Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/MachineBasicBlock.h ------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Collect the sequence of machine instructions for a basic block.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
     15 #define LLVM_CODEGEN_MACHINEBASICBLOCK_H
     16 
     17 #include "llvm/ADT/GraphTraits.h"
     18 #include "llvm/CodeGen/MachineInstr.h"
     19 #include "llvm/Support/BranchProbability.h"
     20 #include "llvm/MC/MCRegisterInfo.h"
     21 #include "llvm/Support/DataTypes.h"
     22 #include <functional>
     23 
     24 namespace llvm {
     25 
     26 class Pass;
     27 class BasicBlock;
     28 class MachineFunction;
     29 class MCSymbol;
     30 class MIPrinter;
     31 class SlotIndexes;
     32 class StringRef;
     33 class raw_ostream;
     34 class MachineBranchProbabilityInfo;
     35 
     36 // Forward declaration to avoid circular include problem with TargetRegisterInfo
     37 typedef unsigned LaneBitmask;
     38 
     39 template <>
     40 struct ilist_traits<MachineInstr> : public ilist_default_traits<MachineInstr> {
     41 private:
     42   mutable ilist_half_node<MachineInstr> Sentinel;
     43 
     44   // this is only set by the MachineBasicBlock owning the LiveList
     45   friend class MachineBasicBlock;
     46   MachineBasicBlock* Parent;
     47 
     48 public:
     49   MachineInstr *createSentinel() const {
     50     return static_cast<MachineInstr*>(&Sentinel);
     51   }
     52   void destroySentinel(MachineInstr *) const {}
     53 
     54   MachineInstr *provideInitialHead() const { return createSentinel(); }
     55   MachineInstr *ensureHead(MachineInstr*) const { return createSentinel(); }
     56   static void noteHead(MachineInstr*, MachineInstr*) {}
     57 
     58   void addNodeToList(MachineInstr* N);
     59   void removeNodeFromList(MachineInstr* N);
     60   void transferNodesFromList(ilist_traits &SrcTraits,
     61                              ilist_iterator<MachineInstr> First,
     62                              ilist_iterator<MachineInstr> Last);
     63   void deleteNode(MachineInstr *N);
     64 private:
     65   void createNode(const MachineInstr &);
     66 };
     67 
     68 class MachineBasicBlock
     69     : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
     70 public:
     71   /// Pair of physical register and lane mask.
     72   /// This is not simply a std::pair typedef because the members should be named
     73   /// clearly as they both have an integer type.
     74   struct RegisterMaskPair {
     75   public:
     76     MCPhysReg PhysReg;
     77     LaneBitmask LaneMask;
     78 
     79     RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
     80         : PhysReg(PhysReg), LaneMask(LaneMask) {}
     81   };
     82 
     83 private:
     84   typedef ilist<MachineInstr> Instructions;
     85   Instructions Insts;
     86   const BasicBlock *BB;
     87   int Number;
     88   MachineFunction *xParent;
     89 
     90   /// Keep track of the predecessor / successor basic blocks.
     91   std::vector<MachineBasicBlock *> Predecessors;
     92   std::vector<MachineBasicBlock *> Successors;
     93 
     94   /// Keep track of the probabilities to the successors. This vector has the
     95   /// same order as Successors, or it is empty if we don't use it (disable
     96   /// optimization).
     97   std::vector<BranchProbability> Probs;
     98   typedef std::vector<BranchProbability>::iterator probability_iterator;
     99   typedef std::vector<BranchProbability>::const_iterator
    100       const_probability_iterator;
    101 
    102   /// Keep track of the physical registers that are livein of the basicblock.
    103   typedef std::vector<RegisterMaskPair> LiveInVector;
    104   LiveInVector LiveIns;
    105 
    106   /// Alignment of the basic block. Zero if the basic block does not need to be
    107   /// aligned. The alignment is specified as log2(bytes).
    108   unsigned Alignment = 0;
    109 
    110   /// Indicate that this basic block is entered via an exception handler.
    111   bool IsEHPad = false;
    112 
    113   /// Indicate that this basic block is potentially the target of an indirect
    114   /// branch.
    115   bool AddressTaken = false;
    116 
    117   /// Indicate that this basic block is the entry block of an EH funclet.
    118   bool IsEHFuncletEntry = false;
    119 
    120   /// Indicate that this basic block is the entry block of a cleanup funclet.
    121   bool IsCleanupFuncletEntry = false;
    122 
    123   /// \brief since getSymbol is a relatively heavy-weight operation, the symbol
    124   /// is only computed once and is cached.
