Home | History | Annotate | Download | only in glshared
      1 /*-------------------------------------------------------------------------
      2  * drawElements Quality Program OpenGL (ES) Module
      3  * -----------------------------------------------
      4  *
      5  * Copyright 2014 The Android Open Source Project
      6  *
      7  * Licensed under the Apache License, Version 2.0 (the "License");
      8  * you may not use this file except in compliance with the License.
      9  * You may obtain a copy of the License at
     10  *
     11  *      http://www.apache.org/licenses/LICENSE-2.0
     12  *
     13  * Unless required by applicable law or agreed to in writing, software
     14  * distributed under the License is distributed on an "AS IS" BASIS,
     15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16  * See the License for the specific language governing permissions and
     17  * limitations under the License.
     18  *
     19  *//*!
     20  * \file
     21  * \brief Precision and range tests for GLSL builtins and types.
     22  *
     23  *//*--------------------------------------------------------------------*/
     24 
     25 #include "glsBuiltinPrecisionTests.hpp"
     26 
     27 #include "deMath.h"
     28 #include "deMemory.h"
     29 #include "deDefs.hpp"
     30 #include "deRandom.hpp"
     31 #include "deSTLUtil.hpp"
     32 #include "deStringUtil.hpp"
     33 #include "deUniquePtr.hpp"
     34 #include "deSharedPtr.hpp"
     35 #include "deArrayUtil.hpp"
     36 
     37 #include "tcuCommandLine.hpp"
     38 #include "tcuFloatFormat.hpp"
     39 #include "tcuInterval.hpp"
     40 #include "tcuTestCase.hpp"
     41 #include "tcuTestLog.hpp"
     42 #include "tcuVector.hpp"
     43 #include "tcuMatrix.hpp"
     44 #include "tcuResultCollector.hpp"
     45 
     46 #include "gluContextInfo.hpp"
     47 #include "gluVarType.hpp"
     48 #include "gluRenderContext.hpp"
     49 #include "glwDefs.hpp"
     50 
     51 #include "glsShaderExecUtil.hpp"
     52 
     53 #include <cmath>
     54 #include <string>
     55 #include <sstream>
     56 #include <iostream>
     57 #include <map>
     58 #include <utility>
     59 
     60 // Uncomment this to get evaluation trace dumps to std::cerr
     61 // #define GLS_ENABLE_TRACE
     62 
     63 // set this to true to dump even passing results
     64 #define GLS_LOG_ALL_RESULTS false
     65 
     66 namespace deqp
     67 {
     68 namespace gls
     69 {
     70 namespace BuiltinPrecisionTests
     71 {
     72 
     73 using std::string;
     74 using std::map;
     75 using std::ostream;
     76 using std::ostringstream;
     77 using std::pair;
     78 using std::vector;
     79 using std::set;
     80 
     81 using de::MovePtr;
     82 using de::Random;
     83 using de::SharedPtr;
     84 using de::UniquePtr;
     85 using tcu::Interval;
     86 using tcu::FloatFormat;
     87 using tcu::MessageBuilder;
     88 using tcu::TestCase;
     89 using tcu::TestLog;
     90 using tcu::Vector;
     91 using tcu::Matrix;
     92 namespace matrix = tcu::matrix;
     93 using glu::Precision;
     94 using glu::RenderContext;
     95 using glu::VarType;
     96 using glu::DataType;
     97 using glu::ShaderType;
     98 using glu::ContextInfo;
     99 using gls::ShaderExecUtil::Symbol;
    100 
    101 typedef TestCase::IterateResult IterateResult;
    102 
    103 using namespace glw;
    104 using namespace tcu;
    105 
    106 /*--------------------------------------------------------------------*//*!
    107  * \brief Generic singleton creator.
    108  *
    109  * instance<T>() returns a reference to a unique default-constructed instance
    110  * of T. This is mainly used for our GLSL function implementations: each
    111  * function is implemented by an object, and each of the objects has a
    112  * distinct class. It would be extremely toilsome to maintain a separate
    113  * context object that contained individual instances of the function classes,
    114  * so we have to resort to global singleton instances.
    115  *
    116  *//*--------------------------------------------------------------------*/
    117 template <typename T>
    118 const T& instance (void)
    119 {
    120 	static const T s_instance = T();
    121 	return s_instance;
    122 }
    123 
    124 /*--------------------------------------------------------------------*//*!
    125  * \brief Dummy placeholder type for unused template parameters.
    126  *
    127  * In the precision tests we are dealing with functions of different arities.
    128  * To minimize code duplication, we only define templates with the maximum
    129  * number of arguments, currently four. If a function's arity is less than the
    130  * maximum, Void us used as the type for unused arguments.
    131  *
    132  * Although Voids are not used at run-time, they still must be compilable, so
    133  * they must support all operations that other types do.
    134  *
    135  *//*--------------------------------------------------------------------*/
    136 struct Void
    137 {
    138 	typedef	Void		Element;
    139 	enum
    140 	{
    141 		SIZE = 0,
    142 	};
    143 
    144 	template <typename T>
    145 	explicit			Void			(const T&)		{}
    146 						Void			(void)			{}
    147 						operator double	(void)	const	{ return TCU_NAN; }
    148 
    149 	// These are used to make Voids usable as containers in container-generic code.
    150 	Void&				operator[]		(int)			{ return *this; }
    151 	const Void&			operator[]		(int)	const	{ return *this; }
    152 };
    153 
    154 ostream& operator<< (ostream& os, Void) { return os << "()"; }
    155 
    156 //! Returns true for all other types except Void
    157 template <typename T>	bool isTypeValid		(void)	{ return true;	}
    158 template <>				bool isTypeValid<Void>	(void)	{ return false;	}
    159 
    160 //! Utility function for getting the name of a data type.
    161 //! This is used in vector and matrix constructors.
    162 template <typename T>
    163 const char* dataTypeNameOf (void)
    164 {
    165 	return glu::getDataTypeName(glu::dataTypeOf<T>());
    166 }
    167 
    168 template <>
    169 const char* dataTypeNameOf<Void> (void)
    170 {
    171 	DE_ASSERT(!"Impossible");
    172 	return DE_NULL;
    173 }
    174 
    175 //! A hack to get Void support for VarType.
    176 template <typename T>
    177 VarType getVarTypeOf (Precision prec = glu::PRECISION_LAST)
    178 {
    179 	return glu::varTypeOf<T>(prec);
    180 }
    181 
    182 template <>
    183 VarType getVarTypeOf<Void> (Precision)
    184 {
    185 	DE_ASSERT(!"Impossible");
    186 	return VarType();
    187 }
    188 
    189 /*--------------------------------------------------------------------*//*!
    190  * \brief Type traits for generalized interval types.
    191  *
    192  * We are trying to compute sets of acceptable values not only for
    193  * float-valued expressions but also for compound values: vectors and
    194  * matrices. We approximate a set of vectors as a vector of intervals and
    195  * likewise for matrices.
    196  *
    197  * We now need generalized operations for each type and its interval
    198  * approximation. These are given in the type Traits<T>.
    199  *
    200  * The type Traits<T>::IVal is the approximation of T: it is `Interval` for
    201  * scalar types, and a vector or matrix of intervals for container types.
    202  *
    203  * To allow template inference to take place, there are function wrappers for
    204  * the actual operations in Traits<T>. Hence we can just use:
    205  *
    206  * makeIVal(someFloat)
    207  *
    208  * instead of:
    209  *
    210  * Traits<float>::doMakeIVal(value)
    211  *
    212  *//*--------------------------------------------------------------------*/
    213 
    214 template <typename T> struct Traits;
    215 
    216 //! Create container from elementwise singleton values.
    217 template <typename T>
    218 typename Traits<T>::IVal makeIVal (const T& value)
    219 {
    220 	return Traits<T>::doMakeIVal(value);
    221 }
    222 
    223 //! Elementwise union of intervals.
    224 template <typename T>
    225 typename Traits<T>::IVal unionIVal (const typename Traits<T>::IVal& a,
    226 									const typename Traits<T>::IVal& b)
    227 {
    228 	return Traits<T>::doUnion(a, b);
    229 }
    230 
    231 //! Returns true iff every element of `ival` contains the corresponding element of `value`.
    232 template <typename T>
    233 bool contains (const typename Traits<T>::IVal& ival, const T& value)
    234 {
    235 	return Traits<T>::doContains(ival, value);
    236 }
    237 
    238 //! Print out an interval with the precision of `fmt`.
    239 template <typename T>
    240 void printIVal (const FloatFormat& fmt, const typename Traits<T>::IVal& ival, ostream& os)
    241 {
    242 	Traits<T>::doPrintIVal(fmt, ival, os);
    243 }
    244 
    245 template <typename T>
    246 string intervalToString (const FloatFormat& fmt, const typename Traits<T>::IVal& ival)
    247 {
    248 	ostringstream oss;
    249 	printIVal<T>(fmt, ival, oss);
    250 	return oss.str();
    251 }
    252 
    253 //! Print out a value with the precision of `fmt`.
    254 template <typename T>
    255 void printValue (const FloatFormat& fmt, const T& value, ostream& os)
    256 {
    257 	Traits<T>::doPrintValue(fmt, value, os);
    258 }
    259 
    260 template <typename T>
    261 string valueToString (const FloatFormat& fmt, const T& val)
    262 {
    263 	ostringstream oss;
    264 	printValue(fmt, val, oss);
    265 	return oss.str();
    266 }
    267 
    268 //! Approximate `value` elementwise to the float precision defined in `fmt`.
    269 //! The resulting interval might not be a singleton if rounding in both
    270 //! directions is allowed.
    271 template <typename T>
    272 typename Traits<T>::IVal round (const FloatFormat& fmt, const T& value)
    273 {
    274 	return Traits<T>::doRound(fmt, value);
    275 }
    276 
    277 template <typename T>
    278 typename Traits<T>::IVal convert (const FloatFormat&				fmt,
    279 								  const typename Traits<T>::IVal&	value)
    280 {
    281 	return Traits<T>::doConvert(fmt, value);
    282 }
    283 
    284 //! Common traits for scalar types.
    285 template <typename T>
    286 struct ScalarTraits
    287 {
    288 	typedef 			Interval		IVal;
    289 
    290 	static Interval		doMakeIVal		(const T& value)
    291 	{
    292 		// Thankfully all scalar types have a well-defined conversion to `double`,
    293 		// hence Interval can represent their ranges without problems.
    294 		return Interval(double(value));
    295 	}
    296 
    297 	static Interval		doUnion			(const Interval& a, const Interval& b)
    298 	{
    299 		return a | b;
    300 	}
    301 
    302 	static bool			doContains		(const Interval& a, T value)
    303 	{
    304 		return a.contains(double(value));
    305 	}
    306 
    307 	static Interval		doConvert		(const FloatFormat& fmt, const IVal& ival)
    308 	{
    309 		return fmt.convert(ival);
    310 	}
    311 
    312 	static Interval		doRound			(const FloatFormat& fmt, T value)
    313 	{
    314 		return fmt.roundOut(double(value), false);
    315 	}
    316 };
    317 
    318 template<>
    319 struct Traits<float> : ScalarTraits<float>
    320 {
    321 	static void			doPrintIVal		(const FloatFormat&	fmt,
    322 										 const Interval&	ival,
    323 										 ostream&			os)
    324 	{
    325 		os << fmt.intervalToHex(ival);
    326 	}
    327 
    328 	static void			doPrintValue	(const FloatFormat&	fmt,
    329 										 const float&		value,
    330 										 ostream&			os)
    331 	{
    332 		os << fmt.floatToHex(value);
    333 	}
    334 };
    335 
    336 template<>
    337 struct Traits<bool> : ScalarTraits<bool>
    338 {
    339 	static void			doPrintValue	(const FloatFormat&,
    340 										 const float&		value,
    341 										 ostream&			os)
    342 	{
    343 		os << (value ? "true" : "false");
    344 	}
    345 
    346 	static void			doPrintIVal		(const FloatFormat&,
    347 										 const Interval&	ival,
    348 										 ostream&			os)
    349 	{
    350 		os << "{";
    351 		if (ival.contains(false))
    352 			os << "false";
    353 		if (ival.contains(false) && ival.contains(true))
    354 			os << ", ";
    355 		if (ival.contains(true))
    356 			os << "true";
    357 		os << "}";
    358 	}
    359 };
    360 
    361 template<>
    362 struct Traits<int> : ScalarTraits<int>
    363 {
    364 	static void			doPrintValue 	(const FloatFormat&,
    365 										 const int&			value,
    366 										 ostream&			os)
    367 	{
    368 		os << value;
    369 	}
    370 
    371 	static void			doPrintIVal		(const FloatFormat&,
    372 										 const Interval&	ival,
    373 										 ostream&			os)
    374 	{
    375 		os << "[" << int(ival.lo()) << ", " << int(ival.hi()) << "]";
    376 	}
    377 };
    378 
    379 //! Common traits for containers, i.e. vectors and matrices.
    380 //! T is the container type itself, I is the same type with interval elements.
    381 template <typename T, typename I>
    382 struct ContainerTraits
    383 {
    384 	typedef typename	T::Element		Element;
    385 	typedef				I				IVal;
    386 
    387 	static IVal			doMakeIVal		(const T& value)
    388 	{
    389 		IVal ret;
    390 
    391 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
    392 			ret[ndx] = makeIVal(value[ndx]);
    393 
    394 		return ret;
    395 	}
    396 
    397 	static IVal			doUnion			(const IVal& a, const IVal& b)
    398 	{
    399 		IVal ret;
    400 
    401 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
    402 			ret[ndx] = unionIVal<Element>(a[ndx], b[ndx]);
    403 
    404 		return ret;
    405 	}
    406 
    407 	static bool			doContains		(const IVal& ival, const T& value)
    408 	{
    409 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
    410 			if (!contains(ival[ndx], value[ndx]))
    411 				return false;
    412 
    413 		return true;
    414 	}
    415 
    416 	static void			doPrintIVal		(const FloatFormat& fmt, const IVal ival, ostream& os)
    417 	{
    418 		os << "(";
    419 
    420 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
    421 		{
    422 			if (ndx > 0)
    423 				os << ", ";
    424 
    425 			printIVal<Element>(fmt, ival[ndx], os);
    426 		}
    427 
    428 		os << ")";
    429 	}
    430 
    431 	static void			doPrintValue	(const FloatFormat& fmt, const T& value, ostream& os)
    432 	{
    433 		os << dataTypeNameOf<T>() << "(";
    434 
    435 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
    436 		{
    437 			if (ndx > 0)
    438 				os << ", ";
    439 
    440 			printValue<Element>(fmt, value[ndx], os);
    441 		}
    442 
    443 		os << ")";
    444 	}
    445 
    446 	static IVal			doConvert		(const FloatFormat& fmt, const IVal& value)
    447 	{
    448 		IVal ret;
    449 
    450 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
    451 			ret[ndx] = convert<Element>(fmt, value[ndx]);
    452 
    453 		return ret;
    454 	}
    455 
    456 	static IVal			doRound			(const FloatFormat& fmt, T value)
    457 	{
    458 		IVal ret;
    459 
    460 		for (int ndx = 0; ndx < T::SIZE; ++ndx)
    461 			ret[ndx] = round(fmt, value[ndx]);
    462 
    463 		return ret;
    464 	}
    465 };
    466 
    467 template <typename T, int Size>
    468 struct Traits<Vector<T, Size> > :
    469 	ContainerTraits<Vector<T, Size>, Vector<typename Traits<T>::IVal, Size> >
    470 {
    471 };
    472 
    473 template <typename T, int Rows, int Cols>
    474 struct Traits<Matrix<T, Rows, Cols> > :
    475 	ContainerTraits<Matrix<T, Rows, Cols>, Matrix<typename Traits<T>::IVal, Rows, Cols> >
    476 {
    477 };
    478 
    479 //! Void traits. These are just dummies, but technically valid: a Void is a
    480 //! unit type with a single possible value.
    481 template<>
    482 struct Traits<Void>
    483 {
    484 	typedef		Void			IVal;
    485 
    486 	static Void	doMakeIVal		(const Void& value) 					{ return value; }
    487 	static Void	doUnion			(const Void&, const Void&)				{ return Void(); }
    488 	static bool	doContains		(const Void&, Void) 					{ return true; }
    489 	static Void	doRound			(const FloatFormat&, const Void& value)	{ return value; }
    490 	static Void	doConvert		(const FloatFormat&, const Void& value)	{ return value; }
    491 
    492 	static void	doPrintValue 	(const FloatFormat&, const Void&, ostream& os)
    493 	{
    494 		os << "()";
    495 	}
    496 
    497 	static void	doPrintIVal		(const FloatFormat&, const Void&, ostream& os)
    498 	{
    499 		os << "()";
    500 	}
    501 };
    502 
    503 //! This is needed for container-generic operations.
    504 //! We want a scalar type T to be its own "one-element vector".
    505 template <typename T, int Size> struct ContainerOf	{ typedef Vector<T, Size>	Container; };
    506 
    507 template <typename T>			struct ContainerOf<T, 1>		{ typedef T		Container; };
    508 template <int Size> 			struct ContainerOf<Void, Size>	{ typedef Void	Container; };
    509 
    510 // This is a kludge that is only needed to get the ExprP::operator[] syntactic sugar to work.
    511 template <typename T>	struct ElementOf		{ typedef	typename T::Element	Element; };
    512 template <>				struct ElementOf<float>	{ typedef	void				Element; };
    513 template <>				struct ElementOf<bool>	{ typedef	void				Element; };
    514 template <>				struct ElementOf<int>	{ typedef	void				Element; };
    515 
    516 /*--------------------------------------------------------------------*//*!
    517  *
    518  * \name Abstract syntax for expressions and statements.
    519  *
    520  * We represent GLSL programs as syntax objects: an Expr<T> represents an
    521  * expression whose GLSL type corresponds to the C++ type T, and a Statement
    522  * represents a statement.
    523  *
    524  * To ease memory management, we use shared pointers to refer to expressions
    525  * and statements. ExprP<T> is a shared pointer to an Expr<T>, and StatementP
    526  * is a shared pointer to a Statement.
    527  *
    528  * \{
    529  *
    530  *//*--------------------------------------------------------------------*/
    531 
    532 class ExprBase;
    533 class ExpandContext;
    534 class Statement;
    535 class StatementP;
    536 class FuncBase;
    537 template <typename T> class ExprP;
    538 template <typename T> class Variable;
    539 template <typename T> class VariableP;
    540 template <typename T> class DefaultSampling;
    541 
    542 typedef set<const FuncBase*> FuncSet;
    543 
    544 template <typename T>
    545 VariableP<T>	variable			(const string& name);
    546 StatementP		compoundStatement	(const vector<StatementP>& statements);
    547 
    548 /*--------------------------------------------------------------------*//*!
    549  * \brief A variable environment.
    550  *
    551  * An Environment object maintains the mapping between variables of the
    552  * abstract syntax tree and their values.
    553  *
    554  * \todo [2014-03-28 lauri] At least run-time type safety.
    555  *
    556  *//*--------------------------------------------------------------------*/
    557 class Environment
    558 {
    559 public:
    560 	template<typename T>
    561 	void						bind	(const Variable<T>&					variable,
    562 										 const typename Traits<T>::IVal&	value)
    563 	{
    564 		deUint8* const data = new deUint8[sizeof(value)];
    565 
    566 		deMemcpy(data, &value, sizeof(value));
    567 		de::insert(m_map, variable.getName(), SharedPtr<deUint8>(data, de::ArrayDeleter<deUint8>()));
    568 	}
    569 
    570 	template<typename T>
    571 	typename Traits<T>::IVal&	lookup	(const Variable<T>& variable) const
    572 	{
    573 		deUint8* const data = de::lookup(m_map, variable.getName()).get();
    574 
    575 		return *reinterpret_cast<typename Traits<T>::IVal*>(data);
    576 	}
    577 
    578 private:
    579 	map<string, SharedPtr<deUint8> >	m_map;
    580 };
    581 
    582 /*--------------------------------------------------------------------*//*!
    583  * \brief Evaluation context.
    584  *
    585  * The evaluation context contains everything that separates one execution of
    586  * an expression from the next. Currently this means the desired floating
    587  * point precision and the current variable environment.
    588  *
    589  *//*--------------------------------------------------------------------*/
    590 struct EvalContext
    591 {
    592 	EvalContext (const FloatFormat&	format_,
    593 				 Precision			floatPrecision_,
    594 				 Environment&		env_,
    595 				 int				callDepth_ = 0)
    596 		: format			(format_)
    597 		, floatPrecision	(floatPrecision_)
    598 		, env				(env_)
    599 		, callDepth			(callDepth_) {}
    600 
    601 	FloatFormat		format;
    602 	Precision		floatPrecision;
    603 	Environment&	env;
    604 	int				callDepth;
    605 };
    606 
    607 /*--------------------------------------------------------------------*//*!
    608  * \brief Simple incremental counter.
    609  *
    610  * This is used to make sure that different ExpandContexts will not produce
    611  * overlapping temporary names.
    612  *
    613  *//*--------------------------------------------------------------------*/
    614 class Counter
    615 {
    616 public:
    617 			Counter		(int count = 0) : m_count(count) {}
    618 	int		operator()	(void) { return m_count++; }
    619 
    620 private:
    621 	int		m_count;
    622 };
    623 
    624 class ExpandContext
    625 {
    626 public:
    627 						ExpandContext	(Counter& symCounter) : m_symCounter(symCounter) {}
    628 						ExpandContext	(const ExpandContext& parent)
    629 							: m_symCounter(parent.m_symCounter) {}
    630 
    631 	template<typename T>
    632 	VariableP<T>		genSym			(const string& baseName)
    633 	{
    634 		return variable<T>(baseName + de::toString(m_symCounter()));
    635 	}
    636 
    637 	void				addStatement	(const StatementP& stmt)
    638 	{
    639 		m_statements.push_back(stmt);
    640 	}
    641 
    642 	vector<StatementP>	getStatements	(void) const
    643 	{
    644 		return m_statements;
    645 	}
    646 private:
    647 	Counter&			m_symCounter;
    648 	vector<StatementP>	m_statements;
    649 };
    650 
    651 /*--------------------------------------------------------------------*//*!
    652  * \brief A statement or declaration.
    653  *
    654  * Statements have no values. Instead, they are executed for their side
    655  * effects only: the execute() method should modify at least one variable in
    656  * the environment.
    657  *
    658  * As a bit of a kludge, a Statement object can also represent a declaration:
    659  * when it is evaluated, it can add a variable binding to the environment
    660  * instead of modifying a current one.
    661  *
    662  *//*--------------------------------------------------------------------*/
    663 class Statement
    664 {
    665 public:
    666 	virtual	~Statement		(void) 							{								 }
    667 	//! Execute the statement, modifying the environment of `ctx`
    668 	void	execute			(EvalContext&	ctx)	const	{ this->doExecute(ctx);			 }
    669 	void	print			(ostream&		os)		const	{ this->doPrint(os);			 }
    670 	//! Add the functions used in this statement to `dst`.
    671 	void	getUsedFuncs	(FuncSet& dst)			const	{ this->doGetUsedFuncs(dst);	 }
    672 
    673 protected:
    674 	virtual void	doPrint			(ostream& os)			const	= 0;
    675 	virtual void	doExecute		(EvalContext& ctx)		const	= 0;
    676 	virtual void	doGetUsedFuncs	(FuncSet& dst)			const	= 0;
    677 };
    678 
    679 ostream& operator<<(ostream& os, const Statement& stmt)
    680 {
    681 	stmt.print(os);
    682 	return os;
    683 }
    684 
    685 /*--------------------------------------------------------------------*//*!
    686  * \brief Smart pointer for statements (and declarations)
    687  *
    688  *//*--------------------------------------------------------------------*/
    689 class StatementP : public SharedPtr<const Statement>
    690 {
    691 public:
    692 	typedef		SharedPtr<const Statement>	Super;
    693 
    694 				StatementP			(void) {}
    695 	explicit	StatementP			(const Statement* ptr)	: Super(ptr) {}
    696 				StatementP			(const Super& ptr)		: Super(ptr) {}
    697 };
    698 
    699 /*--------------------------------------------------------------------*//*!
    700  * \brief
    701  *
    702  * A statement that modifies a variable or a declaration that binds a variable.
    703  *
    704  *//*--------------------------------------------------------------------*/
    705 template <typename T>
    706 class VariableStatement : public Statement
    707 {
    708 public:
    709 					VariableStatement	(const VariableP<T>& variable, const ExprP<T>& value,
    710 										 bool isDeclaration)
    711 						: m_variable		(variable)
    712 						, m_value			(value)
    713 						, m_isDeclaration	(isDeclaration) {}
    714 
    715 protected:
    716 	void			doPrint				(ostream& os)							const
    717 	{
    718 		if (m_isDeclaration)
    719 			os << glu::declare(getVarTypeOf<T>(), m_variable->getName());
    720 		else
    721 			os << m_variable->getName();
    722 
    723 		os << " = " << *m_value << ";\n";
    724 	}
    725 
    726 	void			doExecute			(EvalContext& ctx)						const
    727 	{
    728 		if (m_isDeclaration)
    729 			ctx.env.bind(*m_variable, m_value->evaluate(ctx));
    730 		else
    731 			ctx.env.lookup(*m_variable) = m_value->evaluate(ctx);
    732 	}
    733 
    734 	void			doGetUsedFuncs		(FuncSet& dst)							const
    735 	{
    736 		m_value->getUsedFuncs(dst);
    737 	}
    738 
    739 	VariableP<T>	m_variable;
    740 	ExprP<T>		m_value;
    741 	bool			m_isDeclaration;
    742 };
    743 
    744 template <typename T>
    745 StatementP variableStatement (const VariableP<T>&	variable,
    746 							  const ExprP<T>&		value,
    747 							  bool					isDeclaration)
    748 {
    749 	return StatementP(new VariableStatement<T>(variable, value, isDeclaration));
    750 }
    751 
    752 template <typename T>
    753 StatementP variableDeclaration (const VariableP<T>& variable, const ExprP<T>& definiens)
    754 {
    755 	return variableStatement(variable, definiens, true);
    756 }
    757 
    758 template <typename T>
    759 StatementP variableAssignment (const VariableP<T>& variable, const ExprP<T>& value)
    760 {
    761 	return variableStatement(variable, value, false);
    762 }
    763 
    764 /*--------------------------------------------------------------------*//*!
    765  * \brief A compound statement, i.e. a block.
    766  *
    767  * A compound statement is executed by executing its constituent statements in
    768  * sequence.
