Home | History | Annotate | Download | only in TableGen
      1 //===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This tablegen backend emits information about intrinsic functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenIntrinsics.h"
     15 #include "CodeGenTarget.h"
     16 #include "SequenceToOffsetTable.h"
     17 #include "TableGenBackends.h"
     18 #include "llvm/ADT/StringExtras.h"
     19 #include "llvm/TableGen/Error.h"
     20 #include "llvm/TableGen/Record.h"
     21 #include "llvm/TableGen/StringMatcher.h"
     22 #include "llvm/TableGen/TableGenBackend.h"
     23 #include <algorithm>
     24 using namespace llvm;
     25 
     26 namespace {
     27 class IntrinsicEmitter {
     28   RecordKeeper &Records;
     29   bool TargetOnly;
     30   std::string TargetPrefix;
     31 
     32 public:
     33   IntrinsicEmitter(RecordKeeper &R, bool T)
     34     : Records(R), TargetOnly(T) {}
     35 
     36   void run(raw_ostream &OS);
     37 
     38   void EmitPrefix(raw_ostream &OS);
     39 
     40   void EmitEnumInfo(const std::vector<CodeGenIntrinsic> &Ints,
     41                     raw_ostream &OS);
     42 
     43   void EmitFnNameRecognizer(const std::vector<CodeGenIntrinsic> &Ints,
     44                             raw_ostream &OS);
     45   void EmitIntrinsicToNameTable(const std::vector<CodeGenIntrinsic> &Ints,
     46                                 raw_ostream &OS);
     47   void EmitIntrinsicToOverloadTable(const std::vector<CodeGenIntrinsic> &Ints,
     48                                     raw_ostream &OS);
     49   void EmitGenerator(const std::vector<CodeGenIntrinsic> &Ints,
     50                      raw_ostream &OS);
     51   void EmitAttributes(const std::vector<CodeGenIntrinsic> &Ints,
     52                       raw_ostream &OS);
     53   void EmitModRefBehavior(const std::vector<CodeGenIntrinsic> &Ints,
     54                           raw_ostream &OS);
     55   void EmitIntrinsicToGCCBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints,
     56                                     raw_ostream &OS);
     57   void EmitIntrinsicToMSBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints,
     58                                    raw_ostream &OS);
     59   void EmitSuffix(raw_ostream &OS);
     60 };
     61 } // End anonymous namespace
     62 
     63 //===----------------------------------------------------------------------===//
     64 // IntrinsicEmitter Implementation
     65 //===----------------------------------------------------------------------===//
     66 
     67 void IntrinsicEmitter::run(raw_ostream &OS) {
     68   emitSourceFileHeader("Intrinsic Function Source Fragment", OS);
     69 
     70   std::vector<CodeGenIntrinsic> Ints = LoadIntrinsics(Records, TargetOnly);
     71 
     72   if (TargetOnly && !Ints.empty())
     73     TargetPrefix = Ints[0].TargetPrefix;
     74 
     75   EmitPrefix(OS);
     76 
     77   // Emit the enum information.
     78   EmitEnumInfo(Ints, OS);
     79 
     80   // Emit the intrinsic ID -> name table.
     81   EmitIntrinsicToNameTable(Ints, OS);
     82 
     83   // Emit the intrinsic ID -> overload table.
     84   EmitIntrinsicToOverloadTable(Ints, OS);
     85 
     86   // Emit the function name recognizer.
     87   EmitFnNameRecognizer(Ints, OS);
     88 
     89   // Emit the intrinsic declaration generator.
     90   EmitGenerator(Ints, OS);
     91 
     92   // Emit the intrinsic parameter attributes.
     93   EmitAttributes(Ints, OS);
     94 
     95   // Emit intrinsic alias analysis mod/ref behavior.
     96   EmitModRefBehavior(Ints, OS);
     97 
     98   // Emit code to translate GCC builtins into LLVM intrinsics.
     99   EmitIntrinsicToGCCBuiltinMap(Ints, OS);
    100 
    101   // Emit code to translate MS builtins into LLVM intrinsics.