    125   mutable MCSymbol *CachedMCSymbol = nullptr;
    126 
    127   // Intrusive list support
    128   MachineBasicBlock() {}
    129 
    130   explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);
    131 
    132   ~MachineBasicBlock();
    133 
    134   // MachineBasicBlocks are allocated and owned by MachineFunction.
    135   friend class MachineFunction;
    136 
    137 public:
    138   /// Return the LLVM basic block that this instance corresponded to originally.
    139   /// Note that this may be NULL if this instance does not correspond directly
    140   /// to an LLVM basic block.
    141   const BasicBlock *getBasicBlock() const { return BB; }
    142 
    143   /// Return the name of the corresponding LLVM basic block, or "(null)".
    144   StringRef getName() const;
    145 
    146   /// Return a formatted string to identify this block and its parent function.
    147   std::string getFullName() const;
    148 
    149   /// Test whether this block is potentially the target of an indirect branch.
    150   bool hasAddressTaken() const { return AddressTaken; }
    151 
    152   /// Set this block to reflect that it potentially is the target of an indirect
    153   /// branch.
    154   void setHasAddressTaken() { AddressTaken = true; }
    155 
    156   /// Return the MachineFunction containing this basic block.
    157   const MachineFunction *getParent() const { return xParent; }
    158   MachineFunction *getParent() { return xParent; }
    159 
    160   /// MachineBasicBlock iterator that automatically skips over MIs that are
    161   /// inside bundles (i.e. walk top level MIs only).
    162   template<typename Ty, typename IterTy>
    163   class bundle_iterator
    164     : public std::iterator<std::bidirectional_iterator_tag, Ty, ptrdiff_t> {
    165     IterTy MII;
    166 
    167   public:
    168     bundle_iterator(IterTy MI) : MII(MI) {}
    169 
    170     bundle_iterator(Ty &MI) : MII(MI) {
    171       assert(!MI.isBundledWithPred() &&
    172              "It's not legal to initialize bundle_iterator with a bundled MI");
    173     }
    174     bundle_iterator(Ty *MI) : MII(MI) {
    175       assert((!MI || !MI->isBundledWithPred()) &&
    176              "It's not legal to initialize bundle_iterator with a bundled MI");
    177     }
    178     // Template allows conversion from const to nonconst.
    179     template<class OtherTy, class OtherIterTy>
    180     bundle_iterator(const bundle_iterator<OtherTy, OtherIterTy> &I)
    181       : MII(I.getInstrIterator()) {}
    182     bundle_iterator() : MII(nullptr) {}
    183 
    184     Ty &operator*() const { return *MII; }
    185     Ty *operator->() const { return &operator*(); }
    186 
    187     operator Ty *() const { return MII.getNodePtrUnchecked(); }
    188 
    189     bool operator==(const bundle_iterator &X) const {
    190       return MII == X.MII;
    191     }
    192     bool operator!=(const bundle_iterator &X) const {
    193       return !operator==(X);
    194     }
    195 
    196     // Increment and decrement operators...
    197     bundle_iterator &operator--() {      // predecrement - Back up
    198       do --MII;
    199       while (MII->isBundledWithPred());
    200       return *this;
    201     }
    202     bundle_iterator &operator++() {      // preincrement - Advance
    203       while (MII->isBundledWithSucc())
    204         ++MII;
    205       ++MII;
    206       return *this;
    207     }
    208     bundle_iterator operator--(int) {    // postdecrement operators...
    209       bundle_iterator tmp = *this;
    210       --*this;
    211       return tmp;
    212     }
    213     bundle_iterator operator++(int) {    // postincrement operators...
