1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit OpenMP nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Stmt.h" 19 #include "clang/AST/StmtOpenMP.h" 20 using namespace clang; 21 using namespace CodeGen; 22 23 void CodeGenFunction::GenerateOpenMPCapturedVars( 24 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 25 const RecordDecl *RD = S.getCapturedRecordDecl(); 26 auto CurField = RD->field_begin(); 27 auto CurCap = S.captures().begin(); 28 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 29 E = S.capture_init_end(); 30 I != E; ++I, ++CurField, ++CurCap) { 31 if (CurField->hasCapturedVLAType()) { 32 auto VAT = CurField->getCapturedVLAType(); 33 auto *Val = VLASizeMap[VAT->getSizeExpr()]; 34 CapturedVars.push_back(Val); 35 } else if (CurCap->capturesThis()) 36 CapturedVars.push_back(CXXThisValue); 37 else if (CurCap->capturesVariableByCopy()) 38 CapturedVars.push_back( 39 EmitLoadOfLValue(EmitLValue(*I), SourceLocation()).getScalarVal()); 40 else { 41 assert(CurCap->capturesVariable() && "Expected capture by reference."); 42 CapturedVars.push_back(EmitLValue(*I).getAddress().getPointer()); 43 } 44 } 45 } 46 47 static Address castValueFromUintptr(CodeGenFunction &CGF, QualType DstType, 48 StringRef Name, LValue AddrLV, 49 bool isReferenceType = false) { 50 ASTContext &Ctx = CGF.getContext(); 51 52 auto *CastedPtr = CGF.EmitScalarConversion( 53 AddrLV.getAddress().getPointer(), Ctx.getUIntPtrType(), 54 Ctx.getPointerType(DstType), SourceLocation()); 55 auto TmpAddr = 56 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 57 .getAddress(); 58 59 // If we are dealing with references we need to return the address of the 60 // reference instead of the reference of the value. 61 if (isReferenceType) { 62 QualType RefType = Ctx.getLValueReferenceType(DstType); 63 auto *RefVal = TmpAddr.getPointer(); 64 TmpAddr = CGF.CreateMemTemp(RefType, Twine(Name) + ".ref"); 65 auto TmpLVal = CGF.MakeAddrLValue(TmpAddr, RefType); 66 CGF.EmitScalarInit(RefVal, TmpLVal); 67 } 68 69 return TmpAddr; 70 } 71 72 llvm::Function * 73 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S) { 74 assert( 75 CapturedStmtInfo && 76 "CapturedStmtInfo should be set when generating the captured function"); 77 const CapturedDecl *CD = S.getCapturedDecl(); 78 const RecordDecl *RD = S.getCapturedRecordDecl(); 79 assert(CD->hasBody() && "missing CapturedDecl body"); 80 81 // Build the argument list. 82 ASTContext &Ctx = CGM.getContext(); 83 FunctionArgList Args; 84 Args.append(CD->param_begin(), 85 std::next(CD->param_begin(), CD->getContextParamPosition())); 86 auto I = S.captures().begin(); 87 for (auto *FD : RD->fields()) { 88 QualType ArgType = FD->getType(); 89 IdentifierInfo *II = nullptr; 90 VarDecl *CapVar = nullptr; 91 92 // If this is a capture by copy and the type is not a pointer, the outlined 93 // function argument type should be uintptr and the value properly casted to 94 // uintptr. This is necessary given that the runtime library is only able to 95 // deal with pointers. We can pass in the same way the VLA type sizes to the 96 // outlined function. 97 if ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 98 I->capturesVariableArrayType()) 99 ArgType = Ctx.getUIntPtrType(); 100 101 if (I->capturesVariable() || I->capturesVariableByCopy()) { 102 CapVar = I->getCapturedVar(); 103 II = CapVar->getIdentifier(); 104 } else if (I->capturesThis()) 105 II = &getContext().Idents.get("this"); 106 else { 107 assert(I->capturesVariableArrayType()); 108 II = &getContext().Idents.get("vla"); 109 } 110 if (ArgType->isVariablyModifiedType()) 111 ArgType = getContext().getVariableArrayDecayedType(ArgType); 112 Args.push_back(ImplicitParamDecl::Create(getContext(), nullptr, 113 FD->getLocation(), II, ArgType)); 114 ++I; 115 } 116 Args.append( 117 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 118 CD->param_end()); 119 120 // Create the function declaration. 121 FunctionType::ExtInfo ExtInfo; 122 const CGFunctionInfo &FuncInfo = 123 CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo, 124 /*IsVariadic=*/false); 125 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 126 127 llvm::Function *F = llvm::Function::Create( 128 FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 129 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 130 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 131 if (CD->isNothrow()) 132 F->addFnAttr(llvm::Attribute::NoUnwind); 133 134 // Generate the function. 135 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 136 CD->getBody()->getLocStart()); 137 unsigned Cnt = CD->getContextParamPosition(); 138 I = S.captures().begin(); 139 for (auto *FD : RD->fields()) { 140 // If we are capturing a pointer by copy we don't need to do anything, just 141 // use the value that we get from the arguments. 142 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 143 setAddrOfLocalVar(I->getCapturedVar(), GetAddrOfLocalVar(Args[Cnt])); 144 ++Cnt, ++I; 145 continue; 146 } 147 148 LValue ArgLVal = 149 MakeAddrLValue(GetAddrOfLocalVar(Args[Cnt]), Args[Cnt]->getType(), 150 AlignmentSource::Decl); 151 if (FD->hasCapturedVLAType()) { 152 LValue CastedArgLVal = 153 MakeAddrLValue(castValueFromUintptr(*this, FD->getType(), 154 Args[Cnt]->getName(), ArgLVal), 155 FD->getType(), AlignmentSource::Decl); 156 auto *ExprArg = 157 EmitLoadOfLValue(CastedArgLVal, SourceLocation()).getScalarVal(); 158 auto VAT = FD->getCapturedVLAType(); 159 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 160 } else if (I->capturesVariable()) { 161 auto *Var = I->getCapturedVar(); 162 QualType VarTy = Var->getType(); 163 Address ArgAddr = ArgLVal.getAddress(); 164 if (!VarTy->isReferenceType()) { 165 ArgAddr = EmitLoadOfReference( 166 ArgAddr, ArgLVal.getType()->castAs<ReferenceType>()); 167 } 168 setAddrOfLocalVar( 169 Var, Address(ArgAddr.getPointer(), getContext().getDeclAlign(Var))); 170 } else if (I->capturesVariableByCopy()) { 171 assert(!FD->getType()->isAnyPointerType() && 172 "Not expecting a captured pointer."); 173 auto *Var = I->getCapturedVar(); 174 QualType VarTy = Var->getType(); 175 setAddrOfLocalVar(I->getCapturedVar(), 176 castValueFromUintptr(*this, FD->getType(), 177 Args[Cnt]->getName(), ArgLVal, 178 VarTy->isReferenceType())); 179 } else { 180 // If 'this' is captured, load it into CXXThisValue. 181 assert(I->capturesThis()); 182 CXXThisValue = 183 EmitLoadOfLValue(ArgLVal, Args[Cnt]->getLocation()).getScalarVal(); 184 } 185 ++Cnt, ++I; 186 } 187 188 PGO.assignRegionCounters(GlobalDecl(CD), F); 189 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 190 FinishFunction(CD->getBodyRBrace()); 191 192 return F; 193 } 194 195 //===----------------------------------------------------------------------===// 196 // OpenMP Directive Emission 197 //===----------------------------------------------------------------------===// 198 void CodeGenFunction::EmitOMPAggregateAssign( 199 Address DestAddr, Address SrcAddr, QualType OriginalType, 200 const llvm::function_ref<void(Address, Address)> &CopyGen) { 201 // Perform element-by-element initialization. 202 QualType ElementTy; 203 204 // Drill down to the base element type on both arrays. 205 auto ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 206 auto NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 207 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 208 209 auto SrcBegin = SrcAddr.getPointer(); 210 auto DestBegin = DestAddr.getPointer(); 211 // Cast from pointer to array type to pointer to single element. 212 auto DestEnd = Builder.CreateGEP(DestBegin, NumElements); 213 // The basic structure here is a while-do loop. 214 auto BodyBB = createBasicBlock("omp.arraycpy.body"); 215 auto DoneBB = createBasicBlock("omp.arraycpy.done"); 216 auto IsEmpty = 217 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 218 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 219 220 // Enter the loop body, making that address the current address. 221 auto EntryBB = Builder.GetInsertBlock(); 222 EmitBlock(BodyBB); 223 224 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 225 226 llvm::PHINode *SrcElementPHI = 227 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 228 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 229 Address SrcElementCurrent = 230 Address(SrcElementPHI, 231 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 232 233 llvm::PHINode *DestElementPHI = 234 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 235 DestElementPHI->addIncoming(DestBegin, EntryBB); 236 Address DestElementCurrent = 237 Address(DestElementPHI, 238 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 239 240 // Emit copy. 241 CopyGen(DestElementCurrent, SrcElementCurrent); 242 243 // Shift the address forward by one element. 244 auto DestElementNext = Builder.CreateConstGEP1_32( 245 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 246 auto SrcElementNext = Builder.CreateConstGEP1_32( 247 SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); 248 // Check whether we've reached the end. 249 auto Done = 250 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 251 Builder.CreateCondBr(Done, DoneBB, BodyBB); 252 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 253 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 254 255 // Done. 256 EmitBlock(DoneBB, /*IsFinished=*/true); 257 } 258 259 /// \brief Emit initialization of arrays of complex types. 260 /// \param DestAddr Address of the array. 261 /// \param Type Type of array. 262 /// \param Init Initial expression of array. 263 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr, 264 QualType Type, const Expr *Init) { 265 // Perform element-by-element initialization. 266 QualType ElementTy; 267 268 // Drill down to the base element type on both arrays. 269 auto ArrayTy = Type->getAsArrayTypeUnsafe(); 270 auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr); 271 DestAddr = 272 CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType()); 273 274 auto DestBegin = DestAddr.getPointer(); 275 // Cast from pointer to array type to pointer to single element. 276 auto DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements); 277 // The basic structure here is a while-do loop. 278 auto BodyBB = CGF.createBasicBlock("omp.arrayinit.body"); 279 auto DoneBB = CGF.createBasicBlock("omp.arrayinit.done"); 280 auto IsEmpty = 281 CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty"); 282 CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 283 284 // Enter the loop body, making that address the current address. 285 auto EntryBB = CGF.Builder.GetInsertBlock(); 286 CGF.EmitBlock(BodyBB); 287 288 CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy); 289 290 llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI( 291 DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 292 DestElementPHI->addIncoming(DestBegin, EntryBB); 293 Address DestElementCurrent = 294 Address(DestElementPHI, 295 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 296 297 // Emit copy. 298 { 299 CodeGenFunction::RunCleanupsScope InitScope(CGF); 300 CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(), 301 /*IsInitializer=*/false); 302 } 303 304 // Shift the address forward by one element. 305 auto DestElementNext = CGF.Builder.CreateConstGEP1_32( 306 DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); 307 // Check whether we've reached the end. 308 auto Done = 309 CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 310 CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB); 311 DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock()); 312 313 // Done. 314 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 315 } 316 317 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 318 Address SrcAddr, const VarDecl *DestVD, 319 const VarDecl *SrcVD, const Expr *Copy) { 320 if (OriginalType->isArrayType()) { 321 auto *BO = dyn_cast<BinaryOperator>(Copy); 322 if (BO && BO->getOpcode() == BO_Assign) { 323 // Perform simple memcpy for simple copying. 324 EmitAggregateAssign(DestAddr, SrcAddr, OriginalType); 325 } else { 326 // For arrays with complex element types perform element by element 327 // copying. 328 EmitOMPAggregateAssign( 329 DestAddr, SrcAddr, OriginalType, 330 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 331 // Working with the single array element, so have to remap 332 // destination and source variables to corresponding array 333 // elements. 334 CodeGenFunction::OMPPrivateScope Remap(*this); 335 Remap.addPrivate(DestVD, [DestElement]() -> Address { 336 return DestElement; 337 }); 338 Remap.addPrivate( 339 SrcVD, [SrcElement]() -> Address { return SrcElement; }); 340 (void)Remap.Privatize(); 341 EmitIgnoredExpr(Copy); 342 }); 343 } 344 } else { 345 // Remap pseudo source variable to private copy. 346 CodeGenFunction::OMPPrivateScope Remap(*this); 347 Remap.addPrivate(SrcVD, [SrcAddr]() -> Address { return SrcAddr; }); 348 Remap.addPrivate(DestVD, [DestAddr]() -> Address { return DestAddr; }); 349 (void)Remap.Privatize(); 350 // Emit copying of the whole variable. 