    102   EmitIntrinsicToMSBuiltinMap(Ints, OS);
    103 
    104   EmitSuffix(OS);
    105 }
    106 
    107 void IntrinsicEmitter::EmitPrefix(raw_ostream &OS) {
    108   OS << "// VisualStudio defines setjmp as _setjmp\n"
    109         "#if defined(_MSC_VER) && defined(setjmp) && \\\n"
    110         "                         !defined(setjmp_undefined_for_msvc)\n"
    111         "#  pragma push_macro(\"setjmp\")\n"
    112         "#  undef setjmp\n"
    113         "#  define setjmp_undefined_for_msvc\n"
    114         "#endif\n\n";
    115 }
    116 
    117 void IntrinsicEmitter::EmitSuffix(raw_ostream &OS) {
    118   OS << "#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)\n"
    119         "// let's return it to _setjmp state\n"
    120         "#  pragma pop_macro(\"setjmp\")\n"
    121         "#  undef setjmp_undefined_for_msvc\n"
    122         "#endif\n\n";
    123 }
    124 
    125 void IntrinsicEmitter::EmitEnumInfo(const std::vector<CodeGenIntrinsic> &Ints,
    126                                     raw_ostream &OS) {
    127   OS << "// Enum values for Intrinsics.h\n";
    128   OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n";
    129   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    130     OS << "    " << Ints[i].EnumName;
    131     OS << ((i != e-1) ? ", " : "  ");
    132     if (Ints[i].EnumName.size() < 40)
    133       OS << std::string(40-Ints[i].EnumName.size(), ' ');
    134     OS << " // " << Ints[i].Name << "\n";
    135   }
    136   OS << "#endif\n\n";
    137 }
    138 
    139 void IntrinsicEmitter::
    140 EmitFnNameRecognizer(const std::vector<CodeGenIntrinsic> &Ints,
    141                      raw_ostream &OS) {
    142   // Build a 'first character of function name' -> intrinsic # mapping.
    143   std::map<char, std::vector<unsigned> > IntMapping;
    144   for (unsigned i = 0, e = Ints.size(); i != e; ++i)
    145     IntMapping[Ints[i].Name[5]].push_back(i);
    146 
    147   OS << "// Function name -> enum value recognizer code.\n";
    148   OS << "#ifdef GET_FUNCTION_RECOGNIZER\n";
    149   OS << "  StringRef NameR(Name+6, Len-6);   // Skip over 'llvm.'\n";
    150   OS << "  switch (Name[5]) {                  // Dispatch on first letter.\n";
    151   OS << "  default: break;\n";
    152   // Emit the intrinsic matching stuff by first letter.
    153   for (std::map<char, std::vector<unsigned> >::iterator I = IntMapping.begin(),
    154        E = IntMapping.end(); I != E; ++I) {
    155     OS << "  case '" << I->first << "':\n";
    156     std::vector<unsigned> &IntList = I->second;
    157 
    158     // Sort in reverse order of intrinsic name so "abc.def" appears after
    159     // "abd.def.ghi" in the overridden name matcher
    160     std::sort(IntList.begin(), IntList.end(), [&](unsigned i, unsigned j) {
    161       return Ints[i].Name > Ints[j].Name;
    162     });
    163 
    164     // Emit all the overloaded intrinsics first, build a table of the
    165     // non-overloaded ones.
    166     std::vector<StringMatcher::StringPair> MatchTable;
    167 
    168     for (unsigned i = 0, e = IntList.size(); i != e; ++i) {
    169       unsigned IntNo = IntList[i];
    170       std::string Result = "return " + TargetPrefix + "Intrinsic::" +
    171         Ints[IntNo].EnumName + ";";
    172 
    173       if (!Ints[IntNo].isOverloaded) {
    174         MatchTable.push_back(std::make_pair(Ints[IntNo].Name.substr(6),Result));
    175         continue;
    176       }
    177 
    178       // For overloaded intrinsics, only the prefix needs to match
    179       std::string TheStr = Ints[IntNo].Name.substr(6);
    180       TheStr += '.';  // Require "bswap." instead of bswap.
    181       OS << "    if (NameR.startswith(\"" << TheStr << "\")) "
    182          << Result << '\n';
    183     }
    184 
    185     // Emit the matcher logic for the fixed length strings.
    186     StringMatcher("NameR", MatchTable, OS).Emit(1);
    187     OS << "    break;  // end of '" << I->first << "' case.\n";
    188   }
    189 
    190   OS << "  }\n";
    191   OS << "#endif\n\n";
    192 }
    193 
    194 void IntrinsicEmitter::
    195 EmitIntrinsicToNameTable(const std::vector<CodeGenIntrinsic> &Ints,
    196                          raw_ostream &OS) {
    197   OS << "// Intrinsic ID to name table\n";
    198   OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n";
    199   OS << "  // Note that entry #0 is the invalid intrinsic!\n";
    200   for (unsigned i = 0, e = Ints.size(); i != e; ++i)
    201     OS << "  \"" << Ints[i].Name << "\",\n";
    202   OS << "#endif\n\n";
    203 }
    204 
    205 void IntrinsicEmitter::
    206 EmitIntrinsicToOverloadTable(const std::vector<CodeGenIntrinsic> &Ints,
    207                          raw_ostream &OS) {
    208   OS << "// Intrinsic ID to overload bitset\n";
    209   OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n";
    210   OS << "static const uint8_t OTable[] = {\n";
    211   OS << "  0";
    212   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    213     // Add one to the index so we emit a null bit for the invalid #0 intrinsic.