    214       bundle_iterator tmp = *this;
    215       ++*this;
    216       return tmp;
    217     }
    218 
    219     IterTy getInstrIterator() const {
    220       return MII;
    221     }
    222   };
    223 
    224   typedef Instructions::iterator                                 instr_iterator;
    225   typedef Instructions::const_iterator                     const_instr_iterator;
    226   typedef std::reverse_iterator<instr_iterator>          reverse_instr_iterator;
    227   typedef
    228   std::reverse_iterator<const_instr_iterator>      const_reverse_instr_iterator;
    229 
    230   typedef
    231   bundle_iterator<MachineInstr,instr_iterator>                         iterator;
    232   typedef
    233   bundle_iterator<const MachineInstr,const_instr_iterator>       const_iterator;
    234   typedef std::reverse_iterator<const_iterator>          const_reverse_iterator;
    235   typedef std::reverse_iterator<iterator>                      reverse_iterator;
    236 
    237 
    238   unsigned size() const { return (unsigned)Insts.size(); }
    239   bool empty() const { return Insts.empty(); }
    240 
    241   MachineInstr       &instr_front()       { return Insts.front(); }
    242   MachineInstr       &instr_back()        { return Insts.back();  }
    243   const MachineInstr &instr_front() const { return Insts.front(); }
    244   const MachineInstr &instr_back()  const { return Insts.back();  }
    245 
    246   MachineInstr       &front()             { return Insts.front(); }
    247   MachineInstr       &back()              { return *--end();      }
    248   const MachineInstr &front()       const { return Insts.front(); }
    249   const MachineInstr &back()        const { return *--end();      }
    250 
    251   instr_iterator                instr_begin()       { return Insts.begin();  }
    252   const_instr_iterator          instr_begin() const { return Insts.begin();  }
    253   instr_iterator                  instr_end()       { return Insts.end();    }
    254   const_instr_iterator            instr_end() const { return Insts.end();    }
    255   reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
    256   const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
    257   reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
    258   const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
    259 
    260   iterator                begin()       { return instr_begin();  }
    261   const_iterator          begin() const { return instr_begin();  }
    262   iterator                end  ()       { return instr_end();    }
    263   const_iterator          end  () const { return instr_end();    }
    264   reverse_iterator       rbegin()       { return instr_rbegin(); }
    265   const_reverse_iterator rbegin() const { return instr_rbegin(); }
    266   reverse_iterator       rend  ()       { return instr_rend();   }
    267   const_reverse_iterator rend  () const { return instr_rend();   }
    268 
    269   /// Support for MachineInstr::getNextNode().
    270   static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
    271     return &MachineBasicBlock::Insts;
    272   }
    273 
    274   inline iterator_range<iterator> terminators() {
    275     return make_range(getFirstTerminator(), end());
    276   }
    277   inline iterator_range<const_iterator> terminators() const {
    278     return make_range(getFirstTerminator(), end());
    279   }
    280 
    281   // Machine-CFG iterators
    282   typedef std::vector<MachineBasicBlock *>::iterator       pred_iterator;
    283   typedef std::vector<MachineBasicBlock *>::const_iterator const_pred_iterator;
    284   typedef std::vector<MachineBasicBlock *>::iterator       succ_iterator;
    285   typedef std::vector<MachineBasicBlock *>::const_iterator const_succ_iterator;
    286   typedef std::vector<MachineBasicBlock *>::reverse_iterator
    287                                                          pred_reverse_iterator;
    288   typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
    289                                                    const_pred_reverse_iterator;
    290   typedef std::vector<MachineBasicBlock *>::reverse_iterator
    291                                                          succ_reverse_iterator;
    292   typedef std::vector<MachineBasicBlock *>::const_reverse_iterator
    293                                                    const_succ_reverse_iterator;
    294   pred_iterator        pred_begin()       { return Predecessors.begin(); }
    295   const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
    296   pred_iterator        pred_end()         { return Predecessors.end();   }
    297   const_pred_iterator  pred_end()   const { return Predecessors.end();   }
    298   pred_reverse_iterator        pred_rbegin()
    299                                           { return Predecessors.rbegin();}
    300   const_pred_reverse_iterator  pred_rbegin() const
    301                                           { return Predecessors.rbegin();}
    302   pred_reverse_iterator        pred_rend()
    303                                           { return Predecessors.rend();  }
    304   const_pred_reverse_iterator  pred_rend()   const
    305                                           { return Predecessors.rend();  }
    306   unsigned             pred_size()  const {
    307     return (unsigned)Predecessors.size();
    308   }
    309   bool                 pred_empty() const { return Predecessors.empty(); }
    310   succ_iterator        succ_begin()       { return Successors.begin();   }
    311   const_succ_iterator  succ_begin() const { return Successors.begin();   }
    312   succ_iterator        succ_end()         { return Successors.end();     }
    313   const_succ_iterator  succ_end()   const { return Successors.end();     }
    314   succ_reverse_iterator        succ_rbegin()
    315                                           { return Successors.rbegin();  }
    316   const_succ_reverse_iterator  succ_rbegin() const
    317                                           { return Successors.rbegin();  }
    318   succ_reverse_iterator        succ_rend()
    319                                           { return Successors.rend();    }
    320   const_succ_reverse_iterator  succ_rend()   const
    321                                           { return Successors.rend();    }
    322   unsigned             succ_size()  const {
    323     return (unsigned)Successors.size();
    324   }
    325   bool                 succ_empty() const { return Successors.empty();   }
    326 
    327   inline iterator_range<pred_iterator> predecessors() {
    328     return make_range(pred_begin(), pred_end());
    329   }
    330   inline iterator_range<const_pred_iterator> predecessors() const {
    331     return make_range(pred_begin(), pred_end());
    332   }
    333   inline iterator_range<succ_iterator> successors() {
    334     return make_range(succ_begin(), succ_end());
    335   }
    336   inline iterator_range<const_succ_iterator> successors() const {
    337     return make_range(succ_begin(), succ_end());
    338   }
    339 
    340   // LiveIn management methods.