    769  *
    770  *//*--------------------------------------------------------------------*/
    771 class CompoundStatement : public Statement
    772 {
    773 public:
    774 						CompoundStatement	(const vector<StatementP>& statements)
    775 							: m_statements	(statements) {}
    776 
    777 protected:
    778 	void				doPrint				(ostream&		os)						const
    779 	{
    780 		os << "{\n";
    781 
    782 		for (size_t ndx = 0; ndx < m_statements.size(); ++ndx)
    783 			os << *m_statements[ndx];
    784 
    785 		os << "}\n";
    786 	}
    787 
    788 	void				doExecute			(EvalContext&	ctx)					const
    789 	{
    790 		for (size_t ndx = 0; ndx < m_statements.size(); ++ndx)
    791 			m_statements[ndx]->execute(ctx);
    792 	}
    793 
    794 	void				doGetUsedFuncs		(FuncSet& dst)							const
    795 	{
    796 		for (size_t ndx = 0; ndx < m_statements.size(); ++ndx)
    797 			m_statements[ndx]->getUsedFuncs(dst);
    798 	}
    799 
    800 	vector<StatementP>	m_statements;
    801 };
    802 
    803 StatementP compoundStatement(const vector<StatementP>& statements)
    804 {
    805 	return StatementP(new CompoundStatement(statements));
    806 }
    807 
    808 //! Common base class for all expressions regardless of their type.
    809 class ExprBase
    810 {
    811 public:
    812 	virtual				~ExprBase		(void)									{}
    813 	void				printExpr		(ostream& os) const { this->doPrintExpr(os); }
    814 
    815 	//! Output the functions that this expression refers to
    816 	void				getUsedFuncs	(FuncSet& dst) const
    817 	{
    818 		this->doGetUsedFuncs(dst);
    819 	}
    820 
    821 protected:
    822 	virtual void		doPrintExpr		(ostream&)	const	{}
    823 	virtual void		doGetUsedFuncs	(FuncSet&)	const	{}
    824 };
    825 
    826 //! Type-specific operations for an expression representing type T.
    827 template <typename T>
    828 class Expr : public ExprBase
    829 {
    830 public:
    831 	typedef 			T				Val;
    832 	typedef typename 	Traits<T>::IVal	IVal;
    833 
    834 	IVal				evaluate		(const EvalContext&	ctx) const;
    835 
    836 protected:
    837 	virtual IVal		doEvaluate		(const EvalContext&	ctx) const = 0;
    838 };
    839 
    840 //! Evaluate an expression with the given context, optionally tracing the calls to stderr.
    841 template <typename T>
    842 typename Traits<T>::IVal Expr<T>::evaluate (const EvalContext& ctx) const
    843 {
    844 #ifdef GLS_ENABLE_TRACE
    845 	static const FloatFormat	highpFmt	(-126, 127, 23, true,
    846 											 tcu::MAYBE,
    847 											 tcu::YES,
    848 											 tcu::MAYBE);
    849 	EvalContext					newCtx		(ctx.format, ctx.floatPrecision,
    850 											 ctx.env, ctx.callDepth + 1);
    851 	const IVal					ret			= this->doEvaluate(newCtx);
    852 
    853 	if (isTypeValid<T>())
    854 	{
    855 		std::cerr << string(ctx.callDepth, ' ');
    856 		this->printExpr(std::cerr);
    857 		std::cerr << " -> " << intervalToString<T>(highpFmt, ret) << std::endl;
    858 	}
    859 	return ret;
    860 #else
    861 	return this->doEvaluate(ctx);
    862 #endif
    863 }
    864 
    865 template <typename T>
    866 class ExprPBase : public SharedPtr<const Expr<T> >
    867 {
    868 public:
    869 };
    870 
    871 ostream& operator<< (ostream& os, const ExprBase& expr)
    872 {
    873 	expr.printExpr(os);
    874 	return os;
    875 }
    876 
    877 /*--------------------------------------------------------------------*//*!
    878  * \brief Shared pointer to an expression of a container type.
    879  *
    880  * Container types (i.e. vectors and matrices) support the subscription
    881  * operator. This class provides a bit of syntactic sugar to allow us to use
    882  * the C++ subscription operator to create a subscription expression.
    883  *//*--------------------------------------------------------------------*/
    884 template <typename T>
    885 class ContainerExprPBase : public ExprPBase<T>
    886 {
    887 public:
    888 	ExprP<typename T::Element>	operator[]	(int i) const;
    889 };
    890 
    891 template <typename T>
    892 class ExprP : public ExprPBase<T> {};
    893 
    894 // We treat Voids as containers since the dummy parameters in generalized
    895 // vector functions are represented as Voids.
    896 template <>
    897 class ExprP<Void> : public ContainerExprPBase<Void> {};
    898 
    899 template <typename T, int Size>
    900 class ExprP<Vector<T, Size> > : public ContainerExprPBase<Vector<T, Size> > {};
    901 
    902 template <typename T, int Rows, int Cols>
    903 class ExprP<Matrix<T, Rows, Cols> > : public ContainerExprPBase<Matrix<T, Rows, Cols> > {};
    904 
    905 template <typename T> ExprP<T> exprP (void)
    906 {
    907 	return ExprP<T>();
    908 }
    909 
    910 template <typename T>
    911 ExprP<T> exprP (const SharedPtr<const Expr<T> >& ptr)
    912 {
    913 	ExprP<T> ret;
    914 	static_cast<SharedPtr<const Expr<T> >&>(ret) = ptr;
    915 	return ret;
    916 }
    917 
    918 template <typename T>
    919 ExprP<T> exprP (const Expr<T>* ptr)
    920 {
    921 	return exprP(SharedPtr<const Expr<T> >(ptr));
    922 }
    923 
    924 /*--------------------------------------------------------------------*//*!
    925  * \brief A shared pointer to a variable expression.
    926  *
    927  * This is just a narrowing of ExprP for the operations that require a variable
    928  * instead of an arbitrary expression.
    929  *
    930  *//*--------------------------------------------------------------------*/
    931 template <typename T>
    932 class VariableP : public SharedPtr<const Variable<T> >
    933 {
    934 public:
    935 	typedef		SharedPtr<const Variable<T> >	Super;
    936 	explicit	VariableP	(const Variable<T>* ptr) : Super(ptr) {}
    937 				VariableP	(void) {}
    938 				VariableP	(const Super& ptr) : Super(ptr) {}
    939 
    940 	operator	ExprP<T>	(void) const { return exprP(SharedPtr<const Expr<T> >(*this)); }
    941 };
    942 
    943 /*--------------------------------------------------------------------*//*!
    944  * \name Syntactic sugar operators for expressions.
    945  *
    946  * @{
    947  *
    948  * These operators allow the use of C++ syntax to construct GLSL expressions
    949  * containing operators: e.g. "a+b" creates an addition expression with
    950  * operands a and b, and so on.
    951  *
    952  *//*--------------------------------------------------------------------*/
    953 ExprP<float>						operator-(const ExprP<float>&						arg0);
    954 ExprP<float>						operator+(const ExprP<float>&						arg0,
    955 											  const ExprP<float>&						arg1);
    956 ExprP<float>						operator-(const ExprP<float>&						arg0,
    957 											  const ExprP<float>&						arg1);
    958 ExprP<float> 						operator*(const ExprP<float>&						arg0,
    959 											  const ExprP<float>&						arg1);
    960 ExprP<float> 						operator/(const ExprP<float>&						arg0,
    961 											  const ExprP<float>&						arg1);
    962 template<int Size>
    963 ExprP<Vector<float, Size> >			operator-(const ExprP<Vector<float, Size> >&		arg0);
    964 template<int Size>
    965 ExprP<Vector<float, Size> >			operator*(const ExprP<Vector<float, Size> >&		arg0,
    966 											  const ExprP<float>&						arg1);
    967 template<int Size>
    968 ExprP<Vector<float, Size> >			operator*(const ExprP<Vector<float, Size> >&		arg0,
    969 											  const ExprP<Vector<float, Size> >&		arg1);
    970 template<int Size>
    971 ExprP<Vector<float, Size> >			operator-(const ExprP<Vector<float, Size> >&		arg0,
    972 											  const ExprP<Vector<float, Size> >&		arg1);
    973 template<int Left, int Mid, int Right>
    974 ExprP<Matrix<float, Left, Right> >	operator* (const ExprP<Matrix<float, Left, Mid> >&	left,
    975 											   const ExprP<Matrix<float, Mid, Right> >&	right);
    976 template<int Rows, int Cols>
    977 ExprP<Vector<float, Rows> >			operator* (const ExprP<Vector<float, Cols> >&		left,
    978 											   const ExprP<Matrix<float, Rows, Cols> >&	right);
    979 template<int Rows, int Cols>
    980 ExprP<Vector<float, Cols> >			operator* (const ExprP<Matrix<float, Rows, Cols> >&	left,
    981 											   const ExprP<Vector<float, Rows> >&		right);
    982 template<int Rows, int Cols>
    983 ExprP<Matrix<float, Rows, Cols> >	operator* (const ExprP<Matrix<float, Rows, Cols> >&	left,
    984 											   const ExprP<float>&						right);
    985 template<int Rows, int Cols>
    986 ExprP<Matrix<float, Rows, Cols> > 	operator+ (const ExprP<Matrix<float, Rows, Cols> >&	left,
    987 											   const ExprP<Matrix<float, Rows, Cols> >&	right);
    988 template<int Rows, int Cols>
    989 ExprP<Matrix<float, Rows, Cols> > 	operator- (const ExprP<Matrix<float, Rows, Cols> >&	mat);
    990 
    991 //! @}
    992 
    993 /*--------------------------------------------------------------------*//*!
    994  * \brief Variable expression.
    995  *
    996  * A variable is evaluated by looking up its range of possible values from an
    997  * environment.
    998  *//*--------------------------------------------------------------------*/
    999 template <typename T>
   1000 class Variable : public Expr<T>
   1001 {
   1002 public:
   1003 	typedef typename Expr<T>::IVal IVal;
   1004 
   1005 					Variable	(const string& name) : m_name (name) {}
   1006 	string			getName		(void)							const { return m_name; }
   1007 
   1008 protected:
   1009 	void			doPrintExpr	(ostream& os)					const { os << m_name; }
   1010 	IVal			doEvaluate	(const EvalContext& ctx)		const
   1011 	{
   1012 		return ctx.env.lookup<T>(*this);
   1013 	}
   1014 
   1015 private:
   1016 	string	m_name;
   1017 };
   1018 
   1019 template <typename T>
   1020 VariableP<T> variable (const string& name)
   1021 {
   1022 	return VariableP<T>(new Variable<T>(name));
   1023 }
   1024 
   1025 template <typename T>
   1026 VariableP<T> bindExpression (const string& name, ExpandContext& ctx, const ExprP<T>& expr)
   1027 {
   1028 	VariableP<T> var = ctx.genSym<T>(name);
   1029 	ctx.addStatement(variableDeclaration(var, expr));
   1030 	return var;
   1031 }
   1032 
   1033 /*--------------------------------------------------------------------*//*!
   1034  * \brief Constant expression.
   1035  *
   1036  * A constant is evaluated by rounding it to a set of possible values allowed
   1037  * by the current floating point precision.
   1038  *//*--------------------------------------------------------------------*/
   1039 template <typename T>
   1040 class Constant : public Expr<T>
   1041 {
   1042 public:
   1043 	typedef typename Expr<T>::IVal IVal;
   1044 
   1045 			Constant		(const T& value) : m_value(value) {}
   1046 
   1047 protected:
   1048 	void	doPrintExpr		(ostream& os) const 		{ os << m_value; }
   1049 	IVal	doEvaluate		(const EvalContext&) const	{ return makeIVal(m_value); }
   1050 
   1051 private:
   1052 	T		m_value;
   1053 };
   1054 
   1055 template <typename T>
   1056 ExprP<T> constant (const T& value)
   1057 {
   1058 	return exprP(new Constant<T>(value));
   1059 }
   1060 
   1061 //! Return a reference to a singleton void constant.
   1062 const ExprP<Void>& voidP (void)
   1063 {
   1064 	static const ExprP<Void> singleton = constant(Void());
   1065 
   1066 	return singleton;
   1067 }
   1068 
   1069 /*--------------------------------------------------------------------*//*!
   1070  * \brief Four-element tuple.
   1071  *
   1072  * This is used for various things where we need one thing for each possible
   1073  * function parameter. Currently the maximum supported number of parameters is
   1074  * four.
   1075  *//*--------------------------------------------------------------------*/
   1076 template <typename T0 = Void, typename T1 = Void, typename T2 = Void, typename T3 = Void>
   1077 struct Tuple4
   1078 {
   1079 	explicit Tuple4 (const T0& e0 = T0(),
   1080 					 const T1& e1 = T1(),
   1081 					 const T2& e2 = T2(),
   1082 					 const T3& e3 = T3())
   1083 		: a	(e0)
   1084 		, b	(e1)
   1085 		, c	(e2)
   1086 		, d	(e3)
   1087 	{
   1088 	}
   1089 
   1090 	T0 a;
   1091 	T1 b;
   1092 	T2 c;
   1093 	T3 d;
   1094 };
   1095 
   1096 /*--------------------------------------------------------------------*//*!
   1097  * \brief Function signature.
   1098  *
   1099  * This is a purely compile-time structure used to bundle all types in a
   1100  * function signature together. This makes passing the signature around in
   1101  * templates easier, since we only need to take and pass a single Sig instead
   1102  * of a bunch of parameter types and a return type.
   1103  *
   1104  *//*--------------------------------------------------------------------*/
   1105 template <typename R,
   1106 		  typename P0 = Void, typename P1 = Void,
   1107 		  typename P2 = Void, typename P3 = Void>
   1108 struct Signature
   1109 {
   1110 	typedef R							Ret;
   1111 	typedef P0							Arg0;
   1112 	typedef P1							Arg1;
   1113 	typedef P2							Arg2;
   1114 	typedef P3							Arg3;
   1115 	typedef typename Traits<Ret>::IVal	IRet;
   1116 	typedef typename Traits<Arg0>::IVal	IArg0;
   1117 	typedef typename Traits<Arg1>::IVal	IArg1;
   1118 	typedef typename Traits<Arg2>::IVal	IArg2;
   1119 	typedef typename Traits<Arg3>::IVal	IArg3;
   1120 
   1121 	typedef Tuple4<	const Arg0&,	const Arg1&,	const Arg2&,	const Arg3&>	Args;
   1122 	typedef Tuple4<	const IArg0&,	const IArg1&,	const IArg2&,	const IArg3&> 	IArgs;
   1123 	typedef Tuple4<	ExprP<Arg0>,	ExprP<Arg1>,	ExprP<Arg2>,	ExprP<Arg3> >	ArgExprs;
   1124 };
   1125 
   1126 typedef vector<const ExprBase*> BaseArgExprs;
   1127 
   1128 /*--------------------------------------------------------------------*//*!
   1129  * \brief Type-independent operations for function objects.
   1130  *
   1131  *//*--------------------------------------------------------------------*/
   1132 class FuncBase
   1133 {
   1134 public:
   1135 	virtual			~FuncBase				(void)					{}
   1136 	virtual string	getName					(void) 					const = 0;
   1137 	//! Name of extension that this function requires, or empty.
   1138 	virtual string	getRequiredExtension	(void) 					const { return ""; }
   1139 	virtual void	print					(ostream&,
   1140 											 const BaseArgExprs&)	const = 0;
   1141 	//! Index of output parameter, or -1 if none of the parameters is output.
   1142 	virtual int		getOutParamIndex		(void)					const { return -1; }
   1143 
   1144 	void			printDefinition			(ostream& os)			const
   1145 	{
   1146 		doPrintDefinition(os);
   1147 	}
   1148 
   1149 	void				getUsedFuncs		(FuncSet& dst) const
   1150 	{
   1151 		this->doGetUsedFuncs(dst);
   1152 	}
   1153 
   1154 protected:
   1155 	virtual void	doPrintDefinition		(ostream& os)			const = 0;
   1156 	virtual void	doGetUsedFuncs			(FuncSet& dst)			const = 0;
   1157 };
   1158 
   1159 typedef Tuple4<string, string, string, string> ParamNames;
   1160 
   1161 /*--------------------------------------------------------------------*//*!
   1162  * \brief Function objects.
   1163  *
   1164  * Each Func object represents a GLSL function. It can be applied to interval
   1165  * arguments, and it returns the an interval that is a conservative
   1166  * approximation of the image of the GLSL function over the argument
   1167  * intervals. That is, it is given a set of possible arguments and it returns
   1168  * the set of possible values.
   1169  *
   1170  *//*--------------------------------------------------------------------*/
   1171 template <typename Sig_>
   1172 class Func : public FuncBase
   1173 {
   1174 public:
   1175 	typedef Sig_										Sig;
   1176 	typedef typename Sig::Ret							Ret;
   1177 	typedef typename Sig::Arg0							Arg0;
   1178 	typedef typename Sig::Arg1							Arg1;
   1179 	typedef typename Sig::Arg2							Arg2;
   1180 	typedef typename Sig::Arg3							Arg3;
   1181 	typedef typename Sig::IRet							IRet;
   1182 	typedef typename Sig::IArg0							IArg0;
   1183 	typedef typename Sig::IArg1							IArg1;
   1184 	typedef typename Sig::IArg2							IArg2;
   1185 	typedef typename Sig::IArg3							IArg3;
   1186 	typedef typename Sig::Args							Args;
   1187 	typedef typename Sig::IArgs							IArgs;
   1188 	typedef typename Sig::ArgExprs						ArgExprs;
   1189 
   1190 	void				print			(ostream&			os,
   1191 										 const BaseArgExprs& args)				const
   1192 	{
   1193 		this->doPrint(os, args);
   1194 	}
   1195 
   1196 	IRet				apply			(const EvalContext&	ctx,
   1197 										 const IArg0&		arg0 = IArg0(),
   1198 										 const IArg1&		arg1 = IArg1(),
   1199 										 const IArg2&		arg2 = IArg2(),
   1200 										 const IArg3&		arg3 = IArg3())		const
   1201 	{
   1202 		return this->applyArgs(ctx, IArgs(arg0, arg1, arg2, arg3));
   1203 	}
   1204 	IRet				applyArgs		(const EvalContext&	ctx,
   1205 										 const IArgs&		args)				const
   1206 	{
   1207 		return this->doApply(ctx, args);
   1208 	}
   1209 	ExprP<Ret>			operator()		(const ExprP<Arg0>&		arg0 = voidP(),
   1210 										 const ExprP<Arg1>&		arg1 = voidP(),
   1211 										 const ExprP<Arg2>&		arg2 = voidP(),
   1212 										 const ExprP<Arg3>&		arg3 = voidP())		const;
   1213 
   1214 	const ParamNames&	getParamNames	(void)									const
   1215 	{
   1216 		return this->doGetParamNames();
   1217 	}
   1218 
   1219 protected:
   1220 	virtual IRet		doApply			(const EvalContext&,
   1221 										 const IArgs&)							const = 0;
   1222 	virtual void		doPrint			(ostream& os, const BaseArgExprs& args)	const
   1223 	{
   1224 		os << getName() << "(";
   1225 
   1226 		if (isTypeValid<Arg0>())
   1227 			os << *args[0];
   1228 
   1229 		if (isTypeValid<Arg1>())
   1230 			os << ", " << *args[1];
   1231 
   1232 		if (isTypeValid<Arg2>())
   1233 			os << ", " << *args[2];
   1234 
   1235 		if (isTypeValid<Arg3>())
   1236 			os << ", " << *args[3];
   1237 
   1238 		os << ")";
   1239 	}
   1240 
   1241 	virtual const ParamNames&	doGetParamNames	(void)							const
   1242 	{
   1243 		static ParamNames	names	("a", "b", "c", "d");
   1244 		return names;
   1245 	}
   1246 };
   1247 
   1248 template <typename Sig>
   1249 class Apply : public Expr<typename Sig::Ret>
   1250 {
   1251 public:
   1252 	typedef typename Sig::Ret				Ret;
   1253 	typedef typename Sig::Arg0				Arg0;
   1254 	typedef typename Sig::Arg1				Arg1;
   1255 	typedef typename Sig::Arg2				Arg2;
   1256 	typedef typename Sig::Arg3				Arg3;
   1257 	typedef typename Expr<Ret>::Val			Val;
   1258 	typedef typename Expr<Ret>::IVal		IVal;
   1259 	typedef Func<Sig>						ApplyFunc;
   1260 	typedef typename ApplyFunc::ArgExprs	ArgExprs;
   1261 
   1262 						Apply	(const ApplyFunc&		func,
   1263 								 const ExprP<Arg0>&		arg0 = voidP(),
   1264 								 const ExprP<Arg1>&		arg1 = voidP(),
   1265 								 const ExprP<Arg2>&		arg2 = voidP(),
   1266 								 const ExprP<Arg3>&		arg3 = voidP())
   1267 							: m_func	(func),
   1268 							  m_args	(arg0, arg1, arg2, arg3) {}
   1269 
   1270 						Apply	(const ApplyFunc&	func,
   1271 								 const ArgExprs&	args)
   1272 							: m_func	(func),
   1273 							  m_args	(args) {}
   1274 protected:
   1275 	void				doPrintExpr			(ostream& os) const
   1276 	{
   1277 		BaseArgExprs	args;
   1278 		args.push_back(m_args.a.get());
   1279 		args.push_back(m_args.b.get());
   1280 		args.push_back(m_args.c.get());
   1281 		args.push_back(m_args.d.get());
   1282 		m_func.print(os, args);
   1283 	}
   1284 
   1285 	IVal				doEvaluate		(const EvalContext& ctx) const
   1286 	{
   1287 		return m_func.apply(ctx,
   1288 							m_args.a->evaluate(ctx), m_args.b->evaluate(ctx),
   1289 							m_args.c->evaluate(ctx), m_args.d->evaluate(ctx));
   1290 	}
   1291 
   1292 	void				doGetUsedFuncs	(FuncSet& dst) const
   1293 	{
   1294 		m_func.getUsedFuncs(dst);
   1295 		m_args.a->getUsedFuncs(dst);
   1296 		m_args.b->getUsedFuncs(dst);
   1297 		m_args.c->getUsedFuncs(dst);
   1298 		m_args.d->getUsedFuncs(dst);
   1299 	}
   1300 
   1301 	const ApplyFunc&	m_func;
   1302 	ArgExprs			m_args;
   1303 };
   1304 
   1305 template<typename T>
   1306 class Alternatives : public Func<Signature<T, T, T> >
   1307 {
   1308 public:
   1309 	typedef typename	Alternatives::Sig		Sig;
   1310 
   1311 protected:
   1312 	typedef typename	Alternatives::IRet		IRet;
   1313 	typedef typename	Alternatives::IArgs		IArgs;
   1314 
   1315 	virtual string		getName				(void) const			{ return "alternatives"; }
   1316 	virtual void		doPrintDefinition	(std::ostream&) const	{}
   1317 	void				doGetUsedFuncs		(FuncSet&) const		{}
   1318 
   1319 	virtual IRet		doApply				(const EvalContext&, const IArgs& args) const
   1320 	{
   1321 		return unionIVal<T>(args.a, args.b);
   1322 	}
   1323 
   1324 	virtual void		doPrint				(ostream& os, const BaseArgExprs& args)	const
   1325 	{
   1326 		os << "{" << *args[0] << " | " << *args[1] << "}";
   1327 	}
   1328 };
   1329 
   1330 template <typename Sig>
   1331 ExprP<typename Sig::Ret> createApply (const Func<Sig>&						func,
   1332 									  const typename Func<Sig>::ArgExprs&	args)
   1333 {
   1334 	return exprP(new Apply<Sig>(func, args));
   1335 }
   1336 
   1337 template <typename Sig>
   1338 ExprP<typename Sig::Ret> createApply (
   1339 	const Func<Sig>&			func,
   1340 	const ExprP<typename Sig::Arg0>&	arg0 = voidP(),
   1341 	const ExprP<typename Sig::Arg1>&	arg1 = voidP(),
   1342 	const ExprP<typename Sig::Arg2>&	arg2 = voidP(),
   1343 	const ExprP<typename Sig::Arg3>&	arg3 = voidP())
   1344 {
   1345 	return exprP(new Apply<Sig>(func, arg0, arg1, arg2, arg3));
   1346 }
   1347 
   1348 template <typename Sig>
   1349 ExprP<typename Sig::Ret> Func<Sig>::operator() (const ExprP<typename Sig::Arg0>& arg0,
   1350 												const ExprP<typename Sig::Arg1>& arg1,
   1351 												const ExprP<typename Sig::Arg2>& arg2,
   1352 												const ExprP<typename Sig::Arg3>& arg3) const
   1353 {
   1354 	return createApply(*this, arg0, arg1, arg2, arg3);
   1355 }
   1356 
   1357 template <typename F>
   1358 ExprP<typename F::Ret> app (const ExprP<typename F::Arg0>& arg0 = voidP(),
   1359 							const ExprP<typename F::Arg1>& arg1 = voidP(),
   1360 							const ExprP<typename F::Arg2>& arg2 = voidP(),
   1361 							const ExprP<typename F::Arg3>& arg3 = voidP())
   1362 {
   1363 	return createApply(instance<F>(), arg0, arg1, arg2, arg3);
   1364 }
   1365 
   1366 template <typename F>
   1367 typename F::IRet call (const EvalContext&			ctx,
   1368 					   const typename F::IArg0&		arg0 = Void(),
   1369 					   const typename F::IArg1&		arg1 = Void(),
   1370 					   const typename F::IArg2&		arg2 = Void(),
   1371 					   const typename F::IArg3&		arg3 = Void())
   1372 {
   1373 	return instance<F>().apply(ctx, arg0, arg1, arg2, arg3);
   1374 }
   1375 
   1376 template <typename T>
   1377 ExprP<T> alternatives (const ExprP<T>& arg0,
   1378 					   const ExprP<T>& arg1)
   1379 {
   1380 	return createApply<typename Alternatives<T>::Sig>(instance<Alternatives<T> >(), arg0, arg1);
   1381 }
   1382 
   1383 template <typename Sig>
   1384 class ApplyVar : public Apply<Sig>
   1385 {
   1386 public:
   1387 	typedef typename Sig::Ret				Ret;
   1388 	typedef typename Sig::Arg0				Arg0;
   1389 	typedef typename Sig::Arg1				Arg1;
   1390 	typedef typename Sig::Arg2				Arg2;
   1391 	typedef typename Sig::Arg3				Arg3;
   1392 	typedef typename Expr<Ret>::Val			Val;
   1393 	typedef typename Expr<Ret>::IVal		IVal;
   1394 	typedef Func<Sig>						ApplyFunc;
   1395 	typedef typename ApplyFunc::ArgExprs	ArgExprs;
   1396 
   1397 						ApplyVar	(const ApplyFunc&			func,
   1398 									 const VariableP<Arg0>&		arg0,
   1399 									 const VariableP<Arg1>&		arg1,
   1400 									 const VariableP<Arg2>&		arg2,
   1401 									 const VariableP<Arg3>&		arg3)
   1402 							: Apply<Sig> (func, arg0, arg1, arg2, arg3) {}
   1403 protected:
   1404 	IVal				doEvaluate		(const EvalContext& ctx) const
   1405 	{
   1406 		const Variable<Arg0>&	var0 = static_cast<const Variable<Arg0>&>(*this->m_args.a);
   1407 		const Variable<Arg1>&	var1 = static_cast<const Variable<Arg1>&>(*this->m_args.b);
   1408 		const Variable<Arg2>&	var2 = static_cast<const Variable<Arg2>&>(*this->m_args.c);
   1409 		const Variable<Arg3>&	var3 = static_cast<const Variable<Arg3>&>(*this->m_args.d);
   1410 		return this->m_func.apply(ctx,
   1411 								  ctx.env.lookup(var0), ctx.env.lookup(var1),
   1412 								  ctx.env.lookup(var2), ctx.env.lookup(var3));
   1413 	}
   1414 };
   1415 
   1416 template <typename Sig>
   1417 ExprP<typename Sig::Ret> applyVar (const Func<Sig>&						func,
   1418 								   const VariableP<typename Sig::Arg0>&	arg0,
   1419 								   const VariableP<typename Sig::Arg1>&	arg1,
   1420 								   const VariableP<typename Sig::Arg2>&	arg2,
   1421 								   const VariableP<typename Sig::Arg3>&	arg3)
   1422 {
   1423 	return exprP(new ApplyVar<Sig>(func, arg0, arg1, arg2, arg3));
   1424 }
   1425 
   1426 template <typename Sig_>
   1427 class DerivedFunc : public Func<Sig_>
   1428 {
   1429 public:
   1430 	typedef typename DerivedFunc::ArgExprs		ArgExprs;
   1431 	typedef typename DerivedFunc::IRet			IRet;
   1432 	typedef typename DerivedFunc::IArgs			IArgs;
   1433 	typedef typename DerivedFunc::Ret			Ret;
   1434 	typedef typename DerivedFunc::Arg0			Arg0;
   1435 	typedef typename DerivedFunc::Arg1			Arg1;
   1436 	typedef typename DerivedFunc::Arg2			Arg2;
   1437 	typedef typename DerivedFunc::Arg3			Arg3;
   1438 	typedef typename DerivedFunc::IArg0			IArg0;
   1439 	typedef typename DerivedFunc::IArg1			IArg1;
   1440 	typedef typename DerivedFunc::IArg2			IArg2;
   1441 	typedef typename DerivedFunc::IArg3			IArg3;
   1442 
   1443 protected:
   1444 	void						doPrintDefinition	(ostream& os) const
   1445 	{
   1446 		const ParamNames&	paramNames	= this->getParamNames();
   1447 
   1448 		initialize();
   1449 
   1450 		os << dataTypeNameOf<Ret>() << " " << this->getName()
   1451 			<< "(";
   1452 		if (isTypeValid<Arg0>())
   1453 			os << dataTypeNameOf<Arg0>() << " " << paramNames.a;
   1454 		if (isTypeValid<Arg1>())
   1455 			os << ", " << dataTypeNameOf<Arg1>() << " " << paramNames.b;
   1456 		if (isTypeValid<Arg2>())
   1457 			os << ", " << dataTypeNameOf<Arg2>() << " " << paramNames.c;
   1458 		if (isTypeValid<Arg3>())
   1459 			os << ", " << dataTypeNameOf<Arg3>() << " " << paramNames.d;
   1460 		os << ")\n{\n";
   1461 
   1462 		for (size_t ndx = 0; ndx < m_body.size(); ++ndx)
   1463 			os << *m_body[ndx];
   1464 		os << "return " << *m_ret << ";\n";
   1465 		os << "}\n";
   1466 	}
   1467 
   1468 	IRet						doApply			(const EvalContext&	ctx,
   1469 												 const IArgs&		args) const
   1470 	{
   1471 		Environment	funEnv;
   1472 		IArgs&		mutArgs		= const_cast<IArgs&>(args);
   1473 		IRet		ret;
   1474 
   1475 		initialize();
   1476 
   1477 		funEnv.bind(*m_var0, args.a);
   1478 		funEnv.bind(*m_var1, args.b);
   1479 		funEnv.bind(*m_var2, args.c);
   1480 		funEnv.bind(*m_var3, args.d);
   1481 
   1482 		{
   1483 			EvalContext	funCtx(ctx.format, ctx.floatPrecision, funEnv, ctx.callDepth);
   1484 
   1485 			for (size_t ndx = 0; ndx < m_body.size(); ++ndx)
   1486 				m_body[ndx]->execute(funCtx);
   1487 
   1488 			ret = m_ret->evaluate(funCtx);
   1489 		}
   1490 
   1491 		// \todo [lauri] Store references instead of values in environment
   1492 		const_cast<IArg0&>(mutArgs.a) = funEnv.lookup(*m_var0);
   1493 		const_cast<IArg1&>(mutArgs.b) = funEnv.lookup(*m_var1);
   1494 		const_cast<IArg2&>(mutArgs.c) = funEnv.lookup(*m_var2);
   1495 		const_cast<IArg3&>(mutArgs.d) = funEnv.lookup(*m_var3);
   1496 
   1497 		return ret;
   1498 	}
   1499 
   1500 	void						doGetUsedFuncs	(FuncSet& dst) const
   1501 	{
   1502 		initialize();
   1503 		if (dst.insert(this).second)
   1504 		{
   1505 			for (size_t ndx = 0; ndx < m_body.size(); ++ndx)
   1506 				m_body[ndx]->getUsedFuncs(dst);
   1507 			m_ret->getUsedFuncs(dst);
   1508 		}
   1509 	}
   1510 
   1511 	virtual ExprP<Ret>			doExpand		(ExpandContext& ctx, const ArgExprs& args_) const = 0;
   1512 
   1513 	// These are transparently initialized when first needed. They cannot be
   1514 	// initialized in the constructor because they depend on the doExpand
   1515 	// method of the subclass.
