Home | History | Annotate | Download | only in dex
      1 /*
      2  * Copyright (C) 2013 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <algorithm>
     18 #include <memory>
     19 
     20 #include "base/logging.h"
     21 #include "base/scoped_arena_containers.h"
     22 #include "dataflow_iterator-inl.h"
     23 #include "compiler_ir.h"
     24 #include "dex_flags.h"
     25 #include "dex_instruction-inl.h"
     26 #include "dex/mir_field_info.h"
     27 #include "dex/verified_method.h"
     28 #include "dex/quick/dex_file_method_inliner.h"
     29 #include "dex/quick/dex_file_to_method_inliner_map.h"
     30 #include "driver/compiler_driver.h"
     31 #include "driver/compiler_options.h"
     32 #include "driver/dex_compilation_unit.h"
     33 #include "utils.h"
     34 
     35 namespace art {
     36 
     37 enum InstructionAnalysisAttributeOps : uint8_t {
     38   kUninterestingOp = 0,
     39   kArithmeticOp,
     40   kFpOp,
     41   kSingleOp,
     42   kDoubleOp,
     43   kIntOp,
     44   kLongOp,
     45   kBranchOp,
     46   kInvokeOp,
     47   kArrayOp,
     48   kHeavyweightOp,
     49   kSimpleConstOp,
     50   kMoveOp,
     51   kSwitch
     52 };
     53 
     54 enum InstructionAnalysisAttributeMasks : uint16_t {
     55   kAnNone = 1 << kUninterestingOp,
     56   kAnMath = 1 << kArithmeticOp,
     57   kAnFp = 1 << kFpOp,
     58   kAnLong = 1 << kLongOp,
     59   kAnInt = 1 << kIntOp,
     60   kAnSingle = 1 << kSingleOp,
     61   kAnDouble = 1 << kDoubleOp,
     62   kAnFloatMath = 1 << kFpOp,
     63   kAnBranch = 1 << kBranchOp,
     64   kAnInvoke = 1 << kInvokeOp,
     65   kAnArrayOp = 1 << kArrayOp,
     66   kAnHeavyWeight = 1 << kHeavyweightOp,
     67   kAnSimpleConst = 1 << kSimpleConstOp,
     68   kAnMove = 1 << kMoveOp,
     69   kAnSwitch = 1 << kSwitch,
     70   kAnComputational = kAnMath | kAnArrayOp | kAnMove | kAnSimpleConst,
     71 };
     72 
     73 // Instruction characteristics used to statically identify computation-intensive methods.
     74 static const uint16_t kAnalysisAttributes[kMirOpLast] = {
     75   // 00 NOP
     76   kAnNone,
     77 
     78   // 01 MOVE vA, vB
     79   kAnMove,
     80 
     81   // 02 MOVE_FROM16 vAA, vBBBB
     82   kAnMove,
     83 
     84   // 03 MOVE_16 vAAAA, vBBBB
     85   kAnMove,
     86 
     87   // 04 MOVE_WIDE vA, vB
     88   kAnMove,
     89 
     90   // 05 MOVE_WIDE_FROM16 vAA, vBBBB
     91   kAnMove,
     92 
     93   // 06 MOVE_WIDE_16 vAAAA, vBBBB
     94   kAnMove,
     95 
     96   // 07 MOVE_OBJECT vA, vB
     97   kAnMove,
     98 
     99   // 08 MOVE_OBJECT_FROM16 vAA, vBBBB
    100   kAnMove,
    101 
    102   // 09 MOVE_OBJECT_16 vAAAA, vBBBB
    103   kAnMove,
    104 
    105   // 0A MOVE_RESULT vAA
    106   kAnMove,
    107 
    108   // 0B MOVE_RESULT_WIDE vAA
    109   kAnMove,
    110 
    111   // 0C MOVE_RESULT_OBJECT vAA
    112   kAnMove,
    113 
    114   // 0D MOVE_EXCEPTION vAA
    115   kAnMove,
    116 
    117   // 0E RETURN_VOID
    118   kAnBranch,
    119 
    120   // 0F RETURN vAA
    121   kAnBranch,
    122 
    123   // 10 RETURN_WIDE vAA
    124   kAnBranch,
    125 
    126   // 11 RETURN_OBJECT vAA
    127   kAnBranch,
    128 
    129   // 12 CONST_4 vA, #+B
    130   kAnSimpleConst,
    131 
    132   // 13 CONST_16 vAA, #+BBBB
    133   kAnSimpleConst,
    134 
    135   // 14 CONST vAA, #+BBBBBBBB
    136   kAnSimpleConst,
    137 
    138   // 15 CONST_HIGH16 VAA, #+BBBB0000
    139   kAnSimpleConst,
    140 
    141   // 16 CONST_WIDE_16 vAA, #+BBBB
    142   kAnSimpleConst,
    143 
    144   // 17 CONST_WIDE_32 vAA, #+BBBBBBBB
    145   kAnSimpleConst,
    146 
    147   // 18 CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB
    148   kAnSimpleConst,
    149 
    150   // 19 CONST_WIDE_HIGH16 vAA, #+BBBB000000000000
    151   kAnSimpleConst,
    152 
    153   // 1A CONST_STRING vAA, string@BBBB
    154   kAnNone,
    155 
    156   // 1B CONST_STRING_JUMBO vAA, string@BBBBBBBB
    157   kAnNone,
    158 
    159   // 1C CONST_CLASS vAA, type@BBBB
    160   kAnNone,
    161 
    162   // 1D MONITOR_ENTER vAA
    163   kAnNone,
    164 
    165   // 1E MONITOR_EXIT vAA
    166   kAnNone,
    167 
    168   // 1F CHK_CAST vAA, type@BBBB
    169   kAnNone,
    170 
    171   // 20 INSTANCE_OF vA, vB, type@CCCC
    172   kAnNone,
    173 
    174   // 21 ARRAY_LENGTH vA, vB
    175   kAnArrayOp,
    176 
    177   // 22 NEW_INSTANCE vAA, type@BBBB
    178   kAnHeavyWeight,
    179 
    180   // 23 NEW_ARRAY vA, vB, type@CCCC
    181   kAnHeavyWeight,
    182 
    183   // 24 FILLED_NEW_ARRAY {vD, vE, vF, vG, vA}
    184   kAnHeavyWeight,
    185 
    186   // 25 FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB
    187   kAnHeavyWeight,
    188 
    189   // 26 FILL_ARRAY_DATA vAA, +BBBBBBBB
    190   kAnNone,
    191 
    192   // 27 THROW vAA
    193   kAnHeavyWeight | kAnBranch,
    194 
    195   // 28 GOTO
    196   kAnBranch,
    197 
    198   // 29 GOTO_16
    199   kAnBranch,
    200 
    201   // 2A GOTO_32
    202   kAnBranch,
    203 
    204   // 2B PACKED_SWITCH vAA, +BBBBBBBB
    205   kAnSwitch,
    206 
    207   // 2C SPARSE_SWITCH vAA, +BBBBBBBB
