Home | History | Annotate | Download | only in ast
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/ast/scopes.h"
      6 
      7 #include "src/accessors.h"
      8 #include "src/ast/scopeinfo.h"
      9 #include "src/bootstrapper.h"
     10 #include "src/messages.h"
     11 #include "src/parsing/parser.h"  // for ParseInfo
     12 
     13 namespace v8 {
     14 namespace internal {
     15 
     16 // ----------------------------------------------------------------------------
     17 // Implementation of LocalsMap
     18 //
     19 // Note: We are storing the handle locations as key values in the hash map.
     20 //       When inserting a new variable via Declare(), we rely on the fact that
     21 //       the handle location remains alive for the duration of that variable
     22 //       use. Because a Variable holding a handle with the same location exists
     23 //       this is ensured.
     24 
     25 VariableMap::VariableMap(Zone* zone)
     26     : ZoneHashMap(ZoneHashMap::PointersMatch, 8, ZoneAllocationPolicy(zone)),
     27       zone_(zone) {}
     28 VariableMap::~VariableMap() {}
     29 
     30 
     31 Variable* VariableMap::Declare(Scope* scope, const AstRawString* name,
     32                                VariableMode mode, Variable::Kind kind,
     33                                InitializationFlag initialization_flag,
     34                                MaybeAssignedFlag maybe_assigned_flag,
     35                                int declaration_group_start) {
     36   // AstRawStrings are unambiguous, i.e., the same string is always represented
     37   // by the same AstRawString*.
     38   // FIXME(marja): fix the type of Lookup.
     39   Entry* p =
     40       ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->hash(),
     41                                   ZoneAllocationPolicy(zone()));
     42   if (p->value == NULL) {
     43     // The variable has not been declared yet -> insert it.
     44     DCHECK(p->key == name);
     45     if (kind == Variable::CLASS) {
     46       p->value = new (zone())
     47           ClassVariable(scope, name, mode, initialization_flag,
     48                         maybe_assigned_flag, declaration_group_start);
     49     } else {
     50       p->value = new (zone()) Variable(
     51           scope, name, mode, kind, initialization_flag, maybe_assigned_flag);
     52     }
     53   }
     54   return reinterpret_cast<Variable*>(p->value);
     55 }
     56 
     57 
     58 Variable* VariableMap::Lookup(const AstRawString* name) {
     59   Entry* p = ZoneHashMap::Lookup(const_cast<AstRawString*>(name), name->hash());
     60   if (p != NULL) {
     61     DCHECK(reinterpret_cast<const AstRawString*>(p->key) == name);
     62     DCHECK(p->value != NULL);
     63     return reinterpret_cast<Variable*>(p->value);
     64   }
     65   return NULL;
     66 }
     67 
     68 
     69 SloppyBlockFunctionMap::SloppyBlockFunctionMap(Zone* zone)
     70     : ZoneHashMap(ZoneHashMap::PointersMatch, 8, ZoneAllocationPolicy(zone)),
     71       zone_(zone) {}
     72 SloppyBlockFunctionMap::~SloppyBlockFunctionMap() {}
     73 
     74 
     75 void SloppyBlockFunctionMap::Declare(const AstRawString* name,
     76                                      SloppyBlockFunctionStatement* stmt) {
     77   // AstRawStrings are unambiguous, i.e., the same string is always represented
     78   // by the same AstRawString*.
     79   Entry* p =
     80       ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->hash(),
     81                                   ZoneAllocationPolicy(zone_));
     82   if (p->value == nullptr) {
     83     p->value = new (zone_->New(sizeof(Vector))) Vector(zone_);
     84   }
     85   Vector* delegates = static_cast<Vector*>(p->value);
     86   delegates->push_back(stmt);
     87 }
     88 
     89 
     90 // ----------------------------------------------------------------------------
     91 // Implementation of Scope
     92 
     93 Scope::Scope(Zone* zone, Scope* outer_scope, ScopeType scope_type,
     94              AstValueFactory* ast_value_factory, FunctionKind function_kind)
     95     : inner_scopes_(4, zone),
     96       variables_(zone),
     97       temps_(4, zone),
     98       params_(4, zone),
     99       unresolved_(16, zone),
    100       decls_(4, zone),
    101       module_descriptor_(
    102           scope_type == MODULE_SCOPE ? ModuleDescriptor::New(zone) : NULL),
    103       sloppy_block_function_map_(zone),
    104       already_resolved_(false),
    105       ast_value_factory_(ast_value_factory),
    106       zone_(zone),
    107       class_declaration_group_start_(-1) {
    108   SetDefaults(scope_type, outer_scope, Handle<ScopeInfo>::null(),
    109               function_kind);
    110   // The outermost scope must be a script scope.
    111   DCHECK(scope_type == SCRIPT_SCOPE || outer_scope != NULL);
    112   DCHECK(!HasIllegalRedeclaration());
    113 }
    114 
    115 
    116 Scope::Scope(Zone* zone, Scope* inner_scope, ScopeType scope_type,
    117              Handle<ScopeInfo> scope_info, AstValueFactory* value_factory)
    118     : inner_scopes_(4, zone),
    119       variables_(zone),
    120       temps_(4, zone),
    121       params_(4, zone),
    122       unresolved_(16, zone),
    123       decls_(4, zone),
    124       module_descriptor_(NULL),
    125       sloppy_block_function_map_(zone),
    126       already_resolved_(true),
    127       ast_value_factory_(value_factory),
    128       zone_(zone),
    129       class_declaration_group_start_(-1) {
    130   SetDefaults(scope_type, NULL, scope_info);
    131   if (!scope_info.is_null()) {
    132     num_heap_slots_ = scope_info_->ContextLength();
    133   }
    134   // Ensure at least MIN_CONTEXT_SLOTS to indicate a materialized context.
    135   num_heap_slots_ = Max(num_heap_slots_,
    136                         static_cast<int>(Context::MIN_CONTEXT_SLOTS));
    137   AddInnerScope(inner_scope);
    138 }
    139 
    140 
    141 Scope::Scope(Zone* zone, Scope* inner_scope,
    142              const AstRawString* catch_variable_name,
    143              AstValueFactory* value_factory)
    144     : inner_scopes_(1, zone),
    145       variables_(zone),
    146       temps_(0, zone),
    147       params_(0, zone),
    148       unresolved_(0, zone),
    149       decls_(0, zone),
    150       module_descriptor_(NULL),
    151       sloppy_block_function_map_(zone),
    152       already_resolved_(true),
    153       ast_value_factory_(value_factory),
    154       zone_(zone),
    155       class_declaration_group_start_(-1) {
    156   SetDefaults(CATCH_SCOPE, NULL, Handle<ScopeInfo>::null());
    157   AddInnerScope(inner_scope);
    158   ++num_var_or_const_;
    159   num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
    160   Variable* variable = variables_.Declare(this,
    161                                           catch_variable_name,
    162                                           VAR,
    163                                           Variable::NORMAL,
    164                                           kCreatedInitialized);
    165   AllocateHeapSlot(variable);
    166 }
    167 
    168 
    169 void Scope::SetDefaults(ScopeType scope_type, Scope* outer_scope,
    170                         Handle<ScopeInfo> scope_info,
    171                         FunctionKind function_kind) {
    172   outer_scope_ = outer_scope;
    173   scope_type_ = scope_type;
    174   is_declaration_scope_ =
    175       is_eval_scope() || is_function_scope() ||
    176       is_module_scope() || is_script_scope();
    177   function_kind_ = function_kind;
    178   scope_name_ = ast_value_factory_->empty_string();
    179   dynamics_ = nullptr;
    180   receiver_ = nullptr;
    181   new_target_ = nullptr;
    182   function_ = nullptr;
    183   arguments_ = nullptr;
    184   this_function_ = nullptr;
    185   illegal_redecl_ = nullptr;
    186   scope_inside_with_ = false;
    187   scope_contains_with_ = false;
    188   scope_calls_eval_ = false;
    189   scope_uses_arguments_ = false;
    190   scope_uses_super_property_ = false;
    191   asm_module_ = false;
    192   asm_function_ = outer_scope != NULL && outer_scope->asm_module_;
    193   // Inherit the language mode from the parent scope.
    194   language_mode_ = outer_scope != NULL ? outer_scope->language_mode_ : SLOPPY;
    195   outer_scope_calls_sloppy_eval_ = false;
    196   inner_scope_calls_eval_ = false;
    197   scope_nonlinear_ = false;
    198   force_eager_compilation_ = false;
    199   force_context_allocation_ = (outer_scope != NULL && !is_function_scope())
    200       ? outer_scope->has_forced_context_allocation() : false;
    201   num_var_or_const_ = 0;
    202   num_stack_slots_ = 0;
    203   num_heap_slots_ = 0;
    204   num_global_slots_ = 0;
    205   arity_ = 0;
    206   has_simple_parameters_ = true;
    207   rest_parameter_ = NULL;
    208   rest_index_ = -1;
    209   scope_info_ = scope_info;
    210   start_position_ = RelocInfo::kNoPosition;
    211   end_position_ = RelocInfo::kNoPosition;
    212   if (!scope_info.is_null()) {
    213     scope_calls_eval_ = scope_info->CallsEval();
    214     language_mode_ = scope_info->language_mode();
    215     is_declaration_scope_ = scope_info->is_declaration_scope();
    216     function_kind_ = scope_info->function_kind();
    217   }
    218 }
    219 
    220 
    221 Scope* Scope::DeserializeScopeChain(Isolate* isolate, Zone* zone,
    222                                     Context* context, Scope* script_scope) {
    223   // Reconstruct the outer scope chain from a closure's context chain.