    341 
    342   /// Adds the specified register as a live in. Note that it is an error to add
    343   /// the same register to the same set more than once unless the intention is
    344   /// to call sortUniqueLiveIns after all registers are added.
    345   void addLiveIn(MCPhysReg PhysReg, LaneBitmask LaneMask = ~0u) {
    346     LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
    347   }
    348   void addLiveIn(const RegisterMaskPair &RegMaskPair) {
    349     LiveIns.push_back(RegMaskPair);
    350   }
    351 
    352   /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
    353   /// this than repeatedly calling isLiveIn before calling addLiveIn for every
    354   /// LiveIn insertion.
    355   void sortUniqueLiveIns();
    356 
    357   /// Add PhysReg as live in to this block, and ensure that there is a copy of
    358   /// PhysReg to a virtual register of class RC. Return the virtual register
    359   /// that is a copy of the live in PhysReg.
    360   unsigned addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC);
    361 
    362   /// Remove the specified register from the live in set.
    363   void removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask = ~0u);
    364 
    365   /// Return true if the specified register is in the live in set.
    366   bool isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask = ~0u) const;
    367 
    368   // Iteration support for live in sets.  These sets are kept in sorted
    369   // order by their register number.
    370   typedef LiveInVector::const_iterator livein_iterator;
    371   livein_iterator livein_begin() const { return LiveIns.begin(); }
    372   livein_iterator livein_end()   const { return LiveIns.end(); }
    373   bool            livein_empty() const { return LiveIns.empty(); }
    374   iterator_range<livein_iterator> liveins() const {
    375     return make_range(livein_begin(), livein_end());
    376   }
    377 
    378   /// Get the clobber mask for the start of this basic block. Funclets use this
    379   /// to prevent register allocation across funclet transitions.
    380   const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;
    381 
    382   /// Get the clobber mask for the end of the basic block.
    383   /// \see getBeginClobberMask()
    384   const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;
    385 
    386   /// Return alignment of the basic block. The alignment is specified as
    387   /// log2(bytes).
    388   unsigned getAlignment() const { return Alignment; }
    389 
    390   /// Set alignment of the basic block. The alignment is specified as
    391   /// log2(bytes).
    392   void setAlignment(unsigned Align) { Alignment = Align; }
    393 
    394   /// Returns true if the block is a landing pad. That is this basic block is
    395   /// entered via an exception handler.
    396   bool isEHPad() const { return IsEHPad; }
    397 
    398   /// Indicates the block is a landing pad.  That is this basic block is entered
    399   /// via an exception handler.
    400   void setIsEHPad(bool V = true) { IsEHPad = V; }
    401 
    402   /// If this block has a successor that is a landing pad, return it. Otherwise
    403   /// return NULL.
    404   const MachineBasicBlock *getLandingPadSuccessor() const;
    405 
    406   bool hasEHPadSuccessor() const;
    407 
    408   /// Returns true if this is the entry block of an EH funclet.
    409   bool isEHFuncletEntry() const { return IsEHFuncletEntry; }
    410 
    411   /// Indicates if this is the entry block of an EH funclet.
    412   void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }
    413 
    414   /// Returns true if this is the entry block of a cleanup funclet.
    415   bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }
    416 
    417   /// Indicates if this is the entry block of a cleanup funclet.
    418   void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }
    419 
    420   // Code Layout methods.
    421 
    422   /// Move 'this' block before or after the specified block.  This only moves
    423   /// the block, it does not modify the CFG or adjust potential fall-throughs at
    424   /// the end of the block.
    425   void moveBefore(MachineBasicBlock *NewAfter);
    426   void moveAfter(MachineBasicBlock *NewBefore);
    427 
    428   /// Update the terminator instructions in block to account for changes to the
    429   /// layout. If the block previously used a fallthrough, it may now need a
    430   /// branch, and if it previously used branching it may now be able to use a
    431   /// fallthrough.
    432   void updateTerminator();
    433 
    434   // Machine-CFG mutators
    435 
    436   /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
    437   /// of Succ is automatically updated. PROB parameter is stored in
    438   /// Probabilities list. The default probability is set as unknown. Mixing
    439   /// known and unknown probabilities in successor list is not allowed. When all
    440   /// successors have unknown probabilities, 1 / N is returned as the
    441   /// probability for each successor, where N is the number of successors.
    442   ///
    443   /// Note that duplicate Machine CFG edges are not allowed.