351 EmitIgnoredExpr(Copy); 352 } 353 } 354 355 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 356 OMPPrivateScope &PrivateScope) { 357 if (!HaveInsertPoint()) 358 return false; 359 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 360 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 361 auto IRef = C->varlist_begin(); 362 auto InitsRef = C->inits().begin(); 363 for (auto IInit : C->private_copies()) { 364 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 365 if (EmittedAsFirstprivate.count(OrigVD) == 0) { 366 EmittedAsFirstprivate.insert(OrigVD); 367 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 368 auto *VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 369 bool IsRegistered; 370 DeclRefExpr DRE( 371 const_cast<VarDecl *>(OrigVD), 372 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 373 OrigVD) != nullptr, 374 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 375 Address OriginalAddr = EmitLValue(&DRE).getAddress(); 376 QualType Type = OrigVD->getType(); 377 if (Type->isArrayType()) { 378 // Emit VarDecl with copy init for arrays. 379 // Get the address of the original variable captured in current 380 // captured region. 381 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 382 auto Emission = EmitAutoVarAlloca(*VD); 383 auto *Init = VD->getInit(); 384 if (!isa<CXXConstructExpr>(Init) || isTrivialInitializer(Init)) { 385 // Perform simple memcpy. 386 EmitAggregateAssign(Emission.getAllocatedAddress(), OriginalAddr, 387 Type); 388 } else { 389 EmitOMPAggregateAssign( 390 Emission.getAllocatedAddress(), OriginalAddr, Type, 391 [this, VDInit, Init](Address DestElement, 392 Address SrcElement) { 393 // Clean up any temporaries needed by the initialization. 394 RunCleanupsScope InitScope(*this); 395 // Emit initialization for single element. 396 setAddrOfLocalVar(VDInit, SrcElement); 397 EmitAnyExprToMem(Init, DestElement, 398 Init->getType().getQualifiers(), 399 /*IsInitializer*/ false); 400 LocalDeclMap.erase(VDInit); 401 }); 402 } 403 EmitAutoVarCleanups(Emission); 404 return Emission.getAllocatedAddress(); 405 }); 406 } else { 407 IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> Address { 408 // Emit private VarDecl with copy init. 409 // Remap temp VDInit variable to the address of the original 410 // variable 411 // (for proper handling of captured global variables). 412 setAddrOfLocalVar(VDInit, OriginalAddr); 413 EmitDecl(*VD); 414 LocalDeclMap.erase(VDInit); 415 return GetAddrOfLocalVar(VD); 416 }); 417 } 418 assert(IsRegistered && 419 "firstprivate var already registered as private"); 420 // Silence the warning about unused variable. 421 (void)IsRegistered; 422 } 423 ++IRef, ++InitsRef; 424 } 425 } 426 return !EmittedAsFirstprivate.empty(); 427 } 428 429 void CodeGenFunction::EmitOMPPrivateClause( 430 const OMPExecutableDirective &D, 431 CodeGenFunction::OMPPrivateScope &PrivateScope) { 432 if (!HaveInsertPoint()) 433 return; 434 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 435 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 436 auto IRef = C->varlist_begin(); 437 for (auto IInit : C->private_copies()) { 438 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 439 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 440 auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 441 bool IsRegistered = 442 PrivateScope.addPrivate(OrigVD, [&]() -> Address { 443 // Emit private VarDecl with copy init. 444 EmitDecl(*VD); 445 return GetAddrOfLocalVar(VD); 446 }); 447 assert(IsRegistered && "private var already registered as private"); 448 // Silence the warning about unused variable. 449 (void)IsRegistered; 450 } 451 ++IRef; 452 } 453 } 454 } 455 456 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 457 if (!HaveInsertPoint()) 458 return false; 459 // threadprivate_var1 = master_threadprivate_var1; 460 // operator=(threadprivate_var2, master_threadprivate_var2); 461 // ... 462 // __kmpc_barrier(&loc, global_tid); 463 llvm::DenseSet<const VarDecl *> CopiedVars; 464 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 465 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 466 auto IRef = C->varlist_begin(); 467 auto ISrcRef = C->source_exprs().begin(); 468 auto IDestRef = C->destination_exprs().begin(); 469 for (auto *AssignOp : C->assignment_ops()) { 470 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 471 QualType Type = VD->getType(); 472 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 473 474 // Get the address of the master variable. If we are emitting code with 475 // TLS support, the address is passed from the master as field in the 476 // captured declaration. 477 Address MasterAddr = Address::invalid(); 478 if (getLangOpts().OpenMPUseTLS && 479 getContext().getTargetInfo().isTLSSupported()) { 480 assert(CapturedStmtInfo->lookup(VD) && 481 "Copyin threadprivates should have been captured!"); 482 DeclRefExpr DRE(const_cast<VarDecl *>(VD), true, (*IRef)->getType(), 483 VK_LValue, (*IRef)->getExprLoc()); 484 MasterAddr = EmitLValue(&DRE).getAddress(); 485 LocalDeclMap.erase(VD); 486 } else { 487 MasterAddr = 488 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 489 : CGM.GetAddrOfGlobal(VD), 490 getContext().getDeclAlign(VD)); 491 } 492 // Get the address of the threadprivate variable. 493 Address PrivateAddr = EmitLValue(*IRef).getAddress(); 494 if (CopiedVars.size() == 1) { 495 // At first check if current thread is a master thread. If it is, no 496 // need to copy data. 497 CopyBegin = createBasicBlock("copyin.not.master"); 498 CopyEnd = createBasicBlock("copyin.not.master.end"); 499 Builder.CreateCondBr( 500 Builder.CreateICmpNE( 501 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy), 502 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy)), 503 CopyBegin, CopyEnd); 504 EmitBlock(CopyBegin); 505 } 506 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 507 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 508 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 509 } 510 ++IRef; 511 ++ISrcRef; 512 ++IDestRef; 513 } 514 } 515 if (CopyEnd) { 516 // Exit out of copying procedure for non-master thread. 517 EmitBlock(CopyEnd, /*IsFinished=*/true); 518 return true; 519 } 520 return false; 521 } 522 523 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 524 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 525 if (!HaveInsertPoint()) 526 return false; 527 bool HasAtLeastOneLastprivate = false; 528 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 529 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 530 HasAtLeastOneLastprivate = true; 531 auto IRef = C->varlist_begin(); 532 auto IDestRef = C->destination_exprs().begin(); 533 for (auto *IInit : C->private_copies()) { 534 // Keep the address of the original variable for future update at the end 535 // of the loop. 536 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 537 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 538 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 539 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() -> Address { 540 DeclRefExpr DRE( 541 const_cast<VarDecl *>(OrigVD), 542 /*RefersToEnclosingVariableOrCapture=*/CapturedStmtInfo->lookup( 543 OrigVD) != nullptr, 544 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 545 return EmitLValue(&DRE).getAddress(); 546 }); 547 // Check if the variable is also a firstprivate: in this case IInit is 548 // not generated. Initialization of this variable will happen in codegen 549 // for 'firstprivate' clause. 550 if (IInit) { 551 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 552 bool IsRegistered = 553 PrivateScope.addPrivate(OrigVD, [&]() -> Address { 554 // Emit private VarDecl with copy init. 555 EmitDecl(*VD); 556 return GetAddrOfLocalVar(VD); 557 }); 558 assert(IsRegistered && 559 "lastprivate var already registered as private"); 560 (void)IsRegistered; 561 } 562 } 563 ++IRef, ++IDestRef; 564 } 565 } 566 return HasAtLeastOneLastprivate; 567 } 568 569 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 570 const OMPExecutableDirective &D, llvm::Value *IsLastIterCond) { 571 if (!HaveInsertPoint()) 572 return; 573 // Emit following code: 574 // if (<IsLastIterCond>) { 575 // orig_var1 = private_orig_var1; 576 // ... 577 // orig_varn = private_orig_varn; 578 // } 579 llvm::BasicBlock *ThenBB = nullptr; 580 llvm::BasicBlock *DoneBB = nullptr; 581 if (IsLastIterCond) { 582 ThenBB = createBasicBlock(".omp.lastprivate.then"); 583 DoneBB = createBasicBlock(".omp.lastprivate.done"); 584 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 585 EmitBlock(ThenBB); 586 } 587 llvm::DenseMap<const Decl *, const Expr *> LoopCountersAndUpdates; 588 const Expr *LastIterVal = nullptr; 589 const Expr *IVExpr = nullptr; 590 const Expr *IncExpr = nullptr; 591 if (auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 592 if (isOpenMPWorksharingDirective(D.getDirectiveKind())) { 593 LastIterVal = cast<VarDecl>(cast<DeclRefExpr>( 594 LoopDirective->getUpperBoundVariable()) 595 ->getDecl()) 596 ->getAnyInitializer(); 597 IVExpr = LoopDirective->getIterationVariable(); 598 IncExpr = LoopDirective->getInc(); 599 auto IUpdate = LoopDirective->updates().begin(); 600 for (auto *E : LoopDirective->counters()) { 601 auto *D = cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); 602 LoopCountersAndUpdates[D] = *IUpdate; 603 ++IUpdate; 604 } 605 } 606 } 607 { 608 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 609 bool FirstLCV = true; 610 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 611 auto IRef = C->varlist_begin(); 612 auto ISrcRef = C->source_exprs().begin(); 613 auto IDestRef = C->destination_exprs().begin(); 614 for (auto *AssignOp : C->assignment_ops()) { 615 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 616 QualType Type = PrivateVD->getType(); 617 auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 618 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 619 // If lastprivate variable is a loop control variable for loop-based 620 // directive, update its value before copyin back to original 621 // variable. 622 if (auto *UpExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) { 623 if (FirstLCV && LastIterVal) { 624 EmitAnyExprToMem(LastIterVal, EmitLValue(IVExpr).getAddress(), 625 IVExpr->getType().getQualifiers(), 626 /*IsInitializer=*/false); 627 EmitIgnoredExpr(IncExpr); 628 FirstLCV = false; 629 } 630 EmitIgnoredExpr(UpExpr); 631 } 632 auto *SrcVD = cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 633 auto *DestVD = cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 634 // Get the address of the original variable. 635 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 636 // Get the address of the private variable. 637 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 638 if (auto RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 639 PrivateAddr = 640 Address(Builder.CreateLoad(PrivateAddr), 641 getNaturalTypeAlignment(RefTy->getPointeeType())); 642 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 643 } 644 ++IRef; 645 ++ISrcRef; 646 ++IDestRef; 647 } 648 } 649 } 650 if (IsLastIterCond) { 651 EmitBlock(DoneBB, /*IsFinished=*/true); 652 } 653 } 654 655 void CodeGenFunction::EmitOMPReductionClauseInit( 656 const OMPExecutableDirective &D, 657 CodeGenFunction::OMPPrivateScope &PrivateScope) { 658 if (!HaveInsertPoint()) 659 return; 660 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 661 auto ILHS = C->lhs_exprs().begin(); 662 auto IRHS = C->rhs_exprs().begin(); 663 auto IPriv = C->privates().begin(); 664 for (auto IRef : C->varlists()) { 665 auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 666 auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 667 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 668 if (auto *OASE = dyn_cast<OMPArraySectionExpr>(IRef)) { 669 auto *Base = OASE->getBase()->IgnoreParenImpCasts(); 670 while (auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 671 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 672 while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 673 Base = TempASE->getBase()->IgnoreParenImpCasts(); 674 auto *DE = cast<DeclRefExpr>(Base); 675 auto *OrigVD = cast<VarDecl>(DE->getDecl()); 676 auto OASELValueLB = EmitOMPArraySectionExpr(OASE); 677 auto OASELValueUB = 678 EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false); 679 auto OriginalBaseLValue = EmitLValue(DE); 680 auto BaseLValue = OriginalBaseLValue; 681 auto *Zero = Builder.getInt64(/*C=*/0); 682 llvm::SmallVector<llvm::Value *, 4> Indexes; 683 Indexes.push_back(Zero); 684 auto *ItemTy = 685 OASELValueLB.getPointer()->getType()->getPointerElementType(); 686 auto *Ty = BaseLValue.getPointer()->getType()->getPointerElementType(); 687 while (Ty != ItemTy) { 688 Indexes.push_back(Zero); 689 Ty = Ty->getPointerElementType(); 690 } 691 BaseLValue = MakeAddrLValue( 692 Address(Builder.CreateInBoundsGEP(BaseLValue.getPointer(), Indexes), 693 OASELValueLB.getAlignment()), 694 OASELValueLB.getType(), OASELValueLB.getAlignmentSource()); 695 // Store the address of the original variable associated with the LHS 696 // implicit variable. 