    208   kAnSwitch,
    209 
    210   // 2D CMPL_FLOAT vAA, vBB, vCC
    211   kAnMath | kAnFp | kAnSingle,
    212 
    213   // 2E CMPG_FLOAT vAA, vBB, vCC
    214   kAnMath | kAnFp | kAnSingle,
    215 
    216   // 2F CMPL_DOUBLE vAA, vBB, vCC
    217   kAnMath | kAnFp | kAnDouble,
    218 
    219   // 30 CMPG_DOUBLE vAA, vBB, vCC
    220   kAnMath | kAnFp | kAnDouble,
    221 
    222   // 31 CMP_LONG vAA, vBB, vCC
    223   kAnMath | kAnLong,
    224 
    225   // 32 IF_EQ vA, vB, +CCCC
    226   kAnMath | kAnBranch | kAnInt,
    227 
    228   // 33 IF_NE vA, vB, +CCCC
    229   kAnMath | kAnBranch | kAnInt,
    230 
    231   // 34 IF_LT vA, vB, +CCCC
    232   kAnMath | kAnBranch | kAnInt,
    233 
    234   // 35 IF_GE vA, vB, +CCCC
    235   kAnMath | kAnBranch | kAnInt,
    236 
    237   // 36 IF_GT vA, vB, +CCCC
    238   kAnMath | kAnBranch | kAnInt,
    239 
    240   // 37 IF_LE vA, vB, +CCCC
    241   kAnMath | kAnBranch | kAnInt,
    242 
    243   // 38 IF_EQZ vAA, +BBBB
    244   kAnMath | kAnBranch | kAnInt,
    245 
    246   // 39 IF_NEZ vAA, +BBBB
    247   kAnMath | kAnBranch | kAnInt,
    248 
    249   // 3A IF_LTZ vAA, +BBBB
    250   kAnMath | kAnBranch | kAnInt,
    251 
    252   // 3B IF_GEZ vAA, +BBBB
    253   kAnMath | kAnBranch | kAnInt,
    254 
    255   // 3C IF_GTZ vAA, +BBBB
    256   kAnMath | kAnBranch | kAnInt,
    257 
    258   // 3D IF_LEZ vAA, +BBBB
    259   kAnMath | kAnBranch | kAnInt,
    260 
    261   // 3E UNUSED_3E
    262   kAnNone,
    263 
    264   // 3F UNUSED_3F
    265   kAnNone,
    266 
    267   // 40 UNUSED_40
    268   kAnNone,
    269 
    270   // 41 UNUSED_41
    271   kAnNone,
    272 
    273   // 42 UNUSED_42
    274   kAnNone,
    275 
    276   // 43 UNUSED_43
    277   kAnNone,
    278 
    279   // 44 AGET vAA, vBB, vCC
    280   kAnArrayOp,
    281 
    282   // 45 AGET_WIDE vAA, vBB, vCC
    283   kAnArrayOp,
    284 
    285   // 46 AGET_OBJECT vAA, vBB, vCC
    286   kAnArrayOp,
    287 
    288   // 47 AGET_BOOLEAN vAA, vBB, vCC
    289   kAnArrayOp,
    290 
    291   // 48 AGET_BYTE vAA, vBB, vCC
    292   kAnArrayOp,
    293 
    294   // 49 AGET_CHAR vAA, vBB, vCC
    295   kAnArrayOp,
    296 
    297   // 4A AGET_SHORT vAA, vBB, vCC
    298   kAnArrayOp,
    299 
    300   // 4B APUT vAA, vBB, vCC
    301   kAnArrayOp,
    302 
    303   // 4C APUT_WIDE vAA, vBB, vCC
    304   kAnArrayOp,
    305 
    306   // 4D APUT_OBJECT vAA, vBB, vCC
    307   kAnArrayOp,
    308 
    309   // 4E APUT_BOOLEAN vAA, vBB, vCC
    310   kAnArrayOp,
    311 
    312   // 4F APUT_BYTE vAA, vBB, vCC
    313   kAnArrayOp,
    314 
    315   // 50 APUT_CHAR vAA, vBB, vCC
    316   kAnArrayOp,
    317 
    318   // 51 APUT_SHORT vAA, vBB, vCC
    319   kAnArrayOp,
    320 
    321   // 52 IGET vA, vB, field@CCCC
    322   kAnNone,
    323 
    324   // 53 IGET_WIDE vA, vB, field@CCCC
    325   kAnNone,
    326 
    327   // 54 IGET_OBJECT vA, vB, field@CCCC
    328   kAnNone,
    329 
    330   // 55 IGET_BOOLEAN vA, vB, field@CCCC
    331   kAnNone,
    332 
    333   // 56 IGET_BYTE vA, vB, field@CCCC
    334   kAnNone,
    335 
    336   // 57 IGET_CHAR vA, vB, field@CCCC
    337   kAnNone,
    338 
    339   // 58 IGET_SHORT vA, vB, field@CCCC
    340   kAnNone,
    341 
    342   // 59 IPUT vA, vB, field@CCCC
    343   kAnNone,
    344 
    345   // 5A IPUT_WIDE vA, vB, field@CCCC
    346   kAnNone,
    347 
    348   // 5B IPUT_OBJECT vA, vB, field@CCCC
    349   kAnNone,
    350 
    351   // 5C IPUT_BOOLEAN vA, vB, field@CCCC
    352   kAnNone,
    353 
    354   // 5D IPUT_BYTE vA, vB, field@CCCC
    355   kAnNone,
    356 
    357   // 5E IPUT_CHAR vA, vB, field@CCCC
    358   kAnNone,
    359 
    360   // 5F IPUT_SHORT vA, vB, field@CCCC
    361   kAnNone,
    362 
    363   // 60 SGET vAA, field@BBBB
    364   kAnNone,
    365 
    366   // 61 SGET_WIDE vAA, field@BBBB
    367   kAnNone,
    368 
    369   // 62 SGET_OBJECT vAA, field@BBBB
    370   kAnNone,
    371 
    372   // 63 SGET_BOOLEAN vAA, field@BBBB
    373   kAnNone,
    374 
    375   // 64 SGET_BYTE vAA, field@BBBB
    376   kAnNone,
    377 
    378   // 65 SGET_CHAR vAA, field@BBBB
    379   kAnNone,
    380 
    381   // 66 SGET_SHORT vAA, field@BBBB
    382   kAnNone,
    383 
    384   // 67 SPUT vAA, field@BBBB
    385   kAnNone,
    386 
    387   // 68 SPUT_WIDE vAA, field@BBBB
    388   kAnNone,
    389 
    390   // 69 SPUT_OBJECT vAA, field@BBBB
    391   kAnNone,
    392 
    393   // 6A SPUT_BOOLEAN vAA, field@BBBB
    394   kAnNone,
    395 
    396   // 6B SPUT_BYTE vAA, field@BBBB
    397   kAnNone,
    398 
    399   // 6C SPUT_CHAR vAA, field@BBBB
    400   kAnNone,
    401 
    402   // 6D SPUT_SHORT vAA, field@BBBB
    403   kAnNone,
    404 
    405   // 6E INVOKE_VIRTUAL {vD, vE, vF, vG, vA}
    406   kAnInvoke | kAnHeavyWeight,
    407 
    408   // 6F INVOKE_SUPER {vD, vE, vF, vG, vA}
    409   kAnInvoke | kAnHeavyWeight,
    410 
    411   // 70 INVOKE_DIRECT {vD, vE, vF, vG, vA}
    412   kAnInvoke | kAnHeavyWeight,
    413 
    414   // 71 INVOKE_STATIC {vD, vE, vF, vG, vA}
    415   kAnInvoke | kAnHeavyWeight,
    416 
    417   // 72 INVOKE_INTERFACE {vD, vE, vF, vG, vA}
