Home | History | Annotate | Download | only in eigen2
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra. Eigen itself is part of the KDE project.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <g.gael (at) free.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "main.h"
     11 #include <Eigen/Geometry>
     12 #include <Eigen/LU>
     13 #include <Eigen/SVD>
     14 
     15 template<typename Scalar> void geometry(void)
     16 {
     17   /* this test covers the following files:
     18      Cross.h Quaternion.h, Transform.cpp
     19   */
     20 
     21   typedef Matrix<Scalar,2,2> Matrix2;
     22   typedef Matrix<Scalar,3,3> Matrix3;
     23   typedef Matrix<Scalar,4,4> Matrix4;
     24   typedef Matrix<Scalar,2,1> Vector2;
     25   typedef Matrix<Scalar,3,1> Vector3;
     26   typedef Matrix<Scalar,4,1> Vector4;
     27   typedef Quaternion<Scalar> Quaternionx;
     28   typedef AngleAxis<Scalar> AngleAxisx;
     29   typedef Transform<Scalar,2> Transform2;
     30   typedef Transform<Scalar,3> Transform3;
     31   typedef Scaling<Scalar,2> Scaling2;
     32   typedef Scaling<Scalar,3> Scaling3;
     33   typedef Translation<Scalar,2> Translation2;
     34   typedef Translation<Scalar,3> Translation3;
     35 
     36   Scalar largeEps = test_precision<Scalar>();
     37   if (ei_is_same_type<Scalar,float>::ret)
     38     largeEps = 1e-2f;
     39 
     40   Vector3 v0 = Vector3::Random(),
     41     v1 = Vector3::Random(),
     42     v2 = Vector3::Random();
     43   Vector2 u0 = Vector2::Random();
     44   Matrix3 matrot1;
     45 
     46   Scalar a = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
     47 
     48   // cross product
     49   VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).eigen2_dot(v1), Scalar(1));
     50   Matrix3 m;
     51   m << v0.normalized(),
     52       (v0.cross(v1)).normalized(),
     53       (v0.cross(v1).cross(v0)).normalized();
     54   VERIFY(m.isUnitary());
     55 
     56   // Quaternion: Identity(), setIdentity();
     57   Quaternionx q1, q2;
     58   q2.setIdentity();
     59   VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs());
     60   q1.coeffs().setRandom();
     61   VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs());
     62 
     63   // unitOrthogonal
     64   VERIFY_IS_MUCH_SMALLER_THAN(u0.unitOrthogonal().eigen2_dot(u0), Scalar(1));
     65   VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().eigen2_dot(v0), Scalar(1));
     66   VERIFY_IS_APPROX(u0.unitOrthogonal().norm(), Scalar(1));
     67   VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), Scalar(1));
     68 
     69 
     70   VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0);
     71   VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0);
     72   VERIFY_IS_APPROX(ei_cos(a)*v0.squaredNorm(), v0.eigen2_dot(AngleAxisx(a, v0.unitOrthogonal()) * v0));
     73   m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint();
     74   VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized()));
     75   VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m);
     76 
     77   q1 = AngleAxisx(a, v0.normalized());
     78   q2 = AngleAxisx(a, v1.normalized());
     79 
     80   // angular distance
     81   Scalar refangle = ei_abs(AngleAxisx(q1.inverse()*q2).angle());
     82   if (refangle>Scalar(M_PI))
     83     refangle = Scalar(2)*Scalar(M_PI) - refangle;
     84 
     85   if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps)
     86   {
     87     VERIFY(ei_isApprox(q1.angularDistance(q2), refangle, largeEps));
     88   }
     89 
     90   // rotation matrix conversion
     91   VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
     92   VERIFY_IS_APPROX(q1 * q2 * v2,
     93     q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
     94 
     95   VERIFY( (q2*q1).isApprox(q1*q2, largeEps) || !(q2 * q1 * v2).isApprox(
     96     q1.toRotationMatrix() * q2.toRotationMatrix() * v2));
     97 
     98   q2 = q1.toRotationMatrix();
     99   VERIFY_IS_APPROX(q1*v1,q2*v1);
    100 
    101   matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX())
    102           * AngleAxisx(Scalar(0.2), Vector3::UnitY())
    103           * AngleAxisx(Scalar(0.3), Vector3::UnitZ());
    104   VERIFY_IS_APPROX(matrot1 * v1,
    105        AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix()
    106     * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix()
    107     * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1)));
    108 
    109   // angle-axis conversion
    110   AngleAxisx aa = q1;
    111   VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
    112   VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
    113 
    114   // from two vector creation
    115   VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized());
    116   VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized());
    117 
    118   // inverse and conjugate
    119   VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1);
    120   VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);
    121 
    122   // AngleAxis
    123   VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(),
    124     Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix());
    125 
    126   AngleAxisx aa1;
    127   m = q1.toRotationMatrix();
    128   aa1 = m;
    129   VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(),
    130     Quaternionx(m).toRotationMatrix());
    131 
    132   // Transform
    133   // TODO complete the tests !
