Home | History | Annotate | Download | only in utils
      1 /*
      2  * Copyright 2014 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkPatchUtils.h"
      9 
     10 #include "SkColorPriv.h"
     11 #include "SkGeometry.h"
     12 
     13 /**
     14  * Evaluator to sample the values of a cubic bezier using forward differences.
     15  * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only
     16  * adding precalculated values.
     17  * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h
     18  * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first
     19  * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After
     20  * obtaining this value (mh) we could just add this constant step to our first sampled point
     21  * to compute the next one.
     22  *
     23  * For the cubic case the first difference gives as a result a quadratic polynomial to which we can
     24  * apply again forward differences and get linear function to which we can apply again forward
     25  * differences to get a constant difference. This is why we keep an array of size 4, the 0th
     26  * position keeps the sampled value while the next ones keep the quadratic, linear and constant
     27  * difference values.
     28  */
     29 
     30 class FwDCubicEvaluator {
     31 
     32 public:
     33 
     34     /**
     35      * Receives the 4 control points of the cubic bezier.
     36      */
     37 
     38     explicit FwDCubicEvaluator(const SkPoint points[4])
     39             : fCoefs(points) {
     40         memcpy(fPoints, points, 4 * sizeof(SkPoint));
     41 
     42         this->restart(1);
     43     }
     44 
     45     /**
     46      * Restarts the forward differences evaluator to the first value of t = 0.
     47      */
     48     void restart(int divisions)  {
     49         fDivisions = divisions;
     50         fCurrent    = 0;
     51         fMax        = fDivisions + 1;
     52         Sk2s h  = Sk2s(1.f / fDivisions);
     53         Sk2s h2 = h * h;
     54         Sk2s h3 = h2 * h;
     55         Sk2s fwDiff3 = Sk2s(6) * fCoefs.fA * h3;
     56         fFwDiff[3] = to_point(fwDiff3);
     57         fFwDiff[2] = to_point(fwDiff3 + times_2(fCoefs.fB) * h2);
     58         fFwDiff[1] = to_point(fCoefs.fA * h3 + fCoefs.fB * h2 + fCoefs.fC * h);
     59         fFwDiff[0] = to_point(fCoefs.fD);
     60     }
     61 
     62     /**
     63      * Check if the evaluator is still within the range of 0<=t<=1
     64      */
     65     bool done() const {
     66         return fCurrent > fMax;
     67     }
     68 
     69     /**
     70      * Call next to obtain the SkPoint sampled and move to the next one.
     71      */
     72     SkPoint next() {
     73         SkPoint point = fFwDiff[0];
     74         fFwDiff[0]    += fFwDiff[1];
     75         fFwDiff[1]    += fFwDiff[2];
     76         fFwDiff[2]    += fFwDiff[3];
     77         fCurrent++;
     78         return point;
     79     }
     80 
     81     const SkPoint* getCtrlPoints() const {
     82         return fPoints;
     83     }
     84 
     85 private:
     86     SkCubicCoeff fCoefs;
     87     int fMax, fCurrent, fDivisions;
     88     SkPoint fFwDiff[4], fPoints[4];
     89 };
     90 
     91 ////////////////////////////////////////////////////////////////////////////////
     92 
     93 // size in pixels of each partition per axis, adjust this knob
     94 static const int kPartitionSize = 10;
     95 
     96 /**
     97  * Calculate the approximate arc length given a bezier curve's control points.
     98  */
     99 static SkScalar approx_arc_length(SkPoint* points, int count) {
    100     if (count < 2) {
    101         return 0;
    102     }
    103     SkScalar arcLength = 0;
    104     for (int i = 0; i < count - 1; i++) {
    105         arcLength += SkPoint::Distance(points[i], points[i + 1]);
    106     }
    107     return arcLength;
    108 }
    109 
    110 static SkScalar bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01,
    111                       SkScalar c11) {
    112     SkScalar a = c00 * (1.f - tx) + c10 * tx;
    113     SkScalar b = c01 * (1.f - tx) + c11 * tx;
    114     return a * (1.f - ty) + b * ty;
    115 }
    116 
    117 SkISize SkPatchUtils::GetLevelOfDetail(const SkPoint cubics[12], const SkMatrix* matrix) {
    118 
    119     // Approximate length of each cubic.