    224   Scope* current_scope = NULL;
    225   Scope* innermost_scope = NULL;
    226   bool contains_with = false;
    227   while (!context->IsNativeContext()) {
    228     if (context->IsWithContext()) {
    229       Scope* with_scope = new (zone)
    230           Scope(zone, current_scope, WITH_SCOPE, Handle<ScopeInfo>::null(),
    231                 script_scope->ast_value_factory_);
    232       current_scope = with_scope;
    233       // All the inner scopes are inside a with.
    234       contains_with = true;
    235       for (Scope* s = innermost_scope; s != NULL; s = s->outer_scope()) {
    236         s->scope_inside_with_ = true;
    237       }
    238     } else if (context->IsScriptContext()) {
    239       ScopeInfo* scope_info = context->scope_info();
    240       current_scope = new (zone) Scope(zone, current_scope, SCRIPT_SCOPE,
    241                                        Handle<ScopeInfo>(scope_info),
    242                                        script_scope->ast_value_factory_);
    243     } else if (context->IsModuleContext()) {
    244       ScopeInfo* scope_info = context->module()->scope_info();
    245       current_scope = new (zone) Scope(zone, current_scope, MODULE_SCOPE,
    246                                        Handle<ScopeInfo>(scope_info),
    247                                        script_scope->ast_value_factory_);
    248     } else if (context->IsFunctionContext()) {
    249       ScopeInfo* scope_info = context->closure()->shared()->scope_info();
    250       current_scope = new (zone) Scope(zone, current_scope, FUNCTION_SCOPE,
    251                                        Handle<ScopeInfo>(scope_info),
    252                                        script_scope->ast_value_factory_);
    253       if (scope_info->IsAsmFunction()) current_scope->asm_function_ = true;
    254       if (scope_info->IsAsmModule()) current_scope->asm_module_ = true;
    255     } else if (context->IsBlockContext()) {
    256       ScopeInfo* scope_info = context->scope_info();
    257       current_scope = new (zone)
    258           Scope(zone, current_scope, BLOCK_SCOPE, Handle<ScopeInfo>(scope_info),
    259                 script_scope->ast_value_factory_);
    260     } else {
    261       DCHECK(context->IsCatchContext());
    262       String* name = context->catch_name();
    263       current_scope = new (zone) Scope(
    264           zone, current_scope,
    265           script_scope->ast_value_factory_->GetString(Handle<String>(name)),
    266           script_scope->ast_value_factory_);
    267     }
    268     if (contains_with) current_scope->RecordWithStatement();
    269     if (innermost_scope == NULL) innermost_scope = current_scope;
    270 
    271     // Forget about a with when we move to a context for a different function.
    272     if (context->previous()->closure() != context->closure()) {
    273       contains_with = false;
    274     }
    275     context = context->previous();
    276   }
    277 
    278   script_scope->AddInnerScope(current_scope);
    279   script_scope->PropagateScopeInfo(false);
    280   return (innermost_scope == NULL) ? script_scope : innermost_scope;
    281 }
    282 
    283 
    284 bool Scope::Analyze(ParseInfo* info) {
    285   DCHECK(info->literal() != NULL);
    286   DCHECK(info->scope() == NULL);
    287   Scope* scope = info->literal()->scope();
    288   Scope* top = scope;
    289 
    290   // Traverse the scope tree up to the first unresolved scope or the global
    291   // scope and start scope resolution and variable allocation from that scope.
    292   while (!top->is_script_scope() &&
    293          !top->outer_scope()->already_resolved()) {
    294     top = top->outer_scope();
    295   }
    296 
    297   // Allocate the variables.
    298   {
    299     AstNodeFactory ast_node_factory(info->ast_value_factory());
    300     if (!top->AllocateVariables(info, &ast_node_factory)) {
    301       DCHECK(top->pending_error_handler_.has_pending_error());
    302       top->pending_error_handler_.ThrowPendingError(info->isolate(),
    303                                                     info->script());
    304       return false;
    305     }
    306   }
    307 
    308 #ifdef DEBUG
    309   if (info->script_is_native() ? FLAG_print_builtin_scopes
    310                                : FLAG_print_scopes) {
    311     scope->Print();
    312   }
    313 #endif
    314 
    315   info->set_scope(scope);
    316   return true;
    317 }
    318 
    319 
    320 void Scope::Initialize() {
    321   DCHECK(!already_resolved());
    322 
    323   // Add this scope as a new inner scope of the outer scope.
    324   if (outer_scope_ != NULL) {
    325     outer_scope_->inner_scopes_.Add(this, zone());
    326     scope_inside_with_ = outer_scope_->scope_inside_with_ || is_with_scope();
    327   } else {
    328     scope_inside_with_ = is_with_scope();
    329   }
    330 
    331   // Declare convenience variables and the receiver.
    332   if (is_declaration_scope() && has_this_declaration()) {
    333     bool subclass_constructor = IsSubclassConstructor(function_kind_);
    334     Variable* var = variables_.Declare(
    335         this, ast_value_factory_->this_string(),
    336         subclass_constructor ? CONST : VAR, Variable::THIS,
    337         subclass_constructor ? kNeedsInitialization : kCreatedInitialized);
    338     receiver_ = var;
    339   }
    340 
    341   if (is_function_scope() && !is_arrow_scope()) {
    342     // Declare 'arguments' variable which exists in all non arrow functions.
    343     // Note that it might never be accessed, in which case it won't be
    344     // allocated during variable allocation.
    345     variables_.Declare(this, ast_value_factory_->arguments_string(), VAR,
    346                        Variable::ARGUMENTS, kCreatedInitialized);
    347 
    348     variables_.Declare(this, ast_value_factory_->new_target_string(), CONST,
    349                        Variable::NORMAL, kCreatedInitialized);
    350 
    351     if (IsConciseMethod(function_kind_) || IsClassConstructor(function_kind_) ||
    352         IsAccessorFunction(function_kind_)) {
    353       variables_.Declare(this, ast_value_factory_->this_function_string(),
    354                          CONST, Variable::NORMAL, kCreatedInitialized);
    355     }
    356   }
    357 }
    358 
    359 
    360 Scope* Scope::FinalizeBlockScope() {
    361   DCHECK(is_block_scope());
    362   DCHECK(temps_.is_empty());
    363   DCHECK(params_.is_empty());
    364 
    365   if (num_var_or_const() > 0 ||
    366       (is_declaration_scope() && calls_sloppy_eval())) {
    367     return this;
    368   }
    369 
    370   // Remove this scope from outer scope.
    371   outer_scope()->RemoveInnerScope(this);
    372 
    373   // Reparent inner scopes.
    374   for (int i = 0; i < inner_scopes_.length(); i++) {
    375     outer_scope()->AddInnerScope(inner_scopes_[i]);
    376   }
    377 
    378   // Move unresolved variables
    379   for (int i = 0; i < unresolved_.length(); i++) {
    380     outer_scope()->unresolved_.Add(unresolved_[i], zone());
    381   }
    382 
    383   PropagateUsageFlagsToScope(outer_scope_);
    384 
    385   return NULL;
    386 }
    387 
    388 
    389 void Scope::ReplaceOuterScope(Scope* outer) {
    390   DCHECK_NOT_NULL(outer);
    391   DCHECK_NOT_NULL(outer_scope_);
    392   DCHECK(!already_resolved());
    393   DCHECK(!outer->already_resolved());
    394   DCHECK(!outer_scope_->already_resolved());
    395   outer_scope_->RemoveInnerScope(this);
    396   outer->AddInnerScope(this);
    397   outer_scope_ = outer;
    398 }
    399 
    400 
    401 void Scope::PropagateUsageFlagsToScope(Scope* other) {
    402   DCHECK_NOT_NULL(other);
    403   DCHECK(!already_resolved());
    404   DCHECK(!other->already_resolved());
    405   if (uses_arguments()) other->RecordArgumentsUsage();
    406   if (uses_super_property()) other->RecordSuperPropertyUsage();
    407   if (calls_eval()) other->RecordEvalCall();
    408   if (scope_contains_with_) other->RecordWithStatement();
    409 }
    410 
    411 
    412 Variable* Scope::LookupLocal(const AstRawString* name) {
    413   Variable* result = variables_.Lookup(name);
    414   if (result != NULL || scope_info_.is_null()) {
    415     return result;
    416   }
    417   Handle<String> name_handle = name->string();
    418   // The Scope is backed up by ScopeInfo. This means it cannot operate in a
    419   // heap-independent mode, and all strings must be internalized immediately. So
    420   // it's ok to get the Handle<String> here.