    134   a = 0;
    135   while (ei_abs(a)<Scalar(0.1))
    136     a = ei_random<Scalar>(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI));
    137   q1 = AngleAxisx(a, v0.normalized());
    138   Transform3 t0, t1, t2;
    139   // first test setIdentity() and Identity()
    140   t0.setIdentity();
    141   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
    142   t0.matrix().setZero();
    143   t0 = Transform3::Identity();
    144   VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
    145 
    146   t0.linear() = q1.toRotationMatrix();
    147   t1.setIdentity();
    148   t1.linear() = q1.toRotationMatrix();
    149 
    150   v0 << 50, 2, 1;//= ei_random_matrix<Vector3>().cwiseProduct(Vector3(10,2,0.5));
    151   t0.scale(v0);
    152   t1.prescale(v0);
    153 
    154   VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).norm(), v0.x());
    155   //VERIFY(!ei_isApprox((t1 * Vector3(1,0,0)).norm(), v0.x()));
    156 
    157   t0.setIdentity();
    158   t1.setIdentity();
    159   v1 << 1, 2, 3;
    160   t0.linear() = q1.toRotationMatrix();
    161   t0.pretranslate(v0);
    162   t0.scale(v1);
    163   t1.linear() = q1.conjugate().toRotationMatrix();
    164   t1.prescale(v1.cwise().inverse());
    165   t1.translate(-v0);
    166 
    167   VERIFY((t0.matrix() * t1.matrix()).isIdentity(test_precision<Scalar>()));
    168 
    169   t1.fromPositionOrientationScale(v0, q1, v1);
    170   VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
    171   VERIFY_IS_APPROX(t1*v1, t0*v1);
    172 
    173   t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix());
    174   t1.setIdentity(); t1.scale(v0).rotate(q1);
    175   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
    176 
    177   t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1));
    178   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
    179 
    180   VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix());
    181   VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix());
    182 
    183   // More transform constructors, operator=, operator*=
    184 
    185   Matrix3 mat3 = Matrix3::Random();
    186   Matrix4 mat4;
    187   mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose();
    188   Transform3 tmat3(mat3), tmat4(mat4);
    189   tmat4.matrix()(3,3) = Scalar(1);
    190   VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix());
    191 
    192   Scalar a3 = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
    193   Vector3 v3 = Vector3::Random().normalized();
    194   AngleAxisx aa3(a3, v3);
    195   Transform3 t3(aa3);
    196   Transform3 t4;
    197   t4 = aa3;
    198   VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
    199   t4.rotate(AngleAxisx(-a3,v3));
    200   VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity());
    201   t4 *= aa3;
    202   VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
    203 
    204   v3 = Vector3::Random();
    205   Translation3 tv3(v3);
    206   Transform3 t5(tv3);
    207   t4 = tv3;
    208   VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
    209   t4.translate(-v3);
    210   VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity());
    211   t4 *= tv3;
    212   VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
    213 
    214   Scaling3 sv3(v3);
    215   Transform3 t6(sv3);
    216   t4 = sv3;
    217   VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
    218   t4.scale(v3.cwise().inverse());
    219   VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity());
    220   t4 *= sv3;
    221   VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
    222 
    223   // matrix * transform
    224   VERIFY_IS_APPROX(Transform3(t3.matrix()*t4).matrix(), Transform3(t3*t4).matrix());
    225 
    226   // chained Transform product
    227   VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix());
    228 
    229   // check that Transform product doesn't have aliasing problems
    230   t5 = t4;
    231   t5 = t5*t5;
    232   VERIFY_IS_APPROX(t5, t4*t4);
    233 
    234   // 2D transformation
    235   Transform2 t20, t21;
    236   Vector2 v20 = Vector2::Random();
    237   Vector2 v21 = Vector2::Random();