   1516 
   1517 	mutable VariableP<Arg0>		m_var0;
   1518 	mutable VariableP<Arg1>		m_var1;
   1519 	mutable VariableP<Arg2>		m_var2;
   1520 	mutable VariableP<Arg3>		m_var3;
   1521 	mutable vector<StatementP>	m_body;
   1522 	mutable ExprP<Ret>			m_ret;
   1523 
   1524 private:
   1525 
   1526 	void				initialize		(void)	const
   1527 	{
   1528 		if (!m_ret)
   1529 		{
   1530 			const ParamNames&	paramNames	= this->getParamNames();
   1531 			Counter				symCounter;
   1532 			ExpandContext		ctx			(symCounter);
   1533 			ArgExprs			args;
   1534 
   1535 			args.a	= m_var0 = variable<Arg0>(paramNames.a);
   1536 			args.b	= m_var1 = variable<Arg1>(paramNames.b);
   1537 			args.c	= m_var2 = variable<Arg2>(paramNames.c);
   1538 			args.d	= m_var3 = variable<Arg3>(paramNames.d);
   1539 
   1540 			m_ret	= this->doExpand(ctx, args);
   1541 			m_body	= ctx.getStatements();
   1542 		}
   1543 	}
   1544 };
   1545 
   1546 template <typename Sig>
   1547 class PrimitiveFunc : public Func<Sig>
   1548 {
   1549 public:
   1550 	typedef typename PrimitiveFunc::Ret			Ret;
   1551 	typedef typename PrimitiveFunc::ArgExprs	ArgExprs;
   1552 
   1553 protected:
   1554 	void	doPrintDefinition	(ostream&) const	{}
   1555 	void	doGetUsedFuncs		(FuncSet&) const	{}
   1556 };
   1557 
   1558 template <typename T>
   1559 class Cond : public PrimitiveFunc<Signature<T, bool, T, T> >
   1560 {
   1561 public:
   1562 	typedef typename Cond::IArgs	IArgs;
   1563 	typedef typename Cond::IRet		IRet;
   1564 
   1565 	string	getName	(void) const
   1566 	{
   1567 		return "_cond";
   1568 	}
   1569 
   1570 protected:
   1571 
   1572 	void	doPrint	(ostream& os, const BaseArgExprs& args) const
   1573 	{
   1574 		os << "(" << *args[0] << " ? " << *args[1] << " : " << *args[2] << ")";
   1575 	}
   1576 
   1577 	IRet	doApply	(const EvalContext&, const IArgs& iargs)const
   1578 	{
   1579 		IRet	ret;
   1580 
   1581 		if (iargs.a.contains(true))
   1582 			ret = unionIVal<T>(ret, iargs.b);
   1583 
   1584 		if (iargs.a.contains(false))
   1585 			ret = unionIVal<T>(ret, iargs.c);
   1586 
   1587 		return ret;
   1588 	}
   1589 };
   1590 
   1591 template <typename T>
   1592 class CompareOperator : public PrimitiveFunc<Signature<bool, T, T> >
   1593 {
   1594 public:
   1595 	typedef typename CompareOperator::IArgs	IArgs;
   1596 	typedef typename CompareOperator::IArg0	IArg0;
   1597 	typedef typename CompareOperator::IArg1	IArg1;
   1598 	typedef typename CompareOperator::IRet	IRet;
   1599 
   1600 protected:
   1601 	void			doPrint	(ostream& os, const BaseArgExprs& args) const
   1602 	{
   1603 		os << "(" << *args[0] << getSymbol() << *args[1] << ")";
   1604 	}
   1605 
   1606 	Interval		doApply	(const EvalContext&, const IArgs& iargs) const
   1607 	{
   1608 		const IArg0&	arg0 = iargs.a;
   1609 		const IArg1&	arg1 = iargs.b;
   1610 		IRet	ret;
   1611 
   1612 		if (canSucceed(arg0, arg1))
   1613 			ret |= true;
   1614 		if (canFail(arg0, arg1))
   1615 			ret |= false;
   1616 
   1617 		return ret;
   1618 	}
   1619 
   1620 	virtual string	getSymbol	(void) const = 0;
   1621 	virtual bool	canSucceed	(const IArg0&, const IArg1&) const = 0;
   1622 	virtual bool	canFail		(const IArg0&, const IArg1&) const = 0;
   1623 };
   1624 
   1625 template <typename T>
   1626 class LessThan : public CompareOperator<T>
   1627 {
   1628 public:
   1629 	string	getName		(void) const									{ return "lessThan"; }
   1630 
   1631 protected:
   1632 	string	getSymbol	(void) const									{ return "<";		}
   1633 
   1634 	bool	canSucceed	(const Interval& a, const Interval& b) const
   1635 	{
   1636 		return (a.lo() < b.hi());
   1637 	}
   1638 
   1639 	bool	canFail		(const Interval& a, const Interval& b) const
   1640 	{
   1641 		return !(a.hi() < b.lo());
   1642 	}
   1643 };
   1644 
   1645 template <typename T>
   1646 ExprP<bool> operator< (const ExprP<T>& a, const ExprP<T>& b)
   1647 {
   1648 	return app<LessThan<T> >(a, b);
   1649 }
   1650 
   1651 template <typename T>
   1652 ExprP<T> cond (const ExprP<bool>&	test,
   1653 			   const ExprP<T>&		consequent,
   1654 			   const ExprP<T>&		alternative)
   1655 {
   1656 	return app<Cond<T> >(test, consequent, alternative);
   1657 }
   1658 
   1659 /*--------------------------------------------------------------------*//*!
   1660  *
   1661  * @}
   1662  *
   1663  *//*--------------------------------------------------------------------*/
   1664 
   1665 class FloatFunc1 : public PrimitiveFunc<Signature<float, float> >
   1666 {
   1667 protected:
   1668 	Interval			doApply			(const EvalContext& ctx, const IArgs& iargs) const
   1669 	{
   1670 		return this->applyMonotone(ctx, iargs.a);
   1671 	}
   1672 
   1673 	Interval			applyMonotone	(const EvalContext& ctx, const Interval& iarg0) const
   1674 	{
   1675 		Interval ret;
   1676 
   1677 		TCU_INTERVAL_APPLY_MONOTONE1(ret, arg0, iarg0, val,
   1678 									 TCU_SET_INTERVAL(val, point,
   1679 													  point = this->applyPoint(ctx, arg0)));
   1680 
   1681 		ret |= innerExtrema(ctx, iarg0);
   1682 		ret &= (this->getCodomain() | TCU_NAN);
   1683 
   1684 		return ctx.format.convert(ret);
   1685 	}
   1686 
   1687 	virtual Interval	innerExtrema	(const EvalContext&, const Interval&) const
   1688 	{
   1689 		return Interval(); // empty interval, i.e. no extrema
   1690 	}
   1691 
   1692 	virtual Interval	applyPoint		(const EvalContext& ctx, double arg0) const
   1693 	{
   1694 		const double	exact	= this->applyExact(arg0);
   1695 		const double	prec	= this->precision(ctx, exact, arg0);
   1696 
   1697 		return exact + Interval(-prec, prec);
   1698 	}
   1699 
   1700 	virtual double		applyExact		(double) const
   1701 	{
   1702 		TCU_THROW(InternalError, "Cannot apply");
   1703 	}
   1704 
   1705 	virtual Interval	getCodomain		(void) const
   1706 	{
   1707 		return Interval::unbounded(true);
   1708 	}
   1709 
   1710 	virtual double		precision		(const EvalContext& ctx, double, double) const = 0;
   1711 };
   1712 
   1713 class CFloatFunc1 : public FloatFunc1
   1714 {
   1715 public:
   1716 			CFloatFunc1	(const string& name, DoubleFunc1& func)
   1717 				: m_name(name), m_func(func) {}
   1718 
   1719 	string			getName		(void) const		{ return m_name; }
   1720 
   1721 protected:
   1722 	double			applyExact	(double x) const	{ return m_func(x); }
   1723 
   1724 	const string	m_name;
   1725 	DoubleFunc1&	m_func;
   1726 };
   1727 
   1728 class FloatFunc2 : public PrimitiveFunc<Signature<float, float, float> >
   1729 {
   1730 protected:
   1731 	Interval			doApply			(const EvalContext&	ctx, const IArgs& iargs) const
   1732 	{
   1733 		return this->applyMonotone(ctx, iargs.a, iargs.b);
   1734 	}
   1735 
   1736 	Interval			applyMonotone	(const EvalContext&	ctx,
   1737 										 const Interval&	xi,
   1738 										 const Interval&	yi) const
   1739 	{
   1740 		Interval reti;
   1741 
   1742 		TCU_INTERVAL_APPLY_MONOTONE2(reti, x, xi, y, yi, ret,
   1743 									 TCU_SET_INTERVAL(ret, point,
   1744 													  point = this->applyPoint(ctx, x, y)));
   1745 		reti |= innerExtrema(ctx, xi, yi);
   1746 		reti &= (this->getCodomain() | TCU_NAN);
   1747 
   1748 		return ctx.format.convert(reti);
   1749 	}
   1750 
   1751 	virtual Interval	innerExtrema	(const EvalContext&,
   1752 										 const Interval&,
   1753 										 const Interval&) const
   1754 	{
   1755 		return Interval(); // empty interval, i.e. no extrema
   1756 	}
   1757 
   1758 	virtual Interval	applyPoint		(const EvalContext&	ctx,
   1759 										 double 			x,
   1760 										 double 			y) const
   1761 	{
   1762 		const double exact	= this->applyExact(x, y);
   1763 		const double prec	= this->precision(ctx, exact, x, y);
   1764 
   1765 		return exact + Interval(-prec, prec);
   1766 	}
   1767 
   1768 	virtual double		applyExact		(double, double) const
   1769 	{
   1770 		TCU_THROW(InternalError, "Cannot apply");
   1771 	}
   1772 
   1773 	virtual Interval	getCodomain		(void) const
   1774 	{
   1775 		return Interval::unbounded(true);
   1776 	}
   1777 
   1778 	virtual double		precision		(const EvalContext&	ctx,
   1779 										 double				ret,
   1780 										 double				x,
   1781 										 double				y) const = 0;
   1782 };
   1783 
   1784 class CFloatFunc2 : public FloatFunc2
   1785 {
   1786 public:
   1787 					CFloatFunc2	(const string&	name,
   1788 								 DoubleFunc2&	func)
   1789 						: m_name(name)
   1790 						, m_func(func)
   1791 	{
   1792 	}
   1793 
   1794 	string			getName		(void) const						{ return m_name; }
   1795 
   1796 protected:
   1797 	double			applyExact	(double x, double y) const			{ return m_func(x, y); }
   1798 
   1799 	const string	m_name;
   1800 	DoubleFunc2&	m_func;
   1801 };
   1802 
   1803 class InfixOperator : public FloatFunc2
   1804 {
   1805 protected:
   1806 	virtual string	getSymbol		(void) const = 0;
   1807 
   1808 	void			doPrint			(ostream& os, const BaseArgExprs& args) const
   1809 	{
   1810 		os << "(" << *args[0] << " " << getSymbol() << " " << *args[1] << ")";
   1811 	}
   1812 
   1813 	Interval		applyPoint		(const EvalContext&	ctx,
   1814 									 double 			x,
   1815 									 double 			y) const
   1816 	{
   1817 		const double exact	= this->applyExact(x, y);
   1818 
   1819 		// Allow either representable number on both sides of the exact value,
   1820 		// but require exactly representable values to be preserved.
   1821 		return ctx.format.roundOut(exact, !deIsInf(x) && !deIsInf(y));
   1822 	}
   1823 
   1824 	double			precision		(const EvalContext&, double, double, double) const
   1825 	{
   1826 		return 0.0;
   1827 	}
   1828 };
   1829 
   1830 class FloatFunc3 : public PrimitiveFunc<Signature<float, float, float, float> >
   1831 {
   1832 protected:
   1833 	Interval			doApply			(const EvalContext&	ctx, const IArgs& iargs) const
   1834 	{
   1835 		return this->applyMonotone(ctx, iargs.a, iargs.b, iargs.c);
   1836 	}
   1837 
   1838 	Interval			applyMonotone	(const EvalContext&	ctx,
   1839 										 const Interval&	xi,
   1840 										 const Interval&	yi,
   1841 										 const Interval&	zi) const
   1842 	{
   1843 		Interval reti;
   1844 		TCU_INTERVAL_APPLY_MONOTONE3(reti, x, xi, y, yi, z, zi, ret,
   1845 									 TCU_SET_INTERVAL(ret, point,
   1846 													  point = this->applyPoint(ctx, x, y, z)));
   1847 		return ctx.format.convert(reti);
   1848 	}
   1849 
   1850 	virtual Interval	applyPoint		(const EvalContext&	ctx,
   1851 										 double 			x,
   1852 										 double 			y,
   1853 										 double 			z) const
   1854 	{
   1855 		const double exact	= this->applyExact(x, y, z);
   1856 		const double prec	= this->precision(ctx, exact, x, y, z);
   1857 		return exact + Interval(-prec, prec);
   1858 	}
   1859 
   1860 	virtual double		applyExact		(double, double, double) const
   1861 	{
   1862 		TCU_THROW(InternalError, "Cannot apply");
   1863 	}
   1864 
   1865 	virtual double		precision		(const EvalContext&	ctx,
   1866 										 double				result,
   1867 										 double				x,
   1868 										 double				y,
   1869 										 double				z) const = 0;
   1870 };
   1871 
   1872 // We define syntactic sugar functions for expression constructors. Since
   1873 // these have the same names as ordinary mathematical operations (sin, log
   1874 // etc.), it's better to give them a dedicated namespace.
   1875 namespace Functions
   1876 {
   1877 
   1878 using namespace tcu;
   1879 
   1880 class Add : public InfixOperator
   1881 {
   1882 public:
   1883 	string		getName		(void) const 						{ return "add"; }
   1884 	string		getSymbol	(void) const 						{ return "+"; }
   1885 
   1886 	Interval	doApply		(const EvalContext&	ctx,
   1887 							 const IArgs&		iargs) const
   1888 	{
   1889 		// Fast-path for common case
   1890 		if (iargs.a.isOrdinary() && iargs.b.isOrdinary())
   1891 		{
   1892 			Interval ret;
   1893 			TCU_SET_INTERVAL_BOUNDS(ret, sum,
   1894 									sum = iargs.a.lo() + iargs.b.lo(),
   1895 									sum = iargs.a.hi() + iargs.b.hi());
   1896 			return ctx.format.convert(ctx.format.roundOut(ret, true));
   1897 		}
   1898 		return this->applyMonotone(ctx, iargs.a, iargs.b);
   1899 	}
   1900 
   1901 protected:
   1902 	double		applyExact	(double x, double y) const 			{ return x + y; }
   1903 };
   1904 
   1905 class Mul : public InfixOperator
   1906 {
   1907 public:
   1908 	string		getName		(void) const 									{ return "mul"; }
   1909 	string		getSymbol	(void) const 									{ return "*"; }
   1910 
   1911 	Interval	doApply		(const EvalContext&	ctx, const IArgs& iargs) const
   1912 	{
   1913 		Interval a = iargs.a;
   1914 		Interval b = iargs.b;
   1915 
   1916 		// Fast-path for common case
   1917 		if (a.isOrdinary() && b.isOrdinary())
   1918 		{
   1919 			Interval ret;
   1920 			if (a.hi() < 0)
   1921 			{
   1922 				a = -a;
   1923 				b = -b;
   1924 			}
   1925 			if (a.lo() >= 0 && b.lo() >= 0)
   1926 			{
   1927 				TCU_SET_INTERVAL_BOUNDS(ret, prod,
   1928 										prod = iargs.a.lo() * iargs.b.lo(),
   1929 										prod = iargs.a.hi() * iargs.b.hi());
   1930 				return ctx.format.convert(ctx.format.roundOut(ret, true));
   1931 			}
   1932 			if (a.lo() >= 0 && b.hi() <= 0)
   1933 			{
   1934 				TCU_SET_INTERVAL_BOUNDS(ret, prod,
   1935 										prod = iargs.a.hi() * iargs.b.lo(),
   1936 										prod = iargs.a.lo() * iargs.b.hi());
   1937 				return ctx.format.convert(ctx.format.roundOut(ret, true));
   1938 			}
   1939 		}
   1940 		return this->applyMonotone(ctx, iargs.a, iargs.b);
   1941 	}
   1942 
   1943 protected:
   1944 	double		applyExact	(double x, double y) const						{ return x * y; }
   1945 
   1946 	Interval	innerExtrema(const EvalContext&, const Interval& xi, const Interval& yi) const
   1947 	{
   1948 		if (((xi.contains(-TCU_INFINITY) || xi.contains(TCU_INFINITY)) && yi.contains(0.0)) ||
   1949 			((yi.contains(-TCU_INFINITY) || yi.contains(TCU_INFINITY)) && xi.contains(0.0)))
   1950 			return Interval(TCU_NAN);
   1951 
   1952 		return Interval();
   1953 	}
   1954 };
   1955 
   1956 class Sub : public InfixOperator
   1957 {
   1958 public:
   1959 	string		getName		(void) const 				{ return "sub"; }
   1960 	string		getSymbol	(void) const 				{ return "-"; }
   1961 
   1962 	Interval	doApply		(const EvalContext&	ctx, const IArgs& iargs) const
   1963 	{
   1964 		// Fast-path for common case
   1965 		if (iargs.a.isOrdinary() && iargs.b.isOrdinary())
   1966 		{
   1967 			Interval ret;
   1968 
   1969 			TCU_SET_INTERVAL_BOUNDS(ret, diff,
   1970 									diff = iargs.a.lo() - iargs.b.hi(),
   1971 									diff = iargs.a.hi() - iargs.b.lo());
   1972 			return ctx.format.convert(ctx.format.roundOut(ret, true));
   1973 
   1974 		}
   1975 		else
   1976 		{
   1977 			return this->applyMonotone(ctx, iargs.a, iargs.b);
   1978 		}
   1979 	}
   1980 
   1981 protected:
   1982 	double		applyExact	(double x, double y) const	{ return x - y; }
   1983 };
   1984 
   1985 class Negate : public FloatFunc1
   1986 {
   1987 public:
   1988 	string	getName		(void) const									{ return "_negate"; }
   1989 	void	doPrint		(ostream& os, const BaseArgExprs& args) const	{ os << "-" << *args[0]; }
   1990 
   1991 protected:
   1992 	double	precision	(const EvalContext&, double, double) const		{ return 0.0; }
   1993 	double	applyExact	(double x) const								{ return -x; }
   1994 };
   1995 
   1996 class Div : public InfixOperator
   1997 {
   1998 public:
   1999 	string		getName			(void) const 						{ return "div"; }
   2000 
   2001 protected:
   2002 	string		getSymbol		(void) const 						{ return "/"; }
   2003 
   2004 	Interval	innerExtrema	(const EvalContext&,
   2005 								 const Interval&		nom,
   2006 								 const Interval&		den) const
   2007 	{
   2008 		Interval ret;
   2009 
   2010 		if (den.contains(0.0))
   2011 		{
   2012 			if (nom.contains(0.0))
   2013 				ret |= TCU_NAN;
   2014 
   2015 			if (nom.lo() < 0.0 || nom.hi() > 0.0)
   2016 				ret |= Interval::unbounded();
   2017 		}
   2018 
   2019 		return ret;
   2020 	}
   2021 
   2022 	double		applyExact		(double x, double y) const { return x / y; }
   2023 
   2024 	Interval	applyPoint		(const EvalContext&	ctx, double x, double y) const
   2025 	{
   2026 		Interval ret = FloatFunc2::applyPoint(ctx, x, y);
   2027 
   2028 		if (!deIsInf(x) && !deIsInf(y) && y != 0.0)
   2029 		{
   2030 			const Interval dst = ctx.format.convert(ret);
   2031 			if (dst.contains(-TCU_INFINITY)) ret |= -ctx.format.getMaxValue();
   2032 			if (dst.contains(+TCU_INFINITY)) ret |= +ctx.format.getMaxValue();
   2033 		}
   2034 
   2035 		return ret;
   2036 	}
   2037 
   2038 	double		precision		(const EvalContext& ctx, double ret, double, double den) const
   2039 	{
   2040 		const FloatFormat&	fmt		= ctx.format;
   2041 
   2042 		// \todo [2014-03-05 lauri] Check that the limits in GLSL 3.10 are actually correct.
   2043 		// For now, we assume that division's precision is 2.5 ULP when the value is within
   2044 		// [2^MINEXP, 2^MAXEXP-1]
   2045 
   2046 		if (den == 0.0)
   2047 			return 0.0; // Result must be exactly inf
   2048 		else if (de::inBounds(deAbs(den),
   2049 							  deLdExp(1.0, fmt.getMinExp()),
   2050 							  deLdExp(1.0, fmt.getMaxExp() - 1)))
   2051 			return fmt.ulp(ret, 2.5);
   2052 		else
   2053 			return TCU_INFINITY; // Can be any number, but must be a number.