    421   // If we have a serialized scope info, we might find the variable there.
    422   // There should be no local slot with the given name.
    423   DCHECK(scope_info_->StackSlotIndex(*name_handle) < 0 || is_block_scope());
    424 
    425   // Check context slot lookup.
    426   VariableMode mode;
    427   VariableLocation location = VariableLocation::CONTEXT;
    428   InitializationFlag init_flag;
    429   MaybeAssignedFlag maybe_assigned_flag;
    430   int index = ScopeInfo::ContextSlotIndex(scope_info_, name_handle, &mode,
    431                                           &init_flag, &maybe_assigned_flag);
    432   if (index < 0) {
    433     location = VariableLocation::GLOBAL;
    434     index = ScopeInfo::ContextGlobalSlotIndex(scope_info_, name_handle, &mode,
    435                                               &init_flag, &maybe_assigned_flag);
    436   }
    437   if (index < 0) {
    438     // Check parameters.
    439     index = scope_info_->ParameterIndex(*name_handle);
    440     if (index < 0) return NULL;
    441 
    442     mode = DYNAMIC;
    443     location = VariableLocation::LOOKUP;
    444     init_flag = kCreatedInitialized;
    445     // Be conservative and flag parameters as maybe assigned. Better information
    446     // would require ScopeInfo to serialize the maybe_assigned bit also for
    447     // parameters.
    448     maybe_assigned_flag = kMaybeAssigned;
    449   } else {
    450     DCHECK(location != VariableLocation::GLOBAL ||
    451            (is_script_scope() && IsDeclaredVariableMode(mode) &&
    452             !IsLexicalVariableMode(mode)));
    453   }
    454 
    455   Variable::Kind kind = Variable::NORMAL;
    456   if (location == VariableLocation::CONTEXT &&
    457       index == scope_info_->ReceiverContextSlotIndex()) {
    458     kind = Variable::THIS;
    459   }
    460   // TODO(marja, rossberg): Correctly declare FUNCTION, CLASS, NEW_TARGET, and
    461   // ARGUMENTS bindings as their corresponding Variable::Kind.
    462 
    463   Variable* var = variables_.Declare(this, name, mode, kind, init_flag,
    464                                      maybe_assigned_flag);
    465   var->AllocateTo(location, index);
    466   return var;
    467 }
    468 
    469 
    470 Variable* Scope::LookupFunctionVar(const AstRawString* name,
    471                                    AstNodeFactory* factory) {
    472   if (function_ != NULL && function_->proxy()->raw_name() == name) {
    473     return function_->proxy()->var();
    474   } else if (!scope_info_.is_null()) {
    475     // If we are backed by a scope info, try to lookup the variable there.
    476     VariableMode mode;
    477     int index = scope_info_->FunctionContextSlotIndex(*(name->string()), &mode);
    478     if (index < 0) return NULL;
    479     Variable* var = new (zone())
    480         Variable(this, name, mode, Variable::NORMAL, kCreatedInitialized);
    481     VariableProxy* proxy = factory->NewVariableProxy(var);
    482     VariableDeclaration* declaration = factory->NewVariableDeclaration(
    483         proxy, mode, this, RelocInfo::kNoPosition);
    484     DeclareFunctionVar(declaration);
    485     var->AllocateTo(VariableLocation::CONTEXT, index);
    486     return var;
    487   } else {
    488     return NULL;
    489   }
    490 }
    491 
    492 
    493 Variable* Scope::Lookup(const AstRawString* name) {
    494   for (Scope* scope = this;
    495        scope != NULL;
    496        scope = scope->outer_scope()) {
    497     Variable* var = scope->LookupLocal(name);
    498     if (var != NULL) return var;
    499   }
    500   return NULL;
    501 }
    502 
    503 
    504 Variable* Scope::DeclareParameter(
    505     const AstRawString* name, VariableMode mode,
    506     bool is_optional, bool is_rest, bool* is_duplicate) {
    507   DCHECK(!already_resolved());
    508   DCHECK(is_function_scope());
    509   DCHECK(!is_optional || !is_rest);
    510   Variable* var;
    511   if (mode == TEMPORARY) {
    512     var = NewTemporary(name);
    513   } else {
    514     var = variables_.Declare(this, name, mode, Variable::NORMAL,
    515                              kCreatedInitialized);
    516     // TODO(wingo): Avoid O(n^2) check.
    517     *is_duplicate = IsDeclaredParameter(name);
    518   }
    519   if (!is_optional && !is_rest && arity_ == params_.length()) {
    520     ++arity_;
    521   }
    522   if (is_rest) {
    523     DCHECK_NULL(rest_parameter_);
    524     rest_parameter_ = var;
    525     rest_index_ = num_parameters();
    526   }
    527   params_.Add(var, zone());
    528   return var;
    529 }
    530 
    531 
    532 Variable* Scope::DeclareLocal(const AstRawString* name, VariableMode mode,
    533                               InitializationFlag init_flag, Variable::Kind kind,
    534                               MaybeAssignedFlag maybe_assigned_flag,
    535                               int declaration_group_start) {
    536   DCHECK(!already_resolved());
    537   // This function handles VAR, LET, and CONST modes.  DYNAMIC variables are
    538   // introduces during variable allocation, and TEMPORARY variables are
    539   // allocated via NewTemporary().
    540   DCHECK(IsDeclaredVariableMode(mode));
    541   ++num_var_or_const_;
    542   return variables_.Declare(this, name, mode, kind, init_flag,
    543                             maybe_assigned_flag, declaration_group_start);
    544 }
    545 
    546 
    547 Variable* Scope::DeclareDynamicGlobal(const AstRawString* name) {
    548   DCHECK(is_script_scope());
    549   return variables_.Declare(this,
    550                             name,
    551                             DYNAMIC_GLOBAL,
    552                             Variable::NORMAL,
    553                             kCreatedInitialized);
    554 }
    555 
    556 
    557 bool Scope::RemoveUnresolved(VariableProxy* var) {
    558   // Most likely (always?) any variable we want to remove
    559   // was just added before, so we search backwards.
    560   for (int i = unresolved_.length(); i-- > 0;) {
    561     if (unresolved_[i] == var) {
    562       unresolved_.Remove(i);
    563       return true;
    564     }
    565   }
    566   return false;
    567 }
    568 
    569 
    570 Variable* Scope::NewTemporary(const AstRawString* name) {
    571   DCHECK(!already_resolved());
    572   Scope* scope = this->ClosureScope();
    573   Variable* var = new(zone()) Variable(scope,
    574                                        name,
    575                                        TEMPORARY,
    576                                        Variable::NORMAL,
    577                                        kCreatedInitialized);
    578   scope->AddTemporary(var);
    579   return var;
    580 }
    581 
    582 
    583 bool Scope::RemoveTemporary(Variable* var) {
    584   // Most likely (always?) any temporary variable we want to remove
    585   // was just added before, so we search backwards.
    586   for (int i = temps_.length(); i-- > 0;) {
    587     if (temps_[i] == var) {
    588       temps_.Remove(i);
    589       return true;
    590     }
    591   }
    592   return false;
    593 }
    594 
    595 
    596 void Scope::AddDeclaration(Declaration* declaration) {
    597   decls_.Add(declaration, zone());
    598 }
    599 
    600 
    601 void Scope::SetIllegalRedeclaration(Expression* expression) {
    602   // Record only the first illegal redeclaration.
    603   if (!HasIllegalRedeclaration()) {
    604     illegal_redecl_ = expression;
    605   }
    606   DCHECK(HasIllegalRedeclaration());
    607 }
    608 
    609 
    610 Expression* Scope::GetIllegalRedeclaration() {
    611   DCHECK(HasIllegalRedeclaration());
    612   return illegal_redecl_;
    613 }
    614 
    615 
    616 Declaration* Scope::CheckConflictingVarDeclarations() {
    617   int length = decls_.length();
    618   for (int i = 0; i < length; i++) {
    619     Declaration* decl = decls_[i];
    620     // We don't create a separate scope to hold the function name of a function
    621     // expression, so we have to make sure not to consider it when checking for
    622     // conflicts (since it's conceptually "outside" the declaration scope).
    623     if (is_function_scope() && decl == function()) continue;
    624     if (IsLexicalVariableMode(decl->mode()) && !is_block_scope()) continue;
    625     const AstRawString* name = decl->proxy()->raw_name();
    626 
    627     // Iterate through all scopes until and including the declaration scope.
    628     Scope* previous = NULL;
    629     Scope* current = decl->scope();
    630     // Lexical vs lexical conflicts within the same scope have already been
    631     // captured in Parser::Declare. The only conflicts we still need to check
    632     // are lexical vs VAR, or any declarations within a declaration block scope
    633     // vs lexical declarations in its surrounding (function) scope.
    634     if (IsLexicalVariableMode(decl->mode())) current = current->outer_scope_;
    635     do {
    636       // There is a conflict if there exists a non-VAR binding.
