } 2156 2157 if (srcUid != destUid) { 2158 if (static_cast<uid_t>(srcUid) != callingUid) { 2159 ALOGD("can only duplicate from caller to other or to same uid: " 2160 "calling=%d, srcUid=%d, destUid=%d", callingUid, srcUid, destUid); 2161 return ::PERMISSION_DENIED; 2162 } 2163 2164 if (!is_granted_to(callingUid, destUid)) { 2165 ALOGD("duplicate not granted to dest: %d -> %d", callingUid, destUid); 2166 return ::PERMISSION_DENIED; 2167 } 2168 } 2169 2170 String8 source8(srcKey); 2171 String8 sourceFile(mKeyStore->getKeyNameForUidWithDir(source8, srcUid)); 2172 2173 String8 target8(destKey); 2174 String8 targetFile(mKeyStore->getKeyNameForUidWithDir(target8, destUid)); 2175 2176 if (access(targetFile.string(), W_OK) != -1 || errno != ENOENT) { 2177 ALOGD("destination already exists: %s", targetFile.string()); 2178 return ::SYSTEM_ERROR; 2179 } 2180 2181 Blob keyBlob; 2182 ResponseCode responseCode = mKeyStore->get(sourceFile.string(), &keyBlob, TYPE_ANY, 2183 get_user_id(srcUid)); 2184 if (responseCode != ::NO_ERROR) { 2185 return responseCode; 2186 } 2187 2188 return mKeyStore->put(targetFile.string(), &keyBlob, get_user_id(destUid)); 2189 } 2190 2191 int32_t is_hardware_backed(const String16& keyType) { 2192 return mKeyStore->isHardwareBacked(keyType) ? 1 : 0; 2193 } 2194 2195 int32_t clear_uid(int64_t targetUid64) { 2196 uid_t targetUid = getEffectiveUid(targetUid64); 2197 if (!checkBinderPermissionSelfOrSystem(P_CLEAR_UID, targetUid)) { 2198 return ::PERMISSION_DENIED; 2199 } 2200 2201 String8 prefix = String8::format("%u_", targetUid); 2202 Vector<String16> aliases; 2203 if (mKeyStore->list(prefix, &aliases, get_user_id(targetUid)) != ::NO_ERROR) { 2204 return ::SYSTEM_ERROR; 2205 } 2206 2207 for (uint32_t i = 0; i < aliases.size(); i++) { 2208 String8 name8(aliases[i]); 2209 String8 filename(mKeyStore->getKeyNameForUidWithDir(name8, targetUid)); 2210 mKeyStore->del(filename.string(), ::TYPE_ANY, get_user_id(targetUid)); 2211 } 2212 return ::NO_ERROR; 2213 } 2214 2215 int32_t addRngEntropy(const uint8_t* data, size_t dataLength) { 2216 const keymaster1_device_t* device = mKeyStore->getDevice(); 2217 const keymaster1_device_t* fallback = mKeyStore->getFallbackDevice(); 2218 int32_t devResult = KM_ERROR_UNIMPLEMENTED; 2219 int32_t fallbackResult = KM_ERROR_UNIMPLEMENTED; 2220 if (device->common.module->module_api_version >= KEYMASTER_MODULE_API_VERSION_1_0 && 2221 device->add_rng_entropy != NULL) { 2222 devResult = device->add_rng_entropy(device, data, dataLength); 2223 } 2224 if (fallback->add_rng_entropy) { 2225 fallbackResult = fallback->add_rng_entropy(fallback, data, dataLength); 2226 } 2227 if (devResult) { 2228 return devResult; 2229 } 2230 if (fallbackResult) { 2231 return fallbackResult; 2232 } 2233 return ::NO_ERROR; 2234 } 2235 2236 int32_t generateKey(const String16& name, const KeymasterArguments& params, 2237 const uint8_t* entropy, size_t entropyLength, int uid, int flags, 2238 KeyCharacteristics* outCharacteristics) { 2239 uid = getEffectiveUid(uid); 2240 int rc = checkBinderPermissionAndKeystoreState(P_INSERT, uid, 2241 flags & KEYSTORE_FLAG_ENCRYPTED); 2242 if (rc != ::NO_ERROR) { 2243 return rc; 2244 } 2245 2246 rc = KM_ERROR_UNIMPLEMENTED; 2247 bool isFallback = false; 2248 keymaster_key_blob_t blob; 2249 keymaster_key_characteristics_t *out = NULL; 2250 2251 const keymaster1_device_t* device = mKeyStore->getDevice(); 2252 const keymaster1_device_t* fallback = mKeyStore->getFallbackDevice(); 2253 std::vector<keymaster_key_param_t> opParams(params.params); 2254 const keymaster_key_param_set_t inParams = {opParams.data(), opParams.size()}; 2255 if (device == NULL) { 2256 return ::SYSTEM_ERROR; 2257 } 2258 // TODO: Seed from Linux RNG before this. 2259 if (device->common.module->module_api_version >= KEYMASTER_MODULE_API_VERSION_1_0 && 2260 device->generate_key != NULL) { 2261 if (!entropy) { 2262 rc = KM_ERROR_OK; 2263 } else if (device->add_rng_entropy) { 2264 rc = device->add_rng_entropy(device, entropy, entropyLength); 2265 } else { 2266 rc = KM_ERROR_UNIMPLEMENTED; 2267 } 2268 if (rc == KM_ERROR_OK) { 2269 rc = device->generate_key(device, &inParams, &blob, &out); 2270 } 2271 } 2272 // If the HW device didn't support generate_key or generate_key failed 2273 // fall back to the software implementation. 