1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/LiveVariables.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SlotIndexes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/ModuleSlotTracker.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/Support/DataTypes.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 #include "llvm/Target/TargetSubtargetInfo.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "codegen" 41 42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 43 : BB(B), Number(-1), xParent(&MF) { 44 Insts.Parent = this; 45 } 46 47 MachineBasicBlock::~MachineBasicBlock() { 48 } 49 50 /// Return the MCSymbol for this basic block. 51 MCSymbol *MachineBasicBlock::getSymbol() const { 52 if (!CachedMCSymbol) { 53 const MachineFunction *MF = getParent(); 54 MCContext &Ctx = MF->getContext(); 55 const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 56 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 57 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 58 Twine(MF->getFunctionNumber()) + 59 "_" + Twine(getNumber())); 60 } 61 62 return CachedMCSymbol; 63 } 64 65 66 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 67 MBB.print(OS); 68 return OS; 69 } 70 71 /// When an MBB is added to an MF, we need to update the parent pointer of the 72 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 73 /// operand list for registers. 74 /// 75 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 76 /// gets the next available unique MBB number. If it is removed from a 77 /// MachineFunction, it goes back to being #-1. 78 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { 79 MachineFunction &MF = *N->getParent(); 80 N->Number = MF.addToMBBNumbering(N); 81 82 // Make sure the instructions have their operands in the reginfo lists. 83 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 84 for (MachineBasicBlock::instr_iterator 85 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 86 I->AddRegOperandsToUseLists(RegInfo); 87 } 88 89 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { 90 N->getParent()->removeFromMBBNumbering(N->Number); 91 N->Number = -1; 92 } 93 94 /// When we add an instruction to a basic block list, we update its parent 95 /// pointer and add its operands from reg use/def lists if appropriate. 96 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 97 assert(!N->getParent() && "machine instruction already in a basic block"); 98 N->setParent(Parent); 99 100 // Add the instruction's register operands to their corresponding 101 // use/def lists. 102 MachineFunction *MF = Parent->getParent(); 103 N->AddRegOperandsToUseLists(MF->getRegInfo()); 104 } 105 106 /// When we remove an instruction from a basic block list, we update its parent 107 /// pointer and remove its operands from reg use/def lists if appropriate. 108 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 109 assert(N->getParent() && "machine instruction not in a basic block"); 110 111 // Remove from the use/def lists. 112 if (MachineFunction *MF = N->getParent()->getParent()) 113 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 114 115 N->setParent(nullptr); 116 } 117 118 /// When moving a range of instructions from one MBB list to another, we need to 119 /// update the parent pointers and the use/def lists. 120 void ilist_traits<MachineInstr>:: 121 transferNodesFromList(ilist_traits<MachineInstr> &FromList, 122 ilist_iterator<MachineInstr> First, 123 ilist_iterator<MachineInstr> Last) { 124 assert(Parent->getParent() == FromList.Parent->getParent() && 125 "MachineInstr parent mismatch!"); 126 127 // Splice within the same MBB -> no change. 128 if (Parent == FromList.Parent) return; 129 130 // If splicing between two blocks within the same function, just update the 131 // parent pointers. 132 for (; First != Last; ++First) 133 First->setParent(Parent); 134 } 135 136 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { 137 assert(!MI->getParent() && "MI is still in a block!"); 138 Parent->getParent()->DeleteMachineInstr(MI); 139 } 140 141 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 142 instr_iterator I = instr_begin(), E = instr_end(); 143 while (I != E && I->isPHI()) 144 ++I; 145 assert((I == E || !I->isInsideBundle()) && 146 "First non-phi MI cannot be inside a bundle!"); 147 return I; 148 } 149 150 MachineBasicBlock::iterator 151 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 152 iterator E = end(); 153 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) 154 ++I; 155 // FIXME: This needs to change if we wish to bundle labels / dbg_values 156 // inside the bundle. 