Home | History | Annotate | Download | only in Analysis
      1 //===- DivergenceAnalysis.cpp ------ Divergence Analysis ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines divergence analysis which determines whether a branch in a
     11 // GPU program is divergent. It can help branch optimizations such as jump
     12 // threading and loop unswitching to make better decisions.
     13 //
     14 // GPU programs typically use the SIMD execution model, where multiple threads
     15 // in the same execution group have to execute in lock-step. Therefore, if the
     16 // code contains divergent branches (i.e., threads in a group do not agree on
     17 // which path of the branch to take), the group of threads has to execute all
     18 // the paths from that branch with different subsets of threads enabled until
     19 // they converge at the immediately post-dominating BB of the paths.
     20 //
     21 // Due to this execution model, some optimizations such as jump
     22 // threading and loop unswitching can be unfortunately harmful when performed on
     23 // divergent branches. Therefore, an analysis that computes which branches in a
     24 // GPU program are divergent can help the compiler to selectively run these
     25 // optimizations.
     26 //
     27 // This file defines divergence analysis which computes a conservative but
     28 // non-trivial approximation of all divergent branches in a GPU program. It
     29 // partially implements the approach described in
     30 //
     31 //   Divergence Analysis
     32 //   Sampaio, Souza, Collange, Pereira
     33 //   TOPLAS '13
     34 //
     35 // The divergence analysis identifies the sources of divergence (e.g., special
     36 // variables that hold the thread ID), and recursively marks variables that are
     37 // data or sync dependent on a source of divergence as divergent.
     38 //
     39 // While data dependency is a well-known concept, the notion of sync dependency
     40 // is worth more explanation. Sync dependence characterizes the control flow
     41 // aspect of the propagation of branch divergence. For example,
     42 //
     43 //   %cond = icmp slt i32 %tid, 10
     44 //   br i1 %cond, label %then, label %else
     45 // then:
     46 //   br label %merge
     47 // else:
     48 //   br label %merge
     49 // merge:
     50 //   %a = phi i32 [ 0, %then ], [ 1, %else ]
     51 //
     52 // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
     53 // because %tid is not on its use-def chains, %a is sync dependent on %tid
     54 // because the branch "br i1 %cond" depends on %tid and affects which value %a
     55 // is assigned to.
     56 //
     57 // The current implementation has the following limitations:
     58 // 1. intra-procedural. It conservatively considers the arguments of a
     59 //    non-kernel-entry function and the return value of a function call as
     60 //    divergent.
     61 // 2. memory as black box. It conservatively considers values loaded from
     62 //    generic or local address as divergent. This can be improved by leveraging
     63 //    pointer analysis.
     64 //===----------------------------------------------------------------------===//
     65 
     66 #include <vector>
     67 #include "llvm/IR/Dominators.h"
     68 #include "llvm/ADT/DenseSet.h"
     69 #include "llvm/Analysis/Passes.h"
     70 #include "llvm/Analysis/PostDominators.h"
     71 #include "llvm/Analysis/TargetTransformInfo.h"
     72 #include "llvm/IR/Function.h"
     73 #include "llvm/IR/InstIterator.h"
     74 #include "llvm/IR/Instructions.h"
     75 #include "llvm/IR/IntrinsicInst.h"
     76 #include "llvm/IR/Value.h"
     77 #include "llvm/Pass.h"
     78 #include "llvm/Support/CommandLine.h"
     79 #include "llvm/Support/Debug.h"
     80 #include "llvm/Support/raw_ostream.h"
     81 #include "llvm/Transforms/Scalar.h"
     82 using namespace llvm;
     83 
     84 #define DEBUG_TYPE "divergence"
     85 
     86 namespace {
     87 class DivergenceAnalysis : public FunctionPass {
     88 public:
     89   static char ID;
     90 
     91   DivergenceAnalysis() : FunctionPass(ID) {
     92     initializeDivergenceAnalysisPass(*PassRegistry::getPassRegistry());
     93   }
     94 
     95   void getAnalysisUsage(AnalysisUsage &AU) const override {
     96     AU.addRequired<DominatorTreeWrapperPass>();
     97     AU.addRequired<PostDominatorTree>();
     98     AU.setPreservesAll();
     99   }
    100 
    101   bool runOnFunction(Function &F) override;
    102 
    103   // Print all divergent branches in the function.
    104   void print(raw_ostream &OS, const Module *) const override;
    105 
    106   // Returns true if V is divergent.
    107   bool isDivergent(const Value *V) const { return DivergentValues.count(V); }
    108   // Returns true if V is uniform/non-divergent.