2274 if (rc && fallback->generate_key != NULL) { 2275 isFallback = true; 2276 if (!entropy) { 2277 rc = KM_ERROR_OK; 2278 } else if (fallback->add_rng_entropy) { 2279 rc = fallback->add_rng_entropy(fallback, entropy, entropyLength); 2280 } else { 2281 rc = KM_ERROR_UNIMPLEMENTED; 2282 } 2283 if (rc == KM_ERROR_OK) { 2284 rc = fallback->generate_key(fallback, &inParams, &blob, &out); 2285 } 2286 } 2287 2288 if (out) { 2289 if (outCharacteristics) { 2290 outCharacteristics->characteristics = *out; 2291 } else { 2292 keymaster_free_characteristics(out); 2293 } 2294 free(out); 2295 } 2296 2297 if (rc) { 2298 return rc; 2299 } 2300 2301 String8 name8(name); 2302 String8 filename(mKeyStore->getKeyNameForUidWithDir(name8, uid)); 2303 2304 Blob keyBlob(blob.key_material, blob.key_material_size, NULL, 0, ::TYPE_KEYMASTER_10); 2305 keyBlob.setFallback(isFallback); 2306 keyBlob.setEncrypted(flags & KEYSTORE_FLAG_ENCRYPTED); 2307 2308 free(const_cast<uint8_t*>(blob.key_material)); 2309 2310 return mKeyStore->put(filename.string(), &keyBlob, get_user_id(uid)); 2311 } 2312 2313 int32_t getKeyCharacteristics(const String16& name, 2314 const keymaster_blob_t* clientId, 2315 const keymaster_blob_t* appData, 2316 KeyCharacteristics* outCharacteristics) { 2317 if (!outCharacteristics) { 2318 return KM_ERROR_UNEXPECTED_NULL_POINTER; 2319 } 2320 2321 uid_t callingUid = IPCThreadState::self()->getCallingUid(); 2322 2323 Blob keyBlob; 2324 String8 name8(name); 2325 int rc; 2326 2327 ResponseCode responseCode = mKeyStore->getKeyForName(&keyBlob, name8, callingUid, 2328 TYPE_KEYMASTER_10); 2329 if (responseCode != ::NO_ERROR) { 2330 return responseCode; 2331 } 2332 keymaster_key_blob_t key; 2333 key.key_material_size = keyBlob.getLength(); 2334 key.key_material = keyBlob.getValue(); 2335 keymaster1_device_t* dev = mKeyStore->getDeviceForBlob(keyBlob); 2336 keymaster_key_characteristics_t *out = NULL; 2337 if (!dev->get_key_characteristics) { 2338 ALOGW("device does not implement get_key_characteristics"); 2339 return KM_ERROR_UNIMPLEMENTED; 2340 } 2341 rc = dev->get_key_characteristics(dev, &key, clientId, appData, &out); 2342 if (out) { 2343 outCharacteristics->characteristics = *out; 2344 free(out); 2345 } 2346 return rc ? rc : ::NO_ERROR; 2347 } 2348 2349 int32_t importKey(const String16& name, const KeymasterArguments& params, 2350 keymaster_key_format_t format, const uint8_t *keyData, 2351 size_t keyLength, int uid, int flags, 2352 KeyCharacteristics* outCharacteristics) { 2353 uid = getEffectiveUid(uid); 2354 int rc = checkBinderPermissionAndKeystoreState(P_INSERT, uid, 2355 flags & KEYSTORE_FLAG_ENCRYPTED); 2356 if (rc != ::NO_ERROR) { 2357 return rc; 2358 } 2359 2360 rc = KM_ERROR_UNIMPLEMENTED; 2361 bool isFallback = false; 2362 keymaster_key_blob_t blob; 2363 keymaster_key_characteristics_t *out = NULL; 2364 2365 const keymaster1_device_t* device = mKeyStore->getDevice(); 2366 const keymaster1_device_t* fallback = mKeyStore->getFallbackDevice(); 2367 std::vector<keymaster_key_param_t> opParams(params.params); 2368 const keymaster_key_param_set_t inParams = {opParams.data(), opParams.size()}; 2369 const keymaster_blob_t input = {keyData, keyLength}; 2370 if (device == NULL) { 2371 return ::SYSTEM_ERROR; 2372 } 2373 if (device->common.module->module_api_version >= KEYMASTER_MODULE_API_VERSION_1_0 && 2374 device->import_key != NULL) { 2375 rc = device->import_key(device, &inParams, format,&input, &blob, &out); 2376 } 2377 if (rc && fallback->import_key != NULL) { 2378 isFallback = true; 2379 rc = fallback->import_key(fallback, &inParams, format, &input, &blob, &out); 2380 } 2381 if (out) { 2382 if (outCharacteristics) { 2383 outCharacteristics->characteristics = *out; 2384 } else { 2385 keymaster_free_characteristics(out); 2386 } 2387 free(out); 2388 } 2389 if (rc) { 2390 return rc; 2391 } 2392 2393 String8 name8(name); 2394 String8 filename(mKeyStore->getKeyNameForUidWithDir(name8, uid)); 2395 2396 Blob keyBlob(blob.key_material, blob.key_material_size, NULL, 0, ::TYPE_KEYMASTER_10); 2397 keyBlob.setFallback(isFallback); 2398 keyBlob.setEncrypted(flags & KEYSTORE_FLAG_ENCRYPTED); 2399 2400 free((void*) blob.key_material); 2401 2402 return mKeyStore->put(filename.string(), &keyBlob, get_user_id(uid)); 2403 } 2404 2405 void exportKey(const String16& name, keymaster_key_format_t format, 2406 const keymaster_blob_t* clientId, 2407 const keymaster_blob_t* appData, ExportResult* result) { 2408 2409 uid_t callingUid = IPCThreadState::self()->getCallingUid(); 2410 2411 Blob keyBlob; 2412 String8 name8(name); 2413 int rc; 2414 2415 ResponseCode responseCode = mKeyStore->getKeyForName(&keyBlob, name8, callingUid, 2416 TYPE_KEYMASTER_10); 2417 if (responseCode != ::NO_ERROR) { 2418 result->resultCode = responseCode; 2419 return; 2420 } 2421 keymaster_key_blob_t key; 2422 key.key_material_size = keyBlob.getLength(); 2423 key.key_material = keyBlob.getValue(); 2424 keymaster1_device_t* dev = mKeyStore->getDeviceForBlob(keyBlob); 2425 if (!dev->export_key) { 2426 result->resultCode = KM_ERROR_UNIMPLEMENTED; 2427 return; 2428 } 2429 keymaster_blob_t output = {NULL, 0}; 2430 rc = dev->export_key(dev, format, &key, clientId, appData, &output); 2431 result->exportData.reset(const_cast<uint8_t*>(output.data)); 2432 result->dataLength = output.data_length; 2433 result->resultCode = rc ? rc : ::NO_ERROR; 2434 } 2435 2436 2437 void begin(const sp<IBinder>& appToken, const String16& name, keymaster_purpose_t purpose, 2438 bool pruneable, const KeymasterArguments& params, const uint8_t* entropy, 2439 size_t entropyLength, OperationResult* result) { 2440 uid_t callingUid = IPCThreadState::self()->getCallingUid(); 2441 if (!pruneable && get_app_id(callingUid) != AID_SYSTEM) { 2442 ALOGE("Non-system uid %d trying to start non-pruneable operation", callingUid); 2443 result->resultCode = ::PERMISSION_DENIED; 2444 return; 2445 } 2446 if (!checkAllowedOperationParams(params.params)) { 2447 result->resultCode = KM_ERROR_INVALID_ARGUMENT; 2448 return; 2449 } 2450 Blob keyBlob; 2451 String8 name8(name); 2452 ResponseCode responseCode = mKeyStore->getKeyForName(&keyBlob, name8, callingUid, 2453 TYPE_KEYMASTER_10); 2454 if (responseCode != ::NO_ERROR) { 2455 result->resultCode = responseCode; 2456 return; 2457 } 2458 keymaster_key_blob_t key; 2459 key.key_material_size = keyBlob.getLength(); 2460 key.key_material = keyBlob.getValue(); 2461 keymaster_operation_handle_t handle; 2462 keymaster1_device_t* dev = mKeyStore->getDeviceForBlob(keyBlob); 2463 keymaster_error_t err = KM_ERROR_UNIMPLEMENTED; 2464 std::vector<keymaster_key_param_t> opParams(params.params); 2465 Unique_keymaster_key_characteristics characteristics; 2466 characteristics.reset(new keymaster_key_characteristics_t); 2467 err = getOperationCharacteristics(key, dev, opParams, characteristics.get()); 2468 if (err) { 2469 result->resultCode = err; 2470 return; 2471 } 2472 const hw_auth_token_t* authToken = NULL; 2473 int32_t authResult = getAuthToken(characteristics.get(), 0, purpose, &authToken, 2474 /*failOnTokenMissing*/ false); 2475 // If per-operation auth is needed we need to begin the operation and 2476 // the client will need to authorize that operation before calling 2477 // update. Any other auth issues stop here. 2478 if (authResult != ::NO_ERROR && authResult != ::OP_AUTH_NEEDED) { 2479 result->resultCode = authResult; 2480 return; 2481 } 2482 addAuthToParams(&opParams, authToken); 2483 // Add entropy to the device first. 2484 if (entropy) { 2485 if (dev->add_rng_entropy) { 2486 err = dev->add_rng_entropy(dev, entropy, entropyLength); 2487 } else { 2488 err = KM_ERROR_UNIMPLEMENTED; 2489 } 2490 if (err) { 2491 result->resultCode = err; 2492 return; 2493 } 2494 } 2495 keymaster_key_param_set_t inParams = {opParams.data(), opParams.size()}; 2496 2497 // Create a keyid for this key. 2498 keymaster::km_id_t keyid; 2499 if (!enforcement_policy.CreateKeyId(key, &keyid)) { 2500 ALOGE("Failed to create a key ID for authorization checking."); 2501 result->resultCode = KM_ERROR_UNKNOWN_ERROR; 2502 return; 2503 } 2504 2505 // Check that all key authorization policy requirements are met. 2506 keymaster::AuthorizationSet key_auths(characteristics->hw_enforced); 2507 key_auths.push_back(characteristics->sw_enforced); 2508 keymaster::AuthorizationSet operation_params(inParams); 2509 err = enforcement_policy.AuthorizeOperation(purpose, keyid, key_auths, operation_params, 2510 0 /* op_handle */, 2511 true /* is_begin_operation */); 2512 if (err) { 2513 result->resultCode = err; 2514 return; 2515 } 2516 2517 keymaster_key_param_set_t outParams = {NULL, 0}; 2518 err = dev->begin(dev, purpose, &key, &inParams, &outParams, &handle); 2519 2520 // If there are too many operations abort the oldest operation that was 2521 // started as pruneable and try again. 2522 while (err == KM_ERROR_TOO_MANY_OPERATIONS && mOperationMap.hasPruneableOperation()) { 2523 sp<IBinder> oldest = mOperationMap.getOldestPruneableOperation(); 2524 ALOGD("Ran out of operation handles, trying to prune %p", oldest.get()); 2525 2526 // We mostly ignore errors from abort() below because all we care about is whether at 2527 // least one pruneable operation has been removed. 2528 size_t op_count_before = mOperationMap.getPruneableOperationCount(); 2529 int abort_error = abort(oldest); 2530 size_t op_count_after = mOperationMap.getPruneableOperationCount(); 2531 if (op_count_after >= op_count_before) { 2532 // Failed to create space for a new operation. Bail to avoid an infinite loop. 2533 ALOGE("Failed to remove pruneable operation %p, error: %d", 2534 oldest.get(), abort_error); 2535 break; 2536 } 2537 err = dev->begin(dev, purpose, &key, &inParams, &outParams, &handle); 2538 } 2539 if (err) { 2540 result->resultCode = err; 2541 return; 2542 } 2543 2544 sp<IBinder> operationToken = mOperationMap.addOperation(handle, keyid, purpose, dev, 2545 appToken, characteristics.release(), 2546 pruneable); 2547 if (authToken) { 2548 mOperationMap.setOperationAuthToken(operationToken, authToken); 2549 } 2550 // Return the authentication lookup result. If this is a per operation 2551 // auth'd key then the resultCode will be ::OP_AUTH_NEEDED and the 2552 // application should get an auth token using the handle before the 2553 // first call to update, which will fail if keystore hasn't received the 2554 // auth token. 