1 //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the ASTContext interface. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTContext.h" 15 #include "CXXABI.h" 16 #include "clang/AST/ASTMutationListener.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/Comment.h" 20 #include "clang/AST/CommentCommandTraits.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclTemplate.h" 24 #include "clang/AST/Expr.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/ExternalASTSource.h" 27 #include "clang/AST/Mangle.h" 28 #include "clang/AST/MangleNumberingContext.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/AST/RecursiveASTVisitor.h" 31 #include "clang/AST/TypeLoc.h" 32 #include "clang/AST/VTableBuilder.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/SourceManager.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "llvm/ADT/SmallString.h" 37 #include "llvm/ADT/StringExtras.h" 38 #include "llvm/ADT/Triple.h" 39 #include "llvm/Support/Capacity.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <map> 43 44 using namespace clang; 45 46 unsigned ASTContext::NumImplicitDefaultConstructors; 47 unsigned ASTContext::NumImplicitDefaultConstructorsDeclared; 48 unsigned ASTContext::NumImplicitCopyConstructors; 49 unsigned ASTContext::NumImplicitCopyConstructorsDeclared; 50 unsigned ASTContext::NumImplicitMoveConstructors; 51 unsigned ASTContext::NumImplicitMoveConstructorsDeclared; 52 unsigned ASTContext::NumImplicitCopyAssignmentOperators; 53 unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared; 54 unsigned ASTContext::NumImplicitMoveAssignmentOperators; 55 unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared; 56 unsigned ASTContext::NumImplicitDestructors; 57 unsigned ASTContext::NumImplicitDestructorsDeclared; 58 59 enum FloatingRank { 60 HalfRank, FloatRank, DoubleRank, LongDoubleRank 61 }; 62 63 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const { 64 if (!CommentsLoaded && ExternalSource) { 65 ExternalSource->ReadComments(); 66 67 #ifndef NDEBUG 68 ArrayRef<RawComment *> RawComments = Comments.getComments(); 69 assert(std::is_sorted(RawComments.begin(), RawComments.end(), 70 BeforeThanCompare<RawComment>(SourceMgr))); 71 #endif 72 73 CommentsLoaded = true; 74 } 75 76 assert(D); 77 78 // User can not attach documentation to implicit declarations. 79 if (D->isImplicit()) 80 return nullptr; 81 82 // User can not attach documentation to implicit instantiations. 83 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 84 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 85 return nullptr; 86 } 87 88 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 89 if (VD->isStaticDataMember() && 90 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 91 return nullptr; 92 } 93 94 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) { 95 if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 96 return nullptr; 97 } 98 99 if (const ClassTemplateSpecializationDecl *CTSD = 100 dyn_cast<ClassTemplateSpecializationDecl>(D)) { 101 TemplateSpecializationKind TSK = CTSD->getSpecializationKind(); 102 if (TSK == TSK_ImplicitInstantiation || 103 TSK == TSK_Undeclared) 104 return nullptr; 105 } 106 107 if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) { 108 if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 109 return nullptr; 110 } 111 if (const TagDecl *TD = dyn_cast<TagDecl>(D)) { 112 // When tag declaration (but not definition!) is part of the 113 // decl-specifier-seq of some other declaration, it doesn't get comment 114 if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition()) 115 return nullptr; 116 } 117 // TODO: handle comments for function parameters properly. 118 if (isa<ParmVarDecl>(D)) 119 return nullptr; 120 121 // TODO: we could look up template parameter documentation in the template 122 // documentation. 123 if (isa<TemplateTypeParmDecl>(D) || 124 isa<NonTypeTemplateParmDecl>(D) || 125 isa<TemplateTemplateParmDecl>(D)) 126 return nullptr; 127 128 ArrayRef<RawComment *> RawComments = Comments.getComments(); 129 130 // If there are no comments anywhere, we won't find anything. 131 if (RawComments.empty()) 132 return nullptr; 133 134 // Find declaration location. 135 // For Objective-C declarations we generally don't expect to have multiple 136 // declarators, thus use declaration starting location as the "declaration 137 // location". 138 // For all other declarations multiple declarators are used quite frequently, 139 // so we use the location of the identifier as the "declaration location". 140 SourceLocation DeclLoc; 141 if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) || 142 isa<ObjCPropertyDecl>(D) || 143 isa<RedeclarableTemplateDecl>(D) || 144 isa<ClassTemplateSpecializationDecl>(D)) 145 DeclLoc = D->getLocStart(); 146 else { 147 DeclLoc = D->getLocation(); 148 if (DeclLoc.isMacroID()) { 149 if (isa<TypedefDecl>(D)) { 150 // If location of the typedef name is in a macro, it is because being 151 // declared via a macro. Try using declaration's starting location as 152 // the "declaration location". 153 DeclLoc = D->getLocStart(); 154 } else if (const TagDecl *TD = dyn_cast<TagDecl>(D)) { 155 // If location of the tag decl is inside a macro, but the spelling of 156 // the tag name comes from a macro argument, it looks like a special 157 // macro like NS_ENUM is being used to define the tag decl. In that 158 // case, adjust the source location to the expansion loc so that we can 159 // attach the comment to the tag decl. 160 if (SourceMgr.isMacroArgExpansion(DeclLoc) && 161 TD->isCompleteDefinition()) 162 DeclLoc = SourceMgr.getExpansionLoc(DeclLoc); 163 } 164 } 165 } 166 167 // If the declaration doesn't map directly to a location in a file, we 168 // can't find the comment. 169 if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) 170 return nullptr; 171 172 // Find the comment that occurs just after this declaration. 173 ArrayRef<RawComment *>::iterator Comment; 174 { 175 // When searching for comments during parsing, the comment we are looking 176 // for is usually among the last two comments we parsed -- check them 177 // first. 178 RawComment CommentAtDeclLoc( 179 SourceMgr, SourceRange(DeclLoc), false, 180 LangOpts.CommentOpts.ParseAllComments); 181 BeforeThanCompare<RawComment> Compare(SourceMgr); 182 ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1; 183 bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc); 184 if (!Found && RawComments.size() >= 2) { 185 MaybeBeforeDecl--; 186 Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc); 187 } 188 189 if (Found) { 190 Comment = MaybeBeforeDecl + 1; 191 assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(), 192 &CommentAtDeclLoc, Compare)); 193 } else { 194 // Slow path. 195 Comment = std::lower_bound(RawComments.begin(), RawComments.end(), 196 &CommentAtDeclLoc, Compare); 197 } 198 } 199 200 // Decompose the location for the declaration and find the beginning of the 201 // file buffer. 202 std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc); 203 204 // First check whether we have a trailing comment. 205 if (Comment != RawComments.end() && 206 (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() && 207 (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) || 208 isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) { 209 std::pair<FileID, unsigned> CommentBeginDecomp 210 = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin()); 211 // Check that Doxygen trailing comment comes after the declaration, starts 212 // on the same line and in the same file as the declaration. 213 if (DeclLocDecomp.first == CommentBeginDecomp.first && 214 SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) 215 == SourceMgr.getLineNumber(CommentBeginDecomp.first, 216 CommentBeginDecomp.second)) { 217 return *Comment; 218 } 219 } 220 221 // The comment just after the declaration was not a trailing comment. 222 // Let's look at the previous comment. 223 if (Comment == RawComments.begin()) 224 return nullptr; 225 --Comment; 226 227 // Check that we actually have a non-member Doxygen comment. 228 if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment()) 229 return nullptr; 230 231 // Decompose the end of the comment. 232 std::pair<FileID, unsigned> CommentEndDecomp 233 = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd()); 234 235 // If the comment and the declaration aren't in the same file, then they 236 // aren't related. 237 if (DeclLocDecomp.first != CommentEndDecomp.first) 238 return nullptr; 239 240 // Get the corresponding buffer. 241 bool Invalid = false; 242 const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first, 243 &Invalid).data(); 244 if (Invalid) 245 return nullptr; 246 247 // Extract text between the comment and declaration. 248 StringRef Text(Buffer + CommentEndDecomp.second, 249 DeclLocDecomp.second - CommentEndDecomp.second); 250 251 // There should be no other declarations or preprocessor directives between 252 // comment and declaration. 253 if (Text.find_first_of(";{}#@") != StringRef::npos) 254 return nullptr; 255 256 return *Comment; 257 } 258 259 namespace { 260 /// If we have a 'templated' declaration for a template, adjust 'D' to 261 /// refer to the actual template. 262 /// If we have an implicit instantiation, adjust 'D' to refer to template. 263 const Decl *adjustDeclToTemplate(const Decl *D) { 264 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 265 // Is this function declaration part of a function template? 266 if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) 267 return FTD; 268 269 // Nothing to do if function is not an implicit instantiation. 270 if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) 271 return D; 272 273 // Function is an implicit instantiation of a function template? 274 if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate()) 275 return FTD; 276 277 // Function is instantiated from a member definition of a class template? 278 if (const FunctionDecl *MemberDecl = 279 FD->getInstantiatedFromMemberFunction()) 280 return MemberDecl; 281 282 return D; 283 } 284 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 285 // Static data member is instantiated from a member definition of a class 286 // template? 287 if (VD->isStaticDataMember()) 288 if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember()) 289 return MemberDecl; 290 291 return D; 292 } 293 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) { 294 // Is this class declaration part of a class template? 295 if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate()) 296 return CTD; 297 298 // Class is an implicit instantiation of a class template or partial 299 // specialization? 300 if (const ClassTemplateSpecializationDecl *CTSD = 301 dyn_cast<ClassTemplateSpecializationDecl>(CRD)) { 302 if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation) 303 return D; 304 llvm::PointerUnion<ClassTemplateDecl *, 305 ClassTemplatePartialSpecializationDecl *> 306 PU = CTSD->getSpecializedTemplateOrPartial(); 307 return PU.is<ClassTemplateDecl*>() ? 308 static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) : 309 static_cast<const Decl*>( 310 PU.get<ClassTemplatePartialSpecializationDecl *>()); 311 } 312 313 // Class is instantiated from a member definition of a class template? 314 if (const MemberSpecializationInfo *Info = 315 CRD->getMemberSpecializationInfo()) 316 return Info->getInstantiatedFrom(); 317 318 return D; 319 } 320 if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) { 321 // Enum is instantiated from a member definition of a class template? 322 if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum()) 323 return MemberDecl; 324 325 return D; 326 } 327 // FIXME: Adjust alias templates? 328 return D; 329 } 330 } // unnamed namespace 331 332 const RawComment *ASTContext::getRawCommentForAnyRedecl( 333 const Decl *D, 334 const Decl **OriginalDecl) const { 335 D = adjustDeclToTemplate(D); 336 337 // Check whether we have cached a comment for this declaration already. 338 { 339 llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos = 340 RedeclComments.find(D); 341 if (Pos != RedeclComments.end()) { 342 const RawCommentAndCacheFlags &Raw = Pos->second; 343 if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) { 344 if (OriginalDecl) 345 *OriginalDecl = Raw.getOriginalDecl(); 346 return Raw.getRaw(); 347 } 348 } 349 } 350 351 // Search for comments attached to declarations in the redeclaration chain. 352 const RawComment *RC = nullptr; 353 const Decl *OriginalDeclForRC = nullptr; 354 for (auto I : D->redecls()) { 355 llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos = 356 RedeclComments.find(I); 357 if (Pos != RedeclComments.end()) { 358 const RawCommentAndCacheFlags &Raw = Pos->second; 359 if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) { 360 RC = Raw.getRaw(); 361 OriginalDeclForRC = Raw.getOriginalDecl(); 362 break; 363 } 364 } else { 365 RC = getRawCommentForDeclNoCache(I); 366 OriginalDeclForRC = I; 367 RawCommentAndCacheFlags Raw; 368 if (RC) { 369 Raw.setRaw(RC); 370 Raw.setKind(RawCommentAndCacheFlags::FromDecl); 371 } else 372 Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl); 373 Raw.setOriginalDecl(I); 374 RedeclComments[I] = Raw; 375 if (RC) 376 break; 377 } 378 } 379 380 // If we found a comment, it should be a documentation comment. 381 assert(!RC || RC->isDocumentation()); 382 383 if (OriginalDecl) 384 *OriginalDecl = OriginalDeclForRC; 385 386 // Update cache for every declaration in the redeclaration chain. 387 RawCommentAndCacheFlags Raw; 388 Raw.setRaw(RC); 389 Raw.setKind(RawCommentAndCacheFlags::FromRedecl); 390 Raw.setOriginalDecl(OriginalDeclForRC); 391 392 for (auto I : D->redecls()) { 393 RawCommentAndCacheFlags &R = RedeclComments[I]; 394 if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl) 395 R = Raw; 396 } 397 398 return RC; 399 } 400 401 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod, 402 SmallVectorImpl<const NamedDecl *> &Redeclared) { 403 const DeclContext *DC = ObjCMethod->getDeclContext(); 404 if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) { 405 const ObjCInterfaceDecl *ID = IMD->getClassInterface(); 406 if (!ID) 407 return; 408 // Add redeclared method here. 409 for (const auto *Ext : ID->known_extensions()) { 410 if (ObjCMethodDecl *RedeclaredMethod = 411 Ext->getMethod(ObjCMethod->getSelector(), 412 ObjCMethod->isInstanceMethod())) 413 Redeclared.push_back(RedeclaredMethod); 414 } 415 } 416 } 417 418 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC, 419 const Decl *D) const { 420 comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo; 421 ThisDeclInfo->CommentDecl = D; 422 ThisDeclInfo->IsFilled = false; 423 ThisDeclInfo->fill(); 424 ThisDeclInfo->CommentDecl = FC->getDecl(); 425 if (!ThisDeclInfo->TemplateParameters) 426 ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters; 427 comments::FullComment *CFC = 428 new (*this) comments::FullComment(FC->getBlocks(), 429 ThisDeclInfo); 430 return CFC; 431 432 } 433 434 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const { 435 const RawComment *RC = getRawCommentForDeclNoCache(D); 436 return RC ? RC->parse(*this, nullptr, D) : nullptr; 437 } 438 439 comments::FullComment *ASTContext::getCommentForDecl( 440 const Decl *D, 441 const Preprocessor *PP) const { 442 if (D->isInvalidDecl()) 443 return nullptr; 444 D = adjustDeclToTemplate(D); 445 446 const Decl *Canonical = D->getCanonicalDecl(); 447 llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos = 448 ParsedComments.find(Canonical); 449 450 if (Pos != ParsedComments.end()) { 451 if (Canonical != D) { 452 comments::FullComment *FC = Pos->second; 453 comments::FullComment *CFC = cloneFullComment(FC, D); 454 return CFC; 455 } 456 return Pos->second; 457 } 458 459 const Decl *OriginalDecl; 460 461 const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl); 462 if (!RC) { 463 if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) { 464 SmallVector<const NamedDecl*, 8> Overridden; 465 const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D); 466 if (OMD && OMD->isPropertyAccessor()) 467 if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl()) 468 if (comments::FullComment *FC = getCommentForDecl(PDecl, PP)) 469 return cloneFullComment(FC, D); 470 if (OMD) 471 addRedeclaredMethods(OMD, Overridden); 472 getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden); 473 for (unsigned i = 0, e = Overridden.size(); i < e; i++) 474 if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP)) 475 return cloneFullComment(FC, D); 476 } 477 else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) { 478 // Attach any tag type's documentation to its typedef if latter 479 // does not have one of its own. 480 QualType QT = TD->getUnderlyingType(); 481 if (const TagType *TT = QT->getAs<TagType>()) 482 if (const Decl *TD = TT->getDecl()) 483 if (comments::FullComment *FC = getCommentForDecl(TD, PP)) 484 return cloneFullComment(FC, D); 485 } 486 else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) { 487 while (IC->getSuperClass()) { 488 IC = IC->getSuperClass(); 489 if (comments::FullComment *FC = getCommentForDecl(IC, PP)) 490 return cloneFullComment(FC, D); 491 } 492 } 493 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) { 494 if (const ObjCInterfaceDecl *IC = CD->getClassInterface()) 495 if (comments::FullComment *FC = getCommentForDecl(IC, PP)) 496 return cloneFullComment(FC, D); 497 } 498 else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { 499 if (!(RD = RD->getDefinition())) 500 return nullptr; 501 // Check non-virtual bases. 502 for (const auto &I : RD->bases()) { 503 if (I.isVirtual() || (I.getAccessSpecifier() != AS_public)) 504 continue; 505 QualType Ty = I.getType(); 506 if (Ty.isNull()) 507 continue; 508 if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) { 509 if (!(NonVirtualBase= NonVirtualBase->getDefinition())) 510 continue; 511 512 if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP)) 513 return cloneFullComment(FC, D); 514 } 515 } 516 // Check virtual bases. 517 for (const auto &I : RD->vbases()) { 518 if (I.getAccessSpecifier() != AS_public) 519 continue; 520 QualType Ty = I.getType(); 521 if (Ty.isNull()) 522 continue; 523 if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) { 524 if (!(VirtualBase= VirtualBase->getDefinition())) 525 continue; 526 if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP)) 527 return cloneFullComment(FC, D); 528 } 529 } 530 } 531 return nullptr; 532 } 533 534 // If the RawComment was attached to other redeclaration of this Decl, we 535 // should parse the comment in context of that other Decl. This is important 536 // because comments can contain references to parameter names which can be 537 // different across redeclarations. 538 if (D != OriginalDecl) 539 return getCommentForDecl(OriginalDecl, PP); 540 541 comments::FullComment *FC = RC->parse(*this, PP, D); 542 ParsedComments[Canonical] = FC; 543 return FC; 544 } 545 546 void 547 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID, 548 TemplateTemplateParmDecl *Parm) { 549 ID.AddInteger(Parm->getDepth()); 550 ID.AddInteger(Parm->getPosition()); 551 ID.AddBoolean(Parm->isParameterPack()); 552 553 TemplateParameterList *Params = Parm->getTemplateParameters(); 554 ID.AddInteger(Params->size()); 555 for (TemplateParameterList::const_iterator P = Params->begin(), 556 PEnd = Params->end(); 557 P != PEnd; ++P) { 558 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { 559 ID.AddInteger(0); 560 ID.AddBoolean(TTP->isParameterPack()); 561 continue; 562 } 563 564 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { 565 ID.AddInteger(1); 566 ID.AddBoolean(NTTP->isParameterPack()); 567 ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr()); 568 if (NTTP->isExpandedParameterPack()) { 569 ID.AddBoolean(true); 570 ID.AddInteger(NTTP->getNumExpansionTypes()); 571 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { 572 QualType T = NTTP->getExpansionType(I); 573 ID.AddPointer(T.getCanonicalType().getAsOpaquePtr()); 574 } 575 } else 576 ID.AddBoolean(false); 577 continue; 578 } 579 580 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P); 581 ID.AddInteger(2); 582 Profile(ID, TTP); 583 } 584 } 585 586 TemplateTemplateParmDecl * 587 ASTContext::getCanonicalTemplateTemplateParmDecl( 588 TemplateTemplateParmDecl *TTP) const { 589 // Check if we already have a canonical template template parameter. 590 llvm::FoldingSetNodeID ID; 591 CanonicalTemplateTemplateParm::Profile(ID, TTP); 592 void *InsertPos = nullptr; 593 CanonicalTemplateTemplateParm *Canonical 594 = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); 595 if (Canonical) 596 return Canonical->getParam(); 597 598 // Build a canonical template parameter list. 599 TemplateParameterList *Params = TTP->getTemplateParameters(); 600 SmallVector<NamedDecl *, 4> CanonParams; 601 CanonParams.reserve(Params->size()); 602 for (TemplateParameterList::const_iterator P = Params->begin(), 603 PEnd = Params->end(); 604 P != PEnd; ++P) { 605 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) 606 CanonParams.push_back( 607 TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(), 608 SourceLocation(), 609 SourceLocation(), 610 TTP->getDepth(), 611 TTP->getIndex(), nullptr, false, 612 TTP->isParameterPack())); 613 else if (NonTypeTemplateParmDecl *NTTP 614 = dyn_cast<NonTypeTemplateParmDecl>(*P)) { 615 QualType T = getCanonicalType(NTTP->getType()); 616 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); 617 NonTypeTemplateParmDecl *Param; 618 if (NTTP->isExpandedParameterPack()) { 619 SmallVector<QualType, 2> ExpandedTypes; 620 SmallVector<TypeSourceInfo *, 2> ExpandedTInfos; 621 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { 622 ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I))); 623 ExpandedTInfos.push_back( 624 getTrivialTypeSourceInfo(ExpandedTypes.back())); 625 } 626 627 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), 628 SourceLocation(), 629 SourceLocation(), 630 NTTP->getDepth(), 631 NTTP->getPosition(), nullptr, 632 T, 633 TInfo, 634 ExpandedTypes.data(), 635 ExpandedTypes.size(), 636 ExpandedTInfos.data()); 637 } else { 638 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), 639 SourceLocation(), 640 SourceLocation(), 641 NTTP->getDepth(), 642 NTTP->getPosition(), nullptr, 643 T, 644 NTTP->isParameterPack(), 645 TInfo); 646 } 647 CanonParams.push_back(Param); 648 649 } else 650 CanonParams.push_back(getCanonicalTemplateTemplateParmDecl( 651 cast<TemplateTemplateParmDecl>(*P))); 652 } 653 654 TemplateTemplateParmDecl *CanonTTP 655 = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(), 656 SourceLocation(), TTP->getDepth(), 657 TTP->getPosition(), 658 TTP->isParameterPack(), 659 nullptr, 660 TemplateParameterList::Create(*this, SourceLocation(), 661 SourceLocation(), 662 CanonParams.data(), 663 CanonParams.size(), 664 SourceLocation())); 665 666 // Get the new insert position for the node we care about. 667 Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); 668 assert(!Canonical && "Shouldn't be in the map!"); 669 (void)Canonical; 670 671 // Create the canonical template template parameter entry. 672 Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP); 673 CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos); 674 return CanonTTP; 675 } 676 677 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) { 678 if (!LangOpts.CPlusPlus) return nullptr; 679 680 switch (T.getCXXABI().getKind()) { 681 case TargetCXXABI::GenericARM: // Same as Itanium at this level 682 case TargetCXXABI::iOS: 683 case TargetCXXABI::iOS64: 684 case TargetCXXABI::GenericAArch64: 685 case TargetCXXABI::GenericMIPS: 686 case TargetCXXABI::GenericItanium: 687 return CreateItaniumCXXABI(*this); 688 case TargetCXXABI::Microsoft: 689 return CreateMicrosoftCXXABI(*this); 690 } 691 llvm_unreachable("Invalid CXXABI type!"); 692 } 693 694 static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T, 695 const LangOptions &LOpts) { 696 if (LOpts.FakeAddressSpaceMap) { 697 // The fake address space map must have a distinct entry for each 698 // language-specific address space. 699 static const unsigned FakeAddrSpaceMap[] = { 700 1, // opencl_global 701 2, // opencl_local 702 3, // opencl_constant 703 4, // opencl_generic 704 5, // cuda_device 705 6, // cuda_constant 706 7 // cuda_shared 707 }; 708 return &FakeAddrSpaceMap; 709 } else { 710 return &T.getAddressSpaceMap(); 711 } 712 } 713 714 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI, 715 const LangOptions &LangOpts) { 716 switch (LangOpts.getAddressSpaceMapMangling()) { 717 case LangOptions::ASMM_Target: 718 return TI.useAddressSpaceMapMangling(); 719 case LangOptions::ASMM_On: 720 return true; 721 case LangOptions::ASMM_Off: 722 return false; 723 } 724 llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything."); 725 } 726 727 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM, 728 IdentifierTable &idents, SelectorTable &sels, 729 Builtin::Context &builtins) 730 : FunctionProtoTypes(this_()), TemplateSpecializationTypes(this_()), 731 DependentTemplateSpecializationTypes(this_()), 732 SubstTemplateTemplateParmPacks(this_()), 733 GlobalNestedNameSpecifier(nullptr), Int128Decl(nullptr), 734 UInt128Decl(nullptr), Float128StubDecl(nullptr), 735 BuiltinVaListDecl(nullptr), ObjCIdDecl(nullptr), ObjCSelDecl(nullptr), 736 ObjCClassDecl(nullptr), ObjCProtocolClassDecl(nullptr), BOOLDecl(nullptr), 737 CFConstantStringTypeDecl(nullptr), ObjCInstanceTypeDecl(nullptr), 738 FILEDecl(nullptr), jmp_bufDecl(nullptr), sigjmp_bufDecl(nullptr), 739 ucontext_tDecl(nullptr), BlockDescriptorType(nullptr), 740 BlockDescriptorExtendedType(nullptr), cudaConfigureCallDecl(nullptr), 741 FirstLocalImport(), LastLocalImport(), ExternCContext(nullptr), 742 SourceMgr(SM), LangOpts(LOpts), 743 SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)), 744 AddrSpaceMap(nullptr), Target(nullptr), PrintingPolicy(LOpts), 745 Idents(idents), Selectors(sels), BuiltinInfo(builtins), 746 DeclarationNames(*this), ExternalSource(nullptr), Listener(nullptr), 747 Comments(SM), CommentsLoaded(false), 748 CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), LastSDM(nullptr, 0) { 749 TUDecl = TranslationUnitDecl::Create(*this); 750 } 751 752 ASTContext::~ASTContext() { 753 ReleaseParentMapEntries(); 754 755 // Release the DenseMaps associated with DeclContext objects. 756 // FIXME: Is this the ideal solution? 757 ReleaseDeclContextMaps(); 758 759 // Call all of the deallocation functions on all of their targets. 760 for (DeallocationMap::const_iterator I = Deallocations.begin(), 761 E = Deallocations.end(); I != E; ++I) 762 for (unsigned J = 0, N = I->second.size(); J != N; ++J) 763 (I->first)((I->second)[J]); 764 765 // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed 766 // because they can contain DenseMaps. 767 for (llvm::DenseMap<const ObjCContainerDecl*, 768 const ASTRecordLayout*>::iterator 769 I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) 770 // Increment in loop to prevent using deallocated memory. 771 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second)) 772 R->Destroy(*this); 773 774 for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator 775 I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) { 776 // Increment in loop to prevent using deallocated memory. 777 if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second)) 778 R->Destroy(*this); 779 } 780 781 for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(), 782 AEnd = DeclAttrs.end(); 783 A != AEnd; ++A) 784 A->second->~AttrVec(); 785 786 llvm::DeleteContainerSeconds(MangleNumberingContexts); 787 } 788 789 void ASTContext::ReleaseParentMapEntries() { 790 if (!AllParents) return; 791 for (const auto &Entry : *AllParents) { 792 if (Entry.second.is<ast_type_traits::DynTypedNode *>()) { 793 delete Entry.second.get<ast_type_traits::DynTypedNode *>(); 794 } else { 795 assert(Entry.second.is<ParentVector *>()); 796 delete Entry.second.get<ParentVector *>(); 797 } 798 } 799 } 800 801 void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) { 802 Deallocations[Callback].push_back(Data); 803 } 804 805 void 806 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) { 807 ExternalSource = Source; 808 } 809 810 void ASTContext::PrintStats() const { 811 llvm::errs() << "\n*** AST Context Stats:\n"; 812 llvm::errs() << " " << Types.size() << " types total.\n"; 813 814 unsigned counts[] = { 815 #define TYPE(Name, Parent) 0, 816 #define ABSTRACT_TYPE(Name, Parent) 817 #include "clang/AST/TypeNodes.def" 818 0 // Extra 819 }; 820 821 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 822 Type *T = Types[i]; 823 counts[(unsigned)T->getTypeClass()]++; 824 } 825 826 unsigned Idx = 0; 827 unsigned TotalBytes = 0; 828 #define TYPE(Name, Parent) \ 829 if (counts[Idx]) \ 830 llvm::errs() << " " << counts[Idx] << " " << #Name \ 831 << " types\n"; \ 832 TotalBytes += counts[Idx] * sizeof(Name##Type); \ 833 ++Idx; 834 #define ABSTRACT_TYPE(Name, Parent) 835 #include "clang/AST/TypeNodes.def" 836 837 llvm::errs() << "Total bytes = " << TotalBytes << "\n"; 838 839 // Implicit special member functions. 840 llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/" 841 << NumImplicitDefaultConstructors 842 << " implicit default constructors created\n"; 843 llvm::errs() << NumImplicitCopyConstructorsDeclared << "/" 844 << NumImplicitCopyConstructors 845 << " implicit copy constructors created\n"; 846 if (getLangOpts().CPlusPlus) 847 llvm::errs() << NumImplicitMoveConstructorsDeclared << "/" 848 << NumImplicitMoveConstructors 849 << " implicit move constructors created\n"; 850 llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/" 851 << NumImplicitCopyAssignmentOperators 852 << " implicit copy assignment operators created\n"; 853 if (getLangOpts().CPlusPlus) 854 llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/" 855 << NumImplicitMoveAssignmentOperators 856 << " implicit move assignment operators created\n"; 857 llvm::errs() << NumImplicitDestructorsDeclared << "/" 858 << NumImplicitDestructors 859 << " implicit destructors created\n"; 860 861 if (ExternalSource) { 862 llvm::errs() << "\n"; 863 ExternalSource->PrintStats(); 864 } 865 866 BumpAlloc.PrintStats(); 867 } 868 869 ExternCContextDecl *ASTContext::getExternCContextDecl() const { 870 if (!ExternCContext) 871 ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl()); 872 873 return ExternCContext; 874 } 875 876 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name, 877 RecordDecl::TagKind TK) const { 878 SourceLocation Loc; 879 RecordDecl *NewDecl; 880 if (getLangOpts().CPlusPlus) 881 NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, 882 Loc, &Idents.get(Name)); 883 else 884 NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc, 885 &Idents.get(Name)); 886 NewDecl->setImplicit(); 887 NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit( 888 const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default)); 889 return NewDecl; 890 } 891 892 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T, 893 StringRef Name) const { 894 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); 895 TypedefDecl *NewDecl = TypedefDecl::Create( 896 const_cast<ASTContext &>(*this), getTranslationUnitDecl(), 897 SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo); 898 NewDecl->setImplicit(); 899 return NewDecl; 900 } 901 902 TypedefDecl *ASTContext::getInt128Decl() const { 903 if (!Int128Decl) 904 Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t"); 905 return Int128Decl; 906 } 907 908 TypedefDecl *ASTContext::getUInt128Decl() const { 909 if (!UInt128Decl) 910 UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t"); 911 return UInt128Decl; 912 } 913 914 TypeDecl *ASTContext::getFloat128StubType() const { 915 assert(LangOpts.CPlusPlus && "should only be called for c++"); 916 if (!Float128StubDecl) 917 Float128StubDecl = buildImplicitRecord("__float128"); 918 919 return Float128StubDecl; 920 } 921 922 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) { 923 BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K); 924 R = CanQualType::CreateUnsafe(QualType(Ty, 0)); 925 Types.push_back(Ty); 926 } 927 928 void ASTContext::InitBuiltinTypes(const TargetInfo &Target) { 929 assert((!this->Target || this->Target == &Target) && 930 "Incorrect target reinitialization"); 931 assert(VoidTy.isNull() && "Context reinitialized?"); 932 933 this->Target = &Target; 934 935 ABI.reset(createCXXABI(Target)); 936 AddrSpaceMap = getAddressSpaceMap(Target, LangOpts); 937 AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts); 938 939 // C99 6.2.5p19. 940 InitBuiltinType(VoidTy, BuiltinType::Void); 941 942 // C99 6.2.5p2. 943 InitBuiltinType(BoolTy, BuiltinType::Bool); 944 // C99 6.2.5p3. 945 if (LangOpts.CharIsSigned) 946 InitBuiltinType(CharTy, BuiltinType::Char_S); 947 else 948 InitBuiltinType(CharTy, BuiltinType::Char_U); 949 // C99 6.2.5p4. 950 InitBuiltinType(SignedCharTy, BuiltinType::SChar); 951 InitBuiltinType(ShortTy, BuiltinType::Short); 952 InitBuiltinType(IntTy, BuiltinType::Int); 953 InitBuiltinType(LongTy, BuiltinType::Long); 954 InitBuiltinType(LongLongTy, BuiltinType::LongLong); 955 956 // C99 6.2.5p6. 957 InitBuiltinType(UnsignedCharTy, BuiltinType::UChar); 958 InitBuiltinType(UnsignedShortTy, BuiltinType::UShort); 959 InitBuiltinType(UnsignedIntTy, BuiltinType::UInt); 960 InitBuiltinType(UnsignedLongTy, BuiltinType::ULong); 961 InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong); 962 963 // C99 6.2.5p10. 964 InitBuiltinType(FloatTy, BuiltinType::Float); 965 InitBuiltinType(DoubleTy, BuiltinType::Double); 966 InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble); 967 968 // GNU extension, 128-bit integers. 969 InitBuiltinType(Int128Ty, BuiltinType::Int128); 970 InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128); 971 972 // C++ 3.9.1p5 973 if (TargetInfo::isTypeSigned(Target.getWCharType())) 974 InitBuiltinType(WCharTy, BuiltinType::WChar_S); 975 else // -fshort-wchar makes wchar_t be unsigned. 976 InitBuiltinType(WCharTy, BuiltinType::WChar_U); 977 if (LangOpts.CPlusPlus && LangOpts.WChar) 978 WideCharTy = WCharTy; 979 else { 980 // C99 (or C++ using -fno-wchar). 981 WideCharTy = getFromTargetType(Target.getWCharType()); 982 } 983 984 WIntTy = getFromTargetType(Target.getWIntType()); 985 986 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ 987 InitBuiltinType(Char16Ty, BuiltinType::Char16); 988 else // C99 989 Char16Ty = getFromTargetType(Target.getChar16Type()); 990 991 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ 992 InitBuiltinType(Char32Ty, BuiltinType::Char32); 993 else // C99 994 Char32Ty = getFromTargetType(Target.getChar32Type()); 995 996 // Placeholder type for type-dependent expressions whose type is 997 // completely unknown. No code should ever check a type against 998 // DependentTy and users should never see it; however, it is here to 999 // help diagnose failures to properly check for type-dependent 1000 // expressions. 1001 InitBuiltinType(DependentTy, BuiltinType::Dependent); 1002 1003 // Placeholder type for functions. 1004 InitBuiltinType(OverloadTy, BuiltinType::Overload); 1005 1006 // Placeholder type for bound members. 1007 InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember); 1008 1009 // Placeholder type for pseudo-objects. 1010 InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject); 1011 1012 // "any" type; useful for debugger-like clients. 1013 InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny); 1014 1015 // Placeholder type for unbridged ARC casts. 1016 InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast); 1017 1018 // Placeholder type for builtin functions. 1019 InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn); 1020 1021 // C99 6.2.5p11. 1022 FloatComplexTy = getComplexType(FloatTy); 1023 DoubleComplexTy = getComplexType(DoubleTy); 1024 LongDoubleComplexTy = getComplexType(LongDoubleTy); 1025 1026 // Builtin types for 'id', 'Class', and 'SEL'. 1027 InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId); 1028 InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass); 1029 InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel); 1030 1031 if (LangOpts.OpenCL) { 1032 InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d); 1033 InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray); 1034 InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer); 1035 InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d); 1036 InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray); 1037 InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d); 1038 1039 InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler); 1040 InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent); 1041 } 1042 1043 // Builtin type for __objc_yes and __objc_no 1044 ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ? 1045 SignedCharTy : BoolTy); 1046 1047 ObjCConstantStringType = QualType(); 1048 1049 ObjCSuperType = QualType(); 1050 1051 // void * type 1052 VoidPtrTy = getPointerType(VoidTy); 1053 1054 // nullptr type (C++0x 2.14.7) 1055 InitBuiltinType(NullPtrTy, BuiltinType::NullPtr); 1056 1057 // half type (OpenCL 6.1.1.1) / ARM NEON __fp16 1058 InitBuiltinType(HalfTy, BuiltinType::Half); 1059 1060 // Builtin type used to help define __builtin_va_list. 1061 VaListTagTy = QualType(); 1062 } 1063 1064 DiagnosticsEngine &ASTContext::getDiagnostics() const { 1065 return SourceMgr.getDiagnostics(); 1066 } 1067 1068 AttrVec& ASTContext::getDeclAttrs(const Decl *D) { 1069 AttrVec *&Result = DeclAttrs[D]; 1070 if (!Result) { 1071 void *Mem = Allocate(sizeof(AttrVec)); 1072 Result = new (Mem) AttrVec; 1073 } 1074 1075 return *Result; 1076 } 1077 1078 /// \brief Erase the attributes corresponding to the given declaration. 1079 void ASTContext::eraseDeclAttrs(const Decl *D) { 1080 llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D); 1081 if (Pos != DeclAttrs.end()) { 1082 Pos->second->~AttrVec(); 1083 DeclAttrs.erase(Pos); 1084 } 1085 } 1086 1087 // FIXME: Remove ? 