    637       Variable* other_var = current->variables_.Lookup(name);
    638       if (other_var != NULL && IsLexicalVariableMode(other_var->mode())) {
    639         return decl;
    640       }
    641       previous = current;
    642       current = current->outer_scope_;
    643     } while (!previous->is_declaration_scope());
    644   }
    645   return NULL;
    646 }
    647 
    648 
    649 class VarAndOrder {
    650  public:
    651   VarAndOrder(Variable* var, int order) : var_(var), order_(order) { }
    652   Variable* var() const { return var_; }
    653   int order() const { return order_; }
    654   static int Compare(const VarAndOrder* a, const VarAndOrder* b) {
    655     return a->order_ - b->order_;
    656   }
    657 
    658  private:
    659   Variable* var_;
    660   int order_;
    661 };
    662 
    663 
    664 void Scope::CollectStackAndContextLocals(
    665     ZoneList<Variable*>* stack_locals, ZoneList<Variable*>* context_locals,
    666     ZoneList<Variable*>* context_globals,
    667     ZoneList<Variable*>* strong_mode_free_variables) {
    668   DCHECK(stack_locals != NULL);
    669   DCHECK(context_locals != NULL);
    670   DCHECK(context_globals != NULL);
    671 
    672   // Collect temporaries which are always allocated on the stack, unless the
    673   // context as a whole has forced context allocation.
    674   for (int i = 0; i < temps_.length(); i++) {
    675     Variable* var = temps_[i];
    676     if (var->is_used()) {
    677       if (var->IsContextSlot()) {
    678         DCHECK(has_forced_context_allocation());
    679         context_locals->Add(var, zone());
    680       } else if (var->IsStackLocal()) {
    681         stack_locals->Add(var, zone());
    682       } else {
    683         DCHECK(var->IsParameter());
    684       }
    685     }
    686   }
    687 
    688   // Collect declared local variables.
    689   ZoneList<VarAndOrder> vars(variables_.occupancy(), zone());
    690   for (VariableMap::Entry* p = variables_.Start();
    691        p != NULL;
    692        p = variables_.Next(p)) {
    693     Variable* var = reinterpret_cast<Variable*>(p->value);
    694     if (strong_mode_free_variables && var->has_strong_mode_reference() &&
    695         var->mode() == DYNAMIC_GLOBAL) {
    696       strong_mode_free_variables->Add(var, zone());
    697     }
    698 
    699     if (var->is_used()) {
    700       vars.Add(VarAndOrder(var, p->order), zone());
    701     }
    702   }
    703   vars.Sort(VarAndOrder::Compare);
    704   int var_count = vars.length();
    705   for (int i = 0; i < var_count; i++) {
    706     Variable* var = vars[i].var();
    707     if (var->IsStackLocal()) {
    708       stack_locals->Add(var, zone());
    709     } else if (var->IsContextSlot()) {
    710       context_locals->Add(var, zone());
    711     } else if (var->IsGlobalSlot()) {
    712       context_globals->Add(var, zone());
    713     }
    714   }
    715 }
    716 
    717 
    718 bool Scope::AllocateVariables(ParseInfo* info, AstNodeFactory* factory) {
    719   // 1) Propagate scope information.
    720   bool outer_scope_calls_sloppy_eval = false;
    721   if (outer_scope_ != NULL) {
    722     outer_scope_calls_sloppy_eval =
    723         outer_scope_->outer_scope_calls_sloppy_eval() |
    724         outer_scope_->calls_sloppy_eval();
    725   }
    726   PropagateScopeInfo(outer_scope_calls_sloppy_eval);
    727 
    728   // 2) Resolve variables.
    729   if (!ResolveVariablesRecursively(info, factory)) return false;
    730 
    731   // 3) Allocate variables.
    732   AllocateVariablesRecursively(info->isolate());
    733 
    734   return true;
    735 }
    736 
    737 
    738 bool Scope::HasTrivialContext() const {
    739   // A function scope has a trivial context if it always is the global
    740   // context. We iteratively scan out the context chain to see if
    741   // there is anything that makes this scope non-trivial; otherwise we
    742   // return true.
    743   for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) {
    744     if (scope->is_eval_scope()) return false;
    745     if (scope->scope_inside_with_) return false;
    746     if (scope->ContextLocalCount() > 0) return false;
    747     if (scope->ContextGlobalCount() > 0) return false;
    748   }
    749   return true;
    750 }
    751 
    752 
    753 bool Scope::HasTrivialOuterContext() const {
    754   Scope* outer = outer_scope_;
    755   if (outer == NULL) return true;
    756   // Note that the outer context may be trivial in general, but the current
    757   // scope may be inside a 'with' statement in which case the outer context
    758   // for this scope is not trivial.
    759   return !scope_inside_with_ && outer->HasTrivialContext();
    760 }
    761 
    762 
    763 bool Scope::AllowsLazyParsing() const {
    764   // If we are inside a block scope, we must parse eagerly to find out how
    765   // to allocate variables on the block scope. At this point, declarations may
    766   // not have yet been parsed.
    767   for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) {
    768     if (scope->is_block_scope()) return false;
    769   }
    770   return AllowsLazyCompilation();
    771 }
    772 
    773 
    774 bool Scope::AllowsLazyCompilation() const { return !force_eager_compilation_; }
    775 
    776 
    777 bool Scope::AllowsLazyCompilationWithoutContext() const {
    778   return !force_eager_compilation_ && HasTrivialOuterContext();
    779 }
    780 
    781 
    782 int Scope::ContextChainLength(Scope* scope) {
    783   int n = 0;
    784   for (Scope* s = this; s != scope; s = s->outer_scope_) {
    785     DCHECK(s != NULL);  // scope must be in the scope chain
    786     if (s->NeedsContext()) n++;
    787   }
    788   return n;
    789 }
    790 
    791 
    792 int Scope::MaxNestedContextChainLength() {
    793   int max_context_chain_length = 0;
    794   for (int i = 0; i < inner_scopes_.length(); i++) {
    795     Scope* scope = inner_scopes_[i];
    796     max_context_chain_length = std::max(scope->MaxNestedContextChainLength(),
    797                                         max_context_chain_length);
    798   }
    799   if (NeedsContext()) {
    800     max_context_chain_length += 1;
    801   }
    802   return max_context_chain_length;
    803 }
    804 
    805 
    806 Scope* Scope::DeclarationScope() {
    807   Scope* scope = this;
    808   while (!scope->is_declaration_scope()) {
    809     scope = scope->outer_scope();
    810   }
    811   return scope;
    812 }
    813 
    814 
    815 Scope* Scope::ClosureScope() {
    816   Scope* scope = this;
    817   while (!scope->is_declaration_scope() || scope->is_block_scope()) {
    818     scope = scope->outer_scope();
    819   }
    820   return scope;
    821 }
    822 
    823 
    824 Scope* Scope::ReceiverScope() {
    825   Scope* scope = this;
    826   while (!scope->is_script_scope() &&
    827          (!scope->is_function_scope() || scope->is_arrow_scope())) {
    828     scope = scope->outer_scope();
    829   }
    830   return scope;
    831 }
    832 
    833 
    834 
    835 Handle<ScopeInfo> Scope::GetScopeInfo(Isolate* isolate) {
    836   if (scope_info_.is_null()) {
    837     scope_info_ = ScopeInfo::Create(isolate, zone(), this);
    838   }
    839   return scope_info_;
    840 }
    841 
    842 
    843 void Scope::GetNestedScopeChain(Isolate* isolate,
    844                                 List<Handle<ScopeInfo> >* chain, int position) {
    845   if (!is_eval_scope()) chain->Add(Handle<ScopeInfo>(GetScopeInfo(isolate)));
    846 
    847   for (int i = 0; i < inner_scopes_.length(); i++) {
    848     Scope* scope = inner_scopes_[i];
    849     int beg_pos = scope->start_position();
    850     int end_pos = scope->end_position();
    851     DCHECK(beg_pos >= 0 && end_pos >= 0);
    852     if (beg_pos <= position && position < end_pos) {
    853       scope->GetNestedScopeChain(isolate, chain, position);
    854       return;
    855     }
    856   }
    857 }
    858 
    859 
    860 void Scope::CollectNonLocals(HashMap* non_locals) {
    861   // Collect non-local variables referenced in the scope.
    862   // TODO(yangguo): store non-local variables explicitly if we can no longer
    863   //                rely on unresolved_ to find them.
    864   for (int i = 0; i < unresolved_.length(); i++) {
    865     VariableProxy* proxy = unresolved_[i];
    866     if (proxy->is_resolved() && proxy->var()->IsStackAllocated()) continue;
    867     Handle<String> name = proxy->name();
    868     void* key = reinterpret_cast<void*>(name.location());
    869     HashMap::Entry* entry = non_locals->LookupOrInsert(key, name->Hash());
    870     entry->value = key;
    871   }
    872   for (int i = 0; i < inner_scopes_.length(); i++) {
    873     inner_scopes_[i]->CollectNonLocals(non_locals);
    874   }
    875 }
    876 
    877 
    878 void Scope::ReportMessage(int start_position, int end_position,
    879                           MessageTemplate::Template message,
    880                           const AstRawString* arg) {
    881   // Propagate the error to the topmost scope targeted by this scope analysis
    882   // phase.
