Home | History | Annotate | Download | only in mips
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/v8.h"
      6 
      7 #if V8_TARGET_ARCH_MIPS
      8 
      9 #include "src/code-stubs.h"
     10 #include "src/log.h"
     11 #include "src/macro-assembler.h"
     12 #include "src/regexp-macro-assembler.h"
     13 #include "src/regexp-stack.h"
     14 #include "src/unicode.h"
     15 
     16 #include "src/mips/regexp-macro-assembler-mips.h"
     17 
     18 namespace v8 {
     19 namespace internal {
     20 
     21 #ifndef V8_INTERPRETED_REGEXP
     22 /*
     23  * This assembler uses the following register assignment convention
     24  * - t7 : Temporarily stores the index of capture start after a matching pass
     25  *        for a global regexp.
     26  * - t1 : Pointer to current code object (Code*) including heap object tag.
     27  * - t2 : Current position in input, as negative offset from end of string.
     28  *        Please notice that this is the byte offset, not the character offset!
     29  * - t3 : Currently loaded character. Must be loaded using
     30  *        LoadCurrentCharacter before using any of the dispatch methods.
     31  * - t4 : Points to tip of backtrack stack
     32  * - t5 : Unused.
     33  * - t6 : End of input (points to byte after last character in input).
     34  * - fp : Frame pointer. Used to access arguments, local variables and
     35  *         RegExp registers.
     36  * - sp : Points to tip of C stack.
     37  *
     38  * The remaining registers are free for computations.
     39  * Each call to a public method should retain this convention.
     40  *
     41  * The stack will have the following structure:
     42  *
     43  *  - fp[64]  Isolate* isolate   (address of the current isolate)
     44  *  - fp[60]  direct_call  (if 1, direct call from JavaScript code,
     45  *                          if 0, call through the runtime system).
     46  *  - fp[56]  stack_area_base (High end of the memory area to use as
     47  *                             backtracking stack).
     48  *  - fp[52]  capture array size (may fit multiple sets of matches)
     49  *  - fp[48]  int* capture_array (int[num_saved_registers_], for output).
     50  *  - fp[44]  secondary link/return address used by native call.
     51  *  --- sp when called ---
     52  *  - fp[40]  return address      (lr).
     53  *  - fp[36]  old frame pointer   (r11).
     54  *  - fp[0..32]  backup of registers s0..s7.
     55  *  --- frame pointer ----
     56  *  - fp[-4]  end of input       (address of end of string).
     57  *  - fp[-8]  start of input     (address of first character in string).
     58  *  - fp[-12] start index        (character index of start).
     59  *  - fp[-16] void* input_string (location of a handle containing the string).
     60  *  - fp[-20] success counter    (only for global regexps to count matches).
     61  *  - fp[-24] Offset of location before start of input (effectively character
     62  *            position -1). Used to initialize capture registers to a
     63  *            non-position.
     64  *  - fp[-28] At start (if 1, we are starting at the start of the
     65  *    string, otherwise 0)
     66  *  - fp[-32] register 0         (Only positions must be stored in the first
     67  *  -         register 1          num_saved_registers_ registers)
     68  *  -         ...
     69  *  -         register num_registers-1
     70  *  --- sp ---
     71  *
     72  * The first num_saved_registers_ registers are initialized to point to
     73  * "character -1" in the string (i.e., char_size() bytes before the first
     74  * character of the string). The remaining registers start out as garbage.
     75  *
     76  * The data up to the return address must be placed there by the calling
     77  * code and the remaining arguments are passed in registers, e.g. by calling the
     78  * code entry as cast to a function with the signature:
     79  * int (*match)(String* input_string,
     80  *              int start_index,
     81  *              Address start,
     82  *              Address end,
     83  *              Address secondary_return_address,  // Only used by native call.
     84  *              int* capture_output_array,
     85  *              byte* stack_area_base,
     86  *              bool direct_call = false)
     87  * The call is performed by NativeRegExpMacroAssembler::Execute()
     88  * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
     89  * in mips/simulator-mips.h.
     90  * When calling as a non-direct call (i.e., from C++ code), the return address
     91  * area is overwritten with the ra register by the RegExp code. When doing a
     92  * direct call from generated code, the return address is placed there by
     93  * the calling code, as in a normal exit frame.
     94  */
     95 
     96 #define __ ACCESS_MASM(masm_)
     97 
     98 RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(
     99     Mode mode,
    100     int registers_to_save,
    101     Zone* zone)
    102     : NativeRegExpMacroAssembler(zone),
    103       masm_(new MacroAssembler(zone->isolate(), NULL, kRegExpCodeSize)),
    104       mode_(mode),
    105       num_registers_(registers_to_save),
    106       num_saved_registers_(registers_to_save),
    107       entry_label_(),
    108       start_label_(),
    109       success_label_(),
    110       backtrack_label_(),
    111       exit_label_(),
    112       internal_failure_label_() {
    113   DCHECK_EQ(0, registers_to_save % 2);
    114   __ jmp(&entry_label_);   // We'll write the entry code later.
    115   // If the code gets too big or corrupted, an internal exception will be
    116   // raised, and we will exit right away.
    117   __ bind(&internal_failure_label_);
    118   __ li(v0, Operand(FAILURE));
    119   __ Ret();
    120   __ bind(&start_label_);  // And then continue from here.
    121 }
    122 
    123 
    124 RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() {
    125   delete masm_;
    126   // Unuse labels in case we throw away the assembler without calling GetCode.
    127   entry_label_.Unuse();
    128   start_label_.Unuse();
    129   success_label_.Unuse();
    130   backtrack_label_.Unuse();
    131   exit_label_.Unuse();
    132   check_preempt_label_.Unuse();
    133   stack_overflow_label_.Unuse();
    134   internal_failure_label_.Unuse();
    135 }
    136 
    137 
    138 int RegExpMacroAssemblerMIPS::stack_limit_slack()  {
    139   return RegExpStack::kStackLimitSlack;
    140 }
    141 
    142 
    143 void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) {
    144   if (by != 0) {
    145     __ Addu(current_input_offset(),
    146             current_input_offset(), Operand(by * char_size()));
    147   }
    148 }
    149 
    150 
    151 void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) {
    152   DCHECK(reg >= 0);
    153   DCHECK(reg < num_registers_);
    154   if (by != 0) {
    155     __ lw(a0, register_location(reg));
    156     __ Addu(a0, a0, Operand(by));
    157     __ sw(a0, register_location(reg));
    158   }
    159 }
    160 
    161 
    162 void RegExpMacroAssemblerMIPS::Backtrack() {
    163   CheckPreemption();
    164   // Pop Code* offset from backtrack stack, add Code* and jump to location.
