Home | History | Annotate | Download | only in Analysis
      1 //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements bookkeeping for "interesting" users of expressions
     11 // computed from induction variables.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Analysis/IVUsers.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/Analysis/LoopPass.h"
     18 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     19 #include "llvm/Analysis/ValueTracking.h"
     20 #include "llvm/IR/Constants.h"
     21 #include "llvm/IR/DataLayout.h"
     22 #include "llvm/IR/DerivedTypes.h"
     23 #include "llvm/IR/Dominators.h"
     24 #include "llvm/IR/Instructions.h"
     25 #include "llvm/IR/Module.h"
     26 #include "llvm/IR/Type.h"
     27 #include "llvm/Support/Debug.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 #include <algorithm>
     30 using namespace llvm;
     31 
     32 #define DEBUG_TYPE "iv-users"
     33 
     34 char IVUsers::ID = 0;
     35 INITIALIZE_PASS_BEGIN(IVUsers, "iv-users",
     36                       "Induction Variable Users", false, true)
     37 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
     38 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
     39 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
     40 INITIALIZE_PASS_END(IVUsers, "iv-users",
     41                       "Induction Variable Users", false, true)
     42 
     43 Pass *llvm::createIVUsersPass() {
     44   return new IVUsers();
     45 }
     46 
     47 /// isInteresting - Test whether the given expression is "interesting" when
     48 /// used by the given expression, within the context of analyzing the
     49 /// given loop.
     50 static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L,
     51                           ScalarEvolution *SE, LoopInfo *LI) {
     52   // An addrec is interesting if it's affine or if it has an interesting start.
     53   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
     54     // Keep things simple. Don't touch loop-variant strides unless they're
     55     // only used outside the loop and we can simplify them.
     56     if (AR->getLoop() == L)
     57       return AR->isAffine() ||
     58              (!L->contains(I) &&
     59               SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR);
     60     // Otherwise recurse to see if the start value is interesting, and that
     61     // the step value is not interesting, since we don't yet know how to
     62     // do effective SCEV expansions for addrecs with interesting steps.
     63     return isInteresting(AR->getStart(), I, L, SE, LI) &&
     64           !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI);
     65   }
     66 
     67   // An add is interesting if exactly one of its operands is interesting.
     68   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
     69     bool AnyInterestingYet = false;
     70     for (SCEVAddExpr::op_iterator OI = Add->op_begin(), OE = Add->op_end();
     71          OI != OE; ++OI)
     72       if (isInteresting(*OI, I, L, SE, LI)) {
     73         if (AnyInterestingYet)
     74           return false;
     75         AnyInterestingYet = true;
     76       }
     77     return AnyInterestingYet;
     78   }
     79 
     80   // Nothing else is interesting here.
     81   return false;
     82 }
     83 
     84 /// Return true if all loop headers that dominate this block are in simplified
     85 /// form.
     86 static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT,
     87                                  const LoopInfo *LI,
     88                                  SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
     89   Loop *NearestLoop = nullptr;
     90   for (DomTreeNode *Rung = DT->getNode(BB);
     91        Rung; Rung = Rung->getIDom()) {
     92     BasicBlock *DomBB = Rung->getBlock();
     93     Loop *DomLoop = LI->getLoopFor(DomBB);
     94     if (DomLoop && DomLoop->getHeader() == DomBB) {
     95       // If the domtree walk reaches a loop with no preheader, return false.
     96       if (!DomLoop->isLoopSimplifyForm())
     97         return false;
     98       // If we have already checked this loop nest, stop checking.
     99       if (SimpleLoopNests.count(DomLoop))
    100         break;
    101       // If we have not already checked this loop nest, remember the loop
    102       // header nearest to BB. The nearest loop may not contain BB.
    103       if (!NearestLoop)
    104         NearestLoop = DomLoop;
    105     }
    106   }
    107   if (NearestLoop)
    108     SimpleLoopNests.insert(NearestLoop);
    109   return true;
    110 }
    111 
    112 /// AddUsersImpl - Inspect the specified instruction.  If it is a
    113 /// reducible SCEV, recursively add its users to the IVUsesByStride set and
    114 /// return true.  Otherwise, return false.
    115 bool IVUsers::AddUsersImpl(Instruction *I,
    116                            SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
    117   const DataLayout &DL = I->getModule()->getDataLayout();
    118 
    119   // Add this IV user to the Processed set before returning false to ensure that
    120   // all IV users are members of the set. See IVUsers::isIVUserOrOperand.
    121   if (!Processed.insert(I).second)
    122     return true;    // Instruction already handled.