    238   for (int k=0; k<2; ++k)
    239     if (ei_abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3);
    240   t21.setIdentity();
    241   t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix();
    242   VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(),
    243     t21.pretranslate(v20).scale(v21).matrix());
    244 
    245   t21.setIdentity();
    246   t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix();
    247   VERIFY( (t20.fromPositionOrientationScale(v20,a,v21)
    248         * (t21.prescale(v21.cwise().inverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) );
    249 
    250   // Transform - new API
    251   // 3D
    252   t0.setIdentity();
    253   t0.rotate(q1).scale(v0).translate(v0);
    254   // mat * scaling and mat * translation
    255   t1 = (Matrix3(q1) * Scaling3(v0)) * Translation3(v0);
    256   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
    257   // mat * transformation and scaling * translation
    258   t1 = Matrix3(q1) * (Scaling3(v0) * Translation3(v0));
    259   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
    260 
    261   t0.setIdentity();
    262   t0.prerotate(q1).prescale(v0).pretranslate(v0);
    263   // translation * scaling and transformation * mat
    264   t1 = (Translation3(v0) * Scaling3(v0)) * Matrix3(q1);
    265   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
    266   // scaling * mat and translation * mat
    267   t1 = Translation3(v0) * (Scaling3(v0) * Matrix3(q1));
    268   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
    269 
    270   t0.setIdentity();
    271   t0.scale(v0).translate(v0).rotate(q1);
    272   // translation * mat and scaling * transformation
    273   t1 = Scaling3(v0) * (Translation3(v0) * Matrix3(q1));
    274   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
    275   // transformation * scaling
    276   t0.scale(v0);
    277   t1 = t1 * Scaling3(v0);
    278   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
    279   // transformation * translation
    280   t0.translate(v0);
    281   t1 = t1 * Translation3(v0);
    282   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
    283   // translation * transformation
    284   t0.pretranslate(v0);
    285   t1 = Translation3(v0) * t1;
    286   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
    287 
    288   // transform * quaternion
    289   t0.rotate(q1);
    290   t1 = t1 * q1;
    291   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
    292 
    293   // translation * quaternion
    294   t0.translate(v1).rotate(q1);
    295   t1 = t1 * (Translation3(v1) * q1);
    296   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
    297 
    298   // scaling * quaternion
    299   t0.scale(v1).rotate(q1);
    300   t1 = t1 * (Scaling3(v1) * q1);
    301   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
    302 
    303   // quaternion * transform
    304   t0.prerotate(q1);
    305   t1 = q1 * t1;
    306   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
    307 
    308   // quaternion * translation
    309   t0.rotate(q1).translate(v1);
    310   t1 = t1 * (q1 * Translation3(v1));
    311   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
    312 
    313   // quaternion * scaling
    314   t0.rotate(q1).scale(v1);
    315   t1 = t1 * (q1 * Scaling3(v1));
    316   VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
    317 
    318   // translation * vector
    319   t0.setIdentity();
    320   t0.translate(v0);
    321   VERIFY_IS_APPROX(t0 * v1, Translation3(v0) * v1);
    322 
    323   // scaling * vector
    324   t0.setIdentity();
    325   t0.scale(v0);
    326   VERIFY_IS_APPROX(t0 * v1, Scaling3(v0) * v1);
    327 
    328   // test transform inversion
    329   t0.setIdentity();
    330   t0.translate(v0);
    331   t0.linear().setRandom();
    332   VERIFY_IS_APPROX(t0.inverse(Affine), t0.matrix().inverse());
    333   t0.setIdentity();
    334   t0.translate(v0).rotate(q1);
    335   VERIFY_IS_APPROX(t0.inverse(Isometry), t0.matrix().inverse());
    336 
    337   // test extract rotation and scaling
    338   t0.setIdentity();
    339   t0.translate(v0).rotate(q1).scale(v1);
