Home | History | Annotate | Download | only in Utils
      1 //===-- Local.cpp - Functions to perform local transformations ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This family of functions perform various local transformations to the
     11 // program.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Utils/Local.h"
     16 #include "llvm/ADT/DenseMap.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/SmallPtrSet.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/InstructionSimplify.h"
     21 #include "llvm/Analysis/LibCallSemantics.h"
     22 #include "llvm/Analysis/MemoryBuiltins.h"
     23 #include "llvm/Analysis/ValueTracking.h"
     24 #include "llvm/IR/CFG.h"
     25 #include "llvm/IR/Constants.h"
     26 #include "llvm/IR/DIBuilder.h"
     27 #include "llvm/IR/DataLayout.h"
     28 #include "llvm/IR/DebugInfo.h"
     29 #include "llvm/IR/DerivedTypes.h"
     30 #include "llvm/IR/Dominators.h"
     31 #include "llvm/IR/GetElementPtrTypeIterator.h"
     32 #include "llvm/IR/GlobalAlias.h"
     33 #include "llvm/IR/GlobalVariable.h"
     34 #include "llvm/IR/IRBuilder.h"
     35 #include "llvm/IR/Instructions.h"
     36 #include "llvm/IR/IntrinsicInst.h"
     37 #include "llvm/IR/Intrinsics.h"
     38 #include "llvm/IR/MDBuilder.h"
     39 #include "llvm/IR/Metadata.h"
     40 #include "llvm/IR/Operator.h"
     41 #include "llvm/IR/ValueHandle.h"
     42 #include "llvm/Support/Debug.h"
     43 #include "llvm/Support/MathExtras.h"
     44 #include "llvm/Support/raw_ostream.h"
     45 using namespace llvm;
     46 
     47 #define DEBUG_TYPE "local"
     48 
     49 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
     50 
     51 //===----------------------------------------------------------------------===//
     52 //  Local constant propagation.
     53 //
     54 
     55 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
     56 /// constant value, convert it into an unconditional branch to the constant
     57 /// destination.  This is a nontrivial operation because the successors of this
     58 /// basic block must have their PHI nodes updated.
     59 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
     60 /// conditions and indirectbr addresses this might make dead if
     61 /// DeleteDeadConditions is true.
     62 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
     63                                   const TargetLibraryInfo *TLI) {
     64   TerminatorInst *T = BB->getTerminator();
     65   IRBuilder<> Builder(T);
     66 
     67   // Branch - See if we are conditional jumping on constant
     68   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
     69     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
     70     BasicBlock *Dest1 = BI->getSuccessor(0);
     71     BasicBlock *Dest2 = BI->getSuccessor(1);
     72 
     73     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
     74       // Are we branching on constant?
     75       // YES.  Change to unconditional branch...
     76       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
     77       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
     78 
     79       //cerr << "Function: " << T->getParent()->getParent()
     80       //     << "\nRemoving branch from " << T->getParent()
     81       //     << "\n\nTo: " << OldDest << endl;
     82 
     83       // Let the basic block know that we are letting go of it.  Based on this,
     84       // it will adjust it's PHI nodes.
     85       OldDest->removePredecessor(BB);
     86 
     87       // Replace the conditional branch with an unconditional one.
     88       Builder.CreateBr(Destination);
     89       BI->eraseFromParent();
     90       return true;
     91     }
     92 
     93     if (Dest2 == Dest1) {       // Conditional branch to same location?
     94       // This branch matches something like this:
     95       //     br bool %cond, label %Dest, label %Dest
     96       // and changes it into:  br label %Dest
     97 
     98       // Let the basic block know that we are letting go of one copy of it.
     99       assert(BI->getParent() && "Terminator not inserted in block!");
    100       Dest1->removePredecessor(BI->getParent());
    101 
    102       // Replace the conditional branch with an unconditional one.
    103       Builder.CreateBr(Dest1);
    104       Value *Cond = BI->getCondition();
    105       BI->eraseFromParent();
    106       if (DeleteDeadConditions)
    107         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
    108       return true;
    109     }
    110     return false;
    111   }
    112 
    113   if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
    114     // If we are switching on a constant, we can convert the switch to an
    115     // unconditional branch.
    116     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
    117     BasicBlock *DefaultDest = SI->getDefaultDest();
    118     BasicBlock *TheOnlyDest = DefaultDest;
    119 
    120     // If the default is unreachable, ignore it when searching for TheOnlyDest.
    121     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
    122         SI->getNumCases() > 0) {
    123       TheOnlyDest = SI->case_begin().getCaseSuccessor();
    124     }
    125 
    126     // Figure out which case it goes to.
    127     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
    128          i != e; ++i) {
    129       // Found case matching a constant operand?
    130       if (i.getCaseValue() == CI) {
    131         TheOnlyDest = i.getCaseSuccessor();
    132         break;
    133       }
    134 
    135       // Check to see if this branch is going to the same place as the default
    136       // dest.  If so, eliminate it as an explicit compare.
    137       if (i.getCaseSuccessor() == DefaultDest) {
    138         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
    139         unsigned NCases = SI->getNumCases();
    140         // Fold the case metadata into the default if there will be any branches
    141         // left, unless the metadata doesn't match the switch.
    142         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
    143           // Collect branch weights into a vector.
    144           SmallVector<uint32_t, 8> Weights;
    145           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
    146                ++MD_i) {
    147             ConstantInt *CI =
    148                 mdconst::dyn_extract<ConstantInt>(MD->getOperand(MD_i));
    149             assert(CI);
    150             Weights.push_back(CI->getValue().getZExtValue());
    151           }
    152           // Merge weight of this case to the default weight.
    153           unsigned idx = i.getCaseIndex();
    154           Weights[0] += Weights[idx+1];
    155           // Remove weight for this case.
    156           std::swap(Weights[idx+1], Weights.back());
    157           Weights.pop_back();
    158           SI->setMetadata(LLVMContext::MD_prof,
    159                           MDBuilder(BB->getContext()).
    160                           createBranchWeights(Weights));
    161         }
    162         // Remove this entry.
    163         DefaultDest->removePredecessor(SI->getParent());
    164         SI->removeCase(i);
    165         --i; --e;
    166         continue;
    167       }
    168 
    169       // Otherwise, check to see if the switch only branches to one destination.