    123 
    124   if (!SE->isSCEVable(I->getType()))
    125     return false;   // Void and FP expressions cannot be reduced.
    126 
    127   // IVUsers is used by LSR which assumes that all SCEV expressions are safe to
    128   // pass to SCEVExpander. Expressions are not safe to expand if they represent
    129   // operations that are not safe to speculate, namely integer division.
    130   if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I))
    131     return false;
    132 
    133   // LSR is not APInt clean, do not touch integers bigger than 64-bits.
    134   // Also avoid creating IVs of non-native types. For example, we don't want a
    135   // 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
    136   uint64_t Width = SE->getTypeSizeInBits(I->getType());
    137   if (Width > 64 || !DL.isLegalInteger(Width))
    138     return false;
    139 
    140   // Get the symbolic expression for this instruction.
    141   const SCEV *ISE = SE->getSCEV(I);
    142 
    143   // If we've come to an uninteresting expression, stop the traversal and
    144   // call this a user.
    145   if (!isInteresting(ISE, I, L, SE, LI))
    146     return false;
    147 
    148   SmallPtrSet<Instruction *, 4> UniqueUsers;
    149   for (Use &U : I->uses()) {
    150     Instruction *User = cast<Instruction>(U.getUser());
    151     if (!UniqueUsers.insert(User).second)
    152       continue;
    153 
    154     // Do not infinitely recurse on PHI nodes.
    155     if (isa<PHINode>(User) && Processed.count(User))
    156       continue;
    157 
    158     // Only consider IVUsers that are dominated by simplified loop
    159     // headers. Otherwise, SCEVExpander will crash.
    160     BasicBlock *UseBB = User->getParent();
    161     // A phi's use is live out of its predecessor block.
    162     if (PHINode *PHI = dyn_cast<PHINode>(User)) {
    163       unsigned OperandNo = U.getOperandNo();
    164       unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo);
    165       UseBB = PHI->getIncomingBlock(ValNo);
    166     }
    167     if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests))
    168       return false;
    169 
    170     // Descend recursively, but not into PHI nodes outside the current loop.
    171     // It's important to see the entire expression outside the loop to get
    172     // choices that depend on addressing mode use right, although we won't
    173     // consider references outside the loop in all cases.
    174     // If User is already in Processed, we don't want to recurse into it again,
    175     // but do want to record a second reference in the same instruction.
    176     bool AddUserToIVUsers = false;
    177     if (LI->getLoopFor(User->getParent()) != L) {
    178       if (isa<PHINode>(User) || Processed.count(User) ||
    179           !AddUsersImpl(User, SimpleLoopNests)) {
    180         DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n'
    181                      << "   OF SCEV: " << *ISE << '\n');
    182         AddUserToIVUsers = true;
    183       }
    184     } else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) {
    185       DEBUG(dbgs() << "FOUND USER: " << *User << '\n'
    186                    << "   OF SCEV: " << *ISE << '\n');
    187       AddUserToIVUsers = true;
    188     }
    189 
    190     if (AddUserToIVUsers) {
    191       // Okay, we found a user that we cannot reduce.
    192       IVStrideUse &NewUse = AddUser(User, I);
    193       // Autodetect the post-inc loop set, populating NewUse.PostIncLoops.
    194       // The regular return value here is discarded; instead of recording
    195       // it, we just recompute it when we need it.
    196       const SCEV *OriginalISE = ISE;
    197       ISE = TransformForPostIncUse(NormalizeAutodetect,
    198                                    ISE, User, I,
    199                                    NewUse.PostIncLoops,
    200                                    *SE, *DT);
    201 
    202       // PostIncNormalization effectively simplifies the expression under
    203       // pre-increment assumptions. Those assumptions (no wrapping) might not
    204       // hold for the post-inc value. Catch such cases by making sure the
    205       // transformation is invertible.
    206       if (OriginalISE != ISE) {
    207         const SCEV *DenormalizedISE =
    208           TransformForPostIncUse(Denormalize, ISE, User, I,
    209               NewUse.PostIncLoops, *SE, *DT);
    210 
    211         // If we normalized the expression, but denormalization doesn't give the
    212         // original one, discard this user.
    213         if (OriginalISE != DenormalizedISE) {
    214           DEBUG(dbgs() << "   DISCARDING (NORMALIZATION ISN'T INVERTIBLE): "
    215                        << *ISE << '\n');
    216           IVUses.pop_back();
    217           return false;
    218         }
    219       }
    220       DEBUG(if (SE->getSCEV(I) != ISE)
    221               dbgs() << "   NORMALIZED TO: " << *ISE << '\n');
    222     }
    223   }
    224   return true;
    225 }
    226 
    227 bool IVUsers::AddUsersIfInteresting(Instruction *I) {
    228   // SCEVExpander can only handle users that are dominated by simplified loop
    229   // entries. Keep track of all loops that are only dominated by other simple
    230   // loops so we don't traverse the domtree for each user.