   2054 	}
   2055 };
   2056 
   2057 class InverseSqrt : public FloatFunc1
   2058 {
   2059 public:
   2060 	string		getName		(void) const							{ return "inversesqrt"; }
   2061 
   2062 protected:
   2063 	double		applyExact	(double x) const						{ return 1.0 / deSqrt(x); }
   2064 
   2065 	double		precision	(const EvalContext& ctx, double ret, double x) const
   2066 	{
   2067 		return x <= 0 ? TCU_NAN : ctx.format.ulp(ret, 2.0);
   2068 	}
   2069 
   2070 	Interval	getCodomain	(void) const
   2071 	{
   2072 		return Interval(0.0, TCU_INFINITY);
   2073 	}
   2074 };
   2075 
   2076 class ExpFunc : public CFloatFunc1
   2077 {
   2078 public:
   2079 				ExpFunc		(const string& name, DoubleFunc1& func)
   2080 					: CFloatFunc1(name, func) {}
   2081 protected:
   2082 	double		precision	(const EvalContext& ctx, double ret, double x) const
   2083 	{
   2084 		switch (ctx.floatPrecision)
   2085 		{
   2086 			case glu::PRECISION_HIGHP:
   2087 				return ctx.format.ulp(ret, 3.0 + 2.0 * deAbs(x));
   2088 			case glu::PRECISION_MEDIUMP:
   2089 				return ctx.format.ulp(ret, 2.0 + 2.0 * deAbs(x));
   2090 			case glu::PRECISION_LOWP:
   2091 				return ctx.format.ulp(ret, 2.0);
   2092 			default:
   2093 				DE_ASSERT(!"Impossible");
   2094 		}
   2095 		return 0;
   2096 	}
   2097 
   2098 	Interval	getCodomain	(void) const
   2099 	{
   2100 		return Interval(0.0, TCU_INFINITY);
   2101 	}
   2102 };
   2103 
   2104 class Exp2	: public ExpFunc	{ public: Exp2 (void)	: ExpFunc("exp2", deExp2) {} };
   2105 class Exp	: public ExpFunc	{ public: Exp (void)	: ExpFunc("exp", deExp) {} };
   2106 
   2107 ExprP<float> exp2	(const ExprP<float>& x)	{ return app<Exp2>(x); }
   2108 ExprP<float> exp	(const ExprP<float>& x)	{ return app<Exp>(x); }
   2109 
   2110 class LogFunc : public CFloatFunc1
   2111 {
   2112 public:
   2113 				LogFunc		(const string& name, DoubleFunc1& func)
   2114 					: CFloatFunc1(name, func) {}
   2115 
   2116 protected:
   2117 	double		precision	(const EvalContext& ctx, double ret, double x) const
   2118 	{
   2119 		if (x <= 0)
   2120 			return TCU_NAN;
   2121 
   2122 		switch (ctx.floatPrecision)
   2123 		{
   2124 			case glu::PRECISION_HIGHP:
   2125 				return (0.5 <= x && x <= 2.0) ? deLdExp(1.0, -21) : ctx.format.ulp(ret, 3.0);
   2126 			case glu::PRECISION_MEDIUMP:
   2127 				return (0.5 <= x && x <= 2.0) ? deLdExp(1.0, -7) : ctx.format.ulp(ret, 2.0);
   2128 			case glu::PRECISION_LOWP:
   2129 				return ctx.format.ulp(ret, 2.0);
   2130 			default:
   2131 				DE_ASSERT(!"Impossible");
   2132 		}
   2133 
   2134 		return 0;
   2135 	}
   2136 };
   2137 
   2138 class Log2	: public LogFunc		{ public: Log2	(void) : LogFunc("log2", deLog2) {} };
   2139 class Log	: public LogFunc		{ public: Log	(void) : LogFunc("log", deLog) {} };
   2140 
   2141 ExprP<float> log2	(const ExprP<float>& x)	{ return app<Log2>(x); }
   2142 ExprP<float> log	(const ExprP<float>& x)	{ return app<Log>(x); }
   2143 
   2144 #define DEFINE_CONSTRUCTOR1(CLASS, TRET, NAME, T0) \
   2145 ExprP<TRET> NAME (const ExprP<T0>& arg0) { return app<CLASS>(arg0); }
   2146 
   2147 #define DEFINE_DERIVED1(CLASS, TRET, NAME, T0, ARG0, EXPANSION)			\
   2148 class CLASS : public DerivedFunc<Signature<TRET, T0> >		 			\
   2149 {																		\
   2150 public:																	\
   2151 	string			getName		(void) const		{ return #NAME; }	\
   2152 																		\
   2153 protected:																\
   2154 	ExprP<TRET>		doExpand		(ExpandContext&,					\
   2155 									 const CLASS::ArgExprs& args_) const \
   2156 	{																	\
   2157 		const ExprP<float>& ARG0 = args_.a;								\
   2158 		return EXPANSION;												\
   2159 	}																	\
   2160 };																		\
   2161 DEFINE_CONSTRUCTOR1(CLASS, TRET, NAME, T0)
   2162 
   2163 #define DEFINE_DERIVED_FLOAT1(CLASS, NAME, ARG0, EXPANSION) \
   2164 	DEFINE_DERIVED1(CLASS, float, NAME, float, ARG0, EXPANSION)
   2165 
   2166 #define DEFINE_CONSTRUCTOR2(CLASS, TRET, NAME, T0, T1)				\
   2167 ExprP<TRET> NAME (const ExprP<T0>& arg0, const ExprP<T1>& arg1)		\
   2168 {																	\
   2169 	return app<CLASS>(arg0, arg1);									\
   2170 }
   2171 
   2172 #define DEFINE_DERIVED2(CLASS, TRET, NAME, T0, Arg0, T1, Arg1, EXPANSION) \
   2173 class CLASS : public DerivedFunc<Signature<TRET, T0, T1> >		 		\
   2174 {																		\
   2175 public:																	\
   2176 	string			getName		(void) const		{ return #NAME; }	\
   2177 																		\
   2178 protected:																\
   2179 	ExprP<TRET>		doExpand	(ExpandContext&, const ArgExprs& args_) const \
   2180 	{																	\
   2181 		const ExprP<T0>& Arg0 = args_.a;								\
   2182 		const ExprP<T1>& Arg1 = args_.b;								\
   2183 		return EXPANSION;												\
   2184 	}																	\
   2185 };																		\
   2186 DEFINE_CONSTRUCTOR2(CLASS, TRET, NAME, T0, T1)
   2187 
   2188 #define DEFINE_DERIVED_FLOAT2(CLASS, NAME, Arg0, Arg1, EXPANSION)		\
   2189 	DEFINE_DERIVED2(CLASS, float, NAME, float, Arg0, float, Arg1, EXPANSION)
   2190 
   2191 #define DEFINE_CONSTRUCTOR3(CLASS, TRET, NAME, T0, T1, T2)				\
   2192 ExprP<TRET> NAME (const ExprP<T0>& arg0, const ExprP<T1>& arg1, const ExprP<T2>& arg2) \
   2193 {																		\
   2194 	return app<CLASS>(arg0, arg1, arg2);								\
   2195 }
   2196 
   2197 #define DEFINE_DERIVED3(CLASS, TRET, NAME, T0, ARG0, T1, ARG1, T2, ARG2, EXPANSION) \
   2198 class CLASS : public DerivedFunc<Signature<TRET, T0, T1, T2> >					\
   2199 {																				\
   2200 public:																			\
   2201 	string			getName		(void) const	{ return #NAME; }				\
   2202 																				\
   2203 protected:																		\
   2204 	ExprP<TRET>		doExpand	(ExpandContext&, const ArgExprs& args_) const	\
   2205 	{																			\
   2206 		const ExprP<T0>& ARG0 = args_.a;										\
   2207 		const ExprP<T1>& ARG1 = args_.b;										\
   2208 		const ExprP<T2>& ARG2 = args_.c;										\
   2209 		return EXPANSION;														\
   2210 	}																			\
   2211 };																				\
   2212 DEFINE_CONSTRUCTOR3(CLASS, TRET, NAME, T0, T1, T2)
   2213 
   2214 #define DEFINE_DERIVED_FLOAT3(CLASS, NAME, ARG0, ARG1, ARG2, EXPANSION)			\
   2215 	DEFINE_DERIVED3(CLASS, float, NAME, float, ARG0, float, ARG1, float, ARG2, EXPANSION)
   2216 
   2217 #define DEFINE_CONSTRUCTOR4(CLASS, TRET, NAME, T0, T1, T2, T3)			\
   2218 ExprP<TRET> NAME (const ExprP<T0>& arg0, const ExprP<T1>& arg1,			\
   2219 				  const ExprP<T2>& arg2, const ExprP<T3>& arg3)			\
   2220 {																		\
   2221 	return app<CLASS>(arg0, arg1, arg2, arg3);							\
   2222 }
   2223 
   2224 DEFINE_DERIVED_FLOAT1(Sqrt,		sqrt,		x, 		constant(1.0f) / app<InverseSqrt>(x));
   2225 DEFINE_DERIVED_FLOAT2(Pow,		pow,		x,	y,	exp2(y * log2(x)));
   2226 DEFINE_DERIVED_FLOAT1(Radians,	radians,	d, 		(constant(DE_PI) / constant(180.0f)) * d);
   2227 DEFINE_DERIVED_FLOAT1(Degrees,	degrees,	r,	 	(constant(180.0f) / constant(DE_PI)) * r);
   2228 
   2229 class TrigFunc : public CFloatFunc1
   2230 {
   2231 public:
   2232 					TrigFunc		(const string&		name,
   2233 									 DoubleFunc1&		func,
   2234 									 const Interval&	loEx,
   2235 									 const Interval&	hiEx)
   2236 						: CFloatFunc1	(name, func)
   2237 						, m_loExtremum	(loEx)
   2238 						, m_hiExtremum	(hiEx) {}
   2239 
   2240 protected:
   2241 	Interval		innerExtrema	(const EvalContext&, const Interval& angle) const
   2242 	{
   2243 		const double		lo		= angle.lo();
   2244 		const double		hi		= angle.hi();
   2245 		const int			loSlope	= doGetSlope(lo);
   2246 		const int			hiSlope	= doGetSlope(hi);
   2247 
   2248 		// Detect the high and low values the function can take between the
   2249 		// interval endpoints.
   2250 		if (angle.length() >= 2.0 * DE_PI_DOUBLE)
   2251 		{
   2252 			// The interval is longer than a full cycle, so it must get all possible values.
   2253 			return m_hiExtremum | m_loExtremum;
   2254 		}
   2255 		else if (loSlope == 1 && hiSlope == -1)
   2256 		{
   2257 			// The slope can change from positive to negative only at the maximum value.
   2258 			return m_hiExtremum;
   2259 		}
   2260 		else if (loSlope == -1 && hiSlope == 1)
   2261 		{
   2262 			// The slope can change from negative to positive only at the maximum value.
   2263 			return m_loExtremum;
   2264 		}
   2265 		else if (loSlope == hiSlope &&
   2266 				 deIntSign(applyExact(hi) - applyExact(lo)) * loSlope == -1)
   2267 		{
   2268 			// The slope has changed twice between the endpoints, so both extrema are included.
   2269 			return m_hiExtremum | m_loExtremum;
   2270 		}
   2271 
   2272 		return Interval();
   2273 	}
   2274 
   2275 	Interval	getCodomain			(void) const
   2276 	{
   2277 		// Ensure that result is always within [-1, 1], or NaN (for +-inf)
   2278 		return Interval(-1.0, 1.0) | TCU_NAN;
   2279 	}
   2280 
   2281 	double		precision			(const EvalContext& ctx, double ret, double arg) const
   2282 	{
   2283 		if (ctx.floatPrecision == glu::PRECISION_HIGHP)
   2284 		{
   2285 			// Use precision from OpenCL fast relaxed math
   2286 			if (-DE_PI_DOUBLE <= arg && arg <= DE_PI_DOUBLE)
   2287 			{
   2288 				return deLdExp(1.0, -11);
   2289 			}
   2290 			else
   2291 			{
   2292 				// "larger otherwise", let's pick |x| * 2^-12 , which is slightly over
   2293 				// 2^-11 at x == pi.
   2294 				return deLdExp(deAbs(arg), -12);
   2295 			}
   2296 		}
   2297 		else if (ctx.floatPrecision == glu::PRECISION_MEDIUMP)
   2298 		{
   2299 			if (-DE_PI_DOUBLE <= arg && arg <= DE_PI_DOUBLE)
   2300 			{
   2301 				// from OpenCL half-float extension specification
   2302 				return ctx.format.ulp(ret, 2.0);
   2303 			}
   2304 			else
   2305 			{
   2306 				// |x| * 2^-10, slightly larger than 2 ULP at x == pi
   2307 				return deLdExp(deAbs(arg), -10);
   2308 			}
   2309 		}
   2310 		else
   2311 		{
   2312 			DE_ASSERT(ctx.floatPrecision == glu::PRECISION_LOWP);
   2313 
   2314 			// from OpenCL half-float extension specification
   2315 			return ctx.format.ulp(ret, 2.0);
   2316 		}
   2317 	}
   2318 
   2319 	virtual int		doGetSlope		(double angle) const = 0;
   2320 
   2321 	Interval		m_loExtremum;
   2322 	Interval		m_hiExtremum;
   2323 };
   2324 
   2325 class Sin : public TrigFunc
   2326 {
   2327 public:
   2328 				Sin			(void) : TrigFunc("sin", deSin, -1.0, 1.0) {}
   2329 
   2330 protected:
   2331 	int			doGetSlope	(double angle) const { return deIntSign(deCos(angle)); }
   2332 };
   2333 
   2334 ExprP<float> sin (const ExprP<float>& x) { return app<Sin>(x); }
   2335 
   2336 class Cos : public TrigFunc
   2337 {
   2338 public:
   2339 				Cos			(void) : TrigFunc("cos", deCos, -1.0, 1.0) {}
   2340 
   2341 protected:
   2342 	int			doGetSlope	(double angle) const { return -deIntSign(deSin(angle)); }
   2343 };
   2344 
   2345 ExprP<float> cos (const ExprP<float>& x) { return app<Cos>(x); }
   2346 
   2347 DEFINE_DERIVED_FLOAT1(Tan, tan, x, sin(x) * (constant(1.0f) / cos(x)));
   2348 
   2349 class ASin : public CFloatFunc1
   2350 {
   2351 public:
   2352 					ASin		(void) : CFloatFunc1("asin", deAsin) {}
   2353 
   2354 protected:
   2355 	double			precision	(const EvalContext& ctx, double, double x) const
   2356 	{
   2357 		if (!de::inBounds(x, -1.0, 1.0))
   2358 			return TCU_NAN;
   2359 
   2360 		if (ctx.floatPrecision == glu::PRECISION_HIGHP)
   2361 		{
   2362 			// Absolute error of 2^-11
   2363 			return deLdExp(1.0, -11);
   2364 		}
   2365 		else
   2366 		{
   2367 			// Absolute error of 2^-8
   2368 			return deLdExp(1.0, -8);
   2369 		}
   2370 
   2371 	}
   2372 };
   2373 
   2374 class ArcTrigFunc : public CFloatFunc1
   2375 {
   2376 public:
   2377 					ArcTrigFunc	(const string&		name,
   2378 								 DoubleFunc1&		func,
   2379 								 double				precisionULPs,
   2380 								 const Interval&	domain,
   2381 								 const Interval&	codomain)
   2382 						: CFloatFunc1		(name, func)
   2383 						, m_precision		(precisionULPs)
   2384 						, m_domain			(domain)
   2385 						, m_codomain		(codomain) {}
   2386 
   2387 protected:
   2388 	double			precision	(const EvalContext& ctx, double ret, double x) const
   2389 	{
   2390 		if (!m_domain.contains(x))
   2391 			return TCU_NAN;
   2392 
   2393 		if (ctx.floatPrecision == glu::PRECISION_HIGHP)
   2394 		{
   2395 			// Use OpenCL's fast relaxed math precision
   2396 			return ctx.format.ulp(ret, m_precision);
   2397 		}
   2398 		else
   2399 		{
   2400 			// Use OpenCL half-float spec
   2401 			return ctx.format.ulp(ret, 2.0);
   2402 		}
   2403 	}
   2404 
   2405 	// We could implement getCodomain with m_codomain, but choose not to,
   2406 	// because it seems too strict with trascendental constants like pi.
   2407 
   2408 	const double	m_precision;
   2409 	const Interval	m_domain;
   2410 	const Interval	m_codomain;
   2411 };
   2412 
   2413 class ACos : public ArcTrigFunc
   2414 {
   2415 public:
   2416 	ACos (void) : ArcTrigFunc("acos", deAcos, 4096.0,
   2417 							  Interval(-1.0, 1.0),
   2418 							  Interval(0.0, DE_PI_DOUBLE)) {}
   2419 };
   2420 
   2421 class ATan : public ArcTrigFunc
   2422 {
   2423 public:
   2424 	ATan (void) : ArcTrigFunc("atan", deAtanOver, 4096.0,
   2425 							  Interval::unbounded(),
   2426 							  Interval(-DE_PI_DOUBLE * 0.5, DE_PI_DOUBLE * 0.5)) {}
   2427 };
   2428 
   2429 class ATan2 : public CFloatFunc2
   2430 {
   2431 public:
   2432 				ATan2			(void) : CFloatFunc2 ("atan", deAtan2) {}
   2433 
   2434 protected:
   2435 	Interval	innerExtrema	(const EvalContext&		ctx,
   2436 								 const Interval&		yi,
   2437 								 const Interval& 		xi) const
   2438 	{
   2439 		Interval ret;
   2440 
   2441 		if (yi.contains(0.0))
   2442 		{
   2443 			if (xi.contains(0.0))
   2444 				ret |= TCU_NAN;
   2445 			if (xi.intersects(Interval(-TCU_INFINITY, 0.0)))
   2446 				ret |= Interval(-DE_PI_DOUBLE, DE_PI_DOUBLE);
   2447 		}
   2448 
   2449 		if (ctx.format.hasInf() != YES && (!yi.isFinite() || !xi.isFinite()))
   2450 		{
   2451 			// Infinities may not be supported, allow anything, including NaN
   2452 			ret |= TCU_NAN;
   2453 		}
   2454 
   2455 		return ret;
   2456 	}
   2457 
   2458 	double		precision		(const EvalContext& ctx, double ret, double, double) const
   2459 	{
   2460 		if (ctx.floatPrecision == glu::PRECISION_HIGHP)
   2461 			return ctx.format.ulp(ret, 4096.0);
   2462 		else
   2463 			return ctx.format.ulp(ret, 2.0);
   2464 	}
   2465 
   2466 	// Codomain could be [-pi, pi], but that would probably be too strict.
   2467 };
   2468 
   2469 DEFINE_DERIVED_FLOAT1(Sinh, sinh, x, (exp(x) - exp(-x)) / constant(2.0f));
   2470 DEFINE_DERIVED_FLOAT1(Cosh, cosh, x, (exp(x) + exp(-x)) / constant(2.0f));
   2471 DEFINE_DERIVED_FLOAT1(Tanh, tanh, x, sinh(x) / cosh(x));
   2472 
   2473 // These are not defined as derived forms in the GLSL ES spec, but
   2474 // that gives us a reasonable precision.
   2475 DEFINE_DERIVED_FLOAT1(ASinh, asinh, x, log(x + sqrt(x * x + constant(1.0f))));
   2476 DEFINE_DERIVED_FLOAT1(ACosh, acosh, x, log(x + sqrt((x + constant(1.0f)) *
   2477 													(x - constant(1.0f)))));
   2478 DEFINE_DERIVED_FLOAT1(ATanh, atanh, x, constant(0.5f) * log((constant(1.0f) + x) /
   2479 															(constant(1.0f) - x)));
   2480 
   2481 template <typename T>
   2482 class GetComponent : public PrimitiveFunc<Signature<typename T::Element, T, int> >
   2483 {
   2484 public:
   2485 	typedef		typename GetComponent::IRet	IRet;
   2486 
   2487 	string		getName		(void) const { return "_getComponent"; }
   2488 
   2489 	void		print		(ostream&				os,
   2490 							 const BaseArgExprs&	args) const
   2491 	{
   2492 		os << *args[0] << "[" << *args[1] << "]";
   2493 	}
   2494 
   2495 protected:
   2496 	IRet		doApply 	(const EvalContext&,
   2497 							 const typename GetComponent::IArgs& iargs) const
   2498 	{
   2499 		IRet ret;
   2500 
   2501 		for (int compNdx = 0; compNdx < T::SIZE; ++compNdx)
   2502 		{
   2503 			if (iargs.b.contains(compNdx))
   2504 				ret = unionIVal<typename T::Element>(ret, iargs.a[compNdx]);
   2505 		}
   2506 
   2507 		return ret;
   2508 	}
   2509 
   2510 };
   2511 
   2512 template <typename T>
   2513 ExprP<typename T::Element> getComponent (const ExprP<T>& container, int ndx)
   2514 {
   2515 	DE_ASSERT(0 <= ndx && ndx < T::SIZE);
   2516 	return app<GetComponent<T> >(container, constant(ndx));
   2517 }
   2518 
   2519 template <typename T>	string	vecNamePrefix			(void);
   2520 template <>				string	vecNamePrefix<float>	(void) { return ""; }
   2521 template <>				string	vecNamePrefix<int>		(void) { return "i"; }
   2522 template <>				string	vecNamePrefix<bool>		(void) { return "b"; }
   2523 
   2524 template <typename T, int Size>
   2525 string vecName (void) { return vecNamePrefix<T>() + "vec" + de::toString(Size); }
   2526 
   2527 template <typename T, int Size> class GenVec;
   2528 
   2529 template <typename T>
   2530 class GenVec<T, 1> : public DerivedFunc<Signature<T, T> >
   2531 {
   2532 public:
   2533 	typedef typename GenVec<T, 1>::ArgExprs ArgExprs;
   2534 
   2535 	string		getName		(void) const
   2536 	{
   2537 		return "_" + vecName<T, 1>();
   2538 	}
   2539 
   2540 protected:
   2541 
   2542 	ExprP<T>	doExpand	(ExpandContext&, const ArgExprs& args) const { return args.a; }
   2543 };
   2544 
   2545 template <typename T>
   2546 class GenVec<T, 2> : public PrimitiveFunc<Signature<Vector<T, 2>, T, T> >
   2547 {
   2548 public:
   2549 	typedef typename GenVec::IRet	IRet;
   2550 	typedef typename GenVec::IArgs	IArgs;
   2551 
   2552 	string		getName		(void) const
   2553 	{
   2554 		return vecName<T, 2>();
   2555 	}
   2556 
   2557 protected:
   2558 	IRet		doApply		(const EvalContext&, const IArgs& iargs) const
   2559 	{
   2560 		return IRet(iargs.a, iargs.b);
   2561 	}
   2562 };
   2563 
   2564 template <typename T>
   2565 class GenVec<T, 3> : public PrimitiveFunc<Signature<Vector<T, 3>, T, T, T> >
   2566 {
   2567 public:
   2568 	typedef typename GenVec::IRet	IRet;
   2569 	typedef typename GenVec::IArgs	IArgs;
   2570 
   2571 	string	getName		(void) const
   2572 	{
   2573 		return vecName<T, 3>();
   2574 	}
   2575 
   2576 protected:
   2577 	IRet	doApply		(const EvalContext&, const IArgs& iargs) const
   2578 	{
   2579 		return IRet(iargs.a, iargs.b, iargs.c);
   2580 	}
   2581 };
   2582 
   2583 template <typename T>
   2584 class GenVec<T, 4> : public PrimitiveFunc<Signature<Vector<T, 4>, T, T, T, T> >
   2585 {
   2586 public:
   2587 	typedef typename GenVec::IRet	IRet;
   2588 	typedef typename GenVec::IArgs	IArgs;
   2589 
   2590 	string		getName		(void) const { return vecName<T, 4>(); }
   2591 
   2592 protected:
   2593 	IRet		doApply		(const EvalContext&, const IArgs& iargs) const
   2594 	{
   2595 		return IRet(iargs.a, iargs.b, iargs.c, iargs.d);
   2596 	}
   2597 };
   2598 
   2599 
   2600 
   2601 template <typename T, int Rows, int Columns>
   2602 class GenMat;
   2603 
   2604 template <typename T, int Rows>
   2605 class GenMat<T, Rows, 2> : public PrimitiveFunc<
   2606 	Signature<Matrix<T, Rows, 2>, Vector<T, Rows>, Vector<T, Rows> > >
   2607 {
   2608 public:
   2609 	typedef typename GenMat::Ret	Ret;
   2610 	typedef typename GenMat::IRet	IRet;
   2611 	typedef typename GenMat::IArgs	IArgs;
   2612 
   2613 	string		getName		(void) const
   2614 	{
   2615 		return dataTypeNameOf<Ret>();
   2616 	}
   2617 
   2618 protected:
   2619 
   2620 	IRet		doApply		(const EvalContext&, const IArgs& iargs) const
   2621 	{
   2622 		IRet	ret;
   2623 		ret[0] = iargs.a;
   2624 		ret[1] = iargs.b;
   2625 		return ret;
   2626 	}
   2627 };
   2628 
   2629 template <typename T, int Rows>
   2630 class GenMat<T, Rows, 3> : public PrimitiveFunc<
   2631 	Signature<Matrix<T, Rows, 3>, Vector<T, Rows>, Vector<T, Rows>, Vector<T, Rows> > >
   2632 {
   2633 public:
   2634 	typedef typename GenMat::Ret	Ret;
   2635 	typedef typename GenMat::IRet	IRet;
   2636 	typedef typename GenMat::IArgs	IArgs;
   2637 
   2638 	string	getName	(void) const
   2639 	{
   2640 		return dataTypeNameOf<Ret>();
   2641 	}
   2642 
   2643 protected:
   2644 
   2645 	IRet	doApply	(const EvalContext&, const IArgs& iargs) const
   2646 	{
   2647 		IRet	ret;
   2648 		ret[0] = iargs.a;
   2649 		ret[1] = iargs.b;
   2650 		ret[2] = iargs.c;
   2651 		return ret;
   2652 	}
   2653 };
   2654 
   2655 template <typename T, int Rows>
   2656 class GenMat<T, Rows, 4> : public PrimitiveFunc<
   2657 	Signature<Matrix<T, Rows, 4>,
   2658 			  Vector<T, Rows>, Vector<T, Rows>, Vector<T, Rows>, Vector<T, Rows> > >
   2659 {
   2660 public:
   2661 	typedef typename GenMat::Ret	Ret;
   2662 	typedef typename GenMat::IRet	IRet;
   2663 	typedef typename GenMat::IArgs	IArgs;
   2664 
   2665 	string	getName	(void) const
   2666 	{
   2667 		return dataTypeNameOf<Ret>();
   2668 	}
   2669 
   2670 protected:
   2671 	IRet	doApply	(const EvalContext&, const IArgs& iargs) const
   2672 	{
   2673 		IRet	ret;
   2674 		ret[0] = iargs.a;
   2675 		ret[1] = iargs.b;
   2676 		ret[2] = iargs.c;
   2677 		ret[3] = iargs.d;
   2678 		return ret;
   2679 	}
   2680 };
   2681 
   2682 template <typename T, int Rows>
   2683 ExprP<Matrix<T, Rows, 2> > mat2 (const ExprP<Vector<T, Rows> >& arg0,
   2684 								 const ExprP<Vector<T, Rows> >& arg1)
   2685 {
   2686 	return app<GenMat<T, Rows, 2> >(arg0, arg1);
   2687 }
   2688 
   2689 template <typename T, int Rows>
   2690 ExprP<Matrix<T, Rows, 3> > mat3 (const ExprP<Vector<T, Rows> >& arg0,
   2691 								 const ExprP<Vector<T, Rows> >& arg1,
   2692 								 const ExprP<Vector<T, Rows> >& arg2)
   2693 {
   2694 	return app<GenMat<T, Rows, 3> >(arg0, arg1, arg2);
   2695 }
   2696 
   2697 template <typename T, int Rows>
   2698 ExprP<Matrix<T, Rows, 4> > mat4 (const ExprP<Vector<T, Rows> >& arg0,
   2699 								 const ExprP<Vector<T, Rows> >& arg1,
   2700 								 const ExprP<Vector<T, Rows> >& arg2,
   2701 								 const ExprP<Vector<T, Rows> >& arg3)
   2702 {
   2703 	return app<GenMat<T, Rows, 4> >(arg0, arg1, arg2, arg3);
   2704 }
   2705 
   2706 
   2707 template <int Rows, int Cols>
   2708 class MatNeg : public PrimitiveFunc<Signature<Matrix<float, Rows, Cols>,
   2709 											  Matrix<float, Rows, Cols> > >
   2710 {
   2711 public:
   2712 	typedef typename MatNeg::IRet		IRet;
   2713 	typedef typename MatNeg::IArgs		IArgs;
   2714 
   2715 	string	getName	(void) const
   2716 	{
   2717 		return "_matNeg";
   2718 	}
   2719 
   2720 protected:
   2721 	void	doPrint	(ostream& os, const BaseArgExprs& args) const
   2722 	{
   2723 		os << "-(" << *args[0] << ")";
   2724 	}
   2725 
   2726 	IRet	doApply	(const EvalContext&, const IArgs& iargs)			const
   2727 	{
   2728 		IRet	ret;
   2729 
   2730 		for (int col = 0; col < Cols; ++col)
   2731 		{
   2732 			for (int row = 0; row < Rows; ++row)
   2733 				ret[col][row] = -iargs.a[col][row];
   2734 		}
   2735 
   2736 		return ret;
   2737 	}
   2738 };
   2739 
   2740 template <typename T, typename Sig>
   2741 class CompWiseFunc : public PrimitiveFunc<Sig>
   2742 {
   2743 public:
   2744 	typedef Func<Signature<T, T, T> >	ScalarFunc;
   2745 
   2746 	string				getName			(void)									const
   2747 	{
   2748 		return doGetScalarFunc().getName();
   2749 	}
   2750 protected:
   2751 	void				doPrint			(ostream&				os,
   2752 										 const BaseArgExprs&	args)			const
   2753 	{
   2754 		doGetScalarFunc().print(os, args);
   2755 	}
   2756 
   2757 	virtual
   2758 	const ScalarFunc&	doGetScalarFunc	(void)									const = 0;
   2759 };
   2760 
   2761 template <int Rows, int Cols>
   2762 class CompMatFuncBase : public CompWiseFunc<float, Signature<Matrix<float, Rows, Cols>,
   2763 															 Matrix<float, Rows, Cols>,
   2764 															 Matrix<float, Rows, Cols> > >
   2765 {
   2766 public:
   2767 	typedef typename CompMatFuncBase::IRet		IRet;
   2768 	typedef typename CompMatFuncBase::IArgs		IArgs;
   2769 
   2770 protected:
   2771 
   2772 	IRet	doApply	(const EvalContext& ctx, const IArgs& iargs) const
   2773 	{
   2774 		IRet			ret;
   2775 
   2776 		for (int col = 0; col < Cols; ++col)
   2777 		{
   2778 			for (int row = 0; row < Rows; ++row)
   2779 				ret[col][row] = this->doGetScalarFunc().apply(ctx,
   2780 															  iargs.a[col][row],
   2781 															  iargs.b[col][row]);
   2782 		}
   2783 
   2784 		return ret;
   2785 	}
   2786 };
   2787 
   2788 template <typename F, int Rows, int Cols>
   2789 class CompMatFunc : public CompMatFuncBase<Rows, Cols>
   2790 {
   2791 protected:
   2792 	const typename CompMatFunc::ScalarFunc&	doGetScalarFunc	(void) const
   2793 	{
   2794 		return instance<F>();
   2795 	}
   2796 };
   2797 
   2798 class ScalarMatrixCompMult : public Mul
   2799 {
   2800 public:
   2801 	string	getName	(void) const
   2802 	{
   2803 		return "matrixCompMult";
   2804 	}
   2805 
   2806 	void	doPrint	(ostream& os, const BaseArgExprs& args) const
   2807 	{
   2808 		Func<Sig>::doPrint(os, args);
   2809 	}
   2810 };
   2811 
   2812 template <int Rows, int Cols>
   2813 class MatrixCompMult : public CompMatFunc<ScalarMatrixCompMult, Rows, Cols>
   2814 {
   2815 };
   2816 
   2817 template <int Rows, int Cols>
   2818 class ScalarMatFuncBase : public CompWiseFunc<float, Signature<Matrix<float, Rows, Cols>,
   2819 															   Matrix<float, Rows, Cols>,
   2820 															   float> >
   2821 {
   2822 public:
   2823 	typedef typename ScalarMatFuncBase::IRet	IRet;
   2824 	typedef typename ScalarMatFuncBase::IArgs	IArgs;
   2825 
   2826 protected:
   2827 
   2828 	IRet	doApply	(const EvalContext& ctx, const IArgs& iargs) const
   2829 	{
   2830 		IRet	ret;
   2831 
   2832 		for (int col = 0; col < Cols; ++col)
   2833 		{
   2834 			for (int row = 0; row < Rows; ++row)
   2835 				ret[col][row] = this->doGetScalarFunc().apply(ctx, iargs.a[col][row], iargs.b);
   2836 		}
   2837 
   2838 		return ret;
   2839 	}
   2840 };
   2841 
   2842 template <typename F, int Rows, int Cols>
   2843 class ScalarMatFunc : public ScalarMatFuncBase<Rows, Cols>
   2844 {
   2845 protected:
   2846 	const typename ScalarMatFunc::ScalarFunc&	doGetScalarFunc	(void)	const
   2847 	{
   2848 		return instance<F>();
   2849 	}
   2850 };
   2851 
   2852 template<typename T, int Size> struct GenXType;
   2853 
   2854 template<typename T>
   2855 struct GenXType<T, 1>
   2856 {
   2857 	static ExprP<T>	genXType	(const ExprP<T>& x) { return x; }
   2858 };
   2859 
   2860 template<typename T>
   2861 struct GenXType<T, 2>
   2862 {
   2863 	static ExprP<Vector<T, 2> >	genXType	(const ExprP<T>& x)
   2864 	{
   2865 		return app<GenVec<T, 2> >(x, x);
   2866 	}
   2867 };
   2868 
   2869 template<typename T>
   2870 struct GenXType<T, 3>
   2871 {
   2872 	static ExprP<Vector<T, 3> >	genXType	(const ExprP<T>& x)
   2873 	{
   2874 		return app<GenVec<T, 3> >(x, x, x);
   2875 	}
   2876 };
   2877 
   2878 template<typename T>
   2879 struct GenXType<T, 4>
   2880 {
   2881 	static ExprP<Vector<T, 4> >	genXType	(const ExprP<T>& x)
   2882 	{
   2883 		return app<GenVec<T, 4> >(x, x, x, x);
   2884 	}
   2885 };
   2886 
   2887 //! Returns an expression of vector of size `Size` (or scalar if Size == 1),
   2888 //! with each element initialized with the expression `x`.