697 PrivateScope.addPrivate(LHSVD, [this, OASELValueLB]() -> Address { 698 return OASELValueLB.getAddress(); 699 }); 700 // Emit reduction copy. 701 bool IsRegistered = PrivateScope.addPrivate( 702 OrigVD, [this, PrivateVD, BaseLValue, OASELValueLB, OASELValueUB, 703 OriginalBaseLValue]() -> Address { 704 // Emit VarDecl with copy init for arrays. 705 // Get the address of the original variable captured in current 706 // captured region. 707 auto *Size = Builder.CreatePtrDiff(OASELValueUB.getPointer(), 708 OASELValueLB.getPointer()); 709 Size = Builder.CreateNUWAdd( 710 Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1)); 711 CodeGenFunction::OpaqueValueMapping OpaqueMap( 712 *this, cast<OpaqueValueExpr>( 713 getContext() 714 .getAsVariableArrayType(PrivateVD->getType()) 715 ->getSizeExpr()), 716 RValue::get(Size)); 717 EmitVariablyModifiedType(PrivateVD->getType()); 718 auto Emission = EmitAutoVarAlloca(*PrivateVD); 719 auto Addr = Emission.getAllocatedAddress(); 720 auto *Init = PrivateVD->getInit(); 721 EmitOMPAggregateInit(*this, Addr, PrivateVD->getType(), Init); 722 EmitAutoVarCleanups(Emission); 723 // Emit private VarDecl with reduction init. 724 auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(), 725 OASELValueLB.getPointer()); 726 auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset); 727 Ptr = Builder.CreatePointerBitCastOrAddrSpaceCast( 728 Ptr, OriginalBaseLValue.getPointer()->getType()); 729 return Address(Ptr, OriginalBaseLValue.getAlignment()); 730 }); 731 assert(IsRegistered && "private var already registered as private"); 732 // Silence the warning about unused variable. 733 (void)IsRegistered; 734 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 735 return GetAddrOfLocalVar(PrivateVD); 736 }); 737 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(IRef)) { 738 auto *Base = ASE->getBase()->IgnoreParenImpCasts(); 739 while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 740 Base = TempASE->getBase()->IgnoreParenImpCasts(); 741 auto *DE = cast<DeclRefExpr>(Base); 742 auto *OrigVD = cast<VarDecl>(DE->getDecl()); 743 auto ASELValue = EmitLValue(ASE); 744 auto OriginalBaseLValue = EmitLValue(DE); 745 auto BaseLValue = OriginalBaseLValue; 746 auto *Zero = Builder.getInt64(/*C=*/0); 747 llvm::SmallVector<llvm::Value *, 4> Indexes; 748 Indexes.push_back(Zero); 749 auto *ItemTy = 750 ASELValue.getPointer()->getType()->getPointerElementType(); 751 auto *Ty = BaseLValue.getPointer()->getType()->getPointerElementType(); 752 while (Ty != ItemTy) { 753 Indexes.push_back(Zero); 754 Ty = Ty->getPointerElementType(); 755 } 756 BaseLValue = MakeAddrLValue( 757 Address(Builder.CreateInBoundsGEP(BaseLValue.getPointer(), Indexes), 758 ASELValue.getAlignment()), 759 ASELValue.getType(), ASELValue.getAlignmentSource()); 760 // Store the address of the original variable associated with the LHS 761 // implicit variable. 762 PrivateScope.addPrivate(LHSVD, [this, ASELValue]() -> Address { 763 return ASELValue.getAddress(); 764 }); 765 // Emit reduction copy. 766 bool IsRegistered = PrivateScope.addPrivate( 767 OrigVD, [this, PrivateVD, BaseLValue, ASELValue, 768 OriginalBaseLValue]() -> Address { 769 // Emit private VarDecl with reduction init. 770 EmitDecl(*PrivateVD); 771 auto Addr = GetAddrOfLocalVar(PrivateVD); 772 auto *Offset = Builder.CreatePtrDiff(BaseLValue.getPointer(), 773 ASELValue.getPointer()); 774 auto *Ptr = Builder.CreateGEP(Addr.getPointer(), Offset); 775 Ptr = Builder.CreatePointerBitCastOrAddrSpaceCast( 776 Ptr, OriginalBaseLValue.getPointer()->getType()); 777 return Address(Ptr, OriginalBaseLValue.getAlignment()); 778 }); 779 assert(IsRegistered && "private var already registered as private"); 780 // Silence the warning about unused variable. 781 (void)IsRegistered; 782 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 783 return GetAddrOfLocalVar(PrivateVD); 784 }); 785 } else { 786 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 787 // Store the address of the original variable associated with the LHS 788 // implicit variable. 789 PrivateScope.addPrivate(LHSVD, [this, OrigVD, IRef]() -> Address { 790 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 791 CapturedStmtInfo->lookup(OrigVD) != nullptr, 792 IRef->getType(), VK_LValue, IRef->getExprLoc()); 793 return EmitLValue(&DRE).getAddress(); 794 }); 795 // Emit reduction copy. 796 bool IsRegistered = 797 PrivateScope.addPrivate(OrigVD, [this, PrivateVD]() -> Address { 798 // Emit private VarDecl with reduction init. 799 EmitDecl(*PrivateVD); 800 return GetAddrOfLocalVar(PrivateVD); 801 }); 802 assert(IsRegistered && "private var already registered as private"); 803 // Silence the warning about unused variable. 804 (void)IsRegistered; 805 PrivateScope.addPrivate(RHSVD, [this, PrivateVD]() -> Address { 806 return GetAddrOfLocalVar(PrivateVD); 807 }); 808 } 809 ++ILHS, ++IRHS, ++IPriv; 810 } 811 } 812 } 813 814 void CodeGenFunction::EmitOMPReductionClauseFinal( 815 const OMPExecutableDirective &D) { 816 if (!HaveInsertPoint()) 817 return; 818 llvm::SmallVector<const Expr *, 8> Privates; 819 llvm::SmallVector<const Expr *, 8> LHSExprs; 820 llvm::SmallVector<const Expr *, 8> RHSExprs; 821 llvm::SmallVector<const Expr *, 8> ReductionOps; 822 bool HasAtLeastOneReduction = false; 823 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 824 HasAtLeastOneReduction = true; 825 Privates.append(C->privates().begin(), C->privates().end()); 826 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 827 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 828 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 829 } 830 if (HasAtLeastOneReduction) { 831 // Emit nowait reduction if nowait clause is present or directive is a 832 // parallel directive (it always has implicit barrier). 833 CGM.getOpenMPRuntime().emitReduction( 834 *this, D.getLocEnd(), Privates, LHSExprs, RHSExprs, ReductionOps, 835 D.getSingleClause<OMPNowaitClause>() || 836 isOpenMPParallelDirective(D.getDirectiveKind()) || 837 D.getDirectiveKind() == OMPD_simd, 838 D.getDirectiveKind() == OMPD_simd); 839 } 840 } 841 842 static void emitCommonOMPParallelDirective(CodeGenFunction &CGF, 843 const OMPExecutableDirective &S, 844 OpenMPDirectiveKind InnermostKind, 845 const RegionCodeGenTy &CodeGen) { 846 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 847 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 848 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 849 auto OutlinedFn = CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 850 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 851 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 852 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 853 auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 854 /*IgnoreResultAssign*/ true); 855 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 856 CGF, NumThreads, NumThreadsClause->getLocStart()); 857 } 858 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 859 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 860 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 861 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getLocStart()); 862 } 863 const Expr *IfCond = nullptr; 864 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 865 if (C->getNameModifier() == OMPD_unknown || 866 C->getNameModifier() == OMPD_parallel) { 867 IfCond = C->getCondition(); 868 break; 869 } 870 } 871 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn, 872 CapturedVars, IfCond); 873 } 874 875 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 876 LexicalScope Scope(*this, S.getSourceRange()); 877 // Emit parallel region as a standalone region. 878 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 879 OMPPrivateScope PrivateScope(CGF); 880 bool Copyins = CGF.EmitOMPCopyinClause(S); 881 bool Firstprivates = CGF.EmitOMPFirstprivateClause(S, PrivateScope); 882 if (Copyins || Firstprivates) { 883 // Emit implicit barrier to synchronize threads and avoid data races on 884 // initialization of firstprivate variables or propagation master's thread 885 // values of threadprivate variables to local instances of that variables 886 // of all other implicit threads. 887 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 888 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 889 /*ForceSimpleCall=*/true); 890 } 891 CGF.EmitOMPPrivateClause(S, PrivateScope); 892 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 893 (void)PrivateScope.Privatize(); 894 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 895 CGF.EmitOMPReductionClauseFinal(S); 896 }; 897 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen); 898 } 899 900 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 901 JumpDest LoopExit) { 902 RunCleanupsScope BodyScope(*this); 903 // Update counters values on current iteration. 904 for (auto I : D.updates()) { 905 EmitIgnoredExpr(I); 906 } 907 // Update the linear variables. 908 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 909 for (auto U : C->updates()) { 910 EmitIgnoredExpr(U); 911 } 912 } 913 914 // On a continue in the body, jump to the end. 915 auto Continue = getJumpDestInCurrentScope("omp.body.continue"); 916 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 917 // Emit loop body. 918 EmitStmt(D.getBody()); 919 // The end (updates/cleanups). 920 EmitBlock(Continue.getBlock()); 921 BreakContinueStack.pop_back(); 922 // TODO: Update lastprivates if the SeparateIter flag is true. 923 // This will be implemented in a follow-up OMPLastprivateClause patch, but 924 // result should be still correct without it, as we do not make these 925 // variables private yet. 926 } 927 928 void CodeGenFunction::EmitOMPInnerLoop( 929 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 930 const Expr *IncExpr, 931 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 932 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen) { 933 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 934 935 // Start the loop with a block that tests the condition. 936 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 937 EmitBlock(CondBlock); 938 LoopStack.push(CondBlock); 939 940 // If there are any cleanups between here and the loop-exit scope, 941 // create a block to stage a loop exit along. 942 auto ExitBlock = LoopExit.getBlock(); 943 if (RequiresCleanup) 944 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 945 946 auto LoopBody = createBasicBlock("omp.inner.for.body"); 947 948 // Emit condition. 949 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 950 if (ExitBlock != LoopExit.getBlock()) { 951 EmitBlock(ExitBlock); 952 EmitBranchThroughCleanup(LoopExit); 953 } 954 955 EmitBlock(LoopBody); 956 incrementProfileCounter(&S); 957 958 // Create a block for the increment. 959 auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 960 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 961 962 BodyGen(*this); 963 964 // Emit "IV = IV + 1" and a back-edge to the condition block. 965 EmitBlock(Continue.getBlock()); 966 EmitIgnoredExpr(IncExpr); 967 PostIncGen(*this); 968 BreakContinueStack.pop_back(); 969 EmitBranch(CondBlock); 970 LoopStack.pop(); 971 // Emit the fall-through block. 972 EmitBlock(LoopExit.getBlock()); 973 } 974 975 void CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 976 if (!HaveInsertPoint()) 977 return; 978 // Emit inits for the linear variables. 979 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 980 for (auto Init : C->inits()) { 981 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 982 auto *OrigVD = cast<VarDecl>( 983 cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())->getDecl()); 984 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 985 CapturedStmtInfo->lookup(OrigVD) != nullptr, 986 VD->getInit()->getType(), VK_LValue, 987 VD->getInit()->getExprLoc()); 988 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 989 EmitExprAsInit(&DRE, VD, 990 MakeAddrLValue(Emission.getAllocatedAddress(), VD->getType()), 991 /*capturedByInit=*/false); 992 EmitAutoVarCleanups(Emission); 993 } 994 // Emit the linear steps for the linear clauses. 