Home | History | Annotate | Download | only in AArch64
      1 //===-- AArch6464FastISel.cpp - AArch64 FastISel implementation -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the AArch64-specific support for the FastISel class. Some
     11 // of the target-specific code is generated by tablegen in the file
     12 // AArch64GenFastISel.inc, which is #included here.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "AArch64.h"
     17 #include "AArch64CallingConvention.h"
     18 #include "AArch64Subtarget.h"
     19 #include "AArch64TargetMachine.h"
     20 #include "MCTargetDesc/AArch64AddressingModes.h"
     21 #include "llvm/Analysis/BranchProbabilityInfo.h"
     22 #include "llvm/CodeGen/CallingConvLower.h"
     23 #include "llvm/CodeGen/FastISel.h"
     24 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     25 #include "llvm/CodeGen/MachineConstantPool.h"
     26 #include "llvm/CodeGen/MachineFrameInfo.h"
     27 #include "llvm/CodeGen/MachineInstrBuilder.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/IR/CallingConv.h"
     30 #include "llvm/IR/DataLayout.h"
     31 #include "llvm/IR/DerivedTypes.h"
     32 #include "llvm/IR/Function.h"
     33 #include "llvm/IR/GetElementPtrTypeIterator.h"
     34 #include "llvm/IR/GlobalAlias.h"
     35 #include "llvm/IR/GlobalVariable.h"
     36 #include "llvm/IR/Instructions.h"
     37 #include "llvm/IR/IntrinsicInst.h"
     38 #include "llvm/IR/Operator.h"
     39 #include "llvm/Support/CommandLine.h"
     40 using namespace llvm;
     41 
     42 namespace {
     43 
     44 class AArch64FastISel final : public FastISel {
     45   class Address {
     46   public:
     47     typedef enum {
     48       RegBase,
     49       FrameIndexBase
     50     } BaseKind;
     51 
     52   private:
     53     BaseKind Kind;
     54     AArch64_AM::ShiftExtendType ExtType;
     55     union {
     56       unsigned Reg;
     57       int FI;
     58     } Base;
     59     unsigned OffsetReg;
     60     unsigned Shift;
     61     int64_t Offset;
     62     const GlobalValue *GV;
     63 
     64   public:
     65     Address() : Kind(RegBase), ExtType(AArch64_AM::InvalidShiftExtend),
     66       OffsetReg(0), Shift(0), Offset(0), GV(nullptr) { Base.Reg = 0; }
     67     void setKind(BaseKind K) { Kind = K; }
     68     BaseKind getKind() const { return Kind; }
     69     void setExtendType(AArch64_AM::ShiftExtendType E) { ExtType = E; }
     70     AArch64_AM::ShiftExtendType getExtendType() const { return ExtType; }
     71     bool isRegBase() const { return Kind == RegBase; }
     72     bool isFIBase() const { return Kind == FrameIndexBase; }
     73     void setReg(unsigned Reg) {
     74       assert(isRegBase() && "Invalid base register access!");
     75       Base.Reg = Reg;
     76     }
     77     unsigned getReg() const {
     78       assert(isRegBase() && "Invalid base register access!");
     79       return Base.Reg;
     80     }
     81     void setOffsetReg(unsigned Reg) {
     82       OffsetReg = Reg;
     83     }
     84     unsigned getOffsetReg() const {
     85       return OffsetReg;
     86     }
     87     void setFI(unsigned FI) {
     88       assert(isFIBase() && "Invalid base frame index  access!");
     89       Base.FI = FI;
     90     }
     91     unsigned getFI() const {
     92       assert(isFIBase() && "Invalid base frame index access!");
     93       return Base.FI;
     94     }
     95     void setOffset(int64_t O) { Offset = O; }
     96     int64_t getOffset() { return Offset; }
     97     void setShift(unsigned S) { Shift = S; }
     98     unsigned getShift() { return Shift; }
     99 
    100     void setGlobalValue(const GlobalValue *G) { GV = G; }
    101     const GlobalValue *getGlobalValue() { return GV; }
    102   };
    103 
    104   /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
    105   /// make the right decision when generating code for different targets.
    106   const AArch64Subtarget *Subtarget;
    107   LLVMContext *Context;
    108 
    109   bool fastLowerArguments() override;
    110   bool fastLowerCall(CallLoweringInfo &CLI) override;
    111   bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
    112 
    113 private:
    114   // Selection routines.
    115   bool selectAddSub(const Instruction *I);
    116   bool selectLogicalOp(const Instruction *I);
    117   bool selectLoad(const Instruction *I);
    118   bool selectStore(const Instruction *I);
    119   bool selectBranch(const Instruction *I);
    120   bool selectIndirectBr(const Instruction *I);
    121   bool selectCmp(const Instruction *I);
    122   bool selectSelect(const Instruction *I);
    123   bool selectFPExt(const Instruction *I);
    124   bool selectFPTrunc(const Instruction *I);
    125   bool selectFPToInt(const Instruction *I, bool Signed);
    126   bool selectIntToFP(const Instruction *I, bool Signed);
    127   bool selectRem(const Instruction *I, unsigned ISDOpcode);
    128   bool selectRet(const Instruction *I);
    129   bool selectTrunc(const Instruction *I);
    130   bool selectIntExt(const Instruction *I);
    131   bool selectMul(const Instruction *I);
    132   bool selectShift(const Instruction *I);
    133   bool selectBitCast(const Instruction *I);
    134   bool selectFRem(const Instruction *I);
    135   bool selectSDiv(const Instruction *I);
    136   bool selectGetElementPtr(const Instruction *I);
    137 
    138   // Utility helper routines.
    139   bool isTypeLegal(Type *Ty, MVT &VT);
    140   bool isTypeSupported(Type *Ty, MVT &VT, bool IsVectorAllowed = false);
    141   bool isValueAvailable(const Value *V) const;
    142   bool computeAddress(const Value *Obj, Address &Addr, Type *Ty = nullptr);
    143   bool computeCallAddress(const Value *V, Address &Addr);
    144   bool simplifyAddress(Address &Addr, MVT VT);
    145   void addLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB,
    146                             unsigned Flags, unsigned ScaleFactor,
    147                             MachineMemOperand *MMO);
    148   bool isMemCpySmall(uint64_t Len, unsigned Alignment);
    149   bool tryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
    150                           unsigned Alignment);
    151   bool foldXALUIntrinsic(AArch64CC::CondCode &CC, const Instruction *I,
    152                          const Value *Cond);
    153   bool optimizeIntExtLoad(const Instruction *I, MVT RetVT, MVT SrcVT);
    154   bool optimizeSelect(const SelectInst *SI);
    155   std::pair<unsigned, bool> getRegForGEPIndex(const Value *Idx);
    156 
    157   // Emit helper routines.
    158   unsigned emitAddSub(bool UseAdd, MVT RetVT, const Value *LHS,
    159                       const Value *RHS, bool SetFlags = false,
    160                       bool WantResult = true,  bool IsZExt = false);
    161   unsigned emitAddSub_rr(bool UseAdd, MVT RetVT, unsigned LHSReg,
    162                          bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
    163                          bool SetFlags = false, bool WantResult = true);
    164   unsigned emitAddSub_ri(bool UseAdd, MVT RetVT, unsigned LHSReg,
    165                          bool LHSIsKill, uint64_t Imm, bool SetFlags = false,
    166                          bool WantResult = true);
    167   unsigned emitAddSub_rs(bool UseAdd, MVT RetVT, unsigned LHSReg,
    168                          bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
    169                          AArch64_AM::ShiftExtendType ShiftType,
    170                          uint64_t ShiftImm, bool SetFlags = false,
    171                          bool WantResult = true);
    172   unsigned emitAddSub_rx(bool UseAdd, MVT RetVT, unsigned LHSReg,
    173                          bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
    174                           AArch64_AM::ShiftExtendType ExtType,
    175                           uint64_t ShiftImm, bool SetFlags = false,
    176                          bool WantResult = true);
    177 
    178   // Emit functions.
    179   bool emitCompareAndBranch(const BranchInst *BI);
    180   bool emitCmp(const Value *LHS, const Value *RHS, bool IsZExt);
    181   bool emitICmp(MVT RetVT, const Value *LHS, const Value *RHS, bool IsZExt);
    182   bool emitICmp_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill, uint64_t Imm);
    183   bool emitFCmp(MVT RetVT, const Value *LHS, const Value *RHS);
    184   unsigned emitLoad(MVT VT, MVT ResultVT, Address Addr, bool WantZExt = true,
    185                     MachineMemOperand *MMO = nullptr);
    186   bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
    187                  MachineMemOperand *MMO = nullptr);
    188   unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
    189   unsigned emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt);
    190   unsigned emitAdd(MVT RetVT, const Value *LHS, const Value *RHS,
    191                    bool SetFlags = false, bool WantResult = true,
    192                    bool IsZExt = false);
    193   unsigned emitAdd_ri_(MVT VT, unsigned Op0, bool Op0IsKill, int64_t Imm);
    194   unsigned emitSub(MVT RetVT, const Value *LHS, const Value *RHS,
    195                    bool SetFlags = false, bool WantResult = true,
    196                    bool IsZExt = false);
    197   unsigned emitSubs_rr(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
    198                        unsigned RHSReg, bool RHSIsKill, bool WantResult = true);
    199   unsigned emitSubs_rs(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
    200                        unsigned RHSReg, bool RHSIsKill,
    201                        AArch64_AM::ShiftExtendType ShiftType, uint64_t ShiftImm,
    202                        bool WantResult = true);
    203   unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
    204                          const Value *RHS);
    205   unsigned emitLogicalOp_ri(unsigned ISDOpc, MVT RetVT, unsigned LHSReg,
    206                             bool LHSIsKill, uint64_t Imm);
    207   unsigned emitLogicalOp_rs(unsigned ISDOpc, MVT RetVT, unsigned LHSReg,
    208                             bool LHSIsKill, unsigned RHSReg, bool RHSIsKill,
    209                             uint64_t ShiftImm);
    210   unsigned emitAnd_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill, uint64_t Imm);
    211   unsigned emitMul_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
    212                       unsigned Op1, bool Op1IsKill);
    213   unsigned emitSMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
    214                         unsigned Op1, bool Op1IsKill);
    215   unsigned emitUMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
    216                         unsigned Op1, bool Op1IsKill);
    217   unsigned emitLSL_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
    218                       unsigned Op1Reg, bool Op1IsKill);
    219   unsigned emitLSL_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
    220                       uint64_t Imm, bool IsZExt = true);
    221   unsigned emitLSR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
    222                       unsigned Op1Reg, bool Op1IsKill);
    223   unsigned emitLSR_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
    224                       uint64_t Imm, bool IsZExt = true);
    225   unsigned emitASR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
    226                       unsigned Op1Reg, bool Op1IsKill);
    227   unsigned emitASR_ri(MVT RetVT, MVT SrcVT, unsigned Op0Reg, bool Op0IsKill,
    228                       uint64_t Imm, bool IsZExt = false);
    229 
    230   unsigned materializeInt(const ConstantInt *CI, MVT VT);
    231   unsigned materializeFP(const ConstantFP *CFP, MVT VT);
    232   unsigned materializeGV(const GlobalValue *GV);
    233 
    234   // Call handling routines.
    235 private:
    236   CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
    237   bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
    238                        unsigned &NumBytes);
    239   bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
    240 
    241 public:
    242   // Backend specific FastISel code.
    243   unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
    244   unsigned fastMaterializeConstant(const Constant *C) override;
    245   unsigned fastMaterializeFloatZero(const ConstantFP* CF) override;
    246 
    247   explicit AArch64FastISel(FunctionLoweringInfo &FuncInfo,
    248                            const TargetLibraryInfo *LibInfo)
    249       : FastISel(FuncInfo, LibInfo, /*SkipTargetIndependentISel=*/true) {
    250     Subtarget =
    251         &static_cast<const AArch64Subtarget &>(FuncInfo.MF->getSubtarget());
    252     Context = &FuncInfo.Fn->getContext();
    253   }
    254 
    255   bool fastSelectInstruction(const Instruction *I) override;
    256 
    257 #include "AArch64GenFastISel.inc"
    258 };
    259 
    260 } // end anonymous namespace
    261 
    262 #include "AArch64GenCallingConv.inc"
    263 
    264 /// \brief Check if the sign-/zero-extend will be a noop.
    265 static bool isIntExtFree(const Instruction *I) {
    266   assert((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
    267          "Unexpected integer extend instruction.");
    268   assert(!I->getType()->isVectorTy() && I->getType()->isIntegerTy() &&
    269          "Unexpected value type.");
    270   bool IsZExt = isa<ZExtInst>(I);
    271 
    272   if (const auto *LI = dyn_cast<LoadInst>(I->getOperand(0)))
    273     if (LI->hasOneUse())
    274       return true;
    275 
    276   if (const auto *Arg = dyn_cast<Argument>(I->getOperand(0)))
    277     if ((IsZExt && Arg->hasZExtAttr()) || (!IsZExt && Arg->hasSExtAttr()))
    278       return true;
    279 
    280   return false;
    281 }
    282 
    283 /// \brief Determine the implicit scale factor that is applied by a memory
    284 /// operation for a given value type.
    285 static unsigned getImplicitScaleFactor(MVT VT) {
    286   switch (VT.SimpleTy) {
    287   default:
    288     return 0;    // invalid
    289   case MVT::i1:  // fall-through
    290   case MVT::i8:
    291     return 1;
    292   case MVT::i16:
    293     return 2;
    294   case MVT::i32: // fall-through
    295   case MVT::f32:
    296     return 4;
    297   case MVT::i64: // fall-through
    298   case MVT::f64:
    299     return 8;
    300   }
    301 }
    302 
    303 CCAssignFn *AArch64FastISel::CCAssignFnForCall(CallingConv::ID CC) const {
    304   if (CC == CallingConv::WebKit_JS)
    305     return CC_AArch64_WebKit_JS;
    306   if (CC == CallingConv::GHC)
    307     return CC_AArch64_GHC;
    308   return Subtarget->isTargetDarwin() ? CC_AArch64_DarwinPCS : CC_AArch64_AAPCS;
    309 }
    310 
    311 unsigned AArch64FastISel::fastMaterializeAlloca(const AllocaInst *AI) {
    312   assert(TLI.getValueType(AI->getType(), true) == MVT::i64 &&
    313          "Alloca should always return a pointer.");
    314 
    315   // Don't handle dynamic allocas.
    316   if (!FuncInfo.StaticAllocaMap.count(AI))
    317     return 0;
    318 
    319   DenseMap<const AllocaInst *, int>::iterator SI =
    320       FuncInfo.StaticAllocaMap.find(AI);
    321 
    322   if (SI != FuncInfo.StaticAllocaMap.end()) {
    323     unsigned ResultReg = createResultReg(&AArch64::GPR64spRegClass);
    324     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
    325             ResultReg)
    326         .addFrameIndex(SI->second)
    327         .addImm(0)
    328         .addImm(0);
    329     return ResultReg;
    330   }
    331 
    332   return 0;
    333 }
    334 
    335 unsigned AArch64FastISel::materializeInt(const ConstantInt *CI, MVT VT) {
    336   if (VT > MVT::i64)
    337     return 0;
    338 
    339   if (!CI->isZero())
    340     return fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
    341 
    342   // Create a copy from the zero register to materialize a "0" value.
    343   const TargetRegisterClass *RC = (VT == MVT::i64) ? &AArch64::GPR64RegClass
    344                                                    : &AArch64::GPR32RegClass;
    345   unsigned ZeroReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
    346   unsigned ResultReg = createResultReg(RC);
    347   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
    348           ResultReg).addReg(ZeroReg, getKillRegState(true));
    349   return ResultReg;
    350 }
    351 
    352 unsigned AArch64FastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
    353   // Positive zero (+0.0) has to be materialized with a fmov from the zero
    354   // register, because the immediate version of fmov cannot encode zero.
    355   if (CFP->isNullValue())
    356     return fastMaterializeFloatZero(CFP);
    357 
    358   if (VT != MVT::f32 && VT != MVT::f64)
    359     return 0;
    360 
    361   const APFloat Val = CFP->getValueAPF();
    362   bool Is64Bit = (VT == MVT::f64);
    363   // This checks to see if we can use FMOV instructions to materialize
    364   // a constant, otherwise we have to materialize via the constant pool.
    365   if (TLI.isFPImmLegal(Val, VT)) {
    366     int Imm =
    367         Is64Bit ? AArch64_AM::getFP64Imm(Val) : AArch64_AM::getFP32Imm(Val);
    368     assert((Imm != -1) && "Cannot encode floating-point constant.");
    369     unsigned Opc = Is64Bit ? AArch64::FMOVDi : AArch64::FMOVSi;
    370     return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
    371   }
    372 
    373   // For the MachO large code model materialize the FP constant in code.
    374   if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
    375     unsigned Opc1 = Is64Bit ? AArch64::MOVi64imm : AArch64::MOVi32imm;
    376     const TargetRegisterClass *RC = Is64Bit ?
    377         &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
    378 
    379     unsigned TmpReg = createResultReg(RC);
    380     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc1), TmpReg)
    381         .addImm(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
    382 
    383     unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
    384     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
    385             TII.get(TargetOpcode::COPY), ResultReg)
    386         .addReg(TmpReg, getKillRegState(true));
    387 
    388     return ResultReg;
    389   }
    390 
    391   // Materialize via constant pool.  MachineConstantPool wants an explicit
    392   // alignment.
    393   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
    394   if (Align == 0)
    395     Align = DL.getTypeAllocSize(CFP->getType());
    396 
    397   unsigned CPI = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
    398   unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
    399   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
    400           ADRPReg).addConstantPoolIndex(CPI, 0, AArch64II::MO_PAGE);
    401 
    402   unsigned Opc = Is64Bit ? AArch64::LDRDui : AArch64::LDRSui;
    403   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
    404   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
    405       .addReg(ADRPReg)
    406       .addConstantPoolIndex(CPI, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
    407   return ResultReg;
    408 }
    409 
    410 unsigned AArch64FastISel::materializeGV(const GlobalValue *GV) {
    411   // We can't handle thread-local variables quickly yet.
    412   if (GV->isThreadLocal())
    413     return 0;
    414 
    415   // MachO still uses GOT for large code-model accesses, but ELF requires
    416   // movz/movk sequences, which FastISel doesn't handle yet.
    417   if (TM.getCodeModel() != CodeModel::Small && !Subtarget->isTargetMachO())
    418     return 0;
    419 
    420   unsigned char OpFlags = Subtarget->ClassifyGlobalReference(GV, TM);
    421 
    422   EVT DestEVT = TLI.getValueType(GV->getType(), true);
    423   if (!DestEVT.isSimple())
    424     return 0;
    425 
    426   unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
    427   unsigned ResultReg;
    428 
    429   if (OpFlags & AArch64II::MO_GOT) {
    430     // ADRP + LDRX
    431     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
    432             ADRPReg)
    433       .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGE);
    434 
    435     ResultReg = createResultReg(&AArch64::GPR64RegClass);
    436     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::LDRXui),
    437             ResultReg)
    438       .addReg(ADRPReg)
    439       .addGlobalAddress(GV, 0, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF |
    440                         AArch64II::MO_NC);
    441   } else if (OpFlags & AArch64II::MO_CONSTPOOL) {
    442     // We can't handle addresses loaded from a constant pool quickly yet.
    443     return 0;
    444   } else {
    445     // ADRP + ADDX
    446     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
    447             ADRPReg)
    448       .addGlobalAddress(GV, 0, AArch64II::MO_PAGE);
    449 
    450     ResultReg = createResultReg(&AArch64::GPR64spRegClass);
    451     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
    452             ResultReg)
    453       .addReg(ADRPReg)
    454       .addGlobalAddress(GV, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC)
    455       .addImm(0);
    456   }
    457   return ResultReg;
    458 }
    459 
    460 unsigned AArch64FastISel::fastMaterializeConstant(const Constant *C) {
    461   EVT CEVT = TLI.getValueType(C->getType(), true);
    462 
    463   // Only handle simple types.
    464   if (!CEVT.isSimple())
    465     return 0;
    466   MVT VT = CEVT.getSimpleVT();
    467 
    468   if (const auto *CI = dyn_cast<ConstantInt>(C))
    469     return materializeInt(CI, VT);
    470   else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
    471     return materializeFP(CFP, VT);
    472   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
    473     return materializeGV(GV);
    474 
    475   return 0;
    476 }
    477 
    478 unsigned AArch64FastISel::fastMaterializeFloatZero(const ConstantFP* CFP) {
    479   assert(CFP->isNullValue() &&
    480          "Floating-point constant is not a positive zero.");
    481   MVT VT;
    482   if (!isTypeLegal(CFP->getType(), VT))
    483     return 0;
    484 
    485   if (VT != MVT::f32 && VT != MVT::f64)
    486     return 0;
    487 
    488   bool Is64Bit = (VT == MVT::f64);
    489   unsigned ZReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
    490   unsigned Opc = Is64Bit ? AArch64::FMOVXDr : AArch64::FMOVWSr;
    491   return fastEmitInst_r(Opc, TLI.getRegClassFor(VT), ZReg, /*IsKill=*/true);
    492 }
    493 
    494 /// \brief Check if the multiply is by a power-of-2 constant.
    495 static bool isMulPowOf2(const Value *I) {
    496   if (const auto *MI = dyn_cast<MulOperator>(I)) {
    497     if (const auto *C = dyn_cast<ConstantInt>(MI->getOperand(0)))
    498       if (C->getValue().isPowerOf2())
    499         return true;
    500     if (const auto *C = dyn_cast<ConstantInt>(MI->getOperand(1)))
    501       if (C->getValue().isPowerOf2())
    502         return true;
    503   }
    504   return false;
    505 }
    506 
    507 // Computes the address to get to an object.
    508 bool AArch64FastISel::computeAddress(const Value *Obj, Address &Addr, Type *Ty)
    509 {
    510   const User *U = nullptr;
    511   unsigned Opcode = Instruction::UserOp1;
    512   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
    513     // Don't walk into other basic blocks unless the object is an alloca from
    514     // another block, otherwise it may not have a virtual register assigned.
    515     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
    516         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
    517       Opcode = I->getOpcode();
    518       U = I;
    519     }
    520   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
    521     Opcode = C->getOpcode();
    522     U = C;
    523   }
    524 
    525   if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
    526     if (Ty->getAddressSpace() > 255)
    527       // Fast instruction selection doesn't support the special
    528       // address spaces.
    529       return false;
    530 
    531   switch (Opcode) {
    532   default:
    533     break;
    534   case Instruction::BitCast: {
    535     // Look through bitcasts.
    536     return computeAddress(U->getOperand(0), Addr, Ty);
    537   }
    538   case Instruction::IntToPtr: {
    539     // Look past no-op inttoptrs.
    540     if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
    541       return computeAddress(U->getOperand(0), Addr, Ty);
    542     break;
    543   }
    544   case Instruction::PtrToInt: {
    545     // Look past no-op ptrtoints.
    546     if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
    547       return computeAddress(U->getOperand(0), Addr, Ty);
    548     break;
    549   }
    550   case Instruction::GetElementPtr: {
    551     Address SavedAddr = Addr;
    552     uint64_t TmpOffset = Addr.getOffset();
    553 
    554     // Iterate through the GEP folding the constants into offsets where
    555     // we can.
    556     gep_type_iterator GTI = gep_type_begin(U);
    557     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
    558          ++i, ++GTI) {
    559       const Value *Op = *i;
    560       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    561         const StructLayout *SL = DL.getStructLayout(STy);
    562         unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
    563         TmpOffset += SL->getElementOffset(Idx);
    564       } else {
    565         uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
    566         for (;;) {
    567           if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
    568             // Constant-offset addressing.
    569             TmpOffset += CI->getSExtValue() * S;
    570             break;
    571           }
    572           if (canFoldAddIntoGEP(U, Op)) {
    573             // A compatible add with a constant operand. Fold the constant.
    574             ConstantInt *CI =
    575                 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
    576             TmpOffset += CI->getSExtValue() * S;
    577             // Iterate on the other operand.
    578             Op = cast<AddOperator>(Op)->getOperand(0);
    579             continue;
    580           }
    581           // Unsupported
    582           goto unsupported_gep;
    583         }
    584       }
    585     }
    586 
    587     // Try to grab the base operand now.
    588     Addr.setOffset(TmpOffset);
    589     if (computeAddress(U->getOperand(0), Addr, Ty))
    590       return true;
    591 
    592     // We failed, restore everything and try the other options.
    593     Addr = SavedAddr;
    594 
    595   unsupported_gep:
    596     break;
    597   }
    598   case Instruction::Alloca: {
    599     const AllocaInst *AI = cast<AllocaInst>(Obj);
    600     DenseMap<const AllocaInst *, int>::iterator SI =
    601         FuncInfo.StaticAllocaMap.find(AI);
    602     if (SI != FuncInfo.StaticAllocaMap.end()) {
    603       Addr.setKind(Address::FrameIndexBase);
    604       Addr.setFI(SI->second);
    605       return true;
    606     }
    607     break;
    608   }
    609   case Instruction::Add: {
    610     // Adds of constants are common and easy enough.
    611     const Value *LHS = U->getOperand(0);
    612     const Value *RHS = U->getOperand(1);
    613 
    614     if (isa<ConstantInt>(LHS))
    615       std::swap(LHS, RHS);
    616 
    617     if (const ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
    618       Addr.setOffset(Addr.getOffset() + CI->getSExtValue());
    619       return computeAddress(LHS, Addr, Ty);
    620     }
    621 
    622     Address Backup = Addr;
    623     if (computeAddress(LHS, Addr, Ty) && computeAddress(RHS, Addr, Ty))
    624       return true;
    625     Addr = Backup;
    626 
    627     break;
    628   }
    629   case Instruction::Sub: {
    630     // Subs of constants are common and easy enough.
    631     const Value *LHS = U->getOperand(0);
    632     const Value *RHS = U->getOperand(1);
    633 
    634     if (const ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
    635       Addr.setOffset(Addr.getOffset() - CI->getSExtValue());
    636       return computeAddress(LHS, Addr, Ty);
    637     }
    638     break;
    639   }
    640   case Instruction::Shl: {
    641     if (Addr.getOffsetReg())
    642       break;
    643 
    644     const auto *CI = dyn_cast<ConstantInt>(U->getOperand(1));
    645     if (!CI)
    646       break;
    647 
    648     unsigned Val = CI->getZExtValue();
    649     if (Val < 1 || Val > 3)
    650       break;
    651 
    652     uint64_t NumBytes = 0;
    653     if (Ty && Ty->isSized()) {
    654       uint64_t NumBits = DL.getTypeSizeInBits(Ty);
    655       NumBytes = NumBits / 8;
    656       if (!isPowerOf2_64(NumBits))
    657         NumBytes = 0;
    658     }
    659 
    660     if (NumBytes != (1ULL << Val))
    661       break;
    662 
    663     Addr.setShift(Val);
    664     Addr.setExtendType(AArch64_AM::LSL);
    665 
    666     const Value *Src = U->getOperand(0);
    667     if (const auto *I = dyn_cast<Instruction>(Src))
    668       if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB)
    669         Src = I;
    670 
    671     // Fold the zext or sext when it won't become a noop.