    444   void addSuccessor(MachineBasicBlock *Succ,
    445                     BranchProbability Prob = BranchProbability::getUnknown());
    446 
    447   /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
    448   /// of Succ is automatically updated. The probability is not provided because
    449   /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
    450   /// won't be used. Using this interface can save some space.
    451   void addSuccessorWithoutProb(MachineBasicBlock *Succ);
    452 
    453   /// Set successor probability of a given iterator.
    454   void setSuccProbability(succ_iterator I, BranchProbability Prob);
    455 
    456   /// Normalize probabilities of all successors so that the sum of them becomes
    457   /// one. This is usually done when the current update on this MBB is done, and
    458   /// the sum of its successors' probabilities is not guaranteed to be one. The
    459   /// user is responsible for the correct use of this function.
    460   /// MBB::removeSuccessor() has an option to do this automatically.
    461   void normalizeSuccProbs() {
    462     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
    463   }
    464 
    465   /// Validate successors' probabilities and check if the sum of them is
    466   /// approximate one. This only works in DEBUG mode.
    467   void validateSuccProbs() const;
    468 
    469   /// Remove successor from the successors list of this MachineBasicBlock. The
    470   /// Predecessors list of Succ is automatically updated.
    471   /// If NormalizeSuccProbs is true, then normalize successors' probabilities
    472   /// after the successor is removed.
    473   void removeSuccessor(MachineBasicBlock *Succ,
    474                        bool NormalizeSuccProbs = false);
    475 
    476   /// Remove specified successor from the successors list of this
    477   /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
    478   /// If NormalizeSuccProbs is true, then normalize successors' probabilities
    479   /// after the successor is removed.
    480   /// Return the iterator to the element after the one removed.
    481   succ_iterator removeSuccessor(succ_iterator I,
    482                                 bool NormalizeSuccProbs = false);
    483 
    484   /// Replace successor OLD with NEW and update probability info.
    485   void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
    486 
    487   /// Transfers all the successors from MBB to this machine basic block (i.e.,
    488   /// copies all the successors FromMBB and remove all the successors from
    489   /// FromMBB).
    490   void transferSuccessors(MachineBasicBlock *FromMBB);
    491 
    492   /// Transfers all the successors, as in transferSuccessors, and update PHI
    493   /// operands in the successor blocks which refer to FromMBB to refer to this.
    494   void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);
    495 
    496   /// Return true if any of the successors have probabilities attached to them.
    497   bool hasSuccessorProbabilities() const { return !Probs.empty(); }
    498 
    499   /// Return true if the specified MBB is a predecessor of this block.
    500   bool isPredecessor(const MachineBasicBlock *MBB) const;
    501 
    502   /// Return true if the specified MBB is a successor of this block.
    503   bool isSuccessor(const MachineBasicBlock *MBB) const;
    504 
    505   /// Return true if the specified MBB will be emitted immediately after this
    506   /// block, such that if this block exits by falling through, control will
    507   /// transfer to the specified MBB. Note that MBB need not be a successor at
    508   /// all, for example if this block ends with an unconditional branch to some
    509   /// other block.
    510   bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
    511 
    512   /// Return true if the block can implicitly transfer control to the block
    513   /// after it by falling off the end of it.  This should return false if it can
    514   /// reach the block after it, but it uses an explicit branch to do so (e.g., a
    515   /// table jump).  True is a conservative answer.
    516   bool canFallThrough();
    517 
    518   /// Returns a pointer to the first instruction in this block that is not a
    519   /// PHINode instruction. When adding instructions to the beginning of the
    520   /// basic block, they should be added before the returned value, not before
    521   /// the first instruction, which might be PHI.
    522   /// Returns end() is there's no non-PHI instruction.
    523   iterator getFirstNonPHI();
    524 
    525   /// Return the first instruction in MBB after I that is not a PHI or a label.
    526   /// This is the correct point to insert copies at the beginning of a basic
    527   /// block.
    528   iterator SkipPHIsAndLabels(iterator I);
    529 
    530   /// Returns an iterator to the first terminator instruction of this basic
    531   /// block. If a terminator does not exist, it returns end().
    532   iterator getFirstTerminator();
    533   const_iterator getFirstTerminator() const {
    534     return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
    535   }
    536 
    537   /// Same getFirstTerminator but it ignores bundles and return an
    538   /// instr_iterator instead.
    539   instr_iterator getFirstInstrTerminator();
    540 
    541   /// Returns an iterator to the first non-debug instruction in the basic block,
    542   /// or end().
    543   iterator getFirstNonDebugInstr();
    544   const_iterator getFirstNonDebugInstr() const {
    545     return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr();
    546   }
    547 
    548   /// Returns an iterator to the last non-debug instruction in the basic block,
    549   /// or end().