995 // If a step is not constant, it is pre-calculated before the loop. 996 if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 997 if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 998 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 999 // Emit calculation of the linear step. 1000 EmitIgnoredExpr(CS); 1001 } 1002 } 1003 } 1004 1005 static void emitLinearClauseFinal(CodeGenFunction &CGF, 1006 const OMPLoopDirective &D) { 1007 if (!CGF.HaveInsertPoint()) 1008 return; 1009 // Emit the final values of the linear variables. 1010 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1011 auto IC = C->varlist_begin(); 1012 for (auto F : C->finals()) { 1013 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 1014 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1015 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 1016 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1017 Address OrigAddr = CGF.EmitLValue(&DRE).getAddress(); 1018 CodeGenFunction::OMPPrivateScope VarScope(CGF); 1019 VarScope.addPrivate(OrigVD, 1020 [OrigAddr]() -> Address { return OrigAddr; }); 1021 (void)VarScope.Privatize(); 1022 CGF.EmitIgnoredExpr(F); 1023 ++IC; 1024 } 1025 } 1026 } 1027 1028 static void emitAlignedClause(CodeGenFunction &CGF, 1029 const OMPExecutableDirective &D) { 1030 if (!CGF.HaveInsertPoint()) 1031 return; 1032 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 1033 unsigned ClauseAlignment = 0; 1034 if (auto AlignmentExpr = Clause->getAlignment()) { 1035 auto AlignmentCI = 1036 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 1037 ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue()); 1038 } 1039 for (auto E : Clause->varlists()) { 1040 unsigned Alignment = ClauseAlignment; 1041 if (Alignment == 0) { 1042 // OpenMP [2.8.1, Description] 1043 // If no optional parameter is specified, implementation-defined default 1044 // alignments for SIMD instructions on the target platforms are assumed. 1045 Alignment = 1046 CGF.getContext() 1047 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 1048 E->getType()->getPointeeType())) 1049 .getQuantity(); 1050 } 1051 assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) && 1052 "alignment is not power of 2"); 1053 if (Alignment != 0) { 1054 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 1055 CGF.EmitAlignmentAssumption(PtrValue, Alignment); 1056 } 1057 } 1058 } 1059 } 1060 1061 static void emitPrivateLoopCounters(CodeGenFunction &CGF, 1062 CodeGenFunction::OMPPrivateScope &LoopScope, 1063 ArrayRef<Expr *> Counters, 1064 ArrayRef<Expr *> PrivateCounters) { 1065 if (!CGF.HaveInsertPoint()) 1066 return; 1067 auto I = PrivateCounters.begin(); 1068 for (auto *E : Counters) { 1069 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1070 auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 1071 Address Addr = Address::invalid(); 1072 (void)LoopScope.addPrivate(PrivateVD, [&]() -> Address { 1073 // Emit var without initialization. 1074 auto VarEmission = CGF.EmitAutoVarAlloca(*PrivateVD); 1075 CGF.EmitAutoVarCleanups(VarEmission); 1076 Addr = VarEmission.getAllocatedAddress(); 1077 return Addr; 1078 }); 1079 (void)LoopScope.addPrivate(VD, [&]() -> Address { return Addr; }); 1080 ++I; 1081 } 1082 } 1083 1084 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 1085 const Expr *Cond, llvm::BasicBlock *TrueBlock, 1086 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 1087 if (!CGF.HaveInsertPoint()) 1088 return; 1089 { 1090 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 1091 emitPrivateLoopCounters(CGF, PreCondScope, S.counters(), 1092 S.private_counters()); 1093 (void)PreCondScope.Privatize(); 1094 // Get initial values of real counters. 1095 for (auto I : S.inits()) { 1096 CGF.EmitIgnoredExpr(I); 1097 } 1098 } 1099 // Check that loop is executed at least one time. 1100 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 1101 } 1102 1103 static void 1104 emitPrivateLinearVars(CodeGenFunction &CGF, const OMPExecutableDirective &D, 1105 CodeGenFunction::OMPPrivateScope &PrivateScope) { 1106 if (!CGF.HaveInsertPoint()) 1107 return; 1108 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1109 auto CurPrivate = C->privates().begin(); 1110 for (auto *E : C->varlists()) { 1111 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1112 auto *PrivateVD = 1113 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 1114 bool IsRegistered = PrivateScope.addPrivate(VD, [&]() -> Address { 1115 // Emit private VarDecl with copy init. 1116 CGF.EmitVarDecl(*PrivateVD); 1117 return CGF.GetAddrOfLocalVar(PrivateVD); 1118 }); 1119 assert(IsRegistered && "linear var already registered as private"); 1120 // Silence the warning about unused variable. 1121 (void)IsRegistered; 1122 ++CurPrivate; 1123 } 1124 } 1125 } 1126 1127 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 1128 const OMPExecutableDirective &D) { 1129 if (!CGF.HaveInsertPoint()) 1130 return; 1131 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 1132 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 1133 /*ignoreResult=*/true); 1134 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1135 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1136 // In presence of finite 'safelen', it may be unsafe to mark all 1137 // the memory instructions parallel, because loop-carried 1138 // dependences of 'safelen' iterations are possible. 1139 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 1140 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 1141 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 1142 /*ignoreResult=*/true); 1143 llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 1144 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 1145 // In presence of finite 'safelen', it may be unsafe to mark all 1146 // the memory instructions parallel, because loop-carried 1147 // dependences of 'safelen' iterations are possible. 1148 CGF.LoopStack.setParallel(false); 1149 } 1150 } 1151 1152 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D) { 1153 // Walk clauses and process safelen/lastprivate. 1154 LoopStack.setParallel(); 1155 LoopStack.setVectorizeEnable(true); 1156 emitSimdlenSafelenClause(*this, D); 1157 } 1158 1159 void CodeGenFunction::EmitOMPSimdFinal(const OMPLoopDirective &D) { 1160 if (!HaveInsertPoint()) 1161 return; 1162 auto IC = D.counters().begin(); 1163 for (auto F : D.finals()) { 1164 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 1165 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD)) { 1166 DeclRefExpr DRE(const_cast<VarDecl *>(OrigVD), 1167 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1168 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 1169 Address OrigAddr = EmitLValue(&DRE).getAddress(); 1170 OMPPrivateScope VarScope(*this); 1171 VarScope.addPrivate(OrigVD, 1172 [OrigAddr]() -> Address { return OrigAddr; }); 1173 (void)VarScope.Privatize(); 1174 EmitIgnoredExpr(F); 1175 } 1176 ++IC; 1177 } 1178 emitLinearClauseFinal(*this, D); 1179 } 1180 1181 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 1182 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1183 // if (PreCond) { 1184 // for (IV in 0..LastIteration) BODY; 1185 // <Final counter/linear vars updates>; 1186 // } 1187 // 1188 1189 // Emit: if (PreCond) - begin. 1190 // If the condition constant folds and can be elided, avoid emitting the 1191 // whole loop. 1192 bool CondConstant; 1193 llvm::BasicBlock *ContBlock = nullptr; 1194 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1195 if (!CondConstant) 1196 return; 1197 } else { 1198 auto *ThenBlock = CGF.createBasicBlock("simd.if.then"); 1199 ContBlock = CGF.createBasicBlock("simd.if.end"); 1200 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 1201 CGF.getProfileCount(&S)); 1202 CGF.EmitBlock(ThenBlock); 1203 CGF.incrementProfileCounter(&S); 1204 } 1205 1206 // Emit the loop iteration variable. 1207 const Expr *IVExpr = S.getIterationVariable(); 1208 const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 1209 CGF.EmitVarDecl(*IVDecl); 1210 CGF.EmitIgnoredExpr(S.getInit()); 1211 1212 // Emit the iterations count variable. 1213 // If it is not a variable, Sema decided to calculate iterations count on 1214 // each iteration (e.g., it is foldable into a constant). 1215 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1216 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1217 // Emit calculation of the iterations count. 1218 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 1219 } 1220 1221 CGF.EmitOMPSimdInit(S); 1222 1223 emitAlignedClause(CGF, S); 1224 CGF.EmitOMPLinearClauseInit(S); 1225 bool HasLastprivateClause; 1226 { 1227 OMPPrivateScope LoopScope(CGF); 1228 emitPrivateLoopCounters(CGF, LoopScope, S.counters(), 1229 S.private_counters()); 1230 emitPrivateLinearVars(CGF, S, LoopScope); 1231 CGF.EmitOMPPrivateClause(S, LoopScope); 1232 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1233 HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1234 (void)LoopScope.Privatize(); 1235 CGF.EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1236 S.getInc(), 1237 [&S](CodeGenFunction &CGF) { 1238 CGF.EmitOMPLoopBody(S, JumpDest()); 1239 CGF.EmitStopPoint(&S); 1240 }, 1241 [](CodeGenFunction &) {}); 1242 // Emit final copy of the lastprivate variables at the end of loops. 1243 if (HasLastprivateClause) { 1244 CGF.EmitOMPLastprivateClauseFinal(S); 1245 } 1246 CGF.EmitOMPReductionClauseFinal(S); 1247 } 1248 CGF.EmitOMPSimdFinal(S); 1249 // Emit: if (PreCond) - end. 1250 if (ContBlock) { 1251 CGF.EmitBranch(ContBlock); 1252 CGF.EmitBlock(ContBlock, true); 1253 } 1254 }; 1255 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1256 } 1257 1258 void CodeGenFunction::EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind, 1259 const OMPLoopDirective &S, 1260 OMPPrivateScope &LoopScope, 1261 bool Ordered, Address LB, 1262 Address UB, Address ST, 1263 Address IL, llvm::Value *Chunk) { 1264 auto &RT = CGM.getOpenMPRuntime(); 1265 1266 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 1267 const bool DynamicOrOrdered = Ordered || RT.isDynamic(ScheduleKind); 1268 1269 assert((Ordered || 1270 !RT.isStaticNonchunked(ScheduleKind, /*Chunked=*/Chunk != nullptr)) && 1271 "static non-chunked schedule does not need outer loop"); 1272 1273 // Emit outer loop. 1274 // 1275 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1276 // When schedule(dynamic,chunk_size) is specified, the iterations are 1277 // distributed to threads in the team in chunks as the threads request them. 1278 // Each thread executes a chunk of iterations, then requests another chunk, 1279 // until no chunks remain to be distributed. Each chunk contains chunk_size 1280 // iterations, except for the last chunk to be distributed, which may have 1281 // fewer iterations. When no chunk_size is specified, it defaults to 1. 1282 // 1283 // When schedule(guided,chunk_size) is specified, the iterations are assigned 1284 // to threads in the team in chunks as the executing threads request them. 1285 // Each thread executes a chunk of iterations, then requests another chunk, 1286 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 1287 // each chunk is proportional to the number of unassigned iterations divided 1288 // by the number of threads in the team, decreasing to 1. For a chunk_size 1289 // with value k (greater than 1), the size of each chunk is determined in the 1290 // same way, with the restriction that the chunks do not contain fewer than k 1291 // iterations (except for the last chunk to be assigned, which may have fewer 1292 // than k iterations). 1293 // 1294 // When schedule(auto) is specified, the decision regarding scheduling is 1295 // delegated to the compiler and/or runtime system. The programmer gives the 1296 // implementation the freedom to choose any possible mapping of iterations to 1297 // threads in the team. 1298 // 1299 // When schedule(runtime) is specified, the decision regarding scheduling is 1300 // deferred until run time, and the schedule and chunk size are taken from the 1301 // run-sched-var ICV. If the ICV is set to auto, the schedule is 1302 // implementation defined 1303 // 1304 // while(__kmpc_dispatch_next(&LB, &UB)) { 1305 // idx = LB; 1306 // while (idx <= UB) { BODY; ++idx; 1307 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 1308 // } // inner loop 1309 // } 1310 // 1311 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1312 // When schedule(static, chunk_size) is specified, iterations are divided into 1313 // chunks of size chunk_size, and the chunks are assigned to the threads in 1314 // the team in a round-robin fashion in the order of the thread number. 