    109   bool isUniform(const Value *V) const { return !isDivergent(V); }
    110 
    111 private:
    112   // Stores all divergent values.
    113   DenseSet<const Value *> DivergentValues;
    114 };
    115 } // End of anonymous namespace
    116 
    117 // Register this pass.
    118 char DivergenceAnalysis::ID = 0;
    119 INITIALIZE_PASS_BEGIN(DivergenceAnalysis, "divergence", "Divergence Analysis",
    120                       false, true)
    121 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    122 INITIALIZE_PASS_DEPENDENCY(PostDominatorTree)
    123 INITIALIZE_PASS_END(DivergenceAnalysis, "divergence", "Divergence Analysis",
    124                     false, true)
    125 
    126 namespace {
    127 
    128 class DivergencePropagator {
    129 public:
    130   DivergencePropagator(Function &F, TargetTransformInfo &TTI,
    131                        DominatorTree &DT, PostDominatorTree &PDT,
    132                        DenseSet<const Value *> &DV)
    133       : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {}
    134   void populateWithSourcesOfDivergence();
    135   void propagate();
    136 
    137 private:
    138   // A helper function that explores data dependents of V.
    139   void exploreDataDependency(Value *V);
    140   // A helper function that explores sync dependents of TI.
    141   void exploreSyncDependency(TerminatorInst *TI);
    142   // Computes the influence region from Start to End. This region includes all
    143   // basic blocks on any path from Start to End.
    144   void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
    145                               DenseSet<BasicBlock *> &InfluenceRegion);
    146   // Finds all users of I that are outside the influence region, and add these
    147   // users to Worklist.
    148   void findUsersOutsideInfluenceRegion(
    149       Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);
    150 
    151   Function &F;
    152   TargetTransformInfo &TTI;
    153   DominatorTree &DT;
    154   PostDominatorTree &PDT;
    155   std::vector<Value *> Worklist; // Stack for DFS.
    156   DenseSet<const Value *> &DV; // Stores all divergent values.
    157 };
    158 
    159 void DivergencePropagator::populateWithSourcesOfDivergence() {
    160   Worklist.clear();
    161   DV.clear();
    162   for (auto &I : inst_range(F)) {
    163     if (TTI.isSourceOfDivergence(&I)) {
    164       Worklist.push_back(&I);
    165       DV.insert(&I);
    166     }
    167   }
    168   for (auto &Arg : F.args()) {
    169     if (TTI.isSourceOfDivergence(&Arg)) {
    170       Worklist.push_back(&Arg);
    171       DV.insert(&Arg);
    172     }
    173   }
    174 }
    175 
    176 void DivergencePropagator::exploreSyncDependency(TerminatorInst *TI) {
    177   // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
    178   // immediate post dominator are divergent. This rule handles if-then-else
    179   // patterns. For example,
    180   //
    181   // if (tid < 5)
    182   //   a1 = 1;
    183   // else
    184   //   a2 = 2;
    185   // a = phi(a1, a2); // sync dependent on (tid < 5)
    186   BasicBlock *ThisBB = TI->getParent();
    187   BasicBlock *IPostDom = PDT.getNode(ThisBB)->getIDom()->getBlock();
    188   if (IPostDom == nullptr)
    189     return;
    190 
    191   for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
    192     // A PHINode is uniform if it returns the same value no matter which path is
    193     // taken.
    194     if (!cast<PHINode>(I)->hasConstantValue() && DV.insert(I).second)
    195       Worklist.push_back(I);
    196   }
    197 
    198   // Propagation rule 2: if a value defined in a loop is used outside, the user
    199   // is sync dependent on the condition of the loop exits that dominate the
    200   // user. For example,
    201   //
    202   // int i = 0;
    203   // do {
    204   //   i++;
    205   //   if (foo(i)) ... // uniform
    206   // } while (i < tid);
    207   // if (bar(i)) ...   // divergent
    208   //
    209   // A program may contain unstructured loops. Therefore, we cannot leverage
    210   // LoopInfo, which only recognizes natural loops.
    211   //
    212   // The algorithm used here handles both natural and unstructured loops.  Given
    213   // a branch TI, we first compute its influence region, the union of all simple
    214   // paths from TI to its immediate post dominator (IPostDom). Then, we search
    215   // for all the values defined in the influence region but used outside. All
    216   // these users are sync dependent on TI.
    217   DenseSet<BasicBlock *> InfluenceRegion;
    218   computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
    219   // An insight that can speed up the search process is that all the in-region
    220   // values that are used outside must dominate TI. Therefore, instead of
    221   // searching every basic blocks in the influence region, we search all the
    222   // dominators of TI until it is outside the influence region.