    214     if ((i+1)%8 == 0)
    215       OS << ",\n  0";
    216     if (Ints[i].isOverloaded)
    217       OS << " | (1<<" << (i+1)%8 << ')';
    218   }
    219   OS << "\n};\n\n";
    220   // OTable contains a true bit at the position if the intrinsic is overloaded.
    221   OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n";
    222   OS << "#endif\n\n";
    223 }
    224 
    225 
    226 // NOTE: This must be kept in synch with the copy in lib/VMCore/Function.cpp!
    227 enum IIT_Info {
    228   // Common values should be encoded with 0-15.
    229   IIT_Done = 0,
    230   IIT_I1   = 1,
    231   IIT_I8   = 2,
    232   IIT_I16  = 3,
    233   IIT_I32  = 4,
    234   IIT_I64  = 5,
    235   IIT_F16  = 6,
    236   IIT_F32  = 7,
    237   IIT_F64  = 8,
    238   IIT_V2   = 9,
    239   IIT_V4   = 10,
    240   IIT_V8   = 11,
    241   IIT_V16  = 12,
    242   IIT_V32  = 13,
    243   IIT_PTR  = 14,
    244   IIT_ARG  = 15,
    245 
    246   // Values from 16+ are only encodable with the inefficient encoding.
    247   IIT_V64  = 16,
    248   IIT_MMX  = 17,
    249   IIT_METADATA = 18,
    250   IIT_EMPTYSTRUCT = 19,
    251   IIT_STRUCT2 = 20,
    252   IIT_STRUCT3 = 21,
    253   IIT_STRUCT4 = 22,
    254   IIT_STRUCT5 = 23,
    255   IIT_EXTEND_ARG = 24,
    256   IIT_TRUNC_ARG = 25,
    257   IIT_ANYPTR = 26,
    258   IIT_V1   = 27,
    259   IIT_VARARG = 28,
    260   IIT_HALF_VEC_ARG = 29,
    261   IIT_SAME_VEC_WIDTH_ARG = 30,
    262   IIT_PTR_TO_ARG = 31,
    263   IIT_VEC_OF_PTRS_TO_ELT = 32
    264 };
    265 
    266 
    267 static void EncodeFixedValueType(MVT::SimpleValueType VT,
    268                                  std::vector<unsigned char> &Sig) {
    269   if (MVT(VT).isInteger()) {
    270     unsigned BitWidth = MVT(VT).getSizeInBits();
    271     switch (BitWidth) {
    272     default: PrintFatalError("unhandled integer type width in intrinsic!");
    273     case 1: return Sig.push_back(IIT_I1);
    274     case 8: return Sig.push_back(IIT_I8);
    275     case 16: return Sig.push_back(IIT_I16);
    276     case 32: return Sig.push_back(IIT_I32);
    277     case 64: return Sig.push_back(IIT_I64);
    278     }
    279   }
    280 
    281   switch (VT) {
    282   default: PrintFatalError("unhandled MVT in intrinsic!");
    283   case MVT::f16: return Sig.push_back(IIT_F16);
    284   case MVT::f32: return Sig.push_back(IIT_F32);
    285   case MVT::f64: return Sig.push_back(IIT_F64);
    286   case MVT::Metadata: return Sig.push_back(IIT_METADATA);
    287   case MVT::x86mmx: return Sig.push_back(IIT_MMX);
    288   // MVT::OtherVT is used to mean the empty struct type here.
    289   case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT);
    290   // MVT::isVoid is used to represent varargs here.
    291   case MVT::isVoid: return Sig.push_back(IIT_VARARG);
    292   }
    293 }
    294 
    295 #if defined(_MSC_VER) && !defined(__clang__)
    296 #pragma optimize("",off) // MSVC 2010 optimizer can't deal with this function.