1315 // 1316 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 1317 // while (idx <= UB) { BODY; ++idx; } // inner loop 1318 // LB = LB + ST; 1319 // UB = UB + ST; 1320 // } 1321 // 1322 1323 const Expr *IVExpr = S.getIterationVariable(); 1324 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1325 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1326 1327 if (DynamicOrOrdered) { 1328 llvm::Value *UBVal = EmitScalarExpr(S.getLastIteration()); 1329 RT.emitForDispatchInit(*this, S.getLocStart(), ScheduleKind, 1330 IVSize, IVSigned, Ordered, UBVal, Chunk); 1331 } else { 1332 RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, 1333 IVSize, IVSigned, Ordered, IL, LB, UB, ST, Chunk); 1334 } 1335 1336 auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 1337 1338 // Start the loop with a block that tests the condition. 1339 auto CondBlock = createBasicBlock("omp.dispatch.cond"); 1340 EmitBlock(CondBlock); 1341 LoopStack.push(CondBlock); 1342 1343 llvm::Value *BoolCondVal = nullptr; 1344 if (!DynamicOrOrdered) { 1345 // UB = min(UB, GlobalUB) 1346 EmitIgnoredExpr(S.getEnsureUpperBound()); 1347 // IV = LB 1348 EmitIgnoredExpr(S.getInit()); 1349 // IV < UB 1350 BoolCondVal = EvaluateExprAsBool(S.getCond()); 1351 } else { 1352 BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned, 1353 IL, LB, UB, ST); 1354 } 1355 1356 // If there are any cleanups between here and the loop-exit scope, 1357 // create a block to stage a loop exit along. 1358 auto ExitBlock = LoopExit.getBlock(); 1359 if (LoopScope.requiresCleanups()) 1360 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 1361 1362 auto LoopBody = createBasicBlock("omp.dispatch.body"); 1363 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 1364 if (ExitBlock != LoopExit.getBlock()) { 1365 EmitBlock(ExitBlock); 1366 EmitBranchThroughCleanup(LoopExit); 1367 } 1368 EmitBlock(LoopBody); 1369 1370 // Emit "IV = LB" (in case of static schedule, we have already calculated new 1371 // LB for loop condition and emitted it above). 1372 if (DynamicOrOrdered) 1373 EmitIgnoredExpr(S.getInit()); 1374 1375 // Create a block for the increment. 1376 auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 1377 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1378 1379 // Generate !llvm.loop.parallel metadata for loads and stores for loops 1380 // with dynamic/guided scheduling and without ordered clause. 1381 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 1382 LoopStack.setParallel((ScheduleKind == OMPC_SCHEDULE_dynamic || 1383 ScheduleKind == OMPC_SCHEDULE_guided) && 1384 !Ordered); 1385 } else { 1386 EmitOMPSimdInit(S); 1387 } 1388 1389 SourceLocation Loc = S.getLocStart(); 1390 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 1391 [&S, LoopExit](CodeGenFunction &CGF) { 1392 CGF.EmitOMPLoopBody(S, LoopExit); 1393 CGF.EmitStopPoint(&S); 1394 }, 1395 [Ordered, IVSize, IVSigned, Loc](CodeGenFunction &CGF) { 1396 if (Ordered) { 1397 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd( 1398 CGF, Loc, IVSize, IVSigned); 1399 } 1400 }); 1401 1402 EmitBlock(Continue.getBlock()); 1403 BreakContinueStack.pop_back(); 1404 if (!DynamicOrOrdered) { 1405 // Emit "LB = LB + Stride", "UB = UB + Stride". 1406 EmitIgnoredExpr(S.getNextLowerBound()); 1407 EmitIgnoredExpr(S.getNextUpperBound()); 1408 } 1409 1410 EmitBranch(CondBlock); 1411 LoopStack.pop(); 1412 // Emit the fall-through block. 1413 EmitBlock(LoopExit.getBlock()); 1414 1415 // Tell the runtime we are done. 1416 if (!DynamicOrOrdered) 1417 RT.emitForStaticFinish(*this, S.getLocEnd()); 1418 } 1419 1420 /// \brief Emit a helper variable and return corresponding lvalue. 1421 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 1422 const DeclRefExpr *Helper) { 1423 auto VDecl = cast<VarDecl>(Helper->getDecl()); 1424 CGF.EmitVarDecl(*VDecl); 1425 return CGF.EmitLValue(Helper); 1426 } 1427 1428 static std::pair<llvm::Value * /*Chunk*/, OpenMPScheduleClauseKind> 1429 emitScheduleClause(CodeGenFunction &CGF, const OMPLoopDirective &S, 1430 bool OuterRegion) { 1431 // Detect the loop schedule kind and chunk. 1432 auto ScheduleKind = OMPC_SCHEDULE_unknown; 1433 llvm::Value *Chunk = nullptr; 1434 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 1435 ScheduleKind = C->getScheduleKind(); 1436 if (const auto *Ch = C->getChunkSize()) { 1437 if (auto *ImpRef = cast_or_null<DeclRefExpr>(C->getHelperChunkSize())) { 1438 if (OuterRegion) { 1439 const VarDecl *ImpVar = cast<VarDecl>(ImpRef->getDecl()); 1440 CGF.EmitVarDecl(*ImpVar); 1441 CGF.EmitStoreThroughLValue( 1442 CGF.EmitAnyExpr(Ch), 1443 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(ImpVar), 1444 ImpVar->getType())); 1445 } else { 1446 Ch = ImpRef; 1447 } 1448 } 1449 if (!C->getHelperChunkSize() || !OuterRegion) { 1450 Chunk = CGF.EmitScalarExpr(Ch); 1451 Chunk = CGF.EmitScalarConversion(Chunk, Ch->getType(), 1452 S.getIterationVariable()->getType(), 1453 S.getLocStart()); 1454 } 1455 } 1456 } 1457 return std::make_pair(Chunk, ScheduleKind); 1458 } 1459 1460 bool CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) { 1461 // Emit the loop iteration variable. 1462 auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 1463 auto IVDecl = cast<VarDecl>(IVExpr->getDecl()); 1464 EmitVarDecl(*IVDecl); 1465 1466 // Emit the iterations count variable. 1467 // If it is not a variable, Sema decided to calculate iterations count on each 1468 // iteration (e.g., it is foldable into a constant). 1469 if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 1470 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 1471 // Emit calculation of the iterations count. 1472 EmitIgnoredExpr(S.getCalcLastIteration()); 1473 } 1474 1475 auto &RT = CGM.getOpenMPRuntime(); 1476 1477 bool HasLastprivateClause; 1478 // Check pre-condition. 1479 { 1480 // Skip the entire loop if we don't meet the precondition. 1481 // If the condition constant folds and can be elided, avoid emitting the 1482 // whole loop. 1483 bool CondConstant; 1484 llvm::BasicBlock *ContBlock = nullptr; 1485 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 1486 if (!CondConstant) 1487 return false; 1488 } else { 1489 auto *ThenBlock = createBasicBlock("omp.precond.then"); 1490 ContBlock = createBasicBlock("omp.precond.end"); 1491 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 1492 getProfileCount(&S)); 1493 EmitBlock(ThenBlock); 1494 incrementProfileCounter(&S); 1495 } 1496 1497 emitAlignedClause(*this, S); 1498 EmitOMPLinearClauseInit(S); 1499 // Emit 'then' code. 1500 { 1501 // Emit helper vars inits. 1502 LValue LB = 1503 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable())); 1504 LValue UB = 1505 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable())); 1506 LValue ST = 1507 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 1508 LValue IL = 1509 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 1510 1511 OMPPrivateScope LoopScope(*this); 1512 if (EmitOMPFirstprivateClause(S, LoopScope)) { 1513 // Emit implicit barrier to synchronize threads and avoid data races on 1514 // initialization of firstprivate variables. 1515 CGM.getOpenMPRuntime().emitBarrierCall( 1516 *this, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 1517 /*ForceSimpleCall=*/true); 1518 } 1519 EmitOMPPrivateClause(S, LoopScope); 1520 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 1521 EmitOMPReductionClauseInit(S, LoopScope); 1522 emitPrivateLoopCounters(*this, LoopScope, S.counters(), 1523 S.private_counters()); 1524 emitPrivateLinearVars(*this, S, LoopScope); 1525 (void)LoopScope.Privatize(); 1526 1527 // Detect the loop schedule kind and chunk. 1528 llvm::Value *Chunk; 1529 OpenMPScheduleClauseKind ScheduleKind; 1530 auto ScheduleInfo = 1531 emitScheduleClause(*this, S, /*OuterRegion=*/false); 1532 Chunk = ScheduleInfo.first; 1533 ScheduleKind = ScheduleInfo.second; 1534 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 1535 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 1536 const bool Ordered = S.getSingleClause<OMPOrderedClause>() != nullptr; 1537 if (RT.isStaticNonchunked(ScheduleKind, 1538 /* Chunked */ Chunk != nullptr) && 1539 !Ordered) { 1540 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 1541 EmitOMPSimdInit(S); 1542 } 1543 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 1544 // When no chunk_size is specified, the iteration space is divided into 1545 // chunks that are approximately equal in size, and at most one chunk is 1546 // distributed to each thread. Note that the size of the chunks is 1547 // unspecified in this case. 1548 RT.emitForStaticInit(*this, S.getLocStart(), ScheduleKind, 1549 IVSize, IVSigned, Ordered, 1550 IL.getAddress(), LB.getAddress(), 1551 UB.getAddress(), ST.getAddress()); 1552 auto LoopExit = getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 1553 // UB = min(UB, GlobalUB); 1554 EmitIgnoredExpr(S.getEnsureUpperBound()); 1555 // IV = LB; 1556 EmitIgnoredExpr(S.getInit()); 1557 // while (idx <= UB) { BODY; ++idx; } 1558 EmitOMPInnerLoop(S, LoopScope.requiresCleanups(), S.getCond(), 1559 S.getInc(), 1560 [&S, LoopExit](CodeGenFunction &CGF) { 1561 CGF.EmitOMPLoopBody(S, LoopExit); 1562 CGF.EmitStopPoint(&S); 1563 }, 1564 [](CodeGenFunction &) {}); 1565 EmitBlock(LoopExit.getBlock()); 1566 // Tell the runtime we are done. 1567 RT.emitForStaticFinish(*this, S.getLocStart()); 1568 } else { 1569 // Emit the outer loop, which requests its work chunk [LB..UB] from 1570 // runtime and runs the inner loop to process it. 1571 EmitOMPForOuterLoop(ScheduleKind, S, LoopScope, Ordered, 1572 LB.getAddress(), UB.getAddress(), ST.getAddress(), 1573 IL.getAddress(), Chunk); 1574 } 1575 EmitOMPReductionClauseFinal(S); 1576 // Emit final copy of the lastprivate variables if IsLastIter != 0. 1577 if (HasLastprivateClause) 1578 EmitOMPLastprivateClauseFinal( 1579 S, Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getLocStart()))); 1580 } 1581 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 1582 EmitOMPSimdFinal(S); 1583 } 1584 // We're now done with the loop, so jump to the continuation block. 1585 if (ContBlock) { 1586 EmitBranch(ContBlock); 1587 EmitBlock(ContBlock, true); 1588 } 1589 } 1590 return HasLastprivateClause; 1591 } 1592 1593 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 1594 LexicalScope Scope(*this, S.getSourceRange()); 1595 bool HasLastprivates = false; 1596 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) { 1597 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 1598 }; 1599 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 1600 S.hasCancel()); 1601 1602 // Emit an implicit barrier at the end. 1603 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 1604 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 1605 } 1606 } 1607 1608 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 1609 LexicalScope Scope(*this, S.getSourceRange()); 1610 bool HasLastprivates = false; 1611 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF) { 1612 HasLastprivates = CGF.EmitOMPWorksharingLoop(S); 1613 }; 1614 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 1615 1616 // Emit an implicit barrier at the end. 1617 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) { 1618 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for); 1619 } 1620 } 1621 1622 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 1623 const Twine &Name, 1624 llvm::Value *Init = nullptr) { 1625 auto LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 1626 if (Init) 1627 CGF.EmitScalarInit(Init, LVal); 1628 return LVal; 1629 } 1630 1631 OpenMPDirectiveKind 1632 CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 1633 auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt(); 1634 auto *CS = dyn_cast<CompoundStmt>(Stmt); 1635 if (CS && CS->size() > 1) { 1636 bool HasLastprivates = false; 1637 auto &&CodeGen = [&S, CS, &HasLastprivates](CodeGenFunction &CGF) { 1638 auto &C = CGF.CGM.getContext(); 1639 auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 1640 // Emit helper vars inits. 1641 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 1642 CGF.Builder.getInt32(0)); 1643 auto *GlobalUBVal = CGF.Builder.getInt32(CS->size() - 1); 1644 LValue UB = 1645 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 1646 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 1647 CGF.Builder.getInt32(1)); 1648 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 1649 CGF.Builder.getInt32(0)); 1650 // Loop counter. 1651 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 1652 OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 1653 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 1654 OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue); 1655 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 1656 // Generate condition for loop. 1657 BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue, 1658 OK_Ordinary, S.getLocStart(), 1659 /*fpContractable=*/false); 1660 // Increment for loop counter. 