1088 MemberSpecializationInfo * 1089 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) { 1090 assert(Var->isStaticDataMember() && "Not a static data member"); 1091 return getTemplateOrSpecializationInfo(Var) 1092 .dyn_cast<MemberSpecializationInfo *>(); 1093 } 1094 1095 ASTContext::TemplateOrSpecializationInfo 1096 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) { 1097 llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos = 1098 TemplateOrInstantiation.find(Var); 1099 if (Pos == TemplateOrInstantiation.end()) 1100 return TemplateOrSpecializationInfo(); 1101 1102 return Pos->second; 1103 } 1104 1105 void 1106 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, 1107 TemplateSpecializationKind TSK, 1108 SourceLocation PointOfInstantiation) { 1109 assert(Inst->isStaticDataMember() && "Not a static data member"); 1110 assert(Tmpl->isStaticDataMember() && "Not a static data member"); 1111 setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo( 1112 Tmpl, TSK, PointOfInstantiation)); 1113 } 1114 1115 void 1116 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst, 1117 TemplateOrSpecializationInfo TSI) { 1118 assert(!TemplateOrInstantiation[Inst] && 1119 "Already noted what the variable was instantiated from"); 1120 TemplateOrInstantiation[Inst] = TSI; 1121 } 1122 1123 FunctionDecl *ASTContext::getClassScopeSpecializationPattern( 1124 const FunctionDecl *FD){ 1125 assert(FD && "Specialization is 0"); 1126 llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos 1127 = ClassScopeSpecializationPattern.find(FD); 1128 if (Pos == ClassScopeSpecializationPattern.end()) 1129 return nullptr; 1130 1131 return Pos->second; 1132 } 1133 1134 void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD, 1135 FunctionDecl *Pattern) { 1136 assert(FD && "Specialization is 0"); 1137 assert(Pattern && "Class scope specialization pattern is 0"); 1138 ClassScopeSpecializationPattern[FD] = Pattern; 1139 } 1140 1141 NamedDecl * 1142 ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) { 1143 llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos 1144 = InstantiatedFromUsingDecl.find(UUD); 1145 if (Pos == InstantiatedFromUsingDecl.end()) 1146 return nullptr; 1147 1148 return Pos->second; 1149 } 1150 1151 void 1152 ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) { 1153 assert((isa<UsingDecl>(Pattern) || 1154 isa<UnresolvedUsingValueDecl>(Pattern) || 1155 isa<UnresolvedUsingTypenameDecl>(Pattern)) && 1156 "pattern decl is not a using decl"); 1157 assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists"); 1158 InstantiatedFromUsingDecl[Inst] = Pattern; 1159 } 1160 1161 UsingShadowDecl * 1162 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) { 1163 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos 1164 = InstantiatedFromUsingShadowDecl.find(Inst); 1165 if (Pos == InstantiatedFromUsingShadowDecl.end()) 1166 return nullptr; 1167 1168 return Pos->second; 1169 } 1170 1171 void 1172 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst, 1173 UsingShadowDecl *Pattern) { 1174 assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists"); 1175 InstantiatedFromUsingShadowDecl[Inst] = Pattern; 1176 } 1177 1178 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) { 1179 llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos 1180 = InstantiatedFromUnnamedFieldDecl.find(Field); 1181 if (Pos == InstantiatedFromUnnamedFieldDecl.end()) 1182 return nullptr; 1183 1184 return Pos->second; 1185 } 1186 1187 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, 1188 FieldDecl *Tmpl) { 1189 assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed"); 1190 assert(!Tmpl->getDeclName() && "Template field decl is not unnamed"); 1191 assert(!InstantiatedFromUnnamedFieldDecl[Inst] && 1192 "Already noted what unnamed field was instantiated from"); 1193 1194 InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl; 1195 } 1196 1197 ASTContext::overridden_cxx_method_iterator 1198 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const { 1199 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos 1200 = OverriddenMethods.find(Method->getCanonicalDecl()); 1201 if (Pos == OverriddenMethods.end()) 1202 return nullptr; 1203 1204 return Pos->second.begin(); 1205 } 1206 1207 ASTContext::overridden_cxx_method_iterator 1208 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const { 1209 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos 1210 = OverriddenMethods.find(Method->getCanonicalDecl()); 1211 if (Pos == OverriddenMethods.end()) 1212 return nullptr; 1213 1214 return Pos->second.end(); 1215 } 1216 1217 unsigned 1218 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const { 1219 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos 1220 = OverriddenMethods.find(Method->getCanonicalDecl()); 1221 if (Pos == OverriddenMethods.end()) 1222 return 0; 1223 1224 return Pos->second.size(); 1225 } 1226 1227 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method, 1228 const CXXMethodDecl *Overridden) { 1229 assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl()); 1230 OverriddenMethods[Method].push_back(Overridden); 1231 } 1232 1233 void ASTContext::getOverriddenMethods( 1234 const NamedDecl *D, 1235 SmallVectorImpl<const NamedDecl *> &Overridden) const { 1236 assert(D); 1237 1238 if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) { 1239 Overridden.append(overridden_methods_begin(CXXMethod), 1240 overridden_methods_end(CXXMethod)); 1241 return; 1242 } 1243 1244 const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D); 1245 if (!Method) 1246 return; 1247 1248 SmallVector<const ObjCMethodDecl *, 8> OverDecls; 1249 Method->getOverriddenMethods(OverDecls); 1250 Overridden.append(OverDecls.begin(), OverDecls.end()); 1251 } 1252 1253 void ASTContext::addedLocalImportDecl(ImportDecl *Import) { 1254 assert(!Import->NextLocalImport && "Import declaration already in the chain"); 1255 assert(!Import->isFromASTFile() && "Non-local import declaration"); 1256 if (!FirstLocalImport) { 1257 FirstLocalImport = Import; 1258 LastLocalImport = Import; 1259 return; 1260 } 1261 1262 LastLocalImport->NextLocalImport = Import; 1263 LastLocalImport = Import; 1264 } 1265 1266 //===----------------------------------------------------------------------===// 1267 // Type Sizing and Analysis 1268 //===----------------------------------------------------------------------===// 1269 1270 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified 1271 /// scalar floating point type. 1272 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const { 1273 const BuiltinType *BT = T->getAs<BuiltinType>(); 1274 assert(BT && "Not a floating point type!"); 1275 switch (BT->getKind()) { 1276 default: llvm_unreachable("Not a floating point type!"); 1277 case BuiltinType::Half: return Target->getHalfFormat(); 1278 case BuiltinType::Float: return Target->getFloatFormat(); 1279 case BuiltinType::Double: return Target->getDoubleFormat(); 1280 case BuiltinType::LongDouble: return Target->getLongDoubleFormat(); 1281 } 1282 } 1283 1284 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const { 1285 unsigned Align = Target->getCharWidth(); 1286 1287 bool UseAlignAttrOnly = false; 1288 if (unsigned AlignFromAttr = D->getMaxAlignment()) { 1289 Align = AlignFromAttr; 1290 1291 // __attribute__((aligned)) can increase or decrease alignment 1292 // *except* on a struct or struct member, where it only increases 1293 // alignment unless 'packed' is also specified. 1294 // 1295 // It is an error for alignas to decrease alignment, so we can 1296 // ignore that possibility; Sema should diagnose it. 1297 if (isa<FieldDecl>(D)) { 1298 UseAlignAttrOnly = D->hasAttr<PackedAttr>() || 1299 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); 1300 } else { 1301 UseAlignAttrOnly = true; 1302 } 1303 } 1304 else if (isa<FieldDecl>(D)) 1305 UseAlignAttrOnly = 1306 D->hasAttr<PackedAttr>() || 1307 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); 1308 1309 // If we're using the align attribute only, just ignore everything 1310 // else about the declaration and its type. 1311 if (UseAlignAttrOnly) { 1312 // do nothing 1313 1314 } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) { 1315 QualType T = VD->getType(); 1316 if (const ReferenceType *RT = T->getAs<ReferenceType>()) { 1317 if (ForAlignof) 1318 T = RT->getPointeeType(); 1319 else 1320 T = getPointerType(RT->getPointeeType()); 1321 } 1322 QualType BaseT = getBaseElementType(T); 1323 if (!BaseT->isIncompleteType() && !T->isFunctionType()) { 1324 // Adjust alignments of declarations with array type by the 1325 // large-array alignment on the target. 1326 if (const ArrayType *arrayType = getAsArrayType(T)) { 1327 unsigned MinWidth = Target->getLargeArrayMinWidth(); 1328 if (!ForAlignof && MinWidth) { 1329 if (isa<VariableArrayType>(arrayType)) 1330 Align = std::max(Align, Target->getLargeArrayAlign()); 1331 else if (isa<ConstantArrayType>(arrayType) && 1332 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType))) 1333 Align = std::max(Align, Target->getLargeArrayAlign()); 1334 } 1335 } 1336 Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr())); 1337 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1338 if (VD->hasGlobalStorage()) 1339 Align = std::max(Align, getTargetInfo().getMinGlobalAlign()); 1340 } 1341 } 1342 1343 // Fields can be subject to extra alignment constraints, like if 1344 // the field is packed, the struct is packed, or the struct has a 1345 // a max-field-alignment constraint (#pragma pack). So calculate 1346 // the actual alignment of the field within the struct, and then 1347 // (as we're expected to) constrain that by the alignment of the type. 1348 if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) { 1349 const RecordDecl *Parent = Field->getParent(); 1350 // We can only produce a sensible answer if the record is valid. 1351 if (!Parent->isInvalidDecl()) { 1352 const ASTRecordLayout &Layout = getASTRecordLayout(Parent); 1353 1354 // Start with the record's overall alignment. 1355 unsigned FieldAlign = toBits(Layout.getAlignment()); 1356 1357 // Use the GCD of that and the offset within the record. 1358 uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex()); 1359 if (Offset > 0) { 1360 // Alignment is always a power of 2, so the GCD will be a power of 2, 1361 // which means we get to do this crazy thing instead of Euclid's. 1362 uint64_t LowBitOfOffset = Offset & (~Offset + 1); 1363 if (LowBitOfOffset < FieldAlign) 1364 FieldAlign = static_cast<unsigned>(LowBitOfOffset); 1365 } 1366 1367 Align = std::min(Align, FieldAlign); 1368 } 1369 } 1370 } 1371 1372 return toCharUnitsFromBits(Align); 1373 } 1374 1375 // getTypeInfoDataSizeInChars - Return the size of a type, in 1376 // chars. If the type is a record, its data size is returned. This is 1377 // the size of the memcpy that's performed when assigning this type 1378 // using a trivial copy/move assignment operator. 1379 std::pair<CharUnits, CharUnits> 1380 ASTContext::getTypeInfoDataSizeInChars(QualType T) const { 1381 std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T); 1382 1383 // In C++, objects can sometimes be allocated into the tail padding 1384 // of a base-class subobject. We decide whether that's possible 1385 // during class layout, so here we can just trust the layout results. 1386 if (getLangOpts().CPlusPlus) { 1387 if (const RecordType *RT = T->getAs<RecordType>()) { 1388 const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl()); 1389 sizeAndAlign.first = layout.getDataSize(); 1390 } 1391 } 1392 1393 return sizeAndAlign; 1394 } 1395 1396 /// getConstantArrayInfoInChars - Performing the computation in CharUnits 1397 /// instead of in bits prevents overflowing the uint64_t for some large arrays. 1398 std::pair<CharUnits, CharUnits> 1399 static getConstantArrayInfoInChars(const ASTContext &Context, 1400 const ConstantArrayType *CAT) { 1401 std::pair<CharUnits, CharUnits> EltInfo = 1402 Context.getTypeInfoInChars(CAT->getElementType()); 1403 uint64_t Size = CAT->getSize().getZExtValue(); 1404 assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <= 1405 (uint64_t)(-1)/Size) && 1406 "Overflow in array type char size evaluation"); 1407 uint64_t Width = EltInfo.first.getQuantity() * Size; 1408 unsigned Align = EltInfo.second.getQuantity(); 1409 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() || 1410 Context.getTargetInfo().getPointerWidth(0) == 64) 1411 Width = llvm::RoundUpToAlignment(Width, Align); 1412 return std::make_pair(CharUnits::fromQuantity(Width), 1413 CharUnits::fromQuantity(Align)); 1414 } 1415 1416 std::pair<CharUnits, CharUnits> 1417 ASTContext::getTypeInfoInChars(const Type *T) const { 1418 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T)) 1419 return getConstantArrayInfoInChars(*this, CAT); 1420 TypeInfo Info = getTypeInfo(T); 1421 return std::make_pair(toCharUnitsFromBits(Info.Width), 1422 toCharUnitsFromBits(Info.Align)); 1423 } 1424 1425 std::pair<CharUnits, CharUnits> 1426 ASTContext::getTypeInfoInChars(QualType T) const { 1427 return getTypeInfoInChars(T.getTypePtr()); 1428 } 1429 1430 bool ASTContext::isAlignmentRequired(const Type *T) const { 1431 return getTypeInfo(T).AlignIsRequired; 1432 } 1433 1434 bool ASTContext::isAlignmentRequired(QualType T) const { 1435 return isAlignmentRequired(T.getTypePtr()); 1436 } 1437 1438 TypeInfo ASTContext::getTypeInfo(const Type *T) const { 1439 TypeInfoMap::iterator I = MemoizedTypeInfo.find(T); 1440 if (I != MemoizedTypeInfo.end()) 1441 return I->second; 1442 1443 // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup. 1444 TypeInfo TI = getTypeInfoImpl(T); 1445 MemoizedTypeInfo[T] = TI; 1446 return TI; 1447 } 1448 1449 /// getTypeInfoImpl - Return the size of the specified type, in bits. This 1450 /// method does not work on incomplete types. 1451 /// 1452 /// FIXME: Pointers into different addr spaces could have different sizes and 1453 /// alignment requirements: getPointerInfo should take an AddrSpace, this 1454 /// should take a QualType, &c. 1455 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const { 1456 uint64_t Width = 0; 1457 unsigned Align = 8; 1458 bool AlignIsRequired = false; 1459 switch (T->getTypeClass()) { 1460 #define TYPE(Class, Base) 1461 #define ABSTRACT_TYPE(Class, Base) 1462 #define NON_CANONICAL_TYPE(Class, Base) 1463 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1464 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \ 1465 case Type::Class: \ 1466 assert(!T->isDependentType() && "should not see dependent types here"); \ 1467 return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr()); 1468 #include "clang/AST/TypeNodes.def" 1469 llvm_unreachable("Should not see dependent types"); 1470 1471 case Type::FunctionNoProto: 1472 case Type::FunctionProto: 1473 // GCC extension: alignof(function) = 32 bits 1474 Width = 0; 1475 Align = 32; 1476 break; 1477 1478 case Type::IncompleteArray: 1479 case Type::VariableArray: 1480 Width = 0; 1481 Align = getTypeAlign(cast<ArrayType>(T)->getElementType()); 1482 break; 1483 1484 case Type::ConstantArray: { 1485 const ConstantArrayType *CAT = cast<ConstantArrayType>(T); 1486 1487 TypeInfo EltInfo = getTypeInfo(CAT->getElementType()); 1488 uint64_t Size = CAT->getSize().getZExtValue(); 1489 assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) && 1490 "Overflow in array type bit size evaluation"); 1491 Width = EltInfo.Width * Size; 1492 Align = EltInfo.Align; 1493 if (!getTargetInfo().getCXXABI().isMicrosoft() || 1494 getTargetInfo().getPointerWidth(0) == 64) 1495 Width = llvm::RoundUpToAlignment(Width, Align); 1496 break; 1497 } 1498 case Type::ExtVector: 1499 case Type::Vector: { 1500 const VectorType *VT = cast<VectorType>(T); 1501 TypeInfo EltInfo = getTypeInfo(VT->getElementType()); 1502 Width = EltInfo.Width * VT->getNumElements(); 1503 Align = Width; 1504 // If the alignment is not a power of 2, round up to the next power of 2. 1505 // This happens for non-power-of-2 length vectors. 1506 if (Align & (Align-1)) { 1507 Align = llvm::NextPowerOf2(Align); 1508 Width = llvm::RoundUpToAlignment(Width, Align); 1509 } 1510 // Adjust the alignment based on the target max. 1511 uint64_t TargetVectorAlign = Target->getMaxVectorAlign(); 1512 if (TargetVectorAlign && TargetVectorAlign < Align) 1513 Align = TargetVectorAlign; 1514 break; 1515 } 1516 1517 case Type::Builtin: 1518 switch (cast<BuiltinType>(T)->getKind()) { 1519 default: llvm_unreachable("Unknown builtin type!"); 1520 case BuiltinType::Void: 1521 // GCC extension: alignof(void) = 8 bits. 1522 Width = 0; 1523 Align = 8; 1524 break; 1525 1526 case BuiltinType::Bool: 1527 Width = Target->getBoolWidth(); 1528 Align = Target->getBoolAlign(); 1529 break; 1530 case BuiltinType::Char_S: 1531 case BuiltinType::Char_U: 1532 case BuiltinType::UChar: 1533 case BuiltinType::SChar: 1534 Width = Target->getCharWidth(); 1535 Align = Target->getCharAlign(); 1536 break; 1537 case BuiltinType::WChar_S: 1538 case BuiltinType::WChar_U: 1539 Width = Target->getWCharWidth(); 1540 Align = Target->getWCharAlign(); 1541 break; 1542 case BuiltinType::Char16: 1543 Width = Target->getChar16Width(); 1544 Align = Target->getChar16Align(); 1545 break; 1546 case BuiltinType::Char32: 1547 Width = Target->getChar32Width(); 1548 Align = Target->getChar32Align(); 1549 break; 1550 case BuiltinType::UShort: 1551 case BuiltinType::Short: 1552 Width = Target->getShortWidth(); 1553 Align = Target->getShortAlign(); 1554 break; 1555 case BuiltinType::UInt: 1556 case BuiltinType::Int: 1557 Width = Target->getIntWidth(); 1558 Align = Target->getIntAlign(); 1559 break; 1560 case BuiltinType::ULong: 1561 case BuiltinType::Long: 1562 Width = Target->getLongWidth(); 1563 Align = Target->getLongAlign(); 1564 break; 1565 case BuiltinType::ULongLong: 1566 case BuiltinType::LongLong: 1567 Width = Target->getLongLongWidth(); 1568 Align = Target->getLongLongAlign(); 1569 break; 1570 case BuiltinType::Int128: 1571 case BuiltinType::UInt128: 1572 Width = 128; 1573 Align = 128; // int128_t is 128-bit aligned on all targets. 1574 break; 1575 case BuiltinType::Half: 1576 Width = Target->getHalfWidth(); 1577 Align = Target->getHalfAlign(); 1578 break; 1579 case BuiltinType::Float: 1580 Width = Target->getFloatWidth(); 1581 Align = Target->getFloatAlign(); 1582 break; 1583 case BuiltinType::Double: 1584 Width = Target->getDoubleWidth(); 1585 Align = Target->getDoubleAlign(); 1586 break; 1587 case BuiltinType::LongDouble: 1588 Width = Target->getLongDoubleWidth(); 1589 Align = Target->getLongDoubleAlign(); 1590 break; 1591 case BuiltinType::NullPtr: 1592 Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t) 1593 Align = Target->getPointerAlign(0); // == sizeof(void*) 1594 break; 1595 case BuiltinType::ObjCId: 1596 case BuiltinType::ObjCClass: 1597 case BuiltinType::ObjCSel: 1598 Width = Target->getPointerWidth(0); 1599 Align = Target->getPointerAlign(0); 1600 break; 1601 case BuiltinType::OCLSampler: 1602 // Samplers are modeled as integers. 1603 Width = Target->getIntWidth(); 1604 Align = Target->getIntAlign(); 1605 break; 1606 case BuiltinType::OCLEvent: 1607 case BuiltinType::OCLImage1d: 1608 case BuiltinType::OCLImage1dArray: 1609 case BuiltinType::OCLImage1dBuffer: 1610 case BuiltinType::OCLImage2d: 1611 case BuiltinType::OCLImage2dArray: 1612 case BuiltinType::OCLImage3d: 1613 // Currently these types are pointers to opaque types. 1614 Width = Target->getPointerWidth(0); 1615 Align = Target->getPointerAlign(0); 1616 break; 1617 } 1618 break; 1619 case Type::ObjCObjectPointer: 1620 Width = Target->getPointerWidth(0); 1621 Align = Target->getPointerAlign(0); 1622 break; 1623 case Type::BlockPointer: { 1624 unsigned AS = getTargetAddressSpace( 1625 cast<BlockPointerType>(T)->getPointeeType()); 1626 Width = Target->getPointerWidth(AS); 1627 Align = Target->getPointerAlign(AS); 1628 break; 1629 } 1630 case Type::LValueReference: 1631 case Type::RValueReference: { 1632 // alignof and sizeof should never enter this code path here, so we go 1633 // the pointer route. 1634 unsigned AS = getTargetAddressSpace( 1635 cast<ReferenceType>(T)->getPointeeType()); 1636 Width = Target->getPointerWidth(AS); 1637 Align = Target->getPointerAlign(AS); 1638 break; 1639 } 1640 case Type::Pointer: { 1641 unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType()); 1642 Width = Target->getPointerWidth(AS); 1643 Align = Target->getPointerAlign(AS); 1644 break; 1645 } 1646 case Type::MemberPointer: { 1647 const MemberPointerType *MPT = cast<MemberPointerType>(T); 1648 std::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT); 1649 break; 1650 } 1651 case Type::Complex: { 1652 // Complex types have the same alignment as their elements, but twice the 1653 // size. 1654 TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType()); 1655 Width = EltInfo.Width * 2; 1656 Align = EltInfo.Align; 1657 break; 1658 } 1659 case Type::ObjCObject: 1660 return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr()); 1661 case Type::Adjusted: 1662 case Type::Decayed: 1663 return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr()); 1664 case Type::ObjCInterface: { 1665 const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T); 1666 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); 1667 Width = toBits(Layout.getSize()); 1668 Align = toBits(Layout.getAlignment()); 1669 break; 1670 } 1671 case Type::Record: 1672 case Type::Enum: { 1673 const TagType *TT = cast<TagType>(T); 1674 1675 if (TT->getDecl()->isInvalidDecl()) { 1676 Width = 8; 1677 Align = 8; 1678 break; 1679 } 1680 1681 if (const EnumType *ET = dyn_cast<EnumType>(TT)) { 1682 const EnumDecl *ED = ET->getDecl(); 1683 TypeInfo Info = 1684 getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType()); 1685 if (unsigned AttrAlign = ED->getMaxAlignment()) { 1686 Info.Align = AttrAlign; 1687 Info.AlignIsRequired = true; 1688 } 1689 return Info; 1690 } 1691 1692 const RecordType *RT = cast<RecordType>(TT); 1693 const RecordDecl *RD = RT->getDecl(); 1694 const ASTRecordLayout &Layout = getASTRecordLayout(RD); 1695 Width = toBits(Layout.getSize()); 1696 Align = toBits(Layout.getAlignment()); 1697 AlignIsRequired = RD->hasAttr<AlignedAttr>(); 1698 break; 1699 } 1700 1701 case Type::SubstTemplateTypeParm: 1702 return getTypeInfo(cast<SubstTemplateTypeParmType>(T)-> 1703 getReplacementType().getTypePtr()); 1704 1705 case Type::Auto: { 1706 const AutoType *A = cast<AutoType>(T); 1707 assert(!A->getDeducedType().isNull() && 1708 "cannot request the size of an undeduced or dependent auto type"); 1709 return getTypeInfo(A->getDeducedType().getTypePtr()); 1710 } 1711 1712 case Type::Paren: 1713 return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr()); 1714 1715 case Type::Typedef: { 1716 const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl(); 1717 TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr()); 1718 // If the typedef has an aligned attribute on it, it overrides any computed 1719 // alignment we have. This violates the GCC documentation (which says that 1720 // attribute(aligned) can only round up) but matches its implementation. 1721 if (unsigned AttrAlign = Typedef->getMaxAlignment()) { 1722 Align = AttrAlign; 1723 AlignIsRequired = true; 1724 } else { 1725 Align = Info.Align; 1726 AlignIsRequired = Info.AlignIsRequired; 1727 } 1728 Width = Info.Width; 1729 break; 1730 } 1731 1732 case Type::Elaborated: 1733 return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr()); 1734 1735 case Type::Attributed: 1736 return getTypeInfo( 1737 cast<AttributedType>(T)->getEquivalentType().getTypePtr()); 1738 1739 case Type::Atomic: { 1740 // Start with the base type information. 1741 TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType()); 1742 Width = Info.Width; 1743 Align = Info.Align; 1744 1745 // If the size of the type doesn't exceed the platform's max 1746 // atomic promotion width, make the size and alignment more 1747 // favorable to atomic operations: 1748 if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) { 1749 // Round the size up to a power of 2. 1750 if (!llvm::isPowerOf2_64(Width)) 1751 Width = llvm::NextPowerOf2(Width); 1752 1753 // Set the alignment equal to the size. 1754 Align = static_cast<unsigned>(Width); 1755 } 1756 } 1757 1758 } 1759 1760 assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2"); 1761 return TypeInfo(Width, Align, AlignIsRequired); 1762 } 1763 1764 /// toCharUnitsFromBits - Convert a size in bits to a size in characters. 1765 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const { 1766 return CharUnits::fromQuantity(BitSize / getCharWidth()); 1767 } 1768 1769 /// toBits - Convert a size in characters to a size in characters. 1770 int64_t ASTContext::toBits(CharUnits CharSize) const { 1771 return CharSize.getQuantity() * getCharWidth(); 1772 } 1773 1774 /// getTypeSizeInChars - Return the size of the specified type, in characters. 1775 /// This method does not work on incomplete types. 1776 CharUnits ASTContext::getTypeSizeInChars(QualType T) const { 1777 return getTypeInfoInChars(T).first; 1778 } 1779 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const { 1780 return getTypeInfoInChars(T).first; 1781 } 1782 1783 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in 1784 /// characters. This method does not work on incomplete types. 1785 CharUnits ASTContext::getTypeAlignInChars(QualType T) const { 1786 return toCharUnitsFromBits(getTypeAlign(T)); 1787 } 1788 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const { 1789 return toCharUnitsFromBits(getTypeAlign(T)); 1790 } 1791 1792 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified 1793 /// type for the current target in bits. This can be different than the ABI 1794 /// alignment in cases where it is beneficial for performance to overalign 1795 /// a data type. 1796 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const { 1797 TypeInfo TI = getTypeInfo(T); 1798 unsigned ABIAlign = TI.Align; 1799 1800 if (Target->getTriple().getArch() == llvm::Triple::xcore) 1801 return ABIAlign; // Never overalign on XCore. 1802 1803 // Double and long long should be naturally aligned if possible. 1804 T = T->getBaseElementTypeUnsafe(); 1805 if (const ComplexType *CT = T->getAs<ComplexType>()) 1806 T = CT->getElementType().getTypePtr(); 1807 if (const EnumType *ET = T->getAs<EnumType>()) 1808 T = ET->getDecl()->getIntegerType().getTypePtr(); 1809 if (T->isSpecificBuiltinType(BuiltinType::Double) || 1810 T->isSpecificBuiltinType(BuiltinType::LongLong) || 1811 T->isSpecificBuiltinType(BuiltinType::ULongLong)) 1812 // Don't increase the alignment if an alignment attribute was specified on a 1813 // typedef declaration. 1814 if (!TI.AlignIsRequired) 1815 return std::max(ABIAlign, (unsigned)getTypeSize(T)); 1816 1817 return ABIAlign; 1818 } 1819 1820 /// getAlignOfGlobalVar - Return the alignment in bits that should be given 1821 /// to a global variable of the specified type. 1822 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const { 1823 return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign()); 1824 } 1825 1826 /// getAlignOfGlobalVarInChars - Return the alignment in characters that 1827 /// should be given to a global variable of the specified type. 1828 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const { 1829 return toCharUnitsFromBits(getAlignOfGlobalVar(T)); 1830 } 1831 1832 /// DeepCollectObjCIvars - 1833 /// This routine first collects all declared, but not synthesized, ivars in 1834 /// super class and then collects all ivars, including those synthesized for 1835 /// current class. This routine is used for implementation of current class 1836 /// when all ivars, declared and synthesized are known. 1837 /// 1838 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, 1839 bool leafClass, 1840 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const { 1841 if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass()) 1842 DeepCollectObjCIvars(SuperClass, false, Ivars); 1843 if (!leafClass) { 1844 for (const auto *I : OI->ivars()) 1845 Ivars.push_back(I); 1846 } else { 1847 ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI); 1848 for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv; 1849 Iv= Iv->getNextIvar()) 1850 Ivars.push_back(Iv); 1851 } 1852 } 1853 1854 /// CollectInheritedProtocols - Collect all protocols in current class and 1855 /// those inherited by it. 1856 void ASTContext::CollectInheritedProtocols(const Decl *CDecl, 1857 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) { 1858 if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) { 1859 // We can use protocol_iterator here instead of 1860 // all_referenced_protocol_iterator since we are walking all categories. 1861 for (auto *Proto : OI->all_referenced_protocols()) { 1862 Protocols.insert(Proto->getCanonicalDecl()); 1863 for (auto *P : Proto->protocols()) { 1864 Protocols.insert(P->getCanonicalDecl()); 1865 CollectInheritedProtocols(P, Protocols); 1866 } 1867 } 1868 1869 // Categories of this Interface. 1870 for (const auto *Cat : OI->visible_categories()) 1871 CollectInheritedProtocols(Cat, Protocols); 1872 1873 if (ObjCInterfaceDecl *SD = OI->getSuperClass()) 1874 while (SD) { 1875 CollectInheritedProtocols(SD, Protocols); 1876 SD = SD->getSuperClass(); 1877 } 1878 } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) { 1879 for (auto *Proto : OC->protocols()) { 1880 Protocols.insert(Proto->getCanonicalDecl()); 1881 for (const auto *P : Proto->protocols()) 1882 CollectInheritedProtocols(P, Protocols); 1883 } 1884 } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) { 1885 for (auto *Proto : OP->protocols()) { 1886 Protocols.insert(Proto->getCanonicalDecl()); 1887 for (const auto *P : Proto->protocols()) 1888 CollectInheritedProtocols(P, Protocols); 1889 } 1890 } 1891 } 1892 1893 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const { 1894 unsigned count = 0; 1895 // Count ivars declared in class extension. 1896 for (const auto *Ext : OI->known_extensions()) 1897 count += Ext->ivar_size(); 1898 1899 // Count ivar defined in this class's implementation. This 1900 // includes synthesized ivars. 1901 if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) 1902 count += ImplDecl->ivar_size(); 1903 1904 return count; 1905 } 1906 1907 bool ASTContext::isSentinelNullExpr(const Expr *E) { 1908 if (!E) 1909 return false; 1910 1911 // nullptr_t is always treated as null. 1912 if (E->getType()->isNullPtrType()) return true; 1913 1914 if (E->getType()->isAnyPointerType() && 1915 E->IgnoreParenCasts()->isNullPointerConstant(*this, 1916 Expr::NPC_ValueDependentIsNull)) 1917 return true; 1918 1919 // Unfortunately, __null has type 'int'. 1920 if (isa<GNUNullExpr>(E)) return true; 1921 1922 return false; 1923 } 1924 1925 /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists. 1926 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) { 1927 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator 1928 I = ObjCImpls.find(D); 1929 if (I != ObjCImpls.end()) 1930 return cast<ObjCImplementationDecl>(I->second); 1931 return nullptr; 1932 } 1933 /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists. 1934 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) { 1935 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator 1936 I = ObjCImpls.find(D); 1937 if (I != ObjCImpls.end()) 1938 return cast<ObjCCategoryImplDecl>(I->second); 1939 return nullptr; 1940 } 1941 1942 /// \brief Set the implementation of ObjCInterfaceDecl. 1943 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD, 1944 ObjCImplementationDecl *ImplD) { 1945 assert(IFaceD && ImplD && "Passed null params"); 1946 ObjCImpls[IFaceD] = ImplD; 1947 } 1948 /// \brief Set the implementation of ObjCCategoryDecl. 1949 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD, 1950 ObjCCategoryImplDecl *ImplD) { 1951 assert(CatD && ImplD && "Passed null params"); 1952 ObjCImpls[CatD] = ImplD; 1953 } 1954 1955 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface( 1956 const NamedDecl *ND) const { 1957 if (const ObjCInterfaceDecl *ID = 1958 dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext())) 1959 return ID; 1960 if (const ObjCCategoryDecl *CD = 1961 dyn_cast<ObjCCategoryDecl>(ND->getDeclContext())) 1962 return CD->getClassInterface(); 1963 if (const ObjCImplDecl *IMD = 1964 dyn_cast<ObjCImplDecl>(ND->getDeclContext())) 1965 return IMD->getClassInterface(); 1966 1967 return nullptr; 1968 } 1969 1970 /// \brief Get the copy initialization expression of VarDecl,or NULL if 1971 /// none exists. 1972 Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) { 1973 assert(VD && "Passed null params"); 1974 assert(VD->hasAttr<BlocksAttr>() && 1975 "getBlockVarCopyInits - not __block var"); 1976 llvm::DenseMap<const VarDecl*, Expr*>::iterator 1977 I = BlockVarCopyInits.find(VD); 1978 return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : nullptr; 1979 } 1980 1981 /// \brief Set the copy inialization expression of a block var decl. 1982 void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) { 1983 assert(VD && Init && "Passed null params"); 1984 assert(VD->hasAttr<BlocksAttr>() && 1985 "setBlockVarCopyInits - not __block var"); 1986 BlockVarCopyInits[VD] = Init; 1987 } 1988 1989 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T, 1990 unsigned DataSize) const { 1991 if (!DataSize) 1992 DataSize = TypeLoc::getFullDataSizeForType(T); 1993 else 1994 assert(DataSize == TypeLoc::getFullDataSizeForType(T) && 1995 "incorrect data size provided to CreateTypeSourceInfo!"); 1996 1997 TypeSourceInfo *TInfo = 1998 (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8); 1999 new (TInfo) TypeSourceInfo(T); 2000 return TInfo; 2001 } 2002 2003 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T, 2004 SourceLocation L) const { 2005 TypeSourceInfo *DI = CreateTypeSourceInfo(T); 2006 DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L); 2007 return DI; 2008 } 2009 2010 const ASTRecordLayout & 2011 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const { 2012 return getObjCLayout(D, nullptr); 2013 } 2014 2015 const ASTRecordLayout & 2016 ASTContext::getASTObjCImplementationLayout( 2017 const ObjCImplementationDecl *D) const { 2018 return getObjCLayout(D->getClassInterface(), D); 2019 } 2020 2021 //===----------------------------------------------------------------------===// 2022 // Type creation/memoization methods 2023 //===----------------------------------------------------------------------===// 2024 2025 QualType 2026 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const { 2027 unsigned fastQuals = quals.getFastQualifiers(); 2028 quals.removeFastQualifiers(); 2029 2030 // Check if we've already instantiated this type. 2031 llvm::FoldingSetNodeID ID; 2032 ExtQuals::Profile(ID, baseType, quals); 2033 void *insertPos = nullptr; 2034 if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) { 2035 assert(eq->getQualifiers() == quals); 2036 return QualType(eq, fastQuals); 2037 } 2038 2039 // If the base type is not canonical, make the appropriate canonical type. 2040 QualType canon; 2041 if (!baseType->isCanonicalUnqualified()) { 2042 SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split(); 2043 canonSplit.Quals.addConsistentQualifiers(quals); 2044 canon = getExtQualType(canonSplit.Ty, canonSplit.Quals); 2045 2046 // Re-find the insert position. 2047 (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos); 2048 } 2049 2050 ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals); 2051 ExtQualNodes.InsertNode(eq, insertPos); 2052 return QualType(eq, fastQuals); 2053 } 2054 2055 QualType 2056 ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const { 2057 QualType CanT = getCanonicalType(T); 2058 if (CanT.getAddressSpace() == AddressSpace) 2059 return T; 2060 2061 // If we are composing extended qualifiers together, merge together 2062 // into one ExtQuals node. 2063 QualifierCollector Quals; 2064 const Type *TypeNode = Quals.strip(T); 2065 2066 // If this type already has an address space specified, it cannot get 2067 // another one. 2068 assert(!Quals.hasAddressSpace() && 2069 "Type cannot be in multiple addr spaces!"); 2070 Quals.addAddressSpace(AddressSpace); 2071 2072 return getExtQualType(TypeNode, Quals); 2073 } 2074 2075 QualType ASTContext::getObjCGCQualType(QualType T, 2076 Qualifiers::GC GCAttr) const { 2077 QualType CanT = getCanonicalType(T); 2078 if (CanT.getObjCGCAttr() == GCAttr) 2079 return T; 2080 2081 if (const PointerType *ptr = T->getAs<PointerType>()) { 2082 QualType Pointee = ptr->getPointeeType(); 2083 if (Pointee->isAnyPointerType()) { 2084 QualType ResultType = getObjCGCQualType(Pointee, GCAttr); 2085 return getPointerType(ResultType); 2086 } 2087 } 2088 2089 // If we are composing extended qualifiers together, merge together 2090 // into one ExtQuals node. 2091 QualifierCollector Quals; 2092 const Type *TypeNode = Quals.strip(T); 2093 2094 // If this type already has an ObjCGC specified, it cannot get 2095 // another one. 2096 assert(!Quals.hasObjCGCAttr() && 2097 "Type cannot have multiple ObjCGCs!"); 2098 Quals.addObjCGCAttr(GCAttr); 2099 2100 return getExtQualType(TypeNode, Quals); 2101 } 2102 2103 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T, 2104 FunctionType::ExtInfo Info) { 2105 if (T->getExtInfo() == Info) 2106 return T; 2107 2108 QualType Result; 2109 if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) { 2110 Result = getFunctionNoProtoType(FNPT->getReturnType(), Info); 2111 } else { 2112 const FunctionProtoType *FPT = cast<FunctionProtoType>(T); 2113 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 2114 EPI.ExtInfo = Info; 2115 Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI); 2116 } 2117 2118 return cast<FunctionType>(Result.getTypePtr()); 2119 } 2120 2121 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD, 2122 QualType ResultType) { 2123 FD = FD->getMostRecentDecl(); 2124 while (true) { 2125 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 2126 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 2127 FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI)); 2128 if (FunctionDecl *Next = FD->getPreviousDecl()) 2129 FD = Next; 2130 else 2131 break; 2132 } 2133 if (ASTMutationListener *L = getASTMutationListener()) 2134 L->DeducedReturnType(FD, ResultType); 2135 } 2136 2137 /// Get a function type and produce the equivalent function type with the 2138 /// specified exception specification. Type sugar that can be present on a 2139 /// declaration of a function with an exception specification is permitted 2140 /// and preserved. Other type sugar (for instance, typedefs) is not. 2141 static QualType getFunctionTypeWithExceptionSpec( 2142 ASTContext &Context, QualType Orig, 2143 const FunctionProtoType::ExceptionSpecInfo &ESI) { 2144 // Might have some parens. 