    231   SmallPtrSet<Loop*,16> SimpleLoopNests;
    232 
    233   return AddUsersImpl(I, SimpleLoopNests);
    234 }
    235 
    236 IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) {
    237   IVUses.push_back(new IVStrideUse(this, User, Operand));
    238   return IVUses.back();
    239 }
    240 
    241 IVUsers::IVUsers()
    242     : LoopPass(ID) {
    243   initializeIVUsersPass(*PassRegistry::getPassRegistry());
    244 }
    245 
    246 void IVUsers::getAnalysisUsage(AnalysisUsage &AU) const {
    247   AU.addRequired<LoopInfoWrapperPass>();
    248   AU.addRequired<DominatorTreeWrapperPass>();
    249   AU.addRequired<ScalarEvolution>();
    250   AU.setPreservesAll();
    251 }
    252 
    253 bool IVUsers::runOnLoop(Loop *l, LPPassManager &LPM) {
    254 
    255   L = l;
    256   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    257   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    258   SE = &getAnalysis<ScalarEvolution>();
    259 
    260   // Find all uses of induction variables in this loop, and categorize
    261   // them by stride.  Start by finding all of the PHI nodes in the header for
    262   // this loop.  If they are induction variables, inspect their uses.
    263   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
    264     (void)AddUsersIfInteresting(I);
    265 
    266   return false;
    267 }
    268 
    269 void IVUsers::print(raw_ostream &OS, const Module *M) const {
    270   OS << "IV Users for loop ";
    271   L->getHeader()->printAsOperand(OS, false);
    272   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
    273     OS << " with backedge-taken count "
    274        << *SE->getBackedgeTakenCount(L);
    275   }
    276   OS << ":\n";
    277 
    278   for (ilist<IVStrideUse>::const_iterator UI = IVUses.begin(),
    279        E = IVUses.end(); UI != E; ++UI) {
    280     OS << "  ";
    281     UI->getOperandValToReplace()->printAsOperand(OS, false);
    282     OS << " = " << *getReplacementExpr(*UI);
    283     for (PostIncLoopSet::const_iterator
    284          I = UI->PostIncLoops.begin(),
    285          E = UI->PostIncLoops.end(); I != E; ++I) {
    286       OS << " (post-inc with loop ";
    287       (*I)->getHeader()->printAsOperand(OS, false);
    288       OS << ")";
    289     }
    290     OS << " in  ";
    291     if (UI->getUser())
    292       UI->getUser()->print(OS);
    293     else
    294       OS << "Printing <null> User";
    295     OS << '\n';
    296   }
    297 }
    298 
    299 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    300 void IVUsers::dump() const {
    301   print(dbgs());
    302 }
    303 #endif
    304 
    305 void IVUsers::releaseMemory() {
    306   Processed.clear();
    307   IVUses.clear();
    308 }
    309 
    310 /// getReplacementExpr - Return a SCEV expression which computes the
    311 /// value of the OperandValToReplace.
    312 const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const {
    313   return SE->getSCEV(IU.getOperandValToReplace());
    314 }
    315 
    316 /// getExpr - Return the expression for the use.
    317 const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const {
    318   return
    319     TransformForPostIncUse(Normalize, getReplacementExpr(IU),
    320                            IU.getUser(), IU.getOperandValToReplace(),
    321                            const_cast<PostIncLoopSet &>(IU.getPostIncLoops()),
    322                            *SE, *DT);
    323 }
    324 
    325 static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) {
    326   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    327     if (AR->getLoop() == L)
    328       return AR;
    329     return findAddRecForLoop(AR->getStart(), L);
    330   }
    331 
    332   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    333     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
    334          I != E; ++I)
    335       if (const SCEVAddRecExpr *AR = findAddRecForLoop(*I, L))
    336         return AR;
    337     return nullptr;
    338   }
    339 
    340   return nullptr;
    341 }
    342 
    343 const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const {
    344   if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L))
    345     return AR->getStepRecurrence(*SE);
    346   return nullptr;
    347 }
    348 
    349 void IVStrideUse::transformToPostInc(const Loop *L) {
    350   PostIncLoops.insert(L);
    351 }
    352 
    353 void IVStrideUse::deleted() {
    354   // Remove this user from the list.
    355   Parent->Processed.erase(this->getUser());
    356   Parent->IVUses.erase(this);
    357   // this now dangles!
    358 }
    359