1661 UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, 1662 OK_Ordinary, S.getLocStart()); 1663 auto BodyGen = [CS, &S, &IV](CodeGenFunction &CGF) { 1664 // Iterate through all sections and emit a switch construct: 1665 // switch (IV) { 1666 // case 0: 1667 // <SectionStmt[0]>; 1668 // break; 1669 // ... 1670 // case <NumSection> - 1: 1671 // <SectionStmt[<NumSection> - 1]>; 1672 // break; 1673 // } 1674 // .omp.sections.exit: 1675 auto *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 1676 auto *SwitchStmt = CGF.Builder.CreateSwitch( 1677 CGF.EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB, 1678 CS->size()); 1679 unsigned CaseNumber = 0; 1680 for (auto *SubStmt : CS->children()) { 1681 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 1682 CGF.EmitBlock(CaseBB); 1683 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 1684 CGF.EmitStmt(SubStmt); 1685 CGF.EmitBranch(ExitBB); 1686 ++CaseNumber; 1687 } 1688 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1689 }; 1690 1691 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 1692 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 1693 // Emit implicit barrier to synchronize threads and avoid data races on 1694 // initialization of firstprivate variables. 1695 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1696 CGF, S.getLocStart(), OMPD_unknown, /*EmitChecks=*/false, 1697 /*ForceSimpleCall=*/true); 1698 } 1699 CGF.EmitOMPPrivateClause(S, LoopScope); 1700 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 1701 CGF.EmitOMPReductionClauseInit(S, LoopScope); 1702 (void)LoopScope.Privatize(); 1703 1704 // Emit static non-chunked loop. 1705 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 1706 CGF, S.getLocStart(), OMPC_SCHEDULE_static, /*IVSize=*/32, 1707 /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(), 1708 LB.getAddress(), UB.getAddress(), ST.getAddress()); 1709 // UB = min(UB, GlobalUB); 1710 auto *UBVal = CGF.EmitLoadOfScalar(UB, S.getLocStart()); 1711 auto *MinUBGlobalUB = CGF.Builder.CreateSelect( 1712 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 1713 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 1714 // IV = LB; 1715 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getLocStart()), IV); 1716 // while (idx <= UB) { BODY; ++idx; } 1717 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen, 1718 [](CodeGenFunction &) {}); 1719 // Tell the runtime we are done. 1720 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getLocStart()); 1721 CGF.EmitOMPReductionClauseFinal(S); 1722 1723 // Emit final copy of the lastprivate variables if IsLastIter != 0. 1724 if (HasLastprivates) 1725 CGF.EmitOMPLastprivateClauseFinal( 1726 S, CGF.Builder.CreateIsNotNull( 1727 CGF.EmitLoadOfScalar(IL, S.getLocStart()))); 1728 }; 1729 1730 bool HasCancel = false; 1731 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 1732 HasCancel = OSD->hasCancel(); 1733 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 1734 HasCancel = OPSD->hasCancel(); 1735 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 1736 HasCancel); 1737 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 1738 // clause. Otherwise the barrier will be generated by the codegen for the 1739 // directive. 1740 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 1741 // Emit implicit barrier to synchronize threads and avoid data races on 1742 // initialization of firstprivate variables. 1743 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), 1744 OMPD_unknown); 1745 } 1746 return OMPD_sections; 1747 } 1748 // If only one section is found - no need to generate loop, emit as a single 1749 // region. 1750 bool HasFirstprivates; 1751 // No need to generate reductions for sections with single section region, we 1752 // can use original shared variables for all operations. 1753 bool HasReductions = S.hasClausesOfKind<OMPReductionClause>(); 1754 // No need to generate lastprivates for sections with single section region, 1755 // we can use original shared variable for all calculations with barrier at 1756 // the end of the sections. 1757 bool HasLastprivates = S.hasClausesOfKind<OMPLastprivateClause>(); 1758 auto &&CodeGen = [Stmt, &S, &HasFirstprivates](CodeGenFunction &CGF) { 1759 CodeGenFunction::OMPPrivateScope SingleScope(CGF); 1760 HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope); 1761 CGF.EmitOMPPrivateClause(S, SingleScope); 1762 (void)SingleScope.Privatize(); 1763 1764 CGF.EmitStmt(Stmt); 1765 }; 1766 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(), 1767 llvm::None, llvm::None, llvm::None, 1768 llvm::None); 1769 // Emit barrier for firstprivates, lastprivates or reductions only if 1770 // 'sections' directive has 'nowait' clause. Otherwise the barrier will be 1771 // generated by the codegen for the directive. 1772 if ((HasFirstprivates || HasLastprivates || HasReductions) && 1773 S.getSingleClause<OMPNowaitClause>()) { 1774 // Emit implicit barrier to synchronize threads and avoid data races on 1775 // initialization of firstprivate variables. 1776 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_unknown, 1777 /*EmitChecks=*/false, 1778 /*ForceSimpleCall=*/true); 1779 } 1780 return OMPD_single; 1781 } 1782 1783 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 1784 LexicalScope Scope(*this, S.getSourceRange()); 1785 OpenMPDirectiveKind EmittedAs = EmitSections(S); 1786 // Emit an implicit barrier at the end. 1787 if (!S.getSingleClause<OMPNowaitClause>()) { 1788 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), EmittedAs); 1789 } 1790 } 1791 1792 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 1793 LexicalScope Scope(*this, S.getSourceRange()); 1794 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1795 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1796 }; 1797 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_section, CodeGen, 1798 S.hasCancel()); 1799 } 1800 1801 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 1802 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 1803 llvm::SmallVector<const Expr *, 8> DestExprs; 1804 llvm::SmallVector<const Expr *, 8> SrcExprs; 1805 llvm::SmallVector<const Expr *, 8> AssignmentOps; 1806 // Check if there are any 'copyprivate' clauses associated with this 1807 // 'single' 1808 // construct. 1809 // Build a list of copyprivate variables along with helper expressions 1810 // (<source>, <destination>, <destination>=<source> expressions) 1811 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 1812 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 1813 DestExprs.append(C->destination_exprs().begin(), 1814 C->destination_exprs().end()); 1815 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 1816 AssignmentOps.append(C->assignment_ops().begin(), 1817 C->assignment_ops().end()); 1818 } 1819 LexicalScope Scope(*this, S.getSourceRange()); 1820 // Emit code for 'single' region along with 'copyprivate' clauses 1821 bool HasFirstprivates; 1822 auto &&CodeGen = [&S, &HasFirstprivates](CodeGenFunction &CGF) { 1823 CodeGenFunction::OMPPrivateScope SingleScope(CGF); 1824 HasFirstprivates = CGF.EmitOMPFirstprivateClause(S, SingleScope); 1825 CGF.EmitOMPPrivateClause(S, SingleScope); 1826 (void)SingleScope.Privatize(); 1827 1828 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1829 }; 1830 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getLocStart(), 1831 CopyprivateVars, DestExprs, SrcExprs, 1832 AssignmentOps); 1833 // Emit an implicit barrier at the end (to avoid data race on firstprivate 1834 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 1835 if ((!S.getSingleClause<OMPNowaitClause>() || HasFirstprivates) && 1836 CopyprivateVars.empty()) { 1837 CGM.getOpenMPRuntime().emitBarrierCall( 1838 *this, S.getLocStart(), 1839 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 1840 } 1841 } 1842 1843 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 1844 LexicalScope Scope(*this, S.getSourceRange()); 1845 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1846 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1847 }; 1848 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getLocStart()); 1849 } 1850 1851 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 1852 LexicalScope Scope(*this, S.getSourceRange()); 1853 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1854 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 1855 }; 1856 Expr *Hint = nullptr; 1857 if (auto *HintClause = S.getSingleClause<OMPHintClause>()) 1858 Hint = HintClause->getHint(); 1859 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 1860 S.getDirectiveName().getAsString(), 1861 CodeGen, S.getLocStart(), Hint); 1862 } 1863 1864 void CodeGenFunction::EmitOMPParallelForDirective( 1865 const OMPParallelForDirective &S) { 1866 // Emit directive as a combined directive that consists of two implicit 1867 // directives: 'parallel' with 'for' directive. 1868 LexicalScope Scope(*this, S.getSourceRange()); 1869 (void)emitScheduleClause(*this, S, /*OuterRegion=*/true); 1870 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1871 CGF.EmitOMPWorksharingLoop(S); 1872 }; 1873 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen); 1874 } 1875 1876 void CodeGenFunction::EmitOMPParallelForSimdDirective( 1877 const OMPParallelForSimdDirective &S) { 1878 // Emit directive as a combined directive that consists of two implicit 1879 // directives: 'parallel' with 'for' directive. 1880 LexicalScope Scope(*this, S.getSourceRange()); 1881 (void)emitScheduleClause(*this, S, /*OuterRegion=*/true); 1882 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1883 CGF.EmitOMPWorksharingLoop(S); 1884 }; 1885 emitCommonOMPParallelDirective(*this, S, OMPD_simd, CodeGen); 1886 } 1887 1888 void CodeGenFunction::EmitOMPParallelSectionsDirective( 1889 const OMPParallelSectionsDirective &S) { 1890 // Emit directive as a combined directive that consists of two implicit 1891 // directives: 'parallel' with 'sections' directive. 1892 LexicalScope Scope(*this, S.getSourceRange()); 1893 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 1894 (void)CGF.EmitSections(S); 1895 }; 1896 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen); 1897 } 1898 1899 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 1900 // Emit outlined function for task construct. 1901 LexicalScope Scope(*this, S.getSourceRange()); 1902 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 1903 auto CapturedStruct = GenerateCapturedStmtArgument(*CS); 1904 auto *I = CS->getCapturedDecl()->param_begin(); 1905 auto *PartId = std::next(I); 1906 // The first function argument for tasks is a thread id, the second one is a 1907 // part id (0 for tied tasks, >=0 for untied task). 1908 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 1909 // Get list of private variables. 1910 llvm::SmallVector<const Expr *, 8> PrivateVars; 1911 llvm::SmallVector<const Expr *, 8> PrivateCopies; 1912 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 1913 auto IRef = C->varlist_begin(); 1914 for (auto *IInit : C->private_copies()) { 1915 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1916 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 1917 PrivateVars.push_back(*IRef); 1918 PrivateCopies.push_back(IInit); 1919 } 1920 ++IRef; 1921 } 1922 } 1923 EmittedAsPrivate.clear(); 1924 // Get list of firstprivate variables. 1925 llvm::SmallVector<const Expr *, 8> FirstprivateVars; 1926 llvm::SmallVector<const Expr *, 8> FirstprivateCopies; 1927 llvm::SmallVector<const Expr *, 8> FirstprivateInits; 1928 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 1929 auto IRef = C->varlist_begin(); 1930 auto IElemInitRef = C->inits().begin(); 1931 for (auto *IInit : C->private_copies()) { 1932 auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1933 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 1934 FirstprivateVars.push_back(*IRef); 1935 FirstprivateCopies.push_back(IInit); 1936 FirstprivateInits.push_back(*IElemInitRef); 1937 } 1938 ++IRef, ++IElemInitRef; 1939 } 1940 } 1941 // Build list of dependences. 1942 llvm::SmallVector<std::pair<OpenMPDependClauseKind, const Expr *>, 8> 1943 Dependences; 1944 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 1945 for (auto *IRef : C->varlists()) { 1946 Dependences.push_back(std::make_pair(C->getDependencyKind(), IRef)); 1947 } 1948 } 1949 auto &&CodeGen = [PartId, &S, &PrivateVars, &FirstprivateVars]( 1950 CodeGenFunction &CGF) { 1951 // Set proper addresses for generated private copies. 