2555 result->resultCode = authResult; 2556 result->token = operationToken; 2557 result->handle = handle; 2558 if (outParams.params) { 2559 result->outParams.params.assign(outParams.params, outParams.params + outParams.length); 2560 free(outParams.params); 2561 } 2562 } 2563 2564 void update(const sp<IBinder>& token, const KeymasterArguments& params, const uint8_t* data, 2565 size_t dataLength, OperationResult* result) { 2566 if (!checkAllowedOperationParams(params.params)) { 2567 result->resultCode = KM_ERROR_INVALID_ARGUMENT; 2568 return; 2569 } 2570 const keymaster1_device_t* dev; 2571 keymaster_operation_handle_t handle; 2572 keymaster_purpose_t purpose; 2573 keymaster::km_id_t keyid; 2574 const keymaster_key_characteristics_t* characteristics; 2575 if (!mOperationMap.getOperation(token, &handle, &keyid, &purpose, &dev, &characteristics)) { 2576 result->resultCode = KM_ERROR_INVALID_OPERATION_HANDLE; 2577 return; 2578 } 2579 std::vector<keymaster_key_param_t> opParams(params.params); 2580 int32_t authResult = addOperationAuthTokenIfNeeded(token, &opParams); 2581 if (authResult != ::NO_ERROR) { 2582 result->resultCode = authResult; 2583 return; 2584 } 2585 keymaster_key_param_set_t inParams = {opParams.data(), opParams.size()}; 2586 keymaster_blob_t input = {data, dataLength}; 2587 size_t consumed = 0; 2588 keymaster_blob_t output = {NULL, 0}; 2589 keymaster_key_param_set_t outParams = {NULL, 0}; 2590 2591 // Check that all key authorization policy requirements are met. 2592 keymaster::AuthorizationSet key_auths(characteristics->hw_enforced); 2593 key_auths.push_back(characteristics->sw_enforced); 2594 keymaster::AuthorizationSet operation_params(inParams); 2595 result->resultCode = 2596 enforcement_policy.AuthorizeOperation(purpose, keyid, key_auths, 2597 operation_params, handle, 2598 false /* is_begin_operation */); 2599 if (result->resultCode) { 2600 return; 2601 } 2602 2603 keymaster_error_t err = dev->update(dev, handle, &inParams, &input, &consumed, &outParams, 2604 &output); 2605 result->data.reset(const_cast<uint8_t*>(output.data)); 2606 result->dataLength = output.data_length; 2607 result->inputConsumed = consumed; 2608 result->resultCode = err ? (int32_t) err : ::NO_ERROR; 2609 if (outParams.params) { 2610 result->outParams.params.assign(outParams.params, outParams.params + outParams.length); 2611 free(outParams.params); 2612 } 2613 } 2614 2615 void finish(const sp<IBinder>& token, const KeymasterArguments& params, 2616 const uint8_t* signature, size_t signatureLength, 2617 const uint8_t* entropy, size_t entropyLength, OperationResult* result) { 2618 if (!checkAllowedOperationParams(params.params)) { 2619 result->resultCode = KM_ERROR_INVALID_ARGUMENT; 2620 return; 2621 } 2622 const keymaster1_device_t* dev; 2623 keymaster_operation_handle_t handle; 2624 keymaster_purpose_t purpose; 2625 keymaster::km_id_t keyid; 2626 const keymaster_key_characteristics_t* characteristics; 2627 if (!mOperationMap.getOperation(token, &handle, &keyid, &purpose, &dev, &characteristics)) { 2628 result->resultCode = KM_ERROR_INVALID_OPERATION_HANDLE; 2629 return; 2630 } 2631 std::vector<keymaster_key_param_t> opParams(params.params); 2632 int32_t authResult = addOperationAuthTokenIfNeeded(token, &opParams); 2633 if (authResult != ::NO_ERROR) { 2634 result->resultCode = authResult; 2635 return; 2636 } 2637 keymaster_error_t err; 2638 if (entropy) { 2639 if (dev->add_rng_entropy) { 2640 err = dev->add_rng_entropy(dev, entropy, entropyLength); 2641 } else { 2642 err = KM_ERROR_UNIMPLEMENTED; 2643 } 2644 if (err) { 2645 result->resultCode = err; 2646 return; 2647 } 2648 } 2649 2650 keymaster_key_param_set_t inParams = {opParams.data(), opParams.size()}; 2651 keymaster_blob_t input = {signature, signatureLength}; 2652 keymaster_blob_t output = {NULL, 0}; 2653 keymaster_key_param_set_t outParams = {NULL, 0}; 2654 2655 // Check that all key authorization policy requirements are met. 2656 keymaster::AuthorizationSet key_auths(characteristics->hw_enforced); 2657 key_auths.push_back(characteristics->sw_enforced); 2658 keymaster::AuthorizationSet operation_params(inParams); 2659 err = enforcement_policy.AuthorizeOperation(purpose, keyid, key_auths, operation_params, 2660 handle, false /* is_begin_operation */); 2661 if (err) { 2662 result->resultCode = err; 2663 return; 2664 } 2665 2666 err = dev->finish(dev, handle, &inParams, &input, &outParams, &output); 2667 // Remove the operation regardless of the result 2668 mOperationMap.removeOperation(token); 2669 mAuthTokenTable.MarkCompleted(handle); 2670 2671 result->data.reset(const_cast<uint8_t*>(output.data)); 