    672     if (const auto *ZE = dyn_cast<ZExtInst>(Src)) {
    673       if (!isIntExtFree(ZE) && ZE->getOperand(0)->getType()->isIntegerTy(32)) {
    674           Addr.setExtendType(AArch64_AM::UXTW);
    675           Src = ZE->getOperand(0);
    676       }
    677     } else if (const auto *SE = dyn_cast<SExtInst>(Src)) {
    678       if (!isIntExtFree(SE) && SE->getOperand(0)->getType()->isIntegerTy(32)) {
    679         Addr.setExtendType(AArch64_AM::SXTW);
    680         Src = SE->getOperand(0);
    681       }
    682     }
    683 
    684     if (const auto *AI = dyn_cast<BinaryOperator>(Src))
    685       if (AI->getOpcode() == Instruction::And) {
    686         const Value *LHS = AI->getOperand(0);
    687         const Value *RHS = AI->getOperand(1);
    688 
    689         if (const auto *C = dyn_cast<ConstantInt>(LHS))
    690           if (C->getValue() == 0xffffffff)
    691             std::swap(LHS, RHS);
    692 
    693         if (const auto *C = dyn_cast<ConstantInt>(RHS))
    694           if (C->getValue() == 0xffffffff) {
    695             Addr.setExtendType(AArch64_AM::UXTW);
    696             unsigned Reg = getRegForValue(LHS);
    697             if (!Reg)
    698               return false;
    699             bool RegIsKill = hasTrivialKill(LHS);
    700             Reg = fastEmitInst_extractsubreg(MVT::i32, Reg, RegIsKill,
    701                                              AArch64::sub_32);
    702             Addr.setOffsetReg(Reg);
    703             return true;
    704           }
    705       }
    706 
    707     unsigned Reg = getRegForValue(Src);
    708     if (!Reg)
    709       return false;
    710     Addr.setOffsetReg(Reg);
    711     return true;
    712   }
    713   case Instruction::Mul: {
    714     if (Addr.getOffsetReg())
    715       break;
    716 
    717     if (!isMulPowOf2(U))
    718       break;
    719 
    720     const Value *LHS = U->getOperand(0);
    721     const Value *RHS = U->getOperand(1);
    722 
    723     // Canonicalize power-of-2 value to the RHS.
    724     if (const auto *C = dyn_cast<ConstantInt>(LHS))
    725       if (C->getValue().isPowerOf2())
    726         std::swap(LHS, RHS);
    727 
    728     assert(isa<ConstantInt>(RHS) && "Expected an ConstantInt.");
    729     const auto *C = cast<ConstantInt>(RHS);
    730     unsigned Val = C->getValue().logBase2();
    731     if (Val < 1 || Val > 3)
    732       break;
    733 
    734     uint64_t NumBytes = 0;
    735     if (Ty && Ty->isSized()) {
    736       uint64_t NumBits = DL.getTypeSizeInBits(Ty);
    737       NumBytes = NumBits / 8;
    738       if (!isPowerOf2_64(NumBits))
    739         NumBytes = 0;
    740     }
    741 
    742     if (NumBytes != (1ULL << Val))
    743       break;
    744 
    745     Addr.setShift(Val);
    746     Addr.setExtendType(AArch64_AM::LSL);
    747 
    748     const Value *Src = LHS;
    749     if (const auto *I = dyn_cast<Instruction>(Src))
    750       if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB)
    751         Src = I;
    752 
    753 
    754     // Fold the zext or sext when it won't become a noop.
    755     if (const auto *ZE = dyn_cast<ZExtInst>(Src)) {
    756       if (!isIntExtFree(ZE) && ZE->getOperand(0)->getType()->isIntegerTy(32)) {
    757         Addr.setExtendType(AArch64_AM::UXTW);
    758         Src = ZE->getOperand(0);
    759       }
    760     } else if (const auto *SE = dyn_cast<SExtInst>(Src)) {
    761       if (!isIntExtFree(SE) && SE->getOperand(0)->getType()->isIntegerTy(32)) {
    762         Addr.setExtendType(AArch64_AM::SXTW);
    763         Src = SE->getOperand(0);
    764       }
    765     }
    766 
    767     unsigned Reg = getRegForValue(Src);
    768     if (!Reg)
    769       return false;
    770     Addr.setOffsetReg(Reg);
    771     return true;
    772   }
    773   case Instruction::And: {
    774     if (Addr.getOffsetReg())
    775       break;
    776 
    777     if (!Ty || DL.getTypeSizeInBits(Ty) != 8)
    778       break;
    779 
    780     const Value *LHS = U->getOperand(0);
    781     const Value *RHS = U->getOperand(1);
    782 
    783     if (const auto *C = dyn_cast<ConstantInt>(LHS))
    784       if (C->getValue() == 0xffffffff)
    785         std::swap(LHS, RHS);
    786 
    787     if (const auto *C = dyn_cast<ConstantInt>(RHS))
    788       if (C->getValue() == 0xffffffff) {
    789         Addr.setShift(0);
    790         Addr.setExtendType(AArch64_AM::LSL);
    791         Addr.setExtendType(AArch64_AM::UXTW);
    792 
    793         unsigned Reg = getRegForValue(LHS);
    794         if (!Reg)
    795           return false;
    796         bool RegIsKill = hasTrivialKill(LHS);
    797         Reg = fastEmitInst_extractsubreg(MVT::i32, Reg, RegIsKill,
    798                                          AArch64::sub_32);
    799         Addr.setOffsetReg(Reg);
    800         return true;
    801       }
    802     break;
    803   }
    804   case Instruction::SExt:
    805   case Instruction::ZExt: {
    806     if (!Addr.getReg() || Addr.getOffsetReg())
    807       break;
    808 
    809     const Value *Src = nullptr;
    810     // Fold the zext or sext when it won't become a noop.
    811     if (const auto *ZE = dyn_cast<ZExtInst>(U)) {
    812       if (!isIntExtFree(ZE) && ZE->getOperand(0)->getType()->isIntegerTy(32)) {
    813         Addr.setExtendType(AArch64_AM::UXTW);
    814         Src = ZE->getOperand(0);
    815       }
    816     } else if (const auto *SE = dyn_cast<SExtInst>(U)) {
    817       if (!isIntExtFree(SE) && SE->getOperand(0)->getType()->isIntegerTy(32)) {
    818         Addr.setExtendType(AArch64_AM::SXTW);
    819         Src = SE->getOperand(0);
    820       }
    821     }
    822 
    823     if (!Src)
    824       break;
    825 
    826     Addr.setShift(0);
    827     unsigned Reg = getRegForValue(Src);
    828     if (!Reg)
    829       return false;
    830     Addr.setOffsetReg(Reg);
    831     return true;
    832   }
    833   } // end switch
    834 
    835   if (Addr.isRegBase() && !Addr.getReg()) {
    836     unsigned Reg = getRegForValue(Obj);
    837     if (!Reg)
    838       return false;
    839     Addr.setReg(Reg);
    840     return true;
    841   }
    842 
    843   if (!Addr.getOffsetReg()) {
    844     unsigned Reg = getRegForValue(Obj);
    845     if (!Reg)
    846       return false;
    847     Addr.setOffsetReg(Reg);
    848     return true;
    849   }
    850 
    851   return false;
    852 }
    853 
    854 bool AArch64FastISel::computeCallAddress(const Value *V, Address &Addr) {
    855   const User *U = nullptr;
    856   unsigned Opcode = Instruction::UserOp1;
    857   bool InMBB = true;
    858 
    859   if (const auto *I = dyn_cast<Instruction>(V)) {
    860     Opcode = I->getOpcode();
    861     U = I;
    862     InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
    863   } else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
    864     Opcode = C->getOpcode();
    865     U = C;
    866   }
    867 
    868   switch (Opcode) {
    869   default: break;
    870   case Instruction::BitCast:
    871     // Look past bitcasts if its operand is in the same BB.
    872     if (InMBB)
    873       return computeCallAddress(U->getOperand(0), Addr);
    874     break;
    875   case Instruction::IntToPtr:
    876     // Look past no-op inttoptrs if its operand is in the same BB.
    877     if (InMBB &&
    878         TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
    879       return computeCallAddress(U->getOperand(0), Addr);
    880     break;
    881   case Instruction::PtrToInt:
    882     // Look past no-op ptrtoints if its operand is in the same BB.
    883     if (InMBB &&
    884         TLI.getValueType(U->getType()) == TLI.getPointerTy())
    885       return computeCallAddress(U->getOperand(0), Addr);
    886     break;
    887   }
    888 
    889   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    890     Addr.setGlobalValue(GV);
    891     return true;
    892   }
    893 
    894   // If all else fails, try to materialize the value in a register.
    895   if (!Addr.getGlobalValue()) {
    896     Addr.setReg(getRegForValue(V));
    897     return Addr.getReg() != 0;
    898   }
    899 
    900   return false;
    901 }
    902 
    903 
    904 bool AArch64FastISel::isTypeLegal(Type *Ty, MVT &VT) {
    905   EVT evt = TLI.getValueType(Ty, true);
    906 
    907   // Only handle simple types.
    908   if (evt == MVT::Other || !evt.isSimple())
    909     return false;
    910   VT = evt.getSimpleVT();
    911 
    912   // This is a legal type, but it's not something we handle in fast-isel.
    913   if (VT == MVT::f128)
    914     return false;
    915 
    916   // Handle all other legal types, i.e. a register that will directly hold this
    917   // value.
    918   return TLI.isTypeLegal(VT);
    919 }
    920 
    921 /// \brief Determine if the value type is supported by FastISel.
    922 ///
    923 /// FastISel for AArch64 can handle more value types than are legal. This adds
    924 /// simple value type such as i1, i8, and i16.
    925 bool AArch64FastISel::isTypeSupported(Type *Ty, MVT &VT, bool IsVectorAllowed) {
    926   if (Ty->isVectorTy() && !IsVectorAllowed)
    927     return false;
    928 
    929   if (isTypeLegal(Ty, VT))
    930     return true;
    931 
    932   // If this is a type than can be sign or zero-extended to a basic operation
    933   // go ahead and accept it now.
    934   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
    935     return true;
    936 
    937   return false;
    938 }
    939 
    940 bool AArch64FastISel::isValueAvailable(const Value *V) const {
    941   if (!isa<Instruction>(V))
    942     return true;
    943 
    944   const auto *I = cast<Instruction>(V);
    945   if (FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB)
    946     return true;
    947 
    948   return false;
    949 }
    950 
    951 bool AArch64FastISel::simplifyAddress(Address &Addr, MVT VT) {
    952   unsigned ScaleFactor = getImplicitScaleFactor(VT);
    953   if (!ScaleFactor)
    954     return false;
    955 
    956   bool ImmediateOffsetNeedsLowering = false;
    957   bool RegisterOffsetNeedsLowering = false;
    958   int64_t Offset = Addr.getOffset();
    959   if (((Offset < 0) || (Offset & (ScaleFactor - 1))) && !isInt<9>(Offset))
    960     ImmediateOffsetNeedsLowering = true;
    961   else if (Offset > 0 && !(Offset & (ScaleFactor - 1)) &&
    962            !isUInt<12>(Offset / ScaleFactor))
    963     ImmediateOffsetNeedsLowering = true;
    964 
    965   // Cannot encode an offset register and an immediate offset in the same
    966   // instruction. Fold the immediate offset into the load/store instruction and
    967   // emit an additonal add to take care of the offset register.
    968   if (!ImmediateOffsetNeedsLowering && Addr.getOffset() && Addr.getOffsetReg())
    969     RegisterOffsetNeedsLowering = true;
    970 
    971   // Cannot encode zero register as base.
    972   if (Addr.isRegBase() && Addr.getOffsetReg() && !Addr.getReg())
    973     RegisterOffsetNeedsLowering = true;
    974 
    975   // If this is a stack pointer and the offset needs to be simplified then put
    976   // the alloca address into a register, set the base type back to register and
    977   // continue. This should almost never happen.
    978   if ((ImmediateOffsetNeedsLowering || Addr.getOffsetReg()) && Addr.isFIBase())
    979   {
    980     unsigned ResultReg = createResultReg(&AArch64::GPR64spRegClass);
    981     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADDXri),
    982             ResultReg)
    983       .addFrameIndex(Addr.getFI())
    984       .addImm(0)
    985       .addImm(0);
    986     Addr.setKind(Address::RegBase);
    987     Addr.setReg(ResultReg);
    988   }
    989 
    990   if (RegisterOffsetNeedsLowering) {
    991     unsigned ResultReg = 0;
    992     if (Addr.getReg()) {
    993       if (Addr.getExtendType() == AArch64_AM::SXTW ||
    994           Addr.getExtendType() == AArch64_AM::UXTW   )
    995         ResultReg = emitAddSub_rx(/*UseAdd=*/true, MVT::i64, Addr.getReg(),
    996                                   /*TODO:IsKill=*/false, Addr.getOffsetReg(),
    997                                   /*TODO:IsKill=*/false, Addr.getExtendType(),
    998                                   Addr.getShift());
    999       else
   1000         ResultReg = emitAddSub_rs(/*UseAdd=*/true, MVT::i64, Addr.getReg(),
   1001                                   /*TODO:IsKill=*/false, Addr.getOffsetReg(),
   1002                                   /*TODO:IsKill=*/false, AArch64_AM::LSL,
   1003                                   Addr.getShift());
   1004     } else {
   1005       if (Addr.getExtendType() == AArch64_AM::UXTW)
   1006         ResultReg = emitLSL_ri(MVT::i64, MVT::i32, Addr.getOffsetReg(),
   1007                                /*Op0IsKill=*/false, Addr.getShift(),
   1008                                /*IsZExt=*/true);
   1009       else if (Addr.getExtendType() == AArch64_AM::SXTW)
   1010         ResultReg = emitLSL_ri(MVT::i64, MVT::i32, Addr.getOffsetReg(),
   1011                                /*Op0IsKill=*/false, Addr.getShift(),
   1012                                /*IsZExt=*/false);
   1013       else
   1014         ResultReg = emitLSL_ri(MVT::i64, MVT::i64, Addr.getOffsetReg(),
   1015                                /*Op0IsKill=*/false, Addr.getShift());
   1016     }
   1017     if (!ResultReg)
   1018       return false;
   1019 
   1020     Addr.setReg(ResultReg);
   1021     Addr.setOffsetReg(0);
   1022     Addr.setShift(0);
   1023     Addr.setExtendType(AArch64_AM::InvalidShiftExtend);
   1024   }
   1025 
   1026   // Since the offset is too large for the load/store instruction get the
   1027   // reg+offset into a register.
   1028   if (ImmediateOffsetNeedsLowering) {
   1029     unsigned ResultReg;
   1030     if (Addr.getReg())
   1031       // Try to fold the immediate into the add instruction.
   1032       ResultReg = emitAdd_ri_(MVT::i64, Addr.getReg(), /*IsKill=*/false, Offset);
   1033     else
   1034       ResultReg = fastEmit_i(MVT::i64, MVT::i64, ISD::Constant, Offset);
   1035 
   1036     if (!ResultReg)
   1037       return false;
   1038     Addr.setReg(ResultReg);
   1039     Addr.setOffset(0);
   1040   }
   1041   return true;
   1042 }
   1043 
   1044 void AArch64FastISel::addLoadStoreOperands(Address &Addr,
   1045                                            const MachineInstrBuilder &MIB,
   1046                                            unsigned Flags,
   1047                                            unsigned ScaleFactor,
   1048                                            MachineMemOperand *MMO) {
   1049   int64_t Offset = Addr.getOffset() / ScaleFactor;
   1050   // Frame base works a bit differently. Handle it separately.
   1051   if (Addr.isFIBase()) {
   1052     int FI = Addr.getFI();
   1053     // FIXME: We shouldn't be using getObjectSize/getObjectAlignment.  The size
   1054     // and alignment should be based on the VT.
   1055     MMO = FuncInfo.MF->getMachineMemOperand(
   1056       MachinePointerInfo::getFixedStack(FI, Offset), Flags,
   1057       MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
   1058     // Now add the rest of the operands.
   1059     MIB.addFrameIndex(FI).addImm(Offset);
   1060   } else {
   1061     assert(Addr.isRegBase() && "Unexpected address kind.");
   1062     const MCInstrDesc &II = MIB->getDesc();
   1063     unsigned Idx = (Flags & MachineMemOperand::MOStore) ? 1 : 0;
   1064     Addr.setReg(
   1065       constrainOperandRegClass(II, Addr.getReg(), II.getNumDefs()+Idx));
   1066     Addr.setOffsetReg(
   1067       constrainOperandRegClass(II, Addr.getOffsetReg(), II.getNumDefs()+Idx+1));
   1068     if (Addr.getOffsetReg()) {
   1069       assert(Addr.getOffset() == 0 && "Unexpected offset");
   1070       bool IsSigned = Addr.getExtendType() == AArch64_AM::SXTW ||
   1071                       Addr.getExtendType() == AArch64_AM::SXTX;
   1072       MIB.addReg(Addr.getReg());
   1073       MIB.addReg(Addr.getOffsetReg());
   1074       MIB.addImm(IsSigned);
   1075       MIB.addImm(Addr.getShift() != 0);
   1076     } else
   1077       MIB.addReg(Addr.getReg()).addImm(Offset);
   1078   }
   1079 
   1080   if (MMO)
   1081     MIB.addMemOperand(MMO);
   1082 }
   1083 
   1084 unsigned AArch64FastISel::emitAddSub(bool UseAdd, MVT RetVT, const Value *LHS,
   1085                                      const Value *RHS, bool SetFlags,
   1086                                      bool WantResult,  bool IsZExt) {
   1087   AArch64_AM::ShiftExtendType ExtendType = AArch64_AM::InvalidShiftExtend;
   1088   bool NeedExtend = false;
   1089   switch (RetVT.SimpleTy) {
   1090   default:
   1091     return 0;
   1092   case MVT::i1:
   1093     NeedExtend = true;
   1094     break;
   1095   case MVT::i8:
   1096     NeedExtend = true;
   1097     ExtendType = IsZExt ? AArch64_AM::UXTB : AArch64_AM::SXTB;
   1098     break;
   1099   case MVT::i16:
   1100     NeedExtend = true;
   1101     ExtendType = IsZExt ? AArch64_AM::UXTH : AArch64_AM::SXTH;
   1102     break;
   1103   case MVT::i32:  // fall-through
   1104   case MVT::i64:
   1105     break;
   1106   }
   1107   MVT SrcVT = RetVT;
   1108   RetVT.SimpleTy = std::max(RetVT.SimpleTy, MVT::i32);
   1109 
   1110   // Canonicalize immediates to the RHS first.
   1111   if (UseAdd && isa<Constant>(LHS) && !isa<Constant>(RHS))
   1112     std::swap(LHS, RHS);
   1113 
   1114   // Canonicalize mul by power of 2 to the RHS.
   1115   if (UseAdd && LHS->hasOneUse() && isValueAvailable(LHS))
   1116     if (isMulPowOf2(LHS))
   1117       std::swap(LHS, RHS);
   1118 
   1119   // Canonicalize shift immediate to the RHS.
   1120   if (UseAdd && LHS->hasOneUse() && isValueAvailable(LHS))
   1121     if (const auto *SI = dyn_cast<BinaryOperator>(LHS))
   1122       if (isa<ConstantInt>(SI->getOperand(1)))
   1123         if (SI->getOpcode() == Instruction::Shl  ||
   1124             SI->getOpcode() == Instruction::LShr ||
   1125             SI->getOpcode() == Instruction::AShr   )
   1126           std::swap(LHS, RHS);
   1127 
   1128   unsigned LHSReg = getRegForValue(LHS);
   1129   if (!LHSReg)
   1130     return 0;
   1131   bool LHSIsKill = hasTrivialKill(LHS);
   1132 
   1133   if (NeedExtend)
   1134     LHSReg = emitIntExt(SrcVT, LHSReg, RetVT, IsZExt);
   1135 
   1136   unsigned ResultReg = 0;
   1137   if (const auto *C = dyn_cast<ConstantInt>(RHS)) {
   1138     uint64_t Imm = IsZExt ? C->getZExtValue() : C->getSExtValue();
   1139     if (C->isNegative())
   1140       ResultReg = emitAddSub_ri(!UseAdd, RetVT, LHSReg, LHSIsKill, -Imm,
   1141                                 SetFlags, WantResult);
   1142     else
   1143       ResultReg = emitAddSub_ri(UseAdd, RetVT, LHSReg, LHSIsKill, Imm, SetFlags,
   1144                                 WantResult);
   1145   } else if (const auto *C = dyn_cast<Constant>(RHS))
   1146     if (C->isNullValue())
   1147       ResultReg = emitAddSub_ri(UseAdd, RetVT, LHSReg, LHSIsKill, 0, SetFlags,
   1148                                 WantResult);
   1149 
   1150   if (ResultReg)
   1151     return ResultReg;
   1152 
   1153   // Only extend the RHS within the instruction if there is a valid extend type.
   1154   if (ExtendType != AArch64_AM::InvalidShiftExtend && RHS->hasOneUse() &&
   1155       isValueAvailable(RHS)) {
   1156     if (const auto *SI = dyn_cast<BinaryOperator>(RHS))
   1157       if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1)))
   1158         if ((SI->getOpcode() == Instruction::Shl) && (C->getZExtValue() < 4)) {
   1159           unsigned RHSReg = getRegForValue(SI->getOperand(0));
   1160           if (!RHSReg)
   1161             return 0;
   1162           bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
   1163           return emitAddSub_rx(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg,
   1164                                RHSIsKill, ExtendType, C->getZExtValue(),
   1165                                SetFlags, WantResult);
   1166         }
   1167     unsigned RHSReg = getRegForValue(RHS);
   1168     if (!RHSReg)
   1169       return 0;
   1170     bool RHSIsKill = hasTrivialKill(RHS);
   1171     return emitAddSub_rx(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
   1172                          ExtendType, 0, SetFlags, WantResult);
   1173   }
   1174 
   1175   // Check if the mul can be folded into the instruction.
   1176   if (RHS->hasOneUse() && isValueAvailable(RHS))
   1177     if (isMulPowOf2(RHS)) {
   1178       const Value *MulLHS = cast<MulOperator>(RHS)->getOperand(0);
   1179       const Value *MulRHS = cast<MulOperator>(RHS)->getOperand(1);
   1180 
   1181       if (const auto *C = dyn_cast<ConstantInt>(MulLHS))
   1182         if (C->getValue().isPowerOf2())
   1183           std::swap(MulLHS, MulRHS);
   1184 
   1185       assert(isa<ConstantInt>(MulRHS) && "Expected a ConstantInt.");
   1186       uint64_t ShiftVal = cast<ConstantInt>(MulRHS)->getValue().logBase2();
   1187       unsigned RHSReg = getRegForValue(MulLHS);
   1188       if (!RHSReg)
   1189         return 0;
   1190       bool RHSIsKill = hasTrivialKill(MulLHS);
   1191       return emitAddSub_rs(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
   1192                            AArch64_AM::LSL, ShiftVal, SetFlags, WantResult);
   1193     }
   1194 
   1195   // Check if the shift can be folded into the instruction.