    550   iterator getLastNonDebugInstr();
    551   const_iterator getLastNonDebugInstr() const {
    552     return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr();
    553   }
    554 
    555   /// Convenience function that returns true if the block ends in a return
    556   /// instruction.
    557   bool isReturnBlock() const {
    558     return !empty() && back().isReturn();
    559   }
    560 
    561   /// Split the critical edge from this block to the given successor block, and
    562   /// return the newly created block, or null if splitting is not possible.
    563   ///
    564   /// This function updates LiveVariables, MachineDominatorTree, and
    565   /// MachineLoopInfo, as applicable.
    566   MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P);
    567 
    568   void pop_front() { Insts.pop_front(); }
    569   void pop_back() { Insts.pop_back(); }
    570   void push_back(MachineInstr *MI) { Insts.push_back(MI); }
    571 
    572   /// Insert MI into the instruction list before I, possibly inside a bundle.
    573   ///
    574   /// If the insertion point is inside a bundle, MI will be added to the bundle,
    575   /// otherwise MI will not be added to any bundle. That means this function
    576   /// alone can't be used to prepend or append instructions to bundles. See
    577   /// MIBundleBuilder::insert() for a more reliable way of doing that.
    578   instr_iterator insert(instr_iterator I, MachineInstr *M);
    579 
    580   /// Insert a range of instructions into the instruction list before I.
    581   template<typename IT>
    582   void insert(iterator I, IT S, IT E) {
    583     assert((I == end() || I->getParent() == this) &&
    584            "iterator points outside of basic block");
    585     Insts.insert(I.getInstrIterator(), S, E);
    586   }
    587 
    588   /// Insert MI into the instruction list before I.
    589   iterator insert(iterator I, MachineInstr *MI) {
    590     assert((I == end() || I->getParent() == this) &&
    591            "iterator points outside of basic block");
    592     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
    593            "Cannot insert instruction with bundle flags");
    594     return Insts.insert(I.getInstrIterator(), MI);
    595   }
    596 
    597   /// Insert MI into the instruction list after I.
    598   iterator insertAfter(iterator I, MachineInstr *MI) {
    599     assert((I == end() || I->getParent() == this) &&
    600            "iterator points outside of basic block");
    601     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
    602            "Cannot insert instruction with bundle flags");
    603     return Insts.insertAfter(I.getInstrIterator(), MI);
    604   }
    605 
    606   /// Remove an instruction from the instruction list and delete it.
    607   ///
    608   /// If the instruction is part of a bundle, the other instructions in the
    609   /// bundle will still be bundled after removing the single instruction.
    610   instr_iterator erase(instr_iterator I);
    611 
    612   /// Remove an instruction from the instruction list and delete it.
    613   ///
    614   /// If the instruction is part of a bundle, the other instructions in the
    615   /// bundle will still be bundled after removing the single instruction.
    616   instr_iterator erase_instr(MachineInstr *I) {
    617     return erase(instr_iterator(I));
    618   }
    619 
    620   /// Remove a range of instructions from the instruction list and delete them.
    621   iterator erase(iterator I, iterator E) {
    622     return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
    623   }
    624 
    625   /// Remove an instruction or bundle from the instruction list and delete it.
    626   ///
    627   /// If I points to a bundle of instructions, they are all erased.
    628   iterator erase(iterator I) {
    629     return erase(I, std::next(I));
    630   }
    631 
    632   /// Remove an instruction from the instruction list and delete it.
    633   ///
    634   /// If I is the head of a bundle of instructions, the whole bundle will be
    635   /// erased.
    636   iterator erase(MachineInstr *I) {
    637     return erase(iterator(I));
    638   }
    639 
    640   /// Remove the unbundled instruction from the instruction list without
    641   /// deleting it.
    642   ///
    643   /// This function can not be used to remove bundled instructions, use
    644   /// remove_instr to remove individual instructions from a bundle.
    645   MachineInstr *remove(MachineInstr *I) {
    646     assert(!I->isBundled() && "Cannot remove bundled instructions");
    647     return Insts.remove(instr_iterator(I));
    648   }
    649 
    650   /// Remove the possibly bundled instruction from the instruction list
    651   /// without deleting it.
    652   ///
    653   /// If the instruction is part of a bundle, the other instructions in the
    654   /// bundle will still be bundled after removing the single instruction.
    655   MachineInstr *remove_instr(MachineInstr *I);
    656 
    657   void clear() {
    658     Insts.clear();
    659   }
    660 
    661   /// Take an instruction from MBB 'Other' at the position From, and insert it
    662   /// into this MBB right before 'Where'.