2672 result->dataLength = output.data_length; 2673 result->resultCode = err ? (int32_t) err : ::NO_ERROR; 2674 if (outParams.params) { 2675 result->outParams.params.assign(outParams.params, outParams.params + outParams.length); 2676 free(outParams.params); 2677 } 2678 } 2679 2680 int32_t abort(const sp<IBinder>& token) { 2681 const keymaster1_device_t* dev; 2682 keymaster_operation_handle_t handle; 2683 keymaster_purpose_t purpose; 2684 keymaster::km_id_t keyid; 2685 if (!mOperationMap.getOperation(token, &handle, &keyid, &purpose, &dev, NULL)) { 2686 return KM_ERROR_INVALID_OPERATION_HANDLE; 2687 } 2688 mOperationMap.removeOperation(token); 2689 int32_t rc; 2690 if (!dev->abort) { 2691 rc = KM_ERROR_UNIMPLEMENTED; 2692 } else { 2693 rc = dev->abort(dev, handle); 2694 } 2695 mAuthTokenTable.MarkCompleted(handle); 2696 if (rc) { 2697 return rc; 2698 } 2699 return ::NO_ERROR; 2700 } 2701 2702 bool isOperationAuthorized(const sp<IBinder>& token) { 2703 const keymaster1_device_t* dev; 2704 keymaster_operation_handle_t handle; 2705 const keymaster_key_characteristics_t* characteristics; 2706 keymaster_purpose_t purpose; 2707 keymaster::km_id_t keyid; 2708 if (!mOperationMap.getOperation(token, &handle, &keyid, &purpose, &dev, &characteristics)) { 2709 return false; 2710 } 2711 const hw_auth_token_t* authToken = NULL; 2712 mOperationMap.getOperationAuthToken(token, &authToken); 2713 std::vector<keymaster_key_param_t> ignored; 2714 int32_t authResult = addOperationAuthTokenIfNeeded(token, &ignored); 2715 return authResult == ::NO_ERROR; 2716 } 2717 2718 int32_t addAuthToken(const uint8_t* token, size_t length) { 2719 if (!checkBinderPermission(P_ADD_AUTH)) { 2720 ALOGW("addAuthToken: permission denied for %d", 2721 IPCThreadState::self()->getCallingUid()); 2722 return ::PERMISSION_DENIED; 2723 } 2724 if (length != sizeof(hw_auth_token_t)) { 2725 return KM_ERROR_INVALID_ARGUMENT; 2726 } 2727 hw_auth_token_t* authToken = new hw_auth_token_t; 2728 memcpy(reinterpret_cast<void*>(authToken), token, sizeof(hw_auth_token_t)); 2729 // The table takes ownership of authToken. 2730 mAuthTokenTable.AddAuthenticationToken(authToken); 2731 return ::NO_ERROR; 2732 } 2733 2734 private: 2735 static const int32_t UID_SELF = -1; 2736 2737 /** 2738 * Get the effective target uid for a binder operation that takes an 2739 * optional uid as the target. 2740 */ 2741 inline uid_t getEffectiveUid(int32_t targetUid) { 2742 if (targetUid == UID_SELF) { 2743 return IPCThreadState::self()->getCallingUid(); 2744 } 2745 return static_cast<uid_t>(targetUid); 2746 } 2747 2748 /** 2749 * Check if the caller of the current binder method has the required 2750 * permission and if acting on other uids the grants to do so. 2751 */ 2752 inline bool checkBinderPermission(perm_t permission, int32_t targetUid = UID_SELF) { 2753 uid_t callingUid = IPCThreadState::self()->getCallingUid(); 2754 pid_t spid = IPCThreadState::self()->getCallingPid(); 2755 if (!has_permission(callingUid, permission, spid)) { 2756 ALOGW("permission %s denied for %d", get_perm_label(permission), callingUid); 2757 return false; 2758 } 2759 if (!is_granted_to(callingUid, getEffectiveUid(targetUid))) { 2760 ALOGW("uid %d not granted to act for %d", callingUid, targetUid); 2761 return false; 2762 } 2763 return true; 2764 } 2765 2766 /** 2767 * Check if the caller of the current binder method has the required 2768 * permission and the target uid is the caller or the caller is system. 2769 */ 2770 inline bool checkBinderPermissionSelfOrSystem(perm_t permission, int32_t targetUid) { 2771 uid_t callingUid = IPCThreadState::self()->getCallingUid(); 2772 pid_t spid = IPCThreadState::self()->getCallingPid(); 2773 if (!has_permission(callingUid, permission, spid)) { 2774 ALOGW("permission %s denied for %d", get_perm_label(permission), callingUid); 2775 return false; 2776 } 2777 return getEffectiveUid(targetUid) == callingUid || callingUid == AID_SYSTEM; 2778 } 2779 2780 /** 2781 * Check if the caller of the current binder method has the required 2782 * permission or the target of the operation is the caller's uid. This is 2783 * for operation where the permission is only for cross-uid activity and all 2784 * uids are allowed to act on their own (ie: clearing all entries for a 2785 * given uid). 