    418   kAnInvoke | kAnHeavyWeight,
    419 
    420   // 73 RETURN_VOID_NO_BARRIER
    421   kAnBranch,
    422 
    423   // 74 INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN}
    424   kAnInvoke | kAnHeavyWeight,
    425 
    426   // 75 INVOKE_SUPER_RANGE {vCCCC .. vNNNN}
    427   kAnInvoke | kAnHeavyWeight,
    428 
    429   // 76 INVOKE_DIRECT_RANGE {vCCCC .. vNNNN}
    430   kAnInvoke | kAnHeavyWeight,
    431 
    432   // 77 INVOKE_STATIC_RANGE {vCCCC .. vNNNN}
    433   kAnInvoke | kAnHeavyWeight,
    434 
    435   // 78 INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN}
    436   kAnInvoke | kAnHeavyWeight,
    437 
    438   // 79 UNUSED_79
    439   kAnNone,
    440 
    441   // 7A UNUSED_7A
    442   kAnNone,
    443 
    444   // 7B NEG_INT vA, vB
    445   kAnMath | kAnInt,
    446 
    447   // 7C NOT_INT vA, vB
    448   kAnMath | kAnInt,
    449 
    450   // 7D NEG_LONG vA, vB
    451   kAnMath | kAnLong,
    452 
    453   // 7E NOT_LONG vA, vB
    454   kAnMath | kAnLong,
    455 
    456   // 7F NEG_FLOAT vA, vB
    457   kAnMath | kAnFp | kAnSingle,
    458 
    459   // 80 NEG_DOUBLE vA, vB
    460   kAnMath | kAnFp | kAnDouble,
    461 
    462   // 81 INT_TO_LONG vA, vB
    463   kAnMath | kAnInt | kAnLong,
    464 
    465   // 82 INT_TO_FLOAT vA, vB
    466   kAnMath | kAnFp | kAnInt | kAnSingle,
    467 
    468   // 83 INT_TO_DOUBLE vA, vB
    469   kAnMath | kAnFp | kAnInt | kAnDouble,
    470 
    471   // 84 LONG_TO_INT vA, vB
    472   kAnMath | kAnInt | kAnLong,
    473 
    474   // 85 LONG_TO_FLOAT vA, vB
    475   kAnMath | kAnFp | kAnLong | kAnSingle,
    476 
    477   // 86 LONG_TO_DOUBLE vA, vB
    478   kAnMath | kAnFp | kAnLong | kAnDouble,
    479 
    480   // 87 FLOAT_TO_INT vA, vB
    481   kAnMath | kAnFp | kAnInt | kAnSingle,
    482 
    483   // 88 FLOAT_TO_LONG vA, vB
    484   kAnMath | kAnFp | kAnLong | kAnSingle,
    485 
    486   // 89 FLOAT_TO_DOUBLE vA, vB
    487   kAnMath | kAnFp | kAnSingle | kAnDouble,
    488 
    489   // 8A DOUBLE_TO_INT vA, vB
    490   kAnMath | kAnFp | kAnInt | kAnDouble,
    491 
    492   // 8B DOUBLE_TO_LONG vA, vB
    493   kAnMath | kAnFp | kAnLong | kAnDouble,
    494 
    495   // 8C DOUBLE_TO_FLOAT vA, vB
    496   kAnMath | kAnFp | kAnSingle | kAnDouble,
    497 
    498   // 8D INT_TO_BYTE vA, vB
    499   kAnMath | kAnInt,
    500 
    501   // 8E INT_TO_CHAR vA, vB
    502   kAnMath | kAnInt,
    503 
    504   // 8F INT_TO_SHORT vA, vB
    505   kAnMath | kAnInt,
    506 
    507   // 90 ADD_INT vAA, vBB, vCC
    508   kAnMath | kAnInt,
    509 
    510   // 91 SUB_INT vAA, vBB, vCC
    511   kAnMath | kAnInt,
    512 
    513   // 92 MUL_INT vAA, vBB, vCC
    514   kAnMath | kAnInt,
    515 
    516   // 93 DIV_INT vAA, vBB, vCC
    517   kAnMath | kAnInt,
    518 
    519   // 94 REM_INT vAA, vBB, vCC
    520   kAnMath | kAnInt,
    521 
    522   // 95 AND_INT vAA, vBB, vCC
    523   kAnMath | kAnInt,
    524 
    525   // 96 OR_INT vAA, vBB, vCC
    526   kAnMath | kAnInt,
    527 
    528   // 97 XOR_INT vAA, vBB, vCC
    529   kAnMath | kAnInt,
    530 
    531   // 98 SHL_INT vAA, vBB, vCC
    532   kAnMath | kAnInt,
    533 
    534   // 99 SHR_INT vAA, vBB, vCC
    535   kAnMath | kAnInt,
    536 
    537   // 9A USHR_INT vAA, vBB, vCC
    538   kAnMath | kAnInt,
    539 
    540   // 9B ADD_LONG vAA, vBB, vCC
    541   kAnMath | kAnLong,
    542 
    543   // 9C SUB_LONG vAA, vBB, vCC
    544   kAnMath | kAnLong,
    545 
    546   // 9D MUL_LONG vAA, vBB, vCC
    547   kAnMath | kAnLong,
    548 
    549   // 9E DIV_LONG vAA, vBB, vCC
    550   kAnMath | kAnLong,
    551 
    552   // 9F REM_LONG vAA, vBB, vCC
    553   kAnMath | kAnLong,
    554 
    555   // A0 AND_LONG vAA, vBB, vCC
    556   kAnMath | kAnLong,
    557 
    558   // A1 OR_LONG vAA, vBB, vCC
    559   kAnMath | kAnLong,
    560 
    561   // A2 XOR_LONG vAA, vBB, vCC
    562   kAnMath | kAnLong,
    563 
    564   // A3 SHL_LONG vAA, vBB, vCC
    565   kAnMath | kAnLong,
    566 
    567   // A4 SHR_LONG vAA, vBB, vCC
    568   kAnMath | kAnLong,
    569 
    570   // A5 USHR_LONG vAA, vBB, vCC
    571   kAnMath | kAnLong,
    572 
    573   // A6 ADD_FLOAT vAA, vBB, vCC
    574   kAnMath | kAnFp | kAnSingle,
    575 
    576   // A7 SUB_FLOAT vAA, vBB, vCC
    577   kAnMath | kAnFp | kAnSingle,
    578 
    579   // A8 MUL_FLOAT vAA, vBB, vCC
    580   kAnMath | kAnFp | kAnSingle,
    581 
    582   // A9 DIV_FLOAT vAA, vBB, vCC
    583   kAnMath | kAnFp | kAnSingle,
    584 
    585   // AA REM_FLOAT vAA, vBB, vCC
    586   kAnMath | kAnFp | kAnSingle,
    587 
    588   // AB ADD_DOUBLE vAA, vBB, vCC
    589   kAnMath | kAnFp | kAnDouble,
    590 
    591   // AC SUB_DOUBLE vAA, vBB, vCC
    592   kAnMath | kAnFp | kAnDouble,
    593 
    594   // AD MUL_DOUBLE vAA, vBB, vCC
    595   kAnMath | kAnFp | kAnDouble,
    596 
    597   // AE DIV_DOUBLE vAA, vBB, vCC
    598   kAnMath | kAnFp | kAnDouble,
    599 
    600   // AF REM_DOUBLE vAA, vBB, vCC
    601   kAnMath | kAnFp | kAnDouble,
    602 
    603   // B0 ADD_INT_2ADDR vA, vB
    604   kAnMath | kAnInt,
    605 
    606   // B1 SUB_INT_2ADDR vA, vB
    607   kAnMath | kAnInt,