    297 #endif
    298 
    299 static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes,
    300                             std::vector<unsigned char> &Sig) {
    301 
    302   if (R->isSubClassOf("LLVMMatchType")) {
    303     unsigned Number = R->getValueAsInt("Number");
    304     assert(Number < ArgCodes.size() && "Invalid matching number!");
    305     if (R->isSubClassOf("LLVMExtendedType"))
    306       Sig.push_back(IIT_EXTEND_ARG);
    307     else if (R->isSubClassOf("LLVMTruncatedType"))
    308       Sig.push_back(IIT_TRUNC_ARG);
    309     else if (R->isSubClassOf("LLVMHalfElementsVectorType"))
    310       Sig.push_back(IIT_HALF_VEC_ARG);
    311     else if (R->isSubClassOf("LLVMVectorSameWidth")) {
    312       Sig.push_back(IIT_SAME_VEC_WIDTH_ARG);
    313       Sig.push_back((Number << 3) | ArgCodes[Number]);
    314       MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy"));
    315       EncodeFixedValueType(VT, Sig);
    316       return;
    317     }
    318     else if (R->isSubClassOf("LLVMPointerTo"))
    319       Sig.push_back(IIT_PTR_TO_ARG);
    320     else if (R->isSubClassOf("LLVMVectorOfPointersToElt"))
    321       Sig.push_back(IIT_VEC_OF_PTRS_TO_ELT);
    322     else
    323       Sig.push_back(IIT_ARG);
    324     return Sig.push_back((Number << 3) | ArgCodes[Number]);
    325   }
    326 
    327   MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT"));
    328 
    329   unsigned Tmp = 0;
    330   switch (VT) {
    331   default: break;
    332   case MVT::iPTRAny: ++Tmp; // FALL THROUGH.
    333   case MVT::vAny: ++Tmp; // FALL THROUGH.
    334   case MVT::fAny: ++Tmp; // FALL THROUGH.
    335   case MVT::iAny: ++Tmp; // FALL THROUGH.
    336   case MVT::Any: {
    337     // If this is an "any" valuetype, then the type is the type of the next
    338     // type in the list specified to getIntrinsic().
    339     Sig.push_back(IIT_ARG);
    340 
    341     // Figure out what arg # this is consuming, and remember what kind it was.
    342     unsigned ArgNo = ArgCodes.size();
    343     ArgCodes.push_back(Tmp);
    344 
    345     // Encode what sort of argument it must be in the low 3 bits of the ArgNo.
    346     return Sig.push_back((ArgNo << 3) | Tmp);
    347   }
    348 
    349   case MVT::iPTR: {
    350     unsigned AddrSpace = 0;
    351     if (R->isSubClassOf("LLVMQualPointerType")) {
    352       AddrSpace = R->getValueAsInt("AddrSpace");
    353       assert(AddrSpace < 256 && "Address space exceeds 255");
    354     }
    355     if (AddrSpace) {
    356       Sig.push_back(IIT_ANYPTR);
    357       Sig.push_back(AddrSpace);
    358     } else {
    359       Sig.push_back(IIT_PTR);
    360     }
    361     return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, Sig);
    362   }
    363   }
    364 
    365   if (MVT(VT).isVector()) {
    366     MVT VVT = VT;
    367     switch (VVT.getVectorNumElements()) {
    368     default: PrintFatalError("unhandled vector type width in intrinsic!");
    369     case 1: Sig.push_back(IIT_V1); break;
    370     case 2: Sig.push_back(IIT_V2); break;
    371     case 4: Sig.push_back(IIT_V4); break;
    372     case 8: Sig.push_back(IIT_V8); break;
    373     case 16: Sig.push_back(IIT_V16); break;
    374     case 32: Sig.push_back(IIT_V32); break;
    375     case 64: Sig.push_back(IIT_V64); break;
    376     }
    377 
    378     return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig);
    379   }
    380 
    381   EncodeFixedValueType(VT, Sig);
    382 }
    383 
    384 #if defined(_MSC_VER) && !defined(__clang__)
    385 #pragma optimize("",on)
    386 #endif
    387 
    388 /// ComputeFixedEncoding - If we can encode the type signature for this
    389 /// intrinsic into 32 bits, return it.  If not, return ~0U.
    390 static void ComputeFixedEncoding(const CodeGenIntrinsic &Int,
    391                                  std::vector<unsigned char> &TypeSig) {
    392   std::vector<unsigned char> ArgCodes;
    393 
    394   if (Int.IS.RetVTs.empty())
    395     TypeSig.push_back(IIT_Done);
    396   else if (Int.IS.RetVTs.size() == 1 &&
    397            Int.IS.RetVTs[0] == MVT::isVoid)
    398     TypeSig.push_back(IIT_Done);
    399   else {
    400     switch (Int.IS.RetVTs.size()) {
    401       case 1: break;
    402       case 2: TypeSig.push_back(IIT_STRUCT2); break;
    403       case 3: TypeSig.push_back(IIT_STRUCT3); break;
    404       case 4: TypeSig.push_back(IIT_STRUCT4); break;
    405       case 5: TypeSig.push_back(IIT_STRUCT5); break;
    406       default: llvm_unreachable("Unhandled case in struct");
    407     }
    408 
    409     for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
    410       EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, TypeSig);
    411   }
    412 
    413   for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
    414     EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, TypeSig);
    415 }
    416 
    417 static void printIITEntry(raw_ostream &OS, unsigned char X) {
    418   OS << (unsigned)X;
    419 }
    420 
    421 void IntrinsicEmitter::EmitGenerator(const std::vector<CodeGenIntrinsic> &Ints,
    422                                      raw_ostream &OS) {
    423   // If we can compute a 32-bit fixed encoding for this intrinsic, do so and
    424   // capture it in this vector, otherwise store a ~0U.