    883   Scope* top = this;
    884   while (!top->is_script_scope() && !top->outer_scope()->already_resolved()) {
    885     top = top->outer_scope();
    886   }
    887 
    888   top->pending_error_handler_.ReportMessageAt(start_position, end_position,
    889                                               message, arg, kReferenceError);
    890 }
    891 
    892 
    893 #ifdef DEBUG
    894 static const char* Header(ScopeType scope_type, FunctionKind function_kind,
    895                           bool is_declaration_scope) {
    896   switch (scope_type) {
    897     case EVAL_SCOPE: return "eval";
    898     // TODO(adamk): Should we print concise method scopes specially?
    899     case FUNCTION_SCOPE:
    900       return IsArrowFunction(function_kind) ? "arrow" : "function";
    901     case MODULE_SCOPE: return "module";
    902     case SCRIPT_SCOPE: return "global";
    903     case CATCH_SCOPE: return "catch";
    904     case BLOCK_SCOPE: return is_declaration_scope ? "varblock" : "block";
    905     case WITH_SCOPE: return "with";
    906   }
    907   UNREACHABLE();
    908   return NULL;
    909 }
    910 
    911 
    912 static void Indent(int n, const char* str) {
    913   PrintF("%*s%s", n, "", str);
    914 }
    915 
    916 
    917 static void PrintName(const AstRawString* name) {
    918   PrintF("%.*s", name->length(), name->raw_data());
    919 }
    920 
    921 
    922 static void PrintLocation(Variable* var) {
    923   switch (var->location()) {
    924     case VariableLocation::UNALLOCATED:
    925       break;
    926     case VariableLocation::PARAMETER:
    927       PrintF("parameter[%d]", var->index());
    928       break;
    929     case VariableLocation::LOCAL:
    930       PrintF("local[%d]", var->index());
    931       break;
    932     case VariableLocation::CONTEXT:
    933       PrintF("context[%d]", var->index());
    934       break;
    935     case VariableLocation::GLOBAL:
    936       PrintF("global[%d]", var->index());
    937       break;
    938     case VariableLocation::LOOKUP:
    939       PrintF("lookup");
    940       break;
    941   }
    942 }
    943 
    944 
    945 static void PrintVar(int indent, Variable* var) {
    946   if (var->is_used() || !var->IsUnallocated()) {
    947     Indent(indent, Variable::Mode2String(var->mode()));
    948     PrintF(" ");
    949     if (var->raw_name()->IsEmpty())
    950       PrintF(".%p", reinterpret_cast<void*>(var));
    951     else
    952       PrintName(var->raw_name());
    953     PrintF(";  // ");
    954     PrintLocation(var);
    955     bool comma = !var->IsUnallocated();
    956     if (var->has_forced_context_allocation()) {
    957       if (comma) PrintF(", ");
    958       PrintF("forced context allocation");
    959       comma = true;
    960     }
    961     if (var->maybe_assigned() == kMaybeAssigned) {
    962       if (comma) PrintF(", ");
    963       PrintF("maybe assigned");
    964     }
    965     PrintF("\n");
    966   }
    967 }
    968 
    969 
    970 static void PrintMap(int indent, VariableMap* map) {
    971   for (VariableMap::Entry* p = map->Start(); p != NULL; p = map->Next(p)) {
    972     Variable* var = reinterpret_cast<Variable*>(p->value);
    973     if (var == NULL) {
    974       Indent(indent, "<?>\n");
    975     } else {
    976       PrintVar(indent, var);
    977     }
    978   }
    979 }
    980 
    981 
    982 void Scope::Print(int n) {
    983   int n0 = (n > 0 ? n : 0);
    984   int n1 = n0 + 2;  // indentation
    985 
    986   // Print header.
    987   Indent(n0, Header(scope_type_, function_kind_, is_declaration_scope()));
    988   if (scope_name_ != nullptr && !scope_name_->IsEmpty()) {
    989     PrintF(" ");
    990     PrintName(scope_name_);
    991   }
    992 
    993   // Print parameters, if any.
    994   if (is_function_scope()) {
    995     PrintF(" (");
    996     for (int i = 0; i < params_.length(); i++) {
    997       if (i > 0) PrintF(", ");
    998       const AstRawString* name = params_[i]->raw_name();
    999       if (name->IsEmpty())
   1000         PrintF(".%p", reinterpret_cast<void*>(params_[i]));
   1001       else
   1002         PrintName(name);
   1003     }
   1004     PrintF(")");
   1005   }
   1006 
   1007   PrintF(" { // (%d, %d)\n", start_position(), end_position());
   1008 
   1009   // Function name, if any (named function literals, only).
   1010   if (function_ != NULL) {
   1011     Indent(n1, "// (local) function name: ");
   1012     PrintName(function_->proxy()->raw_name());
   1013     PrintF("\n");
   1014   }
   1015 
   1016   // Scope info.
   1017   if (HasTrivialOuterContext()) {
   1018     Indent(n1, "// scope has trivial outer context\n");
   1019   }
   1020   if (is_strong(language_mode())) {
   1021     Indent(n1, "// strong mode scope\n");
   1022   } else if (is_strict(language_mode())) {
   1023     Indent(n1, "// strict mode scope\n");
   1024   }
   1025   if (scope_inside_with_) Indent(n1, "// scope inside 'with'\n");
   1026   if (scope_contains_with_) Indent(n1, "// scope contains 'with'\n");
   1027   if (scope_calls_eval_) Indent(n1, "// scope calls 'eval'\n");
   1028   if (scope_uses_arguments_) Indent(n1, "// scope uses 'arguments'\n");
   1029   if (scope_uses_super_property_)
   1030     Indent(n1, "// scope uses 'super' property\n");
   1031   if (outer_scope_calls_sloppy_eval_) {
   1032     Indent(n1, "// outer scope calls 'eval' in sloppy context\n");
   1033   }
   1034   if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n");
   1035   if (num_stack_slots_ > 0) {
   1036     Indent(n1, "// ");
   1037     PrintF("%d stack slots\n", num_stack_slots_);
   1038   }
   1039   if (num_heap_slots_ > 0) {
   1040     Indent(n1, "// ");
   1041     PrintF("%d heap slots (including %d global slots)\n", num_heap_slots_,
   1042            num_global_slots_);
   1043   }
   1044 
   1045   // Print locals.
   1046   if (function_ != NULL) {
   1047     Indent(n1, "// function var:\n");
   1048     PrintVar(n1, function_->proxy()->var());
   1049   }
   1050 
   1051   if (temps_.length() > 0) {
   1052     Indent(n1, "// temporary vars:\n");
   1053     for (int i = 0; i < temps_.length(); i++) {
   1054       PrintVar(n1, temps_[i]);
   1055     }
   1056   }
   1057 
   1058   if (variables_.Start() != NULL) {
   1059     Indent(n1, "// local vars:\n");
   1060     PrintMap(n1, &variables_);
   1061   }
   1062 
   1063   if (dynamics_ != NULL) {
   1064     Indent(n1, "// dynamic vars:\n");
   1065     PrintMap(n1, dynamics_->GetMap(DYNAMIC));
   1066     PrintMap(n1, dynamics_->GetMap(DYNAMIC_LOCAL));
   1067     PrintMap(n1, dynamics_->GetMap(DYNAMIC_GLOBAL));
   1068   }
   1069 
   1070   // Print inner scopes (disable by providing negative n).
   1071   if (n >= 0) {
   1072     for (int i = 0; i < inner_scopes_.length(); i++) {
   1073       PrintF("\n");
   1074       inner_scopes_[i]->Print(n1);
   1075     }
   1076   }
   1077 
   1078   Indent(n0, "}\n");
   1079 }
   1080 #endif  // DEBUG
   1081 
   1082 
   1083 Variable* Scope::NonLocal(const AstRawString* name, VariableMode mode) {
   1084   if (dynamics_ == NULL) dynamics_ = new (zone()) DynamicScopePart(zone());
   1085   VariableMap* map = dynamics_->GetMap(mode);
   1086   Variable* var = map->Lookup(name);
   1087   if (var == NULL) {
   1088     // Declare a new non-local.
   1089     InitializationFlag init_flag = (mode == VAR)
   1090         ? kCreatedInitialized : kNeedsInitialization;
   1091     var = map->Declare(NULL,
   1092                        name,
   1093                        mode,
   1094                        Variable::NORMAL,
   1095                        init_flag);
   1096     // Allocate it by giving it a dynamic lookup.
   1097     var->AllocateTo(VariableLocation::LOOKUP, -1);
   1098   }
   1099   return var;
   1100 }
   1101 
   1102 
   1103 Variable* Scope::LookupRecursive(VariableProxy* proxy,
   1104                                  BindingKind* binding_kind,
   1105                                  AstNodeFactory* factory) {
   1106   DCHECK(binding_kind != NULL);
   1107   if (already_resolved() && is_with_scope()) {
   1108     // Short-cut: if the scope is deserialized from a scope info, variable
   1109     // allocation is already fixed.  We can simply return with dynamic lookup.