   2889 template<typename T, int Size>
   2890 ExprP<typename ContainerOf<T, Size>::Container> genXType (const ExprP<T>& x)
   2891 {
   2892 	return GenXType<T, Size>::genXType(x);
   2893 }
   2894 
   2895 typedef GenVec<float, 2> FloatVec2;
   2896 DEFINE_CONSTRUCTOR2(FloatVec2, Vec2, vec2, float, float)
   2897 
   2898 typedef GenVec<float, 3> FloatVec3;
   2899 DEFINE_CONSTRUCTOR3(FloatVec3, Vec3, vec3, float, float, float)
   2900 
   2901 typedef GenVec<float, 4> FloatVec4;
   2902 DEFINE_CONSTRUCTOR4(FloatVec4, Vec4, vec4, float, float, float, float)
   2903 
   2904 template <int Size>
   2905 class Dot : public DerivedFunc<Signature<float, Vector<float, Size>, Vector<float, Size> > >
   2906 {
   2907 public:
   2908 	typedef typename Dot::ArgExprs ArgExprs;
   2909 
   2910 	string			getName		(void) const
   2911 	{
   2912 		return "dot";
   2913 	}
   2914 
   2915 protected:
   2916 	ExprP<float>	doExpand 	(ExpandContext&, const ArgExprs& args) const
   2917 	{
   2918 		ExprP<float> val = args.a[0] * args.b[0];
   2919 
   2920 		for (int ndx = 1; ndx < Size; ++ndx)
   2921 			val = val + args.a[ndx] * args.b[ndx];
   2922 
   2923 		return val;
   2924 	}
   2925 };
   2926 
   2927 template <>
   2928 class Dot<1> : public DerivedFunc<Signature<float, float, float> >
   2929 {
   2930 public:
   2931 	string			getName		(void) const
   2932 	{
   2933 		return "dot";
   2934 	}
   2935 
   2936 	ExprP<float>	doExpand 	(ExpandContext&, const ArgExprs& args) const
   2937 	{
   2938 		return args.a * args.b;
   2939 	}
   2940 };
   2941 
   2942 template <int Size>
   2943 ExprP<float> dot (const ExprP<Vector<float, Size> >& x, const ExprP<Vector<float, Size> >& y)
   2944 {
   2945 	return app<Dot<Size> >(x, y);
   2946 }
   2947 
   2948 ExprP<float> dot (const ExprP<float>& x, const ExprP<float>& y)
   2949 {
   2950 	return app<Dot<1> >(x, y);
   2951 }
   2952 
   2953 template <int Size>
   2954 class Length : public DerivedFunc<
   2955 	Signature<float, typename ContainerOf<float, Size>::Container> >
   2956 {
   2957 public:
   2958 	typedef typename Length::ArgExprs ArgExprs;
   2959 
   2960 	string			getName		(void) const
   2961 	{
   2962 		return "length";
   2963 	}
   2964 
   2965 protected:
   2966 	ExprP<float>	doExpand	(ExpandContext&, const ArgExprs& args) const
   2967 	{
   2968 		return sqrt(dot(args.a, args.a));
   2969 	}
   2970 };
   2971 
   2972 template <int Size>
   2973 ExprP<float> length (const ExprP<typename ContainerOf<float, Size>::Container>& x)
   2974 {
   2975 	return app<Length<Size> >(x);
   2976 }
   2977 
   2978 template <int Size>
   2979 class Distance : public DerivedFunc<
   2980 	Signature<float,
   2981 			  typename ContainerOf<float, Size>::Container,
   2982 			  typename ContainerOf<float, Size>::Container> >
   2983 {
   2984 public:
   2985 	typedef typename	Distance::Ret		Ret;
   2986 	typedef typename	Distance::ArgExprs	ArgExprs;
   2987 
   2988 	string		getName		(void) const
   2989 	{
   2990 		return "distance";
   2991 	}
   2992 
   2993 protected:
   2994 	ExprP<Ret>	doExpand 	(ExpandContext&, const ArgExprs& args) const
   2995 	{
   2996 		return length<Size>(args.a - args.b);
   2997 	}
   2998 };
   2999 
   3000 // cross
   3001 
   3002 class Cross : public DerivedFunc<Signature<Vec3, Vec3, Vec3> >
   3003 {
   3004 public:
   3005 	string			getName		(void) const
   3006 	{
   3007 		return "cross";
   3008 	}
   3009 
   3010 protected:
   3011 	ExprP<Vec3>		doExpand 	(ExpandContext&, const ArgExprs& x) const
   3012 	{
   3013 		return vec3(x.a[1] * x.b[2] - x.b[1] * x.a[2],
   3014 					x.a[2] * x.b[0] - x.b[2] * x.a[0],
   3015 					x.a[0] * x.b[1] - x.b[0] * x.a[1]);
   3016 	}
   3017 };
   3018 
   3019 DEFINE_CONSTRUCTOR2(Cross, Vec3, cross, Vec3, Vec3)
   3020 
   3021 template<int Size>
   3022 class Normalize : public DerivedFunc<
   3023 	Signature<typename ContainerOf<float, Size>::Container,
   3024 			  typename ContainerOf<float, Size>::Container> >
   3025 {
   3026 public:
   3027 	typedef typename	Normalize::Ret		Ret;
   3028 	typedef typename	Normalize::ArgExprs	ArgExprs;
   3029 
   3030 	string		getName		(void) const
   3031 	{
   3032 		return "normalize";
   3033 	}
   3034 
   3035 protected:
   3036 	ExprP<Ret>	doExpand	(ExpandContext&, const ArgExprs& args) const
   3037 	{
   3038 		return args.a / length<Size>(args.a);
   3039 	}
   3040 };
   3041 
   3042 template <int Size>
   3043 class FaceForward : public DerivedFunc<
   3044 	Signature<typename ContainerOf<float, Size>::Container,
   3045 			  typename ContainerOf<float, Size>::Container,
   3046 			  typename ContainerOf<float, Size>::Container,
   3047 			  typename ContainerOf<float, Size>::Container> >
   3048 {
   3049 public:
   3050 	typedef typename	FaceForward::Ret		Ret;
   3051 	typedef typename	FaceForward::ArgExprs	ArgExprs;
   3052 
   3053 	string		getName		(void) const
   3054 	{
   3055 		return "faceforward";
   3056 	}
   3057 
   3058 protected:
   3059 
   3060 
   3061 	ExprP<Ret>	doExpand	(ExpandContext&, const ArgExprs& args) const
   3062 	{
   3063 		return cond(dot(args.c, args.b) < constant(0.0f), args.a, -args.a);
   3064 	}
   3065 };
   3066 
   3067 template <int Size>
   3068 class Reflect : public DerivedFunc<
   3069 	Signature<typename ContainerOf<float, Size>::Container,
   3070 			  typename ContainerOf<float, Size>::Container,
   3071 			  typename ContainerOf<float, Size>::Container> >
   3072 {
   3073 public:
   3074 	typedef typename	Reflect::Ret		Ret;
   3075 	typedef typename	Reflect::Arg0		Arg0;
   3076 	typedef typename	Reflect::Arg1		Arg1;
   3077 	typedef typename	Reflect::ArgExprs	ArgExprs;
   3078 
   3079 	string		getName		(void) const
   3080 	{
   3081 		return "reflect";
   3082 	}
   3083 
   3084 protected:
   3085 	ExprP<Ret>	doExpand	(ExpandContext& ctx, const ArgExprs& args) const
   3086 	{
   3087 		const ExprP<Arg0>&	i		= args.a;
   3088 		const ExprP<Arg1>&	n		= args.b;
   3089 		const ExprP<float>	dotNI	= bindExpression("dotNI", ctx, dot(n, i));
   3090 
   3091 		return i - alternatives((n * dotNI) * constant(2.0f),
   3092 								n * (dotNI * constant(2.0f)));
   3093 	}
   3094 };
   3095 
   3096 template <int Size>
   3097 class Refract : public DerivedFunc<
   3098 	Signature<typename ContainerOf<float, Size>::Container,
   3099 			  typename ContainerOf<float, Size>::Container,
   3100 			  typename ContainerOf<float, Size>::Container,
   3101 			  float> >
   3102 {
   3103 public:
   3104 	typedef typename	Refract::Ret		Ret;
   3105 	typedef typename	Refract::Arg0		Arg0;
   3106 	typedef typename	Refract::Arg1		Arg1;
   3107 	typedef typename	Refract::ArgExprs	ArgExprs;
   3108 
   3109 	string		getName		(void) const
   3110 	{
   3111 		return "refract";
   3112 	}
   3113 
   3114 protected:
   3115 	ExprP<Ret>	doExpand	(ExpandContext&	ctx, const ArgExprs& args) const
   3116 	{
   3117 		const ExprP<Arg0>&	i		= args.a;
   3118 		const ExprP<Arg1>&	n		= args.b;
   3119 		const ExprP<float>&	eta		= args.c;
   3120 		const ExprP<float>	dotNI	= bindExpression("dotNI", ctx, dot(n, i));
   3121 		const ExprP<float>	k		= bindExpression("k", ctx, constant(1.0f) - eta * eta *
   3122 												 (constant(1.0f) - dotNI * dotNI));
   3123 
   3124 		return cond(k < constant(0.0f),
   3125 					genXType<float, Size>(constant(0.0f)),
   3126 					i * eta - n * (eta * dotNI + sqrt(k)));
   3127 	}
   3128 };
   3129 
   3130 class PreciseFunc1 : public CFloatFunc1
   3131 {
   3132 public:
   3133 			PreciseFunc1	(const string& name, DoubleFunc1& func) : CFloatFunc1(name, func) {}
   3134 protected:
   3135 	double	precision		(const EvalContext&, double, double) const	{ return 0.0; }
   3136 };
   3137 
   3138 class Abs : public PreciseFunc1
   3139 {
   3140 public:
   3141 	Abs (void) : PreciseFunc1("abs", deAbs) {}
   3142 };
   3143 
   3144 class Sign : public PreciseFunc1
   3145 {
   3146 public:
   3147 	Sign (void) : PreciseFunc1("sign", deSign) {}
   3148 };
   3149 
   3150 class Floor : public PreciseFunc1
   3151 {
   3152 public:
   3153 	Floor (void) : PreciseFunc1("floor", deFloor) {}
   3154 };
   3155 
   3156 class Trunc : public PreciseFunc1
   3157 {
   3158 public:
   3159 	Trunc (void) : PreciseFunc1("trunc", deTrunc) {}
   3160 };
   3161 
   3162 class Round : public FloatFunc1
   3163 {
   3164 public:
   3165 	string		getName		(void) const								{ return "round"; }
   3166 
   3167 protected:
   3168 	Interval	applyPoint	(const EvalContext&, double x) const
   3169 	{
   3170 		double			truncated	= 0.0;
   3171 		const double	fract		= deModf(x, &truncated);
   3172 		Interval		ret;
   3173 
   3174 		if (fabs(fract) <= 0.5)
   3175 			ret |= truncated;
   3176 		if (fabs(fract) >= 0.5)
   3177 			ret |= truncated + deSign(fract);
   3178 
   3179 		return ret;
   3180 	}
   3181 
   3182 	double		precision	(const EvalContext&, double, double) const	{ return 0.0; }
   3183 };
   3184 
   3185 class RoundEven : public PreciseFunc1
   3186 {
   3187 public:
   3188 	RoundEven (void) : PreciseFunc1("roundEven", deRoundEven) {}
   3189 };
   3190 
   3191 class Ceil : public PreciseFunc1
   3192 {
   3193 public:
   3194 	Ceil (void) : PreciseFunc1("ceil", deCeil) {}
   3195 };
   3196 
   3197 DEFINE_DERIVED_FLOAT1(Fract, fract, x, x - app<Floor>(x));
   3198 
   3199 class PreciseFunc2 : public CFloatFunc2
   3200 {
   3201 public:
   3202 			PreciseFunc2	(const string& name, DoubleFunc2& func) : CFloatFunc2(name, func) {}
   3203 protected:
   3204 	double	precision		(const EvalContext&, double, double, double) const { return 0.0; }
   3205 };
   3206 
   3207 DEFINE_DERIVED_FLOAT2(Mod, mod, x, y, x - y * app<Floor>(x / y));
   3208 
   3209 class Modf : public PrimitiveFunc<Signature<float, float, float> >
   3210 {
   3211 public:
   3212 	string	getName				(void) const
   3213 	{
   3214 		return "modf";
   3215 	}
   3216 
   3217 protected:
   3218 	IRet	doApply				(const EvalContext&, const IArgs& iargs) const
   3219 	{
   3220 		Interval	fracIV;
   3221 		Interval&	wholeIV		= const_cast<Interval&>(iargs.b);
   3222 		double		intPart		= 0;
   3223 
   3224 		TCU_INTERVAL_APPLY_MONOTONE1(fracIV, x, iargs.a, frac, frac = deModf(x, &intPart));
   3225 		TCU_INTERVAL_APPLY_MONOTONE1(wholeIV, x, iargs.a, whole,
   3226 									 deModf(x, &intPart); whole = intPart);
   3227 
   3228 		if (!iargs.a.isFinite())
   3229 		{
   3230 			// Behavior on modf(Inf) not well-defined, allow anything as a fractional part
   3231 			// See Khronos bug 13907
   3232 			fracIV |= TCU_NAN;
   3233 		}
   3234 
   3235 		return fracIV;
   3236 	}
   3237 
   3238 	int		getOutParamIndex	(void) const
   3239 	{
   3240 		return 1;
   3241 	}
   3242 };
   3243 
   3244 class Min : public PreciseFunc2 { public: Min (void) : PreciseFunc2("min", deMin) {} };
   3245 class Max : public PreciseFunc2 { public: Max (void) : PreciseFunc2("max", deMax) {} };
   3246 
   3247 class Clamp : public FloatFunc3
   3248 {
   3249 public:
   3250 	string	getName		(void) const { return "clamp"; }
   3251 
   3252 	double	applyExact	(double x, double minVal, double maxVal) const
   3253 	{
   3254 		return de::min(de::max(x, minVal), maxVal);
   3255 	}
   3256 
   3257 	double	precision	(const EvalContext&, double, double, double minVal, double maxVal) const
   3258 	{
   3259 		return minVal > maxVal ? TCU_NAN : 0.0;
   3260 	}
   3261 };
   3262 
   3263 ExprP<float> clamp(const ExprP<float>& x, const ExprP<float>& minVal, const ExprP<float>& maxVal)
   3264 {
   3265 	return app<Clamp>(x, minVal, maxVal);
   3266 }
   3267 
   3268 DEFINE_DERIVED_FLOAT3(Mix, mix, x, y, a, alternatives((x * (constant(1.0f) - a)) + y * a,
   3269 													  x + (y - x) * a));
   3270 
   3271 static double step (double edge, double x)
   3272 {
   3273 	return x < edge ? 0.0 : 1.0;
   3274 }
   3275 
   3276 class Step : public PreciseFunc2 { public: Step (void) : PreciseFunc2("step", step) {} };
   3277 
   3278 class SmoothStep : public DerivedFunc<Signature<float, float, float, float> >
   3279 {
   3280 public:
   3281 	string		getName		(void) const
   3282 	{
   3283 		return "smoothstep";
   3284 	}
   3285 
   3286 protected:
   3287 
   3288 	ExprP<Ret>	doExpand 	(ExpandContext& ctx, const ArgExprs& args) const
   3289 	{
   3290 		const ExprP<float>&		edge0	= args.a;
   3291 		const ExprP<float>&		edge1	= args.b;
   3292 		const ExprP<float>&		x		= args.c;
   3293 		const ExprP<float>		tExpr	= clamp((x - edge0) / (edge1 - edge0),
   3294 											constant(0.0f), constant(1.0f));
   3295 		const ExprP<float>		t		= bindExpression("t", ctx, tExpr);
   3296 
   3297 		return (t * t * (constant(3.0f) - constant(2.0f) * t));
   3298 	}
   3299 };
   3300 
   3301 class FrExp : public PrimitiveFunc<Signature<float, float, int> >
   3302 {
   3303 public:
   3304 	string	getName			(void) const
   3305 	{
   3306 		return "frexp";
   3307 	}
   3308 
   3309 protected:
   3310 	IRet	doApply			(const EvalContext&, const IArgs& iargs) const
   3311 	{
   3312 		IRet			ret;
   3313 		const IArg0&	x			= iargs.a;
   3314 		IArg1&			exponent	= const_cast<IArg1&>(iargs.b);
   3315 
   3316 		if (x.hasNaN() || x.contains(TCU_INFINITY) || x.contains(-TCU_INFINITY))
   3317 		{
   3318 			// GLSL (in contrast to IEEE) says that result of applying frexp
   3319 			// to infinity is undefined
   3320 			ret = Interval::unbounded() | TCU_NAN;
   3321 			exponent = Interval(-deLdExp(1.0, 31), deLdExp(1.0, 31)-1);
   3322 		}
   3323 		else if (!x.empty())
   3324 		{
   3325 			int				loExp	= 0;
   3326 			const double	loFrac	= deFrExp(x.lo(), &loExp);
   3327 			int				hiExp	= 0;
   3328 			const double	hiFrac	= deFrExp(x.hi(), &hiExp);
   3329 
   3330 			if (deSign(loFrac) != deSign(hiFrac))
   3331 			{
   3332 				exponent = Interval(-TCU_INFINITY, de::max(loExp, hiExp));
   3333 				ret = Interval();
   3334 				if (deSign(loFrac) < 0)
   3335 					ret |= Interval(-1.0 + DBL_EPSILON*0.5, 0.0);
   3336 				if (deSign(hiFrac) > 0)
   3337 					ret |= Interval(0.0, 1.0 - DBL_EPSILON*0.5);
   3338 			}
   3339 			else
   3340 			{
   3341 				exponent = Interval(loExp, hiExp);
   3342 				if (loExp == hiExp)
   3343 					ret = Interval(loFrac, hiFrac);
   3344 				else
   3345 					ret = deSign(loFrac) * Interval(0.5, 1.0 - DBL_EPSILON*0.5);
   3346 			}
   3347 		}
   3348 
   3349 		return ret;
   3350 	}
   3351 
   3352 	int	getOutParamIndex	(void) const
   3353 	{
   3354 		return 1;
   3355 	}
   3356 };
   3357 
   3358 class LdExp : public PrimitiveFunc<Signature<float, float, int> >
   3359 {
   3360 public:
   3361 	string		getName			(void) const
   3362 	{
   3363 		return "ldexp";
   3364 	}
   3365 
   3366 protected:
   3367 	Interval	doApply			(const EvalContext& ctx, const IArgs& iargs) const
   3368 	{
   3369 		Interval	ret = call<Exp2>(ctx, iargs.b);
   3370 		// Khronos bug 11180 consensus: if exp2(exponent) cannot be represented,
   3371 		// the result is undefined.