2786 */ 2787 inline bool checkBinderPermissionOrSelfTarget(perm_t permission, int32_t targetUid) { 2788 uid_t callingUid = IPCThreadState::self()->getCallingUid(); 2789 if (getEffectiveUid(targetUid) == callingUid) { 2790 return true; 2791 } else { 2792 return checkBinderPermission(permission, targetUid); 2793 } 2794 } 2795 2796 /** 2797 * Helper method to check that the caller has the required permission as 2798 * well as the keystore is in the unlocked state if checkUnlocked is true. 2799 * 2800 * Returns NO_ERROR on success, PERMISSION_DENIED on a permission error and 2801 * otherwise the state of keystore when not unlocked and checkUnlocked is 2802 * true. 2803 */ 2804 inline int32_t checkBinderPermissionAndKeystoreState(perm_t permission, int32_t targetUid = -1, 2805 bool checkUnlocked = true) { 2806 if (!checkBinderPermission(permission, targetUid)) { 2807 return ::PERMISSION_DENIED; 2808 } 2809 State state = mKeyStore->getState(get_user_id(getEffectiveUid(targetUid))); 2810 if (checkUnlocked && !isKeystoreUnlocked(state)) { 2811 return state; 2812 } 2813 2814 return ::NO_ERROR; 2815 2816 } 2817 2818 inline bool isKeystoreUnlocked(State state) { 2819 switch (state) { 2820 case ::STATE_NO_ERROR: 2821 return true; 2822 case ::STATE_UNINITIALIZED: 2823 case ::STATE_LOCKED: 2824 return false; 2825 } 2826 return false; 2827 } 2828 2829 bool isKeyTypeSupported(const keymaster1_device_t* device, keymaster_keypair_t keyType) { 2830 const int32_t device_api = device->common.module->module_api_version; 2831 if (device_api == KEYMASTER_MODULE_API_VERSION_0_2) { 2832 switch (keyType) { 2833 case TYPE_RSA: 2834 case TYPE_DSA: 2835 case TYPE_EC: 2836 return true; 2837 default: 2838 return false; 2839 } 2840 } else if (device_api >= KEYMASTER_MODULE_API_VERSION_0_3) { 2841 switch (keyType) { 2842 case TYPE_RSA: 2843 return true; 2844 case TYPE_DSA: 2845 return device->flags & KEYMASTER_SUPPORTS_DSA; 2846 case TYPE_EC: 2847 return device->flags & KEYMASTER_SUPPORTS_EC; 2848 default: 2849 return false; 2850 } 2851 } else { 2852 return keyType == TYPE_RSA; 2853 } 2854 } 2855 2856 /** 2857 * Check that all keymaster_key_param_t's provided by the application are 2858 * allowed. Any parameter that keystore adds itself should be disallowed here. 2859 */ 2860 bool checkAllowedOperationParams(const std::vector<keymaster_key_param_t>& params) { 2861 for (auto param: params) { 2862 switch (param.tag) { 2863 case KM_TAG_AUTH_TOKEN: 2864 return false; 2865 default: 2866 break; 2867 } 2868 } 2869 return true; 2870 } 2871 2872 keymaster_error_t getOperationCharacteristics(const keymaster_key_blob_t& key, 2873 const keymaster1_device_t* dev, 2874 const std::vector<keymaster_key_param_t>& params, 2875 keymaster_key_characteristics_t* out) { 2876 UniquePtr<keymaster_blob_t> appId; 2877 UniquePtr<keymaster_blob_t> appData; 2878 for (auto param : params) { 2879 if (param.tag == KM_TAG_APPLICATION_ID) { 2880 appId.reset(new keymaster_blob_t); 2881 appId->data = param.blob.data; 2882 appId->data_length = param.blob.data_length; 2883 } else if (param.tag == KM_TAG_APPLICATION_DATA) { 2884 appData.reset(new keymaster_blob_t); 2885 appData->data = param.blob.data; 2886 appData->data_length = param.blob.data_length; 2887 } 2888 } 2889 keymaster_key_characteristics_t* result = NULL; 2890 if (!dev->get_key_characteristics) { 2891 return KM_ERROR_UNIMPLEMENTED; 2892 } 2893 keymaster_error_t error = dev->get_key_characteristics(dev, &key, appId.get(), 2894 appData.get(), &result); 2895 if (result) { 2896 *out = *result; 2897 free(result); 2898 } 2899 return error; 2900 } 2901 2902 /** 2903 * Get the auth token for this operation from the auth token table. 2904 * 2905 * Returns ::NO_ERROR if the auth token was set or none was required. 2906 * ::OP_AUTH_NEEDED if it is a per op authorization, no 2907 * authorization token exists for that operation and 2908 * failOnTokenMissing is false. 2909 * KM_ERROR_KEY_USER_NOT_AUTHENTICATED if there is no valid auth 2910 * token for the operation 2911 */ 2912 int32_t getAuthToken(const keymaster_key_characteristics_t* characteristics, 2913 keymaster_operation_handle_t handle, 2914 keymaster_purpose_t purpose, 2915 const hw_auth_token_t** authToken, 2916 bool failOnTokenMissing = true) { 2917 2918 std::vector<keymaster_key_param_t> allCharacteristics; 2919 for (size_t i = 0; i < characteristics->sw_enforced.length; i++) { 2920 allCharacteristics.push_back(characteristics->sw_enforced.params[i]); 2921 } 2922 for (size_t i = 0; i < characteristics->hw_enforced.length; i++) { 2923 allCharacteristics.push_back(characteristics->hw_enforced.params[i]); 2924 } 2925 keymaster::AuthTokenTable::Error err = mAuthTokenTable.FindAuthorization( 2926 allCharacteristics.data(), allCharacteristics.size(), purpose, handle, authToken); 2927 switch (err) { 2928 case keymaster::AuthTokenTable::OK: 2929 case keymaster::AuthTokenTable::AUTH_NOT_REQUIRED: 2930 return ::NO_ERROR; 2931 case keymaster::AuthTokenTable::AUTH_TOKEN_NOT_FOUND: 2932 case keymaster::AuthTokenTable::AUTH_TOKEN_EXPIRED: 2933 case keymaster::AuthTokenTable::AUTH_TOKEN_WRONG_SID: 2934 return KM_ERROR_KEY_USER_NOT_AUTHENTICATED; 2935 case keymaster::AuthTokenTable::OP_HANDLE_REQUIRED: 2936 return failOnTokenMissing ? (int32_t) KM_ERROR_KEY_USER_NOT_AUTHENTICATED : 2937 (int32_t) ::OP_AUTH_NEEDED; 2938 default: 2939 ALOGE("Unexpected FindAuthorization return value %d", err); 2940 return KM_ERROR_INVALID_ARGUMENT; 2941 } 2942 } 2943 2944 inline void addAuthToParams(std::vector<keymaster_key_param_t>* params, 2945 const hw_auth_token_t* token) { 2946 if (token) { 2947 params->push_back(keymaster_param_blob(KM_TAG_AUTH_TOKEN, 2948 reinterpret_cast<const uint8_t*>(token), 2949 sizeof(hw_auth_token_t))); 2950 } 2951 } 2952 2953 /** 2954 * Add the auth token for the operation to the param list if the operation 2955 * requires authorization. Uses the cached result in the OperationMap if available 2956 * otherwise gets the token from the AuthTokenTable and caches the result. 