    608 
    609   // B2 MUL_INT_2ADDR vA, vB
    610   kAnMath | kAnInt,
    611 
    612   // B3 DIV_INT_2ADDR vA, vB
    613   kAnMath | kAnInt,
    614 
    615   // B4 REM_INT_2ADDR vA, vB
    616   kAnMath | kAnInt,
    617 
    618   // B5 AND_INT_2ADDR vA, vB
    619   kAnMath | kAnInt,
    620 
    621   // B6 OR_INT_2ADDR vA, vB
    622   kAnMath | kAnInt,
    623 
    624   // B7 XOR_INT_2ADDR vA, vB
    625   kAnMath | kAnInt,
    626 
    627   // B8 SHL_INT_2ADDR vA, vB
    628   kAnMath | kAnInt,
    629 
    630   // B9 SHR_INT_2ADDR vA, vB
    631   kAnMath | kAnInt,
    632 
    633   // BA USHR_INT_2ADDR vA, vB
    634   kAnMath | kAnInt,
    635 
    636   // BB ADD_LONG_2ADDR vA, vB
    637   kAnMath | kAnLong,
    638 
    639   // BC SUB_LONG_2ADDR vA, vB
    640   kAnMath | kAnLong,
    641 
    642   // BD MUL_LONG_2ADDR vA, vB
    643   kAnMath | kAnLong,
    644 
    645   // BE DIV_LONG_2ADDR vA, vB
    646   kAnMath | kAnLong,
    647 
    648   // BF REM_LONG_2ADDR vA, vB
    649   kAnMath | kAnLong,
    650 
    651   // C0 AND_LONG_2ADDR vA, vB
    652   kAnMath | kAnLong,
    653 
    654   // C1 OR_LONG_2ADDR vA, vB
    655   kAnMath | kAnLong,
    656 
    657   // C2 XOR_LONG_2ADDR vA, vB
    658   kAnMath | kAnLong,
    659 
    660   // C3 SHL_LONG_2ADDR vA, vB
    661   kAnMath | kAnLong,
    662 
    663   // C4 SHR_LONG_2ADDR vA, vB
    664   kAnMath | kAnLong,
    665 
    666   // C5 USHR_LONG_2ADDR vA, vB
    667   kAnMath | kAnLong,
    668 
    669   // C6 ADD_FLOAT_2ADDR vA, vB
    670   kAnMath | kAnFp | kAnSingle,
    671 
    672   // C7 SUB_FLOAT_2ADDR vA, vB
    673   kAnMath | kAnFp | kAnSingle,
    674 
    675   // C8 MUL_FLOAT_2ADDR vA, vB
    676   kAnMath | kAnFp | kAnSingle,
    677 
    678   // C9 DIV_FLOAT_2ADDR vA, vB
    679   kAnMath | kAnFp | kAnSingle,
    680 
    681   // CA REM_FLOAT_2ADDR vA, vB
    682   kAnMath | kAnFp | kAnSingle,
    683 
    684   // CB ADD_DOUBLE_2ADDR vA, vB
    685   kAnMath | kAnFp | kAnDouble,
    686 
    687   // CC SUB_DOUBLE_2ADDR vA, vB
    688   kAnMath | kAnFp | kAnDouble,
    689 
    690   // CD MUL_DOUBLE_2ADDR vA, vB
    691   kAnMath | kAnFp | kAnDouble,
    692 
    693   // CE DIV_DOUBLE_2ADDR vA, vB
    694   kAnMath | kAnFp | kAnDouble,
    695 
    696   // CF REM_DOUBLE_2ADDR vA, vB
    697   kAnMath | kAnFp | kAnDouble,
    698 
    699   // D0 ADD_INT_LIT16 vA, vB, #+CCCC
    700   kAnMath | kAnInt,
    701 
    702   // D1 RSUB_INT vA, vB, #+CCCC
    703   kAnMath | kAnInt,
    704 
    705   // D2 MUL_INT_LIT16 vA, vB, #+CCCC
    706   kAnMath | kAnInt,
    707 
    708   // D3 DIV_INT_LIT16 vA, vB, #+CCCC
    709   kAnMath | kAnInt,
    710 
    711   // D4 REM_INT_LIT16 vA, vB, #+CCCC
    712   kAnMath | kAnInt,
    713 
    714   // D5 AND_INT_LIT16 vA, vB, #+CCCC
    715   kAnMath | kAnInt,
    716 
    717   // D6 OR_INT_LIT16 vA, vB, #+CCCC
    718   kAnMath | kAnInt,
    719 
    720   // D7 XOR_INT_LIT16 vA, vB, #+CCCC
    721   kAnMath | kAnInt,
    722 
    723   // D8 ADD_INT_LIT8 vAA, vBB, #+CC
    724   kAnMath | kAnInt,
    725 
    726   // D9 RSUB_INT_LIT8 vAA, vBB, #+CC
    727   kAnMath | kAnInt,
    728 
    729   // DA MUL_INT_LIT8 vAA, vBB, #+CC
    730   kAnMath | kAnInt,
    731 
    732   // DB DIV_INT_LIT8 vAA, vBB, #+CC
    733   kAnMath | kAnInt,
    734 
    735   // DC REM_INT_LIT8 vAA, vBB, #+CC
    736   kAnMath | kAnInt,
    737 
    738   // DD AND_INT_LIT8 vAA, vBB, #+CC
    739   kAnMath | kAnInt,
    740 
    741   // DE OR_INT_LIT8 vAA, vBB, #+CC
    742   kAnMath | kAnInt,
    743 
    744   // DF XOR_INT_LIT8 vAA, vBB, #+CC
    745   kAnMath | kAnInt,
    746 
    747   // E0 SHL_INT_LIT8 vAA, vBB, #+CC
    748   kAnMath | kAnInt,
    749 
    750   // E1 SHR_INT_LIT8 vAA, vBB, #+CC
    751   kAnMath | kAnInt,
    752 
    753   // E2 USHR_INT_LIT8 vAA, vBB, #+CC
    754   kAnMath | kAnInt,
    755 
    756   // E3 IGET_QUICK
    757   kAnNone,
    758 
    759   // E4 IGET_WIDE_QUICK
    760   kAnNone,
    761 
    762   // E5 IGET_OBJECT_QUICK
    763   kAnNone,
    764 
    765   // E6 IPUT_QUICK
    766   kAnNone,
    767 
    768   // E7 IPUT_WIDE_QUICK
    769   kAnNone,
    770 
    771   // E8 IPUT_OBJECT_QUICK
    772   kAnNone,
    773 
    774   // E9 INVOKE_VIRTUAL_QUICK
    775   kAnInvoke | kAnHeavyWeight,
    776 
    777   // EA INVOKE_VIRTUAL_RANGE_QUICK
    778   kAnInvoke | kAnHeavyWeight,
    779 
    780   // EB IPUT_BOOLEAN_QUICK
    781   kAnNone,
    782 
    783   // EC IPUT_BYTE_QUICK
    784   kAnNone,
    785 
    786   // ED IPUT_CHAR_QUICK
    787   kAnNone,
    788 
    789   // EE IPUT_SHORT_QUICK
    790   kAnNone,
    791 
    792   // EF IGET_BOOLEAN_QUICK
    793   kAnNone,
    794 
    795   // F0 IGET_BYTE_QUICK
    796   kAnNone,
    797 
    798   // F1 IGET_CHAR_QUICK
    799   kAnNone,
    800 
    801   // F2 IGET_SHORT_QUICK
    802   kAnNone,
    803 
    804   // F3 UNUSED_F3
    805   kAnNone,
    806 
    807   // F4 UNUSED_F4
    808   kAnNone,
    809 
    810   // F5 UNUSED_F5
    811   kAnNone,
    812 
    813   // F6 UNUSED_F6
    814   kAnNone,
    815 
    816   // F7 UNUSED_F7
    817   kAnNone,
    818 
    819   // F8 UNUSED_F8