    170       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
    171       // destinations.
    172       if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr;
    173     }
    174 
    175     if (CI && !TheOnlyDest) {
    176       // Branching on a constant, but not any of the cases, go to the default
    177       // successor.
    178       TheOnlyDest = SI->getDefaultDest();
    179     }
    180 
    181     // If we found a single destination that we can fold the switch into, do so
    182     // now.
    183     if (TheOnlyDest) {
    184       // Insert the new branch.
    185       Builder.CreateBr(TheOnlyDest);
    186       BasicBlock *BB = SI->getParent();
    187 
    188       // Remove entries from PHI nodes which we no longer branch to...
    189       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
    190         // Found case matching a constant operand?
    191         BasicBlock *Succ = SI->getSuccessor(i);
    192         if (Succ == TheOnlyDest)
    193           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
    194         else
    195           Succ->removePredecessor(BB);
    196       }
    197 
    198       // Delete the old switch.
    199       Value *Cond = SI->getCondition();
    200       SI->eraseFromParent();
    201       if (DeleteDeadConditions)
    202         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
    203       return true;
    204     }
    205 
    206     if (SI->getNumCases() == 1) {
    207       // Otherwise, we can fold this switch into a conditional branch
    208       // instruction if it has only one non-default destination.
    209       SwitchInst::CaseIt FirstCase = SI->case_begin();
    210       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
    211           FirstCase.getCaseValue(), "cond");
    212 
    213       // Insert the new branch.
    214       BranchInst *NewBr = Builder.CreateCondBr(Cond,
    215                                                FirstCase.getCaseSuccessor(),
    216                                                SI->getDefaultDest());
    217       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
    218       if (MD && MD->getNumOperands() == 3) {
    219         ConstantInt *SICase =
    220             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
    221         ConstantInt *SIDef =
    222             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
    223         assert(SICase && SIDef);
    224         // The TrueWeight should be the weight for the single case of SI.
    225         NewBr->setMetadata(LLVMContext::MD_prof,
    226                         MDBuilder(BB->getContext()).
    227                         createBranchWeights(SICase->getValue().getZExtValue(),
    228                                             SIDef->getValue().getZExtValue()));
    229       }
    230 
    231       // Delete the old switch.
    232       SI->eraseFromParent();
    233       return true;
    234     }
    235     return false;
    236   }
    237 
    238   if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
    239     // indirectbr blockaddress(@F, @BB) -> br label @BB
    240     if (BlockAddress *BA =
    241           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
    242       BasicBlock *TheOnlyDest = BA->getBasicBlock();
    243       // Insert the new branch.
    244       Builder.CreateBr(TheOnlyDest);
    245 
    246       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
    247         if (IBI->getDestination(i) == TheOnlyDest)
    248           TheOnlyDest = nullptr;
    249         else
    250           IBI->getDestination(i)->removePredecessor(IBI->getParent());
    251       }
    252       Value *Address = IBI->getAddress();
    253       IBI->eraseFromParent();
    254       if (DeleteDeadConditions)
    255         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
    256 
    257       // If we didn't find our destination in the IBI successor list, then we
    258       // have undefined behavior.  Replace the unconditional branch with an
    259       // 'unreachable' instruction.
    260       if (TheOnlyDest) {
    261         BB->getTerminator()->eraseFromParent();
    262         new UnreachableInst(BB->getContext(), BB);
    263       }
    264 
    265       return true;
    266     }
    267   }
    268 
    269   return false;
    270 }
    271 
    272 
    273 //===----------------------------------------------------------------------===//
    274 //  Local dead code elimination.
    275 //
    276 
    277 /// isInstructionTriviallyDead - Return true if the result produced by the
    278 /// instruction is not used, and the instruction has no side effects.
    279 ///
    280 bool llvm::isInstructionTriviallyDead(Instruction *I,
    281                                       const TargetLibraryInfo *TLI) {
    282   if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
    283 
    284   // We don't want the landingpad instruction removed by anything this general.
    285   if (isa<LandingPadInst>(I))
    286     return false;
    287 
    288   // We don't want debug info removed by anything this general, unless
    289   // debug info is empty.
    290   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
    291     if (DDI->getAddress())
    292       return false;
    293     return true;
    294   }
    295   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
    296     if (DVI->getValue())
    297       return false;
    298     return true;
    299   }
    300 
    301   if (!I->mayHaveSideEffects()) return true;
    302 
    303   // Special case intrinsics that "may have side effects" but can be deleted
    304   // when dead.
    305   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    306     // Safe to delete llvm.stacksave if dead.
    307     if (II->getIntrinsicID() == Intrinsic::stacksave)
    308       return true;
    309 
    310     // Lifetime intrinsics are dead when their right-hand is undef.
    311     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
    312         II->getIntrinsicID() == Intrinsic::lifetime_end)
    313       return isa<UndefValue>(II->getArgOperand(1));
    314 
    315     // Assumptions are dead if their condition is trivially true.
    316     if (II->getIntrinsicID() == Intrinsic::assume) {
    317       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
    318         return !Cond->isZero();
    319 
    320       return false;
    321     }
    322   }
    323 
    324   if (isAllocLikeFn(I, TLI)) return true;
    325 
    326   if (CallInst *CI = isFreeCall(I, TLI))
    327     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
    328       return C->isNullValue() || isa<UndefValue>(C);
    329 
    330   return false;
    331 }
    332 
    333 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
    334 /// trivially dead instruction, delete it.  If that makes any of its operands
    335 /// trivially dead, delete them too, recursively.  Return true if any
    336 /// instructions were deleted.
    337 bool
    338 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
    339                                                  const TargetLibraryInfo *TLI) {
    340   Instruction *I = dyn_cast<Instruction>(V);
    341   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
    342     return false;
    343 
    344   SmallVector<Instruction*, 16> DeadInsts;
    345   DeadInsts.push_back(I);
    346 
    347   do {
    348     I = DeadInsts.pop_back_val();
    349 
    350     // Null out all of the instruction's operands to see if any operand becomes
    351     // dead as we go.