    165   Pop(a0);
    166   __ Addu(a0, a0, code_pointer());
    167   __ Jump(a0);
    168 }
    169 
    170 
    171 void RegExpMacroAssemblerMIPS::Bind(Label* label) {
    172   __ bind(label);
    173 }
    174 
    175 
    176 void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) {
    177   BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
    178 }
    179 
    180 
    181 void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) {
    182   BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
    183 }
    184 
    185 
    186 void RegExpMacroAssemblerMIPS::CheckAtStart(Label* on_at_start) {
    187   Label not_at_start;
    188   // Did we start the match at the start of the string at all?
    189   __ lw(a0, MemOperand(frame_pointer(), kStartIndex));
    190   BranchOrBacktrack(&not_at_start, ne, a0, Operand(zero_reg));
    191 
    192   // If we did, are we still at the start of the input?
    193   __ lw(a1, MemOperand(frame_pointer(), kInputStart));
    194   __ Addu(a0, end_of_input_address(), Operand(current_input_offset()));
    195   BranchOrBacktrack(on_at_start, eq, a0, Operand(a1));
    196   __ bind(&not_at_start);
    197 }
    198 
    199 
    200 void RegExpMacroAssemblerMIPS::CheckNotAtStart(Label* on_not_at_start) {
    201   // Did we start the match at the start of the string at all?
    202   __ lw(a0, MemOperand(frame_pointer(), kStartIndex));
    203   BranchOrBacktrack(on_not_at_start, ne, a0, Operand(zero_reg));
    204   // If we did, are we still at the start of the input?
    205   __ lw(a1, MemOperand(frame_pointer(), kInputStart));
    206   __ Addu(a0, end_of_input_address(), Operand(current_input_offset()));
    207   BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
    208 }
    209 
    210 
    211 void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) {
    212   BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
    213 }
    214 
    215 
    216 void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) {
    217   Label backtrack_non_equal;
    218   __ lw(a0, MemOperand(backtrack_stackpointer(), 0));
    219   __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0));
    220   __ Addu(backtrack_stackpointer(),
    221           backtrack_stackpointer(),
    222           Operand(kPointerSize));
    223   __ bind(&backtrack_non_equal);
    224   BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0));
    225 }
    226 
    227 
    228 void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase(
    229     int start_reg,
    230     Label* on_no_match) {
    231   Label fallthrough;
    232   __ lw(a0, register_location(start_reg));  // Index of start of capture.
    233   __ lw(a1, register_location(start_reg + 1));  // Index of end of capture.
    234   __ Subu(a1, a1, a0);  // Length of capture.
    235 
    236   // If length is zero, either the capture is empty or it is not participating.
    237   // In either case succeed immediately.
    238   __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
    239 
    240   __ Addu(t5, a1, current_input_offset());
    241   // Check that there are enough characters left in the input.
    242   BranchOrBacktrack(on_no_match, gt, t5, Operand(zero_reg));
    243 
    244   if (mode_ == LATIN1) {
    245     Label success;
    246     Label fail;
    247     Label loop_check;
    248 
    249     // a0 - offset of start of capture.
    250     // a1 - length of capture.
    251     __ Addu(a0, a0, Operand(end_of_input_address()));
    252     __ Addu(a2, end_of_input_address(), Operand(current_input_offset()));
    253     __ Addu(a1, a0, Operand(a1));
    254 
    255     // a0 - Address of start of capture.
    256     // a1 - Address of end of capture.
    257     // a2 - Address of current input position.
    258 
    259     Label loop;
    260     __ bind(&loop);
    261     __ lbu(a3, MemOperand(a0, 0));
    262     __ addiu(a0, a0, char_size());
    263     __ lbu(t0, MemOperand(a2, 0));
    264     __ addiu(a2, a2, char_size());
    265 
    266     __ Branch(&loop_check, eq, t0, Operand(a3));
    267 
    268     // Mismatch, try case-insensitive match (converting letters to lower-case).
    269     __ Or(a3, a3, Operand(0x20));  // Convert capture character to lower-case.
    270     __ Or(t0, t0, Operand(0x20));  // Also convert input character.
    271     __ Branch(&fail, ne, t0, Operand(a3));
    272     __ Subu(a3, a3, Operand('a'));
    273     __ Branch(&loop_check, ls, a3, Operand('z' - 'a'));
    274     // Latin-1: Check for values in range [224,254] but not 247.
    275     __ Subu(a3, a3, Operand(224 - 'a'));
    276     // Weren't Latin-1 letters.
    277     __ Branch(&fail, hi, a3, Operand(254 - 224));
    278     // Check for 247.
    279     __ Branch(&fail, eq, a3, Operand(247 - 224));
    280 
    281     __ bind(&loop_check);
    282     __ Branch(&loop, lt, a0, Operand(a1));
    283     __ jmp(&success);
    284 
    285     __ bind(&fail);
    286     GoTo(on_no_match);
    287 
    288     __ bind(&success);
    289     // Compute new value of character position after the matched part.
    290     __ Subu(current_input_offset(), a2, end_of_input_address());
    291   } else {
    292     DCHECK(mode_ == UC16);
    293     // Put regexp engine registers on stack.
    294     RegList regexp_registers_to_retain = current_input_offset().bit() |
    295         current_character().bit() | backtrack_stackpointer().bit();
    296     __ MultiPush(regexp_registers_to_retain);
    297 
    298     int argument_count = 4;
    299     __ PrepareCallCFunction(argument_count, a2);
    300 
    301     // a0 - offset of start of capture.
    302     // a1 - length of capture.
    303 
    304     // Put arguments into arguments registers.
    305     // Parameters are
    306     //   a0: Address byte_offset1 - Address captured substring's start.
    307     //   a1: Address byte_offset2 - Address of current character position.
    308     //   a2: size_t byte_length - length of capture in bytes(!).
    309     //   a3: Isolate* isolate.
    310 
    311     // Address of start of capture.
    312     __ Addu(a0, a0, Operand(end_of_input_address()));
    313     // Length of capture.
    314     __ mov(a2, a1);
    315     // Save length in callee-save register for use on return.