2145 if (auto *PT = dyn_cast<ParenType>(Orig)) 2146 return Context.getParenType( 2147 getFunctionTypeWithExceptionSpec(Context, PT->getInnerType(), ESI)); 2148 2149 // Might have a calling-convention attribute. 2150 if (auto *AT = dyn_cast<AttributedType>(Orig)) 2151 return Context.getAttributedType( 2152 AT->getAttrKind(), 2153 getFunctionTypeWithExceptionSpec(Context, AT->getModifiedType(), ESI), 2154 getFunctionTypeWithExceptionSpec(Context, AT->getEquivalentType(), 2155 ESI)); 2156 2157 // Anything else must be a function type. Rebuild it with the new exception 2158 // specification. 2159 const FunctionProtoType *Proto = cast<FunctionProtoType>(Orig); 2160 return Context.getFunctionType( 2161 Proto->getReturnType(), Proto->getParamTypes(), 2162 Proto->getExtProtoInfo().withExceptionSpec(ESI)); 2163 } 2164 2165 void ASTContext::adjustExceptionSpec( 2166 FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI, 2167 bool AsWritten) { 2168 // Update the type. 2169 QualType Updated = 2170 getFunctionTypeWithExceptionSpec(*this, FD->getType(), ESI); 2171 FD->setType(Updated); 2172 2173 if (!AsWritten) 2174 return; 2175 2176 // Update the type in the type source information too. 2177 if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) { 2178 // If the type and the type-as-written differ, we may need to update 2179 // the type-as-written too. 2180 if (TSInfo->getType() != FD->getType()) 2181 Updated = getFunctionTypeWithExceptionSpec(*this, TSInfo->getType(), ESI); 2182 2183 // FIXME: When we get proper type location information for exceptions, 2184 // we'll also have to rebuild the TypeSourceInfo. For now, we just patch 2185 // up the TypeSourceInfo; 2186 assert(TypeLoc::getFullDataSizeForType(Updated) == 2187 TypeLoc::getFullDataSizeForType(TSInfo->getType()) && 2188 "TypeLoc size mismatch from updating exception specification"); 2189 TSInfo->overrideType(Updated); 2190 } 2191 } 2192 2193 /// getComplexType - Return the uniqued reference to the type for a complex 2194 /// number with the specified element type. 2195 QualType ASTContext::getComplexType(QualType T) const { 2196 // Unique pointers, to guarantee there is only one pointer of a particular 2197 // structure. 2198 llvm::FoldingSetNodeID ID; 2199 ComplexType::Profile(ID, T); 2200 2201 void *InsertPos = nullptr; 2202 if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) 2203 return QualType(CT, 0); 2204 2205 // If the pointee type isn't canonical, this won't be a canonical type either, 2206 // so fill in the canonical type field. 2207 QualType Canonical; 2208 if (!T.isCanonical()) { 2209 Canonical = getComplexType(getCanonicalType(T)); 2210 2211 // Get the new insert position for the node we care about. 2212 ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); 2213 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2214 } 2215 ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical); 2216 Types.push_back(New); 2217 ComplexTypes.InsertNode(New, InsertPos); 2218 return QualType(New, 0); 2219 } 2220 2221 /// getPointerType - Return the uniqued reference to the type for a pointer to 2222 /// the specified type. 2223 QualType ASTContext::getPointerType(QualType T) const { 2224 // Unique pointers, to guarantee there is only one pointer of a particular 2225 // structure. 2226 llvm::FoldingSetNodeID ID; 2227 PointerType::Profile(ID, T); 2228 2229 void *InsertPos = nullptr; 2230 if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 2231 return QualType(PT, 0); 2232 2233 // If the pointee type isn't canonical, this won't be a canonical type either, 2234 // so fill in the canonical type field. 2235 QualType Canonical; 2236 if (!T.isCanonical()) { 2237 Canonical = getPointerType(getCanonicalType(T)); 2238 2239 // Get the new insert position for the node we care about. 2240 PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); 2241 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2242 } 2243 PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical); 2244 Types.push_back(New); 2245 PointerTypes.InsertNode(New, InsertPos); 2246 return QualType(New, 0); 2247 } 2248 2249 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const { 2250 llvm::FoldingSetNodeID ID; 2251 AdjustedType::Profile(ID, Orig, New); 2252 void *InsertPos = nullptr; 2253 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 2254 if (AT) 2255 return QualType(AT, 0); 2256 2257 QualType Canonical = getCanonicalType(New); 2258 2259 // Get the new insert position for the node we care about. 2260 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 2261 assert(!AT && "Shouldn't be in the map!"); 2262 2263 AT = new (*this, TypeAlignment) 2264 AdjustedType(Type::Adjusted, Orig, New, Canonical); 2265 Types.push_back(AT); 2266 AdjustedTypes.InsertNode(AT, InsertPos); 2267 return QualType(AT, 0); 2268 } 2269 2270 QualType ASTContext::getDecayedType(QualType T) const { 2271 assert((T->isArrayType() || T->isFunctionType()) && "T does not decay"); 2272 2273 QualType Decayed; 2274 2275 // C99 6.7.5.3p7: 2276 // A declaration of a parameter as "array of type" shall be 2277 // adjusted to "qualified pointer to type", where the type 2278 // qualifiers (if any) are those specified within the [ and ] of 2279 // the array type derivation. 2280 if (T->isArrayType()) 2281 Decayed = getArrayDecayedType(T); 2282 2283 // C99 6.7.5.3p8: 2284 // A declaration of a parameter as "function returning type" 2285 // shall be adjusted to "pointer to function returning type", as 2286 // in 6.3.2.1. 2287 if (T->isFunctionType()) 2288 Decayed = getPointerType(T); 2289 2290 llvm::FoldingSetNodeID ID; 2291 AdjustedType::Profile(ID, T, Decayed); 2292 void *InsertPos = nullptr; 2293 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 2294 if (AT) 2295 return QualType(AT, 0); 2296 2297 QualType Canonical = getCanonicalType(Decayed); 2298 2299 // Get the new insert position for the node we care about. 2300 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); 2301 assert(!AT && "Shouldn't be in the map!"); 2302 2303 AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical); 2304 Types.push_back(AT); 2305 AdjustedTypes.InsertNode(AT, InsertPos); 2306 return QualType(AT, 0); 2307 } 2308 2309 /// getBlockPointerType - Return the uniqued reference to the type for 2310 /// a pointer to the specified block. 2311 QualType ASTContext::getBlockPointerType(QualType T) const { 2312 assert(T->isFunctionType() && "block of function types only"); 2313 // Unique pointers, to guarantee there is only one block of a particular 2314 // structure. 2315 llvm::FoldingSetNodeID ID; 2316 BlockPointerType::Profile(ID, T); 2317 2318 void *InsertPos = nullptr; 2319 if (BlockPointerType *PT = 2320 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 2321 return QualType(PT, 0); 2322 2323 // If the block pointee type isn't canonical, this won't be a canonical 2324 // type either so fill in the canonical type field. 2325 QualType Canonical; 2326 if (!T.isCanonical()) { 2327 Canonical = getBlockPointerType(getCanonicalType(T)); 2328 2329 // Get the new insert position for the node we care about. 2330 BlockPointerType *NewIP = 2331 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos); 2332 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2333 } 2334 BlockPointerType *New 2335 = new (*this, TypeAlignment) BlockPointerType(T, Canonical); 2336 Types.push_back(New); 2337 BlockPointerTypes.InsertNode(New, InsertPos); 2338 return QualType(New, 0); 2339 } 2340 2341 /// getLValueReferenceType - Return the uniqued reference to the type for an 2342 /// lvalue reference to the specified type. 2343 QualType 2344 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const { 2345 assert(getCanonicalType(T) != OverloadTy && 2346 "Unresolved overloaded function type"); 2347 2348 // Unique pointers, to guarantee there is only one pointer of a particular 2349 // structure. 2350 llvm::FoldingSetNodeID ID; 2351 ReferenceType::Profile(ID, T, SpelledAsLValue); 2352 2353 void *InsertPos = nullptr; 2354 if (LValueReferenceType *RT = 2355 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) 2356 return QualType(RT, 0); 2357 2358 const ReferenceType *InnerRef = T->getAs<ReferenceType>(); 2359 2360 // If the referencee type isn't canonical, this won't be a canonical type 2361 // either, so fill in the canonical type field. 2362 QualType Canonical; 2363 if (!SpelledAsLValue || InnerRef || !T.isCanonical()) { 2364 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); 2365 Canonical = getLValueReferenceType(getCanonicalType(PointeeType)); 2366 2367 // Get the new insert position for the node we care about. 2368 LValueReferenceType *NewIP = 2369 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); 2370 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2371 } 2372 2373 LValueReferenceType *New 2374 = new (*this, TypeAlignment) LValueReferenceType(T, Canonical, 2375 SpelledAsLValue); 2376 Types.push_back(New); 2377 LValueReferenceTypes.InsertNode(New, InsertPos); 2378 2379 return QualType(New, 0); 2380 } 2381 2382 /// getRValueReferenceType - Return the uniqued reference to the type for an 2383 /// rvalue reference to the specified type. 2384 QualType ASTContext::getRValueReferenceType(QualType T) const { 2385 // Unique pointers, to guarantee there is only one pointer of a particular 2386 // structure. 2387 llvm::FoldingSetNodeID ID; 2388 ReferenceType::Profile(ID, T, false); 2389 2390 void *InsertPos = nullptr; 2391 if (RValueReferenceType *RT = 2392 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) 2393 return QualType(RT, 0); 2394 2395 const ReferenceType *InnerRef = T->getAs<ReferenceType>(); 2396 2397 // If the referencee type isn't canonical, this won't be a canonical type 2398 // either, so fill in the canonical type field. 2399 QualType Canonical; 2400 if (InnerRef || !T.isCanonical()) { 2401 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); 2402 Canonical = getRValueReferenceType(getCanonicalType(PointeeType)); 2403 2404 // Get the new insert position for the node we care about. 2405 RValueReferenceType *NewIP = 2406 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); 2407 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2408 } 2409 2410 RValueReferenceType *New 2411 = new (*this, TypeAlignment) RValueReferenceType(T, Canonical); 2412 Types.push_back(New); 2413 RValueReferenceTypes.InsertNode(New, InsertPos); 2414 return QualType(New, 0); 2415 } 2416 2417 /// getMemberPointerType - Return the uniqued reference to the type for a 2418 /// member pointer to the specified type, in the specified class. 2419 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const { 2420 // Unique pointers, to guarantee there is only one pointer of a particular 2421 // structure. 2422 llvm::FoldingSetNodeID ID; 2423 MemberPointerType::Profile(ID, T, Cls); 2424 2425 void *InsertPos = nullptr; 2426 if (MemberPointerType *PT = 2427 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 2428 return QualType(PT, 0); 2429 2430 // If the pointee or class type isn't canonical, this won't be a canonical 2431 // type either, so fill in the canonical type field. 2432 QualType Canonical; 2433 if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) { 2434 Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls)); 2435 2436 // Get the new insert position for the node we care about. 2437 MemberPointerType *NewIP = 2438 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos); 2439 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2440 } 2441 MemberPointerType *New 2442 = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical); 2443 Types.push_back(New); 2444 MemberPointerTypes.InsertNode(New, InsertPos); 2445 return QualType(New, 0); 2446 } 2447 2448 /// getConstantArrayType - Return the unique reference to the type for an 2449 /// array of the specified element type. 2450 QualType ASTContext::getConstantArrayType(QualType EltTy, 2451 const llvm::APInt &ArySizeIn, 2452 ArrayType::ArraySizeModifier ASM, 2453 unsigned IndexTypeQuals) const { 2454 assert((EltTy->isDependentType() || 2455 EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && 2456 "Constant array of VLAs is illegal!"); 2457 2458 // Convert the array size into a canonical width matching the pointer size for 2459 // the target. 2460 llvm::APInt ArySize(ArySizeIn); 2461 ArySize = 2462 ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy))); 2463 2464 llvm::FoldingSetNodeID ID; 2465 ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals); 2466 2467 void *InsertPos = nullptr; 2468 if (ConstantArrayType *ATP = 2469 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) 2470 return QualType(ATP, 0); 2471 2472 // If the element type isn't canonical or has qualifiers, this won't 2473 // be a canonical type either, so fill in the canonical type field. 2474 QualType Canon; 2475 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { 2476 SplitQualType canonSplit = getCanonicalType(EltTy).split(); 2477 Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, 2478 ASM, IndexTypeQuals); 2479 Canon = getQualifiedType(Canon, canonSplit.Quals); 2480 2481 // Get the new insert position for the node we care about. 2482 ConstantArrayType *NewIP = 2483 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); 2484 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2485 } 2486 2487 ConstantArrayType *New = new(*this,TypeAlignment) 2488 ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals); 2489 ConstantArrayTypes.InsertNode(New, InsertPos); 2490 Types.push_back(New); 2491 return QualType(New, 0); 2492 } 2493 2494 /// getVariableArrayDecayedType - Turns the given type, which may be 2495 /// variably-modified, into the corresponding type with all the known 2496 /// sizes replaced with [*]. 2497 QualType ASTContext::getVariableArrayDecayedType(QualType type) const { 2498 // Vastly most common case. 2499 if (!type->isVariablyModifiedType()) return type; 2500 2501 QualType result; 2502 2503 SplitQualType split = type.getSplitDesugaredType(); 2504 const Type *ty = split.Ty; 2505 switch (ty->getTypeClass()) { 2506 #define TYPE(Class, Base) 2507 #define ABSTRACT_TYPE(Class, Base) 2508 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 2509 #include "clang/AST/TypeNodes.def" 2510 llvm_unreachable("didn't desugar past all non-canonical types?"); 2511 2512 // These types should never be variably-modified. 2513 case Type::Builtin: 2514 case Type::Complex: 2515 case Type::Vector: 2516 case Type::ExtVector: 2517 case Type::DependentSizedExtVector: 2518 case Type::ObjCObject: 2519 case Type::ObjCInterface: 2520 case Type::ObjCObjectPointer: 2521 case Type::Record: 2522 case Type::Enum: 2523 case Type::UnresolvedUsing: 2524 case Type::TypeOfExpr: 2525 case Type::TypeOf: 2526 case Type::Decltype: 2527 case Type::UnaryTransform: 2528 case Type::DependentName: 2529 case Type::InjectedClassName: 2530 case Type::TemplateSpecialization: 2531 case Type::DependentTemplateSpecialization: 2532 case Type::TemplateTypeParm: 2533 case Type::SubstTemplateTypeParmPack: 2534 case Type::Auto: 2535 case Type::PackExpansion: 2536 llvm_unreachable("type should never be variably-modified"); 2537 2538 // These types can be variably-modified but should never need to 2539 // further decay. 2540 case Type::FunctionNoProto: 2541 case Type::FunctionProto: 2542 case Type::BlockPointer: 2543 case Type::MemberPointer: 2544 return type; 2545 2546 // These types can be variably-modified. All these modifications 2547 // preserve structure except as noted by comments. 2548 // TODO: if we ever care about optimizing VLAs, there are no-op 2549 // optimizations available here. 2550 case Type::Pointer: 2551 result = getPointerType(getVariableArrayDecayedType( 2552 cast<PointerType>(ty)->getPointeeType())); 2553 break; 2554 2555 case Type::LValueReference: { 2556 const LValueReferenceType *lv = cast<LValueReferenceType>(ty); 2557 result = getLValueReferenceType( 2558 getVariableArrayDecayedType(lv->getPointeeType()), 2559 lv->isSpelledAsLValue()); 2560 break; 2561 } 2562 2563 case Type::RValueReference: { 2564 const RValueReferenceType *lv = cast<RValueReferenceType>(ty); 2565 result = getRValueReferenceType( 2566 getVariableArrayDecayedType(lv->getPointeeType())); 2567 break; 2568 } 2569 2570 case Type::Atomic: { 2571 const AtomicType *at = cast<AtomicType>(ty); 2572 result = getAtomicType(getVariableArrayDecayedType(at->getValueType())); 2573 break; 2574 } 2575 2576 case Type::ConstantArray: { 2577 const ConstantArrayType *cat = cast<ConstantArrayType>(ty); 2578 result = getConstantArrayType( 2579 getVariableArrayDecayedType(cat->getElementType()), 2580 cat->getSize(), 2581 cat->getSizeModifier(), 2582 cat->getIndexTypeCVRQualifiers()); 2583 break; 2584 } 2585 2586 case Type::DependentSizedArray: { 2587 const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty); 2588 result = getDependentSizedArrayType( 2589 getVariableArrayDecayedType(dat->getElementType()), 2590 dat->getSizeExpr(), 2591 dat->getSizeModifier(), 2592 dat->getIndexTypeCVRQualifiers(), 2593 dat->getBracketsRange()); 2594 break; 2595 } 2596 2597 // Turn incomplete types into [*] types. 2598 case Type::IncompleteArray: { 2599 const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty); 2600 result = getVariableArrayType( 2601 getVariableArrayDecayedType(iat->getElementType()), 2602 /*size*/ nullptr, 2603 ArrayType::Normal, 2604 iat->getIndexTypeCVRQualifiers(), 2605 SourceRange()); 2606 break; 2607 } 2608 2609 // Turn VLA types into [*] types. 2610 case Type::VariableArray: { 2611 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2612 result = getVariableArrayType( 2613 getVariableArrayDecayedType(vat->getElementType()), 2614 /*size*/ nullptr, 2615 ArrayType::Star, 2616 vat->getIndexTypeCVRQualifiers(), 2617 vat->getBracketsRange()); 2618 break; 2619 } 2620 } 2621 2622 // Apply the top-level qualifiers from the original. 2623 return getQualifiedType(result, split.Quals); 2624 } 2625 2626 /// getVariableArrayType - Returns a non-unique reference to the type for a 2627 /// variable array of the specified element type. 2628 QualType ASTContext::getVariableArrayType(QualType EltTy, 2629 Expr *NumElts, 2630 ArrayType::ArraySizeModifier ASM, 2631 unsigned IndexTypeQuals, 2632 SourceRange Brackets) const { 2633 // Since we don't unique expressions, it isn't possible to unique VLA's 2634 // that have an expression provided for their size. 2635 QualType Canon; 2636 2637 // Be sure to pull qualifiers off the element type. 2638 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { 2639 SplitQualType canonSplit = getCanonicalType(EltTy).split(); 2640 Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM, 2641 IndexTypeQuals, Brackets); 2642 Canon = getQualifiedType(Canon, canonSplit.Quals); 2643 } 2644 2645 VariableArrayType *New = new(*this, TypeAlignment) 2646 VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets); 2647 2648 VariableArrayTypes.push_back(New); 2649 Types.push_back(New); 2650 return QualType(New, 0); 2651 } 2652 2653 /// getDependentSizedArrayType - Returns a non-unique reference to 2654 /// the type for a dependently-sized array of the specified element 2655 /// type. 2656 QualType ASTContext::getDependentSizedArrayType(QualType elementType, 2657 Expr *numElements, 2658 ArrayType::ArraySizeModifier ASM, 2659 unsigned elementTypeQuals, 2660 SourceRange brackets) const { 2661 assert((!numElements || numElements->isTypeDependent() || 2662 numElements->isValueDependent()) && 2663 "Size must be type- or value-dependent!"); 2664 2665 // Dependently-sized array types that do not have a specified number 2666 // of elements will have their sizes deduced from a dependent 2667 // initializer. We do no canonicalization here at all, which is okay 2668 // because they can't be used in most locations. 2669 if (!numElements) { 2670 DependentSizedArrayType *newType 2671 = new (*this, TypeAlignment) 2672 DependentSizedArrayType(*this, elementType, QualType(), 2673 numElements, ASM, elementTypeQuals, 2674 brackets); 2675 Types.push_back(newType); 2676 return QualType(newType, 0); 2677 } 2678 2679 // Otherwise, we actually build a new type every time, but we 2680 // also build a canonical type. 2681 2682 SplitQualType canonElementType = getCanonicalType(elementType).split(); 2683 2684 void *insertPos = nullptr; 2685 llvm::FoldingSetNodeID ID; 2686 DependentSizedArrayType::Profile(ID, *this, 2687 QualType(canonElementType.Ty, 0), 2688 ASM, elementTypeQuals, numElements); 2689 2690 // Look for an existing type with these properties. 2691 DependentSizedArrayType *canonTy = 2692 DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos); 2693 2694 // If we don't have one, build one. 2695 if (!canonTy) { 2696 canonTy = new (*this, TypeAlignment) 2697 DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0), 2698 QualType(), numElements, ASM, elementTypeQuals, 2699 brackets); 2700 DependentSizedArrayTypes.InsertNode(canonTy, insertPos); 2701 Types.push_back(canonTy); 2702 } 2703 2704 // Apply qualifiers from the element type to the array. 2705 QualType canon = getQualifiedType(QualType(canonTy,0), 2706 canonElementType.Quals); 2707 2708 // If we didn't need extra canonicalization for the element type, 2709 // then just use that as our result. 2710 if (QualType(canonElementType.Ty, 0) == elementType) 2711 return canon; 2712 2713 // Otherwise, we need to build a type which follows the spelling 2714 // of the element type. 2715 DependentSizedArrayType *sugaredType 2716 = new (*this, TypeAlignment) 2717 DependentSizedArrayType(*this, elementType, canon, numElements, 2718 ASM, elementTypeQuals, brackets); 2719 Types.push_back(sugaredType); 2720 return QualType(sugaredType, 0); 2721 } 2722 2723 QualType ASTContext::getIncompleteArrayType(QualType elementType, 2724 ArrayType::ArraySizeModifier ASM, 2725 unsigned elementTypeQuals) const { 2726 llvm::FoldingSetNodeID ID; 2727 IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals); 2728 2729 void *insertPos = nullptr; 2730 if (IncompleteArrayType *iat = 2731 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos)) 2732 return QualType(iat, 0); 2733 2734 // If the element type isn't canonical, this won't be a canonical type 2735 // either, so fill in the canonical type field. We also have to pull 2736 // qualifiers off the element type. 2737 QualType canon; 2738 2739 if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) { 2740 SplitQualType canonSplit = getCanonicalType(elementType).split(); 2741 canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0), 2742 ASM, elementTypeQuals); 2743 canon = getQualifiedType(canon, canonSplit.Quals); 2744 2745 // Get the new insert position for the node we care about. 2746 IncompleteArrayType *existing = 2747 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos); 2748 assert(!existing && "Shouldn't be in the map!"); (void) existing; 2749 } 2750 2751 IncompleteArrayType *newType = new (*this, TypeAlignment) 2752 IncompleteArrayType(elementType, canon, ASM, elementTypeQuals); 2753 2754 IncompleteArrayTypes.InsertNode(newType, insertPos); 2755 Types.push_back(newType); 2756 return QualType(newType, 0); 2757 } 2758 2759 /// getVectorType - Return the unique reference to a vector type of 2760 /// the specified element type and size. VectorType must be a built-in type. 2761 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts, 2762 VectorType::VectorKind VecKind) const { 2763 assert(vecType->isBuiltinType()); 2764 2765 // Check if we've already instantiated a vector of this type. 2766 llvm::FoldingSetNodeID ID; 2767 VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind); 2768 2769 void *InsertPos = nullptr; 2770 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) 2771 return QualType(VTP, 0); 2772 2773 // If the element type isn't canonical, this won't be a canonical type either, 2774 // so fill in the canonical type field. 2775 QualType Canonical; 2776 if (!vecType.isCanonical()) { 2777 Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind); 2778 2779 // Get the new insert position for the node we care about. 2780 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); 2781 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2782 } 2783 VectorType *New = new (*this, TypeAlignment) 2784 VectorType(vecType, NumElts, Canonical, VecKind); 2785 VectorTypes.InsertNode(New, InsertPos); 2786 Types.push_back(New); 2787 return QualType(New, 0); 2788 } 2789 2790 /// getExtVectorType - Return the unique reference to an extended vector type of 2791 /// the specified element type and size. VectorType must be a built-in type. 2792 QualType 2793 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const { 2794 assert(vecType->isBuiltinType() || vecType->isDependentType()); 2795 2796 // Check if we've already instantiated a vector of this type. 2797 llvm::FoldingSetNodeID ID; 2798 VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, 2799 VectorType::GenericVector); 2800 void *InsertPos = nullptr; 2801 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) 2802 return QualType(VTP, 0); 2803 2804 // If the element type isn't canonical, this won't be a canonical type either, 2805 // so fill in the canonical type field. 2806 QualType Canonical; 2807 if (!vecType.isCanonical()) { 2808 Canonical = getExtVectorType(getCanonicalType(vecType), NumElts); 2809 2810 // Get the new insert position for the node we care about. 2811 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); 2812 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2813 } 2814 ExtVectorType *New = new (*this, TypeAlignment) 2815 ExtVectorType(vecType, NumElts, Canonical); 2816 VectorTypes.InsertNode(New, InsertPos); 2817 Types.push_back(New); 2818 return QualType(New, 0); 2819 } 2820 2821 QualType 2822 ASTContext::getDependentSizedExtVectorType(QualType vecType, 2823 Expr *SizeExpr, 2824 SourceLocation AttrLoc) const { 2825 llvm::FoldingSetNodeID ID; 2826 DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType), 2827 SizeExpr); 2828 2829 void *InsertPos = nullptr; 2830 DependentSizedExtVectorType *Canon 2831 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); 2832 DependentSizedExtVectorType *New; 2833 if (Canon) { 2834 // We already have a canonical version of this array type; use it as 2835 // the canonical type for a newly-built type. 2836 New = new (*this, TypeAlignment) 2837 DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0), 2838 SizeExpr, AttrLoc); 2839 } else { 2840 QualType CanonVecTy = getCanonicalType(vecType); 2841 if (CanonVecTy == vecType) { 2842 New = new (*this, TypeAlignment) 2843 DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr, 2844 AttrLoc); 2845 2846 DependentSizedExtVectorType *CanonCheck 2847 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); 2848 assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken"); 2849 (void)CanonCheck; 2850 DependentSizedExtVectorTypes.InsertNode(New, InsertPos); 2851 } else { 2852 QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr, 2853 SourceLocation()); 2854 New = new (*this, TypeAlignment) 2855 DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc); 2856 } 2857 } 2858 2859 Types.push_back(New); 2860 return QualType(New, 0); 2861 } 2862 2863 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'. 2864 /// 2865 QualType 2866 ASTContext::getFunctionNoProtoType(QualType ResultTy, 2867 const FunctionType::ExtInfo &Info) const { 2868 const CallingConv CallConv = Info.getCC(); 2869 2870 // Unique functions, to guarantee there is only one function of a particular 2871 // structure. 2872 llvm::FoldingSetNodeID ID; 2873 FunctionNoProtoType::Profile(ID, ResultTy, Info); 2874 2875 void *InsertPos = nullptr; 2876 if (FunctionNoProtoType *FT = 2877 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) 2878 return QualType(FT, 0); 2879 2880 QualType Canonical; 2881 if (!ResultTy.isCanonical()) { 2882 Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), Info); 2883 2884 // Get the new insert position for the node we care about. 2885 FunctionNoProtoType *NewIP = 2886 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos); 2887 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2888 } 2889 2890 FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv); 2891 FunctionNoProtoType *New = new (*this, TypeAlignment) 2892 FunctionNoProtoType(ResultTy, Canonical, newInfo); 2893 Types.push_back(New); 2894 FunctionNoProtoTypes.InsertNode(New, InsertPos); 2895 return QualType(New, 0); 2896 } 2897 2898 /// \brief Determine whether \p T is canonical as the result type of a function. 2899 static bool isCanonicalResultType(QualType T) { 2900 return T.isCanonical() && 2901 (T.getObjCLifetime() == Qualifiers::OCL_None || 2902 T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone); 2903 } 2904 2905 QualType 2906 ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray, 2907 const FunctionProtoType::ExtProtoInfo &EPI) const { 2908 size_t NumArgs = ArgArray.size(); 2909 2910 // Unique functions, to guarantee there is only one function of a particular 2911 // structure. 2912 llvm::FoldingSetNodeID ID; 2913 FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI, 2914 *this); 2915 2916 void *InsertPos = nullptr; 2917 if (FunctionProtoType *FTP = 2918 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) 2919 return QualType(FTP, 0); 2920 2921 // Determine whether the type being created is already canonical or not. 2922 bool isCanonical = 2923 EPI.ExceptionSpec.Type == EST_None && isCanonicalResultType(ResultTy) && 2924 !EPI.HasTrailingReturn; 2925 for (unsigned i = 0; i != NumArgs && isCanonical; ++i) 2926 if (!ArgArray[i].isCanonicalAsParam()) 2927 isCanonical = false; 2928 2929 // If this type isn't canonical, get the canonical version of it. 2930 // The exception spec is not part of the canonical type. 2931 QualType Canonical; 2932 if (!isCanonical) { 2933 SmallVector<QualType, 16> CanonicalArgs; 2934 CanonicalArgs.reserve(NumArgs); 2935 for (unsigned i = 0; i != NumArgs; ++i) 2936 CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i])); 2937 2938 FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI; 2939 CanonicalEPI.HasTrailingReturn = false; 2940 CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo(); 2941 2942 // Result types do not have ARC lifetime qualifiers. 2943 QualType CanResultTy = getCanonicalType(ResultTy); 2944 if (ResultTy.getQualifiers().hasObjCLifetime()) { 2945 Qualifiers Qs = CanResultTy.getQualifiers(); 2946 Qs.removeObjCLifetime(); 2947 CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs); 2948 } 2949 2950 Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI); 2951 2952 // Get the new insert position for the node we care about. 2953 FunctionProtoType *NewIP = 2954 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos); 2955 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 2956 } 2957 2958 // FunctionProtoType objects are allocated with extra bytes after 2959 // them for three variable size arrays at the end: 2960 // - parameter types 2961 // - exception types 2962 // - consumed-arguments flags 2963 // Instead of the exception types, there could be a noexcept 2964 // expression, or information used to resolve the exception 2965 // specification. 2966 size_t Size = sizeof(FunctionProtoType) + 2967 NumArgs * sizeof(QualType); 2968 if (EPI.ExceptionSpec.Type == EST_Dynamic) { 2969 Size += EPI.ExceptionSpec.Exceptions.size() * sizeof(QualType); 2970 } else if (EPI.ExceptionSpec.Type == EST_ComputedNoexcept) { 2971 Size += sizeof(Expr*); 2972 } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) { 2973 Size += 2 * sizeof(FunctionDecl*); 2974 } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) { 2975 Size += sizeof(FunctionDecl*); 2976 } 2977 if (EPI.ConsumedParameters) 2978 Size += NumArgs * sizeof(bool); 2979 2980 FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment); 2981 FunctionProtoType::ExtProtoInfo newEPI = EPI; 2982 new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI); 2983 Types.push_back(FTP); 2984 FunctionProtoTypes.InsertNode(FTP, InsertPos); 2985 return QualType(FTP, 0); 2986 } 2987 2988 #ifndef NDEBUG 2989 static bool NeedsInjectedClassNameType(const RecordDecl *D) { 2990 if (!isa<CXXRecordDecl>(D)) return false; 2991 const CXXRecordDecl *RD = cast<CXXRecordDecl>(D); 2992 if (isa<ClassTemplatePartialSpecializationDecl>(RD)) 2993 return true; 2994 if (RD->getDescribedClassTemplate() && 2995 !isa<ClassTemplateSpecializationDecl>(RD)) 2996 return true; 2997 return false; 2998 } 2999 #endif 3000 3001 /// getInjectedClassNameType - Return the unique reference to the 3002 /// injected class name type for the specified templated declaration. 3003 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl, 3004 QualType TST) const { 3005 assert(NeedsInjectedClassNameType(Decl)); 3006 if (Decl->TypeForDecl) { 3007 assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); 3008 } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) { 3009 assert(PrevDecl->TypeForDecl && "previous declaration has no type"); 3010 Decl->TypeForDecl = PrevDecl->TypeForDecl; 3011 assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); 3012 } else { 3013 Type *newType = 3014 new (*this, TypeAlignment) InjectedClassNameType(Decl, TST); 3015 Decl->TypeForDecl = newType; 3016 Types.push_back(newType); 3017 } 3018 return QualType(Decl->TypeForDecl, 0); 3019 } 3020 3021 /// getTypeDeclType - Return the unique reference to the type for the 3022 /// specified type declaration. 