    352     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    353       Value *OpV = I->getOperand(i);
    354       I->setOperand(i, nullptr);
    355 
    356       if (!OpV->use_empty()) continue;
    357 
    358       // If the operand is an instruction that became dead as we nulled out the
    359       // operand, and if it is 'trivially' dead, delete it in a future loop
    360       // iteration.
    361       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
    362         if (isInstructionTriviallyDead(OpI, TLI))
    363           DeadInsts.push_back(OpI);
    364     }
    365 
    366     I->eraseFromParent();
    367   } while (!DeadInsts.empty());
    368 
    369   return true;
    370 }
    371 
    372 /// areAllUsesEqual - Check whether the uses of a value are all the same.
    373 /// This is similar to Instruction::hasOneUse() except this will also return
    374 /// true when there are no uses or multiple uses that all refer to the same
    375 /// value.
    376 static bool areAllUsesEqual(Instruction *I) {
    377   Value::user_iterator UI = I->user_begin();
    378   Value::user_iterator UE = I->user_end();
    379   if (UI == UE)
    380     return true;
    381 
    382   User *TheUse = *UI;
    383   for (++UI; UI != UE; ++UI) {
    384     if (*UI != TheUse)
    385       return false;
    386   }
    387   return true;
    388 }
    389 
    390 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
    391 /// dead PHI node, due to being a def-use chain of single-use nodes that
    392 /// either forms a cycle or is terminated by a trivially dead instruction,
    393 /// delete it.  If that makes any of its operands trivially dead, delete them
    394 /// too, recursively.  Return true if a change was made.
    395 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
    396                                         const TargetLibraryInfo *TLI) {
    397   SmallPtrSet<Instruction*, 4> Visited;
    398   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
    399        I = cast<Instruction>(*I->user_begin())) {
    400     if (I->use_empty())
    401       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
    402 
    403     // If we find an instruction more than once, we're on a cycle that
    404     // won't prove fruitful.
    405     if (!Visited.insert(I).second) {
    406       // Break the cycle and delete the instruction and its operands.
    407       I->replaceAllUsesWith(UndefValue::get(I->getType()));
    408       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
    409       return true;
    410     }
    411   }
    412   return false;
    413 }
    414 
    415 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
    416 /// simplify any instructions in it and recursively delete dead instructions.
    417 ///
    418 /// This returns true if it changed the code, note that it can delete
    419 /// instructions in other blocks as well in this block.
    420 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
    421                                        const TargetLibraryInfo *TLI) {
    422   bool MadeChange = false;
    423 
    424 #ifndef NDEBUG
    425   // In debug builds, ensure that the terminator of the block is never replaced
    426   // or deleted by these simplifications. The idea of simplification is that it
    427   // cannot introduce new instructions, and there is no way to replace the
    428   // terminator of a block without introducing a new instruction.
    429   AssertingVH<Instruction> TerminatorVH(--BB->end());
    430 #endif
    431 
    432   for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) {
    433     assert(!BI->isTerminator());
    434     Instruction *Inst = BI++;
    435 
    436     WeakVH BIHandle(BI);
    437     if (recursivelySimplifyInstruction(Inst, TLI)) {
    438       MadeChange = true;
    439       if (BIHandle != BI)
    440         BI = BB->begin();
    441       continue;
    442     }
    443 
    444     MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
    445     if (BIHandle != BI)
    446       BI = BB->begin();
    447   }
    448   return MadeChange;
    449 }
    450 
    451 //===----------------------------------------------------------------------===//
    452 //  Control Flow Graph Restructuring.
    453 //
    454 
    455 
    456 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
    457 /// method is called when we're about to delete Pred as a predecessor of BB.  If
    458 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
    459 ///
    460 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
    461 /// nodes that collapse into identity values.  For example, if we have:
    462 ///   x = phi(1, 0, 0, 0)
    463 ///   y = and x, z
    464 ///
    465 /// .. and delete the predecessor corresponding to the '1', this will attempt to
    466 /// recursively fold the and to 0.
    467 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
    468   // This only adjusts blocks with PHI nodes.
    469   if (!isa<PHINode>(BB->begin()))
    470     return;
    471 
    472   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
    473   // them down.  This will leave us with single entry phi nodes and other phis
    474   // that can be removed.
    475   BB->removePredecessor(Pred, true);
    476 
    477   WeakVH PhiIt = &BB->front();
    478   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
    479     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
    480     Value *OldPhiIt = PhiIt;
    481 
    482     if (!recursivelySimplifyInstruction(PN))
    483       continue;
    484 
    485     // If recursive simplification ended up deleting the next PHI node we would
    486     // iterate to, then our iterator is invalid, restart scanning from the top
    487     // of the block.
    488     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
    489   }
    490 }
    491 
    492 
    493 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
    494 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
    495 /// between them, moving the instructions in the predecessor into DestBB and
    496 /// deleting the predecessor block.
    497 ///
    498 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
    499   // If BB has single-entry PHI nodes, fold them.
    500   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
    501     Value *NewVal = PN->getIncomingValue(0);
    502     // Replace self referencing PHI with undef, it must be dead.
    503     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
    504     PN->replaceAllUsesWith(NewVal);
    505     PN->eraseFromParent();
    506   }
    507 
    508   BasicBlock *PredBB = DestBB->getSinglePredecessor();
    509   assert(PredBB && "Block doesn't have a single predecessor!");
    510 
    511   // Zap anything that took the address of DestBB.  Not doing this will give the
    512   // address an invalid value.
    513   if (DestBB->hasAddressTaken()) {
    514     BlockAddress *BA = BlockAddress::get(DestBB);
    515     Constant *Replacement =
    516       ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
    517     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
    518                                                      BA->getType()));
    519     BA->destroyConstant();
    520   }
    521 
    522   // Anything that branched to PredBB now branches to DestBB.
    523   PredBB->replaceAllUsesWith(DestBB);
    524 
    525   // Splice all the instructions from PredBB to DestBB.
    526   PredBB->getTerminator()->eraseFromParent();
    527   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
    528 
    529   // If the PredBB is the entry block of the function, move DestBB up to
    530   // become the entry block after we erase PredBB.