    316     __ mov(s3, a1);
    317     // Address of current input position.
    318     __ Addu(a1, current_input_offset(), Operand(end_of_input_address()));
    319     // Isolate.
    320     __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate())));
    321 
    322     {
    323       AllowExternalCallThatCantCauseGC scope(masm_);
    324       ExternalReference function =
    325           ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate());
    326       __ CallCFunction(function, argument_count);
    327     }
    328 
    329     // Restore regexp engine registers.
    330     __ MultiPop(regexp_registers_to_retain);
    331     __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
    332     __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
    333 
    334     // Check if function returned non-zero for success or zero for failure.
    335     BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg));
    336     // On success, increment position by length of capture.
    337     __ Addu(current_input_offset(), current_input_offset(), Operand(s3));
    338   }
    339 
    340   __ bind(&fallthrough);
    341 }
    342 
    343 
    344 void RegExpMacroAssemblerMIPS::CheckNotBackReference(
    345     int start_reg,
    346     Label* on_no_match) {
    347   Label fallthrough;
    348   Label success;
    349 
    350   // Find length of back-referenced capture.
    351   __ lw(a0, register_location(start_reg));
    352   __ lw(a1, register_location(start_reg + 1));
    353   __ Subu(a1, a1, a0);  // Length to check.
    354   // Succeed on empty capture (including no capture).
    355   __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
    356 
    357   __ Addu(t5, a1, current_input_offset());
    358   // Check that there are enough characters left in the input.
    359   BranchOrBacktrack(on_no_match, gt, t5, Operand(zero_reg));
    360 
    361   // Compute pointers to match string and capture string.
    362   __ Addu(a0, a0, Operand(end_of_input_address()));
    363   __ Addu(a2, end_of_input_address(), Operand(current_input_offset()));
    364   __ Addu(a1, a1, Operand(a0));
    365 
    366   Label loop;
    367   __ bind(&loop);
    368   if (mode_ == LATIN1) {
    369     __ lbu(a3, MemOperand(a0, 0));
    370     __ addiu(a0, a0, char_size());
    371     __ lbu(t0, MemOperand(a2, 0));
    372     __ addiu(a2, a2, char_size());
    373   } else {
    374     DCHECK(mode_ == UC16);
    375     __ lhu(a3, MemOperand(a0, 0));
    376     __ addiu(a0, a0, char_size());
    377     __ lhu(t0, MemOperand(a2, 0));
    378     __ addiu(a2, a2, char_size());
    379   }
    380   BranchOrBacktrack(on_no_match, ne, a3, Operand(t0));
    381   __ Branch(&loop, lt, a0, Operand(a1));
    382 
    383   // Move current character position to position after match.
    384   __ Subu(current_input_offset(), a2, end_of_input_address());
    385   __ bind(&fallthrough);
    386 }
    387 
    388 
    389 void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c,
    390                                                  Label* on_not_equal) {
    391   BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c));
    392 }
    393 
    394 
    395 void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c,
    396                                                       uint32_t mask,
    397                                                       Label* on_equal) {
    398   __ And(a0, current_character(), Operand(mask));
    399   Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
    400   BranchOrBacktrack(on_equal, eq, a0, rhs);
    401 }
    402 
    403 
    404 void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c,
    405                                                          uint32_t mask,
    406                                                          Label* on_not_equal) {
    407   __ And(a0, current_character(), Operand(mask));
    408   Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
    409   BranchOrBacktrack(on_not_equal, ne, a0, rhs);
    410 }
    411 
    412 
    413 void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd(
    414     uc16 c,
    415     uc16 minus,
    416     uc16 mask,
    417     Label* on_not_equal) {
    418   DCHECK(minus < String::kMaxUtf16CodeUnit);
    419   __ Subu(a0, current_character(), Operand(minus));
    420   __ And(a0, a0, Operand(mask));
    421   BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
    422 }
    423 
    424 
    425 void RegExpMacroAssemblerMIPS::CheckCharacterInRange(
    426     uc16 from,
    427     uc16 to,
    428     Label* on_in_range) {
    429   __ Subu(a0, current_character(), Operand(from));
    430   // Unsigned lower-or-same condition.
    431   BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from));
    432 }
    433 
    434 
    435 void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange(
    436     uc16 from,
    437     uc16 to,
    438     Label* on_not_in_range) {
    439   __ Subu(a0, current_character(), Operand(from));
    440   // Unsigned higher condition.
    441   BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from));
    442 }
    443 
    444 
    445 void RegExpMacroAssemblerMIPS::CheckBitInTable(
    446     Handle<ByteArray> table,
    447     Label* on_bit_set) {
    448   __ li(a0, Operand(table));
    449   if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
    450     __ And(a1, current_character(), Operand(kTableSize - 1));
    451     __ Addu(a0, a0, a1);
    452   } else {
    453     __ Addu(a0, a0, current_character());
    454   }
    455 
    456   __ lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize));
    457   BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
    458 }
    459 
    460 
    461 bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type,
    462                                                           Label* on_no_match) {
    463   // Range checks (c in min..max) are generally implemented by an unsigned
    464   // (c - min) <= (max - min) check.
    465   switch (type) {
    466   case 's':
    467     // Match space-characters.
    468     if (mode_ == LATIN1) {
    469       // One byte space characters are '\t'..'\r', ' ' and \u00a0.
    470       Label success;
    471       __ Branch(&success, eq, current_character(), Operand(' '));
    472       // Check range 0x09..0x0d.
    473       __ Subu(a0, current_character(), Operand('\t'));
    474       __ Branch(&success, ls, a0, Operand('\r' - '\t'));
    475       // \u00a0 (NBSP).
    476       BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00a0 - '\t'));
    477       __ bind(&success);
    478       return true;
    479     }
    480     return false;
    481   case 'S':
    482     // The emitted code for generic character classes is good enough.
    483     return false;
    484   case 'd':
    485     // Match Latin1 digits ('0'..'9').
    486     __ Subu(a0, current_character(), Operand('0'));
    487     BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0'));
    488     return true;
    489   case 'D':
    490     // Match non Latin1-digits.
    491     __ Subu(a0, current_character(), Operand('0'));
    492     BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0'));
    493     return true;
    494   case '.': {
    495     // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
    496     __ Xor(a0, current_character(), Operand(0x01));
    497     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
    498     __ Subu(a0, a0, Operand(0x0b));
    499     BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0c - 0x0b));
    500     if (mode_ == UC16) {
    501       // Compare original value to 0x2028 and 0x2029, using the already
    502       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
    503       // 0x201d (0x2028 - 0x0b) or 0x201e.
