Home | History | Annotate | Download | only in Scalar
      1 //===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Dead Loop Deletion Pass. This pass is responsible
     11 // for eliminating loops with non-infinite computable trip counts that have no
     12 // side effects or volatile instructions, and do not contribute to the
     13 // computation of the function's return value.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/Transforms/Scalar.h"
     18 #include "llvm/ADT/SmallVector.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/LoopPass.h"
     21 #include "llvm/Analysis/ScalarEvolution.h"
     22 #include "llvm/IR/Dominators.h"
     23 using namespace llvm;
     24 
     25 #define DEBUG_TYPE "loop-delete"
     26 
     27 STATISTIC(NumDeleted, "Number of loops deleted");
     28 
     29 namespace {
     30   class LoopDeletion : public LoopPass {
     31   public:
     32     static char ID; // Pass ID, replacement for typeid
     33     LoopDeletion() : LoopPass(ID) {
     34       initializeLoopDeletionPass(*PassRegistry::getPassRegistry());
     35     }
     36 
     37     // Possibly eliminate loop L if it is dead.
     38     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
     39 
     40     void getAnalysisUsage(AnalysisUsage &AU) const override {
     41       AU.addRequired<DominatorTreeWrapperPass>();
     42       AU.addRequired<LoopInfoWrapperPass>();
     43       AU.addRequired<ScalarEvolution>();
     44       AU.addRequiredID(LoopSimplifyID);
     45       AU.addRequiredID(LCSSAID);
     46 
     47       AU.addPreserved<ScalarEvolution>();
     48       AU.addPreserved<DominatorTreeWrapperPass>();
     49       AU.addPreserved<LoopInfoWrapperPass>();
     50       AU.addPreservedID(LoopSimplifyID);
     51       AU.addPreservedID(LCSSAID);
     52     }
     53 
     54   private:
     55     bool isLoopDead(Loop *L, SmallVectorImpl<BasicBlock *> &exitingBlocks,
     56                     SmallVectorImpl<BasicBlock *> &exitBlocks,
     57                     bool &Changed, BasicBlock *Preheader);
     58 
     59   };
     60 }
     61 
     62 char LoopDeletion::ID = 0;
     63 INITIALIZE_PASS_BEGIN(LoopDeletion, "loop-deletion",
     64                 "Delete dead loops", false, false)
     65 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
     66 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
     67 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
     68 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
     69 INITIALIZE_PASS_DEPENDENCY(LCSSA)
     70 INITIALIZE_PASS_END(LoopDeletion, "loop-deletion",
     71                 "Delete dead loops", false, false)
     72 
     73 Pass *llvm::createLoopDeletionPass() {
     74   return new LoopDeletion();
     75 }
     76 
     77 /// isLoopDead - Determined if a loop is dead.  This assumes that we've already
     78 /// checked for unique exit and exiting blocks, and that the code is in LCSSA
     79 /// form.
     80 bool LoopDeletion::isLoopDead(Loop *L,
     81                               SmallVectorImpl<BasicBlock *> &exitingBlocks,
     82                               SmallVectorImpl<BasicBlock *> &exitBlocks,
     83                               bool &Changed, BasicBlock *Preheader) {
     84   BasicBlock *exitBlock = exitBlocks[0];
     85 
     86   // Make sure that all PHI entries coming from the loop are loop invariant.
     87   // Because the code is in LCSSA form, any values used outside of the loop
     88   // must pass through a PHI in the exit block, meaning that this check is
     89   // sufficient to guarantee that no loop-variant values are used outside
     90   // of the loop.
     91   BasicBlock::iterator BI = exitBlock->begin();
     92   while (PHINode *P = dyn_cast<PHINode>(BI)) {
     93     Value *incoming = P->getIncomingValueForBlock(exitingBlocks[0]);
     94 
     95     // Make sure all exiting blocks produce the same incoming value for the exit
     96     // block.  If there are different incoming values for different exiting
     97     // blocks, then it is impossible to statically determine which value should
     98     // be used.
     99     for (unsigned i = 1, e = exitingBlocks.size(); i < e; ++i) {
    100       if (incoming != P->getIncomingValueForBlock(exitingBlocks[i]))
    101         return false;
    102     }
    103 
    104     if (Instruction *I = dyn_cast<Instruction>(incoming))
    105       if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator()))
    106         return false;
    107 
    108     ++BI;
    109   }
    110 
    111   // Make sure that no instructions in the block have potential side-effects.
    112   // This includes instructions that could write to memory, and loads that are
    113   // marked volatile.  This could be made more aggressive by using aliasing
    114   // information to identify readonly and readnone calls.
    115   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
    116        LI != LE; ++LI) {
    117     for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
    118          BI != BE; ++BI) {
    119       if (BI->mayHaveSideEffects())
    120         return false;
    121     }
    122   }
    123 
    124   return true;
    125 }
    126 
    127 /// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
    128 /// observable behavior of the program other than finite running time.  Note
    129 /// we do ensure that this never remove a loop that might be infinite, as doing
    130 /// so could change the halting/non-halting nature of a program.
    131 /// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
    132 /// in order to make various safety checks work.