    531   if (PredBB == &DestBB->getParent()->getEntryBlock())
    532     DestBB->moveAfter(PredBB);
    533 
    534   if (DT) {
    535     BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
    536     DT->changeImmediateDominator(DestBB, PredBBIDom);
    537     DT->eraseNode(PredBB);
    538   }
    539   // Nuke BB.
    540   PredBB->eraseFromParent();
    541 }
    542 
    543 /// CanMergeValues - Return true if we can choose one of these values to use
    544 /// in place of the other. Note that we will always choose the non-undef
    545 /// value to keep.
    546 static bool CanMergeValues(Value *First, Value *Second) {
    547   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
    548 }
    549 
    550 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
    551 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
    552 ///
    553 /// Assumption: Succ is the single successor for BB.
    554 ///
    555 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
    556   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
    557 
    558   DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
    559         << Succ->getName() << "\n");
    560   // Shortcut, if there is only a single predecessor it must be BB and merging
    561   // is always safe
    562   if (Succ->getSinglePredecessor()) return true;
    563 
    564   // Make a list of the predecessors of BB
    565   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
    566 
    567   // Look at all the phi nodes in Succ, to see if they present a conflict when
    568   // merging these blocks
    569   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    570     PHINode *PN = cast<PHINode>(I);
    571 
    572     // If the incoming value from BB is again a PHINode in
    573     // BB which has the same incoming value for *PI as PN does, we can
    574     // merge the phi nodes and then the blocks can still be merged
    575     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
    576     if (BBPN && BBPN->getParent() == BB) {
    577       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
    578         BasicBlock *IBB = PN->getIncomingBlock(PI);
    579         if (BBPreds.count(IBB) &&
    580             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
    581                             PN->getIncomingValue(PI))) {
    582           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
    583                 << Succ->getName() << " is conflicting with "
    584                 << BBPN->getName() << " with regard to common predecessor "
    585                 << IBB->getName() << "\n");
    586           return false;
    587         }
    588       }
    589     } else {
    590       Value* Val = PN->getIncomingValueForBlock(BB);
    591       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
    592         // See if the incoming value for the common predecessor is equal to the
    593         // one for BB, in which case this phi node will not prevent the merging
    594         // of the block.
    595         BasicBlock *IBB = PN->getIncomingBlock(PI);
    596         if (BBPreds.count(IBB) &&
    597             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
    598           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
    599                 << Succ->getName() << " is conflicting with regard to common "
    600                 << "predecessor " << IBB->getName() << "\n");
    601           return false;
    602         }
    603       }
    604     }
    605   }
    606 
    607   return true;
    608 }
    609 
    610 typedef SmallVector<BasicBlock *, 16> PredBlockVector;
    611 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
    612 
    613 /// \brief Determines the value to use as the phi node input for a block.
    614 ///
    615 /// Select between \p OldVal any value that we know flows from \p BB
    616 /// to a particular phi on the basis of which one (if either) is not
    617 /// undef. Update IncomingValues based on the selected value.
    618 ///
    619 /// \param OldVal The value we are considering selecting.
    620 /// \param BB The block that the value flows in from.
    621 /// \param IncomingValues A map from block-to-value for other phi inputs
    622 /// that we have examined.
    623 ///
    624 /// \returns the selected value.
    625 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
    626                                           IncomingValueMap &IncomingValues) {
    627   if (!isa<UndefValue>(OldVal)) {
    628     assert((!IncomingValues.count(BB) ||
    629             IncomingValues.find(BB)->second == OldVal) &&
    630            "Expected OldVal to match incoming value from BB!");
    631 
    632     IncomingValues.insert(std::make_pair(BB, OldVal));
    633     return OldVal;
    634   }
    635 
    636   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
    637   if (It != IncomingValues.end()) return It->second;
    638 
    639   return OldVal;
    640 }
    641 
    642 /// \brief Create a map from block to value for the operands of a
    643 /// given phi.
    644 ///
    645 /// Create a map from block to value for each non-undef value flowing
    646 /// into \p PN.
    647 ///
    648 /// \param PN The phi we are collecting the map for.
    649 /// \param IncomingValues [out] The map from block to value for this phi.
    650 static void gatherIncomingValuesToPhi(PHINode *PN,
    651                                       IncomingValueMap &IncomingValues) {
    652   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    653     BasicBlock *BB = PN->getIncomingBlock(i);
    654     Value *V = PN->getIncomingValue(i);
    655 
    656     if (!isa<UndefValue>(V))
    657       IncomingValues.insert(std::make_pair(BB, V));
    658   }
    659 }
    660 
    661 /// \brief Replace the incoming undef values to a phi with the values
    662 /// from a block-to-value map.
    663 ///
    664 /// \param PN The phi we are replacing the undefs in.
    665 /// \param IncomingValues A map from block to value.
    666 static void replaceUndefValuesInPhi(PHINode *PN,
    667                                     const IncomingValueMap &IncomingValues) {
    668   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    669     Value *V = PN->getIncomingValue(i);
    670 
    671     if (!isa<UndefValue>(V)) continue;
    672 
    673     BasicBlock *BB = PN->getIncomingBlock(i);
    674     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
    675     if (It == IncomingValues.end()) continue;
    676 
    677     PN->setIncomingValue(i, It->second);
    678   }
    679 }
    680 
    681 /// \brief Replace a value flowing from a block to a phi with
    682 /// potentially multiple instances of that value flowing from the
    683 /// block's predecessors to the phi.
    684 ///
    685 /// \param BB The block with the value flowing into the phi.
    686 /// \param BBPreds The predecessors of BB.
    687 /// \param PN The phi that we are updating.
    688 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
    689                                                 const PredBlockVector &BBPreds,
    690                                                 PHINode *PN) {
    691   Value *OldVal = PN->removeIncomingValue(BB, false);
    692   assert(OldVal && "No entry in PHI for Pred BB!");
    693 
    694   IncomingValueMap IncomingValues;
    695 
    696   // We are merging two blocks - BB, and the block containing PN - and
    697   // as a result we need to redirect edges from the predecessors of BB
    698   // to go to the block containing PN, and update PN
    699   // accordingly. Since we allow merging blocks in the case where the
    700   // predecessor and successor blocks both share some predecessors,
    701   // and where some of those common predecessors might have undef
    702   // values flowing into PN, we want to rewrite those values to be
    703   // consistent with the non-undef values.