157 assert((I == E || !I->isInsideBundle()) && 158 "First non-phi / non-label instruction is inside a bundle!"); 159 return I; 160 } 161 162 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 163 iterator B = begin(), E = end(), I = E; 164 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 165 ; /*noop */ 166 while (I != E && !I->isTerminator()) 167 ++I; 168 return I; 169 } 170 171 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 172 instr_iterator B = instr_begin(), E = instr_end(), I = E; 173 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 174 ; /*noop */ 175 while (I != E && !I->isTerminator()) 176 ++I; 177 return I; 178 } 179 180 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 181 // Skip over begin-of-block dbg_value instructions. 182 iterator I = begin(), E = end(); 183 while (I != E && I->isDebugValue()) 184 ++I; 185 return I; 186 } 187 188 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 189 // Skip over end-of-block dbg_value instructions. 190 instr_iterator B = instr_begin(), I = instr_end(); 191 while (I != B) { 192 --I; 193 // Return instruction that starts a bundle. 194 if (I->isDebugValue() || I->isInsideBundle()) 195 continue; 196 return I; 197 } 198 // The block is all debug values. 199 return end(); 200 } 201 202 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const { 203 // A block with a landing pad successor only has one other successor. 204 if (succ_size() > 2) 205 return nullptr; 206 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 207 if ((*I)->isEHPad()) 208 return *I; 209 return nullptr; 210 } 211 212 bool MachineBasicBlock::hasEHPadSuccessor() const { 213 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 214 if ((*I)->isEHPad()) 215 return true; 216 return false; 217 } 218 219 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 220 void MachineBasicBlock::dump() const { 221 print(dbgs()); 222 } 223 #endif 224 225 StringRef MachineBasicBlock::getName() const { 226 if (const BasicBlock *LBB = getBasicBlock()) 227 return LBB->getName(); 228 else 229 return "(null)"; 230 } 231 232 /// Return a hopefully unique identifier for this block. 233 std::string MachineBasicBlock::getFullName() const { 234 std::string Name; 235 if (getParent()) 236 Name = (getParent()->getName() + ":").str(); 237 if (getBasicBlock()) 238 Name += getBasicBlock()->getName(); 239 else 240 Name += ("BB" + Twine(getNumber())).str(); 241 return Name; 242 } 243 244 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const { 245 const MachineFunction *MF = getParent(); 246 if (!MF) { 247 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 248 << " is null\n"; 249 return; 250 } 251 const Function *F = MF->getFunction(); 252 const Module *M = F ? F->getParent() : nullptr; 253 ModuleSlotTracker MST(M); 254 print(OS, MST, Indexes); 255 } 256 257 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 258 SlotIndexes *Indexes) const { 259 const MachineFunction *MF = getParent(); 260 if (!MF) { 261 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 262 << " is null\n"; 263 return; 264 } 265 266 if (Indexes) 267 OS << Indexes->getMBBStartIdx(this) << '\t'; 268 269 OS << "BB#" << getNumber() << ": "; 270 271 const char *Comma = ""; 272 if (const BasicBlock *LBB = getBasicBlock()) { 273 OS << Comma << "derived from LLVM BB "; 274 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 275 Comma = ", "; 276 } 277 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 278 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 279 if (Alignment) 280 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 281 << " bytes)"; 282 283 OS << '\n'; 284 285 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 286 if (!livein_empty()) { 287 if (Indexes) OS << '\t'; 288 OS << " Live Ins:"; 289 for (const auto &LI : make_range(livein_begin(), livein_end())) { 290 OS << ' ' << PrintReg(LI.PhysReg, TRI); 291 if (LI.LaneMask != ~0u) 292 OS << ':' << PrintLaneMask(LI.LaneMask); 293 } 294 OS << '\n'; 295 } 296 // Print the preds of this block according to the CFG. 297 if (!pred_empty()) { 298 if (Indexes) OS << '\t'; 299 OS << " Predecessors according to CFG:"; 300 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 301 OS << " BB#" << (*PI)->getNumber(); 302 OS << '\n'; 303 } 304 305 for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) { 306 if (Indexes) { 307 if (Indexes->hasIndex(&*I)) 308 OS << Indexes->getInstructionIndex(&*I); 309 OS << '\t'; 310 } 311 OS << '\t'; 312 if (I->isInsideBundle()) 313 OS << " * "; 314 I->print(OS, MST); 315 } 316 317 // Print the successors of this block according to the CFG. 318 if (!succ_empty()) { 319 if (Indexes) OS << '\t'; 320 OS << " Successors according to CFG:"; 321 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 322 OS << " BB#" << (*SI)->getNumber(); 323 if (!Probs.empty()) 324 OS << '(' << *getProbabilityIterator(SI) << ')'; 325 } 326 OS << '\n'; 327 } 328 } 329 330 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 331 bool /*PrintType*/) const { 332 OS << "BB#" << getNumber(); 333 } 334 335 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 336 LiveInVector::iterator I = std::find_if( 337 LiveIns.begin(), LiveIns.end(), 338 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 339 if (I == LiveIns.end()) 340 return; 341 342 I->LaneMask &= ~LaneMask; 343 if (I->LaneMask == 0) 344 LiveIns.erase(I); 345 } 346 347 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 348 livein_iterator I = std::find_if( 349 LiveIns.begin(), LiveIns.end(), 350 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 351 return I != livein_end() && (I->LaneMask & LaneMask) != 0; 352 } 353 354 void MachineBasicBlock::sortUniqueLiveIns() { 355 std::sort(LiveIns.begin(), LiveIns.end(), 356 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 357 return LI0.PhysReg < LI1.PhysReg; 358 }); 359 // Liveins are sorted by physreg now we can merge their lanemasks. 360 LiveInVector::const_iterator I = LiveIns.begin(); 361 LiveInVector::const_iterator J; 362 LiveInVector::iterator Out = LiveIns.begin(); 363 for (; I != LiveIns.end(); ++Out, I = J) { 364 unsigned PhysReg = I->PhysReg; 365 LaneBitmask LaneMask = I->LaneMask; 366 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 367 LaneMask |= J->LaneMask; 368 Out->PhysReg = PhysReg; 369 Out->LaneMask = LaneMask; 370 } 371 LiveIns.erase(Out, LiveIns.end()); 372 } 373 374 unsigned 375 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 376 assert(getParent() && "MBB must be inserted in function"); 377 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 378 assert(RC && "Register class is required"); 379 assert((isEHPad() || this == &getParent()->front()) && 380 "Only the entry block and landing pads can have physreg live ins"); 381 382 bool LiveIn = isLiveIn(PhysReg); 383 iterator I = SkipPHIsAndLabels(begin()), E = end(); 384 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 385 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 386 387 // Look for an existing copy. 388 if (LiveIn) 389 for (;I != E && I->isCopy(); ++I) 390 if (I->getOperand(1).getReg() == PhysReg) { 391 unsigned VirtReg = I->getOperand(0).getReg(); 392 if (!MRI.constrainRegClass(VirtReg, RC)) 393 llvm_unreachable("Incompatible live-in register class."); 394 return VirtReg; 395 } 396 397 // No luck, create a virtual register. 398 unsigned VirtReg = MRI.createVirtualRegister(RC); 399 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 400 .addReg(PhysReg, RegState::Kill); 401 if (!LiveIn) 402 addLiveIn(PhysReg); 403 return VirtReg; 404 } 405 406 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 407 getParent()->splice(NewAfter->getIterator(), getIterator()); 408 } 409 410 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 411 getParent()->splice(++NewBefore->getIterator(), getIterator()); 412 } 413 414 void MachineBasicBlock::updateTerminator() { 415 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 416 // A block with no successors has no concerns with fall-through edges. 417 if (this->succ_empty()) return; 418 419 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 420 SmallVector<MachineOperand, 4> Cond; 421 DebugLoc DL; // FIXME: this is nowhere 422 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond); 423 (void) B; 424 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 425 if (Cond.empty()) { 426 if (TBB) { 427 // The block has an unconditional branch. If its successor is now 428 // its layout successor, delete the branch. 429 if (isLayoutSuccessor(TBB)) 430 TII->RemoveBranch(*this); 431 } else { 432 // The block has an unconditional fallthrough. If its successor is not 433 // its layout successor, insert a branch. First we have to locate the 434 // only non-landing-pad successor, as that is the fallthrough block. 