    120     SkPoint pts[kNumPtsCubic];
    121     SkPatchUtils::getTopCubic(cubics, pts);
    122     matrix->mapPoints(pts, kNumPtsCubic);
    123     SkScalar topLength = approx_arc_length(pts, kNumPtsCubic);
    124 
    125     SkPatchUtils::getBottomCubic(cubics, pts);
    126     matrix->mapPoints(pts, kNumPtsCubic);
    127     SkScalar bottomLength = approx_arc_length(pts, kNumPtsCubic);
    128 
    129     SkPatchUtils::getLeftCubic(cubics, pts);
    130     matrix->mapPoints(pts, kNumPtsCubic);
    131     SkScalar leftLength = approx_arc_length(pts, kNumPtsCubic);
    132 
    133     SkPatchUtils::getRightCubic(cubics, pts);
    134     matrix->mapPoints(pts, kNumPtsCubic);
    135     SkScalar rightLength = approx_arc_length(pts, kNumPtsCubic);
    136 
    137     // Level of detail per axis, based on the larger side between top and bottom or left and right
    138     int lodX = static_cast<int>(SkMaxScalar(topLength, bottomLength) / kPartitionSize);
    139     int lodY = static_cast<int>(SkMaxScalar(leftLength, rightLength) / kPartitionSize);
    140 
    141     return SkISize::Make(SkMax32(8, lodX), SkMax32(8, lodY));
    142 }
    143 
    144 void SkPatchUtils::getTopCubic(const SkPoint cubics[12], SkPoint points[4]) {
    145     points[0] = cubics[kTopP0_CubicCtrlPts];
    146     points[1] = cubics[kTopP1_CubicCtrlPts];
    147     points[2] = cubics[kTopP2_CubicCtrlPts];
    148     points[3] = cubics[kTopP3_CubicCtrlPts];
    149 }
    150 
    151 void SkPatchUtils::getBottomCubic(const SkPoint cubics[12], SkPoint points[4]) {
    152     points[0] = cubics[kBottomP0_CubicCtrlPts];
    153     points[1] = cubics[kBottomP1_CubicCtrlPts];
    154     points[2] = cubics[kBottomP2_CubicCtrlPts];
    155     points[3] = cubics[kBottomP3_CubicCtrlPts];
    156 }
    157 
    158 void SkPatchUtils::getLeftCubic(const SkPoint cubics[12], SkPoint points[4]) {
    159     points[0] = cubics[kLeftP0_CubicCtrlPts];
    160     points[1] = cubics[kLeftP1_CubicCtrlPts];
    161     points[2] = cubics[kLeftP2_CubicCtrlPts];
    162     points[3] = cubics[kLeftP3_CubicCtrlPts];
    163 }
    164 
    165 void SkPatchUtils::getRightCubic(const SkPoint cubics[12], SkPoint points[4]) {
    166     points[0] = cubics[kRightP0_CubicCtrlPts];
    167     points[1] = cubics[kRightP1_CubicCtrlPts];
    168     points[2] = cubics[kRightP2_CubicCtrlPts];
    169     points[3] = cubics[kRightP3_CubicCtrlPts];
    170 }
    171 
    172 bool SkPatchUtils::getVertexData(SkPatchUtils::VertexData* data, const SkPoint cubics[12],
    173                    const SkColor colors[4], const SkPoint texCoords[4], int lodX, int lodY) {
    174     if (lodX < 1 || lodY < 1 || nullptr == cubics || nullptr == data) {
    175         return false;
    176     }
    177 
    178     // check for overflow in multiplication
    179     const int64_t lodX64 = (lodX + 1),
    180                    lodY64 = (lodY + 1),
    181                    mult64 = lodX64 * lodY64;
    182     if (mult64 > SK_MaxS32) {
    183         return false;
    184     }
    185     data->fVertexCount = SkToS32(mult64);
    186 
    187     // it is recommended to generate draw calls of no more than 65536 indices, so we never generate
    188     // more than 60000 indices. To accomplish that we resize the LOD and vertex count
    189     if (data->fVertexCount > 10000 || lodX > 200 || lodY > 200) {
    190         SkScalar weightX = static_cast<SkScalar>(lodX) / (lodX + lodY);
    191         SkScalar weightY = static_cast<SkScalar>(lodY) / (lodX + lodY);
    192 
    193         // 200 comes from the 100 * 2 which is the max value of vertices because of the limit of
    194         // 60000 indices ( sqrt(60000 / 6) that comes from data->fIndexCount = lodX * lodY * 6)
    195         lodX = static_cast<int>(weightX * 200);
    196         lodY = static_cast<int>(weightY * 200);
    197         data->fVertexCount = (lodX + 1) * (lodY + 1);
    198     }
    199     data->fIndexCount = lodX * lodY * 6;
    200 
    201     data->fPoints = new SkPoint[data->fVertexCount];
    202     data->fIndices = new uint16_t[data->fIndexCount];
    203 
    204     // if colors is not null then create array for colors
    205     SkPMColor colorsPM[kNumCorners];
    206     if (colors) {
    207         // premultiply colors to avoid color bleeding.