    663   ///
    664   /// If From points to a bundle of instructions, the whole bundle is moved.
    665   void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
    666     // The range splice() doesn't allow noop moves, but this one does.
    667     if (Where != From)
    668       splice(Where, Other, From, std::next(From));
    669   }
    670 
    671   /// Take a block of instructions from MBB 'Other' in the range [From, To),
    672   /// and insert them into this MBB right before 'Where'.
    673   ///
    674   /// The instruction at 'Where' must not be included in the range of
    675   /// instructions to move.
    676   void splice(iterator Where, MachineBasicBlock *Other,
    677               iterator From, iterator To) {
    678     Insts.splice(Where.getInstrIterator(), Other->Insts,
    679                  From.getInstrIterator(), To.getInstrIterator());
    680   }
    681 
    682   /// This method unlinks 'this' from the containing function, and returns it,
    683   /// but does not delete it.
    684   MachineBasicBlock *removeFromParent();
    685 
    686   /// This method unlinks 'this' from the containing function and deletes it.
    687   void eraseFromParent();
    688 
    689   /// Given a machine basic block that branched to 'Old', change the code and
    690   /// CFG so that it branches to 'New' instead.
    691   void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
    692 
    693   /// Various pieces of code can cause excess edges in the CFG to be inserted.
    694   /// If we have proven that MBB can only branch to DestA and DestB, remove any
    695   /// other MBB successors from the CFG. DestA and DestB can be null. Besides
    696   /// DestA and DestB, retain other edges leading to LandingPads (currently
    697   /// there can be only one; we don't check or require that here). Note it is
    698   /// possible that DestA and/or DestB are LandingPads.
    699   bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
    700                             MachineBasicBlock *DestB,
    701                             bool IsCond);
    702 
    703   /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
    704   /// instructions.  Return UnknownLoc if there is none.
    705   DebugLoc findDebugLoc(instr_iterator MBBI);
    706   DebugLoc findDebugLoc(iterator MBBI) {
    707     return findDebugLoc(MBBI.getInstrIterator());
    708   }
    709 
    710   /// Possible outcome of a register liveness query to computeRegisterLiveness()
    711   enum LivenessQueryResult {
    712     LQR_Live,   ///< Register is known to be (at least partially) live.
    713     LQR_Dead,   ///< Register is known to be fully dead.
    714     LQR_Unknown ///< Register liveness not decidable from local neighborhood.
    715   };
    716 
    717   /// Return whether (physical) register \p Reg has been <def>ined and not
    718   /// <kill>ed as of just before \p Before.
    719   ///
    720   /// Search is localised to a neighborhood of \p Neighborhood instructions
    721   /// before (searching for defs or kills) and \p Neighborhood instructions
    722   /// after (searching just for defs) \p Before.
    723   ///
    724   /// \p Reg must be a physical register.
    725   LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
    726                                               unsigned Reg,
    727                                               const_iterator Before,
    728                                               unsigned Neighborhood=10) const;
    729 
    730   // Debugging methods.
    731   void dump() const;
    732   void print(raw_ostream &OS, SlotIndexes* = nullptr) const;
    733   void print(raw_ostream &OS, ModuleSlotTracker &MST,
    734              SlotIndexes * = nullptr) const;
    735 
    736   // Printing method used by LoopInfo.
    737   void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
    738 
    739   /// MachineBasicBlocks are uniquely numbered at the function level, unless
    740   /// they're not in a MachineFunction yet, in which case this will return -1.
    741   int getNumber() const { return Number; }
    742   void setNumber(int N) { Number = N; }
    743 
    744   /// Return the MCSymbol for this basic block.
    745   MCSymbol *getSymbol() const;
    746 
    747 
    748 private:
    749   /// Return probability iterator corresponding to the I successor iterator.
    750   probability_iterator getProbabilityIterator(succ_iterator I);
    751   const_probability_iterator
    752   getProbabilityIterator(const_succ_iterator I) const;
    753 
    754   friend class MachineBranchProbabilityInfo;
    755   friend class MIPrinter;
    756 
    757   /// Return probability of the edge from this block to MBB. This method should
    758   /// NOT be called directly, but by using getEdgeProbability method from
    759   /// MachineBranchProbabilityInfo class.
    760   BranchProbability getSuccProbability(const_succ_iterator Succ) const;
    761 
    762   // Methods used to maintain doubly linked list of blocks...
    763   friend struct ilist_traits<MachineBasicBlock>;
    764 
    765   // Machine-CFG mutators
    766 
    767   /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
    768   /// unless you know what you're doing, because it doesn't update Pred's
    769   /// successors list. Use Pred->addSuccessor instead.