    820   kAnNone,
    821 
    822   // F9 UNUSED_F9
    823   kAnNone,
    824 
    825   // FA UNUSED_FA
    826   kAnNone,
    827 
    828   // FB UNUSED_FB
    829   kAnNone,
    830 
    831   // FC UNUSED_FC
    832   kAnNone,
    833 
    834   // FD UNUSED_FD
    835   kAnNone,
    836 
    837   // FE UNUSED_FE
    838   kAnNone,
    839 
    840   // FF UNUSED_FF
    841   kAnNone,
    842 
    843   // Beginning of extended MIR opcodes
    844   // 100 MIR_PHI
    845   kAnNone,
    846 
    847   // 101 MIR_COPY
    848   kAnNone,
    849 
    850   // 102 MIR_FUSED_CMPL_FLOAT
    851   kAnNone,
    852 
    853   // 103 MIR_FUSED_CMPG_FLOAT
    854   kAnNone,
    855 
    856   // 104 MIR_FUSED_CMPL_DOUBLE
    857   kAnNone,
    858 
    859   // 105 MIR_FUSED_CMPG_DOUBLE
    860   kAnNone,
    861 
    862   // 106 MIR_FUSED_CMP_LONG
    863   kAnNone,
    864 
    865   // 107 MIR_NOP
    866   kAnNone,
    867 
    868   // 108 MIR_NULL_CHECK
    869   kAnNone,
    870 
    871   // 109 MIR_RANGE_CHECK
    872   kAnNone,
    873 
    874   // 10A MIR_DIV_ZERO_CHECK
    875   kAnNone,
    876 
    877   // 10B MIR_CHECK
    878   kAnNone,
    879 
    880   // 10C MIR_CHECKPART2
    881   kAnNone,
    882 
    883   // 10D MIR_SELECT
    884   kAnNone,
    885 
    886   // 10E MirOpConstVector
    887   kAnNone,
    888 
    889   // 10F MirOpMoveVector
    890   kAnNone,
    891 
    892   // 110 MirOpPackedMultiply
    893   kAnNone,
    894 
    895   // 111 MirOpPackedAddition
    896   kAnNone,
    897 
    898   // 112 MirOpPackedSubtract
    899   kAnNone,
    900 
    901   // 113 MirOpPackedShiftLeft
    902   kAnNone,
    903 
    904   // 114 MirOpPackedSignedShiftRight
    905   kAnNone,
    906 
    907   // 115 MirOpPackedUnsignedShiftRight
    908   kAnNone,
    909 
    910   // 116 MirOpPackedAnd
    911   kAnNone,
    912 
    913   // 117 MirOpPackedOr
    914   kAnNone,
    915 
    916   // 118 MirOpPackedXor
    917   kAnNone,
    918 
    919   // 119 MirOpPackedAddReduce
    920   kAnNone,
    921 
    922   // 11A MirOpPackedReduce
    923   kAnNone,
    924 
    925   // 11B MirOpPackedSet
    926   kAnNone,
    927 
    928   // 11C MirOpReserveVectorRegisters
    929   kAnNone,
    930 
    931   // 11D MirOpReturnVectorRegisters
    932   kAnNone,
    933 
    934   // 11E MirOpMemBarrier
    935   kAnNone,
    936 
    937   // 11F MirOpPackedArrayGet
    938   kAnArrayOp,
    939 
    940   // 120 MirOpPackedArrayPut
    941   kAnArrayOp,
    942 };
    943 
    944 struct MethodStats {
    945   int dex_instructions;
    946   int math_ops;
    947   int fp_ops;
    948   int array_ops;
    949   int branch_ops;
    950   int heavyweight_ops;
    951   bool has_computational_loop;
    952   bool has_switch;
    953   float math_ratio;
    954   float fp_ratio;
    955   float array_ratio;
    956   float branch_ratio;
    957   float heavyweight_ratio;
    958 };
    959 
    960 void MIRGraph::AnalyzeBlock(BasicBlock* bb, MethodStats* stats) {
    961   if (bb->visited || (bb->block_type != kDalvikByteCode)) {
    962     return;
    963   }
    964   bool computational_block = true;
    965   bool has_math = false;
    966   /*
    967    * For the purposes of this scan, we want to treat the set of basic blocks broken
    968    * by an exception edge as a single basic block.  We'll scan forward along the fallthrough
    969    * edges until we reach an explicit branch or return.
    970    */
    971   BasicBlock* ending_bb = bb;
    972   if (ending_bb->last_mir_insn != nullptr) {
    973     uint32_t ending_flags = kAnalysisAttributes[ending_bb->last_mir_insn->dalvikInsn.opcode];
    974     while ((ending_flags & kAnBranch) == 0) {
    975       ending_bb = GetBasicBlock(ending_bb->fall_through);
    976       ending_flags = kAnalysisAttributes[ending_bb->last_mir_insn->dalvikInsn.opcode];
    977     }
    978   }
    979   /*
    980    * Ideally, we'd weight the operations by loop nesting level, but to do so we'd
    981    * first need to do some expensive loop detection - and the point of this is to make
    982    * an informed guess before investing in computation.  However, we can cheaply detect
    983    * many simple loop forms without having to do full dataflow analysis.
    984    */
    985   int loop_scale_factor = 1;
    986   // Simple for and while loops
    987   if ((ending_bb->taken != NullBasicBlockId) && (ending_bb->fall_through == NullBasicBlockId)) {
    988     if ((GetBasicBlock(ending_bb->taken)->taken == bb->id) ||
    989         (GetBasicBlock(ending_bb->taken)->fall_through == bb->id)) {
    990       loop_scale_factor = 25;
    991     }
    992   }
    993   // Simple do-while loop
    994   if ((ending_bb->taken != NullBasicBlockId) && (ending_bb->taken == bb->id)) {
    995     loop_scale_factor = 25;
    996   }
    997 
    998   BasicBlock* tbb = bb;
    999   bool done = false;
   1000   while (!done) {
   1001     tbb->visited = true;
   1002     for (MIR* mir = tbb->first_mir_insn; mir != nullptr; mir = mir->next) {
   1003       if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) {
   1004         // Skip any MIR pseudo-op.