    504       __ Subu(a0, a0, Operand(0x2028 - 0x0b));
    505       BranchOrBacktrack(on_no_match, ls, a0, Operand(1));
    506     }
    507     return true;
    508   }
    509   case 'n': {
    510     // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
    511     __ Xor(a0, current_character(), Operand(0x01));
    512     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
    513     __ Subu(a0, a0, Operand(0x0b));
    514     if (mode_ == LATIN1) {
    515       BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0c - 0x0b));
    516     } else {
    517       Label done;
    518       BranchOrBacktrack(&done, ls, a0, Operand(0x0c - 0x0b));
    519       // Compare original value to 0x2028 and 0x2029, using the already
    520       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
    521       // 0x201d (0x2028 - 0x0b) or 0x201e.
    522       __ Subu(a0, a0, Operand(0x2028 - 0x0b));
    523       BranchOrBacktrack(on_no_match, hi, a0, Operand(1));
    524       __ bind(&done);
    525     }
    526     return true;
    527   }
    528   case 'w': {
    529     if (mode_ != LATIN1) {
    530       // Table is 256 entries, so all Latin1 characters can be tested.
    531       BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z'));
    532     }
    533     ExternalReference map = ExternalReference::re_word_character_map();
    534     __ li(a0, Operand(map));
    535     __ Addu(a0, a0, current_character());
    536     __ lbu(a0, MemOperand(a0, 0));
    537     BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg));
    538     return true;
    539   }
    540   case 'W': {
    541     Label done;
    542     if (mode_ != LATIN1) {
    543       // Table is 256 entries, so all Latin1 characters can be tested.
    544       __ Branch(&done, hi, current_character(), Operand('z'));
    545     }
    546     ExternalReference map = ExternalReference::re_word_character_map();
    547     __ li(a0, Operand(map));
    548     __ Addu(a0, a0, current_character());
    549     __ lbu(a0, MemOperand(a0, 0));
    550     BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg));
    551     if (mode_ != LATIN1) {
    552       __ bind(&done);
    553     }
    554     return true;
    555   }
    556   case '*':
    557     // Match any character.
    558     return true;
    559   // No custom implementation (yet): s(UC16), S(UC16).
    560   default:
    561     return false;
    562   }
    563 }
    564 
    565 
    566 void RegExpMacroAssemblerMIPS::Fail() {
    567   __ li(v0, Operand(FAILURE));
    568   __ jmp(&exit_label_);
    569 }
    570 
    571 
    572 Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) {
    573   Label return_v0;
    574   if (masm_->has_exception()) {
    575     // If the code gets corrupted due to long regular expressions and lack of
    576     // space on trampolines, an internal exception flag is set. If this case
    577     // is detected, we will jump into exit sequence right away.
    578     __ bind_to(&entry_label_, internal_failure_label_.pos());
    579   } else {
    580     // Finalize code - write the entry point code now we know how many
    581     // registers we need.
    582 
    583     // Entry code:
    584     __ bind(&entry_label_);
    585 
    586     // Tell the system that we have a stack frame.  Because the type is MANUAL,
    587     // no is generated.
    588     FrameScope scope(masm_, StackFrame::MANUAL);
    589 
    590     // Actually emit code to start a new stack frame.
    591     // Push arguments
    592     // Save callee-save registers.
    593     // Start new stack frame.
    594     // Store link register in existing stack-cell.
    595     // Order here should correspond to order of offset constants in header file.
    596     RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() |
    597         s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit() | fp.bit();
    598     RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit();
    599     __ MultiPush(argument_registers | registers_to_retain | ra.bit());
    600     // Set frame pointer in space for it if this is not a direct call
    601     // from generated code.
    602     __ Addu(frame_pointer(), sp, Operand(4 * kPointerSize));
    603     __ mov(a0, zero_reg);
    604     __ push(a0);  // Make room for success counter and initialize it to 0.
    605     __ push(a0);  // Make room for "position - 1" constant (value irrelevant).
    606 
    607     // Check if we have space on the stack for registers.
    608     Label stack_limit_hit;
    609     Label stack_ok;
    610 
    611     ExternalReference stack_limit =
    612         ExternalReference::address_of_stack_limit(masm_->isolate());
    613     __ li(a0, Operand(stack_limit));
    614     __ lw(a0, MemOperand(a0));
    615     __ Subu(a0, sp, a0);
    616     // Handle it if the stack pointer is already below the stack limit.
    617     __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg));
    618     // Check if there is room for the variable number of registers above
    619     // the stack limit.
    620     __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize));
    621     // Exit with OutOfMemory exception. There is not enough space on the stack
    622     // for our working registers.
    623     __ li(v0, Operand(EXCEPTION));
    624     __ jmp(&return_v0);
    625 
    626     __ bind(&stack_limit_hit);
    627     CallCheckStackGuardState(a0);
    628     // If returned value is non-zero, we exit with the returned value as result.
    629     __ Branch(&return_v0, ne, v0, Operand(zero_reg));
    630 
    631     __ bind(&stack_ok);
    632     // Allocate space on stack for registers.
    633     __ Subu(sp, sp, Operand(num_registers_ * kPointerSize));
    634     // Load string end.
    635     __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
    636     // Load input start.
    637     __ lw(a0, MemOperand(frame_pointer(), kInputStart));
    638     // Find negative length (offset of start relative to end).
    639     __ Subu(current_input_offset(), a0, end_of_input_address());
    640     // Set a0 to address of char before start of the input string
    641     // (effectively string position -1).
    642     __ lw(a1, MemOperand(frame_pointer(), kStartIndex));
    643     __ Subu(a0, current_input_offset(), Operand(char_size()));
    644     __ sll(t5, a1, (mode_ == UC16) ? 1 : 0);
    645     __ Subu(a0, a0, t5);
    646     // Store this value in a local variable, for use when clearing
    647     // position registers.
    648     __ sw(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
    649 
    650     // Initialize code pointer register
    651     __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
    652 
    653     Label load_char_start_regexp, start_regexp;
    654     // Load newline if index is at start, previous character otherwise.
    655     __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg));
    656     __ li(current_character(), Operand('\n'));
    657     __ jmp(&start_regexp);
    658 
    659     // Global regexp restarts matching here.