   1196   if (RHS->hasOneUse() && isValueAvailable(RHS))
   1197     if (const auto *SI = dyn_cast<BinaryOperator>(RHS)) {
   1198       if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1))) {
   1199         AArch64_AM::ShiftExtendType ShiftType = AArch64_AM::InvalidShiftExtend;
   1200         switch (SI->getOpcode()) {
   1201         default: break;
   1202         case Instruction::Shl:  ShiftType = AArch64_AM::LSL; break;
   1203         case Instruction::LShr: ShiftType = AArch64_AM::LSR; break;
   1204         case Instruction::AShr: ShiftType = AArch64_AM::ASR; break;
   1205         }
   1206         uint64_t ShiftVal = C->getZExtValue();
   1207         if (ShiftType != AArch64_AM::InvalidShiftExtend) {
   1208           unsigned RHSReg = getRegForValue(SI->getOperand(0));
   1209           if (!RHSReg)
   1210             return 0;
   1211           bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
   1212           return emitAddSub_rs(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg,
   1213                                RHSIsKill, ShiftType, ShiftVal, SetFlags,
   1214                                WantResult);
   1215         }
   1216       }
   1217     }
   1218 
   1219   unsigned RHSReg = getRegForValue(RHS);
   1220   if (!RHSReg)
   1221     return 0;
   1222   bool RHSIsKill = hasTrivialKill(RHS);
   1223 
   1224   if (NeedExtend)
   1225     RHSReg = emitIntExt(SrcVT, RHSReg, RetVT, IsZExt);
   1226 
   1227   return emitAddSub_rr(UseAdd, RetVT, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
   1228                        SetFlags, WantResult);
   1229 }
   1230 
   1231 unsigned AArch64FastISel::emitAddSub_rr(bool UseAdd, MVT RetVT, unsigned LHSReg,
   1232                                         bool LHSIsKill, unsigned RHSReg,
   1233                                         bool RHSIsKill, bool SetFlags,
   1234                                         bool WantResult) {
   1235   assert(LHSReg && RHSReg && "Invalid register number.");
   1236 
   1237   if (RetVT != MVT::i32 && RetVT != MVT::i64)
   1238     return 0;
   1239 
   1240   static const unsigned OpcTable[2][2][2] = {
   1241     { { AArch64::SUBWrr,  AArch64::SUBXrr  },
   1242       { AArch64::ADDWrr,  AArch64::ADDXrr  }  },
   1243     { { AArch64::SUBSWrr, AArch64::SUBSXrr },
   1244       { AArch64::ADDSWrr, AArch64::ADDSXrr }  }
   1245   };
   1246   bool Is64Bit = RetVT == MVT::i64;
   1247   unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
   1248   const TargetRegisterClass *RC =
   1249       Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
   1250   unsigned ResultReg;
   1251   if (WantResult)
   1252     ResultReg = createResultReg(RC);
   1253   else
   1254     ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
   1255 
   1256   const MCInstrDesc &II = TII.get(Opc);
   1257   LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
   1258   RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
   1259   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
   1260       .addReg(LHSReg, getKillRegState(LHSIsKill))
   1261       .addReg(RHSReg, getKillRegState(RHSIsKill));
   1262   return ResultReg;
   1263 }
   1264 
   1265 unsigned AArch64FastISel::emitAddSub_ri(bool UseAdd, MVT RetVT, unsigned LHSReg,
   1266                                         bool LHSIsKill, uint64_t Imm,
   1267                                         bool SetFlags, bool WantResult) {
   1268   assert(LHSReg && "Invalid register number.");
   1269 
   1270   if (RetVT != MVT::i32 && RetVT != MVT::i64)
   1271     return 0;
   1272 
   1273   unsigned ShiftImm;
   1274   if (isUInt<12>(Imm))
   1275     ShiftImm = 0;
   1276   else if ((Imm & 0xfff000) == Imm) {
   1277     ShiftImm = 12;
   1278     Imm >>= 12;
   1279   } else
   1280     return 0;
   1281 
   1282   static const unsigned OpcTable[2][2][2] = {
   1283     { { AArch64::SUBWri,  AArch64::SUBXri  },
   1284       { AArch64::ADDWri,  AArch64::ADDXri  }  },
   1285     { { AArch64::SUBSWri, AArch64::SUBSXri },
   1286       { AArch64::ADDSWri, AArch64::ADDSXri }  }
   1287   };
   1288   bool Is64Bit = RetVT == MVT::i64;
   1289   unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
   1290   const TargetRegisterClass *RC;
   1291   if (SetFlags)
   1292     RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
   1293   else
   1294     RC = Is64Bit ? &AArch64::GPR64spRegClass : &AArch64::GPR32spRegClass;
   1295   unsigned ResultReg;
   1296   if (WantResult)
   1297     ResultReg = createResultReg(RC);
   1298   else
   1299     ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
   1300 
   1301   const MCInstrDesc &II = TII.get(Opc);
   1302   LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
   1303   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
   1304       .addReg(LHSReg, getKillRegState(LHSIsKill))
   1305       .addImm(Imm)
   1306       .addImm(getShifterImm(AArch64_AM::LSL, ShiftImm));
   1307   return ResultReg;
   1308 }
   1309 
   1310 unsigned AArch64FastISel::emitAddSub_rs(bool UseAdd, MVT RetVT, unsigned LHSReg,
   1311                                         bool LHSIsKill, unsigned RHSReg,
   1312                                         bool RHSIsKill,
   1313                                         AArch64_AM::ShiftExtendType ShiftType,
   1314                                         uint64_t ShiftImm, bool SetFlags,
   1315                                         bool WantResult) {
   1316   assert(LHSReg && RHSReg && "Invalid register number.");
   1317 
   1318   if (RetVT != MVT::i32 && RetVT != MVT::i64)
   1319     return 0;
   1320 
   1321   static const unsigned OpcTable[2][2][2] = {
   1322     { { AArch64::SUBWrs,  AArch64::SUBXrs  },
   1323       { AArch64::ADDWrs,  AArch64::ADDXrs  }  },
   1324     { { AArch64::SUBSWrs, AArch64::SUBSXrs },
   1325       { AArch64::ADDSWrs, AArch64::ADDSXrs }  }
   1326   };
   1327   bool Is64Bit = RetVT == MVT::i64;
   1328   unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
   1329   const TargetRegisterClass *RC =
   1330       Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
   1331   unsigned ResultReg;
   1332   if (WantResult)
   1333     ResultReg = createResultReg(RC);
   1334   else
   1335     ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
   1336 
   1337   const MCInstrDesc &II = TII.get(Opc);
   1338   LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
   1339   RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
   1340   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
   1341       .addReg(LHSReg, getKillRegState(LHSIsKill))
   1342       .addReg(RHSReg, getKillRegState(RHSIsKill))
   1343       .addImm(getShifterImm(ShiftType, ShiftImm));
   1344   return ResultReg;
   1345 }
   1346 
   1347 unsigned AArch64FastISel::emitAddSub_rx(bool UseAdd, MVT RetVT, unsigned LHSReg,
   1348                                         bool LHSIsKill, unsigned RHSReg,
   1349                                         bool RHSIsKill,
   1350                                         AArch64_AM::ShiftExtendType ExtType,
   1351                                         uint64_t ShiftImm, bool SetFlags,
   1352                                         bool WantResult) {
   1353   assert(LHSReg && RHSReg && "Invalid register number.");
   1354 
   1355   if (RetVT != MVT::i32 && RetVT != MVT::i64)
   1356     return 0;
   1357 
   1358   static const unsigned OpcTable[2][2][2] = {
   1359     { { AArch64::SUBWrx,  AArch64::SUBXrx  },
   1360       { AArch64::ADDWrx,  AArch64::ADDXrx  }  },
   1361     { { AArch64::SUBSWrx, AArch64::SUBSXrx },
   1362       { AArch64::ADDSWrx, AArch64::ADDSXrx }  }
   1363   };
   1364   bool Is64Bit = RetVT == MVT::i64;
   1365   unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit];
   1366   const TargetRegisterClass *RC = nullptr;
   1367   if (SetFlags)
   1368     RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
   1369   else
   1370     RC = Is64Bit ? &AArch64::GPR64spRegClass : &AArch64::GPR32spRegClass;
   1371   unsigned ResultReg;
   1372   if (WantResult)
   1373     ResultReg = createResultReg(RC);
   1374   else
   1375     ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR;
   1376 
   1377   const MCInstrDesc &II = TII.get(Opc);
   1378   LHSReg = constrainOperandRegClass(II, LHSReg, II.getNumDefs());
   1379   RHSReg = constrainOperandRegClass(II, RHSReg, II.getNumDefs() + 1);
   1380   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
   1381       .addReg(LHSReg, getKillRegState(LHSIsKill))
   1382       .addReg(RHSReg, getKillRegState(RHSIsKill))
   1383       .addImm(getArithExtendImm(ExtType, ShiftImm));
   1384   return ResultReg;
   1385 }
   1386 
   1387 bool AArch64FastISel::emitCmp(const Value *LHS, const Value *RHS, bool IsZExt) {
   1388   Type *Ty = LHS->getType();
   1389   EVT EVT = TLI.getValueType(Ty, true);
   1390   if (!EVT.isSimple())
   1391     return false;
   1392   MVT VT = EVT.getSimpleVT();
   1393 
   1394   switch (VT.SimpleTy) {
   1395   default:
   1396     return false;
   1397   case MVT::i1:
   1398   case MVT::i8:
   1399   case MVT::i16:
   1400   case MVT::i32:
   1401   case MVT::i64:
   1402     return emitICmp(VT, LHS, RHS, IsZExt);
   1403   case MVT::f32:
   1404   case MVT::f64:
   1405     return emitFCmp(VT, LHS, RHS);
   1406   }
   1407 }
   1408 
   1409 bool AArch64FastISel::emitICmp(MVT RetVT, const Value *LHS, const Value *RHS,
   1410                                bool IsZExt) {
   1411   return emitSub(RetVT, LHS, RHS, /*SetFlags=*/true, /*WantResult=*/false,
   1412                  IsZExt) != 0;
   1413 }
   1414 
   1415 bool AArch64FastISel::emitICmp_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
   1416                                   uint64_t Imm) {
   1417   return emitAddSub_ri(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, Imm,
   1418                        /*SetFlags=*/true, /*WantResult=*/false) != 0;
   1419 }
   1420 
   1421 bool AArch64FastISel::emitFCmp(MVT RetVT, const Value *LHS, const Value *RHS) {
   1422   if (RetVT != MVT::f32 && RetVT != MVT::f64)
   1423     return false;
   1424 
   1425   // Check to see if the 2nd operand is a constant that we can encode directly
   1426   // in the compare.
   1427   bool UseImm = false;
   1428   if (const auto *CFP = dyn_cast<ConstantFP>(RHS))
   1429     if (CFP->isZero() && !CFP->isNegative())
   1430       UseImm = true;
   1431 
   1432   unsigned LHSReg = getRegForValue(LHS);
   1433   if (!LHSReg)
   1434     return false;
   1435   bool LHSIsKill = hasTrivialKill(LHS);
   1436 
   1437   if (UseImm) {
   1438     unsigned Opc = (RetVT == MVT::f64) ? AArch64::FCMPDri : AArch64::FCMPSri;
   1439     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
   1440         .addReg(LHSReg, getKillRegState(LHSIsKill));
   1441     return true;
   1442   }
   1443 
   1444   unsigned RHSReg = getRegForValue(RHS);
   1445   if (!RHSReg)
   1446     return false;
   1447   bool RHSIsKill = hasTrivialKill(RHS);
   1448 
   1449   unsigned Opc = (RetVT == MVT::f64) ? AArch64::FCMPDrr : AArch64::FCMPSrr;
   1450   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
   1451       .addReg(LHSReg, getKillRegState(LHSIsKill))
   1452       .addReg(RHSReg, getKillRegState(RHSIsKill));
   1453   return true;
   1454 }
   1455 
   1456 unsigned AArch64FastISel::emitAdd(MVT RetVT, const Value *LHS, const Value *RHS,
   1457                                   bool SetFlags, bool WantResult, bool IsZExt) {
   1458   return emitAddSub(/*UseAdd=*/true, RetVT, LHS, RHS, SetFlags, WantResult,
   1459                     IsZExt);
   1460 }
   1461 
   1462 /// \brief This method is a wrapper to simplify add emission.
   1463 ///
   1464 /// First try to emit an add with an immediate operand using emitAddSub_ri. If
   1465 /// that fails, then try to materialize the immediate into a register and use
   1466 /// emitAddSub_rr instead.
   1467 unsigned AArch64FastISel::emitAdd_ri_(MVT VT, unsigned Op0, bool Op0IsKill,
   1468                                       int64_t Imm) {
   1469   unsigned ResultReg;
   1470   if (Imm < 0)
   1471     ResultReg = emitAddSub_ri(false, VT, Op0, Op0IsKill, -Imm);
   1472   else
   1473     ResultReg = emitAddSub_ri(true, VT, Op0, Op0IsKill, Imm);
   1474 
   1475   if (ResultReg)
   1476     return ResultReg;
   1477 
   1478   unsigned CReg = fastEmit_i(VT, VT, ISD::Constant, Imm);
   1479   if (!CReg)
   1480     return 0;
   1481 
   1482   ResultReg = emitAddSub_rr(true, VT, Op0, Op0IsKill, CReg, true);
   1483   return ResultReg;
   1484 }
   1485 
   1486 unsigned AArch64FastISel::emitSub(MVT RetVT, const Value *LHS, const Value *RHS,
   1487                                   bool SetFlags, bool WantResult, bool IsZExt) {
   1488   return emitAddSub(/*UseAdd=*/false, RetVT, LHS, RHS, SetFlags, WantResult,
   1489                     IsZExt);
   1490 }
   1491 
   1492 unsigned AArch64FastISel::emitSubs_rr(MVT RetVT, unsigned LHSReg,
   1493                                       bool LHSIsKill, unsigned RHSReg,
   1494                                       bool RHSIsKill, bool WantResult) {
   1495   return emitAddSub_rr(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, RHSReg,
   1496                        RHSIsKill, /*SetFlags=*/true, WantResult);
   1497 }
   1498 
   1499 unsigned AArch64FastISel::emitSubs_rs(MVT RetVT, unsigned LHSReg,
   1500                                       bool LHSIsKill, unsigned RHSReg,
   1501                                       bool RHSIsKill,
   1502                                       AArch64_AM::ShiftExtendType ShiftType,
   1503                                       uint64_t ShiftImm, bool WantResult) {
   1504   return emitAddSub_rs(/*UseAdd=*/false, RetVT, LHSReg, LHSIsKill, RHSReg,
   1505                        RHSIsKill, ShiftType, ShiftImm, /*SetFlags=*/true,
   1506                        WantResult);
   1507 }
   1508 
   1509 unsigned AArch64FastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
   1510                                         const Value *LHS, const Value *RHS) {
   1511   // Canonicalize immediates to the RHS first.
   1512   if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
   1513     std::swap(LHS, RHS);
   1514 
   1515   // Canonicalize mul by power-of-2 to the RHS.
   1516   if (LHS->hasOneUse() && isValueAvailable(LHS))
   1517     if (isMulPowOf2(LHS))
   1518       std::swap(LHS, RHS);
   1519 
   1520   // Canonicalize shift immediate to the RHS.
   1521   if (LHS->hasOneUse() && isValueAvailable(LHS))
   1522     if (const auto *SI = dyn_cast<ShlOperator>(LHS))
   1523       if (isa<ConstantInt>(SI->getOperand(1)))
   1524         std::swap(LHS, RHS);
   1525 
   1526   unsigned LHSReg = getRegForValue(LHS);
   1527   if (!LHSReg)
   1528     return 0;
   1529   bool LHSIsKill = hasTrivialKill(LHS);
   1530 
   1531   unsigned ResultReg = 0;
   1532   if (const auto *C = dyn_cast<ConstantInt>(RHS)) {
   1533     uint64_t Imm = C->getZExtValue();
   1534     ResultReg = emitLogicalOp_ri(ISDOpc, RetVT, LHSReg, LHSIsKill, Imm);
   1535   }
   1536   if (ResultReg)
   1537     return ResultReg;
   1538 
   1539   // Check if the mul can be folded into the instruction.
   1540   if (RHS->hasOneUse() && isValueAvailable(RHS))
   1541     if (isMulPowOf2(RHS)) {
   1542       const Value *MulLHS = cast<MulOperator>(RHS)->getOperand(0);
   1543       const Value *MulRHS = cast<MulOperator>(RHS)->getOperand(1);
   1544 
   1545       if (const auto *C = dyn_cast<ConstantInt>(MulLHS))
   1546         if (C->getValue().isPowerOf2())
   1547           std::swap(MulLHS, MulRHS);
   1548 
   1549       assert(isa<ConstantInt>(MulRHS) && "Expected a ConstantInt.");
   1550       uint64_t ShiftVal = cast<ConstantInt>(MulRHS)->getValue().logBase2();
   1551 
   1552       unsigned RHSReg = getRegForValue(MulLHS);
   1553       if (!RHSReg)
   1554         return 0;
   1555       bool RHSIsKill = hasTrivialKill(MulLHS);
   1556       return emitLogicalOp_rs(ISDOpc, RetVT, LHSReg, LHSIsKill, RHSReg,
   1557                               RHSIsKill, ShiftVal);
   1558     }
   1559 
   1560   // Check if the shift can be folded into the instruction.
   1561   if (RHS->hasOneUse() && isValueAvailable(RHS))
   1562     if (const auto *SI = dyn_cast<ShlOperator>(RHS))
   1563       if (const auto *C = dyn_cast<ConstantInt>(SI->getOperand(1))) {
   1564         uint64_t ShiftVal = C->getZExtValue();
   1565         unsigned RHSReg = getRegForValue(SI->getOperand(0));
   1566         if (!RHSReg)
   1567           return 0;
   1568         bool RHSIsKill = hasTrivialKill(SI->getOperand(0));
   1569         return emitLogicalOp_rs(ISDOpc, RetVT, LHSReg, LHSIsKill, RHSReg,
   1570                                 RHSIsKill, ShiftVal);
   1571       }
   1572 
   1573   unsigned RHSReg = getRegForValue(RHS);
   1574   if (!RHSReg)
   1575     return 0;
   1576   bool RHSIsKill = hasTrivialKill(RHS);
   1577 
   1578   MVT VT = std::max(MVT::i32, RetVT.SimpleTy);
   1579   ResultReg = fastEmit_rr(VT, VT, ISDOpc, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
   1580   if (RetVT >= MVT::i8 && RetVT <= MVT::i16) {
   1581     uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
   1582     ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
   1583   }
   1584   return ResultReg;
   1585 }
   1586 
   1587 unsigned AArch64FastISel::emitLogicalOp_ri(unsigned ISDOpc, MVT RetVT,
   1588                                            unsigned LHSReg, bool LHSIsKill,
   1589                                            uint64_t Imm) {
   1590   assert((ISD::AND + 1 == ISD::OR) && (ISD::AND + 2 == ISD::XOR) &&
   1591          "ISD nodes are not consecutive!");
   1592   static const unsigned OpcTable[3][2] = {
   1593     { AArch64::ANDWri, AArch64::ANDXri },
   1594     { AArch64::ORRWri, AArch64::ORRXri },
   1595     { AArch64::EORWri, AArch64::EORXri }
   1596   };
   1597   const TargetRegisterClass *RC;
   1598   unsigned Opc;
   1599   unsigned RegSize;
   1600   switch (RetVT.SimpleTy) {
   1601   default:
   1602     return 0;
   1603   case MVT::i1:
   1604   case MVT::i8:
   1605   case MVT::i16:
   1606   case MVT::i32: {
   1607     unsigned Idx = ISDOpc - ISD::AND;
   1608     Opc = OpcTable[Idx][0];
   1609     RC = &AArch64::GPR32spRegClass;
   1610     RegSize = 32;
   1611     break;
   1612   }
   1613   case MVT::i64:
   1614     Opc = OpcTable[ISDOpc - ISD::AND][1];
   1615     RC = &AArch64::GPR64spRegClass;
   1616     RegSize = 64;
   1617     break;
   1618   }
   1619 
   1620   if (!AArch64_AM::isLogicalImmediate(Imm, RegSize))
   1621     return 0;
   1622 
   1623   unsigned ResultReg =
   1624       fastEmitInst_ri(Opc, RC, LHSReg, LHSIsKill,
   1625                       AArch64_AM::encodeLogicalImmediate(Imm, RegSize));
   1626   if (RetVT >= MVT::i8 && RetVT <= MVT::i16 && ISDOpc != ISD::AND) {
   1627     uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
   1628     ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
   1629   }
   1630   return ResultReg;
   1631 }
   1632 
   1633 unsigned AArch64FastISel::emitLogicalOp_rs(unsigned ISDOpc, MVT RetVT,
   1634                                            unsigned LHSReg, bool LHSIsKill,
   1635                                            unsigned RHSReg, bool RHSIsKill,
   1636                                            uint64_t ShiftImm) {
   1637   assert((ISD::AND + 1 == ISD::OR) && (ISD::AND + 2 == ISD::XOR) &&
   1638          "ISD nodes are not consecutive!");
   1639   static const unsigned OpcTable[3][2] = {
   1640     { AArch64::ANDWrs, AArch64::ANDXrs },
   1641     { AArch64::ORRWrs, AArch64::ORRXrs },
   1642     { AArch64::EORWrs, AArch64::EORXrs }
   1643   };
   1644   const TargetRegisterClass *RC;
   1645   unsigned Opc;
   1646   switch (RetVT.SimpleTy) {
   1647   default:
   1648     return 0;
   1649   case MVT::i1:
   1650   case MVT::i8:
   1651   case MVT::i16:
   1652   case MVT::i32:
   1653     Opc = OpcTable[ISDOpc - ISD::AND][0];
   1654     RC = &AArch64::GPR32RegClass;
   1655     break;
   1656   case MVT::i64:
   1657     Opc = OpcTable[ISDOpc - ISD::AND][1];
   1658     RC = &AArch64::GPR64RegClass;
   1659     break;
   1660   }
   1661   unsigned ResultReg =
   1662       fastEmitInst_rri(Opc, RC, LHSReg, LHSIsKill, RHSReg, RHSIsKill,
   1663                        AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftImm));
   1664   if (RetVT >= MVT::i8 && RetVT <= MVT::i16) {
   1665     uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff;
   1666     ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
   1667   }
   1668   return ResultReg;
   1669 }
   1670 
   1671 unsigned AArch64FastISel::emitAnd_ri(MVT RetVT, unsigned LHSReg, bool LHSIsKill,
   1672                                      uint64_t Imm) {
   1673   return emitLogicalOp_ri(ISD::AND, RetVT, LHSReg, LHSIsKill, Imm);
   1674 }
   1675 
   1676 unsigned AArch64FastISel::emitLoad(MVT VT, MVT RetVT, Address Addr,
   1677                                    bool WantZExt, MachineMemOperand *MMO) {
   1678   // Simplify this down to something we can handle.
   1679   if (!simplifyAddress(Addr, VT))
   1680     return 0;
   1681 
   1682   unsigned ScaleFactor = getImplicitScaleFactor(VT);
   1683   if (!ScaleFactor)
   1684     llvm_unreachable("Unexpected value type.");
   1685 
   1686   // Negative offsets require unscaled, 9-bit, signed immediate offsets.
   1687   // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
   1688   bool UseScaled = true;
   1689   if ((Addr.getOffset() < 0) || (Addr.getOffset() & (ScaleFactor - 1))) {
   1690     UseScaled = false;
   1691     ScaleFactor = 1;
   1692   }
   1693 
   1694   static const unsigned GPOpcTable[2][8][4] = {
   1695     // Sign-extend.
   1696     { { AArch64::LDURSBWi,  AArch64::LDURSHWi,  AArch64::LDURWi,
   1697         AArch64::LDURXi  },
   1698       { AArch64::LDURSBXi,  AArch64::LDURSHXi,  AArch64::LDURSWi,
   1699         AArch64::LDURXi  },
   1700       { AArch64::LDRSBWui,  AArch64::LDRSHWui,  AArch64::LDRWui,
   1701         AArch64::LDRXui  },
   1702       { AArch64::LDRSBXui,  AArch64::LDRSHXui,  AArch64::LDRSWui,
   1703         AArch64::LDRXui  },
   1704       { AArch64::LDRSBWroX, AArch64::LDRSHWroX, AArch64::LDRWroX,
   1705         AArch64::LDRXroX },
   1706       { AArch64::LDRSBXroX, AArch64::LDRSHXroX, AArch64::LDRSWroX,
   1707         AArch64::LDRXroX },
   1708       { AArch64::LDRSBWroW, AArch64::LDRSHWroW, AArch64::LDRWroW,
   1709         AArch64::LDRXroW },
   1710       { AArch64::LDRSBXroW, AArch64::LDRSHXroW, AArch64::LDRSWroW,
   1711         AArch64::LDRXroW }
   1712     },
   1713     // Zero-extend.
   1714     { { AArch64::LDURBBi,   AArch64::LDURHHi,   AArch64::LDURWi,
   1715         AArch64::LDURXi  },
   1716       { AArch64::LDURBBi,   AArch64::LDURHHi,   AArch64::LDURWi,
   1717         AArch64::LDURXi  },
   1718       { AArch64::LDRBBui,   AArch64::LDRHHui,   AArch64::LDRWui,
   1719         AArch64::LDRXui  },
   1720       { AArch64::LDRBBui,   AArch64::LDRHHui,   AArch64::LDRWui,
   1721         AArch64::LDRXui  },
   1722       { AArch64::LDRBBroX,  AArch64::LDRHHroX,  AArch64::LDRWroX,
   1723         AArch64::LDRXroX },
   1724       { AArch64::LDRBBroX,  AArch64::LDRHHroX,  AArch64::LDRWroX,
   1725         AArch64::LDRXroX },
   1726       { AArch64::LDRBBroW,  AArch64::LDRHHroW,  AArch64::LDRWroW,
   1727         AArch64::LDRXroW },
   1728       { AArch64::LDRBBroW,  AArch64::LDRHHroW,  AArch64::LDRWroW,
   1729         AArch64::LDRXroW }
   1730     }
   1731   };
   1732 
   1733   static const unsigned FPOpcTable[4][2] = {
   1734     { AArch64::LDURSi,  AArch64::LDURDi  },
   1735     { AArch64::LDRSui,  AArch64::LDRDui  },
   1736     { AArch64::LDRSroX, AArch64::LDRDroX },
   1737     { AArch64::LDRSroW, AArch64::LDRDroW }
   1738   };
   1739 
   1740   unsigned Opc;
   1741   const TargetRegisterClass *RC;
   1742   bool UseRegOffset = Addr.isRegBase() && !Addr.getOffset() && Addr.getReg() &&
   1743                       Addr.getOffsetReg();
   1744   unsigned Idx = UseRegOffset ? 2 : UseScaled ? 1 : 0;
   1745   if (Addr.getExtendType() == AArch64_AM::UXTW ||
   1746       Addr.getExtendType() == AArch64_AM::SXTW)
   1747     Idx++;
   1748 
   1749   bool IsRet64Bit = RetVT == MVT::i64;
   1750   switch (VT.SimpleTy) {
   1751   default:
   1752     llvm_unreachable("Unexpected value type.");
   1753   case MVT::i1: // Intentional fall-through.
   1754   case MVT::i8:
   1755     Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][0];
   1756     RC = (IsRet64Bit && !WantZExt) ?
   1757              &AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
   1758     break;
   1759   case MVT::i16:
   1760     Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][1];
   1761     RC = (IsRet64Bit && !WantZExt) ?
   1762              &AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
   1763     break;
   1764   case MVT::i32:
   1765     Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][2];
   1766     RC = (IsRet64Bit && !WantZExt) ?
   1767              &AArch64::GPR64RegClass: &AArch64::GPR32RegClass;
   1768     break;
   1769   case MVT::i64:
   1770     Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][3];
   1771     RC = &AArch64::GPR64RegClass;
   1772     break;
   1773   case MVT::f32:
   1774     Opc = FPOpcTable[Idx][0];
   1775     RC = &AArch64::FPR32RegClass;
   1776     break;
   1777   case MVT::f64:
   1778     Opc = FPOpcTable[Idx][1];
   1779     RC = &AArch64::FPR64RegClass;
   1780     break;
   1781   }
   1782 
   1783   // Create the base instruction, then add the operands.
   1784   unsigned ResultReg = createResultReg(RC);
   1785   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1786                                     TII.get(Opc), ResultReg);
   1787   addLoadStoreOperands(Addr, MIB, MachineMemOperand::MOLoad, ScaleFactor, MMO);
   1788 
   1789   // Loading an i1 requires special handling.
   1790   if (VT == MVT::i1) {
   1791     unsigned ANDReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, 1);
   1792     assert(ANDReg && "Unexpected AND instruction emission failure.");
   1793     ResultReg = ANDReg;
   1794   }
   1795 
   1796   // For zero-extending loads to 64bit we emit a 32bit load and then convert
   1797   // the 32bit reg to a 64bit reg.
   1798   if (WantZExt && RetVT == MVT::i64 && VT <= MVT::i32) {
   1799     unsigned Reg64 = createResultReg(&AArch64::GPR64RegClass);
   1800     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   1801             TII.get(AArch64::SUBREG_TO_REG), Reg64)
   1802         .addImm(0)
   1803         .addReg(ResultReg, getKillRegState(true))
   1804         .addImm(AArch64::sub_32);
   1805     ResultReg = Reg64;
   1806   }
   1807   return ResultReg;
   1808 }
   1809 
   1810 bool AArch64FastISel::selectAddSub(const Instruction *I) {
   1811   MVT VT;
   1812   if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
   1813     return false;
   1814 
   1815   if (VT.isVector())
   1816     return selectOperator(I, I->getOpcode());
   1817 
   1818   unsigned ResultReg;
   1819   switch (I->getOpcode()) {
   1820   default:
   1821     llvm_unreachable("Unexpected instruction.");
   1822   case Instruction::Add:
   1823     ResultReg = emitAdd(VT, I->getOperand(0), I->getOperand(1));
   1824     break;
   1825   case Instruction::Sub:
   1826     ResultReg = emitSub(VT, I->getOperand(0), I->getOperand(1));
   1827     break;
   1828   }
   1829   if (!ResultReg)
   1830     return false;
   1831 
   1832   updateValueMap(I, ResultReg);
   1833   return true;
   1834 }
   1835 
   1836 bool AArch64FastISel::selectLogicalOp(const Instruction *I) {
   1837   MVT VT;
   1838   if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
   1839     return false;
   1840 
   1841   if (VT.isVector())
   1842     return selectOperator(I, I->getOpcode());
   1843 
   1844   unsigned ResultReg;
   1845   switch (I->getOpcode()) {
   1846   default:
   1847     llvm_unreachable("Unexpected instruction.");
   1848   case Instruction::And:
   1849     ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
   1850     break;
   1851   case Instruction::Or:
   1852     ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
   1853     break;
   1854   case Instruction::Xor:
   1855     ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
   1856     break;
   1857   }
   1858   if (!ResultReg)
   1859     return false;
   1860 
   1861   updateValueMap(I, ResultReg);
   1862   return true;
   1863 }
   1864 
   1865 bool AArch64FastISel::selectLoad(const Instruction *I) {
   1866   MVT VT;
   1867   // Verify we have a legal type before going any further.  Currently, we handle
   1868   // simple types that will directly fit in a register (i32/f32/i64/f64) or
   1869   // those that can be sign or zero-extended to a basic operation (i1/i8/i16).