   3372 
   3373 		if (ret.contains(TCU_INFINITY) | ret.contains(-TCU_INFINITY))
   3374 			ret |= TCU_NAN;
   3375 
   3376 		return call<Mul>(ctx, iargs.a, ret);
   3377 	}
   3378 };
   3379 
   3380 template<int Rows, int Columns>
   3381 class Transpose : public PrimitiveFunc<Signature<Matrix<float, Rows, Columns>,
   3382 												 Matrix<float, Columns, Rows> > >
   3383 {
   3384 public:
   3385 	typedef typename Transpose::IRet	IRet;
   3386 	typedef typename Transpose::IArgs	IArgs;
   3387 
   3388 	string		getName		(void) const
   3389 	{
   3390 		return "transpose";
   3391 	}
   3392 
   3393 protected:
   3394 	IRet		doApply		(const EvalContext&, const IArgs& iargs) const
   3395 	{
   3396 		IRet ret;
   3397 
   3398 		for (int rowNdx = 0; rowNdx < Rows; ++rowNdx)
   3399 		{
   3400 			for (int colNdx = 0; colNdx < Columns; ++colNdx)
   3401 				ret(rowNdx, colNdx) = iargs.a(colNdx, rowNdx);
   3402 		}
   3403 
   3404 		return ret;
   3405 	}
   3406 };
   3407 
   3408 template<typename Ret, typename Arg0, typename Arg1>
   3409 class MulFunc : public PrimitiveFunc<Signature<Ret, Arg0, Arg1> >
   3410 {
   3411 public:
   3412 	string	getName	(void) const 									{ return "mul"; }
   3413 
   3414 protected:
   3415 	void	doPrint	(ostream& os, const BaseArgExprs& args) const
   3416 	{
   3417 		os << "(" << *args[0] << " * " << *args[1] << ")";
   3418 	}
   3419 };
   3420 
   3421 template<int LeftRows, int Middle, int RightCols>
   3422 class MatMul : public MulFunc<Matrix<float, LeftRows, RightCols>,
   3423 							  Matrix<float, LeftRows, Middle>,
   3424 							  Matrix<float, Middle, RightCols> >
   3425 {
   3426 protected:
   3427 	typedef typename MatMul::IRet	IRet;
   3428 	typedef typename MatMul::IArgs	IArgs;
   3429 	typedef typename MatMul::IArg0	IArg0;
   3430 	typedef typename MatMul::IArg1	IArg1;
   3431 
   3432 	IRet	doApply	(const EvalContext&	ctx, const IArgs& iargs) const
   3433 	{
   3434 		const IArg0&	left	= iargs.a;
   3435 		const IArg1&	right	= iargs.b;
   3436 		IRet			ret;
   3437 
   3438 		for (int row = 0; row < LeftRows; ++row)
   3439 		{
   3440 			for (int col = 0; col < RightCols; ++col)
   3441 			{
   3442 				Interval	element	(0.0);
   3443 
   3444 				for (int ndx = 0; ndx < Middle; ++ndx)
   3445 					element = call<Add>(ctx, element,
   3446 										call<Mul>(ctx, left[ndx][row], right[col][ndx]));
   3447 
   3448 				ret[col][row] = element;
   3449 			}
   3450 		}
   3451 
   3452 		return ret;
   3453 	}
   3454 };
   3455 
   3456 template<int Rows, int Cols>
   3457 class VecMatMul : public MulFunc<Vector<float, Cols>,
   3458 								 Vector<float, Rows>,
   3459 								 Matrix<float, Rows, Cols> >
   3460 {
   3461 public:
   3462 	typedef typename VecMatMul::IRet	IRet;
   3463 	typedef typename VecMatMul::IArgs	IArgs;
   3464 	typedef typename VecMatMul::IArg0	IArg0;
   3465 	typedef typename VecMatMul::IArg1	IArg1;
   3466 
   3467 protected:
   3468 	IRet	doApply	(const EvalContext& ctx, const IArgs& iargs) const
   3469 	{
   3470 		const IArg0&	left	= iargs.a;
   3471 		const IArg1&	right	= iargs.b;
   3472 		IRet			ret;
   3473 
   3474 		for (int col = 0; col < Cols; ++col)
   3475 		{
   3476 			Interval	element	(0.0);
   3477 
   3478 			for (int row = 0; row < Rows; ++row)
   3479 				element = call<Add>(ctx, element, call<Mul>(ctx, left[row], right[col][row]));
   3480 
   3481 			ret[col] = element;
   3482 		}
   3483 
   3484 		return ret;
   3485 	}
   3486 };
   3487 
   3488 template<int Rows, int Cols>
   3489 class MatVecMul : public MulFunc<Vector<float, Rows>,
   3490 								 Matrix<float, Rows, Cols>,
   3491 								 Vector<float, Cols> >
   3492 {
   3493 public:
   3494 	typedef typename MatVecMul::IRet	IRet;
   3495 	typedef typename MatVecMul::IArgs	IArgs;
   3496 	typedef typename MatVecMul::IArg0	IArg0;
   3497 	typedef typename MatVecMul::IArg1	IArg1;
   3498 
   3499 protected:
   3500 	IRet	doApply	(const EvalContext& ctx, const IArgs& iargs) const
   3501 	{
   3502 		const IArg0&	left	= iargs.a;
   3503 		const IArg1&	right	= iargs.b;
   3504 
   3505 		return call<VecMatMul<Cols, Rows> >(ctx, right,
   3506 											call<Transpose<Rows, Cols> >(ctx, left));
   3507 	}
   3508 };
   3509 
   3510 template<int Rows, int Cols>
   3511 class OuterProduct : public PrimitiveFunc<Signature<Matrix<float, Rows, Cols>,
   3512 													Vector<float, Rows>,
   3513 													Vector<float, Cols> > >
   3514 {
   3515 public:
   3516 	typedef typename OuterProduct::IRet		IRet;
   3517 	typedef typename OuterProduct::IArgs	IArgs;
   3518 
   3519 	string	getName	(void) const
   3520 	{
   3521 		return "outerProduct";
   3522 	}
   3523 
   3524 protected:
   3525 	IRet	doApply	(const EvalContext& ctx, const IArgs& iargs) const
   3526 	{
   3527 		IRet	ret;
   3528 
   3529 		for (int row = 0; row < Rows; ++row)
   3530 		{
   3531 			for (int col = 0; col < Cols; ++col)
   3532 				ret[col][row] = call<Mul>(ctx, iargs.a[row], iargs.b[col]);
   3533 		}
   3534 
   3535 		return ret;
   3536 	}
   3537 };
   3538 
   3539 template<int Rows, int Cols>
   3540 ExprP<Matrix<float, Rows, Cols> > outerProduct (const ExprP<Vector<float, Rows> >& left,
   3541 												const ExprP<Vector<float, Cols> >& right)
   3542 {
   3543 	return app<OuterProduct<Rows, Cols> >(left, right);
   3544 }
   3545 
   3546 template<int Size>
   3547 class DeterminantBase : public DerivedFunc<Signature<float, Matrix<float, Size, Size> > >
   3548 {
   3549 public:
   3550 	string	getName	(void) const { return "determinant"; }
   3551 };
   3552 
   3553 template<int Size>
   3554 class Determinant;
   3555 
   3556 template<int Size>
   3557 ExprP<float> determinant (ExprP<Matrix<float, Size, Size> > mat)
   3558 {
   3559 	return app<Determinant<Size> >(mat);
   3560 }
   3561 
   3562 template<>
   3563 class Determinant<2> : public DeterminantBase<2>
   3564 {
   3565 protected:
   3566 	ExprP<Ret>	doExpand (ExpandContext&, const ArgExprs& args)	const
   3567 	{
   3568 		ExprP<Mat2>	mat	= args.a;
   3569 
   3570 		return mat[0][0] * mat[1][1] - mat[1][0] * mat[0][1];
   3571 	}
   3572 };
   3573 
   3574 template<>
   3575 class Determinant<3> : public DeterminantBase<3>
   3576 {
   3577 protected:
   3578 	ExprP<Ret> doExpand (ExpandContext&, const ArgExprs& args) const
   3579 	{
   3580 		ExprP<Mat3>	mat	= args.a;
   3581 
   3582 		return (mat[0][0] * (mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]) +
   3583 				mat[0][1] * (mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2]) +
   3584 				mat[0][2] * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0]));
   3585 	}
   3586 };
   3587 
   3588 template<>
   3589 class Determinant<4> : public DeterminantBase<4>
   3590 {
   3591 protected:
   3592 	 ExprP<Ret>	doExpand	(ExpandContext& ctx, const ArgExprs& args) const
   3593 	{
   3594 		ExprP<Mat4>	mat	= args.a;
   3595 		ExprP<Mat3>	minors[4];
   3596 
   3597 		for (int ndx = 0; ndx < 4; ++ndx)
   3598 		{
   3599 			ExprP<Vec4>		minorColumns[3];
   3600 			ExprP<Vec3>		columns[3];
   3601 
   3602 			for (int col = 0; col < 3; ++col)
   3603 				minorColumns[col] = mat[col < ndx ? col : col + 1];
   3604 
   3605 			for (int col = 0; col < 3; ++col)
   3606 				columns[col] = vec3(minorColumns[0][col+1],
   3607 									minorColumns[1][col+1],
   3608 									minorColumns[2][col+1]);
   3609 
   3610 			minors[ndx] = bindExpression("minor", ctx,
   3611 										 mat3(columns[0], columns[1], columns[2]));
   3612 		}
   3613 
   3614 		return (mat[0][0] * determinant(minors[0]) -
   3615 				mat[1][0] * determinant(minors[1]) +
   3616 				mat[2][0] * determinant(minors[2]) -
   3617 				mat[3][0] * determinant(minors[3]));
   3618 	}
   3619 };
   3620 
   3621 template<int Size> class Inverse;
   3622 
   3623 template <int Size>
   3624 ExprP<Matrix<float, Size, Size> > inverse (ExprP<Matrix<float, Size, Size> > mat)
   3625 {
   3626 	return app<Inverse<Size> >(mat);
   3627 }
   3628 
   3629 template<>
   3630 class Inverse<2> : public DerivedFunc<Signature<Mat2, Mat2> >
   3631 {
   3632 public:
   3633 	string		getName	(void) const
   3634 	{
   3635 		return "inverse";
   3636 	}
   3637 
   3638 protected:
   3639 	ExprP<Ret>	doExpand (ExpandContext& ctx, const ArgExprs& args) const
   3640 	{
   3641 		ExprP<Mat2>		mat = args.a;
   3642 		ExprP<float>	det	= bindExpression("det", ctx, determinant(mat));
   3643 
   3644 		return mat2(vec2(mat[1][1] / det, -mat[0][1] / det),
   3645 					vec2(-mat[1][0] / det, mat[0][0] / det));
   3646 	}
   3647 };
   3648 
   3649 template<>
   3650 class Inverse<3> : public DerivedFunc<Signature<Mat3, Mat3> >
   3651 {
   3652 public:
   3653 	string		getName		(void) const
   3654 	{
   3655 		return "inverse";
   3656 	}
   3657 
   3658 protected:
   3659 	ExprP<Ret>	doExpand 	(ExpandContext& ctx, const ArgExprs& args)			const
   3660 	{
   3661 		ExprP<Mat3>		mat		= args.a;
   3662 		ExprP<Mat2>		invA	= bindExpression("invA", ctx,
   3663 												 inverse(mat2(vec2(mat[0][0], mat[0][1]),
   3664 															  vec2(mat[1][0], mat[1][1]))));
   3665 
   3666 		ExprP<Vec2>		matB	= bindExpression("matB", ctx, vec2(mat[2][0], mat[2][1]));
   3667 		ExprP<Vec2>		matC	= bindExpression("matC", ctx, vec2(mat[0][2], mat[1][2]));
   3668 		ExprP<float>	matD	= bindExpression("matD", ctx, mat[2][2]);
   3669 
   3670 		ExprP<float>	schur	= bindExpression("schur", ctx,
   3671 												 constant(1.0f) /
   3672 												 (matD - dot(matC * invA, matB)));
   3673 
   3674 		ExprP<Vec2>		t1		= invA * matB;
   3675 		ExprP<Vec2>		t2		= t1 * schur;
   3676 		ExprP<Mat2>		t3		= outerProduct(t2, matC);
   3677 		ExprP<Mat2>		t4		= t3 * invA;
   3678 		ExprP<Mat2>		t5		= invA + t4;
   3679 		ExprP<Mat2>		blockA	= bindExpression("blockA", ctx, t5);
   3680 		ExprP<Vec2>		blockB	= bindExpression("blockB", ctx,
   3681 												 (invA * matB) * -schur);
   3682 		ExprP<Vec2>		blockC	= bindExpression("blockC", ctx,
   3683 												 (matC * invA) * -schur);
   3684 
   3685 		return mat3(vec3(blockA[0][0], blockA[0][1], blockC[0]),
   3686 					vec3(blockA[1][0], blockA[1][1], blockC[1]),
   3687 					vec3(blockB[0], blockB[1], schur));
   3688 	}
   3689 };
   3690 
   3691 template<>
   3692 class Inverse<4> : public DerivedFunc<Signature<Mat4, Mat4> >
   3693 {
   3694 public:
   3695 	string		getName		(void) const { return "inverse"; }
   3696 
   3697 protected:
   3698 	ExprP<Ret>			doExpand 			(ExpandContext&		ctx,
   3699 											 const ArgExprs&	args)			const
   3700 	{
   3701 		ExprP<Mat4>	mat		= args.a;
   3702 		ExprP<Mat2>	invA	= bindExpression("invA", ctx,
   3703 											 inverse(mat2(vec2(mat[0][0], mat[0][1]),
   3704 														  vec2(mat[1][0], mat[1][1]))));
   3705 		ExprP<Mat2>	matB	= bindExpression("matB", ctx,
   3706 											 mat2(vec2(mat[2][0], mat[2][1]),
   3707 												  vec2(mat[3][0], mat[3][1])));
   3708 		ExprP<Mat2>	matC	= bindExpression("matC", ctx,
   3709 											 mat2(vec2(mat[0][2], mat[0][3]),
   3710 												  vec2(mat[1][2], mat[1][3])));
   3711 		ExprP<Mat2>	matD	= bindExpression("matD", ctx,
   3712 											 mat2(vec2(mat[2][2], mat[2][3]),
   3713 												  vec2(mat[3][2], mat[3][3])));
   3714 		ExprP<Mat2>	schur	= bindExpression("schur", ctx,
   3715 											 inverse(matD + -(matC * invA * matB)));
   3716 		ExprP<Mat2>	blockA	= bindExpression("blockA", ctx,
   3717 											 invA + (invA * matB * schur * matC * invA));
   3718 		ExprP<Mat2>	blockB	= bindExpression("blockB", ctx,
   3719 											 (-invA) * matB * schur);
   3720 		ExprP<Mat2>	blockC	= bindExpression("blockC", ctx,
   3721 											 (-schur) * matC * invA);
   3722 
   3723 		return mat4(vec4(blockA[0][0], blockA[0][1], blockC[0][0], blockC[0][1]),
   3724 					vec4(blockA[1][0], blockA[1][1], blockC[1][0], blockC[1][1]),
   3725 					vec4(blockB[0][0], blockB[0][1], schur[0][0], schur[0][1]),
   3726 					vec4(blockB[1][0], blockB[1][1], schur[1][0], schur[1][1]));
   3727 	}
   3728 };
   3729 
   3730 class Fma : public DerivedFunc<Signature<float, float, float, float> >
   3731 {
   3732 public:
   3733 	string			getName					(void) const
   3734 	{
   3735 		return "fma";
   3736 	}
   3737 
   3738 	string			getRequiredExtension	(void) const
   3739 	{
   3740 		return "GL_EXT_gpu_shader5";
   3741 	}
   3742 
   3743 protected:
   3744 	ExprP<float>	doExpand 				(ExpandContext&, const ArgExprs& x) const
   3745 	{
   3746 		return x.a * x.b + x.c;
   3747 	}
   3748 };
   3749 
   3750 } // Functions
   3751 
   3752 using namespace Functions;
   3753 
   3754 template <typename T>
   3755 ExprP<typename T::Element> ContainerExprPBase<T>::operator[] (int i) const
   3756 {
   3757 	return Functions::getComponent(exprP<T>(*this), i);
   3758 }
   3759 
   3760 ExprP<float> operator+ (const ExprP<float>& arg0, const ExprP<float>& arg1)
   3761 {
   3762 	return app<Add>(arg0, arg1);
   3763 }
   3764 
   3765 ExprP<float> operator- (const ExprP<float>& arg0, const ExprP<float>& arg1)
   3766 {
   3767 	return app<Sub>(arg0, arg1);
   3768 }
   3769 
   3770 ExprP<float> operator- (const ExprP<float>& arg0)
   3771 {
   3772 	return app<Negate>(arg0);
   3773 }
   3774 
   3775 ExprP<float> operator* (const ExprP<float>& arg0, const ExprP<float>& arg1)
   3776 {
   3777 	return app<Mul>(arg0, arg1);
   3778 }
   3779 
   3780 ExprP<float> operator/ (const ExprP<float>& arg0, const ExprP<float>& arg1)
   3781 {
   3782 	return app<Div>(arg0, arg1);
   3783 }
   3784 
   3785 template <typename Sig_, int Size>
   3786 class GenFunc : public PrimitiveFunc<Signature<
   3787 	typename ContainerOf<typename Sig_::Ret, Size>::Container,
   3788 	typename ContainerOf<typename Sig_::Arg0, Size>::Container,
   3789 	typename ContainerOf<typename Sig_::Arg1, Size>::Container,
   3790 	typename ContainerOf<typename Sig_::Arg2, Size>::Container,
   3791 	typename ContainerOf<typename Sig_::Arg3, Size>::Container> >
   3792 {
   3793 public:
   3794 	typedef typename GenFunc::IArgs		IArgs;
   3795 	typedef typename GenFunc::IRet		IRet;
   3796 
   3797 			GenFunc					(const Func<Sig_>&	scalarFunc) : m_func (scalarFunc) {}
   3798 
   3799 	string	getName					(void) const
   3800 	{
   3801 		return m_func.getName();
   3802 	}
   3803 
   3804 	int		getOutParamIndex		(void) const
   3805 	{
   3806 		return m_func.getOutParamIndex();
   3807 	}
   3808 
   3809 	string	getRequiredExtension	(void) const
   3810 	{
   3811 		return m_func.getRequiredExtension();
   3812 	}
   3813 
   3814 protected:
   3815 	void	doPrint					(ostream& os, const BaseArgExprs& args) const
   3816 	{
   3817 		m_func.print(os, args);
   3818 	}
   3819 
   3820 	IRet	doApply					(const EvalContext& ctx, const IArgs& iargs) const
   3821 	{
   3822 		IRet ret;
   3823 
   3824 		for (int ndx = 0; ndx < Size; ++ndx)
   3825 		{
   3826 			ret[ndx] =
   3827 				m_func.apply(ctx, iargs.a[ndx], iargs.b[ndx], iargs.c[ndx], iargs.d[ndx]);
   3828 		}
   3829 
   3830 		return ret;
   3831 	}
   3832 
   3833 	void	doGetUsedFuncs			(FuncSet& dst) const
   3834 	{
   3835 		m_func.getUsedFuncs(dst);
   3836 	}
   3837 
   3838 	const Func<Sig_>&	m_func;
   3839 };
   3840 
   3841 template <typename F, int Size>
   3842 class VectorizedFunc : public GenFunc<typename F::Sig, Size>
   3843 {
   3844 public:
   3845 	VectorizedFunc	(void) : GenFunc<typename F::Sig, Size>(instance<F>()) {}
   3846 };
   3847 
   3848 
   3849 
   3850 template <typename Sig_, int Size>
   3851 class FixedGenFunc : public PrimitiveFunc <Signature<
   3852 	typename ContainerOf<typename Sig_::Ret, Size>::Container,
   3853 	typename ContainerOf<typename Sig_::Arg0, Size>::Container,
   3854 	typename Sig_::Arg1,
   3855 	typename ContainerOf<typename Sig_::Arg2, Size>::Container,
   3856 	typename ContainerOf<typename Sig_::Arg3, Size>::Container> >
   3857 {
   3858 public:
   3859 	typedef typename FixedGenFunc::IArgs		IArgs;
   3860 	typedef typename FixedGenFunc::IRet			IRet;
   3861 
   3862 	string						getName			(void) const
   3863 	{
   3864 		return this->doGetScalarFunc().getName();
   3865 	}
   3866 
   3867 protected:
   3868 	void						doPrint			(ostream& os, const BaseArgExprs& args) const
   3869 	{
   3870 		this->doGetScalarFunc().print(os, args);
   3871 	}
   3872 
   3873 	IRet						doApply			(const EvalContext& ctx,
   3874 												 const IArgs&		iargs) const
   3875 	{
   3876 		IRet				ret;
   3877 		const Func<Sig_>&	func	= this->doGetScalarFunc();
   3878 
   3879 		for (int ndx = 0; ndx < Size; ++ndx)
   3880 			ret[ndx] = func.apply(ctx, iargs.a[ndx], iargs.b, iargs.c[ndx], iargs.d[ndx]);
   3881 
   3882 		return ret;
   3883 	}
   3884 
   3885 	virtual const Func<Sig_>&	doGetScalarFunc	(void) const = 0;
   3886 };
   3887 
   3888 template <typename F, int Size>
   3889 class FixedVecFunc : public FixedGenFunc<typename F::Sig, Size>
   3890 {
   3891 protected:
   3892 	const Func<typename F::Sig>& doGetScalarFunc	(void) const { return instance<F>(); }
   3893 };
   3894 
   3895 template<typename Sig>
   3896 struct GenFuncs
   3897 {
   3898 	GenFuncs (const Func<Sig>&			func_,
   3899 			  const GenFunc<Sig, 2>&	func2_,
   3900 			  const GenFunc<Sig, 3>&	func3_,
   3901 			  const GenFunc<Sig, 4>&	func4_)
   3902 		: func	(func_)
   3903 		, func2	(func2_)
   3904 		, func3	(func3_)
   3905 		, func4	(func4_)
   3906 	{}
   3907 
   3908 	const Func<Sig>&		func;
   3909 	const GenFunc<Sig, 2>&	func2;
   3910 	const GenFunc<Sig, 3>&	func3;
   3911 	const GenFunc<Sig, 4>&	func4;
   3912 };
   3913 
   3914 template<typename F>
   3915 GenFuncs<typename F::Sig> makeVectorizedFuncs (void)
   3916 {
   3917 	return GenFuncs<typename F::Sig>(instance<F>(),
   3918 									 instance<VectorizedFunc<F, 2> >(),
   3919 									 instance<VectorizedFunc<F, 3> >(),
   3920 									 instance<VectorizedFunc<F, 4> >());
   3921 }
   3922 
   3923 template<int Size>
   3924 ExprP<Vector<float, Size> > operator*(const ExprP<Vector<float, Size> >& arg0,
   3925 									  const ExprP<Vector<float, Size> >& arg1)
   3926 {
   3927 	return app<VectorizedFunc<Mul, Size> >(arg0, arg1);
   3928 }
   3929 
   3930 template<int Size>
   3931 ExprP<Vector<float, Size> > operator*(const ExprP<Vector<float, Size> >&	arg0,
   3932 									  const ExprP<float>&					arg1)
   3933 {
   3934 	return app<FixedVecFunc<Mul, Size> >(arg0, arg1);
   3935 }
   3936 
   3937 template<int Size>
   3938 ExprP<Vector<float, Size> > operator/(const ExprP<Vector<float, Size> >&	arg0,
   3939 									  const ExprP<float>&					arg1)
   3940 {
   3941 	return app<FixedVecFunc<Div, Size> >(arg0, arg1);
   3942 }
   3943 
   3944 template<int Size>
   3945 ExprP<Vector<float, Size> > operator-(const ExprP<Vector<float, Size> >& arg0)
   3946 {
   3947 	return app<VectorizedFunc<Negate, Size> >(arg0);
   3948 }
   3949 
   3950 template<int Size>
   3951 ExprP<Vector<float, Size> > operator-(const ExprP<Vector<float, Size> >& arg0,
   3952 									  const ExprP<Vector<float, Size> >& arg1)
   3953 {
   3954 	return app<VectorizedFunc<Sub, Size> >(arg0, arg1);
   3955 }
   3956 
   3957 template<int LeftRows, int Middle, int RightCols>
   3958 ExprP<Matrix<float, LeftRows, RightCols> >
   3959 operator* (const ExprP<Matrix<float, LeftRows, Middle> >&	left,
   3960 		   const ExprP<Matrix<float, Middle, RightCols> >&	right)
   3961 {
   3962 	return app<MatMul<LeftRows, Middle, RightCols> >(left, right);
   3963 }
   3964 
   3965 template<int Rows, int Cols>
   3966 ExprP<Vector<float, Rows> > operator* (const ExprP<Vector<float, Cols> >&		left,
   3967 									   const ExprP<Matrix<float, Rows, Cols> >&	right)
   3968 {
   3969 	return app<VecMatMul<Rows, Cols> >(left, right);
   3970 }
   3971 
   3972 template<int Rows, int Cols>
   3973 ExprP<Vector<float, Cols> > operator* (const ExprP<Matrix<float, Rows, Cols> >&	left,
   3974 									   const ExprP<Vector<float, Rows> >&		right)
   3975 {
   3976 	return app<MatVecMul<Rows, Cols> >(left, right);
   3977 }
   3978 
   3979 template<int Rows, int Cols>
   3980 ExprP<Matrix<float, Rows, Cols> > operator* (const ExprP<Matrix<float, Rows, Cols> >&	left,
   3981 											 const ExprP<float>&						right)
   3982 {
   3983 	return app<ScalarMatFunc<Mul, Rows, Cols> >(left, right);
   3984 }
   3985 
   3986 template<int Rows, int Cols>
   3987 ExprP<Matrix<float, Rows, Cols> > operator+ (const ExprP<Matrix<float, Rows, Cols> >&	left,
   3988 											 const ExprP<Matrix<float, Rows, Cols> >&	right)
   3989 {
   3990 	return app<CompMatFunc<Add, Rows, Cols> >(left, right);
   3991 }
   3992 
   3993 template<int Rows, int Cols>
   3994 ExprP<Matrix<float, Rows, Cols> > operator- (const ExprP<Matrix<float, Rows, Cols> >&	mat)
   3995 {
   3996 	return app<MatNeg<Rows, Cols> >(mat);
   3997 }
   3998 
   3999 template <typename T>
   4000 class Sampling
   4001 {
   4002 public:
   4003 	virtual void	genFixeds	(const FloatFormat&, vector<T>&)			const {}
   4004 	virtual T		genRandom	(const FloatFormat&, Precision, Random&)	const { return T(); }
   4005 	virtual double	getWeight	(void)										const { return 0.0; }
   4006 };
   4007 
   4008 template <>
   4009 class DefaultSampling<Void> : public Sampling<Void>
   4010 {
   4011 public:
   4012 	void	genFixeds	(const FloatFormat&, vector<Void>& dst) const { dst.push_back(Void()); }
   4013 };
   4014 
   4015 template <>
   4016 class DefaultSampling<bool> : public Sampling<bool>
   4017 {
   4018 public:
   4019 	void	genFixeds	(const FloatFormat&, vector<bool>& dst) const
   4020 	{
   4021 		dst.push_back(true);
   4022 		dst.push_back(false);
   4023 	}
   4024 };
   4025 
   4026 template <>
   4027 class DefaultSampling<int> : public Sampling<int>
   4028 {
   4029 public:
   4030 	int		genRandom	(const FloatFormat&, Precision prec, Random& rnd) const
   4031 	{
   4032 		const int	exp		= rnd.getInt(0, getNumBits(prec)-2);
   4033 		const int	sign	= rnd.getBool() ? -1 : 1;
   4034 
   4035 		return sign * rnd.getInt(0, 1L << exp);
   4036 	}
   4037 
   4038 	void	genFixeds	(const FloatFormat&, vector<int>& dst) const
   4039 	{
   4040 		dst.push_back(0);
   4041 		dst.push_back(-1);
   4042 		dst.push_back(1);
   4043 	}
   4044 	double	getWeight	(void) const { return 1.0; }
   4045 
   4046 private:
   4047 	static inline int getNumBits (Precision prec)
   4048 	{
   4049 		switch (prec)
   4050 		{
   4051 			case glu::PRECISION_LOWP:		return 8;
   4052 			case glu::PRECISION_MEDIUMP:	return 16;
   4053 			case glu::PRECISION_HIGHP:		return 32;
   4054 			default:
   4055 				DE_ASSERT(false);
   4056 				return 0;
   4057 		}
   4058 	}
   4059 };
   4060 
   4061 template <>
   4062 class DefaultSampling<float> : public Sampling<float>
   4063 {
   4064 public:
   4065 	float	genRandom	(const FloatFormat& format, Precision prec, Random& rnd) const;
   4066 	void	genFixeds	(const FloatFormat& format, vector<float>& dst) const;
   4067 	double	getWeight	(void) const { return 1.0; }
   4068 };
   4069 
   4070 //! Generate a random float from a reasonable general-purpose distribution.