    425   std::vector<unsigned> FixedEncodings;
    426 
    427   SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable;
    428 
    429   std::vector<unsigned char> TypeSig;
    430 
    431   // Compute the unique argument type info.
    432   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    433     // Get the signature for the intrinsic.
    434     TypeSig.clear();
    435     ComputeFixedEncoding(Ints[i], TypeSig);
    436 
    437     // Check to see if we can encode it into a 32-bit word.  We can only encode
    438     // 8 nibbles into a 32-bit word.
    439     if (TypeSig.size() <= 8) {
    440       bool Failed = false;
    441       unsigned Result = 0;
    442       for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) {
    443         // If we had an unencodable argument, bail out.
    444         if (TypeSig[i] > 15) {
    445           Failed = true;
    446           break;
    447         }
    448         Result = (Result << 4) | TypeSig[e-i-1];
    449       }
    450 
    451       // If this could be encoded into a 31-bit word, return it.
    452       if (!Failed && (Result >> 31) == 0) {
    453         FixedEncodings.push_back(Result);
    454         continue;
    455       }
    456     }
    457 
    458     // Otherwise, we're going to unique the sequence into the
    459     // LongEncodingTable, and use its offset in the 32-bit table instead.
    460     LongEncodingTable.add(TypeSig);
    461 
    462     // This is a placehold that we'll replace after the table is laid out.
    463     FixedEncodings.push_back(~0U);
    464   }
    465 
    466   LongEncodingTable.layout();
    467 
    468   OS << "// Global intrinsic function declaration type table.\n";
    469   OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n";
    470 
    471   OS << "static const unsigned IIT_Table[] = {\n  ";
    472 
    473   for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) {
    474     if ((i & 7) == 7)
    475       OS << "\n  ";
    476 
    477     // If the entry fit in the table, just emit it.
    478     if (FixedEncodings[i] != ~0U) {
    479       OS << "0x" << utohexstr(FixedEncodings[i]) << ", ";
    480       continue;
    481     }
    482 
    483     TypeSig.clear();
    484     ComputeFixedEncoding(Ints[i], TypeSig);
    485 
    486 
    487     // Otherwise, emit the offset into the long encoding table.  We emit it this
    488     // way so that it is easier to read the offset in the .def file.
    489     OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", ";
    490   }
    491 
    492   OS << "0\n};\n\n";
    493 
    494   // Emit the shared table of register lists.
    495   OS << "static const unsigned char IIT_LongEncodingTable[] = {\n";
    496   if (!LongEncodingTable.empty())
    497     LongEncodingTable.emit(OS, printIITEntry);
    498   OS << "  255\n};\n\n";
    499 
    500   OS << "#endif\n\n";  // End of GET_INTRINSIC_GENERATOR_GLOBAL
    501 }
    502 
    503 namespace {
    504 enum ModRefKind {
    505   MRK_none,
    506   MRK_readonly,
    507   MRK_readnone
    508 };
    509 }
    510 
    511 static ModRefKind getModRefKind(const CodeGenIntrinsic &intrinsic) {
    512   switch (intrinsic.ModRef) {
    513   case CodeGenIntrinsic::NoMem:
    514     return MRK_readnone;
    515   case CodeGenIntrinsic::ReadArgMem:
    516   case CodeGenIntrinsic::ReadMem:
    517     return MRK_readonly;
    518   case CodeGenIntrinsic::ReadWriteArgMem:
    519   case CodeGenIntrinsic::ReadWriteMem:
    520     return MRK_none;
    521   }
    522   llvm_unreachable("bad mod-ref kind");
    523 }
    524 
    525 namespace {
    526 struct AttributeComparator {
    527   bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
    528     // Sort throwing intrinsics after non-throwing intrinsics.
    529     if (L->canThrow != R->canThrow)
    530       return R->canThrow;
    531 
    532     if (L->isNoDuplicate != R->isNoDuplicate)
    533       return R->isNoDuplicate;
    534 
    535     if (L->isNoReturn != R->isNoReturn)
    536       return R->isNoReturn;
    537 
    538     // Try to order by readonly/readnone attribute.
    539     ModRefKind LK = getModRefKind(*L);
    540     ModRefKind RK = getModRefKind(*R);
    541     if (LK != RK) return (LK > RK);
    542 
    543     // Order by argument attributes.
    544     // This is reliable because each side is already sorted internally.