435 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 436 if ((*SI)->isEHPad()) 437 continue; 438 assert(!TBB && "Found more than one non-landing-pad successor!"); 439 TBB = *SI; 440 } 441 442 // If there is no non-landing-pad successor, the block has no 443 // fall-through edges to be concerned with. 444 if (!TBB) 445 return; 446 447 // Finally update the unconditional successor to be reached via a branch 448 // if it would not be reached by fallthrough. 449 if (!isLayoutSuccessor(TBB)) 450 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 451 } 452 } else { 453 if (FBB) { 454 // The block has a non-fallthrough conditional branch. If one of its 455 // successors is its layout successor, rewrite it to a fallthrough 456 // conditional branch. 457 if (isLayoutSuccessor(TBB)) { 458 if (TII->ReverseBranchCondition(Cond)) 459 return; 460 TII->RemoveBranch(*this); 461 TII->InsertBranch(*this, FBB, nullptr, Cond, DL); 462 } else if (isLayoutSuccessor(FBB)) { 463 TII->RemoveBranch(*this); 464 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 465 } 466 } else { 467 // Walk through the successors and find the successor which is not 468 // a landing pad and is not the conditional branch destination (in TBB) 469 // as the fallthrough successor. 470 MachineBasicBlock *FallthroughBB = nullptr; 471 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 472 if ((*SI)->isEHPad() || *SI == TBB) 473 continue; 474 assert(!FallthroughBB && "Found more than one fallthrough successor."); 475 FallthroughBB = *SI; 476 } 477 if (!FallthroughBB && canFallThrough()) { 478 // We fallthrough to the same basic block as the conditional jump 479 // targets. Remove the conditional jump, leaving unconditional 480 // fallthrough. 481 // FIXME: This does not seem like a reasonable pattern to support, but 482 // it has been seen in the wild coming out of degenerate ARM test cases. 483 TII->RemoveBranch(*this); 484 485 // Finally update the unconditional successor to be reached via a branch 486 // if it would not be reached by fallthrough. 487 if (!isLayoutSuccessor(TBB)) 488 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 489 return; 490 } 491 492 // The block has a fallthrough conditional branch. 493 if (isLayoutSuccessor(TBB)) { 494 if (TII->ReverseBranchCondition(Cond)) { 495 // We can't reverse the condition, add an unconditional branch. 496 Cond.clear(); 497 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); 498 return; 499 } 500 TII->RemoveBranch(*this); 501 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); 502 } else if (!isLayoutSuccessor(FallthroughBB)) { 503 TII->RemoveBranch(*this); 504 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, DL); 505 } 506 } 507 } 508 } 509 510 void MachineBasicBlock::validateSuccProbs() const { 511 #ifndef NDEBUG 512 int64_t Sum = 0; 513 for (auto Prob : Probs) 514 Sum += Prob.getNumerator(); 515 // Due to precision issue, we assume that the sum of probabilities is one if 516 // the difference between the sum of their numerators and the denominator is 517 // no greater than the number of successors. 518 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 519 Probs.size() && 520 "The sum of successors's probabilities exceeds one."); 521 #endif // NDEBUG 522 } 523 524 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 525 BranchProbability Prob) { 526 // Probability list is either empty (if successor list isn't empty, this means 527 // disabled optimization) or has the same size as successor list. 528 if (!(Probs.empty() && !Successors.empty())) 529 Probs.push_back(Prob); 530 Successors.push_back(Succ); 531 Succ->addPredecessor(this); 532 } 533 534 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 535 // We need to make sure probability list is either empty or has the same size 536 // of successor list. When this function is called, we can safely delete all 537 // probability in the list. 538 Probs.clear(); 539 Successors.push_back(Succ); 540 Succ->addPredecessor(this); 541 } 542 543 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 544 bool NormalizeSuccProbs) { 545 succ_iterator I = std::find(Successors.begin(), Successors.end(), Succ); 546 removeSuccessor(I, NormalizeSuccProbs); 547 } 548 549 MachineBasicBlock::succ_iterator 550 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 551 assert(I != Successors.end() && "Not a current successor!"); 552 553 // If probability list is empty it means we don't use it (disabled 554 // optimization). 