    660     __ bind(&load_char_start_regexp);
    661     // Load previous char as initial value of current character register.
    662     LoadCurrentCharacterUnchecked(-1, 1);
    663     __ bind(&start_regexp);
    664 
    665     // Initialize on-stack registers.
    666     if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
    667       // Fill saved registers with initial value = start offset - 1.
    668       if (num_saved_registers_ > 8) {
    669         // Address of register 0.
    670         __ Addu(a1, frame_pointer(), Operand(kRegisterZero));
    671         __ li(a2, Operand(num_saved_registers_));
    672         Label init_loop;
    673         __ bind(&init_loop);
    674         __ sw(a0, MemOperand(a1));
    675         __ Addu(a1, a1, Operand(-kPointerSize));
    676         __ Subu(a2, a2, Operand(1));
    677         __ Branch(&init_loop, ne, a2, Operand(zero_reg));
    678       } else {
    679         for (int i = 0; i < num_saved_registers_; i++) {
    680           __ sw(a0, register_location(i));
    681         }
    682       }
    683     }
    684 
    685     // Initialize backtrack stack pointer.
    686     __ lw(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
    687 
    688     __ jmp(&start_label_);
    689 
    690 
    691     // Exit code:
    692     if (success_label_.is_linked()) {
    693       // Save captures when successful.
    694       __ bind(&success_label_);
    695       if (num_saved_registers_ > 0) {
    696         // Copy captures to output.
    697         __ lw(a1, MemOperand(frame_pointer(), kInputStart));
    698         __ lw(a0, MemOperand(frame_pointer(), kRegisterOutput));
    699         __ lw(a2, MemOperand(frame_pointer(), kStartIndex));
    700         __ Subu(a1, end_of_input_address(), a1);
    701         // a1 is length of input in bytes.
    702         if (mode_ == UC16) {
    703           __ srl(a1, a1, 1);
    704         }
    705         // a1 is length of input in characters.
    706         __ Addu(a1, a1, Operand(a2));
    707         // a1 is length of string in characters.
    708 
    709         DCHECK_EQ(0, num_saved_registers_ % 2);
    710         // Always an even number of capture registers. This allows us to
    711         // unroll the loop once to add an operation between a load of a register
    712         // and the following use of that register.
    713         for (int i = 0; i < num_saved_registers_; i += 2) {
    714           __ lw(a2, register_location(i));
    715           __ lw(a3, register_location(i + 1));
    716           if (i == 0 && global_with_zero_length_check()) {
    717             // Keep capture start in a4 for the zero-length check later.
    718             __ mov(t7, a2);
    719           }
    720           if (mode_ == UC16) {
    721             __ sra(a2, a2, 1);
    722             __ Addu(a2, a2, a1);
    723             __ sra(a3, a3, 1);
    724             __ Addu(a3, a3, a1);
    725           } else {
    726             __ Addu(a2, a1, Operand(a2));
    727             __ Addu(a3, a1, Operand(a3));
    728           }
    729           __ sw(a2, MemOperand(a0));
    730           __ Addu(a0, a0, kPointerSize);
    731           __ sw(a3, MemOperand(a0));
    732           __ Addu(a0, a0, kPointerSize);
    733         }
    734       }
    735 
    736       if (global()) {
    737         // Restart matching if the regular expression is flagged as global.
    738         __ lw(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
    739         __ lw(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
    740         __ lw(a2, MemOperand(frame_pointer(), kRegisterOutput));
    741         // Increment success counter.
    742         __ Addu(a0, a0, 1);
    743         __ sw(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
    744         // Capture results have been stored, so the number of remaining global
    745         // output registers is reduced by the number of stored captures.
    746         __ Subu(a1, a1, num_saved_registers_);
    747         // Check whether we have enough room for another set of capture results.
    748         __ mov(v0, a0);
    749         __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_));
    750 
    751         __ sw(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
    752         // Advance the location for output.
    753         __ Addu(a2, a2, num_saved_registers_ * kPointerSize);
    754         __ sw(a2, MemOperand(frame_pointer(), kRegisterOutput));
    755 
    756         // Prepare a0 to initialize registers with its value in the next run.
    757         __ lw(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
    758 
    759         if (global_with_zero_length_check()) {
    760           // Special case for zero-length matches.
    761           // t7: capture start index
    762           // Not a zero-length match, restart.
    763           __ Branch(
    764               &load_char_start_regexp, ne, current_input_offset(), Operand(t7));
    765           // Offset from the end is zero if we already reached the end.
    766           __ Branch(&exit_label_, eq, current_input_offset(),
    767                     Operand(zero_reg));
    768           // Advance current position after a zero-length match.
    769           __ Addu(current_input_offset(),
    770                   current_input_offset(),
    771                   Operand((mode_ == UC16) ? 2 : 1));
    772         }
    773 
    774         __ Branch(&load_char_start_regexp);
    775       } else {
    776         __ li(v0, Operand(SUCCESS));
    777       }
    778     }
    779     // Exit and return v0.
    780     __ bind(&exit_label_);
    781     if (global()) {
    782       __ lw(v0, MemOperand(frame_pointer(), kSuccessfulCaptures));
    783     }
    784 
    785     __ bind(&return_v0);
    786     // Skip sp past regexp registers and local variables..
    787     __ mov(sp, frame_pointer());
    788     // Restore registers s0..s7 and return (restoring ra to pc).
    789     __ MultiPop(registers_to_retain | ra.bit());
    790     __ Ret();
    791 
    792     // Backtrack code (branch target for conditional backtracks).
    793     if (backtrack_label_.is_linked()) {
    794       __ bind(&backtrack_label_);
    795       Backtrack();
    796     }
    797 
    798     Label exit_with_exception;
    799 
    800     // Preempt-code.
    801     if (check_preempt_label_.is_linked()) {
    802       SafeCallTarget(&check_preempt_label_);
    803       // Put regexp engine registers on stack.
    804       RegList regexp_registers_to_retain = current_input_offset().bit() |
    805           current_character().bit() | backtrack_stackpointer().bit();
    806       __ MultiPush(regexp_registers_to_retain);
    807       CallCheckStackGuardState(a0);
    808       __ MultiPop(regexp_registers_to_retain);
    809       // If returning non-zero, we should end execution with the given
    810       // result as return value.
    811       __ Branch(&return_v0, ne, v0, Operand(zero_reg));
    812 
    813       // String might have moved: Reload end of string from frame.