   1005         continue;
   1006       }
   1007       uint16_t flags = kAnalysisAttributes[mir->dalvikInsn.opcode];
   1008       stats->dex_instructions += loop_scale_factor;
   1009       if ((flags & kAnBranch) == 0) {
   1010         computational_block &= ((flags & kAnComputational) != 0);
   1011       } else {
   1012         stats->branch_ops += loop_scale_factor;
   1013       }
   1014       if ((flags & kAnMath) != 0) {
   1015         stats->math_ops += loop_scale_factor;
   1016         has_math = true;
   1017       }
   1018       if ((flags & kAnFp) != 0) {
   1019         stats->fp_ops += loop_scale_factor;
   1020       }
   1021       if ((flags & kAnArrayOp) != 0) {
   1022         stats->array_ops += loop_scale_factor;
   1023       }
   1024       if ((flags & kAnHeavyWeight) != 0) {
   1025         stats->heavyweight_ops += loop_scale_factor;
   1026       }
   1027       if ((flags & kAnSwitch) != 0) {
   1028         stats->has_switch = true;
   1029       }
   1030     }
   1031     if (tbb == ending_bb) {
   1032       done = true;
   1033     } else {
   1034       tbb = GetBasicBlock(tbb->fall_through);
   1035     }
   1036   }
   1037   if (has_math && computational_block && (loop_scale_factor > 1)) {
   1038     stats->has_computational_loop = true;
   1039   }
   1040 }
   1041 
   1042 bool MIRGraph::ComputeSkipCompilation(MethodStats* stats, bool skip_default,
   1043                                       std::string* skip_message) {
   1044   float count = stats->dex_instructions;
   1045   stats->math_ratio = stats->math_ops / count;
   1046   stats->fp_ratio = stats->fp_ops / count;
   1047   stats->branch_ratio = stats->branch_ops / count;
   1048   stats->array_ratio = stats->array_ops / count;
   1049   stats->heavyweight_ratio = stats->heavyweight_ops / count;
   1050 
   1051   if (cu_->enable_debug & (1 << kDebugShowFilterStats)) {
   1052     LOG(INFO) << "STATS " << stats->dex_instructions << ", math:"
   1053               << stats->math_ratio << ", fp:"
   1054               << stats->fp_ratio << ", br:"
   1055               << stats->branch_ratio << ", hw:"
   1056               << stats->heavyweight_ratio << ", arr:"
   1057               << stats->array_ratio << ", hot:"
   1058               << stats->has_computational_loop << ", "
   1059               << PrettyMethod(cu_->method_idx, *cu_->dex_file);
   1060   }
   1061 
   1062   // Computation intensive?
   1063   if (stats->has_computational_loop && (stats->heavyweight_ratio < 0.04)) {
   1064     return false;
   1065   }
   1066 
   1067   // Complex, logic-intensive?
   1068   if (cu_->compiler_driver->GetCompilerOptions().IsSmallMethod(GetNumDalvikInsns()) &&
   1069       stats->branch_ratio > 0.3) {
   1070     return false;
   1071   }
   1072 
   1073   // Significant floating point?
   1074   if (stats->fp_ratio > 0.05) {
   1075     return false;
   1076   }
   1077 
   1078   // Significant generic math?
   1079   if (stats->math_ratio > 0.3) {
   1080     return false;
   1081   }
   1082 
   1083   // If array-intensive, compiling is probably worthwhile.
   1084   if (stats->array_ratio > 0.1) {
   1085     return false;
   1086   }
   1087 
   1088   // Switch operations benefit greatly from compilation, so go ahead and spend the cycles.
   1089   if (stats->has_switch) {
   1090     return false;
   1091   }
   1092 
   1093   // If significant in size and high proportion of expensive operations, skip.
   1094   if (cu_->compiler_driver->GetCompilerOptions().IsSmallMethod(GetNumDalvikInsns()) &&
   1095       (stats->heavyweight_ratio > 0.3)) {
   1096     *skip_message = "Is a small method with heavyweight ratio " +
   1097                     std::to_string(stats->heavyweight_ratio);
   1098     return true;
   1099   }
   1100 
   1101   return skip_default;
   1102 }
   1103 
   1104  /*
   1105   * Will eventually want this to be a bit more sophisticated and happen at verification time.
   1106   */
   1107 bool MIRGraph::SkipCompilation(std::string* skip_message) {
   1108   const CompilerOptions& compiler_options = cu_->compiler_driver->GetCompilerOptions();
   1109   CompilerOptions::CompilerFilter compiler_filter = compiler_options.GetCompilerFilter();
   1110   if (compiler_filter == CompilerOptions::kEverything) {
   1111     return false;
   1112   }
   1113 
   1114   // Contains a pattern we don't want to compile?
   1115   if (PuntToInterpreter()) {
   1116     *skip_message = "Punt to interpreter set";
   1117     return true;
   1118   }
   1119 
   1120   DCHECK(compiler_options.IsCompilationEnabled());
   1121 
   1122   // Set up compilation cutoffs based on current filter mode.
   1123   size_t small_cutoff;
   1124   size_t default_cutoff;
   1125   switch (compiler_filter) {
   1126     case CompilerOptions::kBalanced:
   1127       small_cutoff = compiler_options.GetSmallMethodThreshold();
   1128       default_cutoff = compiler_options.GetLargeMethodThreshold();
   1129       break;
   1130     case CompilerOptions::kSpace:
   1131       small_cutoff = compiler_options.GetTinyMethodThreshold();
   1132       default_cutoff = compiler_options.GetSmallMethodThreshold();
   1133       break;
   1134     case CompilerOptions::kSpeed:
   1135     case CompilerOptions::kTime:
   1136       small_cutoff = compiler_options.GetHugeMethodThreshold();
   1137       default_cutoff = compiler_options.GetHugeMethodThreshold();
   1138       break;
   1139     default:
   1140       LOG(FATAL) << "Unexpected compiler_filter_: " << compiler_filter;
   1141       UNREACHABLE();
   1142   }
   1143 
   1144   // If size < cutoff, assume we'll compile - but allow removal.
   1145   bool skip_compilation = (GetNumDalvikInsns() >= default_cutoff);
   1146   if (skip_compilation) {
   1147     *skip_message = "#Insns >= default_cutoff: " + std::to_string(GetNumDalvikInsns());
   1148   }
   1149 
   1150   /*
   1151    * Filter 1: Huge methods are likely to be machine generated, but some aren't.
   1152    * If huge, assume we won't compile, but allow futher analysis to turn it back on.
   1153    */
   1154   if (compiler_options.IsHugeMethod(GetNumDalvikInsns())) {
   1155     skip_compilation = true;
   1156     *skip_message = "Huge method: " + std::to_string(GetNumDalvikInsns());
   1157     // If we're got a huge number of basic blocks, don't bother with further analysis.