    208         for (int i = 0; i < kNumCorners; i++) {
    209             colorsPM[i] = SkPreMultiplyColor(colors[i]);
    210         }
    211         data->fColors = new uint32_t[data->fVertexCount];
    212     }
    213 
    214     // if texture coordinates are not null then create array for them
    215     if (texCoords) {
    216         data->fTexCoords = new SkPoint[data->fVertexCount];
    217     }
    218 
    219     SkPoint pts[kNumPtsCubic];
    220     SkPatchUtils::getBottomCubic(cubics, pts);
    221     FwDCubicEvaluator fBottom(pts);
    222     SkPatchUtils::getTopCubic(cubics, pts);
    223     FwDCubicEvaluator fTop(pts);
    224     SkPatchUtils::getLeftCubic(cubics, pts);
    225     FwDCubicEvaluator fLeft(pts);
    226     SkPatchUtils::getRightCubic(cubics, pts);
    227     FwDCubicEvaluator fRight(pts);
    228 
    229     fBottom.restart(lodX);
    230     fTop.restart(lodX);
    231 
    232     SkScalar u = 0.0f;
    233     int stride = lodY + 1;
    234     for (int x = 0; x <= lodX; x++) {
    235         SkPoint bottom = fBottom.next(), top = fTop.next();
    236         fLeft.restart(lodY);
    237         fRight.restart(lodY);
    238         SkScalar v = 0.f;
    239         for (int y = 0; y <= lodY; y++) {
    240             int dataIndex = x * (lodY + 1) + y;
    241 
    242             SkPoint left = fLeft.next(), right = fRight.next();
    243 
    244             SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(),
    245                                        (1.0f - v) * top.y() + v * bottom.y());
    246             SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(),
    247                                        (1.0f - u) * left.y() + u * right.y());
    248             SkPoint s2 = SkPoint::Make(
    249                                        (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x()
    250                                                      + u * fTop.getCtrlPoints()[3].x())
    251                                        + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x()
    252                                               + u * fBottom.getCtrlPoints()[3].x()),
    253                                        (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y()
    254                                                      + u * fTop.getCtrlPoints()[3].y())
    255                                        + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y()
    256                                               + u * fBottom.getCtrlPoints()[3].y()));
    257             data->fPoints[dataIndex] = s0 + s1 - s2;
    258 
    259             if (colors) {
    260                 uint8_t a = uint8_t(bilerp(u, v,
    261                                    SkScalar(SkColorGetA(colorsPM[kTopLeft_Corner])),
    262                                    SkScalar(SkColorGetA(colorsPM[kTopRight_Corner])),
    263                                    SkScalar(SkColorGetA(colorsPM[kBottomLeft_Corner])),
    264                                    SkScalar(SkColorGetA(colorsPM[kBottomRight_Corner]))));
    265                 uint8_t r = uint8_t(bilerp(u, v,
    266                                    SkScalar(SkColorGetR(colorsPM[kTopLeft_Corner])),
    267                                    SkScalar(SkColorGetR(colorsPM[kTopRight_Corner])),
    268                                    SkScalar(SkColorGetR(colorsPM[kBottomLeft_Corner])),
    269                                    SkScalar(SkColorGetR(colorsPM[kBottomRight_Corner]))));
    270                 uint8_t g = uint8_t(bilerp(u, v,
    271                                    SkScalar(SkColorGetG(colorsPM[kTopLeft_Corner])),
    272                                    SkScalar(SkColorGetG(colorsPM[kTopRight_Corner])),
    273                                    SkScalar(SkColorGetG(colorsPM[kBottomLeft_Corner])),
    274                                    SkScalar(SkColorGetG(colorsPM[kBottomRight_Corner]))));
    275                 uint8_t b = uint8_t(bilerp(u, v,
    276                                    SkScalar(SkColorGetB(colorsPM[kTopLeft_Corner])),
    277                                    SkScalar(SkColorGetB(colorsPM[kTopRight_Corner])),
    278                                    SkScalar(SkColorGetB(colorsPM[kBottomLeft_Corner])),
    279                                    SkScalar(SkColorGetB(colorsPM[kBottomRight_Corner]))));
    280                 data->fColors[dataIndex] = SkPackARGB32(a,r,g,b);
    281             }
    282 
    283             if (texCoords) {
    284                 data->fTexCoords[dataIndex] = SkPoint::Make(
    285                                             bilerp(u, v, texCoords[kTopLeft_Corner].x(),
    286                                                    texCoords[kTopRight_Corner].x(),
    287                                                    texCoords[kBottomLeft_Corner].x(),
    288                                                    texCoords[kBottomRight_Corner].x()),
    289                                             bilerp(u, v, texCoords[kTopLeft_Corner].y(),
    290                                                    texCoords[kTopRight_Corner].y(),
    291                                                    texCoords[kBottomLeft_Corner].y(),
    292                                                    texCoords[kBottomRight_Corner].y()));
    293 
    294             }
    295 
    296             if(x < lodX && y < lodY) {
    297                 int i = 6 * (x * lodY + y);
    298                 data->fIndices[i] = x * stride + y;
    299                 data->fIndices[i + 1] = x * stride + 1 + y;
    300                 data->fIndices[i + 2] = (x + 1) * stride + 1 + y;
    301                 data->fIndices[i + 3] = data->fIndices[i];
    302                 data->fIndices[i + 4] = data->fIndices[i + 2];
    303                 data->fIndices[i + 5] = (x + 1) * stride + y;
    304             }
    305             v = SkScalarClampMax(v + 1.f / lodY, 1);
    306         }
    307         u = SkScalarClampMax(u + 1.f / lodX, 1);
    308     }
    309     return true;
    310 
    311 }
    312