3023 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const { 3024 assert(Decl && "Passed null for Decl param"); 3025 assert(!Decl->TypeForDecl && "TypeForDecl present in slow case"); 3026 3027 if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl)) 3028 return getTypedefType(Typedef); 3029 3030 assert(!isa<TemplateTypeParmDecl>(Decl) && 3031 "Template type parameter types are always available."); 3032 3033 if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) { 3034 assert(Record->isFirstDecl() && "struct/union has previous declaration"); 3035 assert(!NeedsInjectedClassNameType(Record)); 3036 return getRecordType(Record); 3037 } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) { 3038 assert(Enum->isFirstDecl() && "enum has previous declaration"); 3039 return getEnumType(Enum); 3040 } else if (const UnresolvedUsingTypenameDecl *Using = 3041 dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) { 3042 Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using); 3043 Decl->TypeForDecl = newType; 3044 Types.push_back(newType); 3045 } else 3046 llvm_unreachable("TypeDecl without a type?"); 3047 3048 return QualType(Decl->TypeForDecl, 0); 3049 } 3050 3051 /// getTypedefType - Return the unique reference to the type for the 3052 /// specified typedef name decl. 3053 QualType 3054 ASTContext::getTypedefType(const TypedefNameDecl *Decl, 3055 QualType Canonical) const { 3056 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); 3057 3058 if (Canonical.isNull()) 3059 Canonical = getCanonicalType(Decl->getUnderlyingType()); 3060 TypedefType *newType = new(*this, TypeAlignment) 3061 TypedefType(Type::Typedef, Decl, Canonical); 3062 Decl->TypeForDecl = newType; 3063 Types.push_back(newType); 3064 return QualType(newType, 0); 3065 } 3066 3067 QualType ASTContext::getRecordType(const RecordDecl *Decl) const { 3068 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); 3069 3070 if (const RecordDecl *PrevDecl = Decl->getPreviousDecl()) 3071 if (PrevDecl->TypeForDecl) 3072 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); 3073 3074 RecordType *newType = new (*this, TypeAlignment) RecordType(Decl); 3075 Decl->TypeForDecl = newType; 3076 Types.push_back(newType); 3077 return QualType(newType, 0); 3078 } 3079 3080 QualType ASTContext::getEnumType(const EnumDecl *Decl) const { 3081 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); 3082 3083 if (const EnumDecl *PrevDecl = Decl->getPreviousDecl()) 3084 if (PrevDecl->TypeForDecl) 3085 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); 3086 3087 EnumType *newType = new (*this, TypeAlignment) EnumType(Decl); 3088 Decl->TypeForDecl = newType; 3089 Types.push_back(newType); 3090 return QualType(newType, 0); 3091 } 3092 3093 QualType ASTContext::getAttributedType(AttributedType::Kind attrKind, 3094 QualType modifiedType, 3095 QualType equivalentType) { 3096 llvm::FoldingSetNodeID id; 3097 AttributedType::Profile(id, attrKind, modifiedType, equivalentType); 3098 3099 void *insertPos = nullptr; 3100 AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos); 3101 if (type) return QualType(type, 0); 3102 3103 QualType canon = getCanonicalType(equivalentType); 3104 type = new (*this, TypeAlignment) 3105 AttributedType(canon, attrKind, modifiedType, equivalentType); 3106 3107 Types.push_back(type); 3108 AttributedTypes.InsertNode(type, insertPos); 3109 3110 return QualType(type, 0); 3111 } 3112 3113 3114 /// \brief Retrieve a substitution-result type. 3115 QualType 3116 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm, 3117 QualType Replacement) const { 3118 assert(Replacement.isCanonical() 3119 && "replacement types must always be canonical"); 3120 3121 llvm::FoldingSetNodeID ID; 3122 SubstTemplateTypeParmType::Profile(ID, Parm, Replacement); 3123 void *InsertPos = nullptr; 3124 SubstTemplateTypeParmType *SubstParm 3125 = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); 3126 3127 if (!SubstParm) { 3128 SubstParm = new (*this, TypeAlignment) 3129 SubstTemplateTypeParmType(Parm, Replacement); 3130 Types.push_back(SubstParm); 3131 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos); 3132 } 3133 3134 return QualType(SubstParm, 0); 3135 } 3136 3137 /// \brief Retrieve a 3138 QualType ASTContext::getSubstTemplateTypeParmPackType( 3139 const TemplateTypeParmType *Parm, 3140 const TemplateArgument &ArgPack) { 3141 #ifndef NDEBUG 3142 for (const auto &P : ArgPack.pack_elements()) { 3143 assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type"); 3144 assert(P.getAsType().isCanonical() && "Pack contains non-canonical type"); 3145 } 3146 #endif 3147 3148 llvm::FoldingSetNodeID ID; 3149 SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack); 3150 void *InsertPos = nullptr; 3151 if (SubstTemplateTypeParmPackType *SubstParm 3152 = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos)) 3153 return QualType(SubstParm, 0); 3154 3155 QualType Canon; 3156 if (!Parm->isCanonicalUnqualified()) { 3157 Canon = getCanonicalType(QualType(Parm, 0)); 3158 Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon), 3159 ArgPack); 3160 SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos); 3161 } 3162 3163 SubstTemplateTypeParmPackType *SubstParm 3164 = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon, 3165 ArgPack); 3166 Types.push_back(SubstParm); 3167 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos); 3168 return QualType(SubstParm, 0); 3169 } 3170 3171 /// \brief Retrieve the template type parameter type for a template 3172 /// parameter or parameter pack with the given depth, index, and (optionally) 3173 /// name. 3174 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index, 3175 bool ParameterPack, 3176 TemplateTypeParmDecl *TTPDecl) const { 3177 llvm::FoldingSetNodeID ID; 3178 TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl); 3179 void *InsertPos = nullptr; 3180 TemplateTypeParmType *TypeParm 3181 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); 3182 3183 if (TypeParm) 3184 return QualType(TypeParm, 0); 3185 3186 if (TTPDecl) { 3187 QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack); 3188 TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon); 3189 3190 TemplateTypeParmType *TypeCheck 3191 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); 3192 assert(!TypeCheck && "Template type parameter canonical type broken"); 3193 (void)TypeCheck; 3194 } else 3195 TypeParm = new (*this, TypeAlignment) 3196 TemplateTypeParmType(Depth, Index, ParameterPack); 3197 3198 Types.push_back(TypeParm); 3199 TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos); 3200 3201 return QualType(TypeParm, 0); 3202 } 3203 3204 TypeSourceInfo * 3205 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name, 3206 SourceLocation NameLoc, 3207 const TemplateArgumentListInfo &Args, 3208 QualType Underlying) const { 3209 assert(!Name.getAsDependentTemplateName() && 3210 "No dependent template names here!"); 3211 QualType TST = getTemplateSpecializationType(Name, Args, Underlying); 3212 3213 TypeSourceInfo *DI = CreateTypeSourceInfo(TST); 3214 TemplateSpecializationTypeLoc TL = 3215 DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>(); 3216 TL.setTemplateKeywordLoc(SourceLocation()); 3217 TL.setTemplateNameLoc(NameLoc); 3218 TL.setLAngleLoc(Args.getLAngleLoc()); 3219 TL.setRAngleLoc(Args.getRAngleLoc()); 3220 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) 3221 TL.setArgLocInfo(i, Args[i].getLocInfo()); 3222 return DI; 3223 } 3224 3225 QualType 3226 ASTContext::getTemplateSpecializationType(TemplateName Template, 3227 const TemplateArgumentListInfo &Args, 3228 QualType Underlying) const { 3229 assert(!Template.getAsDependentTemplateName() && 3230 "No dependent template names here!"); 3231 3232 unsigned NumArgs = Args.size(); 3233 3234 SmallVector<TemplateArgument, 4> ArgVec; 3235 ArgVec.reserve(NumArgs); 3236 for (unsigned i = 0; i != NumArgs; ++i) 3237 ArgVec.push_back(Args[i].getArgument()); 3238 3239 return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, 3240 Underlying); 3241 } 3242 3243 #ifndef NDEBUG 3244 static bool hasAnyPackExpansions(const TemplateArgument *Args, 3245 unsigned NumArgs) { 3246 for (unsigned I = 0; I != NumArgs; ++I) 3247 if (Args[I].isPackExpansion()) 3248 return true; 3249 3250 return true; 3251 } 3252 #endif 3253 3254 QualType 3255 ASTContext::getTemplateSpecializationType(TemplateName Template, 3256 const TemplateArgument *Args, 3257 unsigned NumArgs, 3258 QualType Underlying) const { 3259 assert(!Template.getAsDependentTemplateName() && 3260 "No dependent template names here!"); 3261 // Look through qualified template names. 3262 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) 3263 Template = TemplateName(QTN->getTemplateDecl()); 3264 3265 bool IsTypeAlias = 3266 Template.getAsTemplateDecl() && 3267 isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl()); 3268 QualType CanonType; 3269 if (!Underlying.isNull()) 3270 CanonType = getCanonicalType(Underlying); 3271 else { 3272 // We can get here with an alias template when the specialization contains 3273 // a pack expansion that does not match up with a parameter pack. 3274 assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) && 3275 "Caller must compute aliased type"); 3276 IsTypeAlias = false; 3277 CanonType = getCanonicalTemplateSpecializationType(Template, Args, 3278 NumArgs); 3279 } 3280 3281 // Allocate the (non-canonical) template specialization type, but don't 3282 // try to unique it: these types typically have location information that 3283 // we don't unique and don't want to lose. 3284 void *Mem = Allocate(sizeof(TemplateSpecializationType) + 3285 sizeof(TemplateArgument) * NumArgs + 3286 (IsTypeAlias? sizeof(QualType) : 0), 3287 TypeAlignment); 3288 TemplateSpecializationType *Spec 3289 = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType, 3290 IsTypeAlias ? Underlying : QualType()); 3291 3292 Types.push_back(Spec); 3293 return QualType(Spec, 0); 3294 } 3295 3296 QualType 3297 ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template, 3298 const TemplateArgument *Args, 3299 unsigned NumArgs) const { 3300 assert(!Template.getAsDependentTemplateName() && 3301 "No dependent template names here!"); 3302 3303 // Look through qualified template names. 3304 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) 3305 Template = TemplateName(QTN->getTemplateDecl()); 3306 3307 // Build the canonical template specialization type. 3308 TemplateName CanonTemplate = getCanonicalTemplateName(Template); 3309 SmallVector<TemplateArgument, 4> CanonArgs; 3310 CanonArgs.reserve(NumArgs); 3311 for (unsigned I = 0; I != NumArgs; ++I) 3312 CanonArgs.push_back(getCanonicalTemplateArgument(Args[I])); 3313 3314 // Determine whether this canonical template specialization type already 3315 // exists. 3316 llvm::FoldingSetNodeID ID; 3317 TemplateSpecializationType::Profile(ID, CanonTemplate, 3318 CanonArgs.data(), NumArgs, *this); 3319 3320 void *InsertPos = nullptr; 3321 TemplateSpecializationType *Spec 3322 = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); 3323 3324 if (!Spec) { 3325 // Allocate a new canonical template specialization type. 3326 void *Mem = Allocate((sizeof(TemplateSpecializationType) + 3327 sizeof(TemplateArgument) * NumArgs), 3328 TypeAlignment); 3329 Spec = new (Mem) TemplateSpecializationType(CanonTemplate, 3330 CanonArgs.data(), NumArgs, 3331 QualType(), QualType()); 3332 Types.push_back(Spec); 3333 TemplateSpecializationTypes.InsertNode(Spec, InsertPos); 3334 } 3335 3336 assert(Spec->isDependentType() && 3337 "Non-dependent template-id type must have a canonical type"); 3338 return QualType(Spec, 0); 3339 } 3340 3341 QualType 3342 ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword, 3343 NestedNameSpecifier *NNS, 3344 QualType NamedType) const { 3345 llvm::FoldingSetNodeID ID; 3346 ElaboratedType::Profile(ID, Keyword, NNS, NamedType); 3347 3348 void *InsertPos = nullptr; 3349 ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); 3350 if (T) 3351 return QualType(T, 0); 3352 3353 QualType Canon = NamedType; 3354 if (!Canon.isCanonical()) { 3355 Canon = getCanonicalType(NamedType); 3356 ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); 3357 assert(!CheckT && "Elaborated canonical type broken"); 3358 (void)CheckT; 3359 } 3360 3361 T = new (*this, TypeAlignment) ElaboratedType(Keyword, NNS, NamedType, Canon); 3362 Types.push_back(T); 3363 ElaboratedTypes.InsertNode(T, InsertPos); 3364 return QualType(T, 0); 3365 } 3366 3367 QualType 3368 ASTContext::getParenType(QualType InnerType) const { 3369 llvm::FoldingSetNodeID ID; 3370 ParenType::Profile(ID, InnerType); 3371 3372 void *InsertPos = nullptr; 3373 ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); 3374 if (T) 3375 return QualType(T, 0); 3376 3377 QualType Canon = InnerType; 3378 if (!Canon.isCanonical()) { 3379 Canon = getCanonicalType(InnerType); 3380 ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); 3381 assert(!CheckT && "Paren canonical type broken"); 3382 (void)CheckT; 3383 } 3384 3385 T = new (*this, TypeAlignment) ParenType(InnerType, Canon); 3386 Types.push_back(T); 3387 ParenTypes.InsertNode(T, InsertPos); 3388 return QualType(T, 0); 3389 } 3390 3391 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword, 3392 NestedNameSpecifier *NNS, 3393 const IdentifierInfo *Name, 3394 QualType Canon) const { 3395 if (Canon.isNull()) { 3396 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 3397 ElaboratedTypeKeyword CanonKeyword = Keyword; 3398 if (Keyword == ETK_None) 3399 CanonKeyword = ETK_Typename; 3400 3401 if (CanonNNS != NNS || CanonKeyword != Keyword) 3402 Canon = getDependentNameType(CanonKeyword, CanonNNS, Name); 3403 } 3404 3405 llvm::FoldingSetNodeID ID; 3406 DependentNameType::Profile(ID, Keyword, NNS, Name); 3407 3408 void *InsertPos = nullptr; 3409 DependentNameType *T 3410 = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos); 3411 if (T) 3412 return QualType(T, 0); 3413 3414 T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon); 3415 Types.push_back(T); 3416 DependentNameTypes.InsertNode(T, InsertPos); 3417 return QualType(T, 0); 3418 } 3419 3420 QualType 3421 ASTContext::getDependentTemplateSpecializationType( 3422 ElaboratedTypeKeyword Keyword, 3423 NestedNameSpecifier *NNS, 3424 const IdentifierInfo *Name, 3425 const TemplateArgumentListInfo &Args) const { 3426 // TODO: avoid this copy 3427 SmallVector<TemplateArgument, 16> ArgCopy; 3428 for (unsigned I = 0, E = Args.size(); I != E; ++I) 3429 ArgCopy.push_back(Args[I].getArgument()); 3430 return getDependentTemplateSpecializationType(Keyword, NNS, Name, 3431 ArgCopy.size(), 3432 ArgCopy.data()); 3433 } 3434 3435 QualType 3436 ASTContext::getDependentTemplateSpecializationType( 3437 ElaboratedTypeKeyword Keyword, 3438 NestedNameSpecifier *NNS, 3439 const IdentifierInfo *Name, 3440 unsigned NumArgs, 3441 const TemplateArgument *Args) const { 3442 assert((!NNS || NNS->isDependent()) && 3443 "nested-name-specifier must be dependent"); 3444 3445 llvm::FoldingSetNodeID ID; 3446 DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS, 3447 Name, NumArgs, Args); 3448 3449 void *InsertPos = nullptr; 3450 DependentTemplateSpecializationType *T 3451 = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); 3452 if (T) 3453 return QualType(T, 0); 3454 3455 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 3456 3457 ElaboratedTypeKeyword CanonKeyword = Keyword; 3458 if (Keyword == ETK_None) CanonKeyword = ETK_Typename; 3459 3460 bool AnyNonCanonArgs = false; 3461 SmallVector<TemplateArgument, 16> CanonArgs(NumArgs); 3462 for (unsigned I = 0; I != NumArgs; ++I) { 3463 CanonArgs[I] = getCanonicalTemplateArgument(Args[I]); 3464 if (!CanonArgs[I].structurallyEquals(Args[I])) 3465 AnyNonCanonArgs = true; 3466 } 3467 3468 QualType Canon; 3469 if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) { 3470 Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS, 3471 Name, NumArgs, 3472 CanonArgs.data()); 3473 3474 // Find the insert position again. 3475 DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); 3476 } 3477 3478 void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) + 3479 sizeof(TemplateArgument) * NumArgs), 3480 TypeAlignment); 3481 T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS, 3482 Name, NumArgs, Args, Canon); 3483 Types.push_back(T); 3484 DependentTemplateSpecializationTypes.InsertNode(T, InsertPos); 3485 return QualType(T, 0); 3486 } 3487 3488 QualType ASTContext::getPackExpansionType(QualType Pattern, 3489 Optional<unsigned> NumExpansions) { 3490 llvm::FoldingSetNodeID ID; 3491 PackExpansionType::Profile(ID, Pattern, NumExpansions); 3492 3493 assert(Pattern->containsUnexpandedParameterPack() && 3494 "Pack expansions must expand one or more parameter packs"); 3495 void *InsertPos = nullptr; 3496 PackExpansionType *T 3497 = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); 3498 if (T) 3499 return QualType(T, 0); 3500 3501 QualType Canon; 3502 if (!Pattern.isCanonical()) { 3503 Canon = getCanonicalType(Pattern); 3504 // The canonical type might not contain an unexpanded parameter pack, if it 3505 // contains an alias template specialization which ignores one of its 3506 // parameters. 3507 if (Canon->containsUnexpandedParameterPack()) { 3508 Canon = getPackExpansionType(Canon, NumExpansions); 3509 3510 // Find the insert position again, in case we inserted an element into 3511 // PackExpansionTypes and invalidated our insert position. 3512 PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); 3513 } 3514 } 3515 3516 T = new (*this, TypeAlignment) 3517 PackExpansionType(Pattern, Canon, NumExpansions); 3518 Types.push_back(T); 3519 PackExpansionTypes.InsertNode(T, InsertPos); 3520 return QualType(T, 0); 3521 } 3522 3523 /// CmpProtocolNames - Comparison predicate for sorting protocols 3524 /// alphabetically. 3525 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS, 3526 ObjCProtocolDecl *const *RHS) { 3527 return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName()); 3528 } 3529 3530 static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols, 3531 unsigned NumProtocols) { 3532 if (NumProtocols == 0) return true; 3533 3534 if (Protocols[0]->getCanonicalDecl() != Protocols[0]) 3535 return false; 3536 3537 for (unsigned i = 1; i != NumProtocols; ++i) 3538 if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 || 3539 Protocols[i]->getCanonicalDecl() != Protocols[i]) 3540 return false; 3541 return true; 3542 } 3543 3544 static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols, 3545 unsigned &NumProtocols) { 3546 ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols; 3547 3548 // Sort protocols, keyed by name. 3549 llvm::array_pod_sort(Protocols, ProtocolsEnd, CmpProtocolNames); 3550 3551 // Canonicalize. 3552 for (unsigned I = 0, N = NumProtocols; I != N; ++I) 3553 Protocols[I] = Protocols[I]->getCanonicalDecl(); 3554 3555 // Remove duplicates. 3556 ProtocolsEnd = std::unique(Protocols, ProtocolsEnd); 3557 NumProtocols = ProtocolsEnd-Protocols; 3558 } 3559 3560 QualType ASTContext::getObjCObjectType(QualType BaseType, 3561 ObjCProtocolDecl * const *Protocols, 3562 unsigned NumProtocols) const { 3563 // If the base type is an interface and there aren't any protocols 3564 // to add, then the interface type will do just fine. 3565 if (!NumProtocols && isa<ObjCInterfaceType>(BaseType)) 3566 return BaseType; 3567 3568 // Look in the folding set for an existing type. 3569 llvm::FoldingSetNodeID ID; 3570 ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols); 3571 void *InsertPos = nullptr; 3572 if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos)) 3573 return QualType(QT, 0); 3574 3575 // Build the canonical type, which has the canonical base type and 3576 // a sorted-and-uniqued list of protocols. 3577 QualType Canonical; 3578 bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols); 3579 if (!ProtocolsSorted || !BaseType.isCanonical()) { 3580 if (!ProtocolsSorted) { 3581 SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols, 3582 Protocols + NumProtocols); 3583 unsigned UniqueCount = NumProtocols; 3584 3585 SortAndUniqueProtocols(&Sorted[0], UniqueCount); 3586 Canonical = getObjCObjectType(getCanonicalType(BaseType), 3587 &Sorted[0], UniqueCount); 3588 } else { 3589 Canonical = getObjCObjectType(getCanonicalType(BaseType), 3590 Protocols, NumProtocols); 3591 } 3592 3593 // Regenerate InsertPos. 3594 ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos); 3595 } 3596 3597 unsigned Size = sizeof(ObjCObjectTypeImpl); 3598 Size += NumProtocols * sizeof(ObjCProtocolDecl *); 3599 void *Mem = Allocate(Size, TypeAlignment); 3600 ObjCObjectTypeImpl *T = 3601 new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols); 3602 3603 Types.push_back(T); 3604 ObjCObjectTypes.InsertNode(T, InsertPos); 3605 return QualType(T, 0); 3606 } 3607 3608 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's 3609 /// protocol list adopt all protocols in QT's qualified-id protocol 3610 /// list. 3611 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT, 3612 ObjCInterfaceDecl *IC) { 3613 if (!QT->isObjCQualifiedIdType()) 3614 return false; 3615 3616 if (const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>()) { 3617 // If both the right and left sides have qualifiers. 3618 for (auto *Proto : OPT->quals()) { 3619 if (!IC->ClassImplementsProtocol(Proto, false)) 3620 return false; 3621 } 3622 return true; 3623 } 3624 return false; 3625 } 3626 3627 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in 3628 /// QT's qualified-id protocol list adopt all protocols in IDecl's list 3629 /// of protocols. 3630 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT, 3631 ObjCInterfaceDecl *IDecl) { 3632 if (!QT->isObjCQualifiedIdType()) 3633 return false; 3634 const ObjCObjectPointerType *OPT = QT->getAs<ObjCObjectPointerType>(); 3635 if (!OPT) 3636 return false; 3637 if (!IDecl->hasDefinition()) 3638 return false; 3639 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols; 3640 CollectInheritedProtocols(IDecl, InheritedProtocols); 3641 if (InheritedProtocols.empty()) 3642 return false; 3643 // Check that if every protocol in list of id<plist> conforms to a protcol 3644 // of IDecl's, then bridge casting is ok. 3645 bool Conforms = false; 3646 for (auto *Proto : OPT->quals()) { 3647 Conforms = false; 3648 for (auto *PI : InheritedProtocols) { 3649 if (ProtocolCompatibleWithProtocol(Proto, PI)) { 3650 Conforms = true; 3651 break; 3652 } 3653 } 3654 if (!Conforms) 3655 break; 3656 } 3657 if (Conforms) 3658 return true; 3659 3660 for (auto *PI : InheritedProtocols) { 3661 // If both the right and left sides have qualifiers. 3662 bool Adopts = false; 3663 for (auto *Proto : OPT->quals()) { 3664 // return 'true' if 'PI' is in the inheritance hierarchy of Proto 3665 if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto))) 3666 break; 3667 } 3668 if (!Adopts) 3669 return false; 3670 } 3671 return true; 3672 } 3673 3674 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for 3675 /// the given object type. 3676 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const { 3677 llvm::FoldingSetNodeID ID; 3678 ObjCObjectPointerType::Profile(ID, ObjectT); 3679 3680 void *InsertPos = nullptr; 3681 if (ObjCObjectPointerType *QT = 3682 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) 3683 return QualType(QT, 0); 3684 3685 // Find the canonical object type. 3686 QualType Canonical; 3687 if (!ObjectT.isCanonical()) { 3688 Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT)); 3689 3690 // Regenerate InsertPos. 3691 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos); 3692 } 3693 3694 // No match. 3695 void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment); 3696 ObjCObjectPointerType *QType = 3697 new (Mem) ObjCObjectPointerType(Canonical, ObjectT); 3698 3699 Types.push_back(QType); 3700 ObjCObjectPointerTypes.InsertNode(QType, InsertPos); 3701 return QualType(QType, 0); 3702 } 3703 3704 /// getObjCInterfaceType - Return the unique reference to the type for the 3705 /// specified ObjC interface decl. The list of protocols is optional. 3706 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl, 3707 ObjCInterfaceDecl *PrevDecl) const { 3708 if (Decl->TypeForDecl) 3709 return QualType(Decl->TypeForDecl, 0); 3710 3711 if (PrevDecl) { 3712 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl"); 3713 Decl->TypeForDecl = PrevDecl->TypeForDecl; 3714 return QualType(PrevDecl->TypeForDecl, 0); 3715 } 3716 3717 // Prefer the definition, if there is one. 3718 if (const ObjCInterfaceDecl *Def = Decl->getDefinition()) 3719 Decl = Def; 3720 3721 void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment); 3722 ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl); 3723 Decl->TypeForDecl = T; 3724 Types.push_back(T); 3725 return QualType(T, 0); 3726 } 3727 3728 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique 3729 /// TypeOfExprType AST's (since expression's are never shared). For example, 3730 /// multiple declarations that refer to "typeof(x)" all contain different 3731 /// DeclRefExpr's. This doesn't effect the type checker, since it operates 3732 /// on canonical type's (which are always unique). 3733 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const { 3734 TypeOfExprType *toe; 3735 if (tofExpr->isTypeDependent()) { 3736 llvm::FoldingSetNodeID ID; 3737 DependentTypeOfExprType::Profile(ID, *this, tofExpr); 3738 3739 void *InsertPos = nullptr; 3740 DependentTypeOfExprType *Canon 3741 = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos); 3742 if (Canon) { 3743 // We already have a "canonical" version of an identical, dependent 3744 // typeof(expr) type. Use that as our canonical type. 3745 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, 3746 QualType((TypeOfExprType*)Canon, 0)); 3747 } else { 3748 // Build a new, canonical typeof(expr) type. 3749 Canon 3750 = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr); 3751 DependentTypeOfExprTypes.InsertNode(Canon, InsertPos); 3752 toe = Canon; 3753 } 3754 } else { 3755 QualType Canonical = getCanonicalType(tofExpr->getType()); 3756 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical); 3757 } 3758 Types.push_back(toe); 3759 return QualType(toe, 0); 3760 } 3761 3762 /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique 3763 /// TypeOfType nodes. The only motivation to unique these nodes would be 3764 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be 3765 /// an issue. This doesn't affect the type checker, since it operates 3766 /// on canonical types (which are always unique). 3767 QualType ASTContext::getTypeOfType(QualType tofType) const { 3768 QualType Canonical = getCanonicalType(tofType); 3769 TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical); 3770 Types.push_back(tot); 3771 return QualType(tot, 0); 3772 } 3773 3774 3775 /// \brief Unlike many "get<Type>" functions, we don't unique DecltypeType 3776 /// nodes. This would never be helpful, since each such type has its own 3777 /// expression, and would not give a significant memory saving, since there 3778 /// is an Expr tree under each such type. 3779 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const { 3780 DecltypeType *dt; 3781 3782 // C++11 [temp.type]p2: 3783 // If an expression e involves a template parameter, decltype(e) denotes a 3784 // unique dependent type. Two such decltype-specifiers refer to the same 3785 // type only if their expressions are equivalent (14.5.6.1). 3786 if (e->isInstantiationDependent()) { 3787 llvm::FoldingSetNodeID ID; 3788 DependentDecltypeType::Profile(ID, *this, e); 3789 3790 void *InsertPos = nullptr; 3791 DependentDecltypeType *Canon 3792 = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos); 3793 if (!Canon) { 3794 // Build a new, canonical typeof(expr) type. 3795 Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e); 3796 DependentDecltypeTypes.InsertNode(Canon, InsertPos); 3797 } 3798 dt = new (*this, TypeAlignment) 3799 DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0)); 3800 } else { 3801 dt = new (*this, TypeAlignment) 3802 DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType)); 3803 } 3804 Types.push_back(dt); 3805 return QualType(dt, 0); 3806 } 3807 3808 /// getUnaryTransformationType - We don't unique these, since the memory 3809 /// savings are minimal and these are rare. 3810 QualType ASTContext::getUnaryTransformType(QualType BaseType, 3811 QualType UnderlyingType, 3812 UnaryTransformType::UTTKind Kind) 3813 const { 3814 UnaryTransformType *Ty = 3815 new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType, 3816 Kind, 3817 UnderlyingType->isDependentType() ? 3818 QualType() : getCanonicalType(UnderlyingType)); 3819 Types.push_back(Ty); 3820 return QualType(Ty, 0); 3821 } 3822 3823 /// getAutoType - Return the uniqued reference to the 'auto' type which has been 3824 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the 3825 /// canonical deduced-but-dependent 'auto' type. 3826 QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto, 3827 bool IsDependent) const { 3828 if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent) 3829 return getAutoDeductType(); 3830 3831 // Look in the folding set for an existing type. 3832 void *InsertPos = nullptr; 3833 llvm::FoldingSetNodeID ID; 3834 AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent); 3835 if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos)) 3836 return QualType(AT, 0); 3837 3838 AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType, 3839 IsDecltypeAuto, 3840 IsDependent); 3841 Types.push_back(AT); 3842 if (InsertPos) 3843 AutoTypes.InsertNode(AT, InsertPos); 3844 return QualType(AT, 0); 3845 } 3846 3847 /// getAtomicType - Return the uniqued reference to the atomic type for 3848 /// the given value type. 3849 QualType ASTContext::getAtomicType(QualType T) const { 3850 // Unique pointers, to guarantee there is only one pointer of a particular 3851 // structure. 3852 llvm::FoldingSetNodeID ID; 3853 AtomicType::Profile(ID, T); 3854 3855 void *InsertPos = nullptr; 3856 if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos)) 3857 return QualType(AT, 0); 3858 3859 // If the atomic value type isn't canonical, this won't be a canonical type 3860 // either, so fill in the canonical type field. 3861 QualType Canonical; 3862 if (!T.isCanonical()) { 3863 Canonical = getAtomicType(getCanonicalType(T)); 3864 3865 // Get the new insert position for the node we care about. 3866 AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos); 3867 assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; 3868 } 3869 AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical); 3870 Types.push_back(New); 3871 AtomicTypes.InsertNode(New, InsertPos); 3872 return QualType(New, 0); 3873 } 3874 3875 /// getAutoDeductType - Get type pattern for deducing against 'auto'. 3876 QualType ASTContext::getAutoDeductType() const { 3877 if (AutoDeductTy.isNull()) 3878 AutoDeductTy = QualType( 3879 new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false, 3880 /*dependent*/false), 3881 0); 3882 return AutoDeductTy; 3883 } 3884 3885 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'. 3886 QualType ASTContext::getAutoRRefDeductType() const { 3887 if (AutoRRefDeductTy.isNull()) 3888 AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType()); 3889 assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern"); 3890 return AutoRRefDeductTy; 3891 } 3892 3893 /// getTagDeclType - Return the unique reference to the type for the 3894 /// specified TagDecl (struct/union/class/enum) decl. 3895 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const { 3896 assert (Decl); 3897 // FIXME: What is the design on getTagDeclType when it requires casting 3898 // away const? mutable? 3899 return getTypeDeclType(const_cast<TagDecl*>(Decl)); 3900 } 3901 3902 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result 3903 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and 3904 /// needs to agree with the definition in <stddef.h>. 3905 CanQualType ASTContext::getSizeType() const { 3906 return getFromTargetType(Target->getSizeType()); 3907 } 3908 3909 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5). 3910 CanQualType ASTContext::getIntMaxType() const { 3911 return getFromTargetType(Target->getIntMaxType()); 3912 } 3913 3914 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5). 3915 CanQualType ASTContext::getUIntMaxType() const { 3916 return getFromTargetType(Target->getUIntMaxType()); 3917 } 3918 3919 /// getSignedWCharType - Return the type of "signed wchar_t". 3920 /// Used when in C++, as a GCC extension. 3921 QualType ASTContext::getSignedWCharType() const { 3922 // FIXME: derive from "Target" ? 3923 return WCharTy; 3924 } 3925 3926 /// getUnsignedWCharType - Return the type of "unsigned wchar_t". 3927 /// Used when in C++, as a GCC extension. 3928 QualType ASTContext::getUnsignedWCharType() const { 3929 // FIXME: derive from "Target" ? 3930 return UnsignedIntTy; 3931 } 3932 3933 QualType ASTContext::getIntPtrType() const { 3934 return getFromTargetType(Target->getIntPtrType()); 3935 } 3936 3937 QualType ASTContext::getUIntPtrType() const { 3938 return getCorrespondingUnsignedType(getIntPtrType()); 3939 } 3940 3941 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17) 3942 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9). 3943 QualType ASTContext::getPointerDiffType() const { 3944 return getFromTargetType(Target->getPtrDiffType(0)); 3945 } 3946 3947 /// \brief Return the unique type for "pid_t" defined in 3948 /// <sys/types.h>. We need this to compute the correct type for vfork(). 3949 QualType ASTContext::getProcessIDType() const { 3950 return getFromTargetType(Target->getProcessIDType()); 3951 } 3952 3953 //===----------------------------------------------------------------------===// 3954 // Type Operators 3955 //===----------------------------------------------------------------------===// 3956 3957 CanQualType ASTContext::getCanonicalParamType(QualType T) const { 3958 // Push qualifiers into arrays, and then discard any remaining 3959 // qualifiers. 3960 T = getCanonicalType(T); 3961 T = getVariableArrayDecayedType(T); 3962 const Type *Ty = T.getTypePtr(); 3963 QualType Result; 3964 if (isa<ArrayType>(Ty)) { 3965 Result = getArrayDecayedType(QualType(Ty,0)); 3966 } else if (isa<FunctionType>(Ty)) { 3967 Result = getPointerType(QualType(Ty, 0)); 3968 } else { 3969 Result = QualType(Ty, 0); 3970 } 3971 3972 return CanQualType::CreateUnsafe(Result); 3973 } 3974 3975 QualType ASTContext::getUnqualifiedArrayType(QualType type, 3976 Qualifiers &quals) { 3977 SplitQualType splitType = type.getSplitUnqualifiedType(); 3978 3979 // FIXME: getSplitUnqualifiedType() actually walks all the way to 3980 // the unqualified desugared type and then drops it on the floor. 3981 // We then have to strip that sugar back off with 3982 // getUnqualifiedDesugaredType(), which is silly. 3983 const ArrayType *AT = 3984 dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType()); 3985 3986 // If we don't have an array, just use the results in splitType. 3987 if (!AT) { 3988 quals = splitType.Quals; 3989 return QualType(splitType.Ty, 0); 3990 } 3991 3992 // Otherwise, recurse on the array's element type. 3993 QualType elementType = AT->getElementType(); 3994 QualType unqualElementType = getUnqualifiedArrayType(elementType, quals); 3995 3996 // If that didn't change the element type, AT has no qualifiers, so we 3997 // can just use the results in splitType. 3998 if (elementType == unqualElementType) { 3999 assert(quals.empty()); // from the recursive call 4000 quals = splitType.Quals; 4001 return QualType(splitType.Ty, 0); 4002 } 4003 4004 // Otherwise, add in the qualifiers from the outermost type, then 4005 // build the type back up. 4006 quals.addConsistentQualifiers(splitType.Quals); 4007 4008 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) { 4009 return getConstantArrayType(unqualElementType, CAT->getSize(), 4010 CAT->getSizeModifier(), 0); 4011 } 4012 4013 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 4014 return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0); 4015 } 4016 4017 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) { 4018 return getVariableArrayType(unqualElementType, 4019 VAT->getSizeExpr(), 4020 VAT->getSizeModifier(), 4021 VAT->getIndexTypeCVRQualifiers(), 4022 VAT->getBracketsRange()); 4023 } 4024 4025 const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT); 4026 return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(), 4027 DSAT->getSizeModifier(), 0, 4028 SourceRange()); 4029 } 4030 4031 /// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types that 4032 /// may be similar (C++ 4.4), replaces T1 and T2 with the type that 4033 /// they point to and return true. If T1 and T2 aren't pointer types 4034 /// or pointer-to-member types, or if they are not similar at this 4035 /// level, returns false and leaves T1 and T2 unchanged. Top-level 4036 /// qualifiers on T1 and T2 are ignored. This function will typically 4037 /// be called in a loop that successively "unwraps" pointer and 4038 /// pointer-to-member types to compare them at each level. 4039 bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) { 4040 const PointerType *T1PtrType = T1->getAs<PointerType>(), 4041 *T2PtrType = T2->getAs<PointerType>(); 4042 if (T1PtrType && T2PtrType) { 4043 T1 = T1PtrType->getPointeeType(); 4044 T2 = T2PtrType->getPointeeType(); 4045 return true; 4046 } 4047 4048 const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(), 4049 *T2MPType = T2->getAs<MemberPointerType>(); 4050 if (T1MPType && T2MPType && 4051 hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0), 4052 QualType(T2MPType->getClass(), 0))) { 4053 T1 = T1MPType->getPointeeType(); 4054 T2 = T2MPType->getPointeeType(); 4055 return true; 4056 } 4057 4058 if (getLangOpts().ObjC1) { 4059 const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(), 4060 *T2OPType = T2->getAs<ObjCObjectPointerType>(); 4061 if (T1OPType && T2OPType) { 4062 T1 = T1OPType->getPointeeType(); 4063 T2 = T2OPType->getPointeeType(); 4064 return true; 4065 } 4066 } 4067 4068 // FIXME: Block pointers, too? 4069 4070 return false; 4071 } 4072 4073 DeclarationNameInfo 4074 ASTContext::getNameForTemplate(TemplateName Name, 4075 SourceLocation NameLoc) const { 4076 switch (Name.getKind()) { 4077 case TemplateName::QualifiedTemplate: 4078 case TemplateName::Template: 4079 // DNInfo work in progress: CHECKME: what about DNLoc? 4080 return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(), 4081 NameLoc); 4082 4083 case TemplateName::OverloadedTemplate: { 4084 OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate(); 4085 // DNInfo work in progress: CHECKME: what about DNLoc? 4086 return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc); 4087 } 4088 4089 case TemplateName::DependentTemplate: { 4090 DependentTemplateName *DTN = Name.getAsDependentTemplateName(); 4091 DeclarationName DName; 4092 if (DTN->isIdentifier()) { 4093 DName = DeclarationNames.getIdentifier(DTN->getIdentifier()); 4094 return DeclarationNameInfo(DName, NameLoc); 4095 } else { 4096 DName = DeclarationNames.getCXXOperatorName(DTN->getOperator()); 4097 // DNInfo work in progress: FIXME: source locations? 4098 DeclarationNameLoc DNLoc; 4099 DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding(); 4100 DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding(); 4101 return DeclarationNameInfo(DName, NameLoc, DNLoc); 4102 } 4103 } 4104 4105 case TemplateName::SubstTemplateTemplateParm: { 4106 SubstTemplateTemplateParmStorage *subst 4107 = Name.getAsSubstTemplateTemplateParm(); 4108 return DeclarationNameInfo(subst->getParameter()->getDeclName(), 4109 NameLoc); 4110 } 4111 4112 case TemplateName::SubstTemplateTemplateParmPack: { 4113 SubstTemplateTemplateParmPackStorage *subst 4114 = Name.getAsSubstTemplateTemplateParmPack(); 4115 return DeclarationNameInfo(subst->getParameterPack()->getDeclName(), 4116 NameLoc); 4117 } 4118 } 4119 4120 llvm_unreachable("bad template name kind!"); 4121 } 4122 4123 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const { 4124 switch (Name.getKind()) { 4125 case TemplateName::QualifiedTemplate: 4126 case TemplateName::Template: { 4127 TemplateDecl *Template = Name.getAsTemplateDecl(); 4128 if (TemplateTemplateParmDecl *TTP 4129 = dyn_cast<TemplateTemplateParmDecl>(Template)) 4130 Template = getCanonicalTemplateTemplateParmDecl(TTP); 4131 4132 // The canonical template name is the canonical template declaration. 4133 return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl())); 4134 } 4135 4136 case TemplateName::OverloadedTemplate: 4137 llvm_unreachable("cannot canonicalize overloaded template"); 4138 4139 case TemplateName::DependentTemplate: { 4140 DependentTemplateName *DTN = Name.getAsDependentTemplateName(); 4141 assert(DTN && "Non-dependent template names must refer to template decls."); 4142 return DTN->CanonicalTemplateName; 4143 } 4144 4145 case TemplateName::SubstTemplateTemplateParm: { 4146 SubstTemplateTemplateParmStorage *subst 4147 = Name.getAsSubstTemplateTemplateParm(); 4148 return getCanonicalTemplateName(subst->getReplacement()); 4149 } 4150 4151 case TemplateName::SubstTemplateTemplateParmPack: { 4152 SubstTemplateTemplateParmPackStorage *subst 4153 = Name.getAsSubstTemplateTemplateParmPack(); 4154 TemplateTemplateParmDecl *canonParameter 4155 = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack()); 4156 TemplateArgument canonArgPack 4157 = getCanonicalTemplateArgument(subst->getArgumentPack()); 4158 return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack); 4159 } 4160 } 4161 4162 llvm_unreachable("bad template name!"); 4163 } 4164 4165 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) { 4166 X = getCanonicalTemplateName(X); 4167 Y = getCanonicalTemplateName(Y); 4168 return X.getAsVoidPointer() == Y.getAsVoidPointer(); 4169 } 4170 4171 TemplateArgument 4172 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const { 4173 switch (Arg.getKind()) { 4174 case TemplateArgument::Null: 4175 return Arg; 4176 4177 case TemplateArgument::Expression: 4178 return Arg; 4179 4180 case TemplateArgument::Declaration: { 4181 ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl()); 4182 return TemplateArgument(D, Arg.getParamTypeForDecl()); 4183 } 4184 4185 case TemplateArgument::NullPtr: 4186 return TemplateArgument(getCanonicalType(Arg.getNullPtrType()), 4187 /*isNullPtr*/true); 4188 4189 case TemplateArgument::Template: 4190 return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate())); 4191 4192 case TemplateArgument::TemplateExpansion: 4193 return TemplateArgument(getCanonicalTemplateName( 4194 Arg.getAsTemplateOrTemplatePattern()), 4195 Arg.getNumTemplateExpansions()); 4196 4197 case TemplateArgument::Integral: 4198 return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType())); 4199 4200 case TemplateArgument::Type: 4201 return TemplateArgument(getCanonicalType(Arg.getAsType())); 4202 4203 case TemplateArgument::Pack: { 4204 if (Arg.pack_size() == 0) 4205 return Arg; 4206 4207 TemplateArgument *CanonArgs 4208 = new (*this) TemplateArgument[Arg.pack_size()]; 4209 unsigned Idx = 0; 4210 for (TemplateArgument::pack_iterator A = Arg.pack_begin(), 4211 AEnd = Arg.pack_end(); 4212 A != AEnd; (void)++A, ++Idx) 4213 CanonArgs[Idx] = getCanonicalTemplateArgument(*A); 4214 4215 return TemplateArgument(CanonArgs, Arg.pack_size()); 4216 } 4217 } 4218 4219 // Silence GCC warning 4220 llvm_unreachable("Unhandled template argument kind"); 4221 } 4222 4223 NestedNameSpecifier * 4224 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const { 4225 if (!NNS) 4226 return nullptr; 4227 4228 switch (NNS->getKind()) { 4229 case NestedNameSpecifier::Identifier: 4230 // Canonicalize the prefix but keep the identifier the same. 4231 return NestedNameSpecifier::Create(*this, 4232 getCanonicalNestedNameSpecifier(NNS->getPrefix()), 4233 NNS->getAsIdentifier()); 4234 4235 case NestedNameSpecifier::Namespace: 4236 // A namespace is canonical; build a nested-name-specifier with 4237 // this namespace and no prefix. 