    704 
    705   gatherIncomingValuesToPhi(PN, IncomingValues);
    706 
    707   // If this incoming value is one of the PHI nodes in BB, the new entries
    708   // in the PHI node are the entries from the old PHI.
    709   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
    710     PHINode *OldValPN = cast<PHINode>(OldVal);
    711     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
    712       // Note that, since we are merging phi nodes and BB and Succ might
    713       // have common predecessors, we could end up with a phi node with
    714       // identical incoming branches. This will be cleaned up later (and
    715       // will trigger asserts if we try to clean it up now, without also
    716       // simplifying the corresponding conditional branch).
    717       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
    718       Value *PredVal = OldValPN->getIncomingValue(i);
    719       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
    720                                                     IncomingValues);
    721 
    722       // And add a new incoming value for this predecessor for the
    723       // newly retargeted branch.
    724       PN->addIncoming(Selected, PredBB);
    725     }
    726   } else {
    727     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
    728       // Update existing incoming values in PN for this
    729       // predecessor of BB.
    730       BasicBlock *PredBB = BBPreds[i];
    731       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
    732                                                     IncomingValues);
    733 
    734       // And add a new incoming value for this predecessor for the
    735       // newly retargeted branch.
    736       PN->addIncoming(Selected, PredBB);
    737     }
    738   }
    739 
    740   replaceUndefValuesInPhi(PN, IncomingValues);
    741 }
    742 
    743 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
    744 /// unconditional branch, and contains no instructions other than PHI nodes,
    745 /// potential side-effect free intrinsics and the branch.  If possible,
    746 /// eliminate BB by rewriting all the predecessors to branch to the successor
    747 /// block and return true.  If we can't transform, return false.
    748 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
    749   assert(BB != &BB->getParent()->getEntryBlock() &&
    750          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
    751 
    752   // We can't eliminate infinite loops.
    753   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
    754   if (BB == Succ) return false;
    755 
    756   // Check to see if merging these blocks would cause conflicts for any of the
    757   // phi nodes in BB or Succ. If not, we can safely merge.
    758   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
    759 
    760   // Check for cases where Succ has multiple predecessors and a PHI node in BB
    761   // has uses which will not disappear when the PHI nodes are merged.  It is
    762   // possible to handle such cases, but difficult: it requires checking whether
    763   // BB dominates Succ, which is non-trivial to calculate in the case where
    764   // Succ has multiple predecessors.  Also, it requires checking whether
    765   // constructing the necessary self-referential PHI node doesn't introduce any
    766   // conflicts; this isn't too difficult, but the previous code for doing this
    767   // was incorrect.
    768   //
    769   // Note that if this check finds a live use, BB dominates Succ, so BB is
    770   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
    771   // folding the branch isn't profitable in that case anyway.
    772   if (!Succ->getSinglePredecessor()) {
    773     BasicBlock::iterator BBI = BB->begin();
    774     while (isa<PHINode>(*BBI)) {
    775       for (Use &U : BBI->uses()) {
    776         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
    777           if (PN->getIncomingBlock(U) != BB)
    778             return false;
    779         } else {
    780           return false;
    781         }
    782       }
    783       ++BBI;
    784     }
    785   }
    786 
    787   DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
    788 
    789   if (isa<PHINode>(Succ->begin())) {
    790     // If there is more than one pred of succ, and there are PHI nodes in
    791     // the successor, then we need to add incoming edges for the PHI nodes
    792     //
    793     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
    794 
    795     // Loop over all of the PHI nodes in the successor of BB.
    796     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    797       PHINode *PN = cast<PHINode>(I);
    798 
    799       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
    800     }
    801   }
    802 
    803   if (Succ->getSinglePredecessor()) {
    804     // BB is the only predecessor of Succ, so Succ will end up with exactly
    805     // the same predecessors BB had.
    806 
    807     // Copy over any phi, debug or lifetime instruction.
    808     BB->getTerminator()->eraseFromParent();
    809     Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
    810   } else {
    811     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
    812       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
    813       assert(PN->use_empty() && "There shouldn't be any uses here!");
    814       PN->eraseFromParent();
    815     }
    816   }
    817 
    818   // Everything that jumped to BB now goes to Succ.
    819   BB->replaceAllUsesWith(Succ);
    820   if (!Succ->hasName()) Succ->takeName(BB);
    821   BB->eraseFromParent();              // Delete the old basic block.
    822   return true;
    823 }
    824 
    825 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
    826 /// nodes in this block. This doesn't try to be clever about PHI nodes
    827 /// which differ only in the order of the incoming values, but instcombine
    828 /// orders them so it usually won't matter.
    829 ///
    830 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
    831   bool Changed = false;
    832 
    833   // This implementation doesn't currently consider undef operands
    834   // specially. Theoretically, two phis which are identical except for
    835   // one having an undef where the other doesn't could be collapsed.
    836 
    837   // Map from PHI hash values to PHI nodes. If multiple PHIs have
    838   // the same hash value, the element is the first PHI in the
    839   // linked list in CollisionMap.
    840   DenseMap<uintptr_t, PHINode *> HashMap;
    841 
    842   // Maintain linked lists of PHI nodes with common hash values.
    843   DenseMap<PHINode *, PHINode *> CollisionMap;
    844 
    845   // Examine each PHI.
    846   for (BasicBlock::iterator I = BB->begin();
    847        PHINode *PN = dyn_cast<PHINode>(I++); ) {
    848     // Compute a hash value on the operands. Instcombine will likely have sorted
    849     // them, which helps expose duplicates, but we have to check all the
    850     // operands to be safe in case instcombine hasn't run.
    851     uintptr_t Hash = 0;
    852     // This hash algorithm is quite weak as hash functions go, but it seems
    853     // to do a good enough job for this particular purpose, and is very quick.
    854     for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
    855       Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
    856       Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
    857     }
    858     for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
    859          I != E; ++I) {
    860       Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
    861       Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
    862     }
    863     // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
    864     Hash >>= 1;
    865     // If we've never seen this hash value before, it's a unique PHI.
    866     std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
    867       HashMap.insert(std::make_pair(Hash, PN));
    868     if (Pair.second) continue;
    869     // Otherwise it's either a duplicate or a hash collision.