   1870   if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true) ||
   1871       cast<LoadInst>(I)->isAtomic())
   1872     return false;
   1873 
   1874   // See if we can handle this address.
   1875   Address Addr;
   1876   if (!computeAddress(I->getOperand(0), Addr, I->getType()))
   1877     return false;
   1878 
   1879   // Fold the following sign-/zero-extend into the load instruction.
   1880   bool WantZExt = true;
   1881   MVT RetVT = VT;
   1882   const Value *IntExtVal = nullptr;
   1883   if (I->hasOneUse()) {
   1884     if (const auto *ZE = dyn_cast<ZExtInst>(I->use_begin()->getUser())) {
   1885       if (isTypeSupported(ZE->getType(), RetVT))
   1886         IntExtVal = ZE;
   1887       else
   1888         RetVT = VT;
   1889     } else if (const auto *SE = dyn_cast<SExtInst>(I->use_begin()->getUser())) {
   1890       if (isTypeSupported(SE->getType(), RetVT))
   1891         IntExtVal = SE;
   1892       else
   1893         RetVT = VT;
   1894       WantZExt = false;
   1895     }
   1896   }
   1897 
   1898   unsigned ResultReg =
   1899       emitLoad(VT, RetVT, Addr, WantZExt, createMachineMemOperandFor(I));
   1900   if (!ResultReg)
   1901     return false;
   1902 
   1903   // There are a few different cases we have to handle, because the load or the
   1904   // sign-/zero-extend might not be selected by FastISel if we fall-back to
   1905   // SelectionDAG. There is also an ordering issue when both instructions are in
   1906   // different basic blocks.
   1907   // 1.) The load instruction is selected by FastISel, but the integer extend
   1908   //     not. This usually happens when the integer extend is in a different
   1909   //     basic block and SelectionDAG took over for that basic block.
   1910   // 2.) The load instruction is selected before the integer extend. This only
   1911   //     happens when the integer extend is in a different basic block.
   1912   // 3.) The load instruction is selected by SelectionDAG and the integer extend
   1913   //     by FastISel. This happens if there are instructions between the load
   1914   //     and the integer extend that couldn't be selected by FastISel.
   1915   if (IntExtVal) {
   1916     // The integer extend hasn't been emitted yet. FastISel or SelectionDAG
   1917     // could select it. Emit a copy to subreg if necessary. FastISel will remove
   1918     // it when it selects the integer extend.
   1919     unsigned Reg = lookUpRegForValue(IntExtVal);
   1920     auto *MI = MRI.getUniqueVRegDef(Reg);
   1921     if (!MI) {
   1922       if (RetVT == MVT::i64 && VT <= MVT::i32) {
   1923         if (WantZExt) {
   1924           // Delete the last emitted instruction from emitLoad (SUBREG_TO_REG).
   1925           std::prev(FuncInfo.InsertPt)->eraseFromParent();
   1926           ResultReg = std::prev(FuncInfo.InsertPt)->getOperand(0).getReg();
   1927         } else
   1928           ResultReg = fastEmitInst_extractsubreg(MVT::i32, ResultReg,
   1929                                                  /*IsKill=*/true,
   1930                                                  AArch64::sub_32);
   1931       }
   1932       updateValueMap(I, ResultReg);
   1933       return true;
   1934     }
   1935 
   1936     // The integer extend has already been emitted - delete all the instructions
   1937     // that have been emitted by the integer extend lowering code and use the
   1938     // result from the load instruction directly.
   1939     while (MI) {
   1940       Reg = 0;
   1941       for (auto &Opnd : MI->uses()) {
   1942         if (Opnd.isReg()) {
   1943           Reg = Opnd.getReg();
   1944           break;
   1945         }
   1946       }
   1947       MI->eraseFromParent();
   1948       MI = nullptr;
   1949       if (Reg)
   1950         MI = MRI.getUniqueVRegDef(Reg);
   1951     }
   1952     updateValueMap(IntExtVal, ResultReg);
   1953     return true;
   1954   }
   1955 
   1956   updateValueMap(I, ResultReg);
   1957   return true;
   1958 }
   1959 
   1960 bool AArch64FastISel::emitStore(MVT VT, unsigned SrcReg, Address Addr,
   1961                                 MachineMemOperand *MMO) {
   1962   // Simplify this down to something we can handle.
   1963   if (!simplifyAddress(Addr, VT))
   1964     return false;
   1965 
   1966   unsigned ScaleFactor = getImplicitScaleFactor(VT);
   1967   if (!ScaleFactor)
   1968     llvm_unreachable("Unexpected value type.");
   1969 
   1970   // Negative offsets require unscaled, 9-bit, signed immediate offsets.
   1971   // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
   1972   bool UseScaled = true;
   1973   if ((Addr.getOffset() < 0) || (Addr.getOffset() & (ScaleFactor - 1))) {
   1974     UseScaled = false;
   1975     ScaleFactor = 1;
   1976   }
   1977 
   1978   static const unsigned OpcTable[4][6] = {
   1979     { AArch64::STURBBi,  AArch64::STURHHi,  AArch64::STURWi,  AArch64::STURXi,
   1980       AArch64::STURSi,   AArch64::STURDi },
   1981     { AArch64::STRBBui,  AArch64::STRHHui,  AArch64::STRWui,  AArch64::STRXui,
   1982       AArch64::STRSui,   AArch64::STRDui },
   1983     { AArch64::STRBBroX, AArch64::STRHHroX, AArch64::STRWroX, AArch64::STRXroX,
   1984       AArch64::STRSroX,  AArch64::STRDroX },
   1985     { AArch64::STRBBroW, AArch64::STRHHroW, AArch64::STRWroW, AArch64::STRXroW,
   1986       AArch64::STRSroW,  AArch64::STRDroW }
   1987   };
   1988 
   1989   unsigned Opc;
   1990   bool VTIsi1 = false;
   1991   bool UseRegOffset = Addr.isRegBase() && !Addr.getOffset() && Addr.getReg() &&
   1992                       Addr.getOffsetReg();
   1993   unsigned Idx = UseRegOffset ? 2 : UseScaled ? 1 : 0;
   1994   if (Addr.getExtendType() == AArch64_AM::UXTW ||
   1995       Addr.getExtendType() == AArch64_AM::SXTW)
   1996     Idx++;
   1997 
   1998   switch (VT.SimpleTy) {
   1999   default: llvm_unreachable("Unexpected value type.");
   2000   case MVT::i1:  VTIsi1 = true;
   2001   case MVT::i8:  Opc = OpcTable[Idx][0]; break;
   2002   case MVT::i16: Opc = OpcTable[Idx][1]; break;
   2003   case MVT::i32: Opc = OpcTable[Idx][2]; break;
   2004   case MVT::i64: Opc = OpcTable[Idx][3]; break;
   2005   case MVT::f32: Opc = OpcTable[Idx][4]; break;
   2006   case MVT::f64: Opc = OpcTable[Idx][5]; break;
   2007   }
   2008 
   2009   // Storing an i1 requires special handling.
   2010   if (VTIsi1 && SrcReg != AArch64::WZR) {
   2011     unsigned ANDReg = emitAnd_ri(MVT::i32, SrcReg, /*TODO:IsKill=*/false, 1);
   2012     assert(ANDReg && "Unexpected AND instruction emission failure.");
   2013     SrcReg = ANDReg;
   2014   }
   2015   // Create the base instruction, then add the operands.
   2016   const MCInstrDesc &II = TII.get(Opc);
   2017   SrcReg = constrainOperandRegClass(II, SrcReg, II.getNumDefs());
   2018   MachineInstrBuilder MIB =
   2019       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(SrcReg);
   2020   addLoadStoreOperands(Addr, MIB, MachineMemOperand::MOStore, ScaleFactor, MMO);
   2021 
   2022   return true;
   2023 }
   2024 
   2025 bool AArch64FastISel::selectStore(const Instruction *I) {
   2026   MVT VT;
   2027   const Value *Op0 = I->getOperand(0);
   2028   // Verify we have a legal type before going any further.  Currently, we handle
   2029   // simple types that will directly fit in a register (i32/f32/i64/f64) or
   2030   // those that can be sign or zero-extended to a basic operation (i1/i8/i16).
   2031   if (!isTypeSupported(Op0->getType(), VT, /*IsVectorAllowed=*/true) ||
   2032       cast<StoreInst>(I)->isAtomic())
   2033     return false;
   2034 
   2035   // Get the value to be stored into a register. Use the zero register directly
   2036   // when possible to avoid an unnecessary copy and a wasted register.
   2037   unsigned SrcReg = 0;
   2038   if (const auto *CI = dyn_cast<ConstantInt>(Op0)) {
   2039     if (CI->isZero())
   2040       SrcReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
   2041   } else if (const auto *CF = dyn_cast<ConstantFP>(Op0)) {
   2042     if (CF->isZero() && !CF->isNegative()) {
   2043       VT = MVT::getIntegerVT(VT.getSizeInBits());
   2044       SrcReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
   2045     }
   2046   }
   2047 
   2048   if (!SrcReg)
   2049     SrcReg = getRegForValue(Op0);
   2050 
   2051   if (!SrcReg)
   2052     return false;
   2053 
   2054   // See if we can handle this address.
   2055   Address Addr;
   2056   if (!computeAddress(I->getOperand(1), Addr, I->getOperand(0)->getType()))
   2057     return false;
   2058 
   2059   if (!emitStore(VT, SrcReg, Addr, createMachineMemOperandFor(I)))
   2060     return false;
   2061   return true;
   2062 }
   2063 
   2064 static AArch64CC::CondCode getCompareCC(CmpInst::Predicate Pred) {
   2065   switch (Pred) {
   2066   case CmpInst::FCMP_ONE:
   2067   case CmpInst::FCMP_UEQ:
   2068   default:
   2069     // AL is our "false" for now. The other two need more compares.
   2070     return AArch64CC::AL;
   2071   case CmpInst::ICMP_EQ:
   2072   case CmpInst::FCMP_OEQ:
   2073     return AArch64CC::EQ;
   2074   case CmpInst::ICMP_SGT:
   2075   case CmpInst::FCMP_OGT:
   2076     return AArch64CC::GT;
   2077   case CmpInst::ICMP_SGE:
   2078   case CmpInst::FCMP_OGE:
   2079     return AArch64CC::GE;
   2080   case CmpInst::ICMP_UGT:
   2081   case CmpInst::FCMP_UGT:
   2082     return AArch64CC::HI;
   2083   case CmpInst::FCMP_OLT:
   2084     return AArch64CC::MI;
   2085   case CmpInst::ICMP_ULE:
   2086   case CmpInst::FCMP_OLE:
   2087     return AArch64CC::LS;
   2088   case CmpInst::FCMP_ORD:
   2089     return AArch64CC::VC;
   2090   case CmpInst::FCMP_UNO:
   2091     return AArch64CC::VS;
   2092   case CmpInst::FCMP_UGE:
   2093     return AArch64CC::PL;
   2094   case CmpInst::ICMP_SLT:
   2095   case CmpInst::FCMP_ULT:
   2096     return AArch64CC::LT;
   2097   case CmpInst::ICMP_SLE:
   2098   case CmpInst::FCMP_ULE:
   2099     return AArch64CC::LE;
   2100   case CmpInst::FCMP_UNE:
   2101   case CmpInst::ICMP_NE:
   2102     return AArch64CC::NE;
   2103   case CmpInst::ICMP_UGE:
   2104     return AArch64CC::HS;
   2105   case CmpInst::ICMP_ULT:
   2106     return AArch64CC::LO;
   2107   }
   2108 }
   2109 
   2110 /// \brief Try to emit a combined compare-and-branch instruction.
   2111 bool AArch64FastISel::emitCompareAndBranch(const BranchInst *BI) {
   2112   assert(isa<CmpInst>(BI->getCondition()) && "Expected cmp instruction");
   2113   const CmpInst *CI = cast<CmpInst>(BI->getCondition());
   2114   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
   2115 
   2116   const Value *LHS = CI->getOperand(0);
   2117   const Value *RHS = CI->getOperand(1);
   2118 
   2119   MVT VT;
   2120   if (!isTypeSupported(LHS->getType(), VT))
   2121     return false;
   2122 
   2123   unsigned BW = VT.getSizeInBits();
   2124   if (BW > 64)
   2125     return false;
   2126 
   2127   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
   2128   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
   2129 
   2130   // Try to take advantage of fallthrough opportunities.
   2131   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
   2132     std::swap(TBB, FBB);
   2133     Predicate = CmpInst::getInversePredicate(Predicate);
   2134   }
   2135 
   2136   int TestBit = -1;
   2137   bool IsCmpNE;
   2138   switch (Predicate) {
   2139   default:
   2140     return false;
   2141   case CmpInst::ICMP_EQ:
   2142   case CmpInst::ICMP_NE:
   2143     if (isa<Constant>(LHS) && cast<Constant>(LHS)->isNullValue())
   2144       std::swap(LHS, RHS);
   2145 
   2146     if (!isa<Constant>(RHS) || !cast<Constant>(RHS)->isNullValue())
   2147       return false;
   2148 
   2149     if (const auto *AI = dyn_cast<BinaryOperator>(LHS))
   2150       if (AI->getOpcode() == Instruction::And && isValueAvailable(AI)) {
   2151         const Value *AndLHS = AI->getOperand(0);
   2152         const Value *AndRHS = AI->getOperand(1);
   2153 
   2154         if (const auto *C = dyn_cast<ConstantInt>(AndLHS))
   2155           if (C->getValue().isPowerOf2())
   2156             std::swap(AndLHS, AndRHS);
   2157 
   2158         if (const auto *C = dyn_cast<ConstantInt>(AndRHS))
   2159           if (C->getValue().isPowerOf2()) {
   2160             TestBit = C->getValue().logBase2();
   2161             LHS = AndLHS;
   2162           }
   2163       }
   2164 
   2165     if (VT == MVT::i1)
   2166       TestBit = 0;
   2167 
   2168     IsCmpNE = Predicate == CmpInst::ICMP_NE;
   2169     break;
   2170   case CmpInst::ICMP_SLT:
   2171   case CmpInst::ICMP_SGE:
   2172     if (!isa<Constant>(RHS) || !cast<Constant>(RHS)->isNullValue())
   2173       return false;
   2174 
   2175     TestBit = BW - 1;
   2176     IsCmpNE = Predicate == CmpInst::ICMP_SLT;
   2177     break;
   2178   case CmpInst::ICMP_SGT:
   2179   case CmpInst::ICMP_SLE:
   2180     if (!isa<ConstantInt>(RHS))
   2181       return false;
   2182 
   2183     if (cast<ConstantInt>(RHS)->getValue() != APInt(BW, -1, true))
   2184       return false;
   2185 
   2186     TestBit = BW - 1;
   2187     IsCmpNE = Predicate == CmpInst::ICMP_SLE;
   2188     break;
   2189   } // end switch
   2190 
   2191   static const unsigned OpcTable[2][2][2] = {
   2192     { {AArch64::CBZW,  AArch64::CBZX },
   2193       {AArch64::CBNZW, AArch64::CBNZX} },
   2194     { {AArch64::TBZW,  AArch64::TBZX },
   2195       {AArch64::TBNZW, AArch64::TBNZX} }
   2196   };
   2197 
   2198   bool IsBitTest = TestBit != -1;
   2199   bool Is64Bit = BW == 64;
   2200   if (TestBit < 32 && TestBit >= 0)
   2201     Is64Bit = false;
   2202 
   2203   unsigned Opc = OpcTable[IsBitTest][IsCmpNE][Is64Bit];
   2204   const MCInstrDesc &II = TII.get(Opc);
   2205 
   2206   unsigned SrcReg = getRegForValue(LHS);
   2207   if (!SrcReg)
   2208     return false;
   2209   bool SrcIsKill = hasTrivialKill(LHS);
   2210 
   2211   if (BW == 64 && !Is64Bit)
   2212     SrcReg = fastEmitInst_extractsubreg(MVT::i32, SrcReg, SrcIsKill,
   2213                                         AArch64::sub_32);
   2214 
   2215   if ((BW < 32) && !IsBitTest)
   2216     SrcReg = emitIntExt(VT, SrcReg, MVT::i32, /*IsZExt=*/true);
   2217 
   2218   // Emit the combined compare and branch instruction.
   2219   SrcReg = constrainOperandRegClass(II, SrcReg,  II.getNumDefs());
   2220   MachineInstrBuilder MIB =
   2221       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
   2222           .addReg(SrcReg, getKillRegState(SrcIsKill));
   2223   if (IsBitTest)
   2224     MIB.addImm(TestBit);
   2225   MIB.addMBB(TBB);
   2226 
   2227   // Obtain the branch weight and add the TrueBB to the successor list.
   2228   uint32_t BranchWeight = 0;
   2229   if (FuncInfo.BPI)
   2230     BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
   2231                                                TBB->getBasicBlock());
   2232   FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
   2233   fastEmitBranch(FBB, DbgLoc);
   2234 
   2235   return true;
   2236 }
   2237 
   2238 bool AArch64FastISel::selectBranch(const Instruction *I) {
   2239   const BranchInst *BI = cast<BranchInst>(I);
   2240   if (BI->isUnconditional()) {
   2241     MachineBasicBlock *MSucc = FuncInfo.MBBMap[BI->getSuccessor(0)];
   2242     fastEmitBranch(MSucc, BI->getDebugLoc());
   2243     return true;
   2244   }
   2245 
   2246   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
   2247   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
   2248 
   2249   AArch64CC::CondCode CC = AArch64CC::NE;
   2250   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
   2251     if (CI->hasOneUse() && isValueAvailable(CI)) {
   2252       // Try to optimize or fold the cmp.
   2253       CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
   2254       switch (Predicate) {
   2255       default:
   2256         break;
   2257       case CmpInst::FCMP_FALSE:
   2258         fastEmitBranch(FBB, DbgLoc);
   2259         return true;
   2260       case CmpInst::FCMP_TRUE:
   2261         fastEmitBranch(TBB, DbgLoc);
   2262         return true;
   2263       }
   2264 
   2265       // Try to emit a combined compare-and-branch first.
   2266       if (emitCompareAndBranch(BI))
   2267         return true;
   2268 
   2269       // Try to take advantage of fallthrough opportunities.
   2270       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
   2271         std::swap(TBB, FBB);
   2272         Predicate = CmpInst::getInversePredicate(Predicate);
   2273       }
   2274 
   2275       // Emit the cmp.
   2276       if (!emitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
   2277         return false;
   2278 
   2279       // FCMP_UEQ and FCMP_ONE cannot be checked with a single branch
   2280       // instruction.
   2281       CC = getCompareCC(Predicate);
   2282       AArch64CC::CondCode ExtraCC = AArch64CC::AL;
   2283       switch (Predicate) {
   2284       default:
   2285         break;
   2286       case CmpInst::FCMP_UEQ:
   2287         ExtraCC = AArch64CC::EQ;
   2288         CC = AArch64CC::VS;
   2289         break;
   2290       case CmpInst::FCMP_ONE:
   2291         ExtraCC = AArch64CC::MI;
   2292         CC = AArch64CC::GT;
   2293         break;
   2294       }
   2295       assert((CC != AArch64CC::AL) && "Unexpected condition code.");
   2296 
   2297       // Emit the extra branch for FCMP_UEQ and FCMP_ONE.
   2298       if (ExtraCC != AArch64CC::AL) {
   2299         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
   2300             .addImm(ExtraCC)
   2301             .addMBB(TBB);
   2302       }
   2303 
   2304       // Emit the branch.
   2305       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
   2306           .addImm(CC)
   2307           .addMBB(TBB);
   2308 
   2309       // Obtain the branch weight and add the TrueBB to the successor list.
   2310       uint32_t BranchWeight = 0;
   2311       if (FuncInfo.BPI)
   2312         BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
   2313                                                   TBB->getBasicBlock());
   2314       FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
   2315 
   2316       fastEmitBranch(FBB, DbgLoc);
   2317       return true;
   2318     }
   2319   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
   2320     MVT SrcVT;
   2321     if (TI->hasOneUse() && isValueAvailable(TI) &&
   2322         isTypeSupported(TI->getOperand(0)->getType(), SrcVT)) {
   2323       unsigned CondReg = getRegForValue(TI->getOperand(0));
   2324       if (!CondReg)
   2325         return false;
   2326       bool CondIsKill = hasTrivialKill(TI->getOperand(0));
   2327 
   2328       // Issue an extract_subreg to get the lower 32-bits.
   2329       if (SrcVT == MVT::i64) {
   2330         CondReg = fastEmitInst_extractsubreg(MVT::i32, CondReg, CondIsKill,
   2331                                              AArch64::sub_32);
   2332         CondIsKill = true;
   2333       }
   2334 
   2335       unsigned ANDReg = emitAnd_ri(MVT::i32, CondReg, CondIsKill, 1);
   2336       assert(ANDReg && "Unexpected AND instruction emission failure.");
   2337       emitICmp_ri(MVT::i32, ANDReg, /*IsKill=*/true, 0);
   2338 
   2339       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
   2340         std::swap(TBB, FBB);
   2341         CC = AArch64CC::EQ;
   2342       }
   2343       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
   2344           .addImm(CC)
   2345           .addMBB(TBB);
   2346 
   2347       // Obtain the branch weight and add the TrueBB to the successor list.
   2348       uint32_t BranchWeight = 0;
   2349       if (FuncInfo.BPI)
   2350         BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
   2351                                                   TBB->getBasicBlock());
   2352       FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
   2353 
   2354       fastEmitBranch(FBB, DbgLoc);
   2355       return true;
   2356     }
   2357   } else if (const auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
   2358     uint64_t Imm = CI->getZExtValue();
   2359     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
   2360     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::B))
   2361         .addMBB(Target);
   2362 
   2363     // Obtain the branch weight and add the target to the successor list.
   2364     uint32_t BranchWeight = 0;
   2365     if (FuncInfo.BPI)
   2366       BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
   2367                                                  Target->getBasicBlock());
   2368     FuncInfo.MBB->addSuccessor(Target, BranchWeight);
   2369     return true;
   2370   } else if (foldXALUIntrinsic(CC, I, BI->getCondition())) {
   2371     // Fake request the condition, otherwise the intrinsic might be completely
   2372     // optimized away.
   2373     unsigned CondReg = getRegForValue(BI->getCondition());
   2374     if (!CondReg)
   2375       return false;
   2376 
   2377     // Emit the branch.
   2378     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
   2379       .addImm(CC)
   2380       .addMBB(TBB);
   2381 
   2382     // Obtain the branch weight and add the TrueBB to the successor list.
   2383     uint32_t BranchWeight = 0;
   2384     if (FuncInfo.BPI)
   2385       BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
   2386                                                  TBB->getBasicBlock());
   2387     FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
   2388 
   2389     fastEmitBranch(FBB, DbgLoc);
   2390     return true;
   2391   }
   2392 
   2393   unsigned CondReg = getRegForValue(BI->getCondition());
   2394   if (CondReg == 0)
   2395     return false;
   2396   bool CondRegIsKill = hasTrivialKill(BI->getCondition());
   2397 
   2398   // We've been divorced from our compare!  Our block was split, and
   2399   // now our compare lives in a predecessor block.  We musn't
   2400   // re-compare here, as the children of the compare aren't guaranteed
   2401   // live across the block boundary (we *could* check for this).
   2402   // Regardless, the compare has been done in the predecessor block,
   2403   // and it left a value for us in a virtual register.  Ergo, we test
   2404   // the one-bit value left in the virtual register.
   2405   emitICmp_ri(MVT::i32, CondReg, CondRegIsKill, 0);
   2406 
   2407   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
   2408     std::swap(TBB, FBB);
   2409     CC = AArch64CC::EQ;
   2410   }
   2411 
   2412   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::Bcc))
   2413       .addImm(CC)
   2414       .addMBB(TBB);
   2415 
   2416   // Obtain the branch weight and add the TrueBB to the successor list.
   2417   uint32_t BranchWeight = 0;
   2418   if (FuncInfo.BPI)
   2419     BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
   2420                                                TBB->getBasicBlock());
   2421   FuncInfo.MBB->addSuccessor(TBB, BranchWeight);
   2422 
   2423   fastEmitBranch(FBB, DbgLoc);
   2424   return true;
   2425 }
   2426 
   2427 bool AArch64FastISel::selectIndirectBr(const Instruction *I) {
   2428   const IndirectBrInst *BI = cast<IndirectBrInst>(I);
   2429   unsigned AddrReg = getRegForValue(BI->getOperand(0));
   2430   if (AddrReg == 0)
   2431     return false;
   2432 
   2433   // Emit the indirect branch.
   2434   const MCInstrDesc &II = TII.get(AArch64::BR);
   2435   AddrReg = constrainOperandRegClass(II, AddrReg,  II.getNumDefs());
   2436   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(AddrReg);
   2437 
   2438   // Make sure the CFG is up-to-date.
   2439   for (unsigned i = 0, e = BI->getNumSuccessors(); i != e; ++i)
   2440     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[BI->getSuccessor(i)]);
   2441 
   2442   return true;
   2443 }
   2444 
   2445 bool AArch64FastISel::selectCmp(const Instruction *I) {
   2446   const CmpInst *CI = cast<CmpInst>(I);
   2447 
   2448   // Try to optimize or fold the cmp.
   2449   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
   2450   unsigned ResultReg = 0;
   2451   switch (Predicate) {
   2452   default:
   2453     break;
   2454   case CmpInst::FCMP_FALSE:
   2455     ResultReg = createResultReg(&AArch64::GPR32RegClass);
   2456     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2457             TII.get(TargetOpcode::COPY), ResultReg)
   2458         .addReg(AArch64::WZR, getKillRegState(true));
   2459     break;
   2460   case CmpInst::FCMP_TRUE:
   2461     ResultReg = fastEmit_i(MVT::i32, MVT::i32, ISD::Constant, 1);
   2462     break;
   2463   }
   2464 
   2465   if (ResultReg) {
   2466     updateValueMap(I, ResultReg);
   2467     return true;
   2468   }
   2469 
   2470   // Emit the cmp.