4238 return NestedNameSpecifier::Create(*this, nullptr, 4239 NNS->getAsNamespace()->getOriginalNamespace()); 4240 4241 case NestedNameSpecifier::NamespaceAlias: 4242 // A namespace is canonical; build a nested-name-specifier with 4243 // this namespace and no prefix. 4244 return NestedNameSpecifier::Create(*this, nullptr, 4245 NNS->getAsNamespaceAlias()->getNamespace() 4246 ->getOriginalNamespace()); 4247 4248 case NestedNameSpecifier::TypeSpec: 4249 case NestedNameSpecifier::TypeSpecWithTemplate: { 4250 QualType T = getCanonicalType(QualType(NNS->getAsType(), 0)); 4251 4252 // If we have some kind of dependent-named type (e.g., "typename T::type"), 4253 // break it apart into its prefix and identifier, then reconsititute those 4254 // as the canonical nested-name-specifier. This is required to canonicalize 4255 // a dependent nested-name-specifier involving typedefs of dependent-name 4256 // types, e.g., 4257 // typedef typename T::type T1; 4258 // typedef typename T1::type T2; 4259 if (const DependentNameType *DNT = T->getAs<DependentNameType>()) 4260 return NestedNameSpecifier::Create(*this, DNT->getQualifier(), 4261 const_cast<IdentifierInfo *>(DNT->getIdentifier())); 4262 4263 // Otherwise, just canonicalize the type, and force it to be a TypeSpec. 4264 // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the 4265 // first place? 4266 return NestedNameSpecifier::Create(*this, nullptr, false, 4267 const_cast<Type *>(T.getTypePtr())); 4268 } 4269 4270 case NestedNameSpecifier::Global: 4271 case NestedNameSpecifier::Super: 4272 // The global specifier and __super specifer are canonical and unique. 4273 return NNS; 4274 } 4275 4276 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 4277 } 4278 4279 4280 const ArrayType *ASTContext::getAsArrayType(QualType T) const { 4281 // Handle the non-qualified case efficiently. 4282 if (!T.hasLocalQualifiers()) { 4283 // Handle the common positive case fast. 4284 if (const ArrayType *AT = dyn_cast<ArrayType>(T)) 4285 return AT; 4286 } 4287 4288 // Handle the common negative case fast. 4289 if (!isa<ArrayType>(T.getCanonicalType())) 4290 return nullptr; 4291 4292 // Apply any qualifiers from the array type to the element type. This 4293 // implements C99 6.7.3p8: "If the specification of an array type includes 4294 // any type qualifiers, the element type is so qualified, not the array type." 4295 4296 // If we get here, we either have type qualifiers on the type, or we have 4297 // sugar such as a typedef in the way. If we have type qualifiers on the type 4298 // we must propagate them down into the element type. 4299 4300 SplitQualType split = T.getSplitDesugaredType(); 4301 Qualifiers qs = split.Quals; 4302 4303 // If we have a simple case, just return now. 4304 const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty); 4305 if (!ATy || qs.empty()) 4306 return ATy; 4307 4308 // Otherwise, we have an array and we have qualifiers on it. Push the 4309 // qualifiers into the array element type and return a new array type. 4310 QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs); 4311 4312 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy)) 4313 return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(), 4314 CAT->getSizeModifier(), 4315 CAT->getIndexTypeCVRQualifiers())); 4316 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy)) 4317 return cast<ArrayType>(getIncompleteArrayType(NewEltTy, 4318 IAT->getSizeModifier(), 4319 IAT->getIndexTypeCVRQualifiers())); 4320 4321 if (const DependentSizedArrayType *DSAT 4322 = dyn_cast<DependentSizedArrayType>(ATy)) 4323 return cast<ArrayType>( 4324 getDependentSizedArrayType(NewEltTy, 4325 DSAT->getSizeExpr(), 4326 DSAT->getSizeModifier(), 4327 DSAT->getIndexTypeCVRQualifiers(), 4328 DSAT->getBracketsRange())); 4329 4330 const VariableArrayType *VAT = cast<VariableArrayType>(ATy); 4331 return cast<ArrayType>(getVariableArrayType(NewEltTy, 4332 VAT->getSizeExpr(), 4333 VAT->getSizeModifier(), 4334 VAT->getIndexTypeCVRQualifiers(), 4335 VAT->getBracketsRange())); 4336 } 4337 4338 QualType ASTContext::getAdjustedParameterType(QualType T) const { 4339 if (T->isArrayType() || T->isFunctionType()) 4340 return getDecayedType(T); 4341 return T; 4342 } 4343 4344 QualType ASTContext::getSignatureParameterType(QualType T) const { 4345 T = getVariableArrayDecayedType(T); 4346 T = getAdjustedParameterType(T); 4347 return T.getUnqualifiedType(); 4348 } 4349 4350 QualType ASTContext::getExceptionObjectType(QualType T) const { 4351 // C++ [except.throw]p3: 4352 // A throw-expression initializes a temporary object, called the exception 4353 // object, the type of which is determined by removing any top-level 4354 // cv-qualifiers from the static type of the operand of throw and adjusting 4355 // the type from "array of T" or "function returning T" to "pointer to T" 4356 // or "pointer to function returning T", [...] 4357 T = getVariableArrayDecayedType(T); 4358 if (T->isArrayType() || T->isFunctionType()) 4359 T = getDecayedType(T); 4360 return T.getUnqualifiedType(); 4361 } 4362 4363 /// getArrayDecayedType - Return the properly qualified result of decaying the 4364 /// specified array type to a pointer. This operation is non-trivial when 4365 /// handling typedefs etc. The canonical type of "T" must be an array type, 4366 /// this returns a pointer to a properly qualified element of the array. 4367 /// 4368 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3. 4369 QualType ASTContext::getArrayDecayedType(QualType Ty) const { 4370 // Get the element type with 'getAsArrayType' so that we don't lose any 4371 // typedefs in the element type of the array. This also handles propagation 4372 // of type qualifiers from the array type into the element type if present 4373 // (C99 6.7.3p8). 4374 const ArrayType *PrettyArrayType = getAsArrayType(Ty); 4375 assert(PrettyArrayType && "Not an array type!"); 4376 4377 QualType PtrTy = getPointerType(PrettyArrayType->getElementType()); 4378 4379 // int x[restrict 4] -> int *restrict 4380 return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers()); 4381 } 4382 4383 QualType ASTContext::getBaseElementType(const ArrayType *array) const { 4384 return getBaseElementType(array->getElementType()); 4385 } 4386 4387 QualType ASTContext::getBaseElementType(QualType type) const { 4388 Qualifiers qs; 4389 while (true) { 4390 SplitQualType split = type.getSplitDesugaredType(); 4391 const ArrayType *array = split.Ty->getAsArrayTypeUnsafe(); 4392 if (!array) break; 4393 4394 type = array->getElementType(); 4395 qs.addConsistentQualifiers(split.Quals); 4396 } 4397 4398 return getQualifiedType(type, qs); 4399 } 4400 4401 /// getConstantArrayElementCount - Returns number of constant array elements. 4402 uint64_t 4403 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const { 4404 uint64_t ElementCount = 1; 4405 do { 4406 ElementCount *= CA->getSize().getZExtValue(); 4407 CA = dyn_cast_or_null<ConstantArrayType>( 4408 CA->getElementType()->getAsArrayTypeUnsafe()); 4409 } while (CA); 4410 return ElementCount; 4411 } 4412 4413 /// getFloatingRank - Return a relative rank for floating point types. 4414 /// This routine will assert if passed a built-in type that isn't a float. 4415 static FloatingRank getFloatingRank(QualType T) { 4416 if (const ComplexType *CT = T->getAs<ComplexType>()) 4417 return getFloatingRank(CT->getElementType()); 4418 4419 assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type"); 4420 switch (T->getAs<BuiltinType>()->getKind()) { 4421 default: llvm_unreachable("getFloatingRank(): not a floating type"); 4422 case BuiltinType::Half: return HalfRank; 4423 case BuiltinType::Float: return FloatRank; 4424 case BuiltinType::Double: return DoubleRank; 4425 case BuiltinType::LongDouble: return LongDoubleRank; 4426 } 4427 } 4428 4429 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating 4430 /// point or a complex type (based on typeDomain/typeSize). 4431 /// 'typeDomain' is a real floating point or complex type. 4432 /// 'typeSize' is a real floating point or complex type. 4433 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size, 4434 QualType Domain) const { 4435 FloatingRank EltRank = getFloatingRank(Size); 4436 if (Domain->isComplexType()) { 4437 switch (EltRank) { 4438 case HalfRank: llvm_unreachable("Complex half is not supported"); 4439 case FloatRank: return FloatComplexTy; 4440 case DoubleRank: return DoubleComplexTy; 4441 case LongDoubleRank: return LongDoubleComplexTy; 4442 } 4443 } 4444 4445 assert(Domain->isRealFloatingType() && "Unknown domain!"); 4446 switch (EltRank) { 4447 case HalfRank: return HalfTy; 4448 case FloatRank: return FloatTy; 4449 case DoubleRank: return DoubleTy; 4450 case LongDoubleRank: return LongDoubleTy; 4451 } 4452 llvm_unreachable("getFloatingRank(): illegal value for rank"); 4453 } 4454 4455 /// getFloatingTypeOrder - Compare the rank of the two specified floating 4456 /// point types, ignoring the domain of the type (i.e. 'double' == 4457 /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If 4458 /// LHS < RHS, return -1. 4459 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const { 4460 FloatingRank LHSR = getFloatingRank(LHS); 4461 FloatingRank RHSR = getFloatingRank(RHS); 4462 4463 if (LHSR == RHSR) 4464 return 0; 4465 if (LHSR > RHSR) 4466 return 1; 4467 return -1; 4468 } 4469 4470 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This 4471 /// routine will assert if passed a built-in type that isn't an integer or enum, 4472 /// or if it is not canonicalized. 4473 unsigned ASTContext::getIntegerRank(const Type *T) const { 4474 assert(T->isCanonicalUnqualified() && "T should be canonicalized"); 4475 4476 switch (cast<BuiltinType>(T)->getKind()) { 4477 default: llvm_unreachable("getIntegerRank(): not a built-in integer"); 4478 case BuiltinType::Bool: 4479 return 1 + (getIntWidth(BoolTy) << 3); 4480 case BuiltinType::Char_S: 4481 case BuiltinType::Char_U: 4482 case BuiltinType::SChar: 4483 case BuiltinType::UChar: 4484 return 2 + (getIntWidth(CharTy) << 3); 4485 case BuiltinType::Short: 4486 case BuiltinType::UShort: 4487 return 3 + (getIntWidth(ShortTy) << 3); 4488 case BuiltinType::Int: 4489 case BuiltinType::UInt: 4490 return 4 + (getIntWidth(IntTy) << 3); 4491 case BuiltinType::Long: 4492 case BuiltinType::ULong: 4493 return 5 + (getIntWidth(LongTy) << 3); 4494 case BuiltinType::LongLong: 4495 case BuiltinType::ULongLong: 4496 return 6 + (getIntWidth(LongLongTy) << 3); 4497 case BuiltinType::Int128: 4498 case BuiltinType::UInt128: 4499 return 7 + (getIntWidth(Int128Ty) << 3); 4500 } 4501 } 4502 4503 /// \brief Whether this is a promotable bitfield reference according 4504 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions). 4505 /// 4506 /// \returns the type this bit-field will promote to, or NULL if no 4507 /// promotion occurs. 4508 QualType ASTContext::isPromotableBitField(Expr *E) const { 4509 if (E->isTypeDependent() || E->isValueDependent()) 4510 return QualType(); 4511 4512 // FIXME: We should not do this unless E->refersToBitField() is true. This 4513 // matters in C where getSourceBitField() will find bit-fields for various 4514 // cases where the source expression is not a bit-field designator. 4515 4516 FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields? 4517 if (!Field) 4518 return QualType(); 4519 4520 QualType FT = Field->getType(); 4521 4522 uint64_t BitWidth = Field->getBitWidthValue(*this); 4523 uint64_t IntSize = getTypeSize(IntTy); 4524 // C++ [conv.prom]p5: 4525 // A prvalue for an integral bit-field can be converted to a prvalue of type 4526 // int if int can represent all the values of the bit-field; otherwise, it 4527 // can be converted to unsigned int if unsigned int can represent all the 4528 // values of the bit-field. If the bit-field is larger yet, no integral 4529 // promotion applies to it. 4530 // C11 6.3.1.1/2: 4531 // [For a bit-field of type _Bool, int, signed int, or unsigned int:] 4532 // If an int can represent all values of the original type (as restricted by 4533 // the width, for a bit-field), the value is converted to an int; otherwise, 4534 // it is converted to an unsigned int. 4535 // 4536 // FIXME: C does not permit promotion of a 'long : 3' bitfield to int. 4537 // We perform that promotion here to match GCC and C++. 4538 if (BitWidth < IntSize) 4539 return IntTy; 4540 4541 if (BitWidth == IntSize) 4542 return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy; 4543 4544 // Types bigger than int are not subject to promotions, and therefore act 4545 // like the base type. GCC has some weird bugs in this area that we 4546 // deliberately do not follow (GCC follows a pre-standard resolution to 4547 // C's DR315 which treats bit-width as being part of the type, and this leaks 4548 // into their semantics in some cases). 4549 return QualType(); 4550 } 4551 4552 /// getPromotedIntegerType - Returns the type that Promotable will 4553 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable 4554 /// integer type. 4555 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const { 4556 assert(!Promotable.isNull()); 4557 assert(Promotable->isPromotableIntegerType()); 4558 if (const EnumType *ET = Promotable->getAs<EnumType>()) 4559 return ET->getDecl()->getPromotionType(); 4560 4561 if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) { 4562 // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t 4563 // (3.9.1) can be converted to a prvalue of the first of the following 4564 // types that can represent all the values of its underlying type: 4565 // int, unsigned int, long int, unsigned long int, long long int, or 4566 // unsigned long long int [...] 4567 // FIXME: Is there some better way to compute this? 4568 if (BT->getKind() == BuiltinType::WChar_S || 4569 BT->getKind() == BuiltinType::WChar_U || 4570 BT->getKind() == BuiltinType::Char16 || 4571 BT->getKind() == BuiltinType::Char32) { 4572 bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S; 4573 uint64_t FromSize = getTypeSize(BT); 4574 QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy, 4575 LongLongTy, UnsignedLongLongTy }; 4576 for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) { 4577 uint64_t ToSize = getTypeSize(PromoteTypes[Idx]); 4578 if (FromSize < ToSize || 4579 (FromSize == ToSize && 4580 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) 4581 return PromoteTypes[Idx]; 4582 } 4583 llvm_unreachable("char type should fit into long long"); 4584 } 4585 } 4586 4587 // At this point, we should have a signed or unsigned integer type. 4588 if (Promotable->isSignedIntegerType()) 4589 return IntTy; 4590 uint64_t PromotableSize = getIntWidth(Promotable); 4591 uint64_t IntSize = getIntWidth(IntTy); 4592 assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize); 4593 return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy; 4594 } 4595 4596 /// \brief Recurses in pointer/array types until it finds an objc retainable 4597 /// type and returns its ownership. 4598 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const { 4599 while (!T.isNull()) { 4600 if (T.getObjCLifetime() != Qualifiers::OCL_None) 4601 return T.getObjCLifetime(); 4602 if (T->isArrayType()) 4603 T = getBaseElementType(T); 4604 else if (const PointerType *PT = T->getAs<PointerType>()) 4605 T = PT->getPointeeType(); 4606 else if (const ReferenceType *RT = T->getAs<ReferenceType>()) 4607 T = RT->getPointeeType(); 4608 else 4609 break; 4610 } 4611 4612 return Qualifiers::OCL_None; 4613 } 4614 4615 static const Type *getIntegerTypeForEnum(const EnumType *ET) { 4616 // Incomplete enum types are not treated as integer types. 4617 // FIXME: In C++, enum types are never integer types. 4618 if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) 4619 return ET->getDecl()->getIntegerType().getTypePtr(); 4620 return nullptr; 4621 } 4622 4623 /// getIntegerTypeOrder - Returns the highest ranked integer type: 4624 /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If 4625 /// LHS < RHS, return -1. 4626 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const { 4627 const Type *LHSC = getCanonicalType(LHS).getTypePtr(); 4628 const Type *RHSC = getCanonicalType(RHS).getTypePtr(); 4629 4630 // Unwrap enums to their underlying type. 4631 if (const EnumType *ET = dyn_cast<EnumType>(LHSC)) 4632 LHSC = getIntegerTypeForEnum(ET); 4633 if (const EnumType *ET = dyn_cast<EnumType>(RHSC)) 4634 RHSC = getIntegerTypeForEnum(ET); 4635 4636 if (LHSC == RHSC) return 0; 4637 4638 bool LHSUnsigned = LHSC->isUnsignedIntegerType(); 4639 bool RHSUnsigned = RHSC->isUnsignedIntegerType(); 4640 4641 unsigned LHSRank = getIntegerRank(LHSC); 4642 unsigned RHSRank = getIntegerRank(RHSC); 4643 4644 if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned. 4645 if (LHSRank == RHSRank) return 0; 4646 return LHSRank > RHSRank ? 1 : -1; 4647 } 4648 4649 // Otherwise, the LHS is signed and the RHS is unsigned or visa versa. 4650 if (LHSUnsigned) { 4651 // If the unsigned [LHS] type is larger, return it. 4652 if (LHSRank >= RHSRank) 4653 return 1; 4654 4655 // If the signed type can represent all values of the unsigned type, it 4656 // wins. Because we are dealing with 2's complement and types that are 4657 // powers of two larger than each other, this is always safe. 4658 return -1; 4659 } 4660 4661 // If the unsigned [RHS] type is larger, return it. 4662 if (RHSRank >= LHSRank) 4663 return -1; 4664 4665 // If the signed type can represent all values of the unsigned type, it 4666 // wins. Because we are dealing with 2's complement and types that are 4667 // powers of two larger than each other, this is always safe. 4668 return 1; 4669 } 4670 4671 // getCFConstantStringType - Return the type used for constant CFStrings. 4672 QualType ASTContext::getCFConstantStringType() const { 4673 if (!CFConstantStringTypeDecl) { 4674 CFConstantStringTypeDecl = buildImplicitRecord("NSConstantString"); 4675 CFConstantStringTypeDecl->startDefinition(); 4676 4677 QualType FieldTypes[4]; 4678 4679 // const int *isa; 4680 FieldTypes[0] = getPointerType(IntTy.withConst()); 4681 // int flags; 4682 FieldTypes[1] = IntTy; 4683 // const char *str; 4684 FieldTypes[2] = getPointerType(CharTy.withConst()); 4685 // long length; 4686 FieldTypes[3] = LongTy; 4687 4688 // Create fields 4689 for (unsigned i = 0; i < 4; ++i) { 4690 FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl, 4691 SourceLocation(), 4692 SourceLocation(), nullptr, 4693 FieldTypes[i], /*TInfo=*/nullptr, 4694 /*BitWidth=*/nullptr, 4695 /*Mutable=*/false, 4696 ICIS_NoInit); 4697 Field->setAccess(AS_public); 4698 CFConstantStringTypeDecl->addDecl(Field); 4699 } 4700 4701 CFConstantStringTypeDecl->completeDefinition(); 4702 } 4703 4704 return getTagDeclType(CFConstantStringTypeDecl); 4705 } 4706 4707 QualType ASTContext::getObjCSuperType() const { 4708 if (ObjCSuperType.isNull()) { 4709 RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super"); 4710 TUDecl->addDecl(ObjCSuperTypeDecl); 4711 ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl); 4712 } 4713 return ObjCSuperType; 4714 } 4715 4716 void ASTContext::setCFConstantStringType(QualType T) { 4717 const RecordType *Rec = T->getAs<RecordType>(); 4718 assert(Rec && "Invalid CFConstantStringType"); 4719 CFConstantStringTypeDecl = Rec->getDecl(); 4720 } 4721 4722 QualType ASTContext::getBlockDescriptorType() const { 4723 if (BlockDescriptorType) 4724 return getTagDeclType(BlockDescriptorType); 4725 4726 RecordDecl *RD; 4727 // FIXME: Needs the FlagAppleBlock bit. 4728 RD = buildImplicitRecord("__block_descriptor"); 4729 RD->startDefinition(); 4730 4731 QualType FieldTypes[] = { 4732 UnsignedLongTy, 4733 UnsignedLongTy, 4734 }; 4735 4736 static const char *const FieldNames[] = { 4737 "reserved", 4738 "Size" 4739 }; 4740 4741 for (size_t i = 0; i < 2; ++i) { 4742 FieldDecl *Field = FieldDecl::Create( 4743 *this, RD, SourceLocation(), SourceLocation(), 4744 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, 4745 /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit); 4746 Field->setAccess(AS_public); 4747 RD->addDecl(Field); 4748 } 4749 4750 RD->completeDefinition(); 4751 4752 BlockDescriptorType = RD; 4753 4754 return getTagDeclType(BlockDescriptorType); 4755 } 4756 4757 QualType ASTContext::getBlockDescriptorExtendedType() const { 4758 if (BlockDescriptorExtendedType) 4759 return getTagDeclType(BlockDescriptorExtendedType); 4760 4761 RecordDecl *RD; 4762 // FIXME: Needs the FlagAppleBlock bit. 4763 RD = buildImplicitRecord("__block_descriptor_withcopydispose"); 4764 RD->startDefinition(); 4765 4766 QualType FieldTypes[] = { 4767 UnsignedLongTy, 4768 UnsignedLongTy, 4769 getPointerType(VoidPtrTy), 4770 getPointerType(VoidPtrTy) 4771 }; 4772 4773 static const char *const FieldNames[] = { 4774 "reserved", 4775 "Size", 4776 "CopyFuncPtr", 4777 "DestroyFuncPtr" 4778 }; 4779 4780 for (size_t i = 0; i < 4; ++i) { 4781 FieldDecl *Field = FieldDecl::Create( 4782 *this, RD, SourceLocation(), SourceLocation(), 4783 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, 4784 /*BitWidth=*/nullptr, 4785 /*Mutable=*/false, ICIS_NoInit); 4786 Field->setAccess(AS_public); 4787 RD->addDecl(Field); 4788 } 4789 4790 RD->completeDefinition(); 4791 4792 BlockDescriptorExtendedType = RD; 4793 return getTagDeclType(BlockDescriptorExtendedType); 4794 } 4795 4796 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty" 4797 /// requires copy/dispose. Note that this must match the logic 4798 /// in buildByrefHelpers. 4799 bool ASTContext::BlockRequiresCopying(QualType Ty, 4800 const VarDecl *D) { 4801 if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) { 4802 const Expr *copyExpr = getBlockVarCopyInits(D); 4803 if (!copyExpr && record->hasTrivialDestructor()) return false; 4804 4805 return true; 4806 } 4807 4808 if (!Ty->isObjCRetainableType()) return false; 4809 4810 Qualifiers qs = Ty.getQualifiers(); 4811 4812 // If we have lifetime, that dominates. 4813 if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) { 4814 assert(getLangOpts().ObjCAutoRefCount); 4815 4816 switch (lifetime) { 4817 case Qualifiers::OCL_None: llvm_unreachable("impossible"); 4818 4819 // These are just bits as far as the runtime is concerned. 4820 case Qualifiers::OCL_ExplicitNone: 4821 case Qualifiers::OCL_Autoreleasing: 4822 return false; 4823 4824 // Tell the runtime that this is ARC __weak, called by the 4825 // byref routines. 4826 case Qualifiers::OCL_Weak: 4827 // ARC __strong __block variables need to be retained. 4828 case Qualifiers::OCL_Strong: 4829 return true; 4830 } 4831 llvm_unreachable("fell out of lifetime switch!"); 4832 } 4833 return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) || 4834 Ty->isObjCObjectPointerType()); 4835 } 4836 4837 bool ASTContext::getByrefLifetime(QualType Ty, 4838 Qualifiers::ObjCLifetime &LifeTime, 4839 bool &HasByrefExtendedLayout) const { 4840 4841 if (!getLangOpts().ObjC1 || 4842 getLangOpts().getGC() != LangOptions::NonGC) 4843 return false; 4844 4845 HasByrefExtendedLayout = false; 4846 if (Ty->isRecordType()) { 4847 HasByrefExtendedLayout = true; 4848 LifeTime = Qualifiers::OCL_None; 4849 } 4850 else if (getLangOpts().ObjCAutoRefCount) 4851 LifeTime = Ty.getObjCLifetime(); 4852 // MRR. 4853 else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) 4854 LifeTime = Qualifiers::OCL_ExplicitNone; 4855 else 4856 LifeTime = Qualifiers::OCL_None; 4857 return true; 4858 } 4859 4860 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() { 4861 if (!ObjCInstanceTypeDecl) 4862 ObjCInstanceTypeDecl = 4863 buildImplicitTypedef(getObjCIdType(), "instancetype"); 4864 return ObjCInstanceTypeDecl; 4865 } 4866 4867 // This returns true if a type has been typedefed to BOOL: 4868 // typedef <type> BOOL; 4869 static bool isTypeTypedefedAsBOOL(QualType T) { 4870 if (const TypedefType *TT = dyn_cast<TypedefType>(T)) 4871 if (IdentifierInfo *II = TT->getDecl()->getIdentifier()) 4872 return II->isStr("BOOL"); 4873 4874 return false; 4875 } 4876 4877 /// getObjCEncodingTypeSize returns size of type for objective-c encoding 4878 /// purpose. 4879 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const { 4880 if (!type->isIncompleteArrayType() && type->isIncompleteType()) 4881 return CharUnits::Zero(); 4882 4883 CharUnits sz = getTypeSizeInChars(type); 4884 4885 // Make all integer and enum types at least as large as an int 4886 if (sz.isPositive() && type->isIntegralOrEnumerationType()) 4887 sz = std::max(sz, getTypeSizeInChars(IntTy)); 4888 // Treat arrays as pointers, since that's how they're passed in. 4889 else if (type->isArrayType()) 4890 sz = getTypeSizeInChars(VoidPtrTy); 4891 return sz; 4892 } 4893 4894 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const { 4895 return getLangOpts().MSVCCompat && VD->isStaticDataMember() && 4896 VD->getType()->isIntegralOrEnumerationType() && 4897 !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit(); 4898 } 4899 4900 static inline 4901 std::string charUnitsToString(const CharUnits &CU) { 4902 return llvm::itostr(CU.getQuantity()); 4903 } 4904 4905 /// getObjCEncodingForBlock - Return the encoded type for this block 4906 /// declaration. 4907 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const { 4908 std::string S; 4909 4910 const BlockDecl *Decl = Expr->getBlockDecl(); 4911 QualType BlockTy = 4912 Expr->getType()->getAs<BlockPointerType>()->getPointeeType(); 4913 // Encode result type. 4914 if (getLangOpts().EncodeExtendedBlockSig) 4915 getObjCEncodingForMethodParameter( 4916 Decl::OBJC_TQ_None, BlockTy->getAs<FunctionType>()->getReturnType(), S, 4917 true /*Extended*/); 4918 else 4919 getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getReturnType(), S); 4920 // Compute size of all parameters. 4921 // Start with computing size of a pointer in number of bytes. 4922 // FIXME: There might(should) be a better way of doing this computation! 4923 SourceLocation Loc; 4924 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); 4925 CharUnits ParmOffset = PtrSize; 4926 for (auto PI : Decl->params()) { 4927 QualType PType = PI->getType(); 4928 CharUnits sz = getObjCEncodingTypeSize(PType); 4929 if (sz.isZero()) 4930 continue; 4931 assert (sz.isPositive() && "BlockExpr - Incomplete param type"); 4932 ParmOffset += sz; 4933 } 4934 // Size of the argument frame 4935 S += charUnitsToString(ParmOffset); 4936 // Block pointer and offset. 4937 S += "@?0"; 4938 4939 // Argument types. 4940 ParmOffset = PtrSize; 4941 for (auto PVDecl : Decl->params()) { 4942 QualType PType = PVDecl->getOriginalType(); 4943 if (const ArrayType *AT = 4944 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { 4945 // Use array's original type only if it has known number of 4946 // elements. 4947 if (!isa<ConstantArrayType>(AT)) 4948 PType = PVDecl->getType(); 4949 } else if (PType->isFunctionType()) 4950 PType = PVDecl->getType(); 4951 if (getLangOpts().EncodeExtendedBlockSig) 4952 getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType, 4953 S, true /*Extended*/); 4954 else 4955 getObjCEncodingForType(PType, S); 4956 S += charUnitsToString(ParmOffset); 4957 ParmOffset += getObjCEncodingTypeSize(PType); 4958 } 4959 4960 return S; 4961 } 4962 4963 bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, 4964 std::string& S) { 4965 // Encode result type. 4966 getObjCEncodingForType(Decl->getReturnType(), S); 4967 CharUnits ParmOffset; 4968 // Compute size of all parameters. 4969 for (auto PI : Decl->params()) { 4970 QualType PType = PI->getType(); 4971 CharUnits sz = getObjCEncodingTypeSize(PType); 4972 if (sz.isZero()) 4973 continue; 4974 4975 assert (sz.isPositive() && 4976 "getObjCEncodingForFunctionDecl - Incomplete param type"); 4977 ParmOffset += sz; 4978 } 4979 S += charUnitsToString(ParmOffset); 4980 ParmOffset = CharUnits::Zero(); 4981 4982 // Argument types. 4983 for (auto PVDecl : Decl->params()) { 4984 QualType PType = PVDecl->getOriginalType(); 4985 if (const ArrayType *AT = 4986 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { 4987 // Use array's original type only if it has known number of 4988 // elements. 4989 if (!isa<ConstantArrayType>(AT)) 4990 PType = PVDecl->getType(); 4991 } else if (PType->isFunctionType()) 4992 PType = PVDecl->getType(); 4993 getObjCEncodingForType(PType, S); 4994 S += charUnitsToString(ParmOffset); 4995 ParmOffset += getObjCEncodingTypeSize(PType); 4996 } 4997 4998 return false; 4999 } 5000 5001 /// getObjCEncodingForMethodParameter - Return the encoded type for a single 5002 /// method parameter or return type. If Extended, include class names and 5003 /// block object types. 5004 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT, 5005 QualType T, std::string& S, 5006 bool Extended) const { 5007 // Encode type qualifer, 'in', 'inout', etc. for the parameter. 5008 getObjCEncodingForTypeQualifier(QT, S); 5009 // Encode parameter type. 5010 getObjCEncodingForTypeImpl(T, S, true, true, nullptr, 5011 true /*OutermostType*/, 5012 false /*EncodingProperty*/, 5013 false /*StructField*/, 5014 Extended /*EncodeBlockParameters*/, 5015 Extended /*EncodeClassNames*/); 5016 } 5017 5018 /// getObjCEncodingForMethodDecl - Return the encoded type for this method 5019 /// declaration. 5020 bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, 5021 std::string& S, 5022 bool Extended) const { 5023 // FIXME: This is not very efficient. 5024 // Encode return type. 5025 getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(), 5026 Decl->getReturnType(), S, Extended); 5027 // Compute size of all parameters. 5028 // Start with computing size of a pointer in number of bytes. 5029 // FIXME: There might(should) be a better way of doing this computation! 5030 SourceLocation Loc; 5031 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); 5032 // The first two arguments (self and _cmd) are pointers; account for 5033 // their size. 5034 CharUnits ParmOffset = 2 * PtrSize; 5035 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), 5036 E = Decl->sel_param_end(); PI != E; ++PI) { 5037 QualType PType = (*PI)->getType(); 5038 CharUnits sz = getObjCEncodingTypeSize(PType); 5039 if (sz.isZero()) 5040 continue; 5041 5042 assert (sz.isPositive() && 5043 "getObjCEncodingForMethodDecl - Incomplete param type"); 5044 ParmOffset += sz; 5045 } 5046 S += charUnitsToString(ParmOffset); 5047 S += "@0:"; 5048 S += charUnitsToString(PtrSize); 5049 5050 // Argument types. 5051 ParmOffset = 2 * PtrSize; 5052 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), 5053 E = Decl->sel_param_end(); PI != E; ++PI) { 5054 const ParmVarDecl *PVDecl = *PI; 5055 QualType PType = PVDecl->getOriginalType(); 5056 if (const ArrayType *AT = 5057 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { 5058 // Use array's original type only if it has known number of 5059 // elements. 5060 if (!isa<ConstantArrayType>(AT)) 5061 PType = PVDecl->getType(); 5062 } else if (PType->isFunctionType()) 5063 PType = PVDecl->getType(); 5064 getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(), 5065 PType, S, Extended); 5066 S += charUnitsToString(ParmOffset); 5067 ParmOffset += getObjCEncodingTypeSize(PType); 5068 } 5069 5070 return false; 5071 } 5072 5073 ObjCPropertyImplDecl * 5074 ASTContext::getObjCPropertyImplDeclForPropertyDecl( 5075 const ObjCPropertyDecl *PD, 5076 const Decl *Container) const { 5077 if (!Container) 5078 return nullptr; 5079 if (const ObjCCategoryImplDecl *CID = 5080 dyn_cast<ObjCCategoryImplDecl>(Container)) { 5081 for (auto *PID : CID->property_impls()) 5082 if (PID->getPropertyDecl() == PD) 5083 return PID; 5084 } else { 5085 const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container); 5086 for (auto *PID : OID->property_impls()) 5087 if (PID->getPropertyDecl() == PD) 5088 return PID; 5089 } 5090 return nullptr; 5091 } 5092 5093 /// getObjCEncodingForPropertyDecl - Return the encoded type for this 5094 /// property declaration. If non-NULL, Container must be either an 5095 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be 5096 /// NULL when getting encodings for protocol properties. 5097 /// Property attributes are stored as a comma-delimited C string. The simple 5098 /// attributes readonly and bycopy are encoded as single characters. The 5099 /// parametrized attributes, getter=name, setter=name, and ivar=name, are 5100 /// encoded as single characters, followed by an identifier. Property types 5101 /// are also encoded as a parametrized attribute. The characters used to encode 5102 /// these attributes are defined by the following enumeration: 5103 /// @code 5104 /// enum PropertyAttributes { 5105 /// kPropertyReadOnly = 'R', // property is read-only. 5106 /// kPropertyBycopy = 'C', // property is a copy of the value last assigned 5107 /// kPropertyByref = '&', // property is a reference to the value last assigned 5108 /// kPropertyDynamic = 'D', // property is dynamic 5109 /// kPropertyGetter = 'G', // followed by getter selector name 5110 /// kPropertySetter = 'S', // followed by setter selector name 5111 /// kPropertyInstanceVariable = 'V' // followed by instance variable name 5112 /// kPropertyType = 'T' // followed by old-style type encoding. 5113 /// kPropertyWeak = 'W' // 'weak' property 5114 /// kPropertyStrong = 'P' // property GC'able 5115 /// kPropertyNonAtomic = 'N' // property non-atomic 5116 /// }; 5117 /// @endcode 5118 void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, 5119 const Decl *Container, 5120 std::string& S) const { 5121 // Collect information from the property implementation decl(s). 5122 bool Dynamic = false; 5123 ObjCPropertyImplDecl *SynthesizePID = nullptr; 5124 5125 if (ObjCPropertyImplDecl *PropertyImpDecl = 5126 getObjCPropertyImplDeclForPropertyDecl(PD, Container)) { 5127 if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic) 5128 Dynamic = true; 5129 else 5130 SynthesizePID = PropertyImpDecl; 5131 } 5132 5133 // FIXME: This is not very efficient. 5134 S = "T"; 5135 5136 // Encode result type. 5137 // GCC has some special rules regarding encoding of properties which 5138 // closely resembles encoding of ivars. 5139 getObjCEncodingForPropertyType(PD->getType(), S); 5140 5141 if (PD->isReadOnly()) { 5142 S += ",R"; 5143 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy) 5144 S += ",C"; 5145 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain) 5146 S += ",&"; 5147 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak) 5148 S += ",W"; 5149 } else { 5150 switch (PD->getSetterKind()) { 5151 case ObjCPropertyDecl::Assign: break; 5152 case ObjCPropertyDecl::Copy: S += ",C"; break; 5153 case ObjCPropertyDecl::Retain: S += ",&"; break; 5154 case ObjCPropertyDecl::Weak: S += ",W"; break; 5155 } 5156 } 5157 5158 // It really isn't clear at all what this means, since properties 5159 // are "dynamic by default". 5160 if (Dynamic) 5161 S += ",D"; 5162 5163 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic) 5164 S += ",N"; 5165 5166 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) { 5167 S += ",G"; 5168 S += PD->getGetterName().getAsString(); 5169 } 5170 5171 if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) { 5172 S += ",S"; 5173 S += PD->getSetterName().getAsString(); 5174 } 5175 5176 if (SynthesizePID) { 5177 const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl(); 5178 S += ",V"; 5179 S += OID->getNameAsString(); 5180 } 5181 5182 // FIXME: OBJCGC: weak & strong 5183 } 5184 5185 /// getLegacyIntegralTypeEncoding - 5186 /// Another legacy compatibility encoding: 32-bit longs are encoded as 5187 /// 'l' or 'L' , but not always. For typedefs, we need to use 5188 /// 'i' or 'I' instead if encoding a struct field, or a pointer! 5189 /// 5190 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const { 5191 if (isa<TypedefType>(PointeeTy.getTypePtr())) { 5192 if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) { 5193 if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32) 5194 PointeeTy = UnsignedIntTy; 5195 else 5196 if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32) 5197 PointeeTy = IntTy; 5198 } 5199 } 5200 } 5201 5202 void ASTContext::getObjCEncodingForType(QualType T, std::string& S, 5203 const FieldDecl *Field, 5204 QualType *NotEncodedT) const { 5205 // We follow the behavior of gcc, expanding structures which are 5206 // directly pointed to, and expanding embedded structures. Note that 5207 // these rules are sufficient to prevent recursive encoding of the 5208 // same type. 5209 getObjCEncodingForTypeImpl(T, S, true, true, Field, 5210 true /* outermost type */, false, false, 5211 false, false, false, NotEncodedT); 5212 } 5213 5214 void ASTContext::getObjCEncodingForPropertyType(QualType T, 5215 std::string& S) const { 5216 // Encode result type. 5217 // GCC has some special rules regarding encoding of properties which 5218 // closely resembles encoding of ivars. 