   1158     if (static_cast<size_t>(GetNumBlocks()) > (compiler_options.GetHugeMethodThreshold() / 2)) {
   1159       return true;
   1160     }
   1161   } else if (compiler_options.IsLargeMethod(GetNumDalvikInsns()) &&
   1162     /* If it's large and contains no branches, it's likely to be machine generated initialization */
   1163       (GetBranchCount() == 0)) {
   1164     *skip_message = "Large method with no branches";
   1165     return true;
   1166   } else if (compiler_filter == CompilerOptions::kSpeed) {
   1167     // If not huge, compile.
   1168     return false;
   1169   }
   1170 
   1171   // Filter 2: Skip class initializers.
   1172   if (((cu_->access_flags & kAccConstructor) != 0) && ((cu_->access_flags & kAccStatic) != 0)) {
   1173     *skip_message = "Class initializer";
   1174     return true;
   1175   }
   1176 
   1177   // Filter 3: if this method is a special pattern, go ahead and emit the canned pattern.
   1178   if (cu_->compiler_driver->GetMethodInlinerMap() != nullptr &&
   1179       cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file)
   1180           ->IsSpecial(cu_->method_idx)) {
   1181     return false;
   1182   }
   1183 
   1184   // Filter 4: if small, just compile.
   1185   if (GetNumDalvikInsns() < small_cutoff) {
   1186     return false;
   1187   }
   1188 
   1189   // Analyze graph for:
   1190   //  o floating point computation
   1191   //  o basic blocks contained in loop with heavy arithmetic.
   1192   //  o proportion of conditional branches.
   1193 
   1194   MethodStats stats;
   1195   memset(&stats, 0, sizeof(stats));
   1196 
   1197   ClearAllVisitedFlags();
   1198   AllNodesIterator iter(this);
   1199   for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
   1200     AnalyzeBlock(bb, &stats);
   1201   }
   1202 
   1203   return ComputeSkipCompilation(&stats, skip_compilation, skip_message);
   1204 }
   1205 
   1206 void MIRGraph::DoCacheFieldLoweringInfo() {
   1207   static constexpr uint32_t kFieldIndexFlagQuickened = 0x80000000;
   1208   // All IGET/IPUT/SGET/SPUT instructions take 2 code units and there must also be a RETURN.
   1209   const uint32_t max_refs = (GetNumDalvikInsns() - 1u) / 2u;
   1210   ScopedArenaAllocator allocator(&cu_->arena_stack);
   1211   auto* field_idxs = allocator.AllocArray<uint32_t>(max_refs, kArenaAllocMisc);
   1212   DexMemAccessType* field_types = allocator.AllocArray<DexMemAccessType>(
   1213       max_refs, kArenaAllocMisc);
   1214   // Find IGET/IPUT/SGET/SPUT insns, store IGET/IPUT fields at the beginning, SGET/SPUT at the end.
   1215   size_t ifield_pos = 0u;
   1216   size_t sfield_pos = max_refs;
   1217   AllNodesIterator iter(this);
   1218   for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
   1219     if (bb->block_type != kDalvikByteCode) {
   1220       continue;
   1221     }
   1222     for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
   1223       // Get field index and try to find it among existing indexes. If found, it's usually among
   1224       // the last few added, so we'll start the search from ifield_pos/sfield_pos. Though this
   1225       // is a linear search, it actually performs much better than map based approach.
   1226       const bool is_iget_or_iput = IsInstructionIGetOrIPut(mir->dalvikInsn.opcode);
   1227       const bool is_iget_or_iput_quick = IsInstructionIGetQuickOrIPutQuick(mir->dalvikInsn.opcode);
   1228       if (is_iget_or_iput || is_iget_or_iput_quick) {
   1229         uint32_t field_idx;
   1230         DexMemAccessType access_type;
   1231         if (is_iget_or_iput) {
   1232           field_idx = mir->dalvikInsn.vC;
   1233           access_type = IGetOrIPutMemAccessType(mir->dalvikInsn.opcode);
   1234         } else {
   1235           DCHECK(is_iget_or_iput_quick);
   1236           // Set kFieldIndexFlagQuickened so that we don't deduplicate against non quickened field
   1237           // indexes.
   1238           field_idx = mir->offset | kFieldIndexFlagQuickened;
   1239           access_type = IGetQuickOrIPutQuickMemAccessType(mir->dalvikInsn.opcode);
   1240         }
   1241         size_t i = ifield_pos;
   1242         while (i != 0u && field_idxs[i - 1] != field_idx) {
   1243           --i;
   1244         }
   1245         if (i != 0u) {
   1246           mir->meta.ifield_lowering_info = i - 1;
   1247           DCHECK_EQ(field_types[i - 1], access_type);
   1248         } else {
   1249           mir->meta.ifield_lowering_info = ifield_pos;
   1250           field_idxs[ifield_pos] = field_idx;
   1251           field_types[ifield_pos] = access_type;
   1252           ++ifield_pos;
   1253         }
   1254       } else if (IsInstructionSGetOrSPut(mir->dalvikInsn.opcode)) {
   1255         auto field_idx = mir->dalvikInsn.vB;
   1256         size_t i = sfield_pos;
   1257         while (i != max_refs && field_idxs[i] != field_idx) {
   1258           ++i;
   1259         }
   1260         if (i != max_refs) {
   1261           mir->meta.sfield_lowering_info = max_refs - i - 1u;
   1262           DCHECK_EQ(field_types[i], SGetOrSPutMemAccessType(mir->dalvikInsn.opcode));
   1263         } else {
   1264           mir->meta.sfield_lowering_info = max_refs - sfield_pos;
   1265           --sfield_pos;
   1266           field_idxs[sfield_pos] = field_idx;
   1267           field_types[sfield_pos] = SGetOrSPutMemAccessType(mir->dalvikInsn.opcode);
   1268         }
   1269       }
   1270       DCHECK_LE(ifield_pos, sfield_pos);
   1271     }
   1272   }
   1273 
   1274   if (ifield_pos != 0u) {
   1275     // Resolve instance field infos.
   1276     DCHECK_EQ(ifield_lowering_infos_.size(), 0u);
   1277     ifield_lowering_infos_.reserve(ifield_pos);
   1278     for (size_t pos = 0u; pos != ifield_pos; ++pos) {
   1279       const uint32_t field_idx = field_idxs[pos];
   1280       const bool is_quickened = (field_idx & kFieldIndexFlagQuickened) != 0;
   1281       const uint32_t masked_field_idx = field_idx & ~kFieldIndexFlagQuickened;
   1282       CHECK_LT(masked_field_idx, 1u << 16);
   1283       ifield_lowering_infos_.push_back(
   1284           MirIFieldLoweringInfo(masked_field_idx, field_types[pos], is_quickened));
   1285     }
   1286     MirIFieldLoweringInfo::Resolve(cu_->compiler_driver, GetCurrentDexCompilationUnit(),
   1287                                    ifield_lowering_infos_.data(), ifield_pos);
   1288   }
   1289 
   1290   if (sfield_pos != max_refs) {
   1291     // Resolve static field infos.