    814       __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
    815       __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
    816       SafeReturn();
    817     }
    818 
    819     // Backtrack stack overflow code.
    820     if (stack_overflow_label_.is_linked()) {
    821       SafeCallTarget(&stack_overflow_label_);
    822       // Reached if the backtrack-stack limit has been hit.
    823       // Put regexp engine registers on stack first.
    824       RegList regexp_registers = current_input_offset().bit() |
    825           current_character().bit();
    826       __ MultiPush(regexp_registers);
    827       Label grow_failed;
    828       // Call GrowStack(backtrack_stackpointer(), &stack_base)
    829       static const int num_arguments = 3;
    830       __ PrepareCallCFunction(num_arguments, a0);
    831       __ mov(a0, backtrack_stackpointer());
    832       __ Addu(a1, frame_pointer(), Operand(kStackHighEnd));
    833       __ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate())));
    834       ExternalReference grow_stack =
    835           ExternalReference::re_grow_stack(masm_->isolate());
    836       __ CallCFunction(grow_stack, num_arguments);
    837       // Restore regexp registers.
    838       __ MultiPop(regexp_registers);
    839       // If return NULL, we have failed to grow the stack, and
    840       // must exit with a stack-overflow exception.
    841       __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg));
    842       // Otherwise use return value as new stack pointer.
    843       __ mov(backtrack_stackpointer(), v0);
    844       // Restore saved registers and continue.
    845       __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
    846       __ lw(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
    847       SafeReturn();
    848     }
    849 
    850     if (exit_with_exception.is_linked()) {
    851       // If any of the code above needed to exit with an exception.
    852       __ bind(&exit_with_exception);
    853       // Exit with Result EXCEPTION(-1) to signal thrown exception.
    854       __ li(v0, Operand(EXCEPTION));
    855       __ jmp(&return_v0);
    856     }
    857   }
    858 
    859   CodeDesc code_desc;
    860   masm_->GetCode(&code_desc);
    861   Handle<Code> code = isolate()->factory()->NewCode(
    862       code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
    863   LOG(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
    864   return Handle<HeapObject>::cast(code);
    865 }
    866 
    867 
    868 void RegExpMacroAssemblerMIPS::GoTo(Label* to) {
    869   if (to == NULL) {
    870     Backtrack();
    871     return;
    872   }
    873   __ jmp(to);
    874   return;
    875 }
    876 
    877 
    878 void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg,
    879                                             int comparand,
    880                                             Label* if_ge) {
    881   __ lw(a0, register_location(reg));
    882     BranchOrBacktrack(if_ge, ge, a0, Operand(comparand));
    883 }
    884 
    885 
    886 void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg,
    887                                             int comparand,
    888                                             Label* if_lt) {
    889   __ lw(a0, register_location(reg));
    890   BranchOrBacktrack(if_lt, lt, a0, Operand(comparand));
    891 }
    892 
    893 
    894 void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg,
    895                                                Label* if_eq) {
    896   __ lw(a0, register_location(reg));
    897   BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset()));
    898 }
    899 
    900 
    901 RegExpMacroAssembler::IrregexpImplementation
    902     RegExpMacroAssemblerMIPS::Implementation() {
    903   return kMIPSImplementation;
    904 }
    905 
    906 
    907 void RegExpMacroAssemblerMIPS::LoadCurrentCharacter(int cp_offset,
    908                                                     Label* on_end_of_input,
    909                                                     bool check_bounds,
    910                                                     int characters) {
    911   DCHECK(cp_offset >= -1);      // ^ and \b can look behind one character.
    912   DCHECK(cp_offset < (1<<30));  // Be sane! (And ensure negation works).
    913   if (check_bounds) {
    914     CheckPosition(cp_offset + characters - 1, on_end_of_input);
    915   }
    916   LoadCurrentCharacterUnchecked(cp_offset, characters);
    917 }
    918 
    919 
    920 void RegExpMacroAssemblerMIPS::PopCurrentPosition() {
    921   Pop(current_input_offset());
    922 }
    923 
    924 
    925 void RegExpMacroAssemblerMIPS::PopRegister(int register_index) {
    926   Pop(a0);
    927   __ sw(a0, register_location(register_index));
    928 }
    929 
    930 
    931 void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) {
    932   if (label->is_bound()) {
    933     int target = label->pos();
    934     __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag));
    935   } else {
    936     Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
    937     Label after_constant;
    938     __ Branch(&after_constant);
    939     int offset = masm_->pc_offset();
    940     int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag;
    941     __ emit(0);
    942     masm_->label_at_put(label, offset);
    943     __ bind(&after_constant);
    944     if (is_int16(cp_offset)) {
    945       __ lw(a0, MemOperand(code_pointer(), cp_offset));
    946     } else {
    947       __ Addu(a0, code_pointer(), cp_offset);
    948       __ lw(a0, MemOperand(a0, 0));
    949     }
    950   }
    951   Push(a0);
    952   CheckStackLimit();
    953 }
    954 
    955 
    956 void RegExpMacroAssemblerMIPS::PushCurrentPosition() {
    957   Push(current_input_offset());
    958 }
    959 
    960 
    961 void RegExpMacroAssemblerMIPS::PushRegister(int register_index,
    962                                             StackCheckFlag check_stack_limit) {
    963   __ lw(a0, register_location(register_index));
    964   Push(a0);
    965   if (check_stack_limit) CheckStackLimit();
    966 }
    967 
    968 
    969 void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) {
    970   __ lw(current_input_offset(), register_location(reg));
    971 }
    972 
    973 
    974 void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) {
    975   __ lw(backtrack_stackpointer(), register_location(reg));
    976   __ lw(a0, MemOperand(frame_pointer(), kStackHighEnd));
    977   __ Addu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0));
    978 }
    979 
    980 
    981 void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) {
    982   Label after_position;
    983   __ Branch(&after_position,
    984             ge,
    985             current_input_offset(),
    986             Operand(-by * char_size()));
    987   __ li(current_input_offset(), -by * char_size());
    988   // On RegExp code entry (where this operation is used), the character before
    989   // the current position is expected to be already loaded.
    990   // We have advanced the position, so it's safe to read backwards.