   1110     *binding_kind = DYNAMIC_LOOKUP;
   1111     return NULL;
   1112   }
   1113 
   1114   // Try to find the variable in this scope.
   1115   Variable* var = LookupLocal(proxy->raw_name());
   1116 
   1117   // We found a variable and we are done. (Even if there is an 'eval' in
   1118   // this scope which introduces the same variable again, the resulting
   1119   // variable remains the same.)
   1120   if (var != NULL) {
   1121     *binding_kind = BOUND;
   1122     return var;
   1123   }
   1124 
   1125   // We did not find a variable locally. Check against the function variable,
   1126   // if any. We can do this for all scopes, since the function variable is
   1127   // only present - if at all - for function scopes.
   1128   *binding_kind = UNBOUND;
   1129   var = LookupFunctionVar(proxy->raw_name(), factory);
   1130   if (var != NULL) {
   1131     *binding_kind = BOUND;
   1132   } else if (outer_scope_ != NULL) {
   1133     var = outer_scope_->LookupRecursive(proxy, binding_kind, factory);
   1134     if (*binding_kind == BOUND && (is_function_scope() || is_with_scope())) {
   1135       var->ForceContextAllocation();
   1136     }
   1137   } else {
   1138     DCHECK(is_script_scope());
   1139   }
   1140 
   1141   // "this" can't be shadowed by "eval"-introduced bindings or by "with" scopes.
   1142   // TODO(wingo): There are other variables in this category; add them.
   1143   bool name_can_be_shadowed = var == nullptr || !var->is_this();
   1144 
   1145   if (is_with_scope() && name_can_be_shadowed) {
   1146     DCHECK(!already_resolved());
   1147     // The current scope is a with scope, so the variable binding can not be
   1148     // statically resolved. However, note that it was necessary to do a lookup
   1149     // in the outer scope anyway, because if a binding exists in an outer scope,
   1150     // the associated variable has to be marked as potentially being accessed
   1151     // from inside of an inner with scope (the property may not be in the 'with'
   1152     // object).
   1153     if (var != NULL && proxy->is_assigned()) var->set_maybe_assigned();
   1154     *binding_kind = DYNAMIC_LOOKUP;
   1155     return NULL;
   1156   } else if (calls_sloppy_eval() && !is_script_scope() &&
   1157              name_can_be_shadowed) {
   1158     // A variable binding may have been found in an outer scope, but the current
   1159     // scope makes a sloppy 'eval' call, so the found variable may not be
   1160     // the correct one (the 'eval' may introduce a binding with the same name).
   1161     // In that case, change the lookup result to reflect this situation.
   1162     if (*binding_kind == BOUND) {
   1163       *binding_kind = BOUND_EVAL_SHADOWED;
   1164     } else if (*binding_kind == UNBOUND) {
   1165       *binding_kind = UNBOUND_EVAL_SHADOWED;
   1166     }
   1167   }
   1168   return var;
   1169 }
   1170 
   1171 
   1172 bool Scope::ResolveVariable(ParseInfo* info, VariableProxy* proxy,
   1173                             AstNodeFactory* factory) {
   1174   DCHECK(info->script_scope()->is_script_scope());
   1175 
   1176   // If the proxy is already resolved there's nothing to do
   1177   // (functions and consts may be resolved by the parser).
   1178   if (proxy->is_resolved()) return true;
   1179 
   1180   // Otherwise, try to resolve the variable.
   1181   BindingKind binding_kind;
   1182   Variable* var = LookupRecursive(proxy, &binding_kind, factory);
   1183 
   1184 #ifdef DEBUG
   1185   if (info->script_is_native()) {
   1186     // To avoid polluting the global object in native scripts
   1187     //  - Variables must not be allocated to the global scope.
   1188     CHECK_NOT_NULL(outer_scope());
   1189     //  - Variables must be bound locally or unallocated.
   1190     if (BOUND != binding_kind) {
   1191       // The following variable name may be minified. If so, disable
   1192       // minification in js2c.py for better output.
   1193       Handle<String> name = proxy->raw_name()->string();
   1194       V8_Fatal(__FILE__, __LINE__, "Unbound variable: '%s' in native script.",
   1195                name->ToCString().get());
   1196     }
   1197     VariableLocation location = var->location();
   1198     CHECK(location == VariableLocation::LOCAL ||
   1199           location == VariableLocation::CONTEXT ||
   1200           location == VariableLocation::PARAMETER ||
   1201           location == VariableLocation::UNALLOCATED);
   1202   }
   1203 #endif
   1204 
   1205   switch (binding_kind) {
   1206     case BOUND:
   1207       // We found a variable binding.
   1208       if (is_strong(language_mode())) {
   1209         if (!CheckStrongModeDeclaration(proxy, var)) return false;
   1210       }
   1211       break;
   1212 
   1213     case BOUND_EVAL_SHADOWED:
   1214       // We either found a variable binding that might be shadowed by eval  or
   1215       // gave up on it (e.g. by encountering a local with the same in the outer
   1216       // scope which was not promoted to a context, this can happen if we use
   1217       // debugger to evaluate arbitrary expressions at a break point).
   1218       if (var->IsGlobalObjectProperty()) {
   1219         var = NonLocal(proxy->raw_name(), DYNAMIC_GLOBAL);
   1220       } else if (var->is_dynamic()) {
   1221         var = NonLocal(proxy->raw_name(), DYNAMIC);
   1222       } else {
   1223         Variable* invalidated = var;
   1224         var = NonLocal(proxy->raw_name(), DYNAMIC_LOCAL);
   1225         var->set_local_if_not_shadowed(invalidated);
   1226       }
   1227       break;
   1228 
   1229     case UNBOUND:
   1230       // No binding has been found. Declare a variable on the global object.
   1231       var = info->script_scope()->DeclareDynamicGlobal(proxy->raw_name());
   1232       break;
   1233 
   1234     case UNBOUND_EVAL_SHADOWED:
   1235       // No binding has been found. But some scope makes a sloppy 'eval' call.
   1236       var = NonLocal(proxy->raw_name(), DYNAMIC_GLOBAL);
   1237       break;
   1238 
   1239     case DYNAMIC_LOOKUP:
   1240       // The variable could not be resolved statically.
   1241       var = NonLocal(proxy->raw_name(), DYNAMIC);
   1242       break;
   1243   }
   1244 
   1245   DCHECK(var != NULL);
   1246   if (proxy->is_assigned()) var->set_maybe_assigned();
   1247 
   1248   if (is_strong(language_mode())) {
   1249     // Record that the variable is referred to from strong mode. Also, record
   1250     // the position.
   1251     var->RecordStrongModeReference(proxy->position(), proxy->end_position());
   1252   }
   1253 
   1254   proxy->BindTo(var);
   1255 
   1256   return true;
   1257 }
   1258 
   1259 
   1260 bool Scope::CheckStrongModeDeclaration(VariableProxy* proxy, Variable* var) {
   1261   // Check for declaration-after use (for variables) in strong mode. Note that
   1262   // we can only do this in the case where we have seen the declaration. And we
   1263   // always allow referencing functions (for now).
   1264 
   1265   // This might happen during lazy compilation; we don't keep track of
   1266   // initializer positions for variables stored in ScopeInfo, so we cannot check
   1267   // bindings against them. TODO(marja, rossberg): remove this hack.
   1268   if (var->initializer_position() == RelocInfo::kNoPosition) return true;
   1269 
   1270   // Allow referencing the class name from methods of that class, even though
   1271   // the initializer position for class names is only after the body.
   1272   Scope* scope = this;
   1273   while (scope) {
   1274     if (scope->ClassVariableForMethod() == var) return true;
   1275     scope = scope->outer_scope();
   1276   }
   1277 
   1278   // Allow references from methods to classes declared later, if we detect no
   1279   // problematic dependency cycles. Note that we can be inside multiple methods
   1280   // at the same time, and it's enough if we find one where the reference is
   1281   // allowed.
   1282   if (var->is_class() &&
   1283       var->AsClassVariable()->declaration_group_start() >= 0) {
   1284     for (scope = this; scope && scope != var->scope();
   1285          scope = scope->outer_scope()) {
   1286       ClassVariable* class_var = scope->ClassVariableForMethod();
   1287       // A method is referring to some other class, possibly declared
   1288       // later. Referring to a class declared earlier is always OK and covered
   1289       // by the code outside this if. Here we only need to allow special cases
   1290       // for referring to a class which is declared later.
   1291 
   1292       // Referring to a class C declared later is OK under the following
   1293       // circumstances:
   1294 
   1295       // 1. The class declarations are in a consecutive group with no other
   1296       // declarations or statements in between, and
   1297 
   1298       // 2. There is no dependency cycle where the first edge is an
   1299       // initialization time dependency (computed property name or extends
   1300       // clause) from C to something that depends on this class directly or
   1301       // transitively.