    340   VERIFY_IS_APPROX(t0.rotation() * v1, Matrix3(q1) * v1);
    341 
    342   Matrix3 mat_rotation, mat_scaling;
    343   t0.setIdentity();
    344   t0.translate(v0).rotate(q1).scale(v1);
    345   t0.computeRotationScaling(&mat_rotation, &mat_scaling);
    346   VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling);
    347   VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
    348   VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
    349   t0.computeScalingRotation(&mat_scaling, &mat_rotation);
    350   VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation);
    351   VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
    352   VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
    353 
    354   // test casting
    355   Transform<float,3> t1f = t1.template cast<float>();
    356   VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1);
    357   Transform<double,3> t1d = t1.template cast<double>();
    358   VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1);
    359 
    360   Translation3 tr1(v0);
    361   Translation<float,3> tr1f = tr1.template cast<float>();
    362   VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1);
    363   Translation<double,3> tr1d = tr1.template cast<double>();
    364   VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1);
    365 
    366   Scaling3 sc1(v0);
    367   Scaling<float,3> sc1f = sc1.template cast<float>();
    368   VERIFY_IS_APPROX(sc1f.template cast<Scalar>(),sc1);
    369   Scaling<double,3> sc1d = sc1.template cast<double>();
    370   VERIFY_IS_APPROX(sc1d.template cast<Scalar>(),sc1);
    371 
    372   Quaternion<float> q1f = q1.template cast<float>();
    373   VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1);
    374   Quaternion<double> q1d = q1.template cast<double>();
    375   VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
    376 
    377   AngleAxis<float> aa1f = aa1.template cast<float>();
    378   VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1);
    379   AngleAxis<double> aa1d = aa1.template cast<double>();
    380   VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1);
    381 
    382   Rotation2D<Scalar> r2d1(ei_random<Scalar>());
    383   Rotation2D<float> r2d1f = r2d1.template cast<float>();
    384   VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1);
    385   Rotation2D<double> r2d1d = r2d1.template cast<double>();
    386   VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1);
    387 
    388   m = q1;
    389 //   m.col(1) = Vector3(0,ei_random<Scalar>(),ei_random<Scalar>()).normalized();
    390 //   m.col(0) = Vector3(-1,0,0).normalized();
    391 //   m.col(2) = m.col(0).cross(m.col(1));
    392   #define VERIFY_EULER(I,J,K, X,Y,Z) { \
    393     Vector3 ea = m.eulerAngles(I,J,K); \
    394     Matrix3 m1 = Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z())); \
    395     VERIFY_IS_APPROX(m, m1); \
    396     VERIFY_IS_APPROX(m,  Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z()))); \
    397   }
    398   VERIFY_EULER(0,1,2, X,Y,Z);
    399   VERIFY_EULER(0,1,0, X,Y,X);
    400   VERIFY_EULER(0,2,1, X,Z,Y);
    401   VERIFY_EULER(0,2,0, X,Z,X);
    402 
    403   VERIFY_EULER(1,2,0, Y,Z,X);
    404   VERIFY_EULER(1,2,1, Y,Z,Y);
    405   VERIFY_EULER(1,0,2, Y,X,Z);
    406   VERIFY_EULER(1,0,1, Y,X,Y);
    407 
    408   VERIFY_EULER(2,0,1, Z,X,Y);
    409   VERIFY_EULER(2,0,2, Z,X,Z);
    410   VERIFY_EULER(2,1,0, Z,Y,X);
    411   VERIFY_EULER(2,1,2, Z,Y,Z);
    412 
    413   // colwise/rowwise cross product
    414   mat3.setRandom();
    415   Vector3 vec3 = Vector3::Random();
    416   Matrix3 mcross;
    417   int i = ei_random<int>(0,2);
    418   mcross = mat3.colwise().cross(vec3);
    419   VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3));
    420   mcross = mat3.rowwise().cross(vec3);
    421   VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3));
    422 
    423 
    424 }
    425 
    426 void test_eigen2_geometry()
    427 {
    428   for(int i = 0; i < g_repeat; i++) {
    429     CALL_SUBTEST_1( geometry<float>() );
    430     CALL_SUBTEST_2( geometry<double>() );
    431   }
    432 }
    433