    991   LoadCurrentCharacterUnchecked(-1, 1);
    992   __ bind(&after_position);
    993 }
    994 
    995 
    996 void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) {
    997   DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
    998   __ li(a0, Operand(to));
    999   __ sw(a0, register_location(register_index));
   1000 }
   1001 
   1002 
   1003 bool RegExpMacroAssemblerMIPS::Succeed() {
   1004   __ jmp(&success_label_);
   1005   return global();
   1006 }
   1007 
   1008 
   1009 void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg,
   1010                                                               int cp_offset) {
   1011   if (cp_offset == 0) {
   1012     __ sw(current_input_offset(), register_location(reg));
   1013   } else {
   1014     __ Addu(a0, current_input_offset(), Operand(cp_offset * char_size()));
   1015     __ sw(a0, register_location(reg));
   1016   }
   1017 }
   1018 
   1019 
   1020 void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) {
   1021   DCHECK(reg_from <= reg_to);
   1022   __ lw(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
   1023   for (int reg = reg_from; reg <= reg_to; reg++) {
   1024     __ sw(a0, register_location(reg));
   1025   }
   1026 }
   1027 
   1028 
   1029 void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) {
   1030   __ lw(a1, MemOperand(frame_pointer(), kStackHighEnd));
   1031   __ Subu(a0, backtrack_stackpointer(), a1);
   1032   __ sw(a0, register_location(reg));
   1033 }
   1034 
   1035 
   1036 bool RegExpMacroAssemblerMIPS::CanReadUnaligned() {
   1037   return false;
   1038 }
   1039 
   1040 
   1041 // Private methods:
   1042 
   1043 void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) {
   1044   int stack_alignment = base::OS::ActivationFrameAlignment();
   1045 
   1046   // Align the stack pointer and save the original sp value on the stack.
   1047   __ mov(scratch, sp);
   1048   __ Subu(sp, sp, Operand(kPointerSize));
   1049   DCHECK(base::bits::IsPowerOfTwo32(stack_alignment));
   1050   __ And(sp, sp, Operand(-stack_alignment));
   1051   __ sw(scratch, MemOperand(sp));
   1052 
   1053   __ mov(a2, frame_pointer());
   1054   // Code* of self.
   1055   __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE);
   1056 
   1057   // We need to make room for the return address on the stack.
   1058   DCHECK(IsAligned(stack_alignment, kPointerSize));
   1059   __ Subu(sp, sp, Operand(stack_alignment));
   1060 
   1061   // Stack pointer now points to cell where return address is to be written.
   1062   // Arguments are in registers, meaning we teat the return address as
   1063   // argument 5. Since DirectCEntryStub will handleallocating space for the C
   1064   // argument slots, we don't need to care about that here. This is how the
   1065   // stack will look (sp meaning the value of sp at this moment):
   1066   // [sp + 3] - empty slot if needed for alignment.
   1067   // [sp + 2] - saved sp.
   1068   // [sp + 1] - second word reserved for return value.
   1069   // [sp + 0] - first word reserved for return value.
   1070 
   1071   // a0 will point to the return address, placed by DirectCEntry.
   1072   __ mov(a0, sp);
   1073 
   1074   ExternalReference stack_guard_check =
   1075       ExternalReference::re_check_stack_guard_state(masm_->isolate());
   1076   __ li(t9, Operand(stack_guard_check));
   1077   DirectCEntryStub stub(isolate());
   1078   stub.GenerateCall(masm_, t9);
   1079 
   1080   // DirectCEntryStub allocated space for the C argument slots so we have to
   1081   // drop them with the return address from the stack with loading saved sp.
   1082   // At this point stack must look:
   1083   // [sp + 7] - empty slot if needed for alignment.
   1084   // [sp + 6] - saved sp.
   1085   // [sp + 5] - second word reserved for return value.
   1086   // [sp + 4] - first word reserved for return value.
   1087   // [sp + 3] - C argument slot.
   1088   // [sp + 2] - C argument slot.
   1089   // [sp + 1] - C argument slot.
   1090   // [sp + 0] - C argument slot.
   1091   __ lw(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize));
   1092 
   1093   __ li(code_pointer(), Operand(masm_->CodeObject()));
   1094 }
   1095 
   1096 
   1097 // Helper function for reading a value out of a stack frame.
   1098 template <typename T>
   1099 static T& frame_entry(Address re_frame, int frame_offset) {
   1100   return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
   1101 }
   1102 
   1103 
   1104 int RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address,
   1105                                                    Code* re_code,
   1106                                                    Address re_frame) {
   1107   Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate);
   1108   StackLimitCheck check(isolate);
   1109   if (check.JsHasOverflowed()) {
   1110     isolate->StackOverflow();
   1111     return EXCEPTION;
   1112   }
   1113 
   1114   // If not real stack overflow the stack guard was used to interrupt
   1115   // execution for another purpose.
   1116 
   1117   // If this is a direct call from JavaScript retry the RegExp forcing the call
   1118   // through the runtime system. Currently the direct call cannot handle a GC.
   1119   if (frame_entry<int>(re_frame, kDirectCall) == 1) {
   1120     return RETRY;
   1121   }
   1122 
   1123   // Prepare for possible GC.
   1124   HandleScope handles(isolate);
   1125   Handle<Code> code_handle(re_code);
   1126 
   1127   Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
   1128   // Current string.
   1129   bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
   1130 
   1131   DCHECK(re_code->instruction_start() <= *return_address);
   1132   DCHECK(*return_address <=
   1133       re_code->instruction_start() + re_code->instruction_size());
   1134 
   1135   Object* result = isolate->stack_guard()->HandleInterrupts();
   1136 
   1137   if (*code_handle != re_code) {  // Return address no longer valid.
   1138     int delta = code_handle->address() - re_code->address();
   1139     // Overwrite the return address on the stack.
   1140     *return_address += delta;
   1141   }
   1142 
   1143   if (result->IsException()) {
   1144     return EXCEPTION;
   1145   }
   1146 
   1147   Handle<String> subject_tmp = subject;
   1148   int slice_offset = 0;
   1149 
   1150   // Extract the underlying string and the slice offset.
   1151   if (StringShape(*subject_tmp).IsCons()) {
   1152     subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
   1153   } else if (StringShape(*subject_tmp).IsSliced()) {
   1154     SlicedString* slice = SlicedString::cast(*subject_tmp);
   1155     subject_tmp = Handle<String>(slice->parent());
   1156     slice_offset = slice->offset();
   1157   }
   1158 
   1159   // String might have changed.