555 if (!Probs.empty()) { 556 probability_iterator WI = getProbabilityIterator(I); 557 Probs.erase(WI); 558 if (NormalizeSuccProbs) 559 normalizeSuccProbs(); 560 } 561 562 (*I)->removePredecessor(this); 563 return Successors.erase(I); 564 } 565 566 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 567 MachineBasicBlock *New) { 568 if (Old == New) 569 return; 570 571 succ_iterator E = succ_end(); 572 succ_iterator NewI = E; 573 succ_iterator OldI = E; 574 for (succ_iterator I = succ_begin(); I != E; ++I) { 575 if (*I == Old) { 576 OldI = I; 577 if (NewI != E) 578 break; 579 } 580 if (*I == New) { 581 NewI = I; 582 if (OldI != E) 583 break; 584 } 585 } 586 assert(OldI != E && "Old is not a successor of this block"); 587 588 // If New isn't already a successor, let it take Old's place. 589 if (NewI == E) { 590 Old->removePredecessor(this); 591 New->addPredecessor(this); 592 *OldI = New; 593 return; 594 } 595 596 // New is already a successor. 597 // Update its probability instead of adding a duplicate edge. 598 if (!Probs.empty()) { 599 auto ProbIter = getProbabilityIterator(NewI); 600 if (!ProbIter->isUnknown()) 601 *ProbIter += *getProbabilityIterator(OldI); 602 } 603 removeSuccessor(OldI); 604 } 605 606 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 607 Predecessors.push_back(Pred); 608 } 609 610 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 611 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), Pred); 612 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 613 Predecessors.erase(I); 614 } 615 616 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 617 if (this == FromMBB) 618 return; 619 620 while (!FromMBB->succ_empty()) { 621 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 622 623 // If probability list is empty it means we don't use it (disabled optimization). 624 if (!FromMBB->Probs.empty()) { 625 auto Prob = *FromMBB->Probs.begin(); 626 addSuccessor(Succ, Prob); 627 } else 628 addSuccessorWithoutProb(Succ); 629 630 FromMBB->removeSuccessor(Succ); 631 } 632 } 633 634 void 635 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 636 if (this == FromMBB) 637 return; 638 639 while (!FromMBB->succ_empty()) { 640 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 641 if (!FromMBB->Probs.empty()) { 642 auto Prob = *FromMBB->Probs.begin(); 643 addSuccessor(Succ, Prob); 644 } else 645 addSuccessorWithoutProb(Succ); 646 FromMBB->removeSuccessor(Succ); 647 648 // Fix up any PHI nodes in the successor. 649 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 650 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 651 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 652 MachineOperand &MO = MI->getOperand(i); 653 if (MO.getMBB() == FromMBB) 654 MO.setMBB(this); 655 } 656 } 657 normalizeSuccProbs(); 658 } 659 660 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 661 return std::find(pred_begin(), pred_end(), MBB) != pred_end(); 662 } 663 664 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 665 return std::find(succ_begin(), succ_end(), MBB) != succ_end(); 666 } 667 668 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 669 MachineFunction::const_iterator I(this); 670 return std::next(I) == MachineFunction::const_iterator(MBB); 671 } 672 673 bool MachineBasicBlock::canFallThrough() { 674 MachineFunction::iterator Fallthrough = getIterator(); 675 ++Fallthrough; 676 // If FallthroughBlock is off the end of the function, it can't fall through. 677 if (Fallthrough == getParent()->end()) 678 return false; 679 680 // If FallthroughBlock isn't a successor, no fallthrough is possible. 681 if (!isSuccessor(&*Fallthrough)) 682 return false; 683 684 // Analyze the branches, if any, at the end of the block. 685 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 686 SmallVector<MachineOperand, 4> Cond; 687 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 688 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) { 689 // If we couldn't analyze the branch, examine the last instruction. 690 // If the block doesn't end in a known control barrier, assume fallthrough 691 // is possible. The isPredicated check is needed because this code can be 692 // called during IfConversion, where an instruction which is normally a 693 // Barrier is predicated and thus no longer an actual control barrier. 