   2471   if (!emitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
   2472     return false;
   2473 
   2474   ResultReg = createResultReg(&AArch64::GPR32RegClass);
   2475 
   2476   // FCMP_UEQ and FCMP_ONE cannot be checked with a single instruction. These
   2477   // condition codes are inverted, because they are used by CSINC.
   2478   static unsigned CondCodeTable[2][2] = {
   2479     { AArch64CC::NE, AArch64CC::VC },
   2480     { AArch64CC::PL, AArch64CC::LE }
   2481   };
   2482   unsigned *CondCodes = nullptr;
   2483   switch (Predicate) {
   2484   default:
   2485     break;
   2486   case CmpInst::FCMP_UEQ:
   2487     CondCodes = &CondCodeTable[0][0];
   2488     break;
   2489   case CmpInst::FCMP_ONE:
   2490     CondCodes = &CondCodeTable[1][0];
   2491     break;
   2492   }
   2493 
   2494   if (CondCodes) {
   2495     unsigned TmpReg1 = createResultReg(&AArch64::GPR32RegClass);
   2496     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
   2497             TmpReg1)
   2498         .addReg(AArch64::WZR, getKillRegState(true))
   2499         .addReg(AArch64::WZR, getKillRegState(true))
   2500         .addImm(CondCodes[0]);
   2501     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
   2502             ResultReg)
   2503         .addReg(TmpReg1, getKillRegState(true))
   2504         .addReg(AArch64::WZR, getKillRegState(true))
   2505         .addImm(CondCodes[1]);
   2506 
   2507     updateValueMap(I, ResultReg);
   2508     return true;
   2509   }
   2510 
   2511   // Now set a register based on the comparison.
   2512   AArch64CC::CondCode CC = getCompareCC(Predicate);
   2513   assert((CC != AArch64CC::AL) && "Unexpected condition code.");
   2514   AArch64CC::CondCode invertedCC = getInvertedCondCode(CC);
   2515   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::CSINCWr),
   2516           ResultReg)
   2517       .addReg(AArch64::WZR, getKillRegState(true))
   2518       .addReg(AArch64::WZR, getKillRegState(true))
   2519       .addImm(invertedCC);
   2520 
   2521   updateValueMap(I, ResultReg);
   2522   return true;
   2523 }
   2524 
   2525 /// \brief Optimize selects of i1 if one of the operands has a 'true' or 'false'
   2526 /// value.
   2527 bool AArch64FastISel::optimizeSelect(const SelectInst *SI) {
   2528   if (!SI->getType()->isIntegerTy(1))
   2529     return false;
   2530 
   2531   const Value *Src1Val, *Src2Val;
   2532   unsigned Opc = 0;
   2533   bool NeedExtraOp = false;
   2534   if (auto *CI = dyn_cast<ConstantInt>(SI->getTrueValue())) {
   2535     if (CI->isOne()) {
   2536       Src1Val = SI->getCondition();
   2537       Src2Val = SI->getFalseValue();
   2538       Opc = AArch64::ORRWrr;
   2539     } else {
   2540       assert(CI->isZero());
   2541       Src1Val = SI->getFalseValue();
   2542       Src2Val = SI->getCondition();
   2543       Opc = AArch64::BICWrr;
   2544     }
   2545   } else if (auto *CI = dyn_cast<ConstantInt>(SI->getFalseValue())) {
   2546     if (CI->isOne()) {
   2547       Src1Val = SI->getCondition();
   2548       Src2Val = SI->getTrueValue();
   2549       Opc = AArch64::ORRWrr;
   2550       NeedExtraOp = true;
   2551     } else {
   2552       assert(CI->isZero());
   2553       Src1Val = SI->getCondition();
   2554       Src2Val = SI->getTrueValue();
   2555       Opc = AArch64::ANDWrr;
   2556     }
   2557   }
   2558 
   2559   if (!Opc)
   2560     return false;
   2561 
   2562   unsigned Src1Reg = getRegForValue(Src1Val);
   2563   if (!Src1Reg)
   2564     return false;
   2565   bool Src1IsKill = hasTrivialKill(Src1Val);
   2566 
   2567   unsigned Src2Reg = getRegForValue(Src2Val);
   2568   if (!Src2Reg)
   2569     return false;
   2570   bool Src2IsKill = hasTrivialKill(Src2Val);
   2571 
   2572   if (NeedExtraOp) {
   2573     Src1Reg = emitLogicalOp_ri(ISD::XOR, MVT::i32, Src1Reg, Src1IsKill, 1);
   2574     Src1IsKill = true;
   2575   }
   2576   unsigned ResultReg = fastEmitInst_rr(Opc, &AArch64::GPR32spRegClass, Src1Reg,
   2577                                        Src1IsKill, Src2Reg, Src2IsKill);
   2578   updateValueMap(SI, ResultReg);
   2579   return true;
   2580 }
   2581 
   2582 bool AArch64FastISel::selectSelect(const Instruction *I) {
   2583   assert(isa<SelectInst>(I) && "Expected a select instruction.");
   2584   MVT VT;
   2585   if (!isTypeSupported(I->getType(), VT))
   2586     return false;
   2587 
   2588   unsigned Opc;
   2589   const TargetRegisterClass *RC;
   2590   switch (VT.SimpleTy) {
   2591   default:
   2592     return false;
   2593   case MVT::i1:
   2594   case MVT::i8:
   2595   case MVT::i16:
   2596   case MVT::i32:
   2597     Opc = AArch64::CSELWr;
   2598     RC = &AArch64::GPR32RegClass;
   2599     break;
   2600   case MVT::i64:
   2601     Opc = AArch64::CSELXr;
   2602     RC = &AArch64::GPR64RegClass;
   2603     break;
   2604   case MVT::f32:
   2605     Opc = AArch64::FCSELSrrr;
   2606     RC = &AArch64::FPR32RegClass;
   2607     break;
   2608   case MVT::f64:
   2609     Opc = AArch64::FCSELDrrr;
   2610     RC = &AArch64::FPR64RegClass;
   2611     break;
   2612   }
   2613 
   2614   const SelectInst *SI = cast<SelectInst>(I);
   2615   const Value *Cond = SI->getCondition();
   2616   AArch64CC::CondCode CC = AArch64CC::NE;
   2617   AArch64CC::CondCode ExtraCC = AArch64CC::AL;
   2618 
   2619   if (optimizeSelect(SI))
   2620     return true;
   2621 
   2622   // Try to pickup the flags, so we don't have to emit another compare.
   2623   if (foldXALUIntrinsic(CC, I, Cond)) {
   2624     // Fake request the condition to force emission of the XALU intrinsic.
   2625     unsigned CondReg = getRegForValue(Cond);
   2626     if (!CondReg)
   2627       return false;
   2628   } else if (isa<CmpInst>(Cond) && cast<CmpInst>(Cond)->hasOneUse() &&
   2629              isValueAvailable(Cond)) {
   2630     const auto *Cmp = cast<CmpInst>(Cond);
   2631     // Try to optimize or fold the cmp.
   2632     CmpInst::Predicate Predicate = optimizeCmpPredicate(Cmp);
   2633     const Value *FoldSelect = nullptr;
   2634     switch (Predicate) {
   2635     default:
   2636       break;
   2637     case CmpInst::FCMP_FALSE:
   2638       FoldSelect = SI->getFalseValue();
   2639       break;
   2640     case CmpInst::FCMP_TRUE:
   2641       FoldSelect = SI->getTrueValue();
   2642       break;
   2643     }
   2644 
   2645     if (FoldSelect) {
   2646       unsigned SrcReg = getRegForValue(FoldSelect);
   2647       if (!SrcReg)
   2648         return false;
   2649       unsigned UseReg = lookUpRegForValue(SI);
   2650       if (UseReg)
   2651         MRI.clearKillFlags(UseReg);
   2652 
   2653       updateValueMap(I, SrcReg);
   2654       return true;
   2655     }
   2656 
   2657     // Emit the cmp.
   2658     if (!emitCmp(Cmp->getOperand(0), Cmp->getOperand(1), Cmp->isUnsigned()))
   2659       return false;
   2660 
   2661     // FCMP_UEQ and FCMP_ONE cannot be checked with a single select instruction.
   2662     CC = getCompareCC(Predicate);
   2663     switch (Predicate) {
   2664     default:
   2665       break;
   2666     case CmpInst::FCMP_UEQ:
   2667       ExtraCC = AArch64CC::EQ;
   2668       CC = AArch64CC::VS;
   2669       break;
   2670     case CmpInst::FCMP_ONE:
   2671       ExtraCC = AArch64CC::MI;
   2672       CC = AArch64CC::GT;
   2673       break;
   2674     }
   2675     assert((CC != AArch64CC::AL) && "Unexpected condition code.");
   2676   } else {
   2677     unsigned CondReg = getRegForValue(Cond);
   2678     if (!CondReg)
   2679       return false;
   2680     bool CondIsKill = hasTrivialKill(Cond);
   2681 
   2682     // Emit a TST instruction (ANDS wzr, reg, #imm).
   2683     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ANDSWri),
   2684             AArch64::WZR)
   2685         .addReg(CondReg, getKillRegState(CondIsKill))
   2686         .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
   2687   }
   2688 
   2689   unsigned Src1Reg = getRegForValue(SI->getTrueValue());
   2690   bool Src1IsKill = hasTrivialKill(SI->getTrueValue());
   2691 
   2692   unsigned Src2Reg = getRegForValue(SI->getFalseValue());
   2693   bool Src2IsKill = hasTrivialKill(SI->getFalseValue());
   2694 
   2695   if (!Src1Reg || !Src2Reg)
   2696     return false;
   2697 
   2698   if (ExtraCC != AArch64CC::AL) {
   2699     Src2Reg = fastEmitInst_rri(Opc, RC, Src1Reg, Src1IsKill, Src2Reg,
   2700                                Src2IsKill, ExtraCC);
   2701     Src2IsKill = true;
   2702   }
   2703   unsigned ResultReg = fastEmitInst_rri(Opc, RC, Src1Reg, Src1IsKill, Src2Reg,
   2704                                         Src2IsKill, CC);
   2705   updateValueMap(I, ResultReg);
   2706   return true;
   2707 }
   2708 
   2709 bool AArch64FastISel::selectFPExt(const Instruction *I) {
   2710   Value *V = I->getOperand(0);
   2711   if (!I->getType()->isDoubleTy() || !V->getType()->isFloatTy())
   2712     return false;
   2713 
   2714   unsigned Op = getRegForValue(V);
   2715   if (Op == 0)
   2716     return false;
   2717 
   2718   unsigned ResultReg = createResultReg(&AArch64::FPR64RegClass);
   2719   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTDSr),
   2720           ResultReg).addReg(Op);
   2721   updateValueMap(I, ResultReg);
   2722   return true;
   2723 }
   2724 
   2725 bool AArch64FastISel::selectFPTrunc(const Instruction *I) {
   2726   Value *V = I->getOperand(0);
   2727   if (!I->getType()->isFloatTy() || !V->getType()->isDoubleTy())
   2728     return false;
   2729 
   2730   unsigned Op = getRegForValue(V);
   2731   if (Op == 0)
   2732     return false;
   2733 
   2734   unsigned ResultReg = createResultReg(&AArch64::FPR32RegClass);
   2735   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::FCVTSDr),
   2736           ResultReg).addReg(Op);
   2737   updateValueMap(I, ResultReg);
   2738   return true;
   2739 }
   2740 
   2741 // FPToUI and FPToSI
   2742 bool AArch64FastISel::selectFPToInt(const Instruction *I, bool Signed) {
   2743   MVT DestVT;
   2744   if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
   2745     return false;
   2746 
   2747   unsigned SrcReg = getRegForValue(I->getOperand(0));
   2748   if (SrcReg == 0)
   2749     return false;
   2750 
   2751   EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true);
   2752   if (SrcVT == MVT::f128)
   2753     return false;
   2754 
   2755   unsigned Opc;
   2756   if (SrcVT == MVT::f64) {
   2757     if (Signed)
   2758       Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWDr : AArch64::FCVTZSUXDr;
   2759     else
   2760       Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWDr : AArch64::FCVTZUUXDr;
   2761   } else {
   2762     if (Signed)
   2763       Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWSr : AArch64::FCVTZSUXSr;
   2764     else
   2765       Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWSr : AArch64::FCVTZUUXSr;
   2766   }
   2767   unsigned ResultReg = createResultReg(
   2768       DestVT == MVT::i32 ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass);
   2769   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
   2770       .addReg(SrcReg);
   2771   updateValueMap(I, ResultReg);
   2772   return true;
   2773 }
   2774 
   2775 bool AArch64FastISel::selectIntToFP(const Instruction *I, bool Signed) {
   2776   MVT DestVT;
   2777   if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
   2778     return false;
   2779   assert ((DestVT == MVT::f32 || DestVT == MVT::f64) &&
   2780           "Unexpected value type.");
   2781 
   2782   unsigned SrcReg = getRegForValue(I->getOperand(0));
   2783   if (!SrcReg)
   2784     return false;
   2785   bool SrcIsKill = hasTrivialKill(I->getOperand(0));
   2786 
   2787   EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true);
   2788 
   2789   // Handle sign-extension.
   2790   if (SrcVT == MVT::i16 || SrcVT == MVT::i8 || SrcVT == MVT::i1) {
   2791     SrcReg =
   2792         emitIntExt(SrcVT.getSimpleVT(), SrcReg, MVT::i32, /*isZExt*/ !Signed);
   2793     if (!SrcReg)
   2794       return false;
   2795     SrcIsKill = true;
   2796   }
   2797 
   2798   unsigned Opc;
   2799   if (SrcVT == MVT::i64) {
   2800     if (Signed)
   2801       Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUXSri : AArch64::SCVTFUXDri;
   2802     else
   2803       Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUXSri : AArch64::UCVTFUXDri;
   2804   } else {
   2805     if (Signed)
   2806       Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUWSri : AArch64::SCVTFUWDri;
   2807     else
   2808       Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUWSri : AArch64::UCVTFUWDri;
   2809   }
   2810 
   2811   unsigned ResultReg = fastEmitInst_r(Opc, TLI.getRegClassFor(DestVT), SrcReg,
   2812                                       SrcIsKill);
   2813   updateValueMap(I, ResultReg);
   2814   return true;
   2815 }
   2816 
   2817 bool AArch64FastISel::fastLowerArguments() {
   2818   if (!FuncInfo.CanLowerReturn)
   2819     return false;
   2820 
   2821   const Function *F = FuncInfo.Fn;
   2822   if (F->isVarArg())
   2823     return false;
   2824 
   2825   CallingConv::ID CC = F->getCallingConv();
   2826   if (CC != CallingConv::C)
   2827     return false;
   2828 
   2829   // Only handle simple cases of up to 8 GPR and FPR each.
   2830   unsigned GPRCnt = 0;
   2831   unsigned FPRCnt = 0;
   2832   unsigned Idx = 0;
   2833   for (auto const &Arg : F->args()) {
   2834     // The first argument is at index 1.
   2835     ++Idx;
   2836     if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
   2837         F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
   2838         F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
   2839         F->getAttributes().hasAttribute(Idx, Attribute::Nest))
   2840       return false;
   2841 
   2842     Type *ArgTy = Arg.getType();
   2843     if (ArgTy->isStructTy() || ArgTy->isArrayTy())
   2844       return false;
   2845 
   2846     EVT ArgVT = TLI.getValueType(ArgTy);
   2847     if (!ArgVT.isSimple())
   2848       return false;
   2849 
   2850     MVT VT = ArgVT.getSimpleVT().SimpleTy;
   2851     if (VT.isFloatingPoint() && !Subtarget->hasFPARMv8())
   2852       return false;
   2853 
   2854     if (VT.isVector() &&
   2855         (!Subtarget->hasNEON() || !Subtarget->isLittleEndian()))
   2856       return false;
   2857 
   2858     if (VT >= MVT::i1 && VT <= MVT::i64)
   2859       ++GPRCnt;
   2860     else if ((VT >= MVT::f16 && VT <= MVT::f64) || VT.is64BitVector() ||
   2861              VT.is128BitVector())
   2862       ++FPRCnt;
   2863     else
   2864       return false;
   2865 
   2866     if (GPRCnt > 8 || FPRCnt > 8)
   2867       return false;
   2868   }
   2869 
   2870   static const MCPhysReg Registers[6][8] = {
   2871     { AArch64::W0, AArch64::W1, AArch64::W2, AArch64::W3, AArch64::W4,
   2872       AArch64::W5, AArch64::W6, AArch64::W7 },
   2873     { AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3, AArch64::X4,
   2874       AArch64::X5, AArch64::X6, AArch64::X7 },
   2875     { AArch64::H0, AArch64::H1, AArch64::H2, AArch64::H3, AArch64::H4,
   2876       AArch64::H5, AArch64::H6, AArch64::H7 },
   2877     { AArch64::S0, AArch64::S1, AArch64::S2, AArch64::S3, AArch64::S4,
   2878       AArch64::S5, AArch64::S6, AArch64::S7 },
   2879     { AArch64::D0, AArch64::D1, AArch64::D2, AArch64::D3, AArch64::D4,
   2880       AArch64::D5, AArch64::D6, AArch64::D7 },
   2881     { AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, AArch64::Q4,
   2882       AArch64::Q5, AArch64::Q6, AArch64::Q7 }
   2883   };
   2884 
   2885   unsigned GPRIdx = 0;
   2886   unsigned FPRIdx = 0;
   2887   for (auto const &Arg : F->args()) {
   2888     MVT VT = TLI.getSimpleValueType(Arg.getType());
   2889     unsigned SrcReg;
   2890     const TargetRegisterClass *RC;
   2891     if (VT >= MVT::i1 && VT <= MVT::i32) {
   2892       SrcReg = Registers[0][GPRIdx++];
   2893       RC = &AArch64::GPR32RegClass;
   2894       VT = MVT::i32;
   2895     } else if (VT == MVT::i64) {
   2896       SrcReg = Registers[1][GPRIdx++];
   2897       RC = &AArch64::GPR64RegClass;
   2898     } else if (VT == MVT::f16) {
   2899       SrcReg = Registers[2][FPRIdx++];
   2900       RC = &AArch64::FPR16RegClass;
   2901     } else if (VT ==  MVT::f32) {
   2902       SrcReg = Registers[3][FPRIdx++];
   2903       RC = &AArch64::FPR32RegClass;
   2904     } else if ((VT == MVT::f64) || VT.is64BitVector()) {
   2905       SrcReg = Registers[4][FPRIdx++];
   2906       RC = &AArch64::FPR64RegClass;
   2907     } else if (VT.is128BitVector()) {
   2908       SrcReg = Registers[5][FPRIdx++];
   2909       RC = &AArch64::FPR128RegClass;
   2910     } else
   2911       llvm_unreachable("Unexpected value type.");
   2912 
   2913     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
   2914     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
   2915     // Without this, EmitLiveInCopies may eliminate the livein if its only
   2916     // use is a bitcast (which isn't turned into an instruction).
   2917     unsigned ResultReg = createResultReg(RC);
   2918     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2919             TII.get(TargetOpcode::COPY), ResultReg)
   2920         .addReg(DstReg, getKillRegState(true));
   2921     updateValueMap(&Arg, ResultReg);
   2922   }
   2923   return true;
   2924 }
   2925 
   2926 bool AArch64FastISel::processCallArgs(CallLoweringInfo &CLI,
   2927                                       SmallVectorImpl<MVT> &OutVTs,
   2928                                       unsigned &NumBytes) {
   2929   CallingConv::ID CC = CLI.CallConv;
   2930   SmallVector<CCValAssign, 16> ArgLocs;
   2931   CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
   2932   CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
   2933 
   2934   // Get a count of how many bytes are to be pushed on the stack.
   2935   NumBytes = CCInfo.getNextStackOffset();
   2936 
   2937   // Issue CALLSEQ_START
   2938   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
   2939   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
   2940     .addImm(NumBytes);
   2941 
   2942   // Process the args.
   2943   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   2944     CCValAssign &VA = ArgLocs[i];
   2945     const Value *ArgVal = CLI.OutVals[VA.getValNo()];
   2946     MVT ArgVT = OutVTs[VA.getValNo()];
   2947 
   2948     unsigned ArgReg = getRegForValue(ArgVal);
   2949     if (!ArgReg)
   2950       return false;
   2951 
   2952     // Handle arg promotion: SExt, ZExt, AExt.
   2953     switch (VA.getLocInfo()) {
   2954     case CCValAssign::Full:
   2955       break;
   2956     case CCValAssign::SExt: {
   2957       MVT DestVT = VA.getLocVT();
   2958       MVT SrcVT = ArgVT;
   2959       ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
   2960       if (!ArgReg)
   2961         return false;
   2962       break;
   2963     }
   2964     case CCValAssign::AExt:
   2965     // Intentional fall-through.
   2966     case CCValAssign::ZExt: {
   2967       MVT DestVT = VA.getLocVT();
   2968       MVT SrcVT = ArgVT;
   2969       ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
   2970       if (!ArgReg)
   2971         return false;
   2972       break;
   2973     }
   2974     default:
   2975       llvm_unreachable("Unknown arg promotion!");
   2976     }
   2977 
   2978     // Now copy/store arg to correct locations.
   2979     if (VA.isRegLoc() && !VA.needsCustom()) {
   2980       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   2981               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
   2982       CLI.OutRegs.push_back(VA.getLocReg());
   2983     } else if (VA.needsCustom()) {
   2984       // FIXME: Handle custom args.
   2985       return false;
   2986     } else {
   2987       assert(VA.isMemLoc() && "Assuming store on stack.");
   2988 
   2989       // Don't emit stores for undef values.
   2990       if (isa<UndefValue>(ArgVal))
   2991         continue;
   2992 
   2993       // Need to store on the stack.
   2994       unsigned ArgSize = (ArgVT.getSizeInBits() + 7) / 8;
   2995 
   2996       unsigned BEAlign = 0;
   2997       if (ArgSize < 8 && !Subtarget->isLittleEndian())
   2998         BEAlign = 8 - ArgSize;
   2999 
   3000       Address Addr;
   3001       Addr.setKind(Address::RegBase);
   3002       Addr.setReg(AArch64::SP);
   3003       Addr.setOffset(VA.getLocMemOffset() + BEAlign);
   3004 
   3005       unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
   3006       MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
   3007         MachinePointerInfo::getStack(Addr.getOffset()),
   3008         MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
   3009 
   3010       if (!emitStore(ArgVT, ArgReg, Addr, MMO))
   3011         return false;
   3012     }
   3013   }
   3014   return true;
   3015 }
   3016 
   3017 bool AArch64FastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
   3018                                  unsigned NumBytes) {
   3019   CallingConv::ID CC = CLI.CallConv;
   3020 
   3021   // Issue CALLSEQ_END
   3022   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
   3023   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
   3024     .addImm(NumBytes).addImm(0);
   3025 
   3026   // Now the return value.
   3027   if (RetVT != MVT::isVoid) {
   3028     SmallVector<CCValAssign, 16> RVLocs;
   3029     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
   3030     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC));
   3031 
   3032     // Only handle a single return value.
   3033     if (RVLocs.size() != 1)
   3034       return false;
   3035 
   3036     // Copy all of the result registers out of their specified physreg.
   3037     MVT CopyVT = RVLocs[0].getValVT();
   3038 
   3039     // TODO: Handle big-endian results
   3040     if (CopyVT.isVector() && !Subtarget->isLittleEndian())
   3041       return false;
   3042 
   3043     unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
   3044     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3045             TII.get(TargetOpcode::COPY), ResultReg)
   3046         .addReg(RVLocs[0].getLocReg());
   3047     CLI.InRegs.push_back(RVLocs[0].getLocReg());
   3048 
   3049     CLI.ResultReg = ResultReg;
   3050     CLI.NumResultRegs = 1;
   3051   }
   3052 
   3053   return true;
   3054 }
   3055 
   3056 bool AArch64FastISel::fastLowerCall(CallLoweringInfo &CLI) {
   3057   CallingConv::ID CC  = CLI.CallConv;
   3058   bool IsTailCall     = CLI.IsTailCall;
   3059   bool IsVarArg       = CLI.IsVarArg;
   3060   const Value *Callee = CLI.Callee;
   3061   const char *SymName = CLI.SymName;
   3062 
   3063   if (!Callee && !SymName)
   3064     return false;
   3065 
   3066   // Allow SelectionDAG isel to handle tail calls.
   3067   if (IsTailCall)
   3068     return false;
   3069 
   3070   CodeModel::Model CM = TM.getCodeModel();
   3071   // Only support the small and large code model.
   3072   if (CM != CodeModel::Small && CM != CodeModel::Large)
   3073     return false;
   3074 
   3075   // FIXME: Add large code model support for ELF.
   3076   if (CM == CodeModel::Large && !Subtarget->isTargetMachO())
   3077     return false;
   3078 
   3079   // Let SDISel handle vararg functions.
   3080   if (IsVarArg)
   3081     return false;
   3082 
   3083   // FIXME: Only handle *simple* calls for now.
   3084   MVT RetVT;
   3085   if (CLI.RetTy->isVoidTy())
   3086     RetVT = MVT::isVoid;
   3087   else if (!isTypeLegal(CLI.RetTy, RetVT))
   3088     return false;
   3089 
   3090   for (auto Flag : CLI.OutFlags)
   3091     if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
   3092       return false;
   3093 
   3094   // Set up the argument vectors.
   3095   SmallVector<MVT, 16> OutVTs;
   3096   OutVTs.reserve(CLI.OutVals.size());
   3097 
   3098   for (auto *Val : CLI.OutVals) {
   3099     MVT VT;
   3100     if (!isTypeLegal(Val->getType(), VT) &&
   3101         !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
   3102       return false;
   3103 
   3104     // We don't handle vector parameters yet.
   3105     if (VT.isVector() || VT.getSizeInBits() > 64)
   3106       return false;
   3107 
   3108     OutVTs.push_back(VT);
   3109   }
   3110 
   3111   Address Addr;
   3112   if (Callee && !computeCallAddress(Callee, Addr))
   3113     return false;
   3114 
   3115   // Handle the arguments now that we've gotten them.
   3116   unsigned NumBytes;
   3117   if (!processCallArgs(CLI, OutVTs, NumBytes))
   3118     return false;
   3119 
   3120   // Issue the call.