1952 auto *CS = cast<CapturedStmt>(S.getAssociatedStmt()); 1953 OMPPrivateScope Scope(CGF); 1954 if (!PrivateVars.empty() || !FirstprivateVars.empty()) { 1955 auto *CopyFn = CGF.Builder.CreateLoad( 1956 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(3))); 1957 auto *PrivatesPtr = CGF.Builder.CreateLoad( 1958 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(2))); 1959 // Map privates. 1960 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> 1961 PrivatePtrs; 1962 llvm::SmallVector<llvm::Value *, 16> CallArgs; 1963 CallArgs.push_back(PrivatesPtr); 1964 for (auto *E : PrivateVars) { 1965 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1966 Address PrivatePtr = 1967 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType())); 1968 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 1969 CallArgs.push_back(PrivatePtr.getPointer()); 1970 } 1971 for (auto *E : FirstprivateVars) { 1972 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 1973 Address PrivatePtr = 1974 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType())); 1975 PrivatePtrs.push_back(std::make_pair(VD, PrivatePtr)); 1976 CallArgs.push_back(PrivatePtr.getPointer()); 1977 } 1978 CGF.EmitRuntimeCall(CopyFn, CallArgs); 1979 for (auto &&Pair : PrivatePtrs) { 1980 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 1981 CGF.getContext().getDeclAlign(Pair.first)); 1982 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 1983 } 1984 } 1985 (void)Scope.Privatize(); 1986 if (*PartId) { 1987 // TODO: emit code for untied tasks. 1988 } 1989 CGF.EmitStmt(CS->getCapturedStmt()); 1990 }; 1991 auto OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 1992 S, *I, OMPD_task, CodeGen); 1993 // Check if we should emit tied or untied task. 1994 bool Tied = !S.getSingleClause<OMPUntiedClause>(); 1995 // Check if the task is final 1996 llvm::PointerIntPair<llvm::Value *, 1, bool> Final; 1997 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 1998 // If the condition constant folds and can be elided, try to avoid emitting 1999 // the condition and the dead arm of the if/else. 2000 auto *Cond = Clause->getCondition(); 2001 bool CondConstant; 2002 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 2003 Final.setInt(CondConstant); 2004 else 2005 Final.setPointer(EvaluateExprAsBool(Cond)); 2006 } else { 2007 // By default the task is not final. 2008 Final.setInt(/*IntVal=*/false); 2009 } 2010 auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 2011 const Expr *IfCond = nullptr; 2012 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2013 if (C->getNameModifier() == OMPD_unknown || 2014 C->getNameModifier() == OMPD_task) { 2015 IfCond = C->getCondition(); 2016 break; 2017 } 2018 } 2019 CGM.getOpenMPRuntime().emitTaskCall( 2020 *this, S.getLocStart(), S, Tied, Final, OutlinedFn, SharedsTy, 2021 CapturedStruct, IfCond, PrivateVars, PrivateCopies, FirstprivateVars, 2022 FirstprivateCopies, FirstprivateInits, Dependences); 2023 } 2024 2025 void CodeGenFunction::EmitOMPTaskyieldDirective( 2026 const OMPTaskyieldDirective &S) { 2027 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart()); 2028 } 2029 2030 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 2031 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier); 2032 } 2033 2034 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 2035 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getLocStart()); 2036 } 2037 2038 void CodeGenFunction::EmitOMPTaskgroupDirective( 2039 const OMPTaskgroupDirective &S) { 2040 LexicalScope Scope(*this, S.getSourceRange()); 2041 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 2042 CGF.EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2043 }; 2044 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getLocStart()); 2045 } 2046 2047 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 2048 CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> { 2049 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) { 2050 return llvm::makeArrayRef(FlushClause->varlist_begin(), 2051 FlushClause->varlist_end()); 2052 } 2053 return llvm::None; 2054 }(), S.getLocStart()); 2055 } 2056 2057 void CodeGenFunction::EmitOMPDistributeDirective( 2058 const OMPDistributeDirective &S) { 2059 llvm_unreachable("CodeGen for 'omp distribute' is not supported yet."); 2060 } 2061 2062 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 2063 const CapturedStmt *S) { 2064 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 2065 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 2066 CGF.CapturedStmtInfo = &CapStmtInfo; 2067 auto *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S); 2068 Fn->addFnAttr(llvm::Attribute::NoInline); 2069 return Fn; 2070 } 2071 2072 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 2073 if (!S.getAssociatedStmt()) 2074 return; 2075 LexicalScope Scope(*this, S.getSourceRange()); 2076 auto *C = S.getSingleClause<OMPSIMDClause>(); 2077 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF) { 2078 if (C) { 2079 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2080 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 2081 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 2082 auto *OutlinedFn = emitOutlinedOrderedFunction(CGM, CS); 2083 CGF.EmitNounwindRuntimeCall(OutlinedFn, CapturedVars); 2084 } else { 2085 CGF.EmitStmt( 2086 cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt()); 2087 } 2088 }; 2089 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getLocStart(), !C); 2090 } 2091 2092 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 2093 QualType SrcType, QualType DestType, 2094 SourceLocation Loc) { 2095 assert(CGF.hasScalarEvaluationKind(DestType) && 2096 "DestType must have scalar evaluation kind."); 2097 assert(!Val.isAggregate() && "Must be a scalar or complex."); 2098 return Val.isScalar() 2099 ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType, 2100 Loc) 2101 : CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType, 2102 DestType, Loc); 2103 } 2104 2105 static CodeGenFunction::ComplexPairTy 2106 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 2107 QualType DestType, SourceLocation Loc) { 2108 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 2109 "DestType must have complex evaluation kind."); 2110 CodeGenFunction::ComplexPairTy ComplexVal; 2111 if (Val.isScalar()) { 2112 // Convert the input element to the element type of the complex. 2113 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 2114 auto ScalarVal = CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 2115 DestElementType, Loc); 2116 ComplexVal = CodeGenFunction::ComplexPairTy( 2117 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 2118 } else { 2119 assert(Val.isComplex() && "Must be a scalar or complex."); 2120 auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 2121 auto DestElementType = DestType->castAs<ComplexType>()->getElementType(); 2122 ComplexVal.first = CGF.EmitScalarConversion( 2123 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 2124 ComplexVal.second = CGF.EmitScalarConversion( 2125 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 2126 } 2127 return ComplexVal; 2128 } 2129 2130 static void emitSimpleAtomicStore(CodeGenFunction &CGF, bool IsSeqCst, 2131 LValue LVal, RValue RVal) { 2132 if (LVal.isGlobalReg()) { 2133 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 2134 } else { 2135 CGF.EmitAtomicStore(RVal, LVal, IsSeqCst ? llvm::SequentiallyConsistent 2136 : llvm::Monotonic, 2137 LVal.isVolatile(), /*IsInit=*/false); 2138 } 2139 } 2140 2141 static void emitSimpleStore(CodeGenFunction &CGF, LValue LVal, RValue RVal, 2142 QualType RValTy, SourceLocation Loc) { 2143 switch (CGF.getEvaluationKind(LVal.getType())) { 2144 case TEK_Scalar: 2145 CGF.EmitStoreThroughLValue(RValue::get(convertToScalarValue( 2146 CGF, RVal, RValTy, LVal.getType(), Loc)), 2147 LVal); 2148 break; 2149 case TEK_Complex: 2150 CGF.EmitStoreOfComplex( 2151 convertToComplexValue(CGF, RVal, RValTy, LVal.getType(), Loc), LVal, 2152 /*isInit=*/false); 2153 break; 2154 case TEK_Aggregate: 2155 llvm_unreachable("Must be a scalar or complex."); 2156 } 2157 } 2158 2159 static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst, 2160 const Expr *X, const Expr *V, 2161 SourceLocation Loc) { 2162 // v = x; 2163 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 2164 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 2165 LValue XLValue = CGF.EmitLValue(X); 2166 LValue VLValue = CGF.EmitLValue(V); 2167 RValue Res = XLValue.isGlobalReg() 2168 ? CGF.EmitLoadOfLValue(XLValue, Loc) 2169 : CGF.EmitAtomicLoad(XLValue, Loc, 2170 IsSeqCst ? llvm::SequentiallyConsistent 2171 : llvm::Monotonic, 2172 XLValue.isVolatile()); 2173 // OpenMP, 2.12.6, atomic Construct 2174 // Any atomic construct with a seq_cst clause forces the atomically 2175 // performed operation to include an implicit flush operation without a 2176 // list. 2177 if (IsSeqCst) 2178 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2179 emitSimpleStore(CGF, VLValue, Res, X->getType().getNonReferenceType(), Loc); 2180 } 2181 2182 static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst, 2183 const Expr *X, const Expr *E, 2184 SourceLocation Loc) { 2185 // x = expr; 2186 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 2187 emitSimpleAtomicStore(CGF, IsSeqCst, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 2188 // OpenMP, 2.12.6, atomic Construct 2189 // Any atomic construct with a seq_cst clause forces the atomically 2190 // performed operation to include an implicit flush operation without a 2191 // list. 2192 if (IsSeqCst) 2193 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2194 } 2195 2196 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 2197 RValue Update, 2198 BinaryOperatorKind BO, 2199 llvm::AtomicOrdering AO, 2200 bool IsXLHSInRHSPart) { 2201 auto &Context = CGF.CGM.getContext(); 2202 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 2203 // expression is simple and atomic is allowed for the given type for the 2204 // target platform. 2205 if (BO == BO_Comma || !Update.isScalar() || 2206 !Update.getScalarVal()->getType()->isIntegerTy() || 2207 !X.isSimple() || (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 2208 (Update.getScalarVal()->getType() != 2209 X.getAddress().getElementType())) || 2210 !X.getAddress().getElementType()->isIntegerTy() || 2211 !Context.getTargetInfo().hasBuiltinAtomic( 2212 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 2213 return std::make_pair(false, RValue::get(nullptr)); 2214 2215 llvm::AtomicRMWInst::BinOp RMWOp; 2216 switch (BO) { 2217 case BO_Add: 2218 RMWOp = llvm::AtomicRMWInst::Add; 2219 break; 2220 case BO_Sub: 2221 if (!IsXLHSInRHSPart) 2222 return std::make_pair(false, RValue::get(nullptr)); 2223 RMWOp = llvm::AtomicRMWInst::Sub; 2224 break; 2225 case BO_And: 2226 RMWOp = llvm::AtomicRMWInst::And; 2227 break; 2228 case BO_Or: 2229 RMWOp = llvm::AtomicRMWInst::Or; 2230 break; 2231 case BO_Xor: 2232 RMWOp = llvm::AtomicRMWInst::Xor; 2233 break; 2234 case BO_LT: 2235 RMWOp = X.getType()->hasSignedIntegerRepresentation() 2236 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 2237 : llvm::AtomicRMWInst::Max) 2238 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 2239 : llvm::AtomicRMWInst::UMax); 2240 break; 2241 case BO_GT: 2242 RMWOp = X.getType()->hasSignedIntegerRepresentation() 2243 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 2244 : llvm::AtomicRMWInst::Min) 2245 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 2246 : llvm::AtomicRMWInst::UMin); 2247 break; 2248 case BO_Assign: 2249 RMWOp = llvm::AtomicRMWInst::Xchg; 2250 break; 2251 case BO_Mul: 2252 case BO_Div: 2253 case BO_Rem: 2254 case BO_Shl: 2255 case BO_Shr: 2256 case BO_LAnd: 2257 case BO_LOr: 2258 return std::make_pair(false, RValue::get(nullptr)); 2259 case BO_PtrMemD: 2260 case BO_PtrMemI: 2261 case BO_LE: 2262 case BO_GE: 2263 case BO_EQ: 2264 case BO_NE: 2265 case BO_AddAssign: 2266 case BO_SubAssign: 2267 case BO_AndAssign: 2268 case BO_OrAssign: 2269 case BO_XorAssign: 2270 case BO_MulAssign: 2271 case BO_DivAssign: 2272 case BO_RemAssign: 2273 case BO_ShlAssign: 2274 case BO_ShrAssign: 2275 case BO_Comma: 2276 llvm_unreachable("Unsupported atomic update operation"); 2277 } 2278 auto *UpdateVal = Update.getScalarVal(); 2279 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 2280 UpdateVal = CGF.Builder.CreateIntCast( 2281 IC, X.getAddress().getElementType(), 2282 X.getType()->hasSignedIntegerRepresentation()); 2283 } 2284 auto *Res = CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(), UpdateVal, AO); 2285 return std::make_pair(true, RValue::get(Res)); 2286 } 2287 2288 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 2289 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2290 llvm::AtomicOrdering AO, SourceLocation Loc, 2291 const llvm::function_ref<RValue(RValue)> &CommonGen) { 2292 // Update expressions are allowed to have the following forms: 2293 // x binop= expr; -> xrval + expr; 2294 // x++, ++x -> xrval + 1; 2295 // x--, --x -> xrval - 1; 2296 // x = x binop expr; -> xrval binop expr 2297 // x = expr Op x; - > expr binop xrval; 2298 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 2299 if (!Res.first) { 2300 if (X.isGlobalReg()) { 2301 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 2302 // 'xrval'. 