    870     for (PHINode *OtherPN = Pair.first->second; ; ) {
    871       if (OtherPN->isIdenticalTo(PN)) {
    872         // A duplicate. Replace this PHI with its duplicate.
    873         PN->replaceAllUsesWith(OtherPN);
    874         PN->eraseFromParent();
    875         Changed = true;
    876         break;
    877       }
    878       // A non-duplicate hash collision.
    879       DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
    880       if (I == CollisionMap.end()) {
    881         // Set this PHI to be the head of the linked list of colliding PHIs.
    882         PHINode *Old = Pair.first->second;
    883         Pair.first->second = PN;
    884         CollisionMap[PN] = Old;
    885         break;
    886       }
    887       // Proceed to the next PHI in the list.
    888       OtherPN = I->second;
    889     }
    890   }
    891 
    892   return Changed;
    893 }
    894 
    895 /// enforceKnownAlignment - If the specified pointer points to an object that
    896 /// we control, modify the object's alignment to PrefAlign. This isn't
    897 /// often possible though. If alignment is important, a more reliable approach
    898 /// is to simply align all global variables and allocation instructions to
    899 /// their preferred alignment from the beginning.
    900 ///
    901 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
    902                                       unsigned PrefAlign,
    903                                       const DataLayout &DL) {
    904   V = V->stripPointerCasts();
    905 
    906   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
    907     // If the preferred alignment is greater than the natural stack alignment
    908     // then don't round up. This avoids dynamic stack realignment.
    909     if (DL.exceedsNaturalStackAlignment(PrefAlign))
    910       return Align;
    911     // If there is a requested alignment and if this is an alloca, round up.
    912     if (AI->getAlignment() >= PrefAlign)
    913       return AI->getAlignment();
    914     AI->setAlignment(PrefAlign);
    915     return PrefAlign;
    916   }
    917 
    918   if (auto *GO = dyn_cast<GlobalObject>(V)) {
    919     // If there is a large requested alignment and we can, bump up the alignment
    920     // of the global.
    921     if (GO->isDeclaration())
    922       return Align;
    923     // If the memory we set aside for the global may not be the memory used by
    924     // the final program then it is impossible for us to reliably enforce the
    925     // preferred alignment.
    926     if (GO->isWeakForLinker())
    927       return Align;
    928 
    929     if (GO->getAlignment() >= PrefAlign)
    930       return GO->getAlignment();
    931     // We can only increase the alignment of the global if it has no alignment
    932     // specified or if it is not assigned a section.  If it is assigned a
    933     // section, the global could be densely packed with other objects in the
    934     // section, increasing the alignment could cause padding issues.
    935     if (!GO->hasSection() || GO->getAlignment() == 0)
    936       GO->setAlignment(PrefAlign);
    937     return GO->getAlignment();
    938   }
    939 
    940   return Align;
    941 }
    942 
    943 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
    944 /// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
    945 /// and it is more than the alignment of the ultimate object, see if we can
    946 /// increase the alignment of the ultimate object, making this check succeed.
    947 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
    948                                           const DataLayout &DL,
    949                                           const Instruction *CxtI,
    950                                           AssumptionCache *AC,
    951                                           const DominatorTree *DT) {
    952   assert(V->getType()->isPointerTy() &&
    953          "getOrEnforceKnownAlignment expects a pointer!");
    954   unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType());
    955 
    956   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    957   computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT);
    958   unsigned TrailZ = KnownZero.countTrailingOnes();
    959 
    960   // Avoid trouble with ridiculously large TrailZ values, such as
    961   // those computed from a null pointer.
    962   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
    963 
    964   unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
    965 
    966   // LLVM doesn't support alignments larger than this currently.
    967   Align = std::min(Align, +Value::MaximumAlignment);
    968 
    969   if (PrefAlign > Align)
    970     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
    971 
    972   // We don't need to make any adjustment.
    973   return Align;
    974 }
    975 
    976 ///===---------------------------------------------------------------------===//
    977 ///  Dbg Intrinsic utilities
    978 ///
    979 
    980 /// See if there is a dbg.value intrinsic for DIVar before I.
    981 static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) {
    982   // Since we can't guarantee that the original dbg.declare instrinsic
    983   // is removed by LowerDbgDeclare(), we need to make sure that we are
    984   // not inserting the same dbg.value intrinsic over and over.
    985   llvm::BasicBlock::InstListType::iterator PrevI(I);
    986   if (PrevI != I->getParent()->getInstList().begin()) {
    987     --PrevI;
    988     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
    989       if (DVI->getValue() == I->getOperand(0) &&
    990           DVI->getOffset() == 0 &&
    991           DVI->getVariable() == DIVar)
    992         return true;
    993   }
    994   return false;
    995 }
    996 
    997 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
    998 /// that has an associated llvm.dbg.decl intrinsic.
    999 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
   1000                                            StoreInst *SI, DIBuilder &Builder) {
   1001   DIVariable DIVar = DDI->getVariable();
   1002   DIExpression DIExpr = DDI->getExpression();
   1003   if (!DIVar)
   1004     return false;
   1005 
   1006   if (LdStHasDebugValue(DIVar, SI))
   1007     return true;
   1008 
   1009   // If an argument is zero extended then use argument directly. The ZExt
   1010   // may be zapped by an optimization pass in future.
   1011   Argument *ExtendedArg = nullptr;
   1012   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
   1013     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
   1014   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
   1015     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
   1016   if (ExtendedArg)
   1017     Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, DIExpr,
   1018                                     DDI->getDebugLoc(), SI);
   1019   else
   1020     Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr,
   1021                                     DDI->getDebugLoc(), SI);
   1022   return true;
   1023 }
   1024 
   1025 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
   1026 /// that has an associated llvm.dbg.decl intrinsic.
   1027 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
   1028                                            LoadInst *LI, DIBuilder &Builder) {
   1029   DIVariable DIVar = DDI->getVariable();
   1030   DIExpression DIExpr = DDI->getExpression();
   1031   if (!DIVar)
   1032     return false;
   1033 
   1034   if (LdStHasDebugValue(DIVar, LI))
   1035     return true;
   1036 
   1037   Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, DIVar, DIExpr,
   1038                                   DDI->getDebugLoc(), LI);
   1039   return true;
   1040 }
   1041 
   1042 /// Determine whether this alloca is either a VLA or an array.