   1160   if (subject_tmp->IsOneByteRepresentation() != is_one_byte) {
   1161     // If we changed between an Latin1 and an UC16 string, the specialized
   1162     // code cannot be used, and we need to restart regexp matching from
   1163     // scratch (including, potentially, compiling a new version of the code).
   1164     return RETRY;
   1165   }
   1166 
   1167   // Otherwise, the content of the string might have moved. It must still
   1168   // be a sequential or external string with the same content.
   1169   // Update the start and end pointers in the stack frame to the current
   1170   // location (whether it has actually moved or not).
   1171   DCHECK(StringShape(*subject_tmp).IsSequential() ||
   1172       StringShape(*subject_tmp).IsExternal());
   1173 
   1174   // The original start address of the characters to match.
   1175   const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
   1176 
   1177   // Find the current start address of the same character at the current string
   1178   // position.
   1179   int start_index = frame_entry<int>(re_frame, kStartIndex);
   1180   const byte* new_address = StringCharacterPosition(*subject_tmp,
   1181                                                     start_index + slice_offset);
   1182 
   1183   if (start_address != new_address) {
   1184     // If there is a difference, update the object pointer and start and end
   1185     // addresses in the RegExp stack frame to match the new value.
   1186     const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
   1187     int byte_length = static_cast<int>(end_address - start_address);
   1188     frame_entry<const String*>(re_frame, kInputString) = *subject;
   1189     frame_entry<const byte*>(re_frame, kInputStart) = new_address;
   1190     frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
   1191   } else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
   1192     // Subject string might have been a ConsString that underwent
   1193     // short-circuiting during GC. That will not change start_address but
   1194     // will change pointer inside the subject handle.
   1195     frame_entry<const String*>(re_frame, kInputString) = *subject;
   1196   }
   1197 
   1198   return 0;
   1199 }
   1200 
   1201 
   1202 MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) {
   1203   DCHECK(register_index < (1<<30));
   1204   if (num_registers_ <= register_index) {
   1205     num_registers_ = register_index + 1;
   1206   }
   1207   return MemOperand(frame_pointer(),
   1208                     kRegisterZero - register_index * kPointerSize);
   1209 }
   1210 
   1211 
   1212 void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset,
   1213                                              Label* on_outside_input) {
   1214   BranchOrBacktrack(on_outside_input,
   1215                     ge,
   1216                     current_input_offset(),
   1217                     Operand(-cp_offset * char_size()));
   1218 }
   1219 
   1220 
   1221 void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to,
   1222                                                  Condition condition,
   1223                                                  Register rs,
   1224                                                  const Operand& rt) {
   1225   if (condition == al) {  // Unconditional.
   1226     if (to == NULL) {
   1227       Backtrack();
   1228       return;
   1229     }
   1230     __ jmp(to);
   1231     return;
   1232   }
   1233   if (to == NULL) {
   1234     __ Branch(&backtrack_label_, condition, rs, rt);
   1235     return;
   1236   }
   1237   __ Branch(to, condition, rs, rt);
   1238 }
   1239 
   1240 
   1241 void RegExpMacroAssemblerMIPS::SafeCall(Label* to,
   1242                                         Condition cond,
   1243                                         Register rs,
   1244                                         const Operand& rt) {
   1245   __ BranchAndLink(to, cond, rs, rt);
   1246 }
   1247 
   1248 
   1249 void RegExpMacroAssemblerMIPS::SafeReturn() {
   1250   __ pop(ra);
   1251   __ Addu(t5, ra, Operand(masm_->CodeObject()));
   1252   __ Jump(t5);
   1253 }
   1254 
   1255 
   1256 void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) {
   1257   __ bind(name);
   1258   __ Subu(ra, ra, Operand(masm_->CodeObject()));
   1259   __ push(ra);
   1260 }
   1261 
   1262 
   1263 void RegExpMacroAssemblerMIPS::Push(Register source) {
   1264   DCHECK(!source.is(backtrack_stackpointer()));
   1265   __ Addu(backtrack_stackpointer(),
   1266           backtrack_stackpointer(),
   1267           Operand(-kPointerSize));
   1268   __ sw(source, MemOperand(backtrack_stackpointer()));
   1269 }
   1270 
   1271 
   1272 void RegExpMacroAssemblerMIPS::Pop(Register target) {
   1273   DCHECK(!target.is(backtrack_stackpointer()));
   1274   __ lw(target, MemOperand(backtrack_stackpointer()));
   1275   __ Addu(backtrack_stackpointer(), backtrack_stackpointer(), kPointerSize);
   1276 }
   1277 
   1278 
   1279 void RegExpMacroAssemblerMIPS::CheckPreemption() {
   1280   // Check for preemption.
   1281   ExternalReference stack_limit =
   1282       ExternalReference::address_of_stack_limit(masm_->isolate());
   1283   __ li(a0, Operand(stack_limit));
   1284   __ lw(a0, MemOperand(a0));
   1285   SafeCall(&check_preempt_label_, ls, sp, Operand(a0));
   1286 }
   1287 
   1288 
   1289 void RegExpMacroAssemblerMIPS::CheckStackLimit() {
   1290   ExternalReference stack_limit =
   1291       ExternalReference::address_of_regexp_stack_limit(masm_->isolate());
   1292 
   1293   __ li(a0, Operand(stack_limit));
   1294   __ lw(a0, MemOperand(a0));
   1295   SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0));
   1296 }
   1297 
   1298 
   1299 void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset,
   1300                                                              int characters) {
   1301   Register offset = current_input_offset();
   1302   if (cp_offset != 0) {
   1303     // t7 is not being used to store the capture start index at this point.
   1304     __ Addu(t7, current_input_offset(), Operand(cp_offset * char_size()));
   1305     offset = t7;
   1306   }
   1307   // We assume that we cannot do unaligned loads on MIPS, so this function
   1308   // must only be used to load a single character at a time.
   1309   DCHECK(characters == 1);
   1310   __ Addu(t5, end_of_input_address(), Operand(offset));
   1311   if (mode_ == LATIN1) {
   1312     __ lbu(current_character(), MemOperand(t5, 0));
   1313   } else {
   1314     DCHECK(mode_ == UC16);
   1315     __ lhu(current_character(), MemOperand(t5, 0));
   1316   }
   1317 }
   1318 
   1319 
   1320 #undef __
   1321 
   1322 #endif  // V8_INTERPRETED_REGEXP
   1323 
   1324 }}  // namespace v8::internal
   1325 
   1326 #endif  // V8_TARGET_ARCH_MIPS
   1327