5219 getObjCEncodingForTypeImpl(T, S, true, true, nullptr, 5220 true /* outermost type */, 5221 true /* encoding property */); 5222 } 5223 5224 static char getObjCEncodingForPrimitiveKind(const ASTContext *C, 5225 BuiltinType::Kind kind) { 5226 switch (kind) { 5227 case BuiltinType::Void: return 'v'; 5228 case BuiltinType::Bool: return 'B'; 5229 case BuiltinType::Char_U: 5230 case BuiltinType::UChar: return 'C'; 5231 case BuiltinType::Char16: 5232 case BuiltinType::UShort: return 'S'; 5233 case BuiltinType::Char32: 5234 case BuiltinType::UInt: return 'I'; 5235 case BuiltinType::ULong: 5236 return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q'; 5237 case BuiltinType::UInt128: return 'T'; 5238 case BuiltinType::ULongLong: return 'Q'; 5239 case BuiltinType::Char_S: 5240 case BuiltinType::SChar: return 'c'; 5241 case BuiltinType::Short: return 's'; 5242 case BuiltinType::WChar_S: 5243 case BuiltinType::WChar_U: 5244 case BuiltinType::Int: return 'i'; 5245 case BuiltinType::Long: 5246 return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q'; 5247 case BuiltinType::LongLong: return 'q'; 5248 case BuiltinType::Int128: return 't'; 5249 case BuiltinType::Float: return 'f'; 5250 case BuiltinType::Double: return 'd'; 5251 case BuiltinType::LongDouble: return 'D'; 5252 case BuiltinType::NullPtr: return '*'; // like char* 5253 5254 case BuiltinType::Half: 5255 // FIXME: potentially need @encodes for these! 5256 return ' '; 5257 5258 case BuiltinType::ObjCId: 5259 case BuiltinType::ObjCClass: 5260 case BuiltinType::ObjCSel: 5261 llvm_unreachable("@encoding ObjC primitive type"); 5262 5263 // OpenCL and placeholder types don't need @encodings. 5264 case BuiltinType::OCLImage1d: 5265 case BuiltinType::OCLImage1dArray: 5266 case BuiltinType::OCLImage1dBuffer: 5267 case BuiltinType::OCLImage2d: 5268 case BuiltinType::OCLImage2dArray: 5269 case BuiltinType::OCLImage3d: 5270 case BuiltinType::OCLEvent: 5271 case BuiltinType::OCLSampler: 5272 case BuiltinType::Dependent: 5273 #define BUILTIN_TYPE(KIND, ID) 5274 #define PLACEHOLDER_TYPE(KIND, ID) \ 5275 case BuiltinType::KIND: 5276 #include "clang/AST/BuiltinTypes.def" 5277 llvm_unreachable("invalid builtin type for @encode"); 5278 } 5279 llvm_unreachable("invalid BuiltinType::Kind value"); 5280 } 5281 5282 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) { 5283 EnumDecl *Enum = ET->getDecl(); 5284 5285 // The encoding of an non-fixed enum type is always 'i', regardless of size. 5286 if (!Enum->isFixed()) 5287 return 'i'; 5288 5289 // The encoding of a fixed enum type matches its fixed underlying type. 5290 const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>(); 5291 return getObjCEncodingForPrimitiveKind(C, BT->getKind()); 5292 } 5293 5294 static void EncodeBitField(const ASTContext *Ctx, std::string& S, 5295 QualType T, const FieldDecl *FD) { 5296 assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl"); 5297 S += 'b'; 5298 // The NeXT runtime encodes bit fields as b followed by the number of bits. 5299 // The GNU runtime requires more information; bitfields are encoded as b, 5300 // then the offset (in bits) of the first element, then the type of the 5301 // bitfield, then the size in bits. For example, in this structure: 5302 // 5303 // struct 5304 // { 5305 // int integer; 5306 // int flags:2; 5307 // }; 5308 // On a 32-bit system, the encoding for flags would be b2 for the NeXT 5309 // runtime, but b32i2 for the GNU runtime. The reason for this extra 5310 // information is not especially sensible, but we're stuck with it for 5311 // compatibility with GCC, although providing it breaks anything that 5312 // actually uses runtime introspection and wants to work on both runtimes... 5313 if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) { 5314 const RecordDecl *RD = FD->getParent(); 5315 const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD); 5316 S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex())); 5317 if (const EnumType *ET = T->getAs<EnumType>()) 5318 S += ObjCEncodingForEnumType(Ctx, ET); 5319 else { 5320 const BuiltinType *BT = T->castAs<BuiltinType>(); 5321 S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind()); 5322 } 5323 } 5324 S += llvm::utostr(FD->getBitWidthValue(*Ctx)); 5325 } 5326 5327 // FIXME: Use SmallString for accumulating string. 5328 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S, 5329 bool ExpandPointedToStructures, 5330 bool ExpandStructures, 5331 const FieldDecl *FD, 5332 bool OutermostType, 5333 bool EncodingProperty, 5334 bool StructField, 5335 bool EncodeBlockParameters, 5336 bool EncodeClassNames, 5337 bool EncodePointerToObjCTypedef, 5338 QualType *NotEncodedT) const { 5339 CanQualType CT = getCanonicalType(T); 5340 switch (CT->getTypeClass()) { 5341 case Type::Builtin: 5342 case Type::Enum: 5343 if (FD && FD->isBitField()) 5344 return EncodeBitField(this, S, T, FD); 5345 if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT)) 5346 S += getObjCEncodingForPrimitiveKind(this, BT->getKind()); 5347 else 5348 S += ObjCEncodingForEnumType(this, cast<EnumType>(CT)); 5349 return; 5350 5351 case Type::Complex: { 5352 const ComplexType *CT = T->castAs<ComplexType>(); 5353 S += 'j'; 5354 getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, nullptr); 5355 return; 5356 } 5357 5358 case Type::Atomic: { 5359 const AtomicType *AT = T->castAs<AtomicType>(); 5360 S += 'A'; 5361 getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, nullptr); 5362 return; 5363 } 5364 5365 // encoding for pointer or reference types. 5366 case Type::Pointer: 5367 case Type::LValueReference: 5368 case Type::RValueReference: { 5369 QualType PointeeTy; 5370 if (isa<PointerType>(CT)) { 5371 const PointerType *PT = T->castAs<PointerType>(); 5372 if (PT->isObjCSelType()) { 5373 S += ':'; 5374 return; 5375 } 5376 PointeeTy = PT->getPointeeType(); 5377 } else { 5378 PointeeTy = T->castAs<ReferenceType>()->getPointeeType(); 5379 } 5380 5381 bool isReadOnly = false; 5382 // For historical/compatibility reasons, the read-only qualifier of the 5383 // pointee gets emitted _before_ the '^'. The read-only qualifier of 5384 // the pointer itself gets ignored, _unless_ we are looking at a typedef! 5385 // Also, do not emit the 'r' for anything but the outermost type! 5386 if (isa<TypedefType>(T.getTypePtr())) { 5387 if (OutermostType && T.isConstQualified()) { 5388 isReadOnly = true; 5389 S += 'r'; 5390 } 5391 } else if (OutermostType) { 5392 QualType P = PointeeTy; 5393 while (P->getAs<PointerType>()) 5394 P = P->getAs<PointerType>()->getPointeeType(); 5395 if (P.isConstQualified()) { 5396 isReadOnly = true; 5397 S += 'r'; 5398 } 5399 } 5400 if (isReadOnly) { 5401 // Another legacy compatibility encoding. Some ObjC qualifier and type 5402 // combinations need to be rearranged. 5403 // Rewrite "in const" from "nr" to "rn" 5404 if (StringRef(S).endswith("nr")) 5405 S.replace(S.end()-2, S.end(), "rn"); 5406 } 5407 5408 if (PointeeTy->isCharType()) { 5409 // char pointer types should be encoded as '*' unless it is a 5410 // type that has been typedef'd to 'BOOL'. 5411 if (!isTypeTypedefedAsBOOL(PointeeTy)) { 5412 S += '*'; 5413 return; 5414 } 5415 } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) { 5416 // GCC binary compat: Need to convert "struct objc_class *" to "#". 5417 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) { 5418 S += '#'; 5419 return; 5420 } 5421 // GCC binary compat: Need to convert "struct objc_object *" to "@". 5422 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) { 5423 S += '@'; 5424 return; 5425 } 5426 // fall through... 5427 } 5428 S += '^'; 5429 getLegacyIntegralTypeEncoding(PointeeTy); 5430 5431 getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures, 5432 nullptr, false, false, false, false, false, false, 5433 NotEncodedT); 5434 return; 5435 } 5436 5437 case Type::ConstantArray: 5438 case Type::IncompleteArray: 5439 case Type::VariableArray: { 5440 const ArrayType *AT = cast<ArrayType>(CT); 5441 5442 if (isa<IncompleteArrayType>(AT) && !StructField) { 5443 // Incomplete arrays are encoded as a pointer to the array element. 5444 S += '^'; 5445 5446 getObjCEncodingForTypeImpl(AT->getElementType(), S, 5447 false, ExpandStructures, FD); 5448 } else { 5449 S += '['; 5450 5451 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 5452 S += llvm::utostr(CAT->getSize().getZExtValue()); 5453 else { 5454 //Variable length arrays are encoded as a regular array with 0 elements. 5455 assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) && 5456 "Unknown array type!"); 5457 S += '0'; 5458 } 5459 5460 getObjCEncodingForTypeImpl(AT->getElementType(), S, 5461 false, ExpandStructures, FD, 5462 false, false, false, false, false, false, 5463 NotEncodedT); 5464 S += ']'; 5465 } 5466 return; 5467 } 5468 5469 case Type::FunctionNoProto: 5470 case Type::FunctionProto: 5471 S += '?'; 5472 return; 5473 5474 case Type::Record: { 5475 RecordDecl *RDecl = cast<RecordType>(CT)->getDecl(); 5476 S += RDecl->isUnion() ? '(' : '{'; 5477 // Anonymous structures print as '?' 5478 if (const IdentifierInfo *II = RDecl->getIdentifier()) { 5479 S += II->getName(); 5480 if (ClassTemplateSpecializationDecl *Spec 5481 = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) { 5482 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 5483 llvm::raw_string_ostream OS(S); 5484 TemplateSpecializationType::PrintTemplateArgumentList(OS, 5485 TemplateArgs.data(), 5486 TemplateArgs.size(), 5487 (*this).getPrintingPolicy()); 5488 } 5489 } else { 5490 S += '?'; 5491 } 5492 if (ExpandStructures) { 5493 S += '='; 5494 if (!RDecl->isUnion()) { 5495 getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT); 5496 } else { 5497 for (const auto *Field : RDecl->fields()) { 5498 if (FD) { 5499 S += '"'; 5500 S += Field->getNameAsString(); 5501 S += '"'; 5502 } 5503 5504 // Special case bit-fields. 5505 if (Field->isBitField()) { 5506 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, 5507 Field); 5508 } else { 5509 QualType qt = Field->getType(); 5510 getLegacyIntegralTypeEncoding(qt); 5511 getObjCEncodingForTypeImpl(qt, S, false, true, 5512 FD, /*OutermostType*/false, 5513 /*EncodingProperty*/false, 5514 /*StructField*/true, 5515 false, false, false, NotEncodedT); 5516 } 5517 } 5518 } 5519 } 5520 S += RDecl->isUnion() ? ')' : '}'; 5521 return; 5522 } 5523 5524 case Type::BlockPointer: { 5525 const BlockPointerType *BT = T->castAs<BlockPointerType>(); 5526 S += "@?"; // Unlike a pointer-to-function, which is "^?". 5527 if (EncodeBlockParameters) { 5528 const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>(); 5529 5530 S += '<'; 5531 // Block return type 5532 getObjCEncodingForTypeImpl( 5533 FT->getReturnType(), S, ExpandPointedToStructures, ExpandStructures, 5534 FD, false /* OutermostType */, EncodingProperty, 5535 false /* StructField */, EncodeBlockParameters, EncodeClassNames, false, 5536 NotEncodedT); 5537 // Block self 5538 S += "@?"; 5539 // Block parameters 5540 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) { 5541 for (const auto &I : FPT->param_types()) 5542 getObjCEncodingForTypeImpl( 5543 I, S, ExpandPointedToStructures, ExpandStructures, FD, 5544 false /* OutermostType */, EncodingProperty, 5545 false /* StructField */, EncodeBlockParameters, EncodeClassNames, 5546 false, NotEncodedT); 5547 } 5548 S += '>'; 5549 } 5550 return; 5551 } 5552 5553 case Type::ObjCObject: { 5554 // hack to match legacy encoding of *id and *Class 5555 QualType Ty = getObjCObjectPointerType(CT); 5556 if (Ty->isObjCIdType()) { 5557 S += "{objc_object=}"; 5558 return; 5559 } 5560 else if (Ty->isObjCClassType()) { 5561 S += "{objc_class=}"; 5562 return; 5563 } 5564 } 5565 5566 case Type::ObjCInterface: { 5567 // Ignore protocol qualifiers when mangling at this level. 5568 T = T->castAs<ObjCObjectType>()->getBaseType(); 5569 5570 // The assumption seems to be that this assert will succeed 5571 // because nested levels will have filtered out 'id' and 'Class'. 5572 const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>(); 5573 // @encode(class_name) 5574 ObjCInterfaceDecl *OI = OIT->getDecl(); 5575 S += '{'; 5576 const IdentifierInfo *II = OI->getIdentifier(); 5577 S += II->getName(); 5578 S += '='; 5579 SmallVector<const ObjCIvarDecl*, 32> Ivars; 5580 DeepCollectObjCIvars(OI, true, Ivars); 5581 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { 5582 const FieldDecl *Field = cast<FieldDecl>(Ivars[i]); 5583 if (Field->isBitField()) 5584 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field); 5585 else 5586 getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD, 5587 false, false, false, false, false, 5588 EncodePointerToObjCTypedef, 5589 NotEncodedT); 5590 } 5591 S += '}'; 5592 return; 5593 } 5594 5595 case Type::ObjCObjectPointer: { 5596 const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>(); 5597 if (OPT->isObjCIdType()) { 5598 S += '@'; 5599 return; 5600 } 5601 5602 if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) { 5603 // FIXME: Consider if we need to output qualifiers for 'Class<p>'. 5604 // Since this is a binary compatibility issue, need to consult with runtime 5605 // folks. Fortunately, this is a *very* obsure construct. 5606 S += '#'; 5607 return; 5608 } 5609 5610 if (OPT->isObjCQualifiedIdType()) { 5611 getObjCEncodingForTypeImpl(getObjCIdType(), S, 5612 ExpandPointedToStructures, 5613 ExpandStructures, FD); 5614 if (FD || EncodingProperty || EncodeClassNames) { 5615 // Note that we do extended encoding of protocol qualifer list 5616 // Only when doing ivar or property encoding. 5617 S += '"'; 5618 for (const auto *I : OPT->quals()) { 5619 S += '<'; 5620 S += I->getNameAsString(); 5621 S += '>'; 5622 } 5623 S += '"'; 5624 } 5625 return; 5626 } 5627 5628 QualType PointeeTy = OPT->getPointeeType(); 5629 if (!EncodingProperty && 5630 isa<TypedefType>(PointeeTy.getTypePtr()) && 5631 !EncodePointerToObjCTypedef) { 5632 // Another historical/compatibility reason. 5633 // We encode the underlying type which comes out as 5634 // {...}; 5635 S += '^'; 5636 if (FD && OPT->getInterfaceDecl()) { 5637 // Prevent recursive encoding of fields in some rare cases. 5638 ObjCInterfaceDecl *OI = OPT->getInterfaceDecl(); 5639 SmallVector<const ObjCIvarDecl*, 32> Ivars; 5640 DeepCollectObjCIvars(OI, true, Ivars); 5641 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { 5642 if (cast<FieldDecl>(Ivars[i]) == FD) { 5643 S += '{'; 5644 S += OI->getIdentifier()->getName(); 5645 S += '}'; 5646 return; 5647 } 5648 } 5649 } 5650 getObjCEncodingForTypeImpl(PointeeTy, S, 5651 false, ExpandPointedToStructures, 5652 nullptr, 5653 false, false, false, false, false, 5654 /*EncodePointerToObjCTypedef*/true); 5655 return; 5656 } 5657 5658 S += '@'; 5659 if (OPT->getInterfaceDecl() && 5660 (FD || EncodingProperty || EncodeClassNames)) { 5661 S += '"'; 5662 S += OPT->getInterfaceDecl()->getIdentifier()->getName(); 5663 for (const auto *I : OPT->quals()) { 5664 S += '<'; 5665 S += I->getNameAsString(); 5666 S += '>'; 5667 } 5668 S += '"'; 5669 } 5670 return; 5671 } 5672 5673 // gcc just blithely ignores member pointers. 5674 // FIXME: we shoul do better than that. 'M' is available. 5675 case Type::MemberPointer: 5676 // This matches gcc's encoding, even though technically it is insufficient. 5677 //FIXME. We should do a better job than gcc. 5678 case Type::Vector: 5679 case Type::ExtVector: 5680 // Until we have a coherent encoding of these three types, issue warning. 5681 { if (NotEncodedT) 5682 *NotEncodedT = T; 5683 return; 5684 } 5685 5686 // We could see an undeduced auto type here during error recovery. 5687 // Just ignore it. 5688 case Type::Auto: 5689 return; 5690 5691 5692 #define ABSTRACT_TYPE(KIND, BASE) 5693 #define TYPE(KIND, BASE) 5694 #define DEPENDENT_TYPE(KIND, BASE) \ 5695 case Type::KIND: 5696 #define NON_CANONICAL_TYPE(KIND, BASE) \ 5697 case Type::KIND: 5698 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \ 5699 case Type::KIND: 5700 #include "clang/AST/TypeNodes.def" 5701 llvm_unreachable("@encode for dependent type!"); 5702 } 5703 llvm_unreachable("bad type kind!"); 5704 } 5705 5706 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl, 5707 std::string &S, 5708 const FieldDecl *FD, 5709 bool includeVBases, 5710 QualType *NotEncodedT) const { 5711 assert(RDecl && "Expected non-null RecordDecl"); 5712 assert(!RDecl->isUnion() && "Should not be called for unions"); 5713 if (!RDecl->getDefinition()) 5714 return; 5715 5716 CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl); 5717 std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets; 5718 const ASTRecordLayout &layout = getASTRecordLayout(RDecl); 5719 5720 if (CXXRec) { 5721 for (const auto &BI : CXXRec->bases()) { 5722 if (!BI.isVirtual()) { 5723 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); 5724 if (base->isEmpty()) 5725 continue; 5726 uint64_t offs = toBits(layout.getBaseClassOffset(base)); 5727 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), 5728 std::make_pair(offs, base)); 5729 } 5730 } 5731 } 5732 5733 unsigned i = 0; 5734 for (auto *Field : RDecl->fields()) { 5735 uint64_t offs = layout.getFieldOffset(i); 5736 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), 5737 std::make_pair(offs, Field)); 5738 ++i; 5739 } 5740 5741 if (CXXRec && includeVBases) { 5742 for (const auto &BI : CXXRec->vbases()) { 5743 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); 5744 if (base->isEmpty()) 5745 continue; 5746 uint64_t offs = toBits(layout.getVBaseClassOffset(base)); 5747 if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) && 5748 FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end()) 5749 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(), 5750 std::make_pair(offs, base)); 5751 } 5752 } 5753 5754 CharUnits size; 5755 if (CXXRec) { 5756 size = includeVBases ? layout.getSize() : layout.getNonVirtualSize(); 5757 } else { 5758 size = layout.getSize(); 5759 } 5760 5761 #ifndef NDEBUG 5762 uint64_t CurOffs = 0; 5763 #endif 5764 std::multimap<uint64_t, NamedDecl *>::iterator 5765 CurLayObj = FieldOrBaseOffsets.begin(); 5766 5767 if (CXXRec && CXXRec->isDynamicClass() && 5768 (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) { 5769 if (FD) { 5770 S += "\"_vptr$"; 5771 std::string recname = CXXRec->getNameAsString(); 5772 if (recname.empty()) recname = "?"; 5773 S += recname; 5774 S += '"'; 5775 } 5776 S += "^^?"; 5777 #ifndef NDEBUG 5778 CurOffs += getTypeSize(VoidPtrTy); 5779 #endif 5780 } 5781 5782 if (!RDecl->hasFlexibleArrayMember()) { 5783 // Mark the end of the structure. 5784 uint64_t offs = toBits(size); 5785 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), 5786 std::make_pair(offs, nullptr)); 5787 } 5788 5789 for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) { 5790 #ifndef NDEBUG 5791 assert(CurOffs <= CurLayObj->first); 5792 if (CurOffs < CurLayObj->first) { 5793 uint64_t padding = CurLayObj->first - CurOffs; 5794 // FIXME: There doesn't seem to be a way to indicate in the encoding that 5795 // packing/alignment of members is different that normal, in which case 5796 // the encoding will be out-of-sync with the real layout. 5797 // If the runtime switches to just consider the size of types without 5798 // taking into account alignment, we could make padding explicit in the 5799 // encoding (e.g. using arrays of chars). The encoding strings would be 5800 // longer then though. 5801 CurOffs += padding; 5802 } 5803 #endif 5804 5805 NamedDecl *dcl = CurLayObj->second; 5806 if (!dcl) 5807 break; // reached end of structure. 5808 5809 if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) { 5810 // We expand the bases without their virtual bases since those are going 5811 // in the initial structure. Note that this differs from gcc which 5812 // expands virtual bases each time one is encountered in the hierarchy, 5813 // making the encoding type bigger than it really is. 5814 getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false, 5815 NotEncodedT); 5816 assert(!base->isEmpty()); 5817 #ifndef NDEBUG 5818 CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize()); 5819 #endif 5820 } else { 5821 FieldDecl *field = cast<FieldDecl>(dcl); 5822 if (FD) { 5823 S += '"'; 5824 S += field->getNameAsString(); 5825 S += '"'; 5826 } 5827 5828 if (field->isBitField()) { 5829 EncodeBitField(this, S, field->getType(), field); 5830 #ifndef NDEBUG 5831 CurOffs += field->getBitWidthValue(*this); 5832 #endif 5833 } else { 5834 QualType qt = field->getType(); 5835 getLegacyIntegralTypeEncoding(qt); 5836 getObjCEncodingForTypeImpl(qt, S, false, true, FD, 5837 /*OutermostType*/false, 5838 /*EncodingProperty*/false, 5839 /*StructField*/true, 5840 false, false, false, NotEncodedT); 5841 #ifndef NDEBUG 5842 CurOffs += getTypeSize(field->getType()); 5843 #endif 5844 } 5845 } 5846 } 5847 } 5848 5849 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, 5850 std::string& S) const { 5851 if (QT & Decl::OBJC_TQ_In) 5852 S += 'n'; 5853 if (QT & Decl::OBJC_TQ_Inout) 5854 S += 'N'; 5855 if (QT & Decl::OBJC_TQ_Out) 5856 S += 'o'; 5857 if (QT & Decl::OBJC_TQ_Bycopy) 5858 S += 'O'; 5859 if (QT & Decl::OBJC_TQ_Byref) 5860 S += 'R'; 5861 if (QT & Decl::OBJC_TQ_Oneway) 5862 S += 'V'; 5863 } 5864 5865 TypedefDecl *ASTContext::getObjCIdDecl() const { 5866 if (!ObjCIdDecl) { 5867 QualType T = getObjCObjectType(ObjCBuiltinIdTy, nullptr, 0); 5868 T = getObjCObjectPointerType(T); 5869 ObjCIdDecl = buildImplicitTypedef(T, "id"); 5870 } 5871 return ObjCIdDecl; 5872 } 5873 5874 TypedefDecl *ASTContext::getObjCSelDecl() const { 5875 if (!ObjCSelDecl) { 5876 QualType T = getPointerType(ObjCBuiltinSelTy); 5877 ObjCSelDecl = buildImplicitTypedef(T, "SEL"); 5878 } 5879 return ObjCSelDecl; 5880 } 5881 5882 TypedefDecl *ASTContext::getObjCClassDecl() const { 5883 if (!ObjCClassDecl) { 5884 QualType T = getObjCObjectType(ObjCBuiltinClassTy, nullptr, 0); 5885 T = getObjCObjectPointerType(T); 5886 ObjCClassDecl = buildImplicitTypedef(T, "Class"); 5887 } 5888 return ObjCClassDecl; 5889 } 5890 5891 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const { 5892 if (!ObjCProtocolClassDecl) { 5893 ObjCProtocolClassDecl 5894 = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(), 5895 SourceLocation(), 5896 &Idents.get("Protocol"), 5897 /*PrevDecl=*/nullptr, 5898 SourceLocation(), true); 5899 } 5900 5901 return ObjCProtocolClassDecl; 5902 } 5903 5904 //===----------------------------------------------------------------------===// 5905 // __builtin_va_list Construction Functions 5906 //===----------------------------------------------------------------------===// 5907 5908 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) { 5909 // typedef char* __builtin_va_list; 5910 QualType T = Context->getPointerType(Context->CharTy); 5911 return Context->buildImplicitTypedef(T, "__builtin_va_list"); 5912 } 5913 5914 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) { 5915 // typedef void* __builtin_va_list; 5916 QualType T = Context->getPointerType(Context->VoidTy); 5917 return Context->buildImplicitTypedef(T, "__builtin_va_list"); 5918 } 5919 5920 static TypedefDecl * 5921 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) { 5922 // struct __va_list 5923 RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list"); 5924 if (Context->getLangOpts().CPlusPlus) { 5925 // namespace std { struct __va_list { 5926 NamespaceDecl *NS; 5927 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), 5928 Context->getTranslationUnitDecl(), 5929 /*Inline*/ false, SourceLocation(), 5930 SourceLocation(), &Context->Idents.get("std"), 5931 /*PrevDecl*/ nullptr); 5932 NS->setImplicit(); 5933 VaListTagDecl->setDeclContext(NS); 5934 } 5935 5936 VaListTagDecl->startDefinition(); 5937 5938 const size_t NumFields = 5; 5939 QualType FieldTypes[NumFields]; 5940 const char *FieldNames[NumFields]; 5941 5942 // void *__stack; 5943 FieldTypes[0] = Context->getPointerType(Context->VoidTy); 5944 FieldNames[0] = "__stack"; 5945 5946 // void *__gr_top; 5947 FieldTypes[1] = Context->getPointerType(Context->VoidTy); 5948 FieldNames[1] = "__gr_top"; 5949 5950 // void *__vr_top; 5951 FieldTypes[2] = Context->getPointerType(Context->VoidTy); 5952 FieldNames[2] = "__vr_top"; 5953 5954 // int __gr_offs; 5955 FieldTypes[3] = Context->IntTy; 5956 FieldNames[3] = "__gr_offs"; 5957 5958 // int __vr_offs; 5959 FieldTypes[4] = Context->IntTy; 5960 FieldNames[4] = "__vr_offs"; 5961 5962 // Create fields 5963 for (unsigned i = 0; i < NumFields; ++i) { 5964 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 5965 VaListTagDecl, 5966 SourceLocation(), 5967 SourceLocation(), 5968 &Context->Idents.get(FieldNames[i]), 5969 FieldTypes[i], /*TInfo=*/nullptr, 5970 /*BitWidth=*/nullptr, 5971 /*Mutable=*/false, 5972 ICIS_NoInit); 5973 Field->setAccess(AS_public); 5974 VaListTagDecl->addDecl(Field); 5975 } 5976 VaListTagDecl->completeDefinition(); 5977 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 5978 Context->VaListTagTy = VaListTagType; 5979 5980 // } __builtin_va_list; 5981 return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list"); 5982 } 5983 5984 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) { 5985 // typedef struct __va_list_tag { 5986 RecordDecl *VaListTagDecl; 5987 5988 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); 5989 VaListTagDecl->startDefinition(); 5990 5991 const size_t NumFields = 5; 5992 QualType FieldTypes[NumFields]; 5993 const char *FieldNames[NumFields]; 5994 5995 // unsigned char gpr; 5996 FieldTypes[0] = Context->UnsignedCharTy; 5997 FieldNames[0] = "gpr"; 5998 5999 // unsigned char fpr; 6000 FieldTypes[1] = Context->UnsignedCharTy; 6001 FieldNames[1] = "fpr"; 6002 6003 // unsigned short reserved; 6004 FieldTypes[2] = Context->UnsignedShortTy; 6005 FieldNames[2] = "reserved"; 6006 6007 // void* overflow_arg_area; 6008 FieldTypes[3] = Context->getPointerType(Context->VoidTy); 6009 FieldNames[3] = "overflow_arg_area"; 6010 6011 // void* reg_save_area; 6012 FieldTypes[4] = Context->getPointerType(Context->VoidTy); 6013 FieldNames[4] = "reg_save_area"; 6014 6015 // Create fields 6016 for (unsigned i = 0; i < NumFields; ++i) { 6017 FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl, 6018 SourceLocation(), 6019 SourceLocation(), 6020 &Context->Idents.get(FieldNames[i]), 6021 FieldTypes[i], /*TInfo=*/nullptr, 6022 /*BitWidth=*/nullptr, 6023 /*Mutable=*/false, 6024 ICIS_NoInit); 6025 Field->setAccess(AS_public); 6026 VaListTagDecl->addDecl(Field); 6027 } 6028 VaListTagDecl->completeDefinition(); 6029 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 6030 Context->VaListTagTy = VaListTagType; 6031 6032 // } __va_list_tag; 6033 TypedefDecl *VaListTagTypedefDecl = 6034 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); 6035 6036 QualType VaListTagTypedefType = 6037 Context->getTypedefType(VaListTagTypedefDecl); 6038 6039 // typedef __va_list_tag __builtin_va_list[1]; 6040 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); 6041 QualType VaListTagArrayType 6042 = Context->getConstantArrayType(VaListTagTypedefType, 6043 Size, ArrayType::Normal, 0); 6044 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); 6045 } 6046 6047 static TypedefDecl * 6048 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) { 6049 // typedef struct __va_list_tag { 6050 RecordDecl *VaListTagDecl; 6051 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); 6052 VaListTagDecl->startDefinition(); 6053 6054 const size_t NumFields = 4; 6055 QualType FieldTypes[NumFields]; 6056 const char *FieldNames[NumFields]; 6057 6058 // unsigned gp_offset; 6059 FieldTypes[0] = Context->UnsignedIntTy; 6060 FieldNames[0] = "gp_offset"; 6061 6062 // unsigned fp_offset; 6063 FieldTypes[1] = Context->UnsignedIntTy; 6064 FieldNames[1] = "fp_offset"; 6065 6066 // void* overflow_arg_area; 6067 FieldTypes[2] = Context->getPointerType(Context->VoidTy); 6068 FieldNames[2] = "overflow_arg_area"; 6069 6070 // void* reg_save_area; 6071 FieldTypes[3] = Context->getPointerType(Context->VoidTy); 6072 FieldNames[3] = "reg_save_area"; 6073 6074 // Create fields 6075 for (unsigned i = 0; i < NumFields; ++i) { 6076 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 6077 VaListTagDecl, 6078 SourceLocation(), 6079 SourceLocation(), 6080 &Context->Idents.get(FieldNames[i]), 6081 FieldTypes[i], /*TInfo=*/nullptr, 6082 /*BitWidth=*/nullptr, 6083 /*Mutable=*/false, 6084 ICIS_NoInit); 6085 Field->setAccess(AS_public); 6086 VaListTagDecl->addDecl(Field); 6087 } 6088 VaListTagDecl->completeDefinition(); 6089 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 6090 Context->VaListTagTy = VaListTagType; 6091 6092 // } __va_list_tag; 6093 TypedefDecl *VaListTagTypedefDecl = 6094 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); 6095 6096 QualType VaListTagTypedefType = 6097 Context->getTypedefType(VaListTagTypedefDecl); 6098 6099 // typedef __va_list_tag __builtin_va_list[1]; 6100 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); 6101 QualType VaListTagArrayType 6102 = Context->getConstantArrayType(VaListTagTypedefType, 6103 Size, ArrayType::Normal,0); 6104 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); 6105 } 6106 6107 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) { 6108 // typedef int __builtin_va_list[4]; 6109 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4); 6110 QualType IntArrayType 6111 = Context->getConstantArrayType(Context->IntTy, 6112 Size, ArrayType::Normal, 0); 6113 return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list"); 6114 } 6115 6116 static TypedefDecl * 6117 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) { 6118 // struct __va_list 6119 RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list"); 6120 if (Context->getLangOpts().CPlusPlus) { 6121 // namespace std { struct __va_list { 6122 NamespaceDecl *NS; 6123 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), 6124 Context->getTranslationUnitDecl(), 6125 /*Inline*/false, SourceLocation(), 6126 SourceLocation(), &Context->Idents.get("std"), 6127 /*PrevDecl*/ nullptr); 6128 NS->setImplicit(); 6129 VaListDecl->setDeclContext(NS); 6130 } 6131 6132 VaListDecl->startDefinition(); 6133 6134 // void * __ap; 6135 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 6136 VaListDecl, 6137 SourceLocation(), 6138 SourceLocation(), 6139 &Context->Idents.get("__ap"), 6140 Context->getPointerType(Context->VoidTy), 6141 /*TInfo=*/nullptr, 6142 /*BitWidth=*/nullptr, 6143 /*Mutable=*/false, 6144 ICIS_NoInit); 6145 Field->setAccess(AS_public); 6146 VaListDecl->addDecl(Field); 6147 6148 // }; 6149 VaListDecl->completeDefinition(); 6150 6151 // typedef struct __va_list __builtin_va_list; 6152 QualType T = Context->getRecordType(VaListDecl); 6153 return Context->buildImplicitTypedef(T, "__builtin_va_list"); 6154 } 6155 6156 static TypedefDecl * 6157 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) { 6158 // typedef struct __va_list_tag { 6159 RecordDecl *VaListTagDecl; 6160 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); 6161 VaListTagDecl->startDefinition(); 6162 6163 const size_t NumFields = 4; 6164 QualType FieldTypes[NumFields]; 6165 const char *FieldNames[NumFields]; 6166 6167 // long __gpr; 6168 FieldTypes[0] = Context->LongTy; 6169 FieldNames[0] = "__gpr"; 6170 6171 // long __fpr; 6172 FieldTypes[1] = Context->LongTy; 6173 FieldNames[1] = "__fpr"; 6174 6175 // void *__overflow_arg_area; 6176 FieldTypes[2] = Context->getPointerType(Context->VoidTy); 6177 FieldNames[2] = "__overflow_arg_area"; 6178 6179 // void *__reg_save_area; 6180 FieldTypes[3] = Context->getPointerType(Context->VoidTy); 6181 FieldNames[3] = "__reg_save_area"; 6182 6183 // Create fields 6184 for (unsigned i = 0; i < NumFields; ++i) { 6185 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), 6186 VaListTagDecl, 6187 SourceLocation(), 6188 SourceLocation(), 6189 &Context->Idents.get(FieldNames[i]), 6190 FieldTypes[i], /*TInfo=*/nullptr, 6191 /*BitWidth=*/nullptr, 6192 /*Mutable=*/false, 6193 ICIS_NoInit); 6194 Field->setAccess(AS_public); 6195 VaListTagDecl->addDecl(Field); 6196 } 6197 VaListTagDecl->completeDefinition(); 6198 QualType VaListTagType = Context->getRecordType(VaListTagDecl); 6199 Context->VaListTagTy = VaListTagType; 6200 6201 // } __va_list_tag; 6202 TypedefDecl *VaListTagTypedefDecl = 6203 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); 6204 QualType VaListTagTypedefType = 6205 Context->getTypedefType(VaListTagTypedefDecl); 6206 6207 // typedef __va_list_tag __builtin_va_list[1]; 6208 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); 6209 QualType VaListTagArrayType 6210 = Context->getConstantArrayType(VaListTagTypedefType, 6211 Size, ArrayType::Normal,0); 6212 6213 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); 6214 } 6215 6216 static TypedefDecl *CreateVaListDecl(const ASTContext *Context, 6217 TargetInfo::BuiltinVaListKind Kind) { 6218 switch (Kind) { 6219 case TargetInfo::CharPtrBuiltinVaList: 6220 return CreateCharPtrBuiltinVaListDecl(Context); 6221 case TargetInfo::VoidPtrBuiltinVaList: 6222 return CreateVoidPtrBuiltinVaListDecl(Context); 6223 case TargetInfo::AArch64ABIBuiltinVaList: 6224 return CreateAArch64ABIBuiltinVaListDecl(Context); 6225 case TargetInfo::PowerABIBuiltinVaList: 6226 return CreatePowerABIBuiltinVaListDecl(Context); 6227 case TargetInfo::X86_64ABIBuiltinVaList: 6228 return CreateX86_64ABIBuiltinVaListDecl(Context); 6229 case TargetInfo::PNaClABIBuiltinVaList: 6230 return CreatePNaClABIBuiltinVaListDecl(Context); 6231 case TargetInfo::AAPCSABIBuiltinVaList: 6232 return CreateAAPCSABIBuiltinVaListDecl(Context); 6233 case TargetInfo::SystemZBuiltinVaList: 6234 return CreateSystemZBuiltinVaListDecl(Context); 6235 } 6236 6237 llvm_unreachable("Unhandled __builtin_va_list type kind"); 6238 } 6239 6240 TypedefDecl *ASTContext::getBuiltinVaListDecl() const { 6241 if (!BuiltinVaListDecl) { 6242 BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind()); 6243 assert(BuiltinVaListDecl->isImplicit()); 6244 } 6245 6246 return BuiltinVaListDecl; 6247 } 6248 6249 QualType ASTContext::getVaListTagType() const { 6250 // Force the creation of VaListTagTy by building the __builtin_va_list 6251 // declaration. 6252 if (VaListTagTy.isNull()) 6253 (void) getBuiltinVaListDecl(); 6254 6255 return VaListTagTy; 6256 } 6257 6258 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { 6259 assert(ObjCConstantStringType.isNull() && 6260 "'NSConstantString' type already set!"); 6261 6262 ObjCConstantStringType = getObjCInterfaceType(Decl); 6263 } 6264 6265 /// \brief Retrieve the template name that corresponds to a non-empty 6266 /// lookup. 6267 TemplateName 6268 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin, 6269 UnresolvedSetIterator End) const { 6270 unsigned size = End - Begin; 6271 assert(size > 1 && "set is not overloaded!"); 6272 6273 void *memory = Allocate(sizeof(OverloadedTemplateStorage) + 6274 size * sizeof(FunctionTemplateDecl*)); 6275 OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size); 6276 6277 NamedDecl **Storage = OT->getStorage(); 6278 for (UnresolvedSetIterator I = Begin; I != End; ++I) { 6279 NamedDecl *D = *I; 6280 assert(isa<FunctionTemplateDecl>(D) || 6281 (isa<UsingShadowDecl>(D) && 6282 isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))); 6283 *Storage++ = D; 6284 } 6285 6286 return TemplateName(OT); 6287 } 6288 6289 /// \brief Retrieve the template name that represents a qualified 6290 /// template name such as \c std::vector. 6291 TemplateName 6292 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS, 6293 bool TemplateKeyword, 6294 TemplateDecl *Template) const { 6295 assert(NNS && "Missing nested-name-specifier in qualified template name"); 6296 6297 // FIXME: Canonicalization? 6298 llvm::FoldingSetNodeID ID; 6299 QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template); 6300 6301 void *InsertPos = nullptr; 6302 QualifiedTemplateName *QTN = 6303 QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 6304 if (!QTN) { 6305 QTN = new (*this, llvm::alignOf<QualifiedTemplateName>()) 6306 QualifiedTemplateName(NNS, TemplateKeyword, Template); 6307 QualifiedTemplateNames.InsertNode(QTN, InsertPos); 6308 } 6309 6310 return TemplateName(QTN); 6311 } 6312 6313 /// \brief Retrieve the template name that represents a dependent 6314 /// template name such as \c MetaFun::template apply. 6315 TemplateName 6316 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, 6317 const IdentifierInfo *Name) const { 6318 assert((!NNS || NNS->isDependent()) && 6319 "Nested name specifier must be dependent"); 6320 6321 llvm::FoldingSetNodeID ID; 6322 DependentTemplateName::Profile(ID, NNS, Name); 6323 6324 void *InsertPos = nullptr; 6325 DependentTemplateName *QTN = 6326 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 6327 6328 if (QTN) 6329 return TemplateName(QTN); 6330 6331 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 6332 if (CanonNNS == NNS) { 6333 QTN = new (*this, llvm::alignOf<DependentTemplateName>()) 6334 DependentTemplateName(NNS, Name); 6335 } else { 6336 TemplateName Canon = getDependentTemplateName(CanonNNS, Name); 6337 QTN = new (*this, llvm::alignOf<DependentTemplateName>()) 6338 DependentTemplateName(NNS, Name, Canon); 6339 DependentTemplateName *CheckQTN = 6340 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 6341 assert(!CheckQTN && "Dependent type name canonicalization broken"); 6342 (void)CheckQTN; 6343 } 6344 6345 DependentTemplateNames.InsertNode(QTN, InsertPos); 6346 return TemplateName(QTN); 6347 } 6348 6349 /// \brief Retrieve the template name that represents a dependent 6350 /// template name such as \c MetaFun::template operator+. 