   3121   MachineInstrBuilder MIB;
   3122   if (CM == CodeModel::Small) {
   3123     const MCInstrDesc &II = TII.get(Addr.getReg() ? AArch64::BLR : AArch64::BL);
   3124     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II);
   3125     if (SymName)
   3126       MIB.addExternalSymbol(SymName, 0);
   3127     else if (Addr.getGlobalValue())
   3128       MIB.addGlobalAddress(Addr.getGlobalValue(), 0, 0);
   3129     else if (Addr.getReg()) {
   3130       unsigned Reg = constrainOperandRegClass(II, Addr.getReg(), 0);
   3131       MIB.addReg(Reg);
   3132     } else
   3133       return false;
   3134   } else {
   3135     unsigned CallReg = 0;
   3136     if (SymName) {
   3137       unsigned ADRPReg = createResultReg(&AArch64::GPR64commonRegClass);
   3138       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::ADRP),
   3139               ADRPReg)
   3140         .addExternalSymbol(SymName, AArch64II::MO_GOT | AArch64II::MO_PAGE);
   3141 
   3142       CallReg = createResultReg(&AArch64::GPR64RegClass);
   3143       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::LDRXui),
   3144               CallReg)
   3145         .addReg(ADRPReg)
   3146         .addExternalSymbol(SymName, AArch64II::MO_GOT | AArch64II::MO_PAGEOFF |
   3147                            AArch64II::MO_NC);
   3148     } else if (Addr.getGlobalValue())
   3149       CallReg = materializeGV(Addr.getGlobalValue());
   3150     else if (Addr.getReg())
   3151       CallReg = Addr.getReg();
   3152 
   3153     if (!CallReg)
   3154       return false;
   3155 
   3156     const MCInstrDesc &II = TII.get(AArch64::BLR);
   3157     CallReg = constrainOperandRegClass(II, CallReg, 0);
   3158     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addReg(CallReg);
   3159   }
   3160 
   3161   // Add implicit physical register uses to the call.
   3162   for (auto Reg : CLI.OutRegs)
   3163     MIB.addReg(Reg, RegState::Implicit);
   3164 
   3165   // Add a register mask with the call-preserved registers.
   3166   // Proper defs for return values will be added by setPhysRegsDeadExcept().
   3167   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
   3168 
   3169   CLI.Call = MIB;
   3170 
   3171   // Finish off the call including any return values.
   3172   return finishCall(CLI, RetVT, NumBytes);
   3173 }
   3174 
   3175 bool AArch64FastISel::isMemCpySmall(uint64_t Len, unsigned Alignment) {
   3176   if (Alignment)
   3177     return Len / Alignment <= 4;
   3178   else
   3179     return Len < 32;
   3180 }
   3181 
   3182 bool AArch64FastISel::tryEmitSmallMemCpy(Address Dest, Address Src,
   3183                                          uint64_t Len, unsigned Alignment) {
   3184   // Make sure we don't bloat code by inlining very large memcpy's.
   3185   if (!isMemCpySmall(Len, Alignment))
   3186     return false;
   3187 
   3188   int64_t UnscaledOffset = 0;
   3189   Address OrigDest = Dest;
   3190   Address OrigSrc = Src;
   3191 
   3192   while (Len) {
   3193     MVT VT;
   3194     if (!Alignment || Alignment >= 8) {
   3195       if (Len >= 8)
   3196         VT = MVT::i64;
   3197       else if (Len >= 4)
   3198         VT = MVT::i32;
   3199       else if (Len >= 2)
   3200         VT = MVT::i16;
   3201       else {
   3202         VT = MVT::i8;
   3203       }
   3204     } else {
   3205       // Bound based on alignment.
   3206       if (Len >= 4 && Alignment == 4)
   3207         VT = MVT::i32;
   3208       else if (Len >= 2 && Alignment == 2)
   3209         VT = MVT::i16;
   3210       else {
   3211         VT = MVT::i8;
   3212       }
   3213     }
   3214 
   3215     unsigned ResultReg = emitLoad(VT, VT, Src);
   3216     if (!ResultReg)
   3217       return false;
   3218 
   3219     if (!emitStore(VT, ResultReg, Dest))
   3220       return false;
   3221 
   3222     int64_t Size = VT.getSizeInBits() / 8;
   3223     Len -= Size;
   3224     UnscaledOffset += Size;
   3225 
   3226     // We need to recompute the unscaled offset for each iteration.
   3227     Dest.setOffset(OrigDest.getOffset() + UnscaledOffset);
   3228     Src.setOffset(OrigSrc.getOffset() + UnscaledOffset);
   3229   }
   3230 
   3231   return true;
   3232 }
   3233 
   3234 /// \brief Check if it is possible to fold the condition from the XALU intrinsic
   3235 /// into the user. The condition code will only be updated on success.
   3236 bool AArch64FastISel::foldXALUIntrinsic(AArch64CC::CondCode &CC,
   3237                                         const Instruction *I,
   3238                                         const Value *Cond) {
   3239   if (!isa<ExtractValueInst>(Cond))
   3240     return false;
   3241 
   3242   const auto *EV = cast<ExtractValueInst>(Cond);
   3243   if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
   3244     return false;
   3245 
   3246   const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
   3247   MVT RetVT;
   3248   const Function *Callee = II->getCalledFunction();
   3249   Type *RetTy =
   3250   cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
   3251   if (!isTypeLegal(RetTy, RetVT))
   3252     return false;
   3253 
   3254   if (RetVT != MVT::i32 && RetVT != MVT::i64)
   3255     return false;
   3256 
   3257   const Value *LHS = II->getArgOperand(0);
   3258   const Value *RHS = II->getArgOperand(1);
   3259 
   3260   // Canonicalize immediate to the RHS.
   3261   if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
   3262       isCommutativeIntrinsic(II))
   3263     std::swap(LHS, RHS);
   3264 
   3265   // Simplify multiplies.
   3266   unsigned IID = II->getIntrinsicID();
   3267   switch (IID) {
   3268   default:
   3269     break;
   3270   case Intrinsic::smul_with_overflow:
   3271     if (const auto *C = dyn_cast<ConstantInt>(RHS))
   3272       if (C->getValue() == 2)
   3273         IID = Intrinsic::sadd_with_overflow;
   3274     break;
   3275   case Intrinsic::umul_with_overflow:
   3276     if (const auto *C = dyn_cast<ConstantInt>(RHS))
   3277       if (C->getValue() == 2)
   3278         IID = Intrinsic::uadd_with_overflow;
   3279     break;
   3280   }
   3281 
   3282   AArch64CC::CondCode TmpCC;
   3283   switch (IID) {
   3284   default:
   3285     return false;
   3286   case Intrinsic::sadd_with_overflow:
   3287   case Intrinsic::ssub_with_overflow:
   3288     TmpCC = AArch64CC::VS;
   3289     break;
   3290   case Intrinsic::uadd_with_overflow:
   3291     TmpCC = AArch64CC::HS;
   3292     break;
   3293   case Intrinsic::usub_with_overflow:
   3294     TmpCC = AArch64CC::LO;
   3295     break;
   3296   case Intrinsic::smul_with_overflow:
   3297   case Intrinsic::umul_with_overflow:
   3298     TmpCC = AArch64CC::NE;
   3299     break;
   3300   }
   3301 
   3302   // Check if both instructions are in the same basic block.
   3303   if (!isValueAvailable(II))
   3304     return false;
   3305 
   3306   // Make sure nothing is in the way
   3307   BasicBlock::const_iterator Start = I;
   3308   BasicBlock::const_iterator End = II;
   3309   for (auto Itr = std::prev(Start); Itr != End; --Itr) {
   3310     // We only expect extractvalue instructions between the intrinsic and the
   3311     // instruction to be selected.
   3312     if (!isa<ExtractValueInst>(Itr))
   3313       return false;
   3314 
   3315     // Check that the extractvalue operand comes from the intrinsic.
   3316     const auto *EVI = cast<ExtractValueInst>(Itr);
   3317     if (EVI->getAggregateOperand() != II)
   3318       return false;
   3319   }
   3320 
   3321   CC = TmpCC;
   3322   return true;
   3323 }
   3324 
   3325 bool AArch64FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
   3326   // FIXME: Handle more intrinsics.
   3327   switch (II->getIntrinsicID()) {
   3328   default: return false;
   3329   case Intrinsic::frameaddress: {
   3330     MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
   3331     MFI->setFrameAddressIsTaken(true);
   3332 
   3333     const AArch64RegisterInfo *RegInfo =
   3334         static_cast<const AArch64RegisterInfo *>(Subtarget->getRegisterInfo());
   3335     unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
   3336     unsigned SrcReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
   3337     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3338             TII.get(TargetOpcode::COPY), SrcReg).addReg(FramePtr);
   3339     // Recursively load frame address
   3340     // ldr x0, [fp]
   3341     // ldr x0, [x0]
   3342     // ldr x0, [x0]
   3343     // ...
   3344     unsigned DestReg;
   3345     unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
   3346     while (Depth--) {
   3347       DestReg = fastEmitInst_ri(AArch64::LDRXui, &AArch64::GPR64RegClass,
   3348                                 SrcReg, /*IsKill=*/true, 0);
   3349       assert(DestReg && "Unexpected LDR instruction emission failure.");
   3350       SrcReg = DestReg;
   3351     }
   3352 
   3353     updateValueMap(II, SrcReg);
   3354     return true;
   3355   }
   3356   case Intrinsic::memcpy:
   3357   case Intrinsic::memmove: {
   3358     const auto *MTI = cast<MemTransferInst>(II);
   3359     // Don't handle volatile.
   3360     if (MTI->isVolatile())
   3361       return false;
   3362 
   3363     // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
   3364     // we would emit dead code because we don't currently handle memmoves.
   3365     bool IsMemCpy = (II->getIntrinsicID() == Intrinsic::memcpy);
   3366     if (isa<ConstantInt>(MTI->getLength()) && IsMemCpy) {
   3367       // Small memcpy's are common enough that we want to do them without a call
   3368       // if possible.
   3369       uint64_t Len = cast<ConstantInt>(MTI->getLength())->getZExtValue();
   3370       unsigned Alignment = MTI->getAlignment();
   3371       if (isMemCpySmall(Len, Alignment)) {
   3372         Address Dest, Src;
   3373         if (!computeAddress(MTI->getRawDest(), Dest) ||
   3374             !computeAddress(MTI->getRawSource(), Src))
   3375           return false;
   3376         if (tryEmitSmallMemCpy(Dest, Src, Len, Alignment))
   3377           return true;
   3378       }
   3379     }
   3380 
   3381     if (!MTI->getLength()->getType()->isIntegerTy(64))
   3382       return false;
   3383 
   3384     if (MTI->getSourceAddressSpace() > 255 || MTI->getDestAddressSpace() > 255)
   3385       // Fast instruction selection doesn't support the special
   3386       // address spaces.
   3387       return false;
   3388 
   3389     const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
   3390     return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 2);
   3391   }
   3392   case Intrinsic::memset: {
   3393     const MemSetInst *MSI = cast<MemSetInst>(II);
   3394     // Don't handle volatile.
   3395     if (MSI->isVolatile())
   3396       return false;
   3397 
   3398     if (!MSI->getLength()->getType()->isIntegerTy(64))
   3399       return false;
   3400 
   3401     if (MSI->getDestAddressSpace() > 255)
   3402       // Fast instruction selection doesn't support the special
   3403       // address spaces.
   3404       return false;
   3405 
   3406     return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
   3407   }
   3408   case Intrinsic::sin:
   3409   case Intrinsic::cos:
   3410   case Intrinsic::pow: {
   3411     MVT RetVT;
   3412     if (!isTypeLegal(II->getType(), RetVT))
   3413       return false;
   3414 
   3415     if (RetVT != MVT::f32 && RetVT != MVT::f64)
   3416       return false;
   3417 
   3418     static const RTLIB::Libcall LibCallTable[3][2] = {
   3419       { RTLIB::SIN_F32, RTLIB::SIN_F64 },
   3420       { RTLIB::COS_F32, RTLIB::COS_F64 },
   3421       { RTLIB::POW_F32, RTLIB::POW_F64 }
   3422     };
   3423     RTLIB::Libcall LC;
   3424     bool Is64Bit = RetVT == MVT::f64;
   3425     switch (II->getIntrinsicID()) {
   3426     default:
   3427       llvm_unreachable("Unexpected intrinsic.");
   3428     case Intrinsic::sin:
   3429       LC = LibCallTable[0][Is64Bit];
   3430       break;
   3431     case Intrinsic::cos:
   3432       LC = LibCallTable[1][Is64Bit];
   3433       break;
   3434     case Intrinsic::pow:
   3435       LC = LibCallTable[2][Is64Bit];
   3436       break;
   3437     }
   3438 
   3439     ArgListTy Args;
   3440     Args.reserve(II->getNumArgOperands());
   3441 
   3442     // Populate the argument list.
   3443     for (auto &Arg : II->arg_operands()) {
   3444       ArgListEntry Entry;
   3445       Entry.Val = Arg;
   3446       Entry.Ty = Arg->getType();
   3447       Args.push_back(Entry);
   3448     }
   3449 
   3450     CallLoweringInfo CLI;
   3451     CLI.setCallee(TLI.getLibcallCallingConv(LC), II->getType(),
   3452                   TLI.getLibcallName(LC), std::move(Args));
   3453     if (!lowerCallTo(CLI))
   3454       return false;
   3455     updateValueMap(II, CLI.ResultReg);
   3456     return true;
   3457   }
   3458   case Intrinsic::fabs: {
   3459     MVT VT;
   3460     if (!isTypeLegal(II->getType(), VT))
   3461       return false;
   3462 
   3463     unsigned Opc;
   3464     switch (VT.SimpleTy) {
   3465     default:
   3466       return false;
   3467     case MVT::f32:
   3468       Opc = AArch64::FABSSr;
   3469       break;
   3470     case MVT::f64:
   3471       Opc = AArch64::FABSDr;
   3472       break;
   3473     }
   3474     unsigned SrcReg = getRegForValue(II->getOperand(0));
   3475     if (!SrcReg)
   3476       return false;
   3477     bool SrcRegIsKill = hasTrivialKill(II->getOperand(0));
   3478     unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
   3479     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
   3480       .addReg(SrcReg, getKillRegState(SrcRegIsKill));
   3481     updateValueMap(II, ResultReg);
   3482     return true;
   3483   }
   3484   case Intrinsic::trap: {
   3485     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AArch64::BRK))
   3486         .addImm(1);
   3487     return true;
   3488   }
   3489   case Intrinsic::sqrt: {
   3490     Type *RetTy = II->getCalledFunction()->getReturnType();
   3491 
   3492     MVT VT;
   3493     if (!isTypeLegal(RetTy, VT))
   3494       return false;
   3495 
   3496     unsigned Op0Reg = getRegForValue(II->getOperand(0));
   3497     if (!Op0Reg)
   3498       return false;
   3499     bool Op0IsKill = hasTrivialKill(II->getOperand(0));
   3500 
   3501     unsigned ResultReg = fastEmit_r(VT, VT, ISD::FSQRT, Op0Reg, Op0IsKill);
   3502     if (!ResultReg)
   3503       return false;
   3504 
   3505     updateValueMap(II, ResultReg);
   3506     return true;
   3507   }
   3508   case Intrinsic::sadd_with_overflow:
   3509   case Intrinsic::uadd_with_overflow:
   3510   case Intrinsic::ssub_with_overflow:
   3511   case Intrinsic::usub_with_overflow:
   3512   case Intrinsic::smul_with_overflow:
   3513   case Intrinsic::umul_with_overflow: {
   3514     // This implements the basic lowering of the xalu with overflow intrinsics.
   3515     const Function *Callee = II->getCalledFunction();
   3516     auto *Ty = cast<StructType>(Callee->getReturnType());
   3517     Type *RetTy = Ty->getTypeAtIndex(0U);
   3518 
   3519     MVT VT;
   3520     if (!isTypeLegal(RetTy, VT))
   3521       return false;
   3522 
   3523     if (VT != MVT::i32 && VT != MVT::i64)
   3524       return false;
   3525 
   3526     const Value *LHS = II->getArgOperand(0);
   3527     const Value *RHS = II->getArgOperand(1);
   3528     // Canonicalize immediate to the RHS.
   3529     if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
   3530         isCommutativeIntrinsic(II))
   3531       std::swap(LHS, RHS);
   3532 
   3533     // Simplify multiplies.
   3534     unsigned IID = II->getIntrinsicID();
   3535     switch (IID) {
   3536     default:
   3537       break;
   3538     case Intrinsic::smul_with_overflow:
   3539       if (const auto *C = dyn_cast<ConstantInt>(RHS))
   3540         if (C->getValue() == 2) {
   3541           IID = Intrinsic::sadd_with_overflow;
   3542           RHS = LHS;
   3543         }
   3544       break;
   3545     case Intrinsic::umul_with_overflow:
   3546       if (const auto *C = dyn_cast<ConstantInt>(RHS))
   3547         if (C->getValue() == 2) {
   3548           IID = Intrinsic::uadd_with_overflow;
   3549           RHS = LHS;
   3550         }
   3551       break;
   3552     }
   3553 
   3554     unsigned ResultReg1 = 0, ResultReg2 = 0, MulReg = 0;
   3555     AArch64CC::CondCode CC = AArch64CC::Invalid;
   3556     switch (IID) {
   3557     default: llvm_unreachable("Unexpected intrinsic!");
   3558     case Intrinsic::sadd_with_overflow:
   3559       ResultReg1 = emitAdd(VT, LHS, RHS, /*SetFlags=*/true);
   3560       CC = AArch64CC::VS;
   3561       break;
   3562     case Intrinsic::uadd_with_overflow:
   3563       ResultReg1 = emitAdd(VT, LHS, RHS, /*SetFlags=*/true);
   3564       CC = AArch64CC::HS;
   3565       break;
   3566     case Intrinsic::ssub_with_overflow:
   3567       ResultReg1 = emitSub(VT, LHS, RHS, /*SetFlags=*/true);
   3568       CC = AArch64CC::VS;
   3569       break;
   3570     case Intrinsic::usub_with_overflow:
   3571       ResultReg1 = emitSub(VT, LHS, RHS, /*SetFlags=*/true);
   3572       CC = AArch64CC::LO;
   3573       break;
   3574     case Intrinsic::smul_with_overflow: {
   3575       CC = AArch64CC::NE;
   3576       unsigned LHSReg = getRegForValue(LHS);
   3577       if (!LHSReg)
   3578         return false;
   3579       bool LHSIsKill = hasTrivialKill(LHS);
   3580 
   3581       unsigned RHSReg = getRegForValue(RHS);
   3582       if (!RHSReg)
   3583         return false;
   3584       bool RHSIsKill = hasTrivialKill(RHS);
   3585 
   3586       if (VT == MVT::i32) {
   3587         MulReg = emitSMULL_rr(MVT::i64, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
   3588         unsigned ShiftReg = emitLSR_ri(MVT::i64, MVT::i64, MulReg,
   3589                                        /*IsKill=*/false, 32);
   3590         MulReg = fastEmitInst_extractsubreg(VT, MulReg, /*IsKill=*/true,
   3591                                             AArch64::sub_32);
   3592         ShiftReg = fastEmitInst_extractsubreg(VT, ShiftReg, /*IsKill=*/true,
   3593                                               AArch64::sub_32);
   3594         emitSubs_rs(VT, ShiftReg, /*IsKill=*/true, MulReg, /*IsKill=*/false,
   3595                     AArch64_AM::ASR, 31, /*WantResult=*/false);
   3596       } else {
   3597         assert(VT == MVT::i64 && "Unexpected value type.");
   3598         MulReg = emitMul_rr(VT, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
   3599         unsigned SMULHReg = fastEmit_rr(VT, VT, ISD::MULHS, LHSReg, LHSIsKill,
   3600                                         RHSReg, RHSIsKill);
   3601         emitSubs_rs(VT, SMULHReg, /*IsKill=*/true, MulReg, /*IsKill=*/false,
   3602                     AArch64_AM::ASR, 63, /*WantResult=*/false);
   3603       }
   3604       break;
   3605     }
   3606     case Intrinsic::umul_with_overflow: {
   3607       CC = AArch64CC::NE;
   3608       unsigned LHSReg = getRegForValue(LHS);
   3609       if (!LHSReg)
   3610         return false;
   3611       bool LHSIsKill = hasTrivialKill(LHS);
   3612 
   3613       unsigned RHSReg = getRegForValue(RHS);
   3614       if (!RHSReg)
   3615         return false;
   3616       bool RHSIsKill = hasTrivialKill(RHS);
   3617 
   3618       if (VT == MVT::i32) {
   3619         MulReg = emitUMULL_rr(MVT::i64, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
   3620         emitSubs_rs(MVT::i64, AArch64::XZR, /*IsKill=*/true, MulReg,
   3621                     /*IsKill=*/false, AArch64_AM::LSR, 32,
   3622                     /*WantResult=*/false);
   3623         MulReg = fastEmitInst_extractsubreg(VT, MulReg, /*IsKill=*/true,
   3624                                             AArch64::sub_32);
   3625       } else {
   3626         assert(VT == MVT::i64 && "Unexpected value type.");
   3627         MulReg = emitMul_rr(VT, LHSReg, LHSIsKill, RHSReg, RHSIsKill);
   3628         unsigned UMULHReg = fastEmit_rr(VT, VT, ISD::MULHU, LHSReg, LHSIsKill,
   3629                                         RHSReg, RHSIsKill);
   3630         emitSubs_rr(VT, AArch64::XZR, /*IsKill=*/true, UMULHReg,
   3631                     /*IsKill=*/false, /*WantResult=*/false);
   3632       }
   3633       break;
   3634     }
   3635     }
   3636 
   3637     if (MulReg) {
   3638       ResultReg1 = createResultReg(TLI.getRegClassFor(VT));
   3639       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3640               TII.get(TargetOpcode::COPY), ResultReg1).addReg(MulReg);
   3641     }
   3642 
   3643     ResultReg2 = fastEmitInst_rri(AArch64::CSINCWr, &AArch64::GPR32RegClass,
   3644                                   AArch64::WZR, /*IsKill=*/true, AArch64::WZR,
   3645                                   /*IsKill=*/true, getInvertedCondCode(CC));
   3646     (void)ResultReg2;
   3647     assert((ResultReg1 + 1) == ResultReg2 &&
   3648            "Nonconsecutive result registers.");
   3649     updateValueMap(II, ResultReg1, 2);
   3650     return true;
   3651   }
   3652   }
   3653   return false;
   3654 }
   3655 
   3656 bool AArch64FastISel::selectRet(const Instruction *I) {
   3657   const ReturnInst *Ret = cast<ReturnInst>(I);
   3658   const Function &F = *I->getParent()->getParent();
   3659 
   3660   if (!FuncInfo.CanLowerReturn)
   3661     return false;
   3662 
   3663   if (F.isVarArg())
   3664     return false;
   3665 
   3666   // Build a list of return value registers.
   3667   SmallVector<unsigned, 4> RetRegs;
   3668 
   3669   if (Ret->getNumOperands() > 0) {
   3670     CallingConv::ID CC = F.getCallingConv();
   3671     SmallVector<ISD::OutputArg, 4> Outs;
   3672     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
   3673 
   3674     // Analyze operands of the call, assigning locations to each operand.
   3675     SmallVector<CCValAssign, 16> ValLocs;
   3676     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
   3677     CCAssignFn *RetCC = CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
   3678                                                      : RetCC_AArch64_AAPCS;
   3679     CCInfo.AnalyzeReturn(Outs, RetCC);
   3680 
   3681     // Only handle a single return value for now.
   3682     if (ValLocs.size() != 1)
   3683       return false;
   3684 
   3685     CCValAssign &VA = ValLocs[0];
   3686     const Value *RV = Ret->getOperand(0);
   3687 
   3688     // Don't bother handling odd stuff for now.
   3689     if ((VA.getLocInfo() != CCValAssign::Full) &&
   3690         (VA.getLocInfo() != CCValAssign::BCvt))
   3691       return false;
   3692 
   3693     // Only handle register returns for now.
   3694     if (!VA.isRegLoc())
   3695       return false;
   3696 
   3697     unsigned Reg = getRegForValue(RV);
   3698     if (Reg == 0)
   3699       return false;
   3700 
   3701     unsigned SrcReg = Reg + VA.getValNo();
   3702     unsigned DestReg = VA.getLocReg();
   3703     // Avoid a cross-class copy. This is very unlikely.
   3704     if (!MRI.getRegClass(SrcReg)->contains(DestReg))
   3705       return false;
   3706 
   3707     EVT RVEVT = TLI.getValueType(RV->getType());
   3708     if (!RVEVT.isSimple())
   3709       return false;
   3710 
   3711     // Vectors (of > 1 lane) in big endian need tricky handling.
   3712     if (RVEVT.isVector() && RVEVT.getVectorNumElements() > 1 &&
   3713         !Subtarget->isLittleEndian())
   3714       return false;
   3715 
   3716     MVT RVVT = RVEVT.getSimpleVT();
   3717     if (RVVT == MVT::f128)
   3718       return false;
   3719 
   3720     MVT DestVT = VA.getValVT();
   3721     // Special handling for extended integers.
   3722     if (RVVT != DestVT) {
   3723       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
   3724         return false;
   3725 
   3726       if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
   3727         return false;
   3728 
   3729       bool IsZExt = Outs[0].Flags.isZExt();
   3730       SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
   3731       if (SrcReg == 0)
   3732         return false;
   3733     }
   3734 
   3735     // Make the copy.
   3736     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3737             TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
   3738 
   3739     // Add register to return instruction.
   3740     RetRegs.push_back(VA.getLocReg());
   3741   }
   3742 
   3743   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3744                                     TII.get(AArch64::RET_ReallyLR));
   3745   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
   3746     MIB.addReg(RetRegs[i], RegState::Implicit);
   3747   return true;
   3748 }
   3749 
   3750 bool AArch64FastISel::selectTrunc(const Instruction *I) {
   3751   Type *DestTy = I->getType();
   3752   Value *Op = I->getOperand(0);
   3753   Type *SrcTy = Op->getType();
   3754 
   3755   EVT SrcEVT = TLI.getValueType(SrcTy, true);
   3756   EVT DestEVT = TLI.getValueType(DestTy, true);
   3757   if (!SrcEVT.isSimple())
   3758     return false;
   3759   if (!DestEVT.isSimple())
   3760     return false;
   3761 
   3762   MVT SrcVT = SrcEVT.getSimpleVT();
   3763   MVT DestVT = DestEVT.getSimpleVT();
   3764 
   3765   if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 &&
   3766       SrcVT != MVT::i8)
   3767     return false;
   3768   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8 &&
   3769       DestVT != MVT::i1)
   3770     return false;
   3771 
   3772   unsigned SrcReg = getRegForValue(Op);
   3773   if (!SrcReg)
   3774     return false;
   3775   bool SrcIsKill = hasTrivialKill(Op);
   3776 
   3777   // If we're truncating from i64 to a smaller non-legal type then generate an
   3778   // AND. Otherwise, we know the high bits are undefined and a truncate only
   3779   // generate a COPY. We cannot mark the source register also as result
   3780   // register, because this can incorrectly transfer the kill flag onto the
   3781   // source register.
   3782   unsigned ResultReg;
   3783   if (SrcVT == MVT::i64) {
   3784     uint64_t Mask = 0;
   3785     switch (DestVT.SimpleTy) {
   3786     default:
   3787       // Trunc i64 to i32 is handled by the target-independent fast-isel.