    133 bool LoopDeletion::runOnLoop(Loop *L, LPPassManager &LPM) {
    134   if (skipOptnoneFunction(L))
    135     return false;
    136 
    137   // We can only remove the loop if there is a preheader that we can
    138   // branch from after removing it.
    139   BasicBlock *preheader = L->getLoopPreheader();
    140   if (!preheader)
    141     return false;
    142 
    143   // If LoopSimplify form is not available, stay out of trouble.
    144   if (!L->hasDedicatedExits())
    145     return false;
    146 
    147   // We can't remove loops that contain subloops.  If the subloops were dead,
    148   // they would already have been removed in earlier executions of this pass.
    149   if (L->begin() != L->end())
    150     return false;
    151 
    152   SmallVector<BasicBlock*, 4> exitingBlocks;
    153   L->getExitingBlocks(exitingBlocks);
    154 
    155   SmallVector<BasicBlock*, 4> exitBlocks;
    156   L->getUniqueExitBlocks(exitBlocks);
    157 
    158   // We require that the loop only have a single exit block.  Otherwise, we'd
    159   // be in the situation of needing to be able to solve statically which exit
    160   // block will be branched to, or trying to preserve the branching logic in
    161   // a loop invariant manner.
    162   if (exitBlocks.size() != 1)
    163     return false;
    164 
    165   // Finally, we have to check that the loop really is dead.
    166   bool Changed = false;
    167   if (!isLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
    168     return Changed;
    169 
    170   // Don't remove loops for which we can't solve the trip count.
    171   // They could be infinite, in which case we'd be changing program behavior.
    172   ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
    173   const SCEV *S = SE.getMaxBackedgeTakenCount(L);
    174   if (isa<SCEVCouldNotCompute>(S))
    175     return Changed;
    176 
    177   // Now that we know the removal is safe, remove the loop by changing the
    178   // branch from the preheader to go to the single exit block.
    179   BasicBlock *exitBlock = exitBlocks[0];
    180 
    181   // Because we're deleting a large chunk of code at once, the sequence in which
    182   // we remove things is very important to avoid invalidation issues.  Don't
    183   // mess with this unless you have good reason and know what you're doing.
    184 
    185   // Tell ScalarEvolution that the loop is deleted. Do this before
    186   // deleting the loop so that ScalarEvolution can look at the loop
    187   // to determine what it needs to clean up.
    188   SE.forgetLoop(L);
    189 
    190   // Connect the preheader directly to the exit block.
    191   TerminatorInst *TI = preheader->getTerminator();
    192   TI->replaceUsesOfWith(L->getHeader(), exitBlock);
    193 
    194   // Rewrite phis in the exit block to get their inputs from
    195   // the preheader instead of the exiting block.
    196   BasicBlock *exitingBlock = exitingBlocks[0];
    197   BasicBlock::iterator BI = exitBlock->begin();
    198   while (PHINode *P = dyn_cast<PHINode>(BI)) {
    199     int j = P->getBasicBlockIndex(exitingBlock);
    200     assert(j >= 0 && "Can't find exiting block in exit block's phi node!");
    201     P->setIncomingBlock(j, preheader);
    202     for (unsigned i = 1; i < exitingBlocks.size(); ++i)
    203       P->removeIncomingValue(exitingBlocks[i]);
    204     ++BI;
    205   }
    206 
    207   // Update the dominator tree and remove the instructions and blocks that will
    208   // be deleted from the reference counting scheme.
    209   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    210   SmallVector<DomTreeNode*, 8> ChildNodes;
    211   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
    212        LI != LE; ++LI) {
    213     // Move all of the block's children to be children of the preheader, which
    214     // allows us to remove the domtree entry for the block.
    215     ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end());
    216     for (SmallVectorImpl<DomTreeNode *>::iterator DI = ChildNodes.begin(),
    217          DE = ChildNodes.end(); DI != DE; ++DI) {
    218       DT.changeImmediateDominator(*DI, DT[preheader]);
    219     }
    220 
    221     ChildNodes.clear();
    222     DT.eraseNode(*LI);
    223 
    224     // Remove the block from the reference counting scheme, so that we can
    225     // delete it freely later.
    226     (*LI)->dropAllReferences();
    227   }
    228 
    229   // Erase the instructions and the blocks without having to worry
    230   // about ordering because we already dropped the references.
    231   // NOTE: This iteration is safe because erasing the block does not remove its
    232   // entry from the loop's block list.  We do that in the next section.
    233   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
    234        LI != LE; ++LI)
    235     (*LI)->eraseFromParent();
    236 
    237   // Finally, the blocks from loopinfo.  This has to happen late because
    238   // otherwise our loop iterators won't work.
    239   LoopInfo &loopInfo = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    240   SmallPtrSet<BasicBlock*, 8> blocks;
    241   blocks.insert(L->block_begin(), L->block_end());
    242   for (BasicBlock *BB : blocks)
    243     loopInfo.removeBlock(BB);
    244 
    245   // The last step is to inform the loop pass manager that we've
    246   // eliminated this loop.
    247   LPM.deleteLoopFromQueue(L);
    248   Changed = true;
    249 
    250   ++NumDeleted;
    251 
    252   return Changed;
    253 }
    254