    770   void addPredecessor(MachineBasicBlock *Pred);
    771 
    772   /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
    773   /// unless you know what you're doing, because it doesn't update Pred's
    774   /// successors list. Use Pred->removeSuccessor instead.
    775   void removePredecessor(MachineBasicBlock *Pred);
    776 };
    777 
    778 raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
    779 
    780 // This is useful when building IndexedMaps keyed on basic block pointers.
    781 struct MBB2NumberFunctor :
    782   public std::unary_function<const MachineBasicBlock*, unsigned> {
    783   unsigned operator()(const MachineBasicBlock *MBB) const {
    784     return MBB->getNumber();
    785   }
    786 };
    787 
    788 //===--------------------------------------------------------------------===//
    789 // GraphTraits specializations for machine basic block graphs (machine-CFGs)
    790 //===--------------------------------------------------------------------===//
    791 
    792 // Provide specializations of GraphTraits to be able to treat a
    793 // MachineFunction as a graph of MachineBasicBlocks.
    794 //
    795 
    796 template <> struct GraphTraits<MachineBasicBlock *> {
    797   typedef MachineBasicBlock NodeType;
    798   typedef MachineBasicBlock::succ_iterator ChildIteratorType;
    799 
    800   static NodeType *getEntryNode(MachineBasicBlock *BB) { return BB; }
    801   static inline ChildIteratorType child_begin(NodeType *N) {
    802     return N->succ_begin();
    803   }
    804   static inline ChildIteratorType child_end(NodeType *N) {
    805     return N->succ_end();
    806   }
    807 };
    808 
    809 template <> struct GraphTraits<const MachineBasicBlock *> {
    810   typedef const MachineBasicBlock NodeType;
    811   typedef MachineBasicBlock::const_succ_iterator ChildIteratorType;
    812 
    813   static NodeType *getEntryNode(const MachineBasicBlock *BB) { return BB; }
    814   static inline ChildIteratorType child_begin(NodeType *N) {
    815     return N->succ_begin();
    816   }
    817   static inline ChildIteratorType child_end(NodeType *N) {
    818     return N->succ_end();
    819   }
    820 };
    821 
    822 // Provide specializations of GraphTraits to be able to treat a
    823 // MachineFunction as a graph of MachineBasicBlocks and to walk it
    824 // in inverse order.  Inverse order for a function is considered
    825 // to be when traversing the predecessor edges of a MBB
    826 // instead of the successor edges.
    827 //
    828 template <> struct GraphTraits<Inverse<MachineBasicBlock*> > {
    829   typedef MachineBasicBlock NodeType;
    830   typedef MachineBasicBlock::pred_iterator ChildIteratorType;
    831   static NodeType *getEntryNode(Inverse<MachineBasicBlock *> G) {
    832     return G.Graph;
    833   }
    834   static inline ChildIteratorType child_begin(NodeType *N) {
    835     return N->pred_begin();
    836   }
    837   static inline ChildIteratorType child_end(NodeType *N) {
    838     return N->pred_end();
    839   }
    840 };
    841 
    842 template <> struct GraphTraits<Inverse<const MachineBasicBlock*> > {
    843   typedef const MachineBasicBlock NodeType;
    844   typedef MachineBasicBlock::const_pred_iterator ChildIteratorType;
    845   static NodeType *getEntryNode(Inverse<const MachineBasicBlock*> G) {
    846     return G.Graph;
    847   }
    848   static inline ChildIteratorType child_begin(NodeType *N) {
    849     return N->pred_begin();
    850   }
    851   static inline ChildIteratorType child_end(NodeType *N) {
    852     return N->pred_end();
    853   }
    854 };
    855 
    856 
    857 
    858 /// MachineInstrSpan provides an interface to get an iteration range
    859 /// containing the instruction it was initialized with, along with all
    860 /// those instructions inserted prior to or following that instruction
    861 /// at some point after the MachineInstrSpan is constructed.
    862 class MachineInstrSpan {
    863   MachineBasicBlock &MBB;
    864   MachineBasicBlock::iterator I, B, E;
    865 public:
    866   MachineInstrSpan(MachineBasicBlock::iterator I)
    867     : MBB(*I->getParent()),
    868       I(I),
    869       B(I == MBB.begin() ? MBB.end() : std::prev(I)),
    870       E(std::next(I)) {}
    871 
    872   MachineBasicBlock::iterator begin() {
    873     return B == MBB.end() ? MBB.begin() : std::next(B);
    874   }
    875   MachineBasicBlock::iterator end() { return E; }
    876   bool empty() { return begin() == end(); }
    877 
    878   MachineBasicBlock::iterator getInitial() { return I; }
    879 };
    880 
    881 } // End llvm namespace
    882 
    883 #endif
    884