   4071 float DefaultSampling<float>::genRandom (const FloatFormat& format,
   4072 										 Precision,
   4073 										 Random&			rnd) const
   4074 {
   4075 	const int		minExp			= format.getMinExp();
   4076 	const int		maxExp			= format.getMaxExp();
   4077 	const bool		haveSubnormal	= format.hasSubnormal() != tcu::NO;
   4078 
   4079 	// Choose exponent so that the cumulative distribution is cubic.
   4080 	// This makes the probability distribution quadratic, with the peak centered on zero.
   4081 	const double	minRoot			= deCbrt(minExp - 0.5 - (haveSubnormal ? 1.0 : 0.0));
   4082 	const double	maxRoot			= deCbrt(maxExp + 0.5);
   4083 	const int		fractionBits	= format.getFractionBits();
   4084 	const int		exp				= int(deRoundEven(dePow(rnd.getDouble(minRoot, maxRoot),
   4085 															3.0)));
   4086 	float			base			= 0.0f; // integral power of two
   4087 	float			quantum			= 0.0f; // smallest representable difference in the binade
   4088 	float			significand		= 0.0f; // Significand.
   4089 
   4090 	DE_ASSERT(fractionBits < std::numeric_limits<float>::digits);
   4091 
   4092 	// Generate some occasional special numbers
   4093 	switch (rnd.getInt(0, 64))
   4094 	{
   4095 		case 0: 	return 0;
   4096 		case 1:		return TCU_INFINITY;
   4097 		case 2:		return -TCU_INFINITY;
   4098 		case 3:		return TCU_NAN;
   4099 		default:	break;
   4100 	}
   4101 
   4102 	if (exp >= minExp)
   4103 	{
   4104 		// Normal number
   4105 		base = deFloatLdExp(1.0f, exp);
   4106 		quantum = deFloatLdExp(1.0f, exp - fractionBits);
   4107 	}
   4108 	else
   4109 	{
   4110 		// Subnormal
   4111 		base = 0.0f;
   4112 		quantum = deFloatLdExp(1.0f, minExp - fractionBits);
   4113 	}
   4114 
   4115 	switch (rnd.getInt(0, 16))
   4116 	{
   4117 		case 0: // The highest number in this binade, significand is all bits one.
   4118 			significand = base - quantum;
   4119 			break;
   4120 		case 1: // Significand is one.
   4121 			significand = quantum;
   4122 			break;
   4123 		case 2: // Significand is zero.
   4124 			significand = 0.0;
   4125 			break;
   4126 		default: // Random (evenly distributed) significand.
   4127 		{
   4128 			deUint64 intFraction = rnd.getUint64() & ((1 << fractionBits) - 1);
   4129 			significand = float(intFraction) * quantum;
   4130 		}
   4131 	}
   4132 
   4133 	// Produce positive numbers more often than negative.
   4134 	return (rnd.getInt(0,3) == 0 ? -1.0f : 1.0f) * (base + significand);
   4135 }
   4136 
   4137 //! Generate a standard set of floats that should always be tested.
   4138 void DefaultSampling<float>::genFixeds (const FloatFormat& format, vector<float>& dst) const
   4139 {
   4140 	const int			minExp			= format.getMinExp();
   4141 	const int			maxExp			= format.getMaxExp();
   4142 	const int			fractionBits	= format.getFractionBits();
   4143 	const float			minQuantum		= deFloatLdExp(1.0f, minExp - fractionBits);
   4144 	const float			minNormalized	= deFloatLdExp(1.0f, minExp);
   4145 	const float			maxQuantum		= deFloatLdExp(1.0f, maxExp - fractionBits);
   4146 
   4147 	// NaN
   4148 	dst.push_back(TCU_NAN);
   4149 	// Zero
   4150 	dst.push_back(0.0f);
   4151 
   4152 	for (int sign = -1; sign <= 1; sign += 2)
   4153 	{
   4154 		// Smallest subnormal
   4155 		dst.push_back(sign * minQuantum);
   4156 
   4157 		// Largest subnormal
   4158 		dst.push_back(sign * (minNormalized - minQuantum));
   4159 
   4160 		// Smallest normalized
   4161 		dst.push_back(sign * minNormalized);
   4162 
   4163 		// Next smallest normalized
   4164 		dst.push_back(sign * (minNormalized + minQuantum));
   4165 
   4166 		dst.push_back(sign * 0.5f);
   4167 		dst.push_back(sign * 1.0f);
   4168 		dst.push_back(sign * 2.0f);
   4169 
   4170 		// Largest number
   4171 		dst.push_back(sign * (deFloatLdExp(1.0f, maxExp) +
   4172 							  (deFloatLdExp(1.0f, maxExp) - maxQuantum)));
   4173 
   4174 		dst.push_back(sign * TCU_INFINITY);
   4175 	}
   4176 }
   4177 
   4178 template <typename T, int Size>
   4179 class DefaultSampling<Vector<T, Size> > : public Sampling<Vector<T, Size> >
   4180 {
   4181 public:
   4182 	typedef Vector<T, Size>		Value;
   4183 
   4184 	Value	genRandom	(const FloatFormat& fmt, Precision prec, Random& rnd) const
   4185 	{
   4186 		Value ret;
   4187 
   4188 		for (int ndx = 0; ndx < Size; ++ndx)
   4189 			ret[ndx] = instance<DefaultSampling<T> >().genRandom(fmt, prec, rnd);
   4190 
   4191 		return ret;
   4192 	}
   4193 
   4194 	void	genFixeds	(const FloatFormat& fmt, vector<Value>& dst) const
   4195 	{
   4196 		vector<T> scalars;
   4197 
   4198 		instance<DefaultSampling<T> >().genFixeds(fmt, scalars);
   4199 
   4200 		for (size_t scalarNdx = 0; scalarNdx < scalars.size(); ++scalarNdx)
   4201 			dst.push_back(Value(scalars[scalarNdx]));
   4202 	}
   4203 
   4204 	double	getWeight	(void) const
   4205 	{
   4206 		return dePow(instance<DefaultSampling<T> >().getWeight(), Size);
   4207 	}
   4208 };
   4209 
   4210 template <typename T, int Rows, int Columns>
   4211 class DefaultSampling<Matrix<T, Rows, Columns> > : public Sampling<Matrix<T, Rows, Columns> >
   4212 {
   4213 public:
   4214 	typedef Matrix<T, Rows, Columns>		Value;
   4215 
   4216 	Value	genRandom	(const FloatFormat& fmt, Precision prec, Random& rnd) const
   4217 	{
   4218 		Value ret;
   4219 
   4220 		for (int rowNdx = 0; rowNdx < Rows; ++rowNdx)
   4221 			for (int colNdx = 0; colNdx < Columns; ++colNdx)
   4222 				ret(rowNdx, colNdx) = instance<DefaultSampling<T> >().genRandom(fmt, prec, rnd);
   4223 
   4224 		return ret;
   4225 	}
   4226 
   4227 	void	genFixeds	(const FloatFormat& fmt, vector<Value>& dst) const
   4228 	{
   4229 		vector<T> scalars;
   4230 
   4231 		instance<DefaultSampling<T> >().genFixeds(fmt, scalars);
   4232 
   4233 		for (size_t scalarNdx = 0; scalarNdx < scalars.size(); ++scalarNdx)
   4234 			dst.push_back(Value(scalars[scalarNdx]));
   4235 
   4236 		if (Columns == Rows)
   4237 		{
   4238 			Value	mat	(0.0);
   4239 			T		x	= T(1.0f);
   4240 			mat[0][0] = x;
   4241 			for (int ndx = 0; ndx < Columns; ++ndx)
   4242 			{
   4243 				mat[Columns-1-ndx][ndx] = x;
   4244 				x *= T(2.0f);
   4245 			}
   4246 			dst.push_back(mat);
   4247 		}
   4248 	}
   4249 
   4250 	double	getWeight	(void) const
   4251 	{
   4252 		return dePow(instance<DefaultSampling<T> >().getWeight(), Rows * Columns);
   4253 	}
   4254 };
   4255 
   4256 struct Context
   4257 {
   4258 	Context		(const string&		name_,
   4259 				 TestContext&		testContext_,
   4260 				 RenderContext&		renderContext_,
   4261 				 const FloatFormat&	floatFormat_,
   4262 				 const FloatFormat&	highpFormat_,
   4263 				 Precision			precision_,
   4264 				 ShaderType			shaderType_,
   4265 				 size_t				numRandoms_)
   4266 		: name				(name_)
   4267 		, testContext		(testContext_)
   4268 		, renderContext		(renderContext_)
   4269 		, floatFormat		(floatFormat_)
   4270 		, highpFormat		(highpFormat_)
   4271 		, precision			(precision_)
   4272 		, shaderType		(shaderType_)
   4273 		, numRandoms		(numRandoms_) {}
   4274 
   4275 	string				name;
   4276 	TestContext&		testContext;
   4277 	RenderContext&		renderContext;
   4278 	FloatFormat			floatFormat;
   4279 	FloatFormat			highpFormat;
   4280 	Precision			precision;
   4281 	ShaderType			shaderType;
   4282 	size_t				numRandoms;
   4283 };
   4284 
   4285 template<typename In0_ = Void, typename In1_ = Void, typename In2_ = Void, typename In3_ = Void>
   4286 struct InTypes
   4287 {
   4288 	typedef	In0_	In0;
   4289 	typedef	In1_	In1;
   4290 	typedef	In2_	In2;
   4291 	typedef	In3_	In3;
   4292 };
   4293 
   4294 template <typename In>
   4295 int numInputs (void)
   4296 {
   4297 	return (!isTypeValid<typename In::In0>() ? 0 :
   4298 			!isTypeValid<typename In::In1>() ? 1 :
   4299 			!isTypeValid<typename In::In2>() ? 2 :
   4300 			!isTypeValid<typename In::In3>() ? 3 :
   4301 			4);
   4302 }
   4303 
   4304 template<typename Out0_, typename Out1_ = Void>
   4305 struct OutTypes
   4306 {
   4307 	typedef	Out0_	Out0;
   4308 	typedef	Out1_	Out1;
   4309 };
   4310 
   4311 template <typename Out>
   4312 int numOutputs (void)
   4313 {
   4314 	return (!isTypeValid<typename Out::Out0>() ? 0 :
   4315 			!isTypeValid<typename Out::Out1>() ? 1 :
   4316 			2);
   4317 }
   4318 
   4319 template<typename In>
   4320 struct Inputs
   4321 {
   4322 	vector<typename In::In0>	in0;
   4323 	vector<typename In::In1>	in1;
   4324 	vector<typename In::In2>	in2;
   4325 	vector<typename In::In3>	in3;
   4326 };
   4327 
   4328 template<typename Out>
   4329 struct Outputs
   4330 {
   4331 	Outputs	(size_t size) : out0(size), out1(size) {}
   4332 
   4333 	vector<typename Out::Out0>	out0;
   4334 	vector<typename Out::Out1>	out1;
   4335 };
   4336 
   4337 template<typename In, typename Out>
   4338 struct Variables
   4339 {
   4340 	VariableP<typename In::In0>		in0;
   4341 	VariableP<typename In::In1>		in1;
   4342 	VariableP<typename In::In2>		in2;
   4343 	VariableP<typename In::In3>		in3;
   4344 	VariableP<typename Out::Out0>	out0;
   4345 	VariableP<typename Out::Out1>	out1;
   4346 };
   4347 
   4348 template<typename In>
   4349 struct Samplings
   4350 {
   4351 	Samplings	(const Sampling<typename In::In0>&	in0_,
   4352 				 const Sampling<typename In::In1>&	in1_,
   4353 				 const Sampling<typename In::In2>&	in2_,
   4354 				 const Sampling<typename In::In3>&	in3_)
   4355 		: in0 (in0_), in1 (in1_), in2 (in2_), in3 (in3_) {}
   4356 
   4357 	const Sampling<typename In::In0>&	in0;
   4358 	const Sampling<typename In::In1>&	in1;
   4359 	const Sampling<typename In::In2>&	in2;
   4360 	const Sampling<typename In::In3>&	in3;
   4361 };
   4362 
   4363 template<typename In>
   4364 struct DefaultSamplings : Samplings<In>
   4365 {
   4366 	DefaultSamplings	(void)
   4367 		: Samplings<In>(instance<DefaultSampling<typename In::In0> >(),
   4368 						instance<DefaultSampling<typename In::In1> >(),
   4369 						instance<DefaultSampling<typename In::In2> >(),
   4370 						instance<DefaultSampling<typename In::In3> >()) {}
   4371 };
   4372 
   4373 class PrecisionCase : public TestCase
   4374 {
   4375 public:
   4376 	IterateResult		iterate			(void);
   4377 
   4378 protected:
   4379 						PrecisionCase	(const Context&		context,
   4380 										 const string&		name,
   4381 										 const string&		extension	= "")
   4382 							: TestCase		(context.testContext,
   4383 											 name.c_str(),
   4384 											 name.c_str())
   4385 							, m_ctx			(context)
   4386 							, m_status		()
   4387 							, m_rnd			(0xdeadbeefu +
   4388 											 context.testContext.getCommandLine().getBaseSeed())
   4389 							, m_extension	(extension)
   4390 	{
   4391 	}
   4392 
   4393 	RenderContext&		getRenderContext(void) const 			{ return m_ctx.renderContext; }
   4394 
   4395 	const FloatFormat&	getFormat		(void) const 			{ return m_ctx.floatFormat; }
   4396 
   4397 	TestLog&			log				(void) const 			{ return m_testCtx.getLog(); }
   4398 
   4399 	virtual void		runTest			(void) = 0;
   4400 
   4401 	template <typename In, typename Out>
   4402 	void				testStatement	(const Variables<In, Out>&	variables,
   4403 										 const Inputs<In>&			inputs,
   4404 										 const Statement&			stmt);
   4405 
   4406 	template<typename T>
   4407 	Symbol				makeSymbol		(const Variable<T>& variable)
   4408 	{
   4409 		return Symbol(variable.getName(), getVarTypeOf<T>(m_ctx.precision));
   4410 	}
   4411 
   4412 	Context				m_ctx;
   4413 	ResultCollector		m_status;
   4414 	Random				m_rnd;
   4415 	const string		m_extension;
   4416 };
   4417 
   4418 IterateResult PrecisionCase::iterate (void)
   4419 {
   4420 	runTest();
   4421 	m_status.setTestContextResult(m_testCtx);
   4422 	return STOP;
   4423 }
   4424 
   4425 template <typename In, typename Out>
   4426 void PrecisionCase::testStatement (const Variables<In, Out>&	variables,
   4427 								   const Inputs<In>&			inputs,
   4428 								   const Statement&				stmt)
   4429 {
   4430 	using namespace ShaderExecUtil;
   4431 
   4432 	typedef typename 	In::In0		In0;
   4433 	typedef typename 	In::In1		In1;
   4434 	typedef typename 	In::In2		In2;
   4435 	typedef typename 	In::In3		In3;
   4436 	typedef typename 	Out::Out0	Out0;
   4437 	typedef typename 	Out::Out1	Out1;
   4438 
   4439 	const FloatFormat&	fmt			= getFormat();
   4440 	const int			inCount		= numInputs<In>();
   4441 	const int			outCount	= numOutputs<Out>();
   4442 	const size_t		numValues	= (inCount > 0) ? inputs.in0.size() : 1;
   4443 	Outputs<Out>		outputs		(numValues);
   4444 	ShaderSpec			spec;
   4445 	const FloatFormat	highpFmt	= m_ctx.highpFormat;
   4446 	const int			maxMsgs		= 100;
   4447 	int					numErrors	= 0;
   4448 	Environment			env; 		// Hoisted out of the inner loop for optimization.
   4449 
   4450 	switch (inCount)
   4451 	{
   4452 		case 4: DE_ASSERT(inputs.in3.size() == numValues);
   4453 		case 3: DE_ASSERT(inputs.in2.size() == numValues);
   4454 		case 2: DE_ASSERT(inputs.in1.size() == numValues);
   4455 		case 1: DE_ASSERT(inputs.in0.size() == numValues);
   4456 		default: break;
   4457 	}
   4458 
   4459 	// Print out the statement and its definitions
   4460 	log() << TestLog::Message << "Statement: " << stmt << TestLog::EndMessage;
   4461 	{
   4462 		ostringstream	oss;
   4463 		FuncSet			funcs;
   4464 
   4465 		stmt.getUsedFuncs(funcs);
   4466 		for (FuncSet::const_iterator it = funcs.begin(); it != funcs.end(); ++it)
   4467 		{
   4468 			(*it)->printDefinition(oss);
   4469 		}
   4470 		if (!funcs.empty())
   4471 			log() << TestLog::Message << "Reference definitions:\n" << oss.str()
   4472 				  << TestLog::EndMessage;
   4473 	}
   4474 
   4475 	// Initialize ShaderSpec from precision, variables and statement.
   4476 	{
   4477 		ostringstream os;
   4478 		os << "precision " << glu::getPrecisionName(m_ctx.precision) << " float;\n";
   4479 		spec.globalDeclarations = os.str();
   4480 	}
   4481 
   4482 	spec.version = getContextTypeGLSLVersion(getRenderContext().getType());
   4483 
   4484 	if (!m_extension.empty())
   4485 		spec.globalDeclarations = "#extension " + m_extension + " : require\n";
   4486 
   4487 	spec.inputs.resize(inCount);
   4488 
   4489 	switch (inCount)
   4490 	{
   4491 		case 4: spec.inputs[3] = makeSymbol(*variables.in3);
   4492 		case 3:	spec.inputs[2] = makeSymbol(*variables.in2);
   4493 		case 2:	spec.inputs[1] = makeSymbol(*variables.in1);
   4494 		case 1:	spec.inputs[0] = makeSymbol(*variables.in0);
   4495 		default: break;
   4496 	}
   4497 
   4498 	spec.outputs.resize(outCount);
   4499 
   4500 	switch (outCount)
   4501 	{
   4502 		case 2:	spec.outputs[1] = makeSymbol(*variables.out1);
   4503 		case 1:	spec.outputs[0] = makeSymbol(*variables.out0);
   4504 		default: break;
   4505 	}
   4506 
   4507 	spec.source = de::toString(stmt);
   4508 
   4509 	// Run the shader with inputs.
   4510 	{
   4511 		UniquePtr<ShaderExecutor>	executor		(createExecutor(getRenderContext(),
   4512 																	m_ctx.shaderType,
   4513 																	spec));
   4514 		const void*					inputArr[]		=
   4515 		{
   4516 			&inputs.in0.front(), &inputs.in1.front(), &inputs.in2.front(), &inputs.in3.front(),
   4517 		};
   4518 		void*						outputArr[]		=
   4519 		{
   4520 			&outputs.out0.front(), &outputs.out1.front(),
   4521 		};
   4522 
   4523 		executor->log(log());
   4524 		if (!executor->isOk())
   4525 			TCU_FAIL("Shader compilation failed");
   4526 
   4527 		executor->useProgram();
   4528 		executor->execute(int(numValues), inputArr, outputArr);
   4529 	}
   4530 
   4531 	// Initialize environment with dummy values so we don't need to bind in inner loop.
   4532 	{
   4533 		const typename Traits<In0>::IVal		in0;
   4534 		const typename Traits<In1>::IVal		in1;
   4535 		const typename Traits<In2>::IVal		in2;
   4536 		const typename Traits<In3>::IVal		in3;
   4537 		const typename Traits<Out0>::IVal		reference0;
   4538 		const typename Traits<Out1>::IVal		reference1;
   4539 
   4540 		env.bind(*variables.in0, in0);
   4541 		env.bind(*variables.in1, in1);
   4542 		env.bind(*variables.in2, in2);
   4543 		env.bind(*variables.in3, in3);
   4544 		env.bind(*variables.out0, reference0);
   4545 		env.bind(*variables.out1, reference1);
   4546 	}
   4547 
   4548 	// For each input tuple, compute output reference interval and compare
   4549 	// shader output to the reference.
   4550 	for (size_t valueNdx = 0; valueNdx < numValues; valueNdx++)
   4551 	{
   4552 		bool						result		= true;
   4553 		typename Traits<Out0>::IVal	reference0;
   4554 		typename Traits<Out1>::IVal	reference1;
   4555 
   4556 		env.lookup(*variables.in0) = convert<In0>(fmt, round(fmt, inputs.in0[valueNdx]));
   4557 		env.lookup(*variables.in1) = convert<In1>(fmt, round(fmt, inputs.in1[valueNdx]));
   4558 		env.lookup(*variables.in2) = convert<In2>(fmt, round(fmt, inputs.in2[valueNdx]));
   4559 		env.lookup(*variables.in3) = convert<In3>(fmt, round(fmt, inputs.in3[valueNdx]));
   4560 
   4561 		{
   4562 			EvalContext	ctx (fmt, m_ctx.precision, env);
   4563 			stmt.execute(ctx);
   4564 		}
   4565 
   4566 		switch (outCount)
   4567 		{
   4568 			case 2:
   4569 				reference1 = convert<Out1>(highpFmt, env.lookup(*variables.out1));
   4570 				if (!m_status.check(contains(reference1, outputs.out1[valueNdx]),
   4571 									"Shader output 1 is outside acceptable range"))
   4572 					result = false;
   4573 			case 1:
   4574 				reference0 = convert<Out0>(highpFmt, env.lookup(*variables.out0));
   4575 				if (!m_status.check(contains(reference0, outputs.out0[valueNdx]),
   4576 									"Shader output 0 is outside acceptable range"))
   4577 					result = false;
   4578 			default: break;
   4579 		}
   4580 
   4581 		if (!result)
   4582 			++numErrors;
   4583 
   4584 		if ((!result && numErrors <= maxMsgs) || GLS_LOG_ALL_RESULTS)
   4585 		{
   4586 			MessageBuilder	builder	= log().message();
   4587 
   4588 			builder << (result ? "Passed" : "Failed") << " sample:\n";
   4589 
   4590 			if (inCount > 0)
   4591 			{
   4592 				builder << "\t" << variables.in0->getName() << " = "
   4593 						<< valueToString(highpFmt, inputs.in0[valueNdx]) << "\n";
   4594 			}
   4595 
   4596 			if (inCount > 1)
   4597 			{
   4598 				builder << "\t" << variables.in1->getName() << " = "
   4599 						<< valueToString(highpFmt, inputs.in1[valueNdx]) << "\n";
   4600 			}
   4601 
   4602 			if (inCount > 2)
   4603 			{
   4604 				builder << "\t" << variables.in2->getName() << " = "
   4605 						<< valueToString(highpFmt, inputs.in2[valueNdx]) << "\n";
   4606 			}
   4607 
   4608 			if (inCount > 3)
   4609 			{
   4610 				builder << "\t" << variables.in3->getName() << " = "
   4611 						<< valueToString(highpFmt, inputs.in3[valueNdx]) << "\n";
   4612 			}
   4613 
   4614 			if (outCount > 0)
   4615 			{
   4616 				builder << "\t" << variables.out0->getName() << " = "
   4617 						<< valueToString(highpFmt, outputs.out0[valueNdx]) << "\n"
   4618 						<< "\tExpected range: "
   4619 						<< intervalToString<typename Out::Out0>(highpFmt, reference0) << "\n";
   4620 			}
   4621 
   4622 			if (outCount > 1)
   4623 			{
   4624 				builder << "\t" << variables.out1->getName() << " = "
   4625 						<< valueToString(highpFmt, outputs.out1[valueNdx]) << "\n"
   4626 						<< "\tExpected range: "
   4627 						<< intervalToString<typename Out::Out1>(highpFmt, reference1) << "\n";
   4628 			}
   4629 
   4630 			builder << TestLog::EndMessage;
   4631 		}
   4632 	}
   4633 
   4634 	if (numErrors > maxMsgs)
   4635 	{
   4636 		log() << TestLog::Message << "(Skipped " << (numErrors - maxMsgs) << " messages.)"
   4637 			  << TestLog::EndMessage;
   4638 	}
   4639 
   4640 	if (numErrors == 0)
   4641 	{
   4642 		log() << TestLog::Message << "All " << numValues << " inputs passed."
   4643 			  << TestLog::EndMessage;
   4644 	}
   4645 	else
   4646 	{
   4647 		log() << TestLog::Message << numErrors << "/" << numValues << " inputs failed."