   1302       if (class_var &&
   1303           class_var->declaration_group_start() ==
   1304               var->AsClassVariable()->declaration_group_start()) {
   1305         return true;
   1306       }
   1307 
   1308       // TODO(marja,rossberg): implement the dependency cycle detection. Here we
   1309       // undershoot the target and allow referring to any class in the same
   1310       // consectuive declaration group.
   1311 
   1312       // The cycle detection can work roughly like this: 1) detect init-time
   1313       // references here (they are free variables which are inside the class
   1314       // scope but not inside a method scope - no parser changes needed to
   1315       // detect them) 2) if we encounter an init-time reference here, allow it,
   1316       // but record it for a later dependency cycle check 3) also record
   1317       // non-init-time references here 4) after scope analysis is done, analyse
   1318       // the dependency cycles: an illegal cycle is one starting with an
   1319       // init-time reference and leading back to the starting point with either
   1320       // non-init-time and init-time references.
   1321     }
   1322   }
   1323 
   1324   // If both the use and the declaration are inside an eval scope (possibly
   1325   // indirectly), or one of them is, we need to check whether they are inside
   1326   // the same eval scope or different ones.
   1327 
   1328   // TODO(marja,rossberg): Detect errors across different evals (depends on the
   1329   // future of eval in strong mode).
   1330   const Scope* eval_for_use = NearestOuterEvalScope();
   1331   const Scope* eval_for_declaration = var->scope()->NearestOuterEvalScope();
   1332 
   1333   if (proxy->position() != RelocInfo::kNoPosition &&
   1334       proxy->position() < var->initializer_position() && !var->is_function() &&
   1335       eval_for_use == eval_for_declaration) {
   1336     DCHECK(proxy->end_position() != RelocInfo::kNoPosition);
   1337     ReportMessage(proxy->position(), proxy->end_position(),
   1338                   MessageTemplate::kStrongUseBeforeDeclaration,
   1339                   proxy->raw_name());
   1340     return false;
   1341   }
   1342   return true;
   1343 }
   1344 
   1345 
   1346 ClassVariable* Scope::ClassVariableForMethod() const {
   1347   // TODO(marja, rossberg): This fails to find a class variable in the following
   1348   // cases:
   1349   // let A = class { ... }
   1350   // It needs to be investigated whether this causes any practical problems.
   1351   if (!is_function_scope()) return nullptr;
   1352   if (IsInObjectLiteral(function_kind_)) return nullptr;
   1353   if (!IsConciseMethod(function_kind_) && !IsClassConstructor(function_kind_) &&
   1354       !IsAccessorFunction(function_kind_)) {
   1355     return nullptr;
   1356   }
   1357   DCHECK_NOT_NULL(outer_scope_);
   1358   // The class scope contains at most one variable, the class name.
   1359   DCHECK(outer_scope_->variables_.occupancy() <= 1);
   1360   if (outer_scope_->variables_.occupancy() == 0) return nullptr;
   1361   VariableMap::Entry* p = outer_scope_->variables_.Start();
   1362   Variable* var = reinterpret_cast<Variable*>(p->value);
   1363   if (!var->is_class()) return nullptr;
   1364   return var->AsClassVariable();
   1365 }
   1366 
   1367 
   1368 bool Scope::ResolveVariablesRecursively(ParseInfo* info,
   1369                                         AstNodeFactory* factory) {
   1370   DCHECK(info->script_scope()->is_script_scope());
   1371 
   1372   // Resolve unresolved variables for this scope.
   1373   for (int i = 0; i < unresolved_.length(); i++) {
   1374     if (!ResolveVariable(info, unresolved_[i], factory)) return false;
   1375   }
   1376 
   1377   // Resolve unresolved variables for inner scopes.
   1378   for (int i = 0; i < inner_scopes_.length(); i++) {
   1379     if (!inner_scopes_[i]->ResolveVariablesRecursively(info, factory))
   1380       return false;
   1381   }
   1382 
   1383   return true;
   1384 }
   1385 
   1386 
   1387 void Scope::PropagateScopeInfo(bool outer_scope_calls_sloppy_eval ) {
   1388   if (outer_scope_calls_sloppy_eval) {
   1389     outer_scope_calls_sloppy_eval_ = true;
   1390   }
   1391 
   1392   bool calls_sloppy_eval =
   1393       this->calls_sloppy_eval() || outer_scope_calls_sloppy_eval_;
   1394   for (int i = 0; i < inner_scopes_.length(); i++) {
   1395     Scope* inner = inner_scopes_[i];
   1396     inner->PropagateScopeInfo(calls_sloppy_eval);
   1397     if (inner->scope_calls_eval_ || inner->inner_scope_calls_eval_) {
   1398       inner_scope_calls_eval_ = true;
   1399     }
   1400     if (inner->force_eager_compilation_) {
   1401       force_eager_compilation_ = true;
   1402     }
   1403     if (asm_module_ && inner->scope_type() == FUNCTION_SCOPE) {
   1404       inner->asm_function_ = true;
   1405     }
   1406   }
   1407 }
   1408 
   1409 
   1410 bool Scope::MustAllocate(Variable* var) {
   1411   // Give var a read/write use if there is a chance it might be accessed
   1412   // via an eval() call.  This is only possible if the variable has a
   1413   // visible name.
   1414   if ((var->is_this() || !var->raw_name()->IsEmpty()) &&
   1415       (var->has_forced_context_allocation() || scope_calls_eval_ ||
   1416        inner_scope_calls_eval_ || scope_contains_with_ || is_catch_scope() ||
   1417        is_block_scope() || is_module_scope() || is_script_scope())) {
   1418     var->set_is_used();
   1419     if (scope_calls_eval_ || inner_scope_calls_eval_) var->set_maybe_assigned();
   1420   }
   1421   // Global variables do not need to be allocated.
   1422   return !var->IsGlobalObjectProperty() && var->is_used();
   1423 }
   1424 
   1425 
   1426 bool Scope::MustAllocateInContext(Variable* var) {
   1427   // If var is accessed from an inner scope, or if there is a possibility
   1428   // that it might be accessed from the current or an inner scope (through
   1429   // an eval() call or a runtime with lookup), it must be allocated in the
   1430   // context.
   1431   //
   1432   // Exceptions: If the scope as a whole has forced context allocation, all
   1433   // variables will have context allocation, even temporaries.  Otherwise
   1434   // temporary variables are always stack-allocated.  Catch-bound variables are
   1435   // always context-allocated.
   1436   if (has_forced_context_allocation()) return true;
   1437   if (var->mode() == TEMPORARY) return false;
   1438   if (is_catch_scope() || is_module_scope()) return true;
   1439   if (is_script_scope() && IsLexicalVariableMode(var->mode())) return true;
   1440   return var->has_forced_context_allocation() ||
   1441       scope_calls_eval_ ||
   1442       inner_scope_calls_eval_ ||
   1443       scope_contains_with_;
   1444 }
   1445 
   1446 
   1447 bool Scope::HasArgumentsParameter(Isolate* isolate) {
   1448   for (int i = 0; i < params_.length(); i++) {
   1449     if (params_[i]->name().is_identical_to(
   1450             isolate->factory()->arguments_string())) {
   1451       return true;
   1452     }
   1453   }
   1454   return false;
   1455 }
   1456 
   1457 
   1458 void Scope::AllocateStackSlot(Variable* var) {
   1459   if (is_block_scope()) {
   1460     outer_scope()->DeclarationScope()->AllocateStackSlot(var);
   1461   } else {
   1462     var->AllocateTo(VariableLocation::LOCAL, num_stack_slots_++);
   1463   }
   1464 }
   1465 
   1466 
   1467 void Scope::AllocateHeapSlot(Variable* var) {
   1468   var->AllocateTo(VariableLocation::CONTEXT, num_heap_slots_++);
   1469 }
   1470 
   1471 
   1472 void Scope::AllocateParameterLocals(Isolate* isolate) {
   1473   DCHECK(is_function_scope());
   1474   Variable* arguments = LookupLocal(ast_value_factory_->arguments_string());
   1475   // Functions have 'arguments' declared implicitly in all non arrow functions.
   1476   DCHECK(arguments != nullptr || is_arrow_scope());
   1477 
   1478   bool uses_sloppy_arguments = false;
   1479 
   1480   if (arguments != nullptr && MustAllocate(arguments) &&
   1481       !HasArgumentsParameter(isolate)) {
   1482     // 'arguments' is used. Unless there is also a parameter called
   1483     // 'arguments', we must be conservative and allocate all parameters to
   1484     // the context assuming they will be captured by the arguments object.
   1485     // If we have a parameter named 'arguments', a (new) value is always
   1486     // assigned to it via the function invocation. Then 'arguments' denotes
   1487     // that specific parameter value and cannot be used to access the
   1488     // parameters, which is why we don't need to allocate an arguments
   1489     // object in that case.
   1490 
   1491     // We are using 'arguments'. Tell the code generator that is needs to
   1492     // allocate the arguments object by setting 'arguments_'.