    545     return (L->ArgumentAttributes < R->ArgumentAttributes);
    546   }
    547 };
    548 } // End anonymous namespace
    549 
    550 /// EmitAttributes - This emits the Intrinsic::getAttributes method.
    551 void IntrinsicEmitter::
    552 EmitAttributes(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS) {
    553   OS << "// Add parameter attributes that are not common to all intrinsics.\n";
    554   OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n";
    555   if (TargetOnly)
    556     OS << "static AttributeSet getAttributes(LLVMContext &C, " << TargetPrefix
    557        << "Intrinsic::ID id) {\n";
    558   else
    559     OS << "AttributeSet Intrinsic::getAttributes(LLVMContext &C, ID id) {\n";
    560 
    561   // Compute the maximum number of attribute arguments and the map
    562   typedef std::map<const CodeGenIntrinsic*, unsigned,
    563                    AttributeComparator> UniqAttrMapTy;
    564   UniqAttrMapTy UniqAttributes;
    565   unsigned maxArgAttrs = 0;
    566   unsigned AttrNum = 0;
    567   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    568     const CodeGenIntrinsic &intrinsic = Ints[i];
    569     maxArgAttrs =
    570       std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size()));
    571     unsigned &N = UniqAttributes[&intrinsic];
    572     if (N) continue;
    573     assert(AttrNum < 256 && "Too many unique attributes for table!");
    574     N = ++AttrNum;
    575   }
    576 
    577   // Emit an array of AttributeSet.  Most intrinsics will have at least one
    578   // entry, for the function itself (index ~1), which is usually nounwind.
    579   OS << "  static const uint8_t IntrinsicsToAttributesMap[] = {\n";
    580 
    581   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    582     const CodeGenIntrinsic &intrinsic = Ints[i];
    583 
    584     OS << "    " << UniqAttributes[&intrinsic] << ", // "
    585        << intrinsic.Name << "\n";
    586   }
    587   OS << "  };\n\n";
    588 
    589   OS << "  AttributeSet AS[" << maxArgAttrs+1 << "];\n";
    590   OS << "  unsigned NumAttrs = 0;\n";
    591   OS << "  if (id != 0) {\n";
    592   OS << "    switch(IntrinsicsToAttributesMap[id - ";
    593   if (TargetOnly)
    594     OS << "Intrinsic::num_intrinsics";
    595   else
    596     OS << "1";
    597   OS << "]) {\n";
    598   OS << "    default: llvm_unreachable(\"Invalid attribute number\");\n";
    599   for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(),
    600        E = UniqAttributes.end(); I != E; ++I) {
    601     OS << "    case " << I->second << ": {\n";
    602 
    603     const CodeGenIntrinsic &intrinsic = *(I->first);
    604 
    605     // Keep track of the number of attributes we're writing out.
    606     unsigned numAttrs = 0;
    607 
    608     // The argument attributes are alreadys sorted by argument index.
    609     unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size();
    610     if (ae) {
    611       while (ai != ae) {
    612         unsigned argNo = intrinsic.ArgumentAttributes[ai].first;
    613 
    614         OS <<  "      const Attribute::AttrKind AttrParam" << argNo + 1 <<"[]= {";
    615         bool addComma = false;
    616 
    617         do {
    618           switch (intrinsic.ArgumentAttributes[ai].second) {
    619           case CodeGenIntrinsic::NoCapture:
    620             if (addComma)
    621               OS << ",";
    622             OS << "Attribute::NoCapture";
    623             addComma = true;
    624             break;
    625           case CodeGenIntrinsic::ReadOnly:
    626             if (addComma)
    627               OS << ",";
    628             OS << "Attribute::ReadOnly";
    629             addComma = true;
    630             break;
    631           case CodeGenIntrinsic::ReadNone:
    632             if (addComma)
    633               OS << ",";
    634             OS << "Attributes::ReadNone";
    635             addComma = true;
    636             break;
    637           }
    638 
    639           ++ai;
    640         } while (ai != ae && intrinsic.ArgumentAttributes[ai].first == argNo);
    641         OS << "};\n";
    642         OS << "      AS[" << numAttrs++ << "] = AttributeSet::get(C, "
    643            << argNo+1 << ", AttrParam" << argNo +1 << ");\n";
    644       }
    645     }
    646 
    647     ModRefKind modRef = getModRefKind(intrinsic);
    648 
    649     if (!intrinsic.canThrow || modRef || intrinsic.isNoReturn ||
    650         intrinsic.isNoDuplicate) {
    651       OS << "      const Attribute::AttrKind Atts[] = {";