   3788       return false;
   3789     case MVT::i1:
   3790       Mask = 0x1;
   3791       break;
   3792     case MVT::i8:
   3793       Mask = 0xff;
   3794       break;
   3795     case MVT::i16:
   3796       Mask = 0xffff;
   3797       break;
   3798     }
   3799     // Issue an extract_subreg to get the lower 32-bits.
   3800     unsigned Reg32 = fastEmitInst_extractsubreg(MVT::i32, SrcReg, SrcIsKill,
   3801                                                 AArch64::sub_32);
   3802     // Create the AND instruction which performs the actual truncation.
   3803     ResultReg = emitAnd_ri(MVT::i32, Reg32, /*IsKill=*/true, Mask);
   3804     assert(ResultReg && "Unexpected AND instruction emission failure.");
   3805   } else {
   3806     ResultReg = createResultReg(&AArch64::GPR32RegClass);
   3807     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3808             TII.get(TargetOpcode::COPY), ResultReg)
   3809         .addReg(SrcReg, getKillRegState(SrcIsKill));
   3810   }
   3811 
   3812   updateValueMap(I, ResultReg);
   3813   return true;
   3814 }
   3815 
   3816 unsigned AArch64FastISel::emiti1Ext(unsigned SrcReg, MVT DestVT, bool IsZExt) {
   3817   assert((DestVT == MVT::i8 || DestVT == MVT::i16 || DestVT == MVT::i32 ||
   3818           DestVT == MVT::i64) &&
   3819          "Unexpected value type.");
   3820   // Handle i8 and i16 as i32.
   3821   if (DestVT == MVT::i8 || DestVT == MVT::i16)
   3822     DestVT = MVT::i32;
   3823 
   3824   if (IsZExt) {
   3825     unsigned ResultReg = emitAnd_ri(MVT::i32, SrcReg, /*TODO:IsKill=*/false, 1);
   3826     assert(ResultReg && "Unexpected AND instruction emission failure.");
   3827     if (DestVT == MVT::i64) {
   3828       // We're ZExt i1 to i64.  The ANDWri Wd, Ws, #1 implicitly clears the
   3829       // upper 32 bits.  Emit a SUBREG_TO_REG to extend from Wd to Xd.
   3830       unsigned Reg64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
   3831       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3832               TII.get(AArch64::SUBREG_TO_REG), Reg64)
   3833           .addImm(0)
   3834           .addReg(ResultReg)
   3835           .addImm(AArch64::sub_32);
   3836       ResultReg = Reg64;
   3837     }
   3838     return ResultReg;
   3839   } else {
   3840     if (DestVT == MVT::i64) {
   3841       // FIXME: We're SExt i1 to i64.
   3842       return 0;
   3843     }
   3844     return fastEmitInst_rii(AArch64::SBFMWri, &AArch64::GPR32RegClass, SrcReg,
   3845                             /*TODO:IsKill=*/false, 0, 0);
   3846   }
   3847 }
   3848 
   3849 unsigned AArch64FastISel::emitMul_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
   3850                                       unsigned Op1, bool Op1IsKill) {
   3851   unsigned Opc, ZReg;
   3852   switch (RetVT.SimpleTy) {
   3853   default: return 0;
   3854   case MVT::i8:
   3855   case MVT::i16:
   3856   case MVT::i32:
   3857     RetVT = MVT::i32;
   3858     Opc = AArch64::MADDWrrr; ZReg = AArch64::WZR; break;
   3859   case MVT::i64:
   3860     Opc = AArch64::MADDXrrr; ZReg = AArch64::XZR; break;
   3861   }
   3862 
   3863   const TargetRegisterClass *RC =
   3864       (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
   3865   return fastEmitInst_rrr(Opc, RC, Op0, Op0IsKill, Op1, Op1IsKill,
   3866                           /*IsKill=*/ZReg, true);
   3867 }
   3868 
   3869 unsigned AArch64FastISel::emitSMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
   3870                                         unsigned Op1, bool Op1IsKill) {
   3871   if (RetVT != MVT::i64)
   3872     return 0;
   3873 
   3874   return fastEmitInst_rrr(AArch64::SMADDLrrr, &AArch64::GPR64RegClass,
   3875                           Op0, Op0IsKill, Op1, Op1IsKill,
   3876                           AArch64::XZR, /*IsKill=*/true);
   3877 }
   3878 
   3879 unsigned AArch64FastISel::emitUMULL_rr(MVT RetVT, unsigned Op0, bool Op0IsKill,
   3880                                         unsigned Op1, bool Op1IsKill) {
   3881   if (RetVT != MVT::i64)
   3882     return 0;
   3883 
   3884   return fastEmitInst_rrr(AArch64::UMADDLrrr, &AArch64::GPR64RegClass,
   3885                           Op0, Op0IsKill, Op1, Op1IsKill,
   3886                           AArch64::XZR, /*IsKill=*/true);
   3887 }
   3888 
   3889 unsigned AArch64FastISel::emitLSL_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
   3890                                      unsigned Op1Reg, bool Op1IsKill) {
   3891   unsigned Opc = 0;
   3892   bool NeedTrunc = false;
   3893   uint64_t Mask = 0;
   3894   switch (RetVT.SimpleTy) {
   3895   default: return 0;
   3896   case MVT::i8:  Opc = AArch64::LSLVWr; NeedTrunc = true; Mask = 0xff;   break;
   3897   case MVT::i16: Opc = AArch64::LSLVWr; NeedTrunc = true; Mask = 0xffff; break;
   3898   case MVT::i32: Opc = AArch64::LSLVWr;                                  break;
   3899   case MVT::i64: Opc = AArch64::LSLVXr;                                  break;
   3900   }
   3901 
   3902   const TargetRegisterClass *RC =
   3903       (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
   3904   if (NeedTrunc) {
   3905     Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Op1IsKill, Mask);
   3906     Op1IsKill = true;
   3907   }
   3908   unsigned ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op0IsKill, Op1Reg,
   3909                                        Op1IsKill);
   3910   if (NeedTrunc)
   3911     ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
   3912   return ResultReg;
   3913 }
   3914 
   3915 unsigned AArch64FastISel::emitLSL_ri(MVT RetVT, MVT SrcVT, unsigned Op0,
   3916                                      bool Op0IsKill, uint64_t Shift,
   3917                                      bool IsZExt) {
   3918   assert(RetVT.SimpleTy >= SrcVT.SimpleTy &&
   3919          "Unexpected source/return type pair.");
   3920   assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 ||
   3921           SrcVT == MVT::i32 || SrcVT == MVT::i64) &&
   3922          "Unexpected source value type.");
   3923   assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 ||
   3924           RetVT == MVT::i64) && "Unexpected return value type.");
   3925 
   3926   bool Is64Bit = (RetVT == MVT::i64);
   3927   unsigned RegSize = Is64Bit ? 64 : 32;
   3928   unsigned DstBits = RetVT.getSizeInBits();
   3929   unsigned SrcBits = SrcVT.getSizeInBits();
   3930   const TargetRegisterClass *RC =
   3931       Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
   3932 
   3933   // Just emit a copy for "zero" shifts.
   3934   if (Shift == 0) {
   3935     if (RetVT == SrcVT) {
   3936       unsigned ResultReg = createResultReg(RC);
   3937       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3938               TII.get(TargetOpcode::COPY), ResultReg)
   3939           .addReg(Op0, getKillRegState(Op0IsKill));
   3940       return ResultReg;
   3941     } else
   3942       return emitIntExt(SrcVT, Op0, RetVT, IsZExt);
   3943   }
   3944 
   3945   // Don't deal with undefined shifts.
   3946   if (Shift >= DstBits)
   3947     return 0;
   3948 
   3949   // For immediate shifts we can fold the zero-/sign-extension into the shift.
   3950   // {S|U}BFM Wd, Wn, #r, #s
   3951   // Wd<32+s-r,32-r> = Wn<s:0> when r > s
   3952 
   3953   // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
   3954   // %2 = shl i16 %1, 4
   3955   // Wd<32+7-28,32-28> = Wn<7:0> <- clamp s to 7
   3956   // 0b1111_1111_1111_1111__1111_1010_1010_0000 sext
   3957   // 0b0000_0000_0000_0000__0000_0101_0101_0000 sext | zext
   3958   // 0b0000_0000_0000_0000__0000_1010_1010_0000 zext
   3959 
   3960   // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
   3961   // %2 = shl i16 %1, 8
   3962   // Wd<32+7-24,32-24> = Wn<7:0>
   3963   // 0b1111_1111_1111_1111__1010_1010_0000_0000 sext
   3964   // 0b0000_0000_0000_0000__0101_0101_0000_0000 sext | zext
   3965   // 0b0000_0000_0000_0000__1010_1010_0000_0000 zext
   3966 
   3967   // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
   3968   // %2 = shl i16 %1, 12
   3969   // Wd<32+3-20,32-20> = Wn<3:0>
   3970   // 0b1111_1111_1111_1111__1010_0000_0000_0000 sext
   3971   // 0b0000_0000_0000_0000__0101_0000_0000_0000 sext | zext
   3972   // 0b0000_0000_0000_0000__1010_0000_0000_0000 zext
   3973 
   3974   unsigned ImmR = RegSize - Shift;
   3975   // Limit the width to the length of the source type.
   3976   unsigned ImmS = std::min<unsigned>(SrcBits - 1, DstBits - 1 - Shift);
   3977   static const unsigned OpcTable[2][2] = {
   3978     {AArch64::SBFMWri, AArch64::SBFMXri},
   3979     {AArch64::UBFMWri, AArch64::UBFMXri}
   3980   };
   3981   unsigned Opc = OpcTable[IsZExt][Is64Bit];
   3982   if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) {
   3983     unsigned TmpReg = MRI.createVirtualRegister(RC);
   3984     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   3985             TII.get(AArch64::SUBREG_TO_REG), TmpReg)
   3986         .addImm(0)
   3987         .addReg(Op0, getKillRegState(Op0IsKill))
   3988         .addImm(AArch64::sub_32);
   3989     Op0 = TmpReg;
   3990     Op0IsKill = true;
   3991   }
   3992   return fastEmitInst_rii(Opc, RC, Op0, Op0IsKill, ImmR, ImmS);
   3993 }
   3994 
   3995 unsigned AArch64FastISel::emitLSR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
   3996                                      unsigned Op1Reg, bool Op1IsKill) {
   3997   unsigned Opc = 0;
   3998   bool NeedTrunc = false;
   3999   uint64_t Mask = 0;
   4000   switch (RetVT.SimpleTy) {
   4001   default: return 0;
   4002   case MVT::i8:  Opc = AArch64::LSRVWr; NeedTrunc = true; Mask = 0xff;   break;
   4003   case MVT::i16: Opc = AArch64::LSRVWr; NeedTrunc = true; Mask = 0xffff; break;
   4004   case MVT::i32: Opc = AArch64::LSRVWr; break;
   4005   case MVT::i64: Opc = AArch64::LSRVXr; break;
   4006   }
   4007 
   4008   const TargetRegisterClass *RC =
   4009       (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
   4010   if (NeedTrunc) {
   4011     Op0Reg = emitAnd_ri(MVT::i32, Op0Reg, Op0IsKill, Mask);
   4012     Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Op1IsKill, Mask);
   4013     Op0IsKill = Op1IsKill = true;
   4014   }
   4015   unsigned ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op0IsKill, Op1Reg,
   4016                                        Op1IsKill);
   4017   if (NeedTrunc)
   4018     ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
   4019   return ResultReg;
   4020 }
   4021 
   4022 unsigned AArch64FastISel::emitLSR_ri(MVT RetVT, MVT SrcVT, unsigned Op0,
   4023                                      bool Op0IsKill, uint64_t Shift,
   4024                                      bool IsZExt) {
   4025   assert(RetVT.SimpleTy >= SrcVT.SimpleTy &&
   4026          "Unexpected source/return type pair.");
   4027   assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 ||
   4028           SrcVT == MVT::i32 || SrcVT == MVT::i64) &&
   4029          "Unexpected source value type.");
   4030   assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 ||
   4031           RetVT == MVT::i64) && "Unexpected return value type.");
   4032 
   4033   bool Is64Bit = (RetVT == MVT::i64);
   4034   unsigned RegSize = Is64Bit ? 64 : 32;
   4035   unsigned DstBits = RetVT.getSizeInBits();
   4036   unsigned SrcBits = SrcVT.getSizeInBits();
   4037   const TargetRegisterClass *RC =
   4038       Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
   4039 
   4040   // Just emit a copy for "zero" shifts.
   4041   if (Shift == 0) {
   4042     if (RetVT == SrcVT) {
   4043       unsigned ResultReg = createResultReg(RC);
   4044       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   4045               TII.get(TargetOpcode::COPY), ResultReg)
   4046       .addReg(Op0, getKillRegState(Op0IsKill));
   4047       return ResultReg;
   4048     } else
   4049       return emitIntExt(SrcVT, Op0, RetVT, IsZExt);
   4050   }
   4051 
   4052   // Don't deal with undefined shifts.
   4053   if (Shift >= DstBits)
   4054     return 0;
   4055 
   4056   // For immediate shifts we can fold the zero-/sign-extension into the shift.
   4057   // {S|U}BFM Wd, Wn, #r, #s
   4058   // Wd<s-r:0> = Wn<s:r> when r <= s
   4059 
   4060   // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
   4061   // %2 = lshr i16 %1, 4
   4062   // Wd<7-4:0> = Wn<7:4>
   4063   // 0b0000_0000_0000_0000__0000_1111_1111_1010 sext
   4064   // 0b0000_0000_0000_0000__0000_0000_0000_0101 sext | zext
   4065   // 0b0000_0000_0000_0000__0000_0000_0000_1010 zext
   4066 
   4067   // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
   4068   // %2 = lshr i16 %1, 8
   4069   // Wd<7-7,0> = Wn<7:7>
   4070   // 0b0000_0000_0000_0000__0000_0000_1111_1111 sext
   4071   // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
   4072   // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
   4073 
   4074   // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
   4075   // %2 = lshr i16 %1, 12
   4076   // Wd<7-7,0> = Wn<7:7> <- clamp r to 7
   4077   // 0b0000_0000_0000_0000__0000_0000_0000_1111 sext
   4078   // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
   4079   // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
   4080 
   4081   if (Shift >= SrcBits && IsZExt)
   4082     return materializeInt(ConstantInt::get(*Context, APInt(RegSize, 0)), RetVT);
   4083 
   4084   // It is not possible to fold a sign-extend into the LShr instruction. In this
   4085   // case emit a sign-extend.
   4086   if (!IsZExt) {
   4087     Op0 = emitIntExt(SrcVT, Op0, RetVT, IsZExt);
   4088     if (!Op0)
   4089       return 0;
   4090     Op0IsKill = true;
   4091     SrcVT = RetVT;
   4092     SrcBits = SrcVT.getSizeInBits();
   4093     IsZExt = true;
   4094   }
   4095 
   4096   unsigned ImmR = std::min<unsigned>(SrcBits - 1, Shift);
   4097   unsigned ImmS = SrcBits - 1;
   4098   static const unsigned OpcTable[2][2] = {
   4099     {AArch64::SBFMWri, AArch64::SBFMXri},
   4100     {AArch64::UBFMWri, AArch64::UBFMXri}
   4101   };
   4102   unsigned Opc = OpcTable[IsZExt][Is64Bit];
   4103   if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) {
   4104     unsigned TmpReg = MRI.createVirtualRegister(RC);
   4105     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   4106             TII.get(AArch64::SUBREG_TO_REG), TmpReg)
   4107         .addImm(0)
   4108         .addReg(Op0, getKillRegState(Op0IsKill))
   4109         .addImm(AArch64::sub_32);
   4110     Op0 = TmpReg;
   4111     Op0IsKill = true;
   4112   }
   4113   return fastEmitInst_rii(Opc, RC, Op0, Op0IsKill, ImmR, ImmS);
   4114 }
   4115 
   4116 unsigned AArch64FastISel::emitASR_rr(MVT RetVT, unsigned Op0Reg, bool Op0IsKill,
   4117                                      unsigned Op1Reg, bool Op1IsKill) {
   4118   unsigned Opc = 0;
   4119   bool NeedTrunc = false;
   4120   uint64_t Mask = 0;
   4121   switch (RetVT.SimpleTy) {
   4122   default: return 0;
   4123   case MVT::i8:  Opc = AArch64::ASRVWr; NeedTrunc = true; Mask = 0xff;   break;
   4124   case MVT::i16: Opc = AArch64::ASRVWr; NeedTrunc = true; Mask = 0xffff; break;
   4125   case MVT::i32: Opc = AArch64::ASRVWr;                                  break;
   4126   case MVT::i64: Opc = AArch64::ASRVXr;                                  break;
   4127   }
   4128 
   4129   const TargetRegisterClass *RC =
   4130       (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
   4131   if (NeedTrunc) {
   4132     Op0Reg = emitIntExt(RetVT, Op0Reg, MVT::i32, /*IsZExt=*/false);
   4133     Op1Reg = emitAnd_ri(MVT::i32, Op1Reg, Op1IsKill, Mask);
   4134     Op0IsKill = Op1IsKill = true;
   4135   }
   4136   unsigned ResultReg = fastEmitInst_rr(Opc, RC, Op0Reg, Op0IsKill, Op1Reg,
   4137                                        Op1IsKill);
   4138   if (NeedTrunc)
   4139     ResultReg = emitAnd_ri(MVT::i32, ResultReg, /*IsKill=*/true, Mask);
   4140   return ResultReg;
   4141 }
   4142 
   4143 unsigned AArch64FastISel::emitASR_ri(MVT RetVT, MVT SrcVT, unsigned Op0,
   4144                                      bool Op0IsKill, uint64_t Shift,
   4145                                      bool IsZExt) {
   4146   assert(RetVT.SimpleTy >= SrcVT.SimpleTy &&
   4147          "Unexpected source/return type pair.");
   4148   assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 ||
   4149           SrcVT == MVT::i32 || SrcVT == MVT::i64) &&
   4150          "Unexpected source value type.");
   4151   assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 ||
   4152           RetVT == MVT::i64) && "Unexpected return value type.");
   4153 
   4154   bool Is64Bit = (RetVT == MVT::i64);
   4155   unsigned RegSize = Is64Bit ? 64 : 32;
   4156   unsigned DstBits = RetVT.getSizeInBits();
   4157   unsigned SrcBits = SrcVT.getSizeInBits();
   4158   const TargetRegisterClass *RC =
   4159       Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
   4160 
   4161   // Just emit a copy for "zero" shifts.
   4162   if (Shift == 0) {
   4163     if (RetVT == SrcVT) {
   4164       unsigned ResultReg = createResultReg(RC);
   4165       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   4166               TII.get(TargetOpcode::COPY), ResultReg)
   4167       .addReg(Op0, getKillRegState(Op0IsKill));
   4168       return ResultReg;
   4169     } else
   4170       return emitIntExt(SrcVT, Op0, RetVT, IsZExt);
   4171   }
   4172 
   4173   // Don't deal with undefined shifts.
   4174   if (Shift >= DstBits)
   4175     return 0;
   4176 
   4177   // For immediate shifts we can fold the zero-/sign-extension into the shift.
   4178   // {S|U}BFM Wd, Wn, #r, #s
   4179   // Wd<s-r:0> = Wn<s:r> when r <= s
   4180 
   4181   // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
   4182   // %2 = ashr i16 %1, 4
   4183   // Wd<7-4:0> = Wn<7:4>
   4184   // 0b1111_1111_1111_1111__1111_1111_1111_1010 sext
   4185   // 0b0000_0000_0000_0000__0000_0000_0000_0101 sext | zext
   4186   // 0b0000_0000_0000_0000__0000_0000_0000_1010 zext
   4187 
   4188   // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
   4189   // %2 = ashr i16 %1, 8
   4190   // Wd<7-7,0> = Wn<7:7>
   4191   // 0b1111_1111_1111_1111__1111_1111_1111_1111 sext
   4192   // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
   4193   // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
   4194 
   4195   // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16
   4196   // %2 = ashr i16 %1, 12
   4197   // Wd<7-7,0> = Wn<7:7> <- clamp r to 7
   4198   // 0b1111_1111_1111_1111__1111_1111_1111_1111 sext
   4199   // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext
   4200   // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext
   4201 
   4202   if (Shift >= SrcBits && IsZExt)
   4203     return materializeInt(ConstantInt::get(*Context, APInt(RegSize, 0)), RetVT);
   4204 
   4205   unsigned ImmR = std::min<unsigned>(SrcBits - 1, Shift);
   4206   unsigned ImmS = SrcBits - 1;
   4207   static const unsigned OpcTable[2][2] = {
   4208     {AArch64::SBFMWri, AArch64::SBFMXri},
   4209     {AArch64::UBFMWri, AArch64::UBFMXri}
   4210   };
   4211   unsigned Opc = OpcTable[IsZExt][Is64Bit];
   4212   if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) {
   4213     unsigned TmpReg = MRI.createVirtualRegister(RC);
   4214     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   4215             TII.get(AArch64::SUBREG_TO_REG), TmpReg)
   4216         .addImm(0)
   4217         .addReg(Op0, getKillRegState(Op0IsKill))
   4218         .addImm(AArch64::sub_32);
   4219     Op0 = TmpReg;
   4220     Op0IsKill = true;
   4221   }
   4222   return fastEmitInst_rii(Opc, RC, Op0, Op0IsKill, ImmR, ImmS);
   4223 }
   4224 
   4225 unsigned AArch64FastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
   4226                                      bool IsZExt) {
   4227   assert(DestVT != MVT::i1 && "ZeroExt/SignExt an i1?");
   4228 
   4229   // FastISel does not have plumbing to deal with extensions where the SrcVT or
   4230   // DestVT are odd things, so test to make sure that they are both types we can
   4231   // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
   4232   // bail out to SelectionDAG.
   4233   if (((DestVT != MVT::i8) && (DestVT != MVT::i16) &&
   4234        (DestVT != MVT::i32) && (DestVT != MVT::i64)) ||
   4235       ((SrcVT !=  MVT::i1) && (SrcVT !=  MVT::i8) &&
   4236        (SrcVT !=  MVT::i16) && (SrcVT !=  MVT::i32)))
   4237     return 0;
   4238 
   4239   unsigned Opc;
   4240   unsigned Imm = 0;
   4241 
   4242   switch (SrcVT.SimpleTy) {
   4243   default:
   4244     return 0;
   4245   case MVT::i1:
   4246     return emiti1Ext(SrcReg, DestVT, IsZExt);
   4247   case MVT::i8:
   4248     if (DestVT == MVT::i64)
   4249       Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
   4250     else
   4251       Opc = IsZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
   4252     Imm = 7;
   4253     break;
   4254   case MVT::i16:
   4255     if (DestVT == MVT::i64)
   4256       Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
   4257     else
   4258       Opc = IsZExt ? AArch64::UBFMWri : AArch64::SBFMWri;
   4259     Imm = 15;
   4260     break;
   4261   case MVT::i32:
   4262     assert(DestVT == MVT::i64 && "IntExt i32 to i32?!?");
   4263     Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri;
   4264     Imm = 31;
   4265     break;
   4266   }
   4267 
   4268   // Handle i8 and i16 as i32.
   4269   if (DestVT == MVT::i8 || DestVT == MVT::i16)
   4270     DestVT = MVT::i32;
   4271   else if (DestVT == MVT::i64) {
   4272     unsigned Src64 = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
   4273     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   4274             TII.get(AArch64::SUBREG_TO_REG), Src64)
   4275         .addImm(0)
   4276         .addReg(SrcReg)
   4277         .addImm(AArch64::sub_32);
   4278     SrcReg = Src64;
   4279   }
   4280 
   4281   const TargetRegisterClass *RC =
   4282       (DestVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
   4283   return fastEmitInst_rii(Opc, RC, SrcReg, /*TODO:IsKill=*/false, 0, Imm);
   4284 }
   4285 
   4286 static bool isZExtLoad(const MachineInstr *LI) {
   4287   switch (LI->getOpcode()) {
   4288   default:
   4289     return false;
   4290   case AArch64::LDURBBi:
   4291   case AArch64::LDURHHi:
   4292   case AArch64::LDURWi:
   4293   case AArch64::LDRBBui:
   4294   case AArch64::LDRHHui:
   4295   case AArch64::LDRWui:
   4296   case AArch64::LDRBBroX:
   4297   case AArch64::LDRHHroX:
   4298   case AArch64::LDRWroX:
   4299   case AArch64::LDRBBroW:
   4300   case AArch64::LDRHHroW:
   4301   case AArch64::LDRWroW:
   4302     return true;
   4303   }
   4304 }
   4305 
   4306 static bool isSExtLoad(const MachineInstr *LI) {
   4307   switch (LI->getOpcode()) {
   4308   default:
   4309     return false;
   4310   case AArch64::LDURSBWi:
   4311   case AArch64::LDURSHWi:
   4312   case AArch64::LDURSBXi:
   4313   case AArch64::LDURSHXi:
   4314   case AArch64::LDURSWi:
   4315   case AArch64::LDRSBWui:
   4316   case AArch64::LDRSHWui:
   4317   case AArch64::LDRSBXui:
   4318   case AArch64::LDRSHXui:
   4319   case AArch64::LDRSWui:
   4320   case AArch64::LDRSBWroX:
   4321   case AArch64::LDRSHWroX:
   4322   case AArch64::LDRSBXroX:
   4323   case AArch64::LDRSHXroX:
   4324   case AArch64::LDRSWroX:
   4325   case AArch64::LDRSBWroW:
   4326   case AArch64::LDRSHWroW:
   4327   case AArch64::LDRSBXroW:
   4328   case AArch64::LDRSHXroW:
   4329   case AArch64::LDRSWroW:
   4330     return true;
   4331   }
   4332 }
   4333 
   4334 bool AArch64FastISel::optimizeIntExtLoad(const Instruction *I, MVT RetVT,
   4335                                          MVT SrcVT) {
   4336   const auto *LI = dyn_cast<LoadInst>(I->getOperand(0));
   4337   if (!LI || !LI->hasOneUse())
   4338     return false;
   4339 
   4340   // Check if the load instruction has already been selected.
   4341   unsigned Reg = lookUpRegForValue(LI);
   4342   if (!Reg)
   4343     return false;
   4344 
   4345   MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
   4346   if (!MI)
   4347     return false;
   4348 
   4349   // Check if the correct load instruction has been emitted - SelectionDAG might
   4350   // have emitted a zero-extending load, but we need a sign-extending load.
   4351   bool IsZExt = isa<ZExtInst>(I);
   4352   const auto *LoadMI = MI;
   4353   if (LoadMI->getOpcode() == TargetOpcode::COPY &&
   4354       LoadMI->getOperand(1).getSubReg() == AArch64::sub_32) {
   4355     unsigned LoadReg = MI->getOperand(1).getReg();
   4356     LoadMI = MRI.getUniqueVRegDef(LoadReg);
   4357     assert(LoadMI && "Expected valid instruction");
   4358   }
   4359   if (!(IsZExt && isZExtLoad(LoadMI)) && !(!IsZExt && isSExtLoad(LoadMI)))
   4360     return false;
   4361 
   4362   // Nothing to be done.