   1493     arguments_ = arguments;
   1494 
   1495     // In strict mode 'arguments' does not alias formal parameters.
   1496     // Therefore in strict mode we allocate parameters as if 'arguments'
   1497     // were not used.
   1498     // If the parameter list is not simple, arguments isn't sloppy either.
   1499     uses_sloppy_arguments =
   1500         is_sloppy(language_mode()) && has_simple_parameters();
   1501   }
   1502 
   1503   if (rest_parameter_ && !MustAllocate(rest_parameter_)) {
   1504     rest_parameter_ = NULL;
   1505   }
   1506 
   1507   // The same parameter may occur multiple times in the parameters_ list.
   1508   // If it does, and if it is not copied into the context object, it must
   1509   // receive the highest parameter index for that parameter; thus iteration
   1510   // order is relevant!
   1511   for (int i = params_.length() - 1; i >= 0; --i) {
   1512     Variable* var = params_[i];
   1513     if (var == rest_parameter_) continue;
   1514 
   1515     DCHECK(var->scope() == this);
   1516     if (uses_sloppy_arguments || has_forced_context_allocation()) {
   1517       // Force context allocation of the parameter.
   1518       var->ForceContextAllocation();
   1519     }
   1520     AllocateParameter(var, i);
   1521   }
   1522 }
   1523 
   1524 
   1525 void Scope::AllocateParameter(Variable* var, int index) {
   1526   if (MustAllocate(var)) {
   1527     if (MustAllocateInContext(var)) {
   1528       DCHECK(var->IsUnallocated() || var->IsContextSlot());
   1529       if (var->IsUnallocated()) {
   1530         AllocateHeapSlot(var);
   1531       }
   1532     } else {
   1533       DCHECK(var->IsUnallocated() || var->IsParameter());
   1534       if (var->IsUnallocated()) {
   1535         var->AllocateTo(VariableLocation::PARAMETER, index);
   1536       }
   1537     }
   1538   } else {
   1539     DCHECK(!var->IsGlobalSlot());
   1540   }
   1541 }
   1542 
   1543 
   1544 void Scope::AllocateReceiver() {
   1545   DCHECK_NOT_NULL(receiver());
   1546   DCHECK_EQ(receiver()->scope(), this);
   1547 
   1548   if (has_forced_context_allocation()) {
   1549     // Force context allocation of the receiver.
   1550     receiver()->ForceContextAllocation();
   1551   }
   1552   AllocateParameter(receiver(), -1);
   1553 }
   1554 
   1555 
   1556 void Scope::AllocateNonParameterLocal(Isolate* isolate, Variable* var) {
   1557   DCHECK(var->scope() == this);
   1558   DCHECK(!var->IsVariable(isolate->factory()->dot_result_string()) ||
   1559          !var->IsStackLocal());
   1560   if (var->IsUnallocated() && MustAllocate(var)) {
   1561     if (MustAllocateInContext(var)) {
   1562       AllocateHeapSlot(var);
   1563     } else {
   1564       AllocateStackSlot(var);
   1565     }
   1566   }
   1567 }
   1568 
   1569 
   1570 void Scope::AllocateDeclaredGlobal(Isolate* isolate, Variable* var) {
   1571   DCHECK(var->scope() == this);
   1572   DCHECK(!var->IsVariable(isolate->factory()->dot_result_string()) ||
   1573          !var->IsStackLocal());
   1574   if (var->IsUnallocated()) {
   1575     if (var->IsStaticGlobalObjectProperty()) {
   1576       DCHECK_EQ(-1, var->index());
   1577       DCHECK(var->name()->IsString());
   1578       var->AllocateTo(VariableLocation::GLOBAL, num_heap_slots_++);
   1579       num_global_slots_++;
   1580     } else {
   1581       // There must be only DYNAMIC_GLOBAL in the script scope.
   1582       DCHECK(!is_script_scope() || DYNAMIC_GLOBAL == var->mode());
   1583     }
   1584   }
   1585 }
   1586 
   1587 
   1588 void Scope::AllocateNonParameterLocalsAndDeclaredGlobals(Isolate* isolate) {
   1589   // All variables that have no rewrite yet are non-parameter locals.
   1590   for (int i = 0; i < temps_.length(); i++) {
   1591     AllocateNonParameterLocal(isolate, temps_[i]);
   1592   }
   1593 
   1594   ZoneList<VarAndOrder> vars(variables_.occupancy(), zone());
   1595   for (VariableMap::Entry* p = variables_.Start();
   1596        p != NULL;
   1597        p = variables_.Next(p)) {
   1598     Variable* var = reinterpret_cast<Variable*>(p->value);
   1599     vars.Add(VarAndOrder(var, p->order), zone());
   1600   }
   1601   vars.Sort(VarAndOrder::Compare);
   1602   int var_count = vars.length();
   1603   for (int i = 0; i < var_count; i++) {
   1604     AllocateNonParameterLocal(isolate, vars[i].var());
   1605   }
   1606 
   1607   if (FLAG_global_var_shortcuts) {
   1608     for (int i = 0; i < var_count; i++) {
   1609       AllocateDeclaredGlobal(isolate, vars[i].var());
   1610     }
   1611   }
   1612 
   1613   // For now, function_ must be allocated at the very end.  If it gets
   1614   // allocated in the context, it must be the last slot in the context,
   1615   // because of the current ScopeInfo implementation (see
   1616   // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor).
   1617   if (function_ != nullptr) {
   1618     AllocateNonParameterLocal(isolate, function_->proxy()->var());
   1619   }
   1620 
   1621   if (rest_parameter_ != nullptr) {
   1622     AllocateNonParameterLocal(isolate, rest_parameter_);
   1623   }
   1624 
   1625   Variable* new_target_var =
   1626       LookupLocal(ast_value_factory_->new_target_string());
   1627   if (new_target_var != nullptr && MustAllocate(new_target_var)) {
   1628     new_target_ = new_target_var;
   1629   }
   1630 
   1631   Variable* this_function_var =
   1632       LookupLocal(ast_value_factory_->this_function_string());
   1633   if (this_function_var != nullptr && MustAllocate(this_function_var)) {
   1634     this_function_ = this_function_var;
   1635   }
   1636 }
   1637 
   1638 
   1639 void Scope::AllocateVariablesRecursively(Isolate* isolate) {
   1640   if (!already_resolved()) {
   1641     num_stack_slots_ = 0;
   1642   }
   1643   // Allocate variables for inner scopes.
   1644   for (int i = 0; i < inner_scopes_.length(); i++) {
   1645     inner_scopes_[i]->AllocateVariablesRecursively(isolate);
   1646   }
   1647 
   1648   // If scope is already resolved, we still need to allocate
   1649   // variables in inner scopes which might not had been resolved yet.
   1650   if (already_resolved()) return;
   1651   // The number of slots required for variables.
   1652   num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
   1653 
   1654   // Allocate variables for this scope.
   1655   // Parameters must be allocated first, if any.
   1656   if (is_function_scope()) AllocateParameterLocals(isolate);
   1657   if (has_this_declaration()) AllocateReceiver();
   1658   AllocateNonParameterLocalsAndDeclaredGlobals(isolate);
   1659 
   1660   // Force allocation of a context for this scope if necessary. For a 'with'
   1661   // scope and for a function scope that makes an 'eval' call we need a context,
   1662   // even if no local variables were statically allocated in the scope.
   1663   // Likewise for modules.
   1664   bool must_have_context =
   1665       is_with_scope() || is_module_scope() ||
   1666       (is_function_scope() && calls_sloppy_eval()) ||
   1667       (is_block_scope() && is_declaration_scope() && calls_sloppy_eval());
   1668 
   1669   // If we didn't allocate any locals in the local context, then we only
   1670   // need the minimal number of slots if we must have a context.
   1671   if (num_heap_slots_ == Context::MIN_CONTEXT_SLOTS && !must_have_context) {
   1672     num_heap_slots_ = 0;
   1673   }
   1674 
   1675   // Allocation done.
   1676   DCHECK(num_heap_slots_ == 0 || num_heap_slots_ >= Context::MIN_CONTEXT_SLOTS);
   1677 }
   1678 
   1679 
   1680 int Scope::StackLocalCount() const {
   1681   return num_stack_slots() -
   1682       (function_ != NULL && function_->proxy()->var()->IsStackLocal() ? 1 : 0);
   1683 }
   1684 
   1685 
   1686 int Scope::ContextLocalCount() const {
   1687   if (num_heap_slots() == 0) return 0;
   1688   bool is_function_var_in_context =
   1689       function_ != NULL && function_->proxy()->var()->IsContextSlot();
   1690   return num_heap_slots() - Context::MIN_CONTEXT_SLOTS - num_global_slots() -
   1691          (is_function_var_in_context ? 1 : 0);
   1692 }
   1693 
   1694 
   1695 int Scope::ContextGlobalCount() const { return num_global_slots(); }
   1696 
   1697 }  // namespace internal
   1698 }  // namespace v8
   1699