    652       bool addComma = false;
    653       if (!intrinsic.canThrow) {
    654         OS << "Attribute::NoUnwind";
    655         addComma = true;
    656       }
    657       if (intrinsic.isNoReturn) {
    658         if (addComma)
    659           OS << ",";
    660         OS << "Attribute::NoReturn";
    661         addComma = true;
    662       }
    663       if (intrinsic.isNoDuplicate) {
    664         if (addComma)
    665           OS << ",";
    666         OS << "Attribute::NoDuplicate";
    667         addComma = true;
    668       }
    669 
    670       switch (modRef) {
    671       case MRK_none: break;
    672       case MRK_readonly:
    673         if (addComma)
    674           OS << ",";
    675         OS << "Attribute::ReadOnly";
    676         break;
    677       case MRK_readnone:
    678         if (addComma)
    679           OS << ",";
    680         OS << "Attribute::ReadNone";
    681         break;
    682       }
    683       OS << "};\n";
    684       OS << "      AS[" << numAttrs++ << "] = AttributeSet::get(C, "
    685          << "AttributeSet::FunctionIndex, Atts);\n";
    686     }
    687 
    688     if (numAttrs) {
    689       OS << "      NumAttrs = " << numAttrs << ";\n";
    690       OS << "      break;\n";
    691       OS << "      }\n";
    692     } else {
    693       OS << "      return AttributeSet();\n";
    694       OS << "      }\n";
    695     }
    696   }
    697 
    698   OS << "    }\n";
    699   OS << "  }\n";
    700   OS << "  return AttributeSet::get(C, makeArrayRef(AS, NumAttrs));\n";
    701   OS << "}\n";
    702   OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n";
    703 }
    704 
    705 /// EmitModRefBehavior - Determine intrinsic alias analysis mod/ref behavior.
    706 void IntrinsicEmitter::
    707 EmitModRefBehavior(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS){
    708   OS << "// Determine intrinsic alias analysis mod/ref behavior.\n"
    709      << "#ifdef GET_INTRINSIC_MODREF_BEHAVIOR\n"
    710      << "assert(iid <= Intrinsic::" << Ints.back().EnumName << " && "
    711      << "\"Unknown intrinsic.\");\n\n";
    712 
    713   OS << "static const uint8_t IntrinsicModRefBehavior[] = {\n"
    714      << "  /* invalid */ UnknownModRefBehavior,\n";
    715   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    716     OS << "  /* " << TargetPrefix << Ints[i].EnumName << " */ ";
    717     switch (Ints[i].ModRef) {
    718     case CodeGenIntrinsic::NoMem:
    719       OS << "DoesNotAccessMemory,\n";
    720       break;
    721     case CodeGenIntrinsic::ReadArgMem:
    722       OS << "OnlyReadsArgumentPointees,\n";
    723       break;
    724     case CodeGenIntrinsic::ReadMem:
    725       OS << "OnlyReadsMemory,\n";
    726       break;
    727     case CodeGenIntrinsic::ReadWriteArgMem:
    728       OS << "OnlyAccessesArgumentPointees,\n";
    729       break;
    730     case CodeGenIntrinsic::ReadWriteMem:
    731       OS << "UnknownModRefBehavior,\n";
    732       break;
    733     }
    734   }
    735   OS << "};\n\n"
    736      << "return static_cast<ModRefBehavior>(IntrinsicModRefBehavior[iid]);\n"
    737      << "#endif // GET_INTRINSIC_MODREF_BEHAVIOR\n\n";
    738 }
    739 
    740 /// EmitTargetBuiltins - All of the builtins in the specified map are for the
    741 /// same target, and we already checked it.
    742 static void EmitTargetBuiltins(const std::map<std::string, std::string> &BIM,
    743                                const std::string &TargetPrefix,
    744                                raw_ostream &OS) {
    745 
    746   std::vector<StringMatcher::StringPair> Results;
    747 
    748   for (std::map<std::string, std::string>::const_iterator I = BIM.begin(),
    749        E = BIM.end(); I != E; ++I) {
    750     std::string ResultCode =
    751     "return " + TargetPrefix + "Intrinsic::" + I->second + ";";
    752     Results.push_back(StringMatcher::StringPair(I->first, ResultCode));
    753   }
    754 
    755   StringMatcher("BuiltinName", Results, OS).Emit();
    756 }
    757 
    758 
    759 void IntrinsicEmitter::
    760 EmitIntrinsicToGCCBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints,
    761                              raw_ostream &OS) {
    762   typedef std::map<std::string, std::map<std::string, std::string> > BIMTy;
    763   BIMTy BuiltinMap;
    764   for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
    765     if (!Ints[i].GCCBuiltinName.empty()) {
    766       // Get the map for this target prefix.