   1292     DCHECK_EQ(sfield_lowering_infos_.size(), 0u);
   1293     sfield_lowering_infos_.reserve(max_refs - sfield_pos);
   1294     for (size_t pos = max_refs; pos != sfield_pos;) {
   1295       --pos;
   1296       sfield_lowering_infos_.push_back(MirSFieldLoweringInfo(field_idxs[pos], field_types[pos]));
   1297     }
   1298     MirSFieldLoweringInfo::Resolve(cu_->compiler_driver, GetCurrentDexCompilationUnit(),
   1299                                    sfield_lowering_infos_.data(), max_refs - sfield_pos);
   1300   }
   1301 }
   1302 
   1303 void MIRGraph::DoCacheMethodLoweringInfo() {
   1304   static constexpr uint16_t invoke_types[] = { kVirtual, kSuper, kDirect, kStatic, kInterface };
   1305   static constexpr uint32_t kMethodIdxFlagQuickened = 0x80000000;
   1306 
   1307   // Embed the map value in the entry to avoid extra padding in 64-bit builds.
   1308   struct MapEntry {
   1309     // Map key: target_method_idx, invoke_type, devirt_target. Ordered to avoid padding.
   1310     const MethodReference* devirt_target;
   1311     uint32_t target_method_idx;
   1312     uint32_t vtable_idx;
   1313     uint16_t invoke_type;
   1314     // Map value.
   1315     uint32_t lowering_info_index;
   1316   };
   1317 
   1318   struct MapEntryComparator {
   1319     bool operator()(const MapEntry& lhs, const MapEntry& rhs) const {
   1320       if (lhs.target_method_idx != rhs.target_method_idx) {
   1321         return lhs.target_method_idx < rhs.target_method_idx;
   1322       }
   1323       if (lhs.invoke_type != rhs.invoke_type) {
   1324         return lhs.invoke_type < rhs.invoke_type;
   1325       }
   1326       if (lhs.vtable_idx != rhs.vtable_idx) {
   1327         return lhs.vtable_idx < rhs.vtable_idx;
   1328       }
   1329       if (lhs.devirt_target != rhs.devirt_target) {
   1330         if (lhs.devirt_target == nullptr) {
   1331           return true;
   1332         }
   1333         if (rhs.devirt_target == nullptr) {
   1334           return false;
   1335         }
   1336         return devirt_cmp(*lhs.devirt_target, *rhs.devirt_target);
   1337       }
   1338       return false;
   1339     }
   1340     MethodReferenceComparator devirt_cmp;
   1341   };
   1342 
   1343   ScopedArenaAllocator allocator(&cu_->arena_stack);
   1344 
   1345   // All INVOKE instructions take 3 code units and there must also be a RETURN.
   1346   const uint32_t max_refs = (GetNumDalvikInsns() - 1u) / 3u;
   1347 
   1348   // Map invoke key (see MapEntry) to lowering info index and vice versa.
   1349   // The invoke_map and sequential entries are essentially equivalent to Boost.MultiIndex's
   1350   // multi_index_container with one ordered index and one sequential index.
   1351   ScopedArenaSet<MapEntry, MapEntryComparator> invoke_map(MapEntryComparator(),
   1352                                                           allocator.Adapter());
   1353   const MapEntry** sequential_entries =
   1354       allocator.AllocArray<const MapEntry*>(max_refs, kArenaAllocMisc);
   1355 
   1356   // Find INVOKE insns and their devirtualization targets.
   1357   const VerifiedMethod* verified_method = GetCurrentDexCompilationUnit()->GetVerifiedMethod();
   1358   AllNodesIterator iter(this);
   1359   for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
   1360     if (bb->block_type != kDalvikByteCode) {
   1361       continue;
   1362     }
   1363     for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
   1364       const bool is_quick_invoke = IsInstructionQuickInvoke(mir->dalvikInsn.opcode);
   1365       const bool is_invoke = IsInstructionInvoke(mir->dalvikInsn.opcode);
   1366       if (is_quick_invoke || is_invoke) {
   1367         uint32_t vtable_index = 0;
   1368         uint32_t target_method_idx = 0;
   1369         uint32_t invoke_type_idx = 0;  // Default to virtual (in case of quickened).
   1370         DCHECK_EQ(invoke_types[invoke_type_idx], kVirtual);
   1371         if (is_quick_invoke) {
   1372           // We need to store the vtable index since we can't necessarily recreate it at resolve
   1373           // phase if the dequickening resolved to an interface method.
   1374           vtable_index = mir->dalvikInsn.vB;
   1375           // Fake up the method index by storing the mir offset so that we can read the dequicken
   1376           // info in resolve.
   1377           target_method_idx = mir->offset | kMethodIdxFlagQuickened;
   1378         } else {
   1379           DCHECK(is_invoke);
   1380           // Decode target method index and invoke type.
   1381           invoke_type_idx = InvokeInstructionType(mir->dalvikInsn.opcode);
   1382           target_method_idx = mir->dalvikInsn.vB;
   1383         }
   1384         // Find devirtualization target.
   1385         // TODO: The devirt map is ordered by the dex pc here. Is there a way to get INVOKEs
   1386         // ordered by dex pc as well? That would allow us to keep an iterator to devirt targets
   1387         // and increment it as needed instead of making O(log n) lookups.
   1388         const MethodReference* devirt_target = verified_method->GetDevirtTarget(mir->offset);
   1389         // Try to insert a new entry. If the insertion fails, we will have found an old one.
   1390         MapEntry entry = {
   1391             devirt_target,
   1392             target_method_idx,
   1393             vtable_index,
   1394             invoke_types[invoke_type_idx],
   1395             static_cast<uint32_t>(invoke_map.size())
   1396         };
   1397         auto it = invoke_map.insert(entry).first;  // Iterator to either the old or the new entry.
   1398         mir->meta.method_lowering_info = it->lowering_info_index;
   1399         // If we didn't actually insert, this will just overwrite an existing value with the same.
   1400         sequential_entries[it->lowering_info_index] = &*it;
   1401       }
   1402     }
   1403   }
   1404   if (invoke_map.empty()) {
   1405     return;
   1406   }
   1407   // Prepare unique method infos, set method info indexes for their MIRs.
   1408   const size_t count = invoke_map.size();
   1409   method_lowering_infos_.reserve(count);
   1410   for (size_t pos = 0u; pos != count; ++pos) {
   1411     const MapEntry* entry = sequential_entries[pos];
   1412     const bool is_quick = (entry->target_method_idx & kMethodIdxFlagQuickened) != 0;
   1413     const uint32_t masked_method_idx = entry->target_method_idx & ~kMethodIdxFlagQuickened;
   1414     MirMethodLoweringInfo method_info(masked_method_idx,
   1415                                       static_cast<InvokeType>(entry->invoke_type), is_quick);
   1416     if (entry->devirt_target != nullptr) {
   1417       method_info.SetDevirtualizationTarget(*entry->devirt_target);
   1418     }
   1419     if (is_quick) {
   1420       method_info.SetVTableIndex(entry->vtable_idx);
   1421     }
   1422     method_lowering_infos_.push_back(method_info);
   1423   }
   1424   MirMethodLoweringInfo::Resolve(cu_->compiler_driver, GetCurrentDexCompilationUnit(),
   1425                                  method_lowering_infos_.data(), count);
   1426 }
   1427 
   1428 bool MIRGraph::SkipCompilationByName(const std::string& methodname) {
   1429   return cu_->compiler_driver->SkipCompilation(methodname);
   1430 }
   1431 
   1432 }  // namespace art
   1433