6351 TemplateName 6352 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, 6353 OverloadedOperatorKind Operator) const { 6354 assert((!NNS || NNS->isDependent()) && 6355 "Nested name specifier must be dependent"); 6356 6357 llvm::FoldingSetNodeID ID; 6358 DependentTemplateName::Profile(ID, NNS, Operator); 6359 6360 void *InsertPos = nullptr; 6361 DependentTemplateName *QTN 6362 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 6363 6364 if (QTN) 6365 return TemplateName(QTN); 6366 6367 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); 6368 if (CanonNNS == NNS) { 6369 QTN = new (*this, llvm::alignOf<DependentTemplateName>()) 6370 DependentTemplateName(NNS, Operator); 6371 } else { 6372 TemplateName Canon = getDependentTemplateName(CanonNNS, Operator); 6373 QTN = new (*this, llvm::alignOf<DependentTemplateName>()) 6374 DependentTemplateName(NNS, Operator, Canon); 6375 6376 DependentTemplateName *CheckQTN 6377 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); 6378 assert(!CheckQTN && "Dependent template name canonicalization broken"); 6379 (void)CheckQTN; 6380 } 6381 6382 DependentTemplateNames.InsertNode(QTN, InsertPos); 6383 return TemplateName(QTN); 6384 } 6385 6386 TemplateName 6387 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param, 6388 TemplateName replacement) const { 6389 llvm::FoldingSetNodeID ID; 6390 SubstTemplateTemplateParmStorage::Profile(ID, param, replacement); 6391 6392 void *insertPos = nullptr; 6393 SubstTemplateTemplateParmStorage *subst 6394 = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos); 6395 6396 if (!subst) { 6397 subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement); 6398 SubstTemplateTemplateParms.InsertNode(subst, insertPos); 6399 } 6400 6401 return TemplateName(subst); 6402 } 6403 6404 TemplateName 6405 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param, 6406 const TemplateArgument &ArgPack) const { 6407 ASTContext &Self = const_cast<ASTContext &>(*this); 6408 llvm::FoldingSetNodeID ID; 6409 SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack); 6410 6411 void *InsertPos = nullptr; 6412 SubstTemplateTemplateParmPackStorage *Subst 6413 = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos); 6414 6415 if (!Subst) { 6416 Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param, 6417 ArgPack.pack_size(), 6418 ArgPack.pack_begin()); 6419 SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos); 6420 } 6421 6422 return TemplateName(Subst); 6423 } 6424 6425 /// getFromTargetType - Given one of the integer types provided by 6426 /// TargetInfo, produce the corresponding type. The unsigned @p Type 6427 /// is actually a value of type @c TargetInfo::IntType. 6428 CanQualType ASTContext::getFromTargetType(unsigned Type) const { 6429 switch (Type) { 6430 case TargetInfo::NoInt: return CanQualType(); 6431 case TargetInfo::SignedChar: return SignedCharTy; 6432 case TargetInfo::UnsignedChar: return UnsignedCharTy; 6433 case TargetInfo::SignedShort: return ShortTy; 6434 case TargetInfo::UnsignedShort: return UnsignedShortTy; 6435 case TargetInfo::SignedInt: return IntTy; 6436 case TargetInfo::UnsignedInt: return UnsignedIntTy; 6437 case TargetInfo::SignedLong: return LongTy; 6438 case TargetInfo::UnsignedLong: return UnsignedLongTy; 6439 case TargetInfo::SignedLongLong: return LongLongTy; 6440 case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy; 6441 } 6442 6443 llvm_unreachable("Unhandled TargetInfo::IntType value"); 6444 } 6445 6446 //===----------------------------------------------------------------------===// 6447 // Type Predicates. 6448 //===----------------------------------------------------------------------===// 6449 6450 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's 6451 /// garbage collection attribute. 6452 /// 6453 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const { 6454 if (getLangOpts().getGC() == LangOptions::NonGC) 6455 return Qualifiers::GCNone; 6456 6457 assert(getLangOpts().ObjC1); 6458 Qualifiers::GC GCAttrs = Ty.getObjCGCAttr(); 6459 6460 // Default behaviour under objective-C's gc is for ObjC pointers 6461 // (or pointers to them) be treated as though they were declared 6462 // as __strong. 6463 if (GCAttrs == Qualifiers::GCNone) { 6464 if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) 6465 return Qualifiers::Strong; 6466 else if (Ty->isPointerType()) 6467 return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType()); 6468 } else { 6469 // It's not valid to set GC attributes on anything that isn't a 6470 // pointer. 6471 #ifndef NDEBUG 6472 QualType CT = Ty->getCanonicalTypeInternal(); 6473 while (const ArrayType *AT = dyn_cast<ArrayType>(CT)) 6474 CT = AT->getElementType(); 6475 assert(CT->isAnyPointerType() || CT->isBlockPointerType()); 6476 #endif 6477 } 6478 return GCAttrs; 6479 } 6480 6481 //===----------------------------------------------------------------------===// 6482 // Type Compatibility Testing 6483 //===----------------------------------------------------------------------===// 6484 6485 /// areCompatVectorTypes - Return true if the two specified vector types are 6486 /// compatible. 6487 static bool areCompatVectorTypes(const VectorType *LHS, 6488 const VectorType *RHS) { 6489 assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); 6490 return LHS->getElementType() == RHS->getElementType() && 6491 LHS->getNumElements() == RHS->getNumElements(); 6492 } 6493 6494 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec, 6495 QualType SecondVec) { 6496 assert(FirstVec->isVectorType() && "FirstVec should be a vector type"); 6497 assert(SecondVec->isVectorType() && "SecondVec should be a vector type"); 6498 6499 if (hasSameUnqualifiedType(FirstVec, SecondVec)) 6500 return true; 6501 6502 // Treat Neon vector types and most AltiVec vector types as if they are the 6503 // equivalent GCC vector types. 6504 const VectorType *First = FirstVec->getAs<VectorType>(); 6505 const VectorType *Second = SecondVec->getAs<VectorType>(); 6506 if (First->getNumElements() == Second->getNumElements() && 6507 hasSameType(First->getElementType(), Second->getElementType()) && 6508 First->getVectorKind() != VectorType::AltiVecPixel && 6509 First->getVectorKind() != VectorType::AltiVecBool && 6510 Second->getVectorKind() != VectorType::AltiVecPixel && 6511 Second->getVectorKind() != VectorType::AltiVecBool) 6512 return true; 6513 6514 return false; 6515 } 6516 6517 //===----------------------------------------------------------------------===// 6518 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's. 6519 //===----------------------------------------------------------------------===// 6520 6521 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the 6522 /// inheritance hierarchy of 'rProto'. 6523 bool 6524 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto, 6525 ObjCProtocolDecl *rProto) const { 6526 if (declaresSameEntity(lProto, rProto)) 6527 return true; 6528 for (auto *PI : rProto->protocols()) 6529 if (ProtocolCompatibleWithProtocol(lProto, PI)) 6530 return true; 6531 return false; 6532 } 6533 6534 /// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and 6535 /// Class<pr1, ...>. 6536 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs, 6537 QualType rhs) { 6538 const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>(); 6539 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); 6540 assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible"); 6541 6542 for (auto *lhsProto : lhsQID->quals()) { 6543 bool match = false; 6544 for (auto *rhsProto : rhsOPT->quals()) { 6545 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) { 6546 match = true; 6547 break; 6548 } 6549 } 6550 if (!match) 6551 return false; 6552 } 6553 return true; 6554 } 6555 6556 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an 6557 /// ObjCQualifiedIDType. 6558 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs, 6559 bool compare) { 6560 // Allow id<P..> and an 'id' or void* type in all cases. 6561 if (lhs->isVoidPointerType() || 6562 lhs->isObjCIdType() || lhs->isObjCClassType()) 6563 return true; 6564 else if (rhs->isVoidPointerType() || 6565 rhs->isObjCIdType() || rhs->isObjCClassType()) 6566 return true; 6567 6568 if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) { 6569 const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); 6570 6571 if (!rhsOPT) return false; 6572 6573 if (rhsOPT->qual_empty()) { 6574 // If the RHS is a unqualified interface pointer "NSString*", 6575 // make sure we check the class hierarchy. 6576 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) { 6577 for (auto *I : lhsQID->quals()) { 6578 // when comparing an id<P> on lhs with a static type on rhs, 6579 // see if static class implements all of id's protocols, directly or 6580 // through its super class and categories. 6581 if (!rhsID->ClassImplementsProtocol(I, true)) 6582 return false; 6583 } 6584 } 6585 // If there are no qualifiers and no interface, we have an 'id'. 6586 return true; 6587 } 6588 // Both the right and left sides have qualifiers. 6589 for (auto *lhsProto : lhsQID->quals()) { 6590 bool match = false; 6591 6592 // when comparing an id<P> on lhs with a static type on rhs, 6593 // see if static class implements all of id's protocols, directly or 6594 // through its super class and categories. 6595 for (auto *rhsProto : rhsOPT->quals()) { 6596 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || 6597 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { 6598 match = true; 6599 break; 6600 } 6601 } 6602 // If the RHS is a qualified interface pointer "NSString<P>*", 6603 // make sure we check the class hierarchy. 6604 if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) { 6605 for (auto *I : lhsQID->quals()) { 6606 // when comparing an id<P> on lhs with a static type on rhs, 6607 // see if static class implements all of id's protocols, directly or 6608 // through its super class and categories. 6609 if (rhsID->ClassImplementsProtocol(I, true)) { 6610 match = true; 6611 break; 6612 } 6613 } 6614 } 6615 if (!match) 6616 return false; 6617 } 6618 6619 return true; 6620 } 6621 6622 const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType(); 6623 assert(rhsQID && "One of the LHS/RHS should be id<x>"); 6624 6625 if (const ObjCObjectPointerType *lhsOPT = 6626 lhs->getAsObjCInterfacePointerType()) { 6627 // If both the right and left sides have qualifiers. 6628 for (auto *lhsProto : lhsOPT->quals()) { 6629 bool match = false; 6630 6631 // when comparing an id<P> on rhs with a static type on lhs, 6632 // see if static class implements all of id's protocols, directly or 6633 // through its super class and categories. 6634 // First, lhs protocols in the qualifier list must be found, direct 6635 // or indirect in rhs's qualifier list or it is a mismatch. 6636 for (auto *rhsProto : rhsQID->quals()) { 6637 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || 6638 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { 6639 match = true; 6640 break; 6641 } 6642 } 6643 if (!match) 6644 return false; 6645 } 6646 6647 // Static class's protocols, or its super class or category protocols 6648 // must be found, direct or indirect in rhs's qualifier list or it is a mismatch. 6649 if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) { 6650 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols; 6651 CollectInheritedProtocols(lhsID, LHSInheritedProtocols); 6652 // This is rather dubious but matches gcc's behavior. If lhs has 6653 // no type qualifier and its class has no static protocol(s) 6654 // assume that it is mismatch. 6655 if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty()) 6656 return false; 6657 for (auto *lhsProto : LHSInheritedProtocols) { 6658 bool match = false; 6659 for (auto *rhsProto : rhsQID->quals()) { 6660 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || 6661 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { 6662 match = true; 6663 break; 6664 } 6665 } 6666 if (!match) 6667 return false; 6668 } 6669 } 6670 return true; 6671 } 6672 return false; 6673 } 6674 6675 /// canAssignObjCInterfaces - Return true if the two interface types are 6676 /// compatible for assignment from RHS to LHS. This handles validation of any 6677 /// protocol qualifiers on the LHS or RHS. 6678 /// 6679 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT, 6680 const ObjCObjectPointerType *RHSOPT) { 6681 const ObjCObjectType* LHS = LHSOPT->getObjectType(); 6682 const ObjCObjectType* RHS = RHSOPT->getObjectType(); 6683 6684 // If either type represents the built-in 'id' or 'Class' types, return true. 6685 if (LHS->isObjCUnqualifiedIdOrClass() || 6686 RHS->isObjCUnqualifiedIdOrClass()) 6687 return true; 6688 6689 if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) 6690 return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0), 6691 QualType(RHSOPT,0), 6692 false); 6693 6694 if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) 6695 return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0), 6696 QualType(RHSOPT,0)); 6697 6698 // If we have 2 user-defined types, fall into that path. 6699 if (LHS->getInterface() && RHS->getInterface()) 6700 return canAssignObjCInterfaces(LHS, RHS); 6701 6702 return false; 6703 } 6704 6705 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written 6706 /// for providing type-safety for objective-c pointers used to pass/return 6707 /// arguments in block literals. When passed as arguments, passing 'A*' where 6708 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is 6709 /// not OK. For the return type, the opposite is not OK. 6710 bool ASTContext::canAssignObjCInterfacesInBlockPointer( 6711 const ObjCObjectPointerType *LHSOPT, 6712 const ObjCObjectPointerType *RHSOPT, 6713 bool BlockReturnType) { 6714 if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType()) 6715 return true; 6716 6717 if (LHSOPT->isObjCBuiltinType()) { 6718 return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType(); 6719 } 6720 6721 if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) 6722 return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0), 6723 QualType(RHSOPT,0), 6724 false); 6725 6726 const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType(); 6727 const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType(); 6728 if (LHS && RHS) { // We have 2 user-defined types. 6729 if (LHS != RHS) { 6730 if (LHS->getDecl()->isSuperClassOf(RHS->getDecl())) 6731 return BlockReturnType; 6732 if (RHS->getDecl()->isSuperClassOf(LHS->getDecl())) 6733 return !BlockReturnType; 6734 } 6735 else 6736 return true; 6737 } 6738 return false; 6739 } 6740 6741 /// getIntersectionOfProtocols - This routine finds the intersection of set 6742 /// of protocols inherited from two distinct objective-c pointer objects. 6743 /// It is used to build composite qualifier list of the composite type of 6744 /// the conditional expression involving two objective-c pointer objects. 6745 static 6746 void getIntersectionOfProtocols(ASTContext &Context, 6747 const ObjCObjectPointerType *LHSOPT, 6748 const ObjCObjectPointerType *RHSOPT, 6749 SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) { 6750 6751 const ObjCObjectType* LHS = LHSOPT->getObjectType(); 6752 const ObjCObjectType* RHS = RHSOPT->getObjectType(); 6753 assert(LHS->getInterface() && "LHS must have an interface base"); 6754 assert(RHS->getInterface() && "RHS must have an interface base"); 6755 6756 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet; 6757 unsigned LHSNumProtocols = LHS->getNumProtocols(); 6758 if (LHSNumProtocols > 0) 6759 InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end()); 6760 else { 6761 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols; 6762 Context.CollectInheritedProtocols(LHS->getInterface(), 6763 LHSInheritedProtocols); 6764 InheritedProtocolSet.insert(LHSInheritedProtocols.begin(), 6765 LHSInheritedProtocols.end()); 6766 } 6767 6768 unsigned RHSNumProtocols = RHS->getNumProtocols(); 6769 if (RHSNumProtocols > 0) { 6770 ObjCProtocolDecl **RHSProtocols = 6771 const_cast<ObjCProtocolDecl **>(RHS->qual_begin()); 6772 for (unsigned i = 0; i < RHSNumProtocols; ++i) 6773 if (InheritedProtocolSet.count(RHSProtocols[i])) 6774 IntersectionOfProtocols.push_back(RHSProtocols[i]); 6775 } else { 6776 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols; 6777 Context.CollectInheritedProtocols(RHS->getInterface(), 6778 RHSInheritedProtocols); 6779 for (ObjCProtocolDecl *ProtDecl : RHSInheritedProtocols) 6780 if (InheritedProtocolSet.count(ProtDecl)) 6781 IntersectionOfProtocols.push_back(ProtDecl); 6782 } 6783 } 6784 6785 /// areCommonBaseCompatible - Returns common base class of the two classes if 6786 /// one found. Note that this is O'2 algorithm. But it will be called as the 6787 /// last type comparison in a ?-exp of ObjC pointer types before a 6788 /// warning is issued. So, its invokation is extremely rare. 6789 QualType ASTContext::areCommonBaseCompatible( 6790 const ObjCObjectPointerType *Lptr, 6791 const ObjCObjectPointerType *Rptr) { 6792 const ObjCObjectType *LHS = Lptr->getObjectType(); 6793 const ObjCObjectType *RHS = Rptr->getObjectType(); 6794 const ObjCInterfaceDecl* LDecl = LHS->getInterface(); 6795 const ObjCInterfaceDecl* RDecl = RHS->getInterface(); 6796 if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl))) 6797 return QualType(); 6798 6799 do { 6800 LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl)); 6801 if (canAssignObjCInterfaces(LHS, RHS)) { 6802 SmallVector<ObjCProtocolDecl *, 8> Protocols; 6803 getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols); 6804 6805 QualType Result = QualType(LHS, 0); 6806 if (!Protocols.empty()) 6807 Result = getObjCObjectType(Result, Protocols.data(), Protocols.size()); 6808 Result = getObjCObjectPointerType(Result); 6809 return Result; 6810 } 6811 } while ((LDecl = LDecl->getSuperClass())); 6812 6813 return QualType(); 6814 } 6815 6816 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS, 6817 const ObjCObjectType *RHS) { 6818 assert(LHS->getInterface() && "LHS is not an interface type"); 6819 assert(RHS->getInterface() && "RHS is not an interface type"); 6820 6821 // Verify that the base decls are compatible: the RHS must be a subclass of 6822 // the LHS. 6823 if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface())) 6824 return false; 6825 6826 // RHS must have a superset of the protocols in the LHS. If the LHS is not 6827 // protocol qualified at all, then we are good. 6828 if (LHS->getNumProtocols() == 0) 6829 return true; 6830 6831 // Okay, we know the LHS has protocol qualifiers. But RHS may or may not. 6832 // More detailed analysis is required. 6833 // OK, if LHS is same or a superclass of RHS *and* 6834 // this LHS, or as RHS's super class is assignment compatible with LHS. 6835 bool IsSuperClass = 6836 LHS->getInterface()->isSuperClassOf(RHS->getInterface()); 6837 if (IsSuperClass) { 6838 // OK if conversion of LHS to SuperClass results in narrowing of types 6839 // ; i.e., SuperClass may implement at least one of the protocols 6840 // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok. 6841 // But not SuperObj<P1,P2,P3> = lhs<P1,P2>. 6842 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols; 6843 CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols); 6844 // Also, if RHS has explicit quelifiers, include them for comparing with LHS's 6845 // qualifiers. 6846 for (auto *RHSPI : RHS->quals()) 6847 SuperClassInheritedProtocols.insert(RHSPI->getCanonicalDecl()); 6848 // If there is no protocols associated with RHS, it is not a match. 6849 if (SuperClassInheritedProtocols.empty()) 6850 return false; 6851 6852 for (const auto *LHSProto : LHS->quals()) { 6853 bool SuperImplementsProtocol = false; 6854 for (auto *SuperClassProto : SuperClassInheritedProtocols) 6855 if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) { 6856 SuperImplementsProtocol = true; 6857 break; 6858 } 6859 if (!SuperImplementsProtocol) 6860 return false; 6861 } 6862 return true; 6863 } 6864 return false; 6865 } 6866 6867 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) { 6868 // get the "pointed to" types 6869 const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>(); 6870 const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>(); 6871 6872 if (!LHSOPT || !RHSOPT) 6873 return false; 6874 6875 return canAssignObjCInterfaces(LHSOPT, RHSOPT) || 6876 canAssignObjCInterfaces(RHSOPT, LHSOPT); 6877 } 6878 6879 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) { 6880 return canAssignObjCInterfaces( 6881 getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(), 6882 getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>()); 6883 } 6884 6885 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, 6886 /// both shall have the identically qualified version of a compatible type. 6887 /// C99 6.2.7p1: Two types have compatible types if their types are the 6888 /// same. See 6.7.[2,3,5] for additional rules. 6889 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS, 6890 bool CompareUnqualified) { 6891 if (getLangOpts().CPlusPlus) 6892 return hasSameType(LHS, RHS); 6893 6894 return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull(); 6895 } 6896 6897 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) { 6898 return typesAreCompatible(LHS, RHS); 6899 } 6900 6901 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) { 6902 return !mergeTypes(LHS, RHS, true).isNull(); 6903 } 6904 6905 /// mergeTransparentUnionType - if T is a transparent union type and a member 6906 /// of T is compatible with SubType, return the merged type, else return 6907 /// QualType() 6908 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType, 6909 bool OfBlockPointer, 6910 bool Unqualified) { 6911 if (const RecordType *UT = T->getAsUnionType()) { 6912 RecordDecl *UD = UT->getDecl(); 6913 if (UD->hasAttr<TransparentUnionAttr>()) { 6914 for (const auto *I : UD->fields()) { 6915 QualType ET = I->getType().getUnqualifiedType(); 6916 QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified); 6917 if (!MT.isNull()) 6918 return MT; 6919 } 6920 } 6921 } 6922 6923 return QualType(); 6924 } 6925 6926 /// mergeFunctionParameterTypes - merge two types which appear as function 6927 /// parameter types 6928 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs, 6929 bool OfBlockPointer, 6930 bool Unqualified) { 6931 // GNU extension: two types are compatible if they appear as a function 6932 // argument, one of the types is a transparent union type and the other 6933 // type is compatible with a union member 6934 QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer, 6935 Unqualified); 6936 if (!lmerge.isNull()) 6937 return lmerge; 6938 6939 QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer, 6940 Unqualified); 6941 if (!rmerge.isNull()) 6942 return rmerge; 6943 6944 return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified); 6945 } 6946 6947 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs, 6948 bool OfBlockPointer, 6949 bool Unqualified) { 6950 const FunctionType *lbase = lhs->getAs<FunctionType>(); 6951 const FunctionType *rbase = rhs->getAs<FunctionType>(); 6952 const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase); 6953 const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase); 6954 bool allLTypes = true; 6955 bool allRTypes = true; 6956 6957 // Check return type 6958 QualType retType; 6959 if (OfBlockPointer) { 6960 QualType RHS = rbase->getReturnType(); 6961 QualType LHS = lbase->getReturnType(); 6962 bool UnqualifiedResult = Unqualified; 6963 if (!UnqualifiedResult) 6964 UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers()); 6965 retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true); 6966 } 6967 else 6968 retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false, 6969 Unqualified); 6970 if (retType.isNull()) return QualType(); 6971 6972 if (Unqualified) 6973 retType = retType.getUnqualifiedType(); 6974 6975 CanQualType LRetType = getCanonicalType(lbase->getReturnType()); 6976 CanQualType RRetType = getCanonicalType(rbase->getReturnType()); 6977 if (Unqualified) { 6978 LRetType = LRetType.getUnqualifiedType(); 6979 RRetType = RRetType.getUnqualifiedType(); 6980 } 6981 6982 if (getCanonicalType(retType) != LRetType) 6983 allLTypes = false; 6984 if (getCanonicalType(retType) != RRetType) 6985 allRTypes = false; 6986 6987 // FIXME: double check this 6988 // FIXME: should we error if lbase->getRegParmAttr() != 0 && 6989 // rbase->getRegParmAttr() != 0 && 6990 // lbase->getRegParmAttr() != rbase->getRegParmAttr()? 6991 FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo(); 6992 FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo(); 6993 6994 // Compatible functions must have compatible calling conventions 6995 if (lbaseInfo.getCC() != rbaseInfo.getCC()) 6996 return QualType(); 6997 6998 // Regparm is part of the calling convention. 6999 if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm()) 7000 return QualType(); 7001 if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm()) 7002 return QualType(); 7003 7004 if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult()) 7005 return QualType(); 7006 7007 // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'. 7008 bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn(); 7009 7010 if (lbaseInfo.getNoReturn() != NoReturn) 7011 allLTypes = false; 7012 if (rbaseInfo.getNoReturn() != NoReturn) 7013 allRTypes = false; 7014 7015 FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn); 7016 7017 if (lproto && rproto) { // two C99 style function prototypes 7018 assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() && 7019 "C++ shouldn't be here"); 7020 // Compatible functions must have the same number of parameters 7021 if (lproto->getNumParams() != rproto->getNumParams()) 7022 return QualType(); 7023 7024 // Variadic and non-variadic functions aren't compatible 7025 if (lproto->isVariadic() != rproto->isVariadic()) 7026 return QualType(); 7027 7028 if (lproto->getTypeQuals() != rproto->getTypeQuals()) 7029 return QualType(); 7030 7031 if (LangOpts.ObjCAutoRefCount && 7032 !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto)) 7033 return QualType(); 7034 7035 // Check parameter type compatibility 7036 SmallVector<QualType, 10> types; 7037 for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) { 7038 QualType lParamType = lproto->getParamType(i).getUnqualifiedType(); 7039 QualType rParamType = rproto->getParamType(i).getUnqualifiedType(); 7040 QualType paramType = mergeFunctionParameterTypes( 7041 lParamType, rParamType, OfBlockPointer, Unqualified); 7042 if (paramType.isNull()) 7043 return QualType(); 7044 7045 if (Unqualified) 7046 paramType = paramType.getUnqualifiedType(); 7047 7048 types.push_back(paramType); 7049 if (Unqualified) { 7050 lParamType = lParamType.getUnqualifiedType(); 7051 rParamType = rParamType.getUnqualifiedType(); 7052 } 7053 7054 if (getCanonicalType(paramType) != getCanonicalType(lParamType)) 7055 allLTypes = false; 7056 if (getCanonicalType(paramType) != getCanonicalType(rParamType)) 7057 allRTypes = false; 7058 } 7059 7060 if (allLTypes) return lhs; 7061 if (allRTypes) return rhs; 7062 7063 FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo(); 7064 EPI.ExtInfo = einfo; 7065 return getFunctionType(retType, types, EPI); 7066 } 7067 7068 if (lproto) allRTypes = false; 7069 if (rproto) allLTypes = false; 7070 7071 const FunctionProtoType *proto = lproto ? lproto : rproto; 7072 if (proto) { 7073 assert(!proto->hasExceptionSpec() && "C++ shouldn't be here"); 7074 if (proto->isVariadic()) return QualType(); 7075 // Check that the types are compatible with the types that 7076 // would result from default argument promotions (C99 6.7.5.3p15). 7077 // The only types actually affected are promotable integer 7078 // types and floats, which would be passed as a different 7079 // type depending on whether the prototype is visible. 7080 for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) { 7081 QualType paramTy = proto->getParamType(i); 7082 7083 // Look at the converted type of enum types, since that is the type used 7084 // to pass enum values. 7085 if (const EnumType *Enum = paramTy->getAs<EnumType>()) { 7086 paramTy = Enum->getDecl()->getIntegerType(); 7087 if (paramTy.isNull()) 7088 return QualType(); 7089 } 7090 7091 if (paramTy->isPromotableIntegerType() || 7092 getCanonicalType(paramTy).getUnqualifiedType() == FloatTy) 7093 return QualType(); 7094 } 7095 7096 if (allLTypes) return lhs; 7097 if (allRTypes) return rhs; 7098 7099 FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo(); 7100 EPI.ExtInfo = einfo; 7101 return getFunctionType(retType, proto->getParamTypes(), EPI); 7102 } 7103 7104 if (allLTypes) return lhs; 7105 if (allRTypes) return rhs; 7106 return getFunctionNoProtoType(retType, einfo); 7107 } 7108 7109 /// Given that we have an enum type and a non-enum type, try to merge them. 7110 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET, 7111 QualType other, bool isBlockReturnType) { 7112 // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, 7113 // a signed integer type, or an unsigned integer type. 7114 // Compatibility is based on the underlying type, not the promotion 7115 // type. 7116 QualType underlyingType = ET->getDecl()->getIntegerType(); 7117 if (underlyingType.isNull()) return QualType(); 7118 if (Context.hasSameType(underlyingType, other)) 7119 return other; 7120 7121 // In block return types, we're more permissive and accept any 7122 // integral type of the same size. 7123 if (isBlockReturnType && other->isIntegerType() && 7124 Context.getTypeSize(underlyingType) == Context.getTypeSize(other)) 7125 return other; 7126 7127 return QualType(); 7128 } 7129 7130 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS, 7131 bool OfBlockPointer, 7132 bool Unqualified, bool BlockReturnType) { 7133 // C++ [expr]: If an expression initially has the type "reference to T", the 7134 // type is adjusted to "T" prior to any further analysis, the expression 7135 // designates the object or function denoted by the reference, and the 7136 // expression is an lvalue unless the reference is an rvalue reference and 7137 // the expression is a function call (possibly inside parentheses). 7138 assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?"); 7139 assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?"); 7140 7141 if (Unqualified) { 7142 LHS = LHS.getUnqualifiedType(); 7143 RHS = RHS.getUnqualifiedType(); 7144 } 7145 7146 QualType LHSCan = getCanonicalType(LHS), 7147 RHSCan = getCanonicalType(RHS); 7148 7149 // If two types are identical, they are compatible. 7150 if (LHSCan == RHSCan) 7151 return LHS; 7152 7153 // If the qualifiers are different, the types aren't compatible... mostly. 7154 Qualifiers LQuals = LHSCan.getLocalQualifiers(); 7155 Qualifiers RQuals = RHSCan.getLocalQualifiers(); 7156 if (LQuals != RQuals) { 7157 // If any of these qualifiers are different, we have a type 7158 // mismatch. 7159 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || 7160 LQuals.getAddressSpace() != RQuals.getAddressSpace() || 7161 LQuals.getObjCLifetime() != RQuals.getObjCLifetime()) 7162 return QualType(); 7163 7164 // Exactly one GC qualifier difference is allowed: __strong is 7165 // okay if the other type has no GC qualifier but is an Objective 7166 // C object pointer (i.e. implicitly strong by default). We fix 7167 // this by pretending that the unqualified type was actually 7168 // qualified __strong. 7169 Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); 7170 Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); 7171 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); 7172 7173 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) 7174 return QualType(); 7175 7176 if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) { 7177 return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong)); 7178 } 7179 if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) { 7180 return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS); 7181 } 7182 return QualType(); 7183 } 7184 7185 // Okay, qualifiers are equal. 7186 7187 Type::TypeClass LHSClass = LHSCan->getTypeClass(); 7188 Type::TypeClass RHSClass = RHSCan->getTypeClass(); 7189 7190 // We want to consider the two function types to be the same for these 7191 // comparisons, just force one to the other. 7192 if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; 7193 if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; 7194 7195 // Same as above for arrays 7196 if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray) 7197 LHSClass = Type::ConstantArray; 7198 if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray) 7199 RHSClass = Type::ConstantArray; 7200 7201 // ObjCInterfaces are just specialized ObjCObjects. 7202 if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject; 7203 if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject; 7204 7205 // Canonicalize ExtVector -> Vector. 7206 if (LHSClass == Type::ExtVector) LHSClass = Type::Vector; 7207 if (RHSClass == Type::ExtVector) RHSClass = Type::Vector; 7208 7209 // If the canonical type classes don't match. 7210 if (LHSClass != RHSClass) { 7211 // Note that we only have special rules for turning block enum 7212 // returns into block int returns, not vice-versa. 7213 if (const EnumType* ETy = LHS->getAs<EnumType>()) { 7214 return mergeEnumWithInteger(*this, ETy, RHS, false); 7215 } 7216 if (const EnumType* ETy = RHS->getAs<EnumType>()) { 7217 return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType); 7218 } 7219 // allow block pointer type to match an 'id' type. 7220 if (OfBlockPointer && !BlockReturnType) { 7221 if (LHS->isObjCIdType() && RHS->isBlockPointerType()) 7222 return LHS; 7223 if (RHS->isObjCIdType() && LHS->isBlockPointerType()) 7224 return RHS; 7225 } 7226 7227 return QualType(); 7228 } 7229 7230 // The canonical type classes match. 7231 switch (LHSClass) { 7232 #define TYPE(Class, Base) 7233 #define ABSTRACT_TYPE(Class, Base) 7234 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 7235 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 7236 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 7237 #include "clang/AST/TypeNodes.def" 7238 llvm_unreachable("Non-canonical and dependent types shouldn't get here"); 7239 7240 case Type::Auto: 7241 case Type::LValueReference: 7242 case Type::RValueReference: 7243 case Type::MemberPointer: 7244 llvm_unreachable("C++ should never be in mergeTypes"); 7245 7246 case Type::ObjCInterface: 7247 case Type::IncompleteArray: 7248 case Type::VariableArray: 7249 case Type::FunctionProto: 7250 case Type::ExtVector: 7251 llvm_unreachable("Types are eliminated above"); 7252 7253 case Type::Pointer: 7254 { 7255 // Merge two pointer types, while trying to preserve typedef info 7256 QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType(); 7257 QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType(); 7258 if (Unqualified) { 7259 LHSPointee = LHSPointee.getUnqualifiedType(); 7260 RHSPointee = RHSPointee.getUnqualifiedType(); 7261 } 7262 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false, 7263 Unqualified); 7264 if (ResultType.isNull()) return QualType(); 7265 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) 7266 return LHS; 7267 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) 7268 return RHS; 7269 return getPointerType(ResultType); 7270 } 7271 case Type::BlockPointer: 7272 { 7273 // Merge two block pointer types, while trying to preserve typedef info 7274 QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType(); 7275 QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType(); 7276 if (Unqualified) { 7277 LHSPointee = LHSPointee.getUnqualifiedType(); 7278 RHSPointee = RHSPointee.getUnqualifiedType(); 7279 } 7280 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer, 7281 Unqualified); 7282 if (ResultType.isNull()) return QualType(); 7283 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) 7284 return LHS; 7285 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) 7286 return RHS; 7287 return getBlockPointerType(ResultType); 7288 } 7289 case Type::Atomic: 7290 { 7291 // Merge two pointer types, while trying to preserve typedef info 7292 QualType LHSValue = LHS->getAs<AtomicType>()->getValueType(); 7293 QualType RHSValue = RHS->getAs<AtomicType>()->getValueType(); 7294 if (Unqualified) { 7295 LHSValue = LHSValue.getUnqualifiedType(); 7296 RHSValue = RHSValue.getUnqualifiedType(); 7297 } 7298 QualType ResultType = mergeTypes(LHSValue, RHSValue, false, 7299 Unqualified); 7300 if (ResultType.isNull()) return QualType(); 7301 if (getCanonicalType(LHSValue) == getCanonicalType(ResultType)) 7302 return LHS; 7303 if (getCanonicalType(RHSValue) == getCanonicalType(ResultType)) 7304 return RHS; 7305 return getAtomicType(ResultType); 7306 } 7307 case Type::ConstantArray: 7308 { 7309 const ConstantArrayType* LCAT = getAsConstantArrayType(LHS); 7310 const ConstantArrayType* RCAT = getAsConstantArrayType(RHS); 7311 if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize()) 7312 return QualType(); 7313 7314 QualType LHSElem = getAsArrayType(LHS)->getElementType(); 7315 QualType RHSElem = getAsArrayType(RHS)->getElementType(); 7316 if (Unqualified) { 7317 LHSElem = LHSElem.getUnqualifiedType(); 7318 RHSElem = RHSElem.getUnqualifiedType(); 7319 } 7320 7321 QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified); 7322 if (ResultType.isNull()) return QualType(); 7323 if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) 7324 return LHS; 7325 if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) 7326 return RHS; 7327 if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(), 7328 ArrayType::ArraySizeModifier(), 0); 7329 if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(), 7330 ArrayType::ArraySizeModifier(), 0); 7331 const VariableArrayType* LVAT = getAsVariableArrayType(LHS); 7332 const VariableArrayType* RVAT = getAsVariableArrayType(RHS); 7333 if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) 7334 return LHS; 7335 if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) 7336 return RHS; 7337 if (LVAT) { 7338 // FIXME: This isn't correct! But tricky to implement because 7339 // the array's size has to be the size of LHS, but the type 7340 // has to be different. 