    767       std::map<std::string, std::string> &BIM =BuiltinMap[Ints[i].TargetPrefix];
    768 
    769       if (!BIM.insert(std::make_pair(Ints[i].GCCBuiltinName,
    770                                      Ints[i].EnumName)).second)
    771         PrintFatalError("Intrinsic '" + Ints[i].TheDef->getName() +
    772               "': duplicate GCC builtin name!");
    773     }
    774   }
    775 
    776   OS << "// Get the LLVM intrinsic that corresponds to a GCC builtin.\n";
    777   OS << "// This is used by the C front-end.  The GCC builtin name is passed\n";
    778   OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n";
    779   OS << "// in as TargetPrefix.  The result is assigned to 'IntrinsicID'.\n";
    780   OS << "#ifdef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN\n";
    781 
    782   if (TargetOnly) {
    783     OS << "static " << TargetPrefix << "Intrinsic::ID "
    784        << "getIntrinsicForGCCBuiltin(const char "
    785        << "*TargetPrefixStr, const char *BuiltinNameStr) {\n";
    786   } else {
    787     OS << "Intrinsic::ID Intrinsic::getIntrinsicForGCCBuiltin(const char "
    788        << "*TargetPrefixStr, const char *BuiltinNameStr) {\n";
    789   }
    790 
    791   OS << "  StringRef BuiltinName(BuiltinNameStr);\n";
    792   OS << "  StringRef TargetPrefix(TargetPrefixStr);\n\n";
    793 
    794   // Note: this could emit significantly better code if we cared.
    795   for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){
    796     OS << "  ";
    797     if (!I->first.empty())
    798       OS << "if (TargetPrefix == \"" << I->first << "\") ";
    799     else
    800       OS << "/* Target Independent Builtins */ ";
    801     OS << "{\n";
    802 
    803     // Emit the comparisons for this target prefix.
    804     EmitTargetBuiltins(I->second, TargetPrefix, OS);
    805     OS << "  }\n";
    806   }
    807   OS << "  return ";
    808   if (!TargetPrefix.empty())
    809     OS << "(" << TargetPrefix << "Intrinsic::ID)";
    810   OS << "Intrinsic::not_intrinsic;\n";
    811   OS << "}\n";
    812   OS << "#endif\n\n";
    813 }
    814 
    815 void IntrinsicEmitter::
    816 EmitIntrinsicToMSBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints,
    817                             raw_ostream &OS) {
    818   std::map<std::string, std::map<std::string, std::string>> TargetBuiltins;
    819 
    820   for (const auto &Intrinsic : Ints) {
    821     if (Intrinsic.MSBuiltinName.empty())
    822       continue;
    823 
    824     auto &Builtins = TargetBuiltins[Intrinsic.TargetPrefix];
    825     if (!Builtins.insert(std::make_pair(Intrinsic.MSBuiltinName,
    826                                         Intrinsic.EnumName)).second)
    827       PrintFatalError("Intrinsic '" + Intrinsic.TheDef->getName() + "': "
    828                       "duplicate MS builtin name!");
    829   }
    830 
    831   OS << "// Get the LLVM intrinsic that corresponds to a MS builtin.\n"
    832         "// This is used by the C front-end.  The MS builtin name is passed\n"
    833         "// in as a BuiltinName, and a target prefix (e.g. 'arm') is passed\n"
    834         "// in as a TargetPrefix.  The result is assigned to 'IntrinsicID'.\n"
    835         "#ifdef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN\n";
    836 
    837   OS << (TargetOnly ? "static " + TargetPrefix : "") << "Intrinsic::ID "
    838      << (TargetOnly ? "" : "Intrinsic::")
    839      << "getIntrinsicForMSBuiltin(const char *TP, const char *BN) {\n";
    840   OS << "  StringRef BuiltinName(BN);\n"
    841         "  StringRef TargetPrefix(TP);\n"
    842         "\n";
    843 
    844   for (const auto &Builtins : TargetBuiltins) {
    845     OS << "  ";
    846     if (Builtins.first.empty())
    847       OS << "/* Target Independent Builtins */ ";
    848     else
    849       OS << "if (TargetPrefix == \"" << Builtins.first << "\") ";
    850     OS << "{\n";
    851     EmitTargetBuiltins(Builtins.second, TargetPrefix, OS);
    852     OS << "}";
    853   }
    854 
    855   OS << "  return ";
    856   if (!TargetPrefix.empty())
    857     OS << "(" << TargetPrefix << "Intrinsic::ID)";
    858   OS << "Intrinsic::not_intrinsic;\n";
    859   OS << "}\n";
    860 
    861   OS << "#endif\n\n";
    862 }
    863 
    864 void llvm::EmitIntrinsics(RecordKeeper &RK, raw_ostream &OS, bool TargetOnly) {
    865   IntrinsicEmitter(RK, TargetOnly).run(OS);
    866 }
    867