2957 * 2958 * Returns ::NO_ERROR if the auth token was added or not needed. 2959 * KM_ERROR_KEY_USER_NOT_AUTHENTICATED if the operation is not 2960 * authenticated. 2961 * KM_ERROR_INVALID_OPERATION_HANDLE if token is not a valid 2962 * operation token. 2963 */ 2964 int32_t addOperationAuthTokenIfNeeded(sp<IBinder> token, 2965 std::vector<keymaster_key_param_t>* params) { 2966 const hw_auth_token_t* authToken = NULL; 2967 mOperationMap.getOperationAuthToken(token, &authToken); 2968 if (!authToken) { 2969 const keymaster1_device_t* dev; 2970 keymaster_operation_handle_t handle; 2971 const keymaster_key_characteristics_t* characteristics = NULL; 2972 keymaster_purpose_t purpose; 2973 keymaster::km_id_t keyid; 2974 if (!mOperationMap.getOperation(token, &handle, &keyid, &purpose, &dev, 2975 &characteristics)) { 2976 return KM_ERROR_INVALID_OPERATION_HANDLE; 2977 } 2978 int32_t result = getAuthToken(characteristics, handle, purpose, &authToken); 2979 if (result != ::NO_ERROR) { 2980 return result; 2981 } 2982 if (authToken) { 2983 mOperationMap.setOperationAuthToken(token, authToken); 2984 } 2985 } 2986 addAuthToParams(params, authToken); 2987 return ::NO_ERROR; 2988 } 2989 2990 /** 2991 * Translate a result value to a legacy return value. All keystore errors are 2992 * preserved and keymaster errors become SYSTEM_ERRORs 2993 */ 2994 inline int32_t translateResultToLegacyResult(int32_t result) { 2995 if (result > 0) { 2996 return result; 2997 } 2998 return ::SYSTEM_ERROR; 2999 } 3000 3001 void addLegacyKeyAuthorizations(std::vector<keymaster_key_param_t>& params, int keyType) { 3002 params.push_back(keymaster_param_enum(KM_TAG_PURPOSE, KM_PURPOSE_SIGN)); 3003 params.push_back(keymaster_param_enum(KM_TAG_PURPOSE, KM_PURPOSE_VERIFY)); 3004 params.push_back(keymaster_param_enum(KM_TAG_PURPOSE, KM_PURPOSE_ENCRYPT)); 3005 params.push_back(keymaster_param_enum(KM_TAG_PURPOSE, KM_PURPOSE_DECRYPT)); 3006 params.push_back(keymaster_param_enum(KM_TAG_PADDING, KM_PAD_NONE)); 3007 if (keyType == EVP_PKEY_RSA) { 3008 params.push_back(keymaster_param_enum(KM_TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_SIGN)); 3009 params.push_back(keymaster_param_enum(KM_TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_ENCRYPT)); 3010 params.push_back(keymaster_param_enum(KM_TAG_PADDING, KM_PAD_RSA_PSS)); 3011 params.push_back(keymaster_param_enum(KM_TAG_PADDING, KM_PAD_RSA_OAEP)); 3012 } 3013 params.push_back(keymaster_param_enum(KM_TAG_DIGEST, KM_DIGEST_NONE)); 3014 params.push_back(keymaster_param_enum(KM_TAG_DIGEST, KM_DIGEST_MD5)); 3015 params.push_back(keymaster_param_enum(KM_TAG_DIGEST, KM_DIGEST_SHA1)); 3016 params.push_back(keymaster_param_enum(KM_TAG_DIGEST, KM_DIGEST_SHA_2_224)); 3017 params.push_back(keymaster_param_enum(KM_TAG_DIGEST, KM_DIGEST_SHA_2_256)); 3018 params.push_back(keymaster_param_enum(KM_TAG_DIGEST, KM_DIGEST_SHA_2_384)); 3019 params.push_back(keymaster_param_enum(KM_TAG_DIGEST, KM_DIGEST_SHA_2_512)); 3020 params.push_back(keymaster_param_bool(KM_TAG_ALL_USERS)); 3021 params.push_back(keymaster_param_bool(KM_TAG_NO_AUTH_REQUIRED)); 3022 params.push_back(keymaster_param_date(KM_TAG_ORIGINATION_EXPIRE_DATETIME, LLONG_MAX)); 3023 params.push_back(keymaster_param_date(KM_TAG_USAGE_EXPIRE_DATETIME, LLONG_MAX)); 3024 params.push_back(keymaster_param_date(KM_TAG_ACTIVE_DATETIME, 0)); 3025 uint64_t now = keymaster::java_time(time(NULL)); 3026 params.push_back(keymaster_param_date(KM_TAG_CREATION_DATETIME, now)); 3027 } 3028 3029 keymaster_key_param_t* getKeyAlgorithm(keymaster_key_characteristics_t* characteristics) { 3030 for (size_t i = 0; i < characteristics->hw_enforced.length; i++) { 3031 if (characteristics->hw_enforced.params[i].tag == KM_TAG_ALGORITHM) { 3032 return &characteristics->hw_enforced.params[i]; 3033 } 3034 } 3035 for (size_t i = 0; i < characteristics->sw_enforced.length; i++) { 3036 if (characteristics->sw_enforced.params[i].tag == KM_TAG_ALGORITHM) { 3037 return &characteristics->sw_enforced.params[i]; 3038 } 3039 } 3040 return NULL; 3041 } 3042 3043 void addLegacyBeginParams(const String16& name, std::vector<keymaster_key_param_t>& params) { 3044 // All legacy keys are DIGEST_NONE/PAD_NONE. 3045 params.push_back(keymaster_param_enum(KM_TAG_DIGEST, KM_DIGEST_NONE)); 3046 params.push_back(keymaster_param_enum(KM_TAG_PADDING, KM_PAD_NONE)); 3047 3048 // Look up the algorithm of the key. 3049 KeyCharacteristics characteristics; 3050 int32_t rc = getKeyCharacteristics(name, NULL, NULL, &characteristics); 3051 if (rc != ::NO_ERROR) { 3052 ALOGE("Failed to get key characteristics"); 3053 return; 3054 } 3055 keymaster_key_param_t* algorithm = getKeyAlgorithm(&characteristics.characteristics); 3056 if (!algorithm) { 3057 ALOGE("getKeyCharacteristics did not include KM_TAG_ALGORITHM"); 3058 return; 3059 } 3060 params.push_back(*algorithm); 3061 } 3062 3063 int32_t doLegacySignVerify(const String16& name, const uint8_t* data, size_t length, 3064 uint8_t** out, size_t* outLength, const uint8_t* signature, 3065 size_t signatureLength, keymaster_purpose_t purpose) { 3066 3067 std::basic_stringstream<uint8_t> outBuffer; 3068 OperationResult result; 3069 KeymasterArguments inArgs; 3070 addLegacyBeginParams(name, inArgs.params); 3071 sp<IBinder> appToken(new BBinder); 3072 sp<IBinder> token; 3073 3074 begin(appToken, name, purpose, true, inArgs, NULL, 0, &result); 3075 if (result.resultCode != ResponseCode::NO_ERROR) { 3076 if (result.resultCode == ::KEY_NOT_FOUND) { 3077 ALOGW("Key not found"); 3078 } else { 3079 ALOGW("Error in begin: %d", result.resultCode); 3080 } 3081 return translateResultToLegacyResult(result.resultCode); 3082 } 3083 inArgs.params.clear(); 3084 token = result.token; 3085 size_t consumed = 0; 3086 size_t lastConsumed = 0; 3087 do { 3088 update(token, inArgs, data + consumed, length - consumed, &result); 3089 if (result.resultCode != ResponseCode::NO_ERROR) { 3090 ALOGW("Error in update: %d", result.resultCode); 3091 return translateResultToLegacyResult(result.resultCode); 3092 } 3093 if (out) { 3094 outBuffer.write(result.data.get(), result.dataLength); 3095 } 3096 lastConsumed = result.inputConsumed; 3097 consumed += lastConsumed; 3098 } while (consumed < length && lastConsumed > 0); 3099 3100 if (consumed != length) { 3101 ALOGW("Not all data consumed. Consumed %zu of %zu", consumed, length); 3102 return ::SYSTEM_ERROR; 3103 } 3104 3105 finish(token, inArgs, signature, signatureLength, NULL, 0, &result); 3106 if (result.resultCode != ResponseCode::NO_ERROR) { 3107 ALOGW("Error in finish: %d", result.resultCode); 3108 return translateResultToLegacyResult(result.resultCode); 3109 } 3110 if (out) { 3111 outBuffer.write(result.data.get(), result.dataLength); 3112 } 3113 3114 if (out) { 3115 auto buf = outBuffer.str(); 3116 *out = new uint8_t[buf.size()]; 3117 memcpy(*out, buf.c_str(), buf.size()); 3118 *outLength = buf.size(); 3119 } 3120 3121 return ::NO_ERROR; 3122 } 3123 3124 ::KeyStore* mKeyStore; 3125 OperationMap mOperationMap; 3126 keymaster::AuthTokenTable mAuthTokenTable; 3127 KeystoreKeymasterEnforcement enforcement_policy; 3128 }; 3129 3130 }; // namespace android 3131 3132 int main(int argc, char* argv[]) { 3133 if (argc < 2) { 3134 ALOGE("A directory must be specified!"); 3135 return 1; 3136 } 3137 if (chdir(argv[1]) == -1) { 3138 ALOGE("chdir: %s: %s", argv[1], strerror(errno)); 3139 return 1; 3140 } 3141 3142 Entropy entropy; 3143 if (!entropy.open()) { 3144 return 1; 3145 } 3146 3147 keymaster1_device_t* dev; 3148 if (keymaster_device_initialize(&dev)) { 3149 ALOGE("keystore keymaster could not be initialized; exiting"); 3150 return 1; 3151 } 3152 3153 keymaster1_device_t* fallback; 3154 if (fallback_keymaster_device_initialize(&fallback)) { 3155 ALOGE("software keymaster could not be initialized; exiting"); 3156 return 1; 3157 } 3158 3159 ks_is_selinux_enabled = is_selinux_enabled(); 3160 if (ks_is_selinux_enabled) { 3161 union selinux_callback cb; 3162 cb.func_log = selinux_log_callback; 3163 selinux_set_callback(SELINUX_CB_LOG, cb); 3164 if (getcon(&tctx) != 0) { 3165 ALOGE("SELinux: Could not acquire target context. Aborting keystore.\n"); 3166 return -1; 3167 } 3168 } else { 3169 ALOGI("SELinux: Keystore SELinux is disabled.\n"); 3170 } 3171 3172 KeyStore keyStore(&entropy, dev, fallback); 3173 keyStore.initialize(); 3174 android::sp<android::IServiceManager> sm = android::defaultServiceManager(); 3175 android::sp<android::KeyStoreProxy> proxy = new android::KeyStoreProxy(&keyStore); 3176 android::status_t ret = sm->addService(android::String16("android.security.keystore"), proxy); 3177 if (ret != android::OK) { 3178 ALOGE("Couldn't register binder service!"); 3179 return -1; 3180 } 3181 3182 /* 3183 * We're the only thread in existence, so we're just going to process 3184 * Binder transaction as a single-threaded program. 3185 */ 3186 android::IPCThreadState::self()->joinThreadPool(); 3187 3188 keymaster_device_release(dev); 3189 return 1; 3190 } 3191