   1043 static bool isArray(AllocaInst *AI) {
   1044   return AI->isArrayAllocation() ||
   1045     AI->getType()->getElementType()->isArrayTy();
   1046 }
   1047 
   1048 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
   1049 /// of llvm.dbg.value intrinsics.
   1050 bool llvm::LowerDbgDeclare(Function &F) {
   1051   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
   1052   SmallVector<DbgDeclareInst *, 4> Dbgs;
   1053   for (auto &FI : F)
   1054     for (BasicBlock::iterator BI : FI)
   1055       if (auto DDI = dyn_cast<DbgDeclareInst>(BI))
   1056         Dbgs.push_back(DDI);
   1057 
   1058   if (Dbgs.empty())
   1059     return false;
   1060 
   1061   for (auto &I : Dbgs) {
   1062     DbgDeclareInst *DDI = I;
   1063     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
   1064     // If this is an alloca for a scalar variable, insert a dbg.value
   1065     // at each load and store to the alloca and erase the dbg.declare.
   1066     // The dbg.values allow tracking a variable even if it is not
   1067     // stored on the stack, while the dbg.declare can only describe
   1068     // the stack slot (and at a lexical-scope granularity). Later
   1069     // passes will attempt to elide the stack slot.
   1070     if (AI && !isArray(AI)) {
   1071       for (User *U : AI->users())
   1072         if (StoreInst *SI = dyn_cast<StoreInst>(U))
   1073           ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
   1074         else if (LoadInst *LI = dyn_cast<LoadInst>(U))
   1075           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
   1076         else if (CallInst *CI = dyn_cast<CallInst>(U)) {
   1077           // This is a call by-value or some other instruction that
   1078           // takes a pointer to the variable. Insert a *value*
   1079           // intrinsic that describes the alloca.
   1080           DIB.insertDbgValueIntrinsic(AI, 0, DIVariable(DDI->getVariable()),
   1081                                       DIExpression(DDI->getExpression()),
   1082                                       DDI->getDebugLoc(), CI);
   1083         }
   1084       DDI->eraseFromParent();
   1085     }
   1086   }
   1087   return true;
   1088 }
   1089 
   1090 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
   1091 /// alloca 'V', if any.
   1092 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
   1093   if (auto *L = LocalAsMetadata::getIfExists(V))
   1094     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
   1095       for (User *U : MDV->users())
   1096         if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
   1097           return DDI;
   1098 
   1099   return nullptr;
   1100 }
   1101 
   1102 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
   1103                                       DIBuilder &Builder, bool Deref) {
   1104   DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
   1105   if (!DDI)
   1106     return false;
   1107   DebugLoc Loc = DDI->getDebugLoc();
   1108   DIVariable DIVar = DDI->getVariable();
   1109   DIExpression DIExpr = DDI->getExpression();
   1110   if (!DIVar)
   1111     return false;
   1112 
   1113   if (Deref) {
   1114     // Create a copy of the original DIDescriptor for user variable, prepending
   1115     // "deref" operation to a list of address elements, as new llvm.dbg.declare
   1116     // will take a value storing address of the memory for variable, not
   1117     // alloca itself.
   1118     SmallVector<uint64_t, 4> NewDIExpr;
   1119     NewDIExpr.push_back(dwarf::DW_OP_deref);
   1120     if (DIExpr)
   1121       NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
   1122     DIExpr = Builder.createExpression(NewDIExpr);
   1123   }
   1124 
   1125   // Insert llvm.dbg.declare in the same basic block as the original alloca,
   1126   // and remove old llvm.dbg.declare.
   1127   BasicBlock *BB = AI->getParent();
   1128   Builder.insertDeclare(NewAllocaAddress, DIVar, DIExpr, Loc, BB);
   1129   DDI->eraseFromParent();
   1130   return true;
   1131 }
   1132 
   1133 /// changeToUnreachable - Insert an unreachable instruction before the specified
   1134 /// instruction, making it and the rest of the code in the block dead.
   1135 static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) {
   1136   BasicBlock *BB = I->getParent();
   1137   // Loop over all of the successors, removing BB's entry from any PHI
   1138   // nodes.
   1139   for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
   1140     (*SI)->removePredecessor(BB);
   1141 
   1142   // Insert a call to llvm.trap right before this.  This turns the undefined
   1143   // behavior into a hard fail instead of falling through into random code.
   1144   if (UseLLVMTrap) {
   1145     Function *TrapFn =
   1146       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
   1147     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
   1148     CallTrap->setDebugLoc(I->getDebugLoc());
   1149   }
   1150   new UnreachableInst(I->getContext(), I);
   1151 
   1152   // All instructions after this are dead.
   1153   BasicBlock::iterator BBI = I, BBE = BB->end();
   1154   while (BBI != BBE) {
   1155     if (!BBI->use_empty())
   1156       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
   1157     BB->getInstList().erase(BBI++);
   1158   }
   1159 }
   1160 
   1161 /// changeToCall - Convert the specified invoke into a normal call.
   1162 static void changeToCall(InvokeInst *II) {
   1163   SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
   1164   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II);
   1165   NewCall->takeName(II);
   1166   NewCall->setCallingConv(II->getCallingConv());
   1167   NewCall->setAttributes(II->getAttributes());
   1168   NewCall->setDebugLoc(II->getDebugLoc());
   1169   II->replaceAllUsesWith(NewCall);
   1170 
   1171   // Follow the call by a branch to the normal destination.
   1172   BranchInst::Create(II->getNormalDest(), II);
   1173 
   1174   // Update PHI nodes in the unwind destination
   1175   II->getUnwindDest()->removePredecessor(II->getParent());
   1176   II->eraseFromParent();
   1177 }
   1178 
   1179 static bool markAliveBlocks(BasicBlock *BB,
   1180                             SmallPtrSetImpl<BasicBlock*> &Reachable) {
   1181 
   1182   SmallVector<BasicBlock*, 128> Worklist;
   1183   Worklist.push_back(BB);
   1184   Reachable.insert(BB);
   1185   bool Changed = false;
   1186   do {
   1187     BB = Worklist.pop_back_val();
   1188 
   1189     // Do a quick scan of the basic block, turning any obviously unreachable
   1190     // instructions into LLVM unreachable insts.  The instruction combining pass
   1191     // canonicalizes unreachable insts into stores to null or undef.