   4363   if (RetVT != MVT::i64 || SrcVT > MVT::i32) {
   4364     updateValueMap(I, Reg);
   4365     return true;
   4366   }
   4367 
   4368   if (IsZExt) {
   4369     unsigned Reg64 = createResultReg(&AArch64::GPR64RegClass);
   4370     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   4371             TII.get(AArch64::SUBREG_TO_REG), Reg64)
   4372         .addImm(0)
   4373         .addReg(Reg, getKillRegState(true))
   4374         .addImm(AArch64::sub_32);
   4375     Reg = Reg64;
   4376   } else {
   4377     assert((MI->getOpcode() == TargetOpcode::COPY &&
   4378             MI->getOperand(1).getSubReg() == AArch64::sub_32) &&
   4379            "Expected copy instruction");
   4380     Reg = MI->getOperand(1).getReg();
   4381     MI->eraseFromParent();
   4382   }
   4383   updateValueMap(I, Reg);
   4384   return true;
   4385 }
   4386 
   4387 bool AArch64FastISel::selectIntExt(const Instruction *I) {
   4388   assert((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
   4389          "Unexpected integer extend instruction.");
   4390   MVT RetVT;
   4391   MVT SrcVT;
   4392   if (!isTypeSupported(I->getType(), RetVT))
   4393     return false;
   4394 
   4395   if (!isTypeSupported(I->getOperand(0)->getType(), SrcVT))
   4396     return false;
   4397 
   4398   // Try to optimize already sign-/zero-extended values from load instructions.
   4399   if (optimizeIntExtLoad(I, RetVT, SrcVT))
   4400     return true;
   4401 
   4402   unsigned SrcReg = getRegForValue(I->getOperand(0));
   4403   if (!SrcReg)
   4404     return false;
   4405   bool SrcIsKill = hasTrivialKill(I->getOperand(0));
   4406 
   4407   // Try to optimize already sign-/zero-extended values from function arguments.
   4408   bool IsZExt = isa<ZExtInst>(I);
   4409   if (const auto *Arg = dyn_cast<Argument>(I->getOperand(0))) {
   4410     if ((IsZExt && Arg->hasZExtAttr()) || (!IsZExt && Arg->hasSExtAttr())) {
   4411       if (RetVT == MVT::i64 && SrcVT != MVT::i64) {
   4412         unsigned ResultReg = createResultReg(&AArch64::GPR64RegClass);
   4413         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
   4414                 TII.get(AArch64::SUBREG_TO_REG), ResultReg)
   4415             .addImm(0)
   4416             .addReg(SrcReg, getKillRegState(SrcIsKill))
   4417             .addImm(AArch64::sub_32);
   4418         SrcReg = ResultReg;
   4419       }
   4420       // Conservatively clear all kill flags from all uses, because we are
   4421       // replacing a sign-/zero-extend instruction at IR level with a nop at MI
   4422       // level. The result of the instruction at IR level might have been
   4423       // trivially dead, which is now not longer true.
   4424       unsigned UseReg = lookUpRegForValue(I);
   4425       if (UseReg)
   4426         MRI.clearKillFlags(UseReg);
   4427 
   4428       updateValueMap(I, SrcReg);
   4429       return true;
   4430     }
   4431   }
   4432 
   4433   unsigned ResultReg = emitIntExt(SrcVT, SrcReg, RetVT, IsZExt);
   4434   if (!ResultReg)
   4435     return false;
   4436 
   4437   updateValueMap(I, ResultReg);
   4438   return true;
   4439 }
   4440 
   4441 bool AArch64FastISel::selectRem(const Instruction *I, unsigned ISDOpcode) {
   4442   EVT DestEVT = TLI.getValueType(I->getType(), true);
   4443   if (!DestEVT.isSimple())
   4444     return false;
   4445 
   4446   MVT DestVT = DestEVT.getSimpleVT();
   4447   if (DestVT != MVT::i64 && DestVT != MVT::i32)
   4448     return false;
   4449 
   4450   unsigned DivOpc;
   4451   bool Is64bit = (DestVT == MVT::i64);
   4452   switch (ISDOpcode) {
   4453   default:
   4454     return false;
   4455   case ISD::SREM:
   4456     DivOpc = Is64bit ? AArch64::SDIVXr : AArch64::SDIVWr;
   4457     break;
   4458   case ISD::UREM:
   4459     DivOpc = Is64bit ? AArch64::UDIVXr : AArch64::UDIVWr;
   4460     break;
   4461   }
   4462   unsigned MSubOpc = Is64bit ? AArch64::MSUBXrrr : AArch64::MSUBWrrr;
   4463   unsigned Src0Reg = getRegForValue(I->getOperand(0));
   4464   if (!Src0Reg)
   4465     return false;
   4466   bool Src0IsKill = hasTrivialKill(I->getOperand(0));
   4467 
   4468   unsigned Src1Reg = getRegForValue(I->getOperand(1));
   4469   if (!Src1Reg)
   4470     return false;
   4471   bool Src1IsKill = hasTrivialKill(I->getOperand(1));
   4472 
   4473   const TargetRegisterClass *RC =
   4474       (DestVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
   4475   unsigned QuotReg = fastEmitInst_rr(DivOpc, RC, Src0Reg, /*IsKill=*/false,
   4476                                      Src1Reg, /*IsKill=*/false);
   4477   assert(QuotReg && "Unexpected DIV instruction emission failure.");
   4478   // The remainder is computed as numerator - (quotient * denominator) using the
   4479   // MSUB instruction.
   4480   unsigned ResultReg = fastEmitInst_rrr(MSubOpc, RC, QuotReg, /*IsKill=*/true,
   4481                                         Src1Reg, Src1IsKill, Src0Reg,
   4482                                         Src0IsKill);
   4483   updateValueMap(I, ResultReg);
   4484   return true;
   4485 }
   4486 
   4487 bool AArch64FastISel::selectMul(const Instruction *I) {
   4488   MVT VT;
   4489   if (!isTypeSupported(I->getType(), VT, /*IsVectorAllowed=*/true))
   4490     return false;
   4491 
   4492   if (VT.isVector())
   4493     return selectBinaryOp(I, ISD::MUL);
   4494 
   4495   const Value *Src0 = I->getOperand(0);
   4496   const Value *Src1 = I->getOperand(1);
   4497   if (const auto *C = dyn_cast<ConstantInt>(Src0))
   4498     if (C->getValue().isPowerOf2())
   4499       std::swap(Src0, Src1);
   4500 
   4501   // Try to simplify to a shift instruction.
   4502   if (const auto *C = dyn_cast<ConstantInt>(Src1))
   4503     if (C->getValue().isPowerOf2()) {
   4504       uint64_t ShiftVal = C->getValue().logBase2();
   4505       MVT SrcVT = VT;
   4506       bool IsZExt = true;
   4507       if (const auto *ZExt = dyn_cast<ZExtInst>(Src0)) {
   4508         if (!isIntExtFree(ZExt)) {
   4509           MVT VT;
   4510           if (isValueAvailable(ZExt) && isTypeSupported(ZExt->getSrcTy(), VT)) {
   4511             SrcVT = VT;
   4512             IsZExt = true;
   4513             Src0 = ZExt->getOperand(0);
   4514           }
   4515         }
   4516       } else if (const auto *SExt = dyn_cast<SExtInst>(Src0)) {
   4517         if (!isIntExtFree(SExt)) {
   4518           MVT VT;
   4519           if (isValueAvailable(SExt) && isTypeSupported(SExt->getSrcTy(), VT)) {
   4520             SrcVT = VT;
   4521             IsZExt = false;
   4522             Src0 = SExt->getOperand(0);
   4523           }
   4524         }
   4525       }
   4526 
   4527       unsigned Src0Reg = getRegForValue(Src0);
   4528       if (!Src0Reg)
   4529         return false;
   4530       bool Src0IsKill = hasTrivialKill(Src0);
   4531 
   4532       unsigned ResultReg =
   4533           emitLSL_ri(VT, SrcVT, Src0Reg, Src0IsKill, ShiftVal, IsZExt);
   4534 
   4535       if (ResultReg) {
   4536         updateValueMap(I, ResultReg);
   4537         return true;
   4538       }
   4539     }
   4540 
   4541   unsigned Src0Reg = getRegForValue(I->getOperand(0));
   4542   if (!Src0Reg)
   4543     return false;
   4544   bool Src0IsKill = hasTrivialKill(I->getOperand(0));
   4545 
   4546   unsigned Src1Reg = getRegForValue(I->getOperand(1));
   4547   if (!Src1Reg)
   4548     return false;
   4549   bool Src1IsKill = hasTrivialKill(I->getOperand(1));
   4550 
   4551   unsigned ResultReg = emitMul_rr(VT, Src0Reg, Src0IsKill, Src1Reg, Src1IsKill);
   4552 
   4553   if (!ResultReg)
   4554     return false;
   4555 
   4556   updateValueMap(I, ResultReg);
   4557   return true;
   4558 }
   4559 
   4560 bool AArch64FastISel::selectShift(const Instruction *I) {
   4561   MVT RetVT;
   4562   if (!isTypeSupported(I->getType(), RetVT, /*IsVectorAllowed=*/true))
   4563     return false;
   4564 
   4565   if (RetVT.isVector())
   4566     return selectOperator(I, I->getOpcode());
   4567 
   4568   if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) {
   4569     unsigned ResultReg = 0;
   4570     uint64_t ShiftVal = C->getZExtValue();
   4571     MVT SrcVT = RetVT;
   4572     bool IsZExt = I->getOpcode() != Instruction::AShr;
   4573     const Value *Op0 = I->getOperand(0);
   4574     if (const auto *ZExt = dyn_cast<ZExtInst>(Op0)) {
   4575       if (!isIntExtFree(ZExt)) {
   4576         MVT TmpVT;
   4577         if (isValueAvailable(ZExt) && isTypeSupported(ZExt->getSrcTy(), TmpVT)) {
   4578           SrcVT = TmpVT;
   4579           IsZExt = true;
   4580           Op0 = ZExt->getOperand(0);
   4581         }
   4582       }
   4583     } else if (const auto *SExt = dyn_cast<SExtInst>(Op0)) {
   4584       if (!isIntExtFree(SExt)) {
   4585         MVT TmpVT;
   4586         if (isValueAvailable(SExt) && isTypeSupported(SExt->getSrcTy(), TmpVT)) {
   4587           SrcVT = TmpVT;
   4588           IsZExt = false;
   4589           Op0 = SExt->getOperand(0);
   4590         }
   4591       }
   4592     }
   4593 
   4594     unsigned Op0Reg = getRegForValue(Op0);
   4595     if (!Op0Reg)
   4596       return false;
   4597     bool Op0IsKill = hasTrivialKill(Op0);
   4598 
   4599     switch (I->getOpcode()) {
   4600     default: llvm_unreachable("Unexpected instruction.");
   4601     case Instruction::Shl:
   4602       ResultReg = emitLSL_ri(RetVT, SrcVT, Op0Reg, Op0IsKill, ShiftVal, IsZExt);
   4603       break;
   4604     case Instruction::AShr:
   4605       ResultReg = emitASR_ri(RetVT, SrcVT, Op0Reg, Op0IsKill, ShiftVal, IsZExt);
   4606       break;
   4607     case Instruction::LShr:
   4608       ResultReg = emitLSR_ri(RetVT, SrcVT, Op0Reg, Op0IsKill, ShiftVal, IsZExt);
   4609       break;
   4610     }
   4611     if (!ResultReg)
   4612       return false;
   4613 
   4614     updateValueMap(I, ResultReg);
   4615     return true;
   4616   }
   4617 
   4618   unsigned Op0Reg = getRegForValue(I->getOperand(0));
   4619   if (!Op0Reg)
   4620     return false;
   4621   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
   4622 
   4623   unsigned Op1Reg = getRegForValue(I->getOperand(1));
   4624   if (!Op1Reg)
   4625     return false;
   4626   bool Op1IsKill = hasTrivialKill(I->getOperand(1));
   4627 
   4628   unsigned ResultReg = 0;
   4629   switch (I->getOpcode()) {
   4630   default: llvm_unreachable("Unexpected instruction.");
   4631   case Instruction::Shl:
   4632     ResultReg = emitLSL_rr(RetVT, Op0Reg, Op0IsKill, Op1Reg, Op1IsKill);
   4633     break;
   4634   case Instruction::AShr:
   4635     ResultReg = emitASR_rr(RetVT, Op0Reg, Op0IsKill, Op1Reg, Op1IsKill);
   4636     break;
   4637   case Instruction::LShr:
   4638     ResultReg = emitLSR_rr(RetVT, Op0Reg, Op0IsKill, Op1Reg, Op1IsKill);
   4639     break;
   4640   }
   4641 
   4642   if (!ResultReg)
   4643     return false;
   4644 
   4645   updateValueMap(I, ResultReg);
   4646   return true;
   4647 }
   4648 
   4649 bool AArch64FastISel::selectBitCast(const Instruction *I) {
   4650   MVT RetVT, SrcVT;
   4651 
   4652   if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT))
   4653     return false;
   4654   if (!isTypeLegal(I->getType(), RetVT))
   4655     return false;
   4656 
   4657   unsigned Opc;
   4658   if (RetVT == MVT::f32 && SrcVT == MVT::i32)
   4659     Opc = AArch64::FMOVWSr;
   4660   else if (RetVT == MVT::f64 && SrcVT == MVT::i64)
   4661     Opc = AArch64::FMOVXDr;
   4662   else if (RetVT == MVT::i32 && SrcVT == MVT::f32)
   4663     Opc = AArch64::FMOVSWr;
   4664   else if (RetVT == MVT::i64 && SrcVT == MVT::f64)
   4665     Opc = AArch64::FMOVDXr;
   4666   else
   4667     return false;
   4668 
   4669   const TargetRegisterClass *RC = nullptr;
   4670   switch (RetVT.SimpleTy) {
   4671   default: llvm_unreachable("Unexpected value type.");
   4672   case MVT::i32: RC = &AArch64::GPR32RegClass; break;
   4673   case MVT::i64: RC = &AArch64::GPR64RegClass; break;
   4674   case MVT::f32: RC = &AArch64::FPR32RegClass; break;
   4675   case MVT::f64: RC = &AArch64::FPR64RegClass; break;
   4676   }
   4677   unsigned Op0Reg = getRegForValue(I->getOperand(0));
   4678   if (!Op0Reg)
   4679     return false;
   4680   bool Op0IsKill = hasTrivialKill(I->getOperand(0));
   4681   unsigned ResultReg = fastEmitInst_r(Opc, RC, Op0Reg, Op0IsKill);
   4682 
   4683   if (!ResultReg)
   4684     return false;
   4685 
   4686   updateValueMap(I, ResultReg);
   4687   return true;
   4688 }
   4689 
   4690 bool AArch64FastISel::selectFRem(const Instruction *I) {
   4691   MVT RetVT;
   4692   if (!isTypeLegal(I->getType(), RetVT))
   4693     return false;
   4694 
   4695   RTLIB::Libcall LC;
   4696   switch (RetVT.SimpleTy) {
   4697   default:
   4698     return false;
   4699   case MVT::f32:
   4700     LC = RTLIB::REM_F32;
   4701     break;
   4702   case MVT::f64:
   4703     LC = RTLIB::REM_F64;
   4704     break;
   4705   }
   4706 
   4707   ArgListTy Args;
   4708   Args.reserve(I->getNumOperands());
   4709 
   4710   // Populate the argument list.
   4711   for (auto &Arg : I->operands()) {
   4712     ArgListEntry Entry;
   4713     Entry.Val = Arg;
   4714     Entry.Ty = Arg->getType();
   4715     Args.push_back(Entry);
   4716   }
   4717 
   4718   CallLoweringInfo CLI;
   4719   CLI.setCallee(TLI.getLibcallCallingConv(LC), I->getType(),
   4720                 TLI.getLibcallName(LC), std::move(Args));
   4721   if (!lowerCallTo(CLI))
   4722     return false;
   4723   updateValueMap(I, CLI.ResultReg);
   4724   return true;
   4725 }
   4726 
   4727 bool AArch64FastISel::selectSDiv(const Instruction *I) {
   4728   MVT VT;
   4729   if (!isTypeLegal(I->getType(), VT))
   4730     return false;
   4731 
   4732   if (!isa<ConstantInt>(I->getOperand(1)))
   4733     return selectBinaryOp(I, ISD::SDIV);
   4734 
   4735   const APInt &C = cast<ConstantInt>(I->getOperand(1))->getValue();
   4736   if ((VT != MVT::i32 && VT != MVT::i64) || !C ||
   4737       !(C.isPowerOf2() || (-C).isPowerOf2()))
   4738     return selectBinaryOp(I, ISD::SDIV);
   4739 
   4740   unsigned Lg2 = C.countTrailingZeros();
   4741   unsigned Src0Reg = getRegForValue(I->getOperand(0));
   4742   if (!Src0Reg)
   4743     return false;
   4744   bool Src0IsKill = hasTrivialKill(I->getOperand(0));
   4745 
   4746   if (cast<BinaryOperator>(I)->isExact()) {
   4747     unsigned ResultReg = emitASR_ri(VT, VT, Src0Reg, Src0IsKill, Lg2);
   4748     if (!ResultReg)
   4749       return false;
   4750     updateValueMap(I, ResultReg);
   4751     return true;
   4752   }
   4753 
   4754   int64_t Pow2MinusOne = (1ULL << Lg2) - 1;
   4755   unsigned AddReg = emitAdd_ri_(VT, Src0Reg, /*IsKill=*/false, Pow2MinusOne);
   4756   if (!AddReg)
   4757     return false;
   4758 
   4759   // (Src0 < 0) ? Pow2 - 1 : 0;
   4760   if (!emitICmp_ri(VT, Src0Reg, /*IsKill=*/false, 0))
   4761     return false;
   4762 
   4763   unsigned SelectOpc;
   4764   const TargetRegisterClass *RC;
   4765   if (VT == MVT::i64) {
   4766     SelectOpc = AArch64::CSELXr;
   4767     RC = &AArch64::GPR64RegClass;
   4768   } else {
   4769     SelectOpc = AArch64::CSELWr;
   4770     RC = &AArch64::GPR32RegClass;
   4771   }
   4772   unsigned SelectReg =
   4773       fastEmitInst_rri(SelectOpc, RC, AddReg, /*IsKill=*/true, Src0Reg,
   4774                        Src0IsKill, AArch64CC::LT);
   4775   if (!SelectReg)
   4776     return false;
   4777 
   4778   // Divide by Pow2 --> ashr. If we're dividing by a negative value we must also
   4779   // negate the result.
   4780   unsigned ZeroReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR;
   4781   unsigned ResultReg;
   4782   if (C.isNegative())
   4783     ResultReg = emitAddSub_rs(/*UseAdd=*/false, VT, ZeroReg, /*IsKill=*/true,
   4784                               SelectReg, /*IsKill=*/true, AArch64_AM::ASR, Lg2);
   4785   else
   4786     ResultReg = emitASR_ri(VT, VT, SelectReg, /*IsKill=*/true, Lg2);
   4787 
   4788   if (!ResultReg)
   4789     return false;
   4790 
   4791   updateValueMap(I, ResultReg);
   4792   return true;
   4793 }
   4794 
   4795 /// This is mostly a copy of the existing FastISel getRegForGEPIndex code. We
   4796 /// have to duplicate it for AArch64, because otherwise we would fail during the
   4797 /// sign-extend emission.
   4798 std::pair<unsigned, bool> AArch64FastISel::getRegForGEPIndex(const Value *Idx) {
   4799   unsigned IdxN = getRegForValue(Idx);
   4800   if (IdxN == 0)
   4801     // Unhandled operand. Halt "fast" selection and bail.
   4802     return std::pair<unsigned, bool>(0, false);
   4803 
   4804   bool IdxNIsKill = hasTrivialKill(Idx);
   4805 
   4806   // If the index is smaller or larger than intptr_t, truncate or extend it.
   4807   MVT PtrVT = TLI.getPointerTy();
   4808   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
   4809   if (IdxVT.bitsLT(PtrVT)) {
   4810     IdxN = emitIntExt(IdxVT.getSimpleVT(), IdxN, PtrVT, /*IsZExt=*/false);
   4811     IdxNIsKill = true;
   4812   } else if (IdxVT.bitsGT(PtrVT))
   4813     llvm_unreachable("AArch64 FastISel doesn't support types larger than i64");
   4814   return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
   4815 }
   4816 
   4817 /// This is mostly a copy of the existing FastISel GEP code, but we have to
   4818 /// duplicate it for AArch64, because otherwise we would bail out even for
   4819 /// simple cases. This is because the standard fastEmit functions don't cover
   4820 /// MUL at all and ADD is lowered very inefficientily.
   4821 bool AArch64FastISel::selectGetElementPtr(const Instruction *I) {
   4822   unsigned N = getRegForValue(I->getOperand(0));
   4823   if (!N)
   4824     return false;
   4825   bool NIsKill = hasTrivialKill(I->getOperand(0));
   4826 
   4827   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
   4828   // into a single N = N + TotalOffset.
   4829   uint64_t TotalOffs = 0;
   4830   Type *Ty = I->getOperand(0)->getType();
   4831   MVT VT = TLI.getPointerTy();
   4832   for (auto OI = std::next(I->op_begin()), E = I->op_end(); OI != E; ++OI) {
   4833     const Value *Idx = *OI;
   4834     if (auto *StTy = dyn_cast<StructType>(Ty)) {
   4835       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
   4836       // N = N + Offset
   4837       if (Field)
   4838         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
   4839       Ty = StTy->getElementType(Field);
   4840     } else {
   4841       Ty = cast<SequentialType>(Ty)->getElementType();
   4842       // If this is a constant subscript, handle it quickly.
   4843       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
   4844         if (CI->isZero())
   4845           continue;
   4846         // N = N + Offset
   4847         TotalOffs +=
   4848             DL.getTypeAllocSize(Ty) * cast<ConstantInt>(CI)->getSExtValue();
   4849         continue;
   4850       }
   4851       if (TotalOffs) {
   4852         N = emitAdd_ri_(VT, N, NIsKill, TotalOffs);
   4853         if (!N)
   4854           return false;
   4855         NIsKill = true;
   4856         TotalOffs = 0;
   4857       }
   4858 
   4859       // N = N + Idx * ElementSize;
   4860       uint64_t ElementSize = DL.getTypeAllocSize(Ty);
   4861       std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
   4862       unsigned IdxN = Pair.first;
   4863       bool IdxNIsKill = Pair.second;
   4864       if (!IdxN)
   4865         return false;
   4866 
   4867       if (ElementSize != 1) {
   4868         unsigned C = fastEmit_i(VT, VT, ISD::Constant, ElementSize);
   4869         if (!C)
   4870           return false;
   4871         IdxN = emitMul_rr(VT, IdxN, IdxNIsKill, C, true);
   4872         if (!IdxN)
   4873           return false;
   4874         IdxNIsKill = true;
   4875       }
   4876       N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
   4877       if (!N)
   4878         return false;
   4879     }
   4880   }
   4881   if (TotalOffs) {
   4882     N = emitAdd_ri_(VT, N, NIsKill, TotalOffs);
   4883     if (!N)
   4884       return false;
   4885   }
   4886   updateValueMap(I, N);
   4887   return true;
   4888 }
   4889 
   4890 bool AArch64FastISel::fastSelectInstruction(const Instruction *I) {
   4891   switch (I->getOpcode()) {
   4892   default:
   4893     break;
   4894   case Instruction::Add:
   4895   case Instruction::Sub:
   4896     return selectAddSub(I);
   4897   case Instruction::Mul:
   4898     return selectMul(I);
   4899   case Instruction::SDiv:
   4900     return selectSDiv(I);
   4901   case Instruction::SRem:
   4902     if (!selectBinaryOp(I, ISD::SREM))
   4903       return selectRem(I, ISD::SREM);
   4904     return true;
   4905   case Instruction::URem:
   4906     if (!selectBinaryOp(I, ISD::UREM))
   4907       return selectRem(I, ISD::UREM);
   4908     return true;
   4909   case Instruction::Shl:
   4910   case Instruction::LShr:
   4911   case Instruction::AShr:
   4912     return selectShift(I);
   4913   case Instruction::And:
   4914   case Instruction::Or:
   4915   case Instruction::Xor:
   4916     return selectLogicalOp(I);
   4917   case Instruction::Br:
   4918     return selectBranch(I);
   4919   case Instruction::IndirectBr:
   4920     return selectIndirectBr(I);
   4921   case Instruction::BitCast:
   4922     if (!FastISel::selectBitCast(I))
   4923       return selectBitCast(I);
   4924     return true;
   4925   case Instruction::FPToSI:
   4926     if (!selectCast(I, ISD::FP_TO_SINT))
   4927       return selectFPToInt(I, /*Signed=*/true);
   4928     return true;
   4929   case Instruction::FPToUI:
   4930     return selectFPToInt(I, /*Signed=*/false);
   4931   case Instruction::ZExt:
   4932   case Instruction::SExt:
   4933     return selectIntExt(I);
   4934   case Instruction::Trunc:
   4935     if (!selectCast(I, ISD::TRUNCATE))
   4936       return selectTrunc(I);
   4937     return true;
   4938   case Instruction::FPExt:
   4939     return selectFPExt(I);
   4940   case Instruction::FPTrunc:
   4941     return selectFPTrunc(I);
   4942   case Instruction::SIToFP:
   4943     if (!selectCast(I, ISD::SINT_TO_FP))
   4944       return selectIntToFP(I, /*Signed=*/true);
   4945     return true;
   4946   case Instruction::UIToFP:
   4947     return selectIntToFP(I, /*Signed=*/false);
   4948   case Instruction::Load:
   4949     return selectLoad(I);
   4950   case Instruction::Store:
   4951     return selectStore(I);
   4952   case Instruction::FCmp:
   4953   case Instruction::ICmp:
   4954     return selectCmp(I);
   4955   case Instruction::Select:
   4956     return selectSelect(I);
   4957   case Instruction::Ret:
   4958     return selectRet(I);
   4959   case Instruction::FRem:
   4960     return selectFRem(I);
   4961   case Instruction::GetElementPtr:
   4962     return selectGetElementPtr(I);
   4963   }
   4964 
   4965   // fall-back to target-independent instruction selection.
   4966   return selectOperator(I, I->getOpcode());
   4967   // Silence warnings.
   4968   (void)&CC_AArch64_DarwinPCS_VarArg;
   4969 }
   4970 
   4971 namespace llvm {
   4972 llvm::FastISel *AArch64::createFastISel(FunctionLoweringInfo &FuncInfo,
   4973                                         const TargetLibraryInfo *LibInfo) {
   4974   return new AArch64FastISel(FuncInfo, LibInfo);
   4975 }
   4976 }
   4977