    223   BasicBlock *InfluencedBB = ThisBB;
    224   while (InfluenceRegion.count(InfluencedBB)) {
    225     for (auto &I : *InfluencedBB)
    226       findUsersOutsideInfluenceRegion(I, InfluenceRegion);
    227     DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
    228     if (IDomNode == nullptr)
    229       break;
    230     InfluencedBB = IDomNode->getBlock();
    231   }
    232 }
    233 
    234 void DivergencePropagator::findUsersOutsideInfluenceRegion(
    235     Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
    236   for (User *U : I.users()) {
    237     Instruction *UserInst = cast<Instruction>(U);
    238     if (!InfluenceRegion.count(UserInst->getParent())) {
    239       if (DV.insert(UserInst).second)
    240         Worklist.push_back(UserInst);
    241     }
    242   }
    243 }
    244 
    245 void DivergencePropagator::computeInfluenceRegion(
    246     BasicBlock *Start, BasicBlock *End,
    247     DenseSet<BasicBlock *> &InfluenceRegion) {
    248   assert(PDT.properlyDominates(End, Start) &&
    249          "End does not properly dominate Start");
    250   std::vector<BasicBlock *> InfluenceStack;
    251   InfluenceStack.push_back(Start);
    252   InfluenceRegion.insert(Start);
    253   while (!InfluenceStack.empty()) {
    254     BasicBlock *BB = InfluenceStack.back();
    255     InfluenceStack.pop_back();
    256     for (BasicBlock *Succ : successors(BB)) {
    257       if (End != Succ && InfluenceRegion.insert(Succ).second)
    258         InfluenceStack.push_back(Succ);
    259     }
    260   }
    261 }
    262 
    263 void DivergencePropagator::exploreDataDependency(Value *V) {
    264   // Follow def-use chains of V.
    265   for (User *U : V->users()) {
    266     Instruction *UserInst = cast<Instruction>(U);
    267     if (DV.insert(UserInst).second)
    268       Worklist.push_back(UserInst);
    269   }
    270 }
    271 
    272 void DivergencePropagator::propagate() {
    273   // Traverse the dependency graph using DFS.
    274   while (!Worklist.empty()) {
    275     Value *V = Worklist.back();
    276     Worklist.pop_back();
    277     if (TerminatorInst *TI = dyn_cast<TerminatorInst>(V)) {
    278       // Terminators with less than two successors won't introduce sync
    279       // dependency. Ignore them.
    280       if (TI->getNumSuccessors() > 1)
    281         exploreSyncDependency(TI);
    282     }
    283     exploreDataDependency(V);
    284   }
    285 }
    286 
    287 } /// end namespace anonymous
    288 
    289 FunctionPass *llvm::createDivergenceAnalysisPass() {
    290   return new DivergenceAnalysis();
    291 }
    292 
    293 bool DivergenceAnalysis::runOnFunction(Function &F) {
    294   auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
    295   if (TTIWP == nullptr)
    296     return false;
    297 
    298   TargetTransformInfo &TTI = TTIWP->getTTI(F);
    299   // Fast path: if the target does not have branch divergence, we do not mark
    300   // any branch as divergent.
    301   if (!TTI.hasBranchDivergence())
    302     return false;
    303 
    304   DivergentValues.clear();
    305   DivergencePropagator DP(F, TTI,
    306                           getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
    307                           getAnalysis<PostDominatorTree>(), DivergentValues);
    308   DP.populateWithSourcesOfDivergence();
    309   DP.propagate();
    310   return false;
    311 }
    312 
    313 void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
    314   if (DivergentValues.empty())
    315     return;
    316   const Value *FirstDivergentValue = *DivergentValues.begin();
    317   const Function *F;
    318   if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
    319     F = Arg->getParent();
    320   } else if (const Instruction *I =
    321                  dyn_cast<Instruction>(FirstDivergentValue)) {
    322     F = I->getParent()->getParent();
    323   } else {
    324     llvm_unreachable("Only arguments and instructions can be divergent");
    325   }
    326 
    327   // Dumps all divergent values in F, arguments and then instructions.
    328   for (auto &Arg : F->args()) {
    329     if (DivergentValues.count(&Arg))
    330       OS << "DIVERGENT:  " << Arg << "\n";
    331   }
    332   // Iterate instructions using inst_range to ensure a deterministic order.
    333   for (auto &I : inst_range(F)) {
    334     if (DivergentValues.count(&I))
    335       OS << "DIVERGENT:" << I << "\n";
    336   }
    337 }
    338