   4648 			  << TestLog::EndMessage;
   4649 	}
   4650 }
   4651 
   4652 
   4653 
   4654 template <typename T>
   4655 struct InputLess
   4656 {
   4657 	bool operator() (const T& val1, const T& val2) const
   4658 	{
   4659 		return val1 < val2;
   4660 	}
   4661 };
   4662 
   4663 template <typename T>
   4664 bool inputLess (const T& val1, const T& val2)
   4665 {
   4666 	return InputLess<T>()(val1, val2);
   4667 }
   4668 
   4669 template <>
   4670 struct InputLess<float>
   4671 {
   4672 	bool operator() (const float& val1, const float& val2) const
   4673 	{
   4674 		if (deIsNaN(val1))
   4675 			return false;
   4676 		if (deIsNaN(val2))
   4677 			return true;
   4678 		return val1 < val2;
   4679 	}
   4680 };
   4681 
   4682 template <typename T, int Size>
   4683 struct InputLess<Vector<T, Size> >
   4684 {
   4685 	bool operator() (const Vector<T, Size>& vec1, const Vector<T, Size>& vec2) const
   4686 	{
   4687 		for (int ndx = 0; ndx < Size; ++ndx)
   4688 		{
   4689 			if (inputLess(vec1[ndx], vec2[ndx]))
   4690 				return true;
   4691 			if (inputLess(vec2[ndx], vec1[ndx]))
   4692 				return false;
   4693 		}
   4694 
   4695 		return false;
   4696 	}
   4697 };
   4698 
   4699 template <typename T, int Rows, int Cols>
   4700 struct InputLess<Matrix<T, Rows, Cols> >
   4701 {
   4702 	bool operator() (const Matrix<T, Rows, Cols>& mat1,
   4703 					 const Matrix<T, Rows, Cols>& mat2) const
   4704 	{
   4705 		for (int col = 0; col < Cols; ++col)
   4706 		{
   4707 			if (inputLess(mat1[col], mat2[col]))
   4708 				return true;
   4709 			if (inputLess(mat2[col], mat1[col]))
   4710 				return false;
   4711 		}
   4712 
   4713 		return false;
   4714 	}
   4715 };
   4716 
   4717 template <typename In>
   4718 struct InTuple :
   4719 	public Tuple4<typename In::In0, typename In::In1, typename In::In2, typename In::In3>
   4720 {
   4721 	InTuple	(const typename In::In0& in0,
   4722 			 const typename In::In1& in1,
   4723 			 const typename In::In2& in2,
   4724 			 const typename In::In3& in3)
   4725 		: Tuple4<typename In::In0, typename In::In1, typename In::In2, typename In::In3>
   4726 		  (in0, in1, in2, in3) {}
   4727 };
   4728 
   4729 template <typename In>
   4730 struct InputLess<InTuple<In> >
   4731 {
   4732 	bool operator() (const InTuple<In>& in1, const InTuple<In>& in2) const
   4733 	{
   4734 		if (inputLess(in1.a, in2.a))
   4735 			return true;
   4736 		if (inputLess(in2.a, in1.a))
   4737 			return false;
   4738 		if (inputLess(in1.b, in2.b))
   4739 			return true;
   4740 		if (inputLess(in2.b, in1.b))
   4741 			return false;
   4742 		if (inputLess(in1.c, in2.c))
   4743 			return true;
   4744 		if (inputLess(in2.c, in1.c))
   4745 			return false;
   4746 		if (inputLess(in1.d, in2.d))
   4747 			return true;
   4748 		return false;
   4749 	};
   4750 };
   4751 
   4752 template<typename In>
   4753 Inputs<In> generateInputs (const Samplings<In>&	samplings,
   4754 						   const FloatFormat&	floatFormat,
   4755 						   Precision			intPrecision,
   4756 						   size_t				numSamples,
   4757 						   Random&				rnd)
   4758 {
   4759 	Inputs<In>									ret;
   4760 	Inputs<In>									fixedInputs;
   4761 	set<InTuple<In>, InputLess<InTuple<In> > >	seenInputs;
   4762 
   4763 	samplings.in0.genFixeds(floatFormat, fixedInputs.in0);
   4764 	samplings.in1.genFixeds(floatFormat, fixedInputs.in1);
   4765 	samplings.in2.genFixeds(floatFormat, fixedInputs.in2);
   4766 	samplings.in3.genFixeds(floatFormat, fixedInputs.in3);
   4767 
   4768 	for (size_t ndx0 = 0; ndx0 < fixedInputs.in0.size(); ++ndx0)
   4769 	{
   4770 		for (size_t ndx1 = 0; ndx1 < fixedInputs.in1.size(); ++ndx1)
   4771 		{
   4772 			for (size_t ndx2 = 0; ndx2 < fixedInputs.in2.size(); ++ndx2)
   4773 			{
   4774 				for (size_t ndx3 = 0; ndx3 < fixedInputs.in3.size(); ++ndx3)
   4775 				{
   4776 					const InTuple<In>	tuple	(fixedInputs.in0[ndx0],
   4777 												 fixedInputs.in1[ndx1],
   4778 												 fixedInputs.in2[ndx2],
   4779 												 fixedInputs.in3[ndx3]);
   4780 
   4781 					seenInputs.insert(tuple);
   4782 					ret.in0.push_back(tuple.a);
   4783 					ret.in1.push_back(tuple.b);
   4784 					ret.in2.push_back(tuple.c);
   4785 					ret.in3.push_back(tuple.d);
   4786 				}
   4787 			}
   4788 		}
   4789 	}
   4790 
   4791 	for (size_t ndx = 0; ndx < numSamples; ++ndx)
   4792 	{
   4793 		const typename In::In0	in0		= samplings.in0.genRandom(floatFormat, intPrecision, rnd);
   4794 		const typename In::In1	in1		= samplings.in1.genRandom(floatFormat, intPrecision, rnd);
   4795 		const typename In::In2	in2		= samplings.in2.genRandom(floatFormat, intPrecision, rnd);
   4796 		const typename In::In3	in3		= samplings.in3.genRandom(floatFormat, intPrecision, rnd);
   4797 		const InTuple<In>		tuple	(in0, in1, in2, in3);
   4798 
   4799 		if (de::contains(seenInputs, tuple))
   4800 			continue;
   4801 
   4802 		seenInputs.insert(tuple);
   4803 		ret.in0.push_back(in0);
   4804 		ret.in1.push_back(in1);
   4805 		ret.in2.push_back(in2);
   4806 		ret.in3.push_back(in3);
   4807 	}
   4808 
   4809 	return ret;
   4810 }
   4811 
   4812 class FuncCaseBase : public PrecisionCase
   4813 {
   4814 public:
   4815 	IterateResult	iterate			(void);
   4816 
   4817 protected:
   4818 					FuncCaseBase	(const Context&		context,
   4819 									 const string&		name,
   4820 									 const FuncBase&	func)
   4821 						: PrecisionCase	(context, name, func.getRequiredExtension()) {}
   4822 };
   4823 
   4824 IterateResult FuncCaseBase::iterate (void)
   4825 {
   4826 	MovePtr<ContextInfo>	info	(ContextInfo::create(getRenderContext()));
   4827 
   4828 	if (!m_extension.empty() && !info->isExtensionSupported(m_extension.c_str()))
   4829 		throw NotSupportedError("Unsupported extension: " + m_extension);
   4830 
   4831 	runTest();
   4832 
   4833 	m_status.setTestContextResult(m_testCtx);
   4834 	return STOP;
   4835 }
   4836 
   4837 template <typename Sig>
   4838 class FuncCase : public FuncCaseBase
   4839 {
   4840 public:
   4841 	typedef Func<Sig>						CaseFunc;
   4842 	typedef typename Sig::Ret				Ret;
   4843 	typedef typename Sig::Arg0				Arg0;
   4844 	typedef typename Sig::Arg1				Arg1;
   4845 	typedef typename Sig::Arg2				Arg2;
   4846 	typedef typename Sig::Arg3				Arg3;
   4847 	typedef InTypes<Arg0, Arg1, Arg2, Arg3>	In;
   4848 	typedef OutTypes<Ret>					Out;
   4849 
   4850 					FuncCase	(const Context&		context,
   4851 								 const string&		name,
   4852 								 const CaseFunc&	func)
   4853 						: FuncCaseBase	(context, name, func)
   4854 						, m_func		(func) {}
   4855 
   4856 protected:
   4857 	void				runTest		(void);
   4858 
   4859 	virtual const Samplings<In>&	getSamplings	(void)
   4860 	{
   4861 		return instance<DefaultSamplings<In> >();
   4862 	}
   4863 
   4864 private:
   4865 	const CaseFunc&			m_func;
   4866 };
   4867 
   4868 template <typename Sig>
   4869 void FuncCase<Sig>::runTest (void)
   4870 {
   4871 	const Inputs<In>	inputs	(generateInputs(getSamplings(),
   4872 												m_ctx.floatFormat,
   4873 												m_ctx.precision,
   4874 												m_ctx.numRandoms,
   4875 												m_rnd));
   4876 	Variables<In, Out>	variables;
   4877 
   4878 	variables.out0	= variable<Ret>("out0");
   4879 	variables.out1	= variable<Void>("out1");
   4880 	variables.in0	= variable<Arg0>("in0");
   4881 	variables.in1	= variable<Arg1>("in1");
   4882 	variables.in2	= variable<Arg2>("in2");
   4883 	variables.in3	= variable<Arg3>("in3");
   4884 
   4885 	{
   4886 		ExprP<Ret>	expr	= applyVar(m_func,
   4887 									   variables.in0, variables.in1,
   4888 									   variables.in2, variables.in3);
   4889 		StatementP	stmt	= variableAssignment(variables.out0, expr);
   4890 
   4891 		this->testStatement(variables, inputs, *stmt);
   4892 	}
   4893 }
   4894 
   4895 template <typename Sig>
   4896 class InOutFuncCase : public FuncCaseBase
   4897 {
   4898 public:
   4899 	typedef Func<Sig>						CaseFunc;
   4900 	typedef typename Sig::Ret				Ret;
   4901 	typedef typename Sig::Arg0				Arg0;
   4902 	typedef typename Sig::Arg1				Arg1;
   4903 	typedef typename Sig::Arg2				Arg2;
   4904 	typedef typename Sig::Arg3				Arg3;
   4905 	typedef InTypes<Arg0, Arg2, Arg3>		In;
   4906 	typedef OutTypes<Ret, Arg1>				Out;
   4907 
   4908 					InOutFuncCase	(const Context&		context,
   4909 									 const string&		name,
   4910 									 const CaseFunc&	func)
   4911 						: FuncCaseBase	(context, name, func)
   4912 						, m_func		(func) {}
   4913 
   4914 protected:
   4915 	void				runTest		(void);
   4916 
   4917 	virtual const Samplings<In>&	getSamplings	(void)
   4918 	{
   4919 		return instance<DefaultSamplings<In> >();
   4920 	}
   4921 
   4922 private:
   4923 	const CaseFunc&			m_func;
   4924 };
   4925 
   4926 template <typename Sig>
   4927 void InOutFuncCase<Sig>::runTest (void)
   4928 {
   4929 	const Inputs<In>	inputs	(generateInputs(getSamplings(),
   4930 												m_ctx.floatFormat,
   4931 												m_ctx.precision,
   4932 												m_ctx.numRandoms,
   4933 												m_rnd));
   4934 	Variables<In, Out>	variables;
   4935 
   4936 	variables.out0	= variable<Ret>("out0");
   4937 	variables.out1	= variable<Arg1>("out1");
   4938 	variables.in0	= variable<Arg0>("in0");
   4939 	variables.in1	= variable<Arg2>("in1");
   4940 	variables.in2	= variable<Arg3>("in2");
   4941 	variables.in3	= variable<Void>("in3");
   4942 
   4943 	{
   4944 		ExprP<Ret>	expr	= applyVar(m_func,
   4945 									   variables.in0, variables.out1,
   4946 									   variables.in1, variables.in2);
   4947 		StatementP	stmt	= variableAssignment(variables.out0, expr);
   4948 
   4949 		this->testStatement(variables, inputs, *stmt);
   4950 	}
   4951 }
   4952 
   4953 template <typename Sig>
   4954 PrecisionCase* createFuncCase (const Context&	context,
   4955 							   const string&	name,
   4956 							   const Func<Sig>&	func)
   4957 {
   4958 	switch (func.getOutParamIndex())
   4959 	{
   4960 		case -1:
   4961 			return new FuncCase<Sig>(context, name, func);
   4962 		case 1:
   4963 			return new InOutFuncCase<Sig>(context, name, func);
   4964 		default:
   4965 			DE_ASSERT(!"Impossible");
   4966 	}
   4967 	return DE_NULL;
   4968 }
   4969 
   4970 class CaseFactory
   4971 {
   4972 public:
   4973 	virtual						~CaseFactory	(void) {}
   4974 	virtual MovePtr<TestNode>	createCase		(const Context& ctx) const = 0;
   4975 	virtual string				getName			(void) const = 0;
   4976 	virtual string				getDesc			(void) const = 0;
   4977 };
   4978 
   4979 class FuncCaseFactory : public CaseFactory
   4980 {
   4981 public:
   4982 	virtual const FuncBase&	getFunc		(void) const = 0;
   4983 
   4984 	string					getName		(void) const
   4985 	{
   4986 		return de::toLower(getFunc().getName());
   4987 	}
   4988 
   4989 	string					getDesc		(void) const
   4990 	{
   4991 		return "Function '" + getFunc().getName() + "'";
   4992 	}
   4993 };
   4994 
   4995 template <typename Sig>
   4996 class GenFuncCaseFactory : public CaseFactory
   4997 {
   4998 public:
   4999 
   5000 						GenFuncCaseFactory	(const GenFuncs<Sig>&	funcs,
   5001 											 const string&			name)
   5002 							: m_funcs	(funcs)
   5003 							, m_name	(de::toLower(name)) {}
   5004 
   5005 	MovePtr<TestNode>	createCase			(const Context& ctx) const
   5006 	{
   5007 		TestCaseGroup*	group = new TestCaseGroup(ctx.testContext,
   5008 												  ctx.name.c_str(), ctx.name.c_str());
   5009 
   5010 		group->addChild(createFuncCase(ctx, "scalar", m_funcs.func));
   5011 		group->addChild(createFuncCase(ctx, "vec2", m_funcs.func2));
   5012 		group->addChild(createFuncCase(ctx, "vec3", m_funcs.func3));
   5013 		group->addChild(createFuncCase(ctx, "vec4", m_funcs.func4));
   5014 
   5015 		return MovePtr<TestNode>(group);
   5016 	}
   5017 
   5018 	string				getName				(void) const
   5019 	{
   5020 		return m_name;
   5021 	}
   5022 
   5023 	string				getDesc				(void) const
   5024 	{
   5025 		return "Function '" + m_funcs.func.getName() + "'";
   5026 	}
   5027 
   5028 private:
   5029 	const GenFuncs<Sig>	m_funcs;
   5030 	string				m_name;
   5031 };
   5032 
   5033 template <template <int> class GenF>
   5034 class TemplateFuncCaseFactory : public FuncCaseFactory
   5035 {
   5036 public:
   5037 	MovePtr<TestNode>	createCase		(const Context& ctx) const
   5038 	{
   5039 		TestCaseGroup*	group = new TestCaseGroup(ctx.testContext,
   5040 							  ctx.name.c_str(), ctx.name.c_str());
   5041 		group->addChild(createFuncCase(ctx, "scalar", instance<GenF<1> >()));
   5042 		group->addChild(createFuncCase(ctx, "vec2", instance<GenF<2> >()));
   5043 		group->addChild(createFuncCase(ctx, "vec3", instance<GenF<3> >()));
   5044 		group->addChild(createFuncCase(ctx, "vec4", instance<GenF<4> >()));
   5045 
   5046 		return MovePtr<TestNode>(group);
   5047 	}
   5048 
   5049 	const FuncBase&		getFunc			(void) const { return instance<GenF<1> >(); }
   5050 };
   5051 
   5052 template <template <int> class GenF>
   5053 class SquareMatrixFuncCaseFactory : public FuncCaseFactory
   5054 {
   5055 public:
   5056 	MovePtr<TestNode>	createCase		(const Context& ctx) const
   5057 	{
   5058 		TestCaseGroup*	group = new TestCaseGroup(ctx.testContext,
   5059 							  ctx.name.c_str(), ctx.name.c_str());
   5060 		group->addChild(createFuncCase(ctx, "mat2", instance<GenF<2> >()));
   5061 #if 0
   5062 		// disabled until we get reasonable results
   5063 		group->addChild(createFuncCase(ctx, "mat3", instance<GenF<3> >()));
   5064 		group->addChild(createFuncCase(ctx, "mat4", instance<GenF<4> >()));
   5065 #endif
   5066 
   5067 		return MovePtr<TestNode>(group);
   5068 	}
   5069 
   5070 	const FuncBase&		getFunc			(void) const { return instance<GenF<2> >(); }
   5071 };
   5072 
   5073 template <template <int, int> class GenF>
   5074 class MatrixFuncCaseFactory : public FuncCaseFactory
   5075 {
   5076 public:
   5077 	MovePtr<TestNode>	createCase		(const Context& ctx) const
   5078 	{
   5079 		TestCaseGroup*	const group = new TestCaseGroup(ctx.testContext,
   5080 														ctx.name.c_str(), ctx.name.c_str());
   5081 
   5082 		this->addCase<2, 2>(ctx, group);
   5083 		this->addCase<3, 2>(ctx, group);
   5084 		this->addCase<4, 2>(ctx, group);
   5085 		this->addCase<2, 3>(ctx, group);
   5086 		this->addCase<3, 3>(ctx, group);
   5087 		this->addCase<4, 3>(ctx, group);
   5088 		this->addCase<2, 4>(ctx, group);
   5089 		this->addCase<3, 4>(ctx, group);
   5090 		this->addCase<4, 4>(ctx, group);
   5091 
   5092 		return MovePtr<TestNode>(group);
   5093 	}
   5094 
   5095 	const FuncBase&		getFunc			(void) const { return instance<GenF<2,2> >(); }
   5096 
   5097 private:
   5098 	template <int Rows, int Cols>
   5099 	void				addCase			(const Context& ctx, TestCaseGroup* group) const
   5100 	{
   5101 		const char*	const name = dataTypeNameOf<Matrix<float, Rows, Cols> >();
   5102 
   5103 		group->addChild(createFuncCase(ctx, name, instance<GenF<Rows, Cols> >()));
   5104 	}
   5105 };
   5106 
   5107 template <typename Sig>
   5108 class SimpleFuncCaseFactory : public CaseFactory
   5109 {
   5110 public:
   5111 						SimpleFuncCaseFactory	(const Func<Sig>& func) : m_func(func) {}
   5112 
   5113 	MovePtr<TestNode>	createCase		(const Context& ctx) const
   5114 	{
   5115 		return MovePtr<TestNode>(createFuncCase(ctx, ctx.name.c_str(), m_func));
   5116 	}
   5117 
   5118 	string				getName					(void) const
   5119 	{
   5120 		return de::toLower(m_func.getName());
   5121 	}
   5122 
   5123 	string				getDesc					(void) const
   5124 	{
   5125 		return "Function '" + getName() + "'";
   5126 	}
   5127 
   5128 private:
   5129 	const Func<Sig>&	m_func;
   5130 };
   5131 
   5132 template <typename F>
   5133 SharedPtr<SimpleFuncCaseFactory<typename F::Sig> > createSimpleFuncCaseFactory (void)
   5134 {
   5135 	return SharedPtr<SimpleFuncCaseFactory<typename F::Sig> >(
   5136 		new SimpleFuncCaseFactory<typename F::Sig>(instance<F>()));
   5137 }
   5138 
   5139 class BuiltinFuncs : public CaseFactories
   5140 {
   5141 public:
   5142 	const vector<const CaseFactory*>	getFactories	(void) const
   5143 	{
   5144 		vector<const CaseFactory*> ret;
   5145 
   5146 		for (size_t ndx = 0; ndx < m_factories.size(); ++ndx)
   5147 			ret.push_back(m_factories[ndx].get());
   5148 
   5149 		return ret;
   5150 	}
   5151 
   5152 	void								addFactory		(SharedPtr<const CaseFactory> fact)
   5153 	{
   5154 		m_factories.push_back(fact);
   5155 	}
   5156 
   5157 private:
   5158 	vector<SharedPtr<const CaseFactory> >			m_factories;
   5159 };
   5160 
   5161 template <typename F>
   5162 void addScalarFactory(BuiltinFuncs& funcs, string name = "")
   5163 {
   5164 	if (name.empty())
   5165 		name = instance<F>().getName();
   5166 
   5167 	funcs.addFactory(SharedPtr<const CaseFactory>(new GenFuncCaseFactory<typename F::Sig>(
   5168 													  makeVectorizedFuncs<F>(), name)));
   5169 }
   5170 
   5171 MovePtr<const CaseFactories> createES3BuiltinCases (void)
   5172 {
   5173 	MovePtr<BuiltinFuncs>	funcs	(new BuiltinFuncs());
   5174 
   5175 	addScalarFactory<Add>(*funcs);
   5176 	addScalarFactory<Sub>(*funcs);
   5177 	addScalarFactory<Mul>(*funcs);
   5178 	addScalarFactory<Div>(*funcs);
   5179 
   5180 	addScalarFactory<Radians>(*funcs);
   5181 	addScalarFactory<Degrees>(*funcs);
   5182 	addScalarFactory<Sin>(*funcs);
   5183 	addScalarFactory<Cos>(*funcs);
   5184 	addScalarFactory<Tan>(*funcs);
   5185 	addScalarFactory<ASin>(*funcs);
   5186 	addScalarFactory<ACos>(*funcs);
   5187 	addScalarFactory<ATan2>(*funcs, "atan2");
   5188 	addScalarFactory<ATan>(*funcs);
   5189 	addScalarFactory<Sinh>(*funcs);
   5190 	addScalarFactory<Cosh>(*funcs);
   5191 	addScalarFactory<Tanh>(*funcs);
   5192 	addScalarFactory<ASinh>(*funcs);
   5193 	addScalarFactory<ACosh>(*funcs);
   5194 	addScalarFactory<ATanh>(*funcs);
   5195 
   5196 	addScalarFactory<Pow>(*funcs);
   5197 	addScalarFactory<Exp>(*funcs);
   5198 	addScalarFactory<Log>(*funcs);
   5199 	addScalarFactory<Exp2>(*funcs);
   5200 	addScalarFactory<Log2>(*funcs);
   5201 	addScalarFactory<Sqrt>(*funcs);
   5202 	addScalarFactory<InverseSqrt>(*funcs);
   5203 
   5204 	addScalarFactory<Abs>(*funcs);
   5205 	addScalarFactory<Sign>(*funcs);
   5206 	addScalarFactory<Floor>(*funcs);
   5207 	addScalarFactory<Trunc>(*funcs);
   5208 	addScalarFactory<Round>(*funcs);
   5209 	addScalarFactory<RoundEven>(*funcs);
   5210 	addScalarFactory<Ceil>(*funcs);
   5211 	addScalarFactory<Fract>(*funcs);
   5212 	addScalarFactory<Mod>(*funcs);
   5213 	funcs->addFactory(createSimpleFuncCaseFactory<Modf>());
   5214 	addScalarFactory<Min>(*funcs);
   5215 	addScalarFactory<Max>(*funcs);
   5216 	addScalarFactory<Clamp>(*funcs);
   5217 	addScalarFactory<Mix>(*funcs);
   5218 	addScalarFactory<Step>(*funcs);
   5219 	addScalarFactory<SmoothStep>(*funcs);
   5220 
   5221 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Length>()));
   5222 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Distance>()));
   5223 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Dot>()));
   5224 	funcs->addFactory(createSimpleFuncCaseFactory<Cross>());
   5225 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Normalize>()));
   5226 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<FaceForward>()));
   5227 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Reflect>()));
   5228 	funcs->addFactory(SharedPtr<const CaseFactory>(new TemplateFuncCaseFactory<Refract>()));
   5229 
   5230 
   5231 	funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<MatrixCompMult>()));
   5232 	funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<OuterProduct>()));
   5233 	funcs->addFactory(SharedPtr<const CaseFactory>(new MatrixFuncCaseFactory<Transpose>()));
   5234 	funcs->addFactory(SharedPtr<const CaseFactory>(new SquareMatrixFuncCaseFactory<Determinant>()));
   5235 	funcs->addFactory(SharedPtr<const CaseFactory>(new SquareMatrixFuncCaseFactory<Inverse>()));
   5236 
   5237 	return MovePtr<const CaseFactories>(funcs.release());
   5238 }
   5239 
   5240 MovePtr<const CaseFactories> createES31BuiltinCases (void)
   5241 {
   5242 	MovePtr<BuiltinFuncs>	funcs	(new BuiltinFuncs());
   5243 
   5244 	addScalarFactory<FrExp>(*funcs);
   5245 	addScalarFactory<LdExp>(*funcs);
   5246 	addScalarFactory<Fma>(*funcs);
   5247 
   5248 	return MovePtr<const CaseFactories>(funcs.release());
   5249 }
   5250 
   5251 struct PrecisionTestContext
   5252 {
   5253 	PrecisionTestContext	(TestContext&				testCtx_,
   5254 							 RenderContext&				renderCtx_,
   5255 							 const FloatFormat&			highp_,
   5256 							 const FloatFormat&			mediump_,
   5257 							 const FloatFormat&			lowp_,
   5258 							 const vector<ShaderType>&	shaderTypes_,
   5259 							 int						numRandoms_)
   5260 		: testCtx		(testCtx_)
   5261 		, renderCtx		(renderCtx_)
   5262 		, shaderTypes	(shaderTypes_)
   5263 		, numRandoms	(numRandoms_)
   5264 	{
   5265 		formats[glu::PRECISION_HIGHP]	= &highp_;
   5266 		formats[glu::PRECISION_MEDIUMP]	= &mediump_;
   5267 		formats[glu::PRECISION_LOWP]	= &lowp_;
   5268 	}
   5269 
   5270 	TestContext&			testCtx;
   5271 	RenderContext&			renderCtx;
   5272 	const FloatFormat*		formats[glu::PRECISION_LAST];
   5273 	vector<ShaderType>		shaderTypes;
   5274 	int						numRandoms;
   5275 };
   5276 
   5277 TestCaseGroup* createFuncGroup (const PrecisionTestContext&	ctx,
   5278 								const CaseFactory&			factory)
   5279 {
   5280 	TestCaseGroup* const 	group	= new TestCaseGroup(ctx.testCtx,
   5281 														factory.getName().c_str(),
   5282 														factory.getDesc().c_str());
   5283 
   5284 	for (int precNdx = 0; precNdx < glu::PRECISION_LAST; ++precNdx)
   5285 	{
   5286 		const Precision		precision	= Precision(precNdx);
   5287 		const string		precName	(glu::getPrecisionName(precision));
   5288 		const FloatFormat&	fmt			= *de::getSizedArrayElement<glu::PRECISION_LAST>(ctx.formats, precNdx);
   5289 		const FloatFormat&	highpFmt	= *de::getSizedArrayElement<glu::PRECISION_LAST>(ctx.formats,
   5290 																						 glu::PRECISION_HIGHP);
   5291 
   5292 		for (size_t shaderNdx = 0; shaderNdx < ctx.shaderTypes.size(); ++shaderNdx)
   5293 		{
   5294 			const ShaderType	shaderType	= ctx.shaderTypes[shaderNdx];
   5295 			const string 		shaderName	(glu::getShaderTypeName(shaderType));
   5296 			const string		name		= precName + "_" + shaderName;
   5297 			const Context		caseCtx		(name, ctx.testCtx, ctx.renderCtx, fmt, highpFmt,
   5298 											 precision, shaderType, ctx.numRandoms);
   5299 
   5300 			group->addChild(factory.createCase(caseCtx).release());
   5301 		}
   5302 	}
   5303 
   5304 	return group;
   5305 }
   5306 
   5307 void addBuiltinPrecisionTests (TestContext&					testCtx,
   5308 							   RenderContext&				renderCtx,
   5309 							   const CaseFactories&			cases,
   5310 							   const vector<ShaderType>&	shaderTypes,
   5311 							   TestCaseGroup&				dstGroup)
   5312 {
   5313 	const int						userRandoms	= testCtx.getCommandLine().getTestIterationCount();
   5314 	const int						defRandoms	= 16384;
   5315 	const int						numRandoms	= userRandoms > 0 ? userRandoms : defRandoms;
   5316 	const FloatFormat				highp		(-126, 127, 23, true,
   5317 												 tcu::MAYBE,	// subnormals
   5318 												 tcu::YES,		// infinities
   5319 												 tcu::MAYBE);	// NaN
   5320 	// \todo [2014-04-01 lauri] Check these once Khronos bug 11840 is resolved.
   5321 	const FloatFormat				mediump		(-13, 13, 9, false);
   5322 	// A fixed-point format is just a floating point format with a fixed
   5323 	// exponent and support for subnormals.
   5324 	const FloatFormat				lowp		(0, 0, 7, false, tcu::YES);
   5325 	const PrecisionTestContext		ctx			(testCtx, renderCtx, highp, mediump, lowp,
   5326 												 shaderTypes, numRandoms);
   5327 
   5328 	for (size_t ndx = 0; ndx < cases.getFactories().size(); ++ndx)
   5329 		dstGroup.addChild(createFuncGroup(ctx, *cases.getFactories()[ndx]));
   5330 }
   5331 
   5332 } // BuiltinPrecisionTests
   5333 } // gls
   5334 } // deqp
   5335