2303 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 2304 } else { 2305 // Perform compare-and-swap procedure. 2306 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 2307 } 2308 } 2309 return Res; 2310 } 2311 2312 static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst, 2313 const Expr *X, const Expr *E, 2314 const Expr *UE, bool IsXLHSInRHSPart, 2315 SourceLocation Loc) { 2316 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 2317 "Update expr in 'atomic update' must be a binary operator."); 2318 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 2319 // Update expressions are allowed to have the following forms: 2320 // x binop= expr; -> xrval + expr; 2321 // x++, ++x -> xrval + 1; 2322 // x--, --x -> xrval - 1; 2323 // x = x binop expr; -> xrval binop expr 2324 // x = expr Op x; - > expr binop xrval; 2325 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 2326 LValue XLValue = CGF.EmitLValue(X); 2327 RValue ExprRValue = CGF.EmitAnyExpr(E); 2328 auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic; 2329 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 2330 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 2331 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 2332 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 2333 auto Gen = 2334 [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) -> RValue { 2335 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 2336 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 2337 return CGF.EmitAnyExpr(UE); 2338 }; 2339 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 2340 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 2341 // OpenMP, 2.12.6, atomic Construct 2342 // Any atomic construct with a seq_cst clause forces the atomically 2343 // performed operation to include an implicit flush operation without a 2344 // list. 2345 if (IsSeqCst) 2346 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2347 } 2348 2349 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 2350 QualType SourceType, QualType ResType, 2351 SourceLocation Loc) { 2352 switch (CGF.getEvaluationKind(ResType)) { 2353 case TEK_Scalar: 2354 return RValue::get( 2355 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 2356 case TEK_Complex: { 2357 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 2358 return RValue::getComplex(Res.first, Res.second); 2359 } 2360 case TEK_Aggregate: 2361 break; 2362 } 2363 llvm_unreachable("Must be a scalar or complex."); 2364 } 2365 2366 static void EmitOMPAtomicCaptureExpr(CodeGenFunction &CGF, bool IsSeqCst, 2367 bool IsPostfixUpdate, const Expr *V, 2368 const Expr *X, const Expr *E, 2369 const Expr *UE, bool IsXLHSInRHSPart, 2370 SourceLocation Loc) { 2371 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 2372 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 2373 RValue NewVVal; 2374 LValue VLValue = CGF.EmitLValue(V); 2375 LValue XLValue = CGF.EmitLValue(X); 2376 RValue ExprRValue = CGF.EmitAnyExpr(E); 2377 auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic; 2378 QualType NewVValType; 2379 if (UE) { 2380 // 'x' is updated with some additional value. 2381 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 2382 "Update expr in 'atomic capture' must be a binary operator."); 2383 auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 2384 // Update expressions are allowed to have the following forms: 2385 // x binop= expr; -> xrval + expr; 2386 // x++, ++x -> xrval + 1; 2387 // x--, --x -> xrval - 1; 2388 // x = x binop expr; -> xrval binop expr 2389 // x = expr Op x; - > expr binop xrval; 2390 auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 2391 auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 2392 auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 2393 NewVValType = XRValExpr->getType(); 2394 auto *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 2395 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 2396 IsSeqCst, IsPostfixUpdate](RValue XRValue) -> RValue { 2397 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 2398 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 2399 RValue Res = CGF.EmitAnyExpr(UE); 2400 NewVVal = IsPostfixUpdate ? XRValue : Res; 2401 return Res; 2402 }; 2403 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 2404 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 2405 if (Res.first) { 2406 // 'atomicrmw' instruction was generated. 2407 if (IsPostfixUpdate) { 2408 // Use old value from 'atomicrmw'. 2409 NewVVal = Res.second; 2410 } else { 2411 // 'atomicrmw' does not provide new value, so evaluate it using old 2412 // value of 'x'. 2413 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 2414 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 2415 NewVVal = CGF.EmitAnyExpr(UE); 2416 } 2417 } 2418 } else { 2419 // 'x' is simply rewritten with some 'expr'. 2420 NewVValType = X->getType().getNonReferenceType(); 2421 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 2422 X->getType().getNonReferenceType(), Loc); 2423 auto &&Gen = [&CGF, &NewVVal, ExprRValue](RValue XRValue) -> RValue { 2424 NewVVal = XRValue; 2425 return ExprRValue; 2426 }; 2427 // Try to perform atomicrmw xchg, otherwise simple exchange. 2428 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 2429 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 2430 Loc, Gen); 2431 if (Res.first) { 2432 // 'atomicrmw' instruction was generated. 2433 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 2434 } 2435 } 2436 // Emit post-update store to 'v' of old/new 'x' value. 2437 emitSimpleStore(CGF, VLValue, NewVVal, NewVValType, Loc); 2438 // OpenMP, 2.12.6, atomic Construct 2439 // Any atomic construct with a seq_cst clause forces the atomically 2440 // performed operation to include an implicit flush operation without a 2441 // list. 2442 if (IsSeqCst) 2443 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc); 2444 } 2445 2446 static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 2447 bool IsSeqCst, bool IsPostfixUpdate, 2448 const Expr *X, const Expr *V, const Expr *E, 2449 const Expr *UE, bool IsXLHSInRHSPart, 2450 SourceLocation Loc) { 2451 switch (Kind) { 2452 case OMPC_read: 2453 EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc); 2454 break; 2455 case OMPC_write: 2456 EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc); 2457 break; 2458 case OMPC_unknown: 2459 case OMPC_update: 2460 EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc); 2461 break; 2462 case OMPC_capture: 2463 EmitOMPAtomicCaptureExpr(CGF, IsSeqCst, IsPostfixUpdate, V, X, E, UE, 2464 IsXLHSInRHSPart, Loc); 2465 break; 2466 case OMPC_if: 2467 case OMPC_final: 2468 case OMPC_num_threads: 2469 case OMPC_private: 2470 case OMPC_firstprivate: 2471 case OMPC_lastprivate: 2472 case OMPC_reduction: 2473 case OMPC_safelen: 2474 case OMPC_simdlen: 2475 case OMPC_collapse: 2476 case OMPC_default: 2477 case OMPC_seq_cst: 2478 case OMPC_shared: 2479 case OMPC_linear: 2480 case OMPC_aligned: 2481 case OMPC_copyin: 2482 case OMPC_copyprivate: 2483 case OMPC_flush: 2484 case OMPC_proc_bind: 2485 case OMPC_schedule: 2486 case OMPC_ordered: 2487 case OMPC_nowait: 2488 case OMPC_untied: 2489 case OMPC_threadprivate: 2490 case OMPC_depend: 2491 case OMPC_mergeable: 2492 case OMPC_device: 2493 case OMPC_threads: 2494 case OMPC_simd: 2495 case OMPC_map: 2496 case OMPC_num_teams: 2497 case OMPC_thread_limit: 2498 case OMPC_priority: 2499 case OMPC_grainsize: 2500 case OMPC_nogroup: 2501 case OMPC_num_tasks: 2502 case OMPC_hint: 2503 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 2504 } 2505 } 2506 2507 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 2508 bool IsSeqCst = S.getSingleClause<OMPSeqCstClause>(); 2509 OpenMPClauseKind Kind = OMPC_unknown; 2510 for (auto *C : S.clauses()) { 2511 // Find first clause (skip seq_cst clause, if it is first). 2512 if (C->getClauseKind() != OMPC_seq_cst) { 2513 Kind = C->getClauseKind(); 2514 break; 2515 } 2516 } 2517 2518 const auto *CS = 2519 S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 2520 if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS)) { 2521 enterFullExpression(EWC); 2522 } 2523 // Processing for statements under 'atomic capture'. 2524 if (const auto *Compound = dyn_cast<CompoundStmt>(CS)) { 2525 for (const auto *C : Compound->body()) { 2526 if (const auto *EWC = dyn_cast<ExprWithCleanups>(C)) { 2527 enterFullExpression(EWC); 2528 } 2529 } 2530 } 2531 2532 LexicalScope Scope(*this, S.getSourceRange()); 2533 auto &&CodeGen = [&S, Kind, IsSeqCst, CS](CodeGenFunction &CGF) { 2534 CGF.EmitStopPoint(CS); 2535 EmitOMPAtomicExpr(CGF, Kind, IsSeqCst, S.isPostfixUpdate(), S.getX(), 2536 S.getV(), S.getExpr(), S.getUpdateExpr(), 2537 S.isXLHSInRHSPart(), S.getLocStart()); 2538 }; 2539 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_atomic, CodeGen); 2540 } 2541 2542 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 2543 LexicalScope Scope(*this, S.getSourceRange()); 2544 const CapturedStmt &CS = *cast<CapturedStmt>(S.getAssociatedStmt()); 2545 2546 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 2547 GenerateOpenMPCapturedVars(CS, CapturedVars); 2548 2549 // Emit target region as a standalone region. 2550 auto &&CodeGen = [&CS](CodeGenFunction &CGF) { 2551 CGF.EmitStmt(CS.getCapturedStmt()); 2552 }; 2553 2554 // Obtain the target region outlined function. 2555 llvm::Value *Fn = 2556 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, CodeGen); 2557 2558 // Check if we have any if clause associated with the directive. 2559 const Expr *IfCond = nullptr; 2560 2561 if (auto *C = S.getSingleClause<OMPIfClause>()) { 2562 IfCond = C->getCondition(); 2563 } 2564 2565 // Check if we have any device clause associated with the directive. 2566 const Expr *Device = nullptr; 2567 if (auto *C = S.getSingleClause<OMPDeviceClause>()) { 2568 Device = C->getDevice(); 2569 } 2570 2571 CGM.getOpenMPRuntime().emitTargetCall(*this, S, Fn, IfCond, Device, 2572 CapturedVars); 2573 } 2574 2575 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &) { 2576 llvm_unreachable("CodeGen for 'omp teams' is not supported yet."); 2577 } 2578 2579 void CodeGenFunction::EmitOMPCancellationPointDirective( 2580 const OMPCancellationPointDirective &S) { 2581 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getLocStart(), 2582 S.getCancelRegion()); 2583 } 2584 2585 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 2586 const Expr *IfCond = nullptr; 2587 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2588 if (C->getNameModifier() == OMPD_unknown || 2589 C->getNameModifier() == OMPD_cancel) { 2590 IfCond = C->getCondition(); 2591 break; 2592 } 2593 } 2594 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getLocStart(), IfCond, 2595 S.getCancelRegion()); 2596 } 2597 2598 CodeGenFunction::JumpDest 2599 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 2600 if (Kind == OMPD_parallel || Kind == OMPD_task) 2601 return ReturnBlock; 2602 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 2603 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for); 2604 return BreakContinueStack.back().BreakBlock; 2605 } 2606 2607 // Generate the instructions for '#pragma omp target data' directive. 2608 void CodeGenFunction::EmitOMPTargetDataDirective( 2609 const OMPTargetDataDirective &S) { 2610 // emit the code inside the construct for now 2611 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2612 CGM.getOpenMPRuntime().emitInlinedDirective( 2613 *this, OMPD_target_data, 2614 [&CS](CodeGenFunction &CGF) { CGF.EmitStmt(CS->getCapturedStmt()); }); 2615 } 2616 2617 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 2618 // emit the code inside the construct for now 2619 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2620 CGM.getOpenMPRuntime().emitInlinedDirective( 2621 *this, OMPD_taskloop, 2622 [&CS](CodeGenFunction &CGF) { CGF.EmitStmt(CS->getCapturedStmt()); }); 2623 } 2624 2625 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 2626 const OMPTaskLoopSimdDirective &S) { 2627 // emit the code inside the construct for now 2628 auto CS = cast<CapturedStmt>(S.getAssociatedStmt()); 2629 CGM.getOpenMPRuntime().emitInlinedDirective( 2630 *this, OMPD_taskloop_simd, 2631 [&CS](CodeGenFunction &CGF) { CGF.EmitStmt(CS->getCapturedStmt()); }); 2632 } 2633 2634