   1192     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
   1193       // Assumptions that are known to be false are equivalent to unreachable.
   1194       // Also, if the condition is undefined, then we make the choice most
   1195       // beneficial to the optimizer, and choose that to also be unreachable.
   1196       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
   1197         if (II->getIntrinsicID() == Intrinsic::assume) {
   1198           bool MakeUnreachable = false;
   1199           if (isa<UndefValue>(II->getArgOperand(0)))
   1200             MakeUnreachable = true;
   1201           else if (ConstantInt *Cond =
   1202                    dyn_cast<ConstantInt>(II->getArgOperand(0)))
   1203             MakeUnreachable = Cond->isZero();
   1204 
   1205           if (MakeUnreachable) {
   1206             // Don't insert a call to llvm.trap right before the unreachable.
   1207             changeToUnreachable(BBI, false);
   1208             Changed = true;
   1209             break;
   1210           }
   1211         }
   1212 
   1213       if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
   1214         if (CI->doesNotReturn()) {
   1215           // If we found a call to a no-return function, insert an unreachable
   1216           // instruction after it.  Make sure there isn't *already* one there
   1217           // though.
   1218           ++BBI;
   1219           if (!isa<UnreachableInst>(BBI)) {
   1220             // Don't insert a call to llvm.trap right before the unreachable.
   1221             changeToUnreachable(BBI, false);
   1222             Changed = true;
   1223           }
   1224           break;
   1225         }
   1226       }
   1227 
   1228       // Store to undef and store to null are undefined and used to signal that
   1229       // they should be changed to unreachable by passes that can't modify the
   1230       // CFG.
   1231       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
   1232         // Don't touch volatile stores.
   1233         if (SI->isVolatile()) continue;
   1234 
   1235         Value *Ptr = SI->getOperand(1);
   1236 
   1237         if (isa<UndefValue>(Ptr) ||
   1238             (isa<ConstantPointerNull>(Ptr) &&
   1239              SI->getPointerAddressSpace() == 0)) {
   1240           changeToUnreachable(SI, true);
   1241           Changed = true;
   1242           break;
   1243         }
   1244       }
   1245     }
   1246 
   1247     // Turn invokes that call 'nounwind' functions into ordinary calls.
   1248     if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
   1249       Value *Callee = II->getCalledValue();
   1250       if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
   1251         changeToUnreachable(II, true);
   1252         Changed = true;
   1253       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(II)) {
   1254         if (II->use_empty() && II->onlyReadsMemory()) {
   1255           // jump to the normal destination branch.
   1256           BranchInst::Create(II->getNormalDest(), II);
   1257           II->getUnwindDest()->removePredecessor(II->getParent());
   1258           II->eraseFromParent();
   1259         } else
   1260           changeToCall(II);
   1261         Changed = true;
   1262       }
   1263     }
   1264 
   1265     Changed |= ConstantFoldTerminator(BB, true);
   1266     for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
   1267       if (Reachable.insert(*SI).second)
   1268         Worklist.push_back(*SI);
   1269   } while (!Worklist.empty());
   1270   return Changed;
   1271 }
   1272 
   1273 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
   1274 /// if they are in a dead cycle.  Return true if a change was made, false
   1275 /// otherwise.
   1276 bool llvm::removeUnreachableBlocks(Function &F) {
   1277   SmallPtrSet<BasicBlock*, 128> Reachable;
   1278   bool Changed = markAliveBlocks(F.begin(), Reachable);
   1279 
   1280   // If there are unreachable blocks in the CFG...
   1281   if (Reachable.size() == F.size())
   1282     return Changed;
   1283 
   1284   assert(Reachable.size() < F.size());
   1285   NumRemoved += F.size()-Reachable.size();
   1286 
   1287   // Loop over all of the basic blocks that are not reachable, dropping all of
   1288   // their internal references...
   1289   for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
   1290     if (Reachable.count(BB))
   1291       continue;
   1292 
   1293     for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
   1294       if (Reachable.count(*SI))
   1295         (*SI)->removePredecessor(BB);
   1296     BB->dropAllReferences();
   1297   }
   1298 
   1299   for (Function::iterator I = ++F.begin(); I != F.end();)
   1300     if (!Reachable.count(I))
   1301       I = F.getBasicBlockList().erase(I);
   1302     else
   1303       ++I;
   1304 
   1305   return true;
   1306 }
   1307 
   1308 void llvm::combineMetadata(Instruction *K, const Instruction *J, ArrayRef<unsigned> KnownIDs) {
   1309   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
   1310   K->dropUnknownMetadata(KnownIDs);
   1311   K->getAllMetadataOtherThanDebugLoc(Metadata);
   1312   for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
   1313     unsigned Kind = Metadata[i].first;
   1314     MDNode *JMD = J->getMetadata(Kind);
   1315     MDNode *KMD = Metadata[i].second;
   1316 
   1317     switch (Kind) {
   1318       default:
   1319         K->setMetadata(Kind, nullptr); // Remove unknown metadata
   1320         break;
   1321       case LLVMContext::MD_dbg:
   1322         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
   1323       case LLVMContext::MD_tbaa:
   1324         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
   1325         break;
   1326       case LLVMContext::MD_alias_scope:
   1327         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
   1328         break;
   1329       case LLVMContext::MD_noalias:
   1330         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
   1331         break;
   1332       case LLVMContext::MD_range:
   1333         K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
   1334         break;
   1335       case LLVMContext::MD_fpmath:
   1336         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
   1337         break;
   1338       case LLVMContext::MD_invariant_load:
   1339         // Only set the !invariant.load if it is present in both instructions.
   1340         K->setMetadata(Kind, JMD);
   1341         break;
   1342       case LLVMContext::MD_nonnull:
   1343         // Only set the !nonnull if it is present in both instructions.
   1344         K->setMetadata(Kind, JMD);
   1345         break;
   1346     }
   1347   }
   1348 }
   1349