7341 return LHS; 7342 } 7343 if (RVAT) { 7344 // FIXME: This isn't correct! But tricky to implement because 7345 // the array's size has to be the size of RHS, but the type 7346 // has to be different. 7347 return RHS; 7348 } 7349 if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; 7350 if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; 7351 return getIncompleteArrayType(ResultType, 7352 ArrayType::ArraySizeModifier(), 0); 7353 } 7354 case Type::FunctionNoProto: 7355 return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified); 7356 case Type::Record: 7357 case Type::Enum: 7358 return QualType(); 7359 case Type::Builtin: 7360 // Only exactly equal builtin types are compatible, which is tested above. 7361 return QualType(); 7362 case Type::Complex: 7363 // Distinct complex types are incompatible. 7364 return QualType(); 7365 case Type::Vector: 7366 // FIXME: The merged type should be an ExtVector! 7367 if (areCompatVectorTypes(LHSCan->getAs<VectorType>(), 7368 RHSCan->getAs<VectorType>())) 7369 return LHS; 7370 return QualType(); 7371 case Type::ObjCObject: { 7372 // Check if the types are assignment compatible. 7373 // FIXME: This should be type compatibility, e.g. whether 7374 // "LHS x; RHS x;" at global scope is legal. 7375 const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>(); 7376 const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>(); 7377 if (canAssignObjCInterfaces(LHSIface, RHSIface)) 7378 return LHS; 7379 7380 return QualType(); 7381 } 7382 case Type::ObjCObjectPointer: { 7383 if (OfBlockPointer) { 7384 if (canAssignObjCInterfacesInBlockPointer( 7385 LHS->getAs<ObjCObjectPointerType>(), 7386 RHS->getAs<ObjCObjectPointerType>(), 7387 BlockReturnType)) 7388 return LHS; 7389 return QualType(); 7390 } 7391 if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(), 7392 RHS->getAs<ObjCObjectPointerType>())) 7393 return LHS; 7394 7395 return QualType(); 7396 } 7397 } 7398 7399 llvm_unreachable("Invalid Type::Class!"); 7400 } 7401 7402 bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs( 7403 const FunctionProtoType *FromFunctionType, 7404 const FunctionProtoType *ToFunctionType) { 7405 if (FromFunctionType->hasAnyConsumedParams() != 7406 ToFunctionType->hasAnyConsumedParams()) 7407 return false; 7408 FunctionProtoType::ExtProtoInfo FromEPI = 7409 FromFunctionType->getExtProtoInfo(); 7410 FunctionProtoType::ExtProtoInfo ToEPI = 7411 ToFunctionType->getExtProtoInfo(); 7412 if (FromEPI.ConsumedParameters && ToEPI.ConsumedParameters) 7413 for (unsigned i = 0, n = FromFunctionType->getNumParams(); i != n; ++i) { 7414 if (FromEPI.ConsumedParameters[i] != ToEPI.ConsumedParameters[i]) 7415 return false; 7416 } 7417 return true; 7418 } 7419 7420 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and 7421 /// 'RHS' attributes and returns the merged version; including for function 7422 /// return types. 7423 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) { 7424 QualType LHSCan = getCanonicalType(LHS), 7425 RHSCan = getCanonicalType(RHS); 7426 // If two types are identical, they are compatible. 7427 if (LHSCan == RHSCan) 7428 return LHS; 7429 if (RHSCan->isFunctionType()) { 7430 if (!LHSCan->isFunctionType()) 7431 return QualType(); 7432 QualType OldReturnType = 7433 cast<FunctionType>(RHSCan.getTypePtr())->getReturnType(); 7434 QualType NewReturnType = 7435 cast<FunctionType>(LHSCan.getTypePtr())->getReturnType(); 7436 QualType ResReturnType = 7437 mergeObjCGCQualifiers(NewReturnType, OldReturnType); 7438 if (ResReturnType.isNull()) 7439 return QualType(); 7440 if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) { 7441 // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo(); 7442 // In either case, use OldReturnType to build the new function type. 7443 const FunctionType *F = LHS->getAs<FunctionType>(); 7444 if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) { 7445 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 7446 EPI.ExtInfo = getFunctionExtInfo(LHS); 7447 QualType ResultType = 7448 getFunctionType(OldReturnType, FPT->getParamTypes(), EPI); 7449 return ResultType; 7450 } 7451 } 7452 return QualType(); 7453 } 7454 7455 // If the qualifiers are different, the types can still be merged. 7456 Qualifiers LQuals = LHSCan.getLocalQualifiers(); 7457 Qualifiers RQuals = RHSCan.getLocalQualifiers(); 7458 if (LQuals != RQuals) { 7459 // If any of these qualifiers are different, we have a type mismatch. 7460 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || 7461 LQuals.getAddressSpace() != RQuals.getAddressSpace()) 7462 return QualType(); 7463 7464 // Exactly one GC qualifier difference is allowed: __strong is 7465 // okay if the other type has no GC qualifier but is an Objective 7466 // C object pointer (i.e. implicitly strong by default). We fix 7467 // this by pretending that the unqualified type was actually 7468 // qualified __strong. 7469 Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); 7470 Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); 7471 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); 7472 7473 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) 7474 return QualType(); 7475 7476 if (GC_L == Qualifiers::Strong) 7477 return LHS; 7478 if (GC_R == Qualifiers::Strong) 7479 return RHS; 7480 return QualType(); 7481 } 7482 7483 if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) { 7484 QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType(); 7485 QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType(); 7486 QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT); 7487 if (ResQT == LHSBaseQT) 7488 return LHS; 7489 if (ResQT == RHSBaseQT) 7490 return RHS; 7491 } 7492 return QualType(); 7493 } 7494 7495 //===----------------------------------------------------------------------===// 7496 // Integer Predicates 7497 //===----------------------------------------------------------------------===// 7498 7499 unsigned ASTContext::getIntWidth(QualType T) const { 7500 if (const EnumType *ET = T->getAs<EnumType>()) 7501 T = ET->getDecl()->getIntegerType(); 7502 if (T->isBooleanType()) 7503 return 1; 7504 // For builtin types, just use the standard type sizing method 7505 return (unsigned)getTypeSize(T); 7506 } 7507 7508 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const { 7509 assert(T->hasSignedIntegerRepresentation() && "Unexpected type"); 7510 7511 // Turn <4 x signed int> -> <4 x unsigned int> 7512 if (const VectorType *VTy = T->getAs<VectorType>()) 7513 return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()), 7514 VTy->getNumElements(), VTy->getVectorKind()); 7515 7516 // For enums, we return the unsigned version of the base type. 7517 if (const EnumType *ETy = T->getAs<EnumType>()) 7518 T = ETy->getDecl()->getIntegerType(); 7519 7520 const BuiltinType *BTy = T->getAs<BuiltinType>(); 7521 assert(BTy && "Unexpected signed integer type"); 7522 switch (BTy->getKind()) { 7523 case BuiltinType::Char_S: 7524 case BuiltinType::SChar: 7525 return UnsignedCharTy; 7526 case BuiltinType::Short: 7527 return UnsignedShortTy; 7528 case BuiltinType::Int: 7529 return UnsignedIntTy; 7530 case BuiltinType::Long: 7531 return UnsignedLongTy; 7532 case BuiltinType::LongLong: 7533 return UnsignedLongLongTy; 7534 case BuiltinType::Int128: 7535 return UnsignedInt128Ty; 7536 default: 7537 llvm_unreachable("Unexpected signed integer type"); 7538 } 7539 } 7540 7541 ASTMutationListener::~ASTMutationListener() { } 7542 7543 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD, 7544 QualType ReturnType) {} 7545 7546 //===----------------------------------------------------------------------===// 7547 // Builtin Type Computation 7548 //===----------------------------------------------------------------------===// 7549 7550 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the 7551 /// pointer over the consumed characters. This returns the resultant type. If 7552 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic 7553 /// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of 7554 /// a vector of "i*". 7555 /// 7556 /// RequiresICE is filled in on return to indicate whether the value is required 7557 /// to be an Integer Constant Expression. 7558 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context, 7559 ASTContext::GetBuiltinTypeError &Error, 7560 bool &RequiresICE, 7561 bool AllowTypeModifiers) { 7562 // Modifiers. 7563 int HowLong = 0; 7564 bool Signed = false, Unsigned = false; 7565 RequiresICE = false; 7566 7567 // Read the prefixed modifiers first. 7568 bool Done = false; 7569 while (!Done) { 7570 switch (*Str++) { 7571 default: Done = true; --Str; break; 7572 case 'I': 7573 RequiresICE = true; 7574 break; 7575 case 'S': 7576 assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!"); 7577 assert(!Signed && "Can't use 'S' modifier multiple times!"); 7578 Signed = true; 7579 break; 7580 case 'U': 7581 assert(!Signed && "Can't use both 'S' and 'U' modifiers!"); 7582 assert(!Unsigned && "Can't use 'U' modifier multiple times!"); 7583 Unsigned = true; 7584 break; 7585 case 'L': 7586 assert(HowLong <= 2 && "Can't have LLLL modifier"); 7587 ++HowLong; 7588 break; 7589 case 'W': 7590 // This modifier represents int64 type. 7591 assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!"); 7592 switch (Context.getTargetInfo().getInt64Type()) { 7593 default: 7594 llvm_unreachable("Unexpected integer type"); 7595 case TargetInfo::SignedLong: 7596 HowLong = 1; 7597 break; 7598 case TargetInfo::SignedLongLong: 7599 HowLong = 2; 7600 break; 7601 } 7602 } 7603 } 7604 7605 QualType Type; 7606 7607 // Read the base type. 7608 switch (*Str++) { 7609 default: llvm_unreachable("Unknown builtin type letter!"); 7610 case 'v': 7611 assert(HowLong == 0 && !Signed && !Unsigned && 7612 "Bad modifiers used with 'v'!"); 7613 Type = Context.VoidTy; 7614 break; 7615 case 'h': 7616 assert(HowLong == 0 && !Signed && !Unsigned && 7617 "Bad modifiers used with 'h'!"); 7618 Type = Context.HalfTy; 7619 break; 7620 case 'f': 7621 assert(HowLong == 0 && !Signed && !Unsigned && 7622 "Bad modifiers used with 'f'!"); 7623 Type = Context.FloatTy; 7624 break; 7625 case 'd': 7626 assert(HowLong < 2 && !Signed && !Unsigned && 7627 "Bad modifiers used with 'd'!"); 7628 if (HowLong) 7629 Type = Context.LongDoubleTy; 7630 else 7631 Type = Context.DoubleTy; 7632 break; 7633 case 's': 7634 assert(HowLong == 0 && "Bad modifiers used with 's'!"); 7635 if (Unsigned) 7636 Type = Context.UnsignedShortTy; 7637 else 7638 Type = Context.ShortTy; 7639 break; 7640 case 'i': 7641 if (HowLong == 3) 7642 Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty; 7643 else if (HowLong == 2) 7644 Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy; 7645 else if (HowLong == 1) 7646 Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy; 7647 else 7648 Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy; 7649 break; 7650 case 'c': 7651 assert(HowLong == 0 && "Bad modifiers used with 'c'!"); 7652 if (Signed) 7653 Type = Context.SignedCharTy; 7654 else if (Unsigned) 7655 Type = Context.UnsignedCharTy; 7656 else 7657 Type = Context.CharTy; 7658 break; 7659 case 'b': // boolean 7660 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!"); 7661 Type = Context.BoolTy; 7662 break; 7663 case 'z': // size_t. 7664 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!"); 7665 Type = Context.getSizeType(); 7666 break; 7667 case 'F': 7668 Type = Context.getCFConstantStringType(); 7669 break; 7670 case 'G': 7671 Type = Context.getObjCIdType(); 7672 break; 7673 case 'H': 7674 Type = Context.getObjCSelType(); 7675 break; 7676 case 'M': 7677 Type = Context.getObjCSuperType(); 7678 break; 7679 case 'a': 7680 Type = Context.getBuiltinVaListType(); 7681 assert(!Type.isNull() && "builtin va list type not initialized!"); 7682 break; 7683 case 'A': 7684 // This is a "reference" to a va_list; however, what exactly 7685 // this means depends on how va_list is defined. There are two 7686 // different kinds of va_list: ones passed by value, and ones 7687 // passed by reference. An example of a by-value va_list is 7688 // x86, where va_list is a char*. An example of by-ref va_list 7689 // is x86-64, where va_list is a __va_list_tag[1]. For x86, 7690 // we want this argument to be a char*&; for x86-64, we want 7691 // it to be a __va_list_tag*. 7692 Type = Context.getBuiltinVaListType(); 7693 assert(!Type.isNull() && "builtin va list type not initialized!"); 7694 if (Type->isArrayType()) 7695 Type = Context.getArrayDecayedType(Type); 7696 else 7697 Type = Context.getLValueReferenceType(Type); 7698 break; 7699 case 'V': { 7700 char *End; 7701 unsigned NumElements = strtoul(Str, &End, 10); 7702 assert(End != Str && "Missing vector size"); 7703 Str = End; 7704 7705 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, 7706 RequiresICE, false); 7707 assert(!RequiresICE && "Can't require vector ICE"); 7708 7709 // TODO: No way to make AltiVec vectors in builtins yet. 7710 Type = Context.getVectorType(ElementType, NumElements, 7711 VectorType::GenericVector); 7712 break; 7713 } 7714 case 'E': { 7715 char *End; 7716 7717 unsigned NumElements = strtoul(Str, &End, 10); 7718 assert(End != Str && "Missing vector size"); 7719 7720 Str = End; 7721 7722 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, 7723 false); 7724 Type = Context.getExtVectorType(ElementType, NumElements); 7725 break; 7726 } 7727 case 'X': { 7728 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, 7729 false); 7730 assert(!RequiresICE && "Can't require complex ICE"); 7731 Type = Context.getComplexType(ElementType); 7732 break; 7733 } 7734 case 'Y' : { 7735 Type = Context.getPointerDiffType(); 7736 break; 7737 } 7738 case 'P': 7739 Type = Context.getFILEType(); 7740 if (Type.isNull()) { 7741 Error = ASTContext::GE_Missing_stdio; 7742 return QualType(); 7743 } 7744 break; 7745 case 'J': 7746 if (Signed) 7747 Type = Context.getsigjmp_bufType(); 7748 else 7749 Type = Context.getjmp_bufType(); 7750 7751 if (Type.isNull()) { 7752 Error = ASTContext::GE_Missing_setjmp; 7753 return QualType(); 7754 } 7755 break; 7756 case 'K': 7757 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!"); 7758 Type = Context.getucontext_tType(); 7759 7760 if (Type.isNull()) { 7761 Error = ASTContext::GE_Missing_ucontext; 7762 return QualType(); 7763 } 7764 break; 7765 case 'p': 7766 Type = Context.getProcessIDType(); 7767 break; 7768 } 7769 7770 // If there are modifiers and if we're allowed to parse them, go for it. 7771 Done = !AllowTypeModifiers; 7772 while (!Done) { 7773 switch (char c = *Str++) { 7774 default: Done = true; --Str; break; 7775 case '*': 7776 case '&': { 7777 // Both pointers and references can have their pointee types 7778 // qualified with an address space. 7779 char *End; 7780 unsigned AddrSpace = strtoul(Str, &End, 10); 7781 if (End != Str && AddrSpace != 0) { 7782 Type = Context.getAddrSpaceQualType(Type, AddrSpace); 7783 Str = End; 7784 } 7785 if (c == '*') 7786 Type = Context.getPointerType(Type); 7787 else 7788 Type = Context.getLValueReferenceType(Type); 7789 break; 7790 } 7791 // FIXME: There's no way to have a built-in with an rvalue ref arg. 7792 case 'C': 7793 Type = Type.withConst(); 7794 break; 7795 case 'D': 7796 Type = Context.getVolatileType(Type); 7797 break; 7798 case 'R': 7799 Type = Type.withRestrict(); 7800 break; 7801 } 7802 } 7803 7804 assert((!RequiresICE || Type->isIntegralOrEnumerationType()) && 7805 "Integer constant 'I' type must be an integer"); 7806 7807 return Type; 7808 } 7809 7810 /// GetBuiltinType - Return the type for the specified builtin. 7811 QualType ASTContext::GetBuiltinType(unsigned Id, 7812 GetBuiltinTypeError &Error, 7813 unsigned *IntegerConstantArgs) const { 7814 const char *TypeStr = BuiltinInfo.GetTypeString(Id); 7815 7816 SmallVector<QualType, 8> ArgTypes; 7817 7818 bool RequiresICE = false; 7819 Error = GE_None; 7820 QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error, 7821 RequiresICE, true); 7822 if (Error != GE_None) 7823 return QualType(); 7824 7825 assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE"); 7826 7827 while (TypeStr[0] && TypeStr[0] != '.') { 7828 QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true); 7829 if (Error != GE_None) 7830 return QualType(); 7831 7832 // If this argument is required to be an IntegerConstantExpression and the 7833 // caller cares, fill in the bitmask we return. 7834 if (RequiresICE && IntegerConstantArgs) 7835 *IntegerConstantArgs |= 1 << ArgTypes.size(); 7836 7837 // Do array -> pointer decay. The builtin should use the decayed type. 7838 if (Ty->isArrayType()) 7839 Ty = getArrayDecayedType(Ty); 7840 7841 ArgTypes.push_back(Ty); 7842 } 7843 7844 if (Id == Builtin::BI__GetExceptionInfo) 7845 return QualType(); 7846 7847 assert((TypeStr[0] != '.' || TypeStr[1] == 0) && 7848 "'.' should only occur at end of builtin type list!"); 7849 7850 FunctionType::ExtInfo EI(CC_C); 7851 if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true); 7852 7853 bool Variadic = (TypeStr[0] == '.'); 7854 7855 // We really shouldn't be making a no-proto type here, especially in C++. 7856 if (ArgTypes.empty() && Variadic) 7857 return getFunctionNoProtoType(ResType, EI); 7858 7859 FunctionProtoType::ExtProtoInfo EPI; 7860 EPI.ExtInfo = EI; 7861 EPI.Variadic = Variadic; 7862 7863 return getFunctionType(ResType, ArgTypes, EPI); 7864 } 7865 7866 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context, 7867 const FunctionDecl *FD) { 7868 if (!FD->isExternallyVisible()) 7869 return GVA_Internal; 7870 7871 GVALinkage External = GVA_StrongExternal; 7872 switch (FD->getTemplateSpecializationKind()) { 7873 case TSK_Undeclared: 7874 case TSK_ExplicitSpecialization: 7875 External = GVA_StrongExternal; 7876 break; 7877 7878 case TSK_ExplicitInstantiationDefinition: 7879 return GVA_StrongODR; 7880 7881 // C++11 [temp.explicit]p10: 7882 // [ Note: The intent is that an inline function that is the subject of 7883 // an explicit instantiation declaration will still be implicitly 7884 // instantiated when used so that the body can be considered for 7885 // inlining, but that no out-of-line copy of the inline function would be 7886 // generated in the translation unit. -- end note ] 7887 case TSK_ExplicitInstantiationDeclaration: 7888 return GVA_AvailableExternally; 7889 7890 case TSK_ImplicitInstantiation: 7891 External = GVA_DiscardableODR; 7892 break; 7893 } 7894 7895 if (!FD->isInlined()) 7896 return External; 7897 7898 if ((!Context.getLangOpts().CPlusPlus && !Context.getLangOpts().MSVCCompat && 7899 !FD->hasAttr<DLLExportAttr>()) || 7900 FD->hasAttr<GNUInlineAttr>()) { 7901 // FIXME: This doesn't match gcc's behavior for dllexport inline functions. 7902 7903 // GNU or C99 inline semantics. Determine whether this symbol should be 7904 // externally visible. 7905 if (FD->isInlineDefinitionExternallyVisible()) 7906 return External; 7907 7908 // C99 inline semantics, where the symbol is not externally visible. 7909 return GVA_AvailableExternally; 7910 } 7911 7912 // Functions specified with extern and inline in -fms-compatibility mode 7913 // forcibly get emitted. While the body of the function cannot be later 7914 // replaced, the function definition cannot be discarded. 7915 if (FD->isMSExternInline()) 7916 return GVA_StrongODR; 7917 7918 return GVA_DiscardableODR; 7919 } 7920 7921 static GVALinkage adjustGVALinkageForDLLAttribute(GVALinkage L, const Decl *D) { 7922 // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx 7923 // dllexport/dllimport on inline functions. 7924 if (D->hasAttr<DLLImportAttr>()) { 7925 if (L == GVA_DiscardableODR || L == GVA_StrongODR) 7926 return GVA_AvailableExternally; 7927 } else if (D->hasAttr<DLLExportAttr>()) { 7928 if (L == GVA_DiscardableODR) 7929 return GVA_StrongODR; 7930 } 7931 return L; 7932 } 7933 7934 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const { 7935 return adjustGVALinkageForDLLAttribute(basicGVALinkageForFunction(*this, FD), 7936 FD); 7937 } 7938 7939 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context, 7940 const VarDecl *VD) { 7941 if (!VD->isExternallyVisible()) 7942 return GVA_Internal; 7943 7944 if (VD->isStaticLocal()) { 7945 GVALinkage StaticLocalLinkage = GVA_DiscardableODR; 7946 const DeclContext *LexicalContext = VD->getParentFunctionOrMethod(); 7947 while (LexicalContext && !isa<FunctionDecl>(LexicalContext)) 7948 LexicalContext = LexicalContext->getLexicalParent(); 7949 7950 // Let the static local variable inherit its linkage from the nearest 7951 // enclosing function. 7952 if (LexicalContext) 7953 StaticLocalLinkage = 7954 Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext)); 7955 7956 // GVA_StrongODR function linkage is stronger than what we need, 7957 // downgrade to GVA_DiscardableODR. 7958 // This allows us to discard the variable if we never end up needing it. 7959 return StaticLocalLinkage == GVA_StrongODR ? GVA_DiscardableODR 7960 : StaticLocalLinkage; 7961 } 7962 7963 // MSVC treats in-class initialized static data members as definitions. 7964 // By giving them non-strong linkage, out-of-line definitions won't 7965 // cause link errors. 7966 if (Context.isMSStaticDataMemberInlineDefinition(VD)) 7967 return GVA_DiscardableODR; 7968 7969 switch (VD->getTemplateSpecializationKind()) { 7970 case TSK_Undeclared: 7971 case TSK_ExplicitSpecialization: 7972 return GVA_StrongExternal; 7973 7974 case TSK_ExplicitInstantiationDefinition: 7975 return GVA_StrongODR; 7976 7977 case TSK_ExplicitInstantiationDeclaration: 7978 return GVA_AvailableExternally; 7979 7980 case TSK_ImplicitInstantiation: 7981 return GVA_DiscardableODR; 7982 } 7983 7984 llvm_unreachable("Invalid Linkage!"); 7985 } 7986 7987 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) { 7988 return adjustGVALinkageForDLLAttribute(basicGVALinkageForVariable(*this, VD), 7989 VD); 7990 } 7991 7992 bool ASTContext::DeclMustBeEmitted(const Decl *D) { 7993 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 7994 if (!VD->isFileVarDecl()) 7995 return false; 7996 // Global named register variables (GNU extension) are never emitted. 7997 if (VD->getStorageClass() == SC_Register) 7998 return false; 7999 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8000 // We never need to emit an uninstantiated function template. 8001 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) 8002 return false; 8003 } else if (isa<OMPThreadPrivateDecl>(D)) 8004 return true; 8005 else 8006 return false; 8007 8008 // If this is a member of a class template, we do not need to emit it. 8009 if (D->getDeclContext()->isDependentContext()) 8010 return false; 8011 8012 // Weak references don't produce any output by themselves. 8013 if (D->hasAttr<WeakRefAttr>()) 8014 return false; 8015 8016 // Aliases and used decls are required. 8017 if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>()) 8018 return true; 8019 8020 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 8021 // Forward declarations aren't required. 8022 if (!FD->doesThisDeclarationHaveABody()) 8023 return FD->doesDeclarationForceExternallyVisibleDefinition(); 8024 8025 // Constructors and destructors are required. 8026 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 8027 return true; 8028 8029 // The key function for a class is required. This rule only comes 8030 // into play when inline functions can be key functions, though. 8031 if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { 8032 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 8033 const CXXRecordDecl *RD = MD->getParent(); 8034 if (MD->isOutOfLine() && RD->isDynamicClass()) { 8035 const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD); 8036 if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl()) 8037 return true; 8038 } 8039 } 8040 } 8041 8042 GVALinkage Linkage = GetGVALinkageForFunction(FD); 8043 8044 // static, static inline, always_inline, and extern inline functions can 8045 // always be deferred. Normal inline functions can be deferred in C99/C++. 8046 // Implicit template instantiations can also be deferred in C++. 8047 if (Linkage == GVA_Internal || Linkage == GVA_AvailableExternally || 8048 Linkage == GVA_DiscardableODR) 8049 return false; 8050 return true; 8051 } 8052 8053 const VarDecl *VD = cast<VarDecl>(D); 8054 assert(VD->isFileVarDecl() && "Expected file scoped var"); 8055 8056 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly && 8057 !isMSStaticDataMemberInlineDefinition(VD)) 8058 return false; 8059 8060 // Variables that can be needed in other TUs are required. 8061 GVALinkage L = GetGVALinkageForVariable(VD); 8062 if (L != GVA_Internal && L != GVA_AvailableExternally && 8063 L != GVA_DiscardableODR) 8064 return true; 8065 8066 // Variables that have destruction with side-effects are required. 8067 if (VD->getType().isDestructedType()) 8068 return true; 8069 8070 // Variables that have initialization with side-effects are required. 8071 if (VD->getInit() && VD->getInit()->HasSideEffects(*this)) 8072 return true; 8073 8074 return false; 8075 } 8076 8077 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic, 8078 bool IsCXXMethod) const { 8079 // Pass through to the C++ ABI object 8080 if (IsCXXMethod) 8081 return ABI->getDefaultMethodCallConv(IsVariadic); 8082 8083 if (LangOpts.MRTD && !IsVariadic) return CC_X86StdCall; 8084 8085 return Target->getDefaultCallingConv(TargetInfo::CCMT_Unknown); 8086 } 8087 8088 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const { 8089 // Pass through to the C++ ABI object 8090 return ABI->isNearlyEmpty(RD); 8091 } 8092 8093 VTableContextBase *ASTContext::getVTableContext() { 8094 if (!VTContext.get()) { 8095 if (Target->getCXXABI().isMicrosoft()) 8096 VTContext.reset(new MicrosoftVTableContext(*this)); 8097 else 8098 VTContext.reset(new ItaniumVTableContext(*this)); 8099 } 8100 return VTContext.get(); 8101 } 8102 8103 MangleContext *ASTContext::createMangleContext() { 8104 switch (Target->getCXXABI().getKind()) { 8105 case TargetCXXABI::GenericAArch64: 8106 case TargetCXXABI::GenericItanium: 8107 case TargetCXXABI::GenericARM: 8108 case TargetCXXABI::GenericMIPS: 8109 case TargetCXXABI::iOS: 8110 case TargetCXXABI::iOS64: 8111 return ItaniumMangleContext::create(*this, getDiagnostics()); 8112 case TargetCXXABI::Microsoft: 8113 return MicrosoftMangleContext::create(*this, getDiagnostics()); 8114 } 8115 llvm_unreachable("Unsupported ABI"); 8116 } 8117 8118 CXXABI::~CXXABI() {} 8119 8120 size_t ASTContext::getSideTableAllocatedMemory() const { 8121 return ASTRecordLayouts.getMemorySize() + 8122 llvm::capacity_in_bytes(ObjCLayouts) + 8123 llvm::capacity_in_bytes(KeyFunctions) + 8124 llvm::capacity_in_bytes(ObjCImpls) + 8125 llvm::capacity_in_bytes(BlockVarCopyInits) + 8126 llvm::capacity_in_bytes(DeclAttrs) + 8127 llvm::capacity_in_bytes(TemplateOrInstantiation) + 8128 llvm::capacity_in_bytes(InstantiatedFromUsingDecl) + 8129 llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) + 8130 llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) + 8131 llvm::capacity_in_bytes(OverriddenMethods) + 8132 llvm::capacity_in_bytes(Types) + 8133 llvm::capacity_in_bytes(VariableArrayTypes) + 8134 llvm::capacity_in_bytes(ClassScopeSpecializationPattern); 8135 } 8136 8137 /// getIntTypeForBitwidth - 8138 /// sets integer QualTy according to specified details: 8139 /// bitwidth, signed/unsigned. 8140 /// Returns empty type if there is no appropriate target types. 8141 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth, 8142 unsigned Signed) const { 8143 TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed); 8144 CanQualType QualTy = getFromTargetType(Ty); 8145 if (!QualTy && DestWidth == 128) 8146 return Signed ? Int128Ty : UnsignedInt128Ty; 8147 return QualTy; 8148 } 8149 8150 /// getRealTypeForBitwidth - 8151 /// sets floating point QualTy according to specified bitwidth. 8152 /// Returns empty type if there is no appropriate target types. 8153 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const { 8154 TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth); 8155 switch (Ty) { 8156 case TargetInfo::Float: 8157 return FloatTy; 8158 case TargetInfo::Double: 8159 return DoubleTy; 8160 case TargetInfo::LongDouble: 8161 return LongDoubleTy; 8162 case TargetInfo::NoFloat: 8163 return QualType(); 8164 } 8165 8166 llvm_unreachable("Unhandled TargetInfo::RealType value"); 8167 } 8168 8169 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) { 8170 if (Number > 1) 8171 MangleNumbers[ND] = Number; 8172 } 8173 8174 unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const { 8175 llvm::DenseMap<const NamedDecl *, unsigned>::const_iterator I = 8176 MangleNumbers.find(ND); 8177 return I != MangleNumbers.end() ? I->second : 1; 8178 } 8179 8180 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) { 8181 if (Number > 1) 8182 StaticLocalNumbers[VD] = Number; 8183 } 8184 8185 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const { 8186 llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = 8187 StaticLocalNumbers.find(VD); 8188 return I != StaticLocalNumbers.end() ? I->second : 1; 8189 } 8190 8191 MangleNumberingContext & 8192 ASTContext::getManglingNumberContext(const DeclContext *DC) { 8193 assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C. 8194 MangleNumberingContext *&MCtx = MangleNumberingContexts[DC]; 8195 if (!MCtx) 8196 MCtx = createMangleNumberingContext(); 8197 return *MCtx; 8198 } 8199 8200 MangleNumberingContext *ASTContext::createMangleNumberingContext() const { 8201 return ABI->createMangleNumberingContext(); 8202 } 8203 8204 const CXXConstructorDecl * 8205 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) { 8206 return ABI->getCopyConstructorForExceptionObject( 8207 cast<CXXRecordDecl>(RD->getFirstDecl())); 8208 } 8209 8210 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD, 8211 CXXConstructorDecl *CD) { 8212 return ABI->addCopyConstructorForExceptionObject( 8213 cast<CXXRecordDecl>(RD->getFirstDecl()), 8214 cast<CXXConstructorDecl>(CD->getFirstDecl())); 8215 } 8216 8217 void ASTContext::addDefaultArgExprForConstructor(const CXXConstructorDecl *CD, 8218 unsigned ParmIdx, Expr *DAE) { 8219 ABI->addDefaultArgExprForConstructor( 8220 cast<CXXConstructorDecl>(CD->getFirstDecl()), ParmIdx, DAE); 8221 } 8222 8223 Expr *ASTContext::getDefaultArgExprForConstructor(const CXXConstructorDecl *CD, 8224 unsigned ParmIdx) { 8225 return ABI->getDefaultArgExprForConstructor( 8226 cast<CXXConstructorDecl>(CD->getFirstDecl()), ParmIdx); 8227 } 8228 8229 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) { 8230 ParamIndices[D] = index; 8231 } 8232 8233 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const { 8234 ParameterIndexTable::const_iterator I = ParamIndices.find(D); 8235 assert(I != ParamIndices.end() && 8236 "ParmIndices lacks entry set by ParmVarDecl"); 8237 return I->second; 8238 } 8239 8240 APValue * 8241 ASTContext::getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E, 8242 bool MayCreate) { 8243 assert(E && E->getStorageDuration() == SD_Static && 8244 "don't need to cache the computed value for this temporary"); 8245 if (MayCreate) 8246 return &MaterializedTemporaryValues[E]; 8247 8248 llvm::DenseMap<const MaterializeTemporaryExpr *, APValue>::iterator I = 8249 MaterializedTemporaryValues.find(E); 8250 return I == MaterializedTemporaryValues.end() ? nullptr : &I->second; 8251 } 8252 8253 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const { 8254 const llvm::Triple &T = getTargetInfo().getTriple(); 8255 if (!T.isOSDarwin()) 8256 return false; 8257 8258 if (!(T.isiOS() && T.isOSVersionLT(7)) && 8259 !(T.isMacOSX() && T.isOSVersionLT(10, 9))) 8260 return false; 8261 8262 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 8263 CharUnits sizeChars = getTypeSizeInChars(AtomicTy); 8264 uint64_t Size = sizeChars.getQuantity(); 8265 CharUnits alignChars = getTypeAlignInChars(AtomicTy); 8266 unsigned Align = alignChars.getQuantity(); 8267 unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth(); 8268 return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits); 8269 } 8270 8271 namespace { 8272 8273 /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their 8274 /// parents as defined by the \c RecursiveASTVisitor. 8275 /// 8276 /// Note that the relationship described here is purely in terms of AST 8277 /// traversal - there are other relationships (for example declaration context) 8278 /// in the AST that are better modeled by special matchers. 8279 /// 8280 /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes. 8281 class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> { 8282 8283 public: 8284 /// \brief Builds and returns the translation unit's parent map. 8285 /// 8286 /// The caller takes ownership of the returned \c ParentMap. 8287 static ASTContext::ParentMap *buildMap(TranslationUnitDecl &TU) { 8288 ParentMapASTVisitor Visitor(new ASTContext::ParentMap); 8289 Visitor.TraverseDecl(&TU); 8290 return Visitor.Parents; 8291 } 8292 8293 private: 8294 typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase; 8295 8296 ParentMapASTVisitor(ASTContext::ParentMap *Parents) : Parents(Parents) { 8297 } 8298 8299 bool shouldVisitTemplateInstantiations() const { 8300 return true; 8301 } 8302 bool shouldVisitImplicitCode() const { 8303 return true; 8304 } 8305 // Disables data recursion. We intercept Traverse* methods in the RAV, which 8306 // are not triggered during data recursion. 8307 bool shouldUseDataRecursionFor(clang::Stmt *S) const { 8308 return false; 8309 } 8310 8311 template <typename T> 8312 bool TraverseNode(T *Node, bool(VisitorBase:: *traverse) (T *)) { 8313 if (!Node) 8314 return true; 8315 if (ParentStack.size() > 0) { 8316 // FIXME: Currently we add the same parent multiple times, but only 8317 // when no memoization data is available for the type. 8318 // For example when we visit all subexpressions of template 8319 // instantiations; this is suboptimal, but benign: the only way to 8320 // visit those is with hasAncestor / hasParent, and those do not create 8321 // new matches. 8322 // The plan is to enable DynTypedNode to be storable in a map or hash 8323 // map. The main problem there is to implement hash functions / 8324 // comparison operators for all types that DynTypedNode supports that 8325 // do not have pointer identity. 8326 auto &NodeOrVector = (*Parents)[Node]; 8327 if (NodeOrVector.isNull()) { 8328 NodeOrVector = new ast_type_traits::DynTypedNode(ParentStack.back()); 8329 } else { 8330 if (NodeOrVector.template is<ast_type_traits::DynTypedNode *>()) { 8331 auto *Node = 8332 NodeOrVector.template get<ast_type_traits::DynTypedNode *>(); 8333 auto *Vector = new ASTContext::ParentVector(1, *Node); 8334 NodeOrVector = Vector; 8335 delete Node; 8336 } 8337 assert(NodeOrVector.template is<ASTContext::ParentVector *>()); 8338 8339 auto *Vector = 8340 NodeOrVector.template get<ASTContext::ParentVector *>(); 8341 // Skip duplicates for types that have memoization data. 8342 // We must check that the type has memoization data before calling 8343 // std::find() because DynTypedNode::operator== can't compare all 8344 // types. 8345 bool Found = ParentStack.back().getMemoizationData() && 8346 std::find(Vector->begin(), Vector->end(), 8347 ParentStack.back()) != Vector->end(); 8348 if (!Found) 8349 Vector->push_back(ParentStack.back()); 8350 } 8351 } 8352 ParentStack.push_back(ast_type_traits::DynTypedNode::create(*Node)); 8353 bool Result = (this ->* traverse) (Node); 8354 ParentStack.pop_back(); 8355 return Result; 8356 } 8357 8358 bool TraverseDecl(Decl *DeclNode) { 8359 return TraverseNode(DeclNode, &VisitorBase::TraverseDecl); 8360 } 8361 8362 bool TraverseStmt(Stmt *StmtNode) { 8363 return TraverseNode(StmtNode, &VisitorBase::TraverseStmt); 8364 } 8365 8366 ASTContext::ParentMap *Parents; 8367 llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack; 8368 8369 friend class RecursiveASTVisitor<ParentMapASTVisitor>; 8370 }; 8371 8372 } // end namespace 8373 8374 ArrayRef<ast_type_traits::DynTypedNode> 8375 ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) { 8376 assert(Node.getMemoizationData() && 8377 "Invariant broken: only nodes that support memoization may be " 8378 "used in the parent map."); 8379 if (!AllParents) { 8380 // We always need to run over the whole translation unit, as 8381 // hasAncestor can escape any subtree. 8382 AllParents.reset( 8383 ParentMapASTVisitor::buildMap(*getTranslationUnitDecl())); 8384 } 8385 ParentMap::const_iterator I = AllParents->find(Node.getMemoizationData()); 8386 if (I == AllParents->end()) { 8387 return None; 8388 } 8389 if (auto *N = I->second.dyn_cast<ast_type_traits::DynTypedNode *>()) { 8390 return llvm::makeArrayRef(N, 1); 8391 } 8392 return *I->second.get<ParentVector *>(); 8393 } 8394 8395 bool 8396 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl, 8397 const ObjCMethodDecl *MethodImpl) { 8398 // No point trying to match an unavailable/deprecated mothod. 8399 if (MethodDecl->hasAttr<UnavailableAttr>() 8400 || MethodDecl->hasAttr<DeprecatedAttr>()) 8401 return false; 8402 if (MethodDecl->getObjCDeclQualifier() != 8403 MethodImpl->getObjCDeclQualifier()) 8404 return false; 8405 if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType())) 8406 return false; 8407 8408 if (MethodDecl->param_size() != MethodImpl->param_size()) 8409 return false; 8410 8411 for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(), 8412 IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(), 8413 EF = MethodDecl->param_end(); 8414 IM != EM && IF != EF; ++IM, ++IF) { 8415 const ParmVarDecl *DeclVar = (*IF); 8416 const ParmVarDecl *ImplVar = (*IM); 8417 if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier()) 8418 return false; 8419 if (!hasSameType(DeclVar->getType(), ImplVar->getType())) 8420 return false; 8421 } 8422 return (MethodDecl->isVariadic() == MethodImpl->isVariadic()); 8423 8424 } 8425 8426 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that 8427 // doesn't include ASTContext.h 8428 template 8429 clang::LazyGenerationalUpdatePtr< 8430 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType 8431 clang::LazyGenerationalUpdatePtr< 8432 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue( 8433 const clang::ASTContext &Ctx, Decl *Value); 8434