694 return empty() || !back().isBarrier() || TII->isPredicated(&back()); 695 } 696 697 // If there is no branch, control always falls through. 698 if (!TBB) return true; 699 700 // If there is some explicit branch to the fallthrough block, it can obviously 701 // reach, even though the branch should get folded to fall through implicitly. 702 if (MachineFunction::iterator(TBB) == Fallthrough || 703 MachineFunction::iterator(FBB) == Fallthrough) 704 return true; 705 706 // If it's an unconditional branch to some block not the fall through, it 707 // doesn't fall through. 708 if (Cond.empty()) return false; 709 710 // Otherwise, if it is conditional and has no explicit false block, it falls 711 // through. 712 return FBB == nullptr; 713 } 714 715 MachineBasicBlock * 716 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) { 717 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 718 // it in this generic function. 719 if (Succ->isEHPad()) 720 return nullptr; 721 722 MachineFunction *MF = getParent(); 723 DebugLoc DL; // FIXME: this is nowhere 724 725 // Performance might be harmed on HW that implements branching using exec mask 726 // where both sides of the branches are always executed. 727 if (MF->getTarget().requiresStructuredCFG()) 728 return nullptr; 729 730 // We may need to update this's terminator, but we can't do that if 731 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 732 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 733 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 734 SmallVector<MachineOperand, 4> Cond; 735 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) 736 return nullptr; 737 738 // Avoid bugpoint weirdness: A block may end with a conditional branch but 739 // jumps to the same MBB is either case. We have duplicate CFG edges in that 740 // case that we can't handle. Since this never happens in properly optimized 741 // code, just skip those edges. 742 if (TBB && TBB == FBB) { 743 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 744 << getNumber() << '\n'); 745 return nullptr; 746 } 747 748 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 749 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 750 DEBUG(dbgs() << "Splitting critical edge:" 751 " BB#" << getNumber() 752 << " -- BB#" << NMBB->getNumber() 753 << " -- BB#" << Succ->getNumber() << '\n'); 754 755 LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>(); 756 SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>(); 757 if (LIS) 758 LIS->insertMBBInMaps(NMBB); 759 else if (Indexes) 760 Indexes->insertMBBInMaps(NMBB); 761 762 // On some targets like Mips, branches may kill virtual registers. Make sure 763 // that LiveVariables is properly updated after updateTerminator replaces the 764 // terminators. 765 LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>(); 766 767 // Collect a list of virtual registers killed by the terminators. 768 SmallVector<unsigned, 4> KilledRegs; 769 if (LV) 770 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 771 I != E; ++I) { 772 MachineInstr *MI = &*I; 773 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 774 OE = MI->operands_end(); OI != OE; ++OI) { 775 if (!OI->isReg() || OI->getReg() == 0 || 776 !OI->isUse() || !OI->isKill() || OI->isUndef()) 777 continue; 778 unsigned Reg = OI->getReg(); 779 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 780 LV->getVarInfo(Reg).removeKill(MI)) { 781 KilledRegs.push_back(Reg); 782 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 783 OI->setIsKill(false); 784 } 785 } 786 } 787 788 SmallVector<unsigned, 4> UsedRegs; 789 if (LIS) { 790 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 791 I != E; ++I) { 792 MachineInstr *MI = &*I; 793 794 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 795 OE = MI->operands_end(); OI != OE; ++OI) { 796 if (!OI->isReg() || OI->getReg() == 0) 797 continue; 798 799 unsigned Reg = OI->getReg(); 800 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end()) 801 UsedRegs.push_back(Reg); 802 } 803 } 804 } 805 806 ReplaceUsesOfBlockWith(Succ, NMBB); 807 808 // If updateTerminator() removes instructions, we need to remove them from 809 // SlotIndexes. 810 SmallVector<MachineInstr*, 4> Terminators; 811 if (Indexes) { 812 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 813 I != E; ++I) 814 Terminators.push_back(&*I); 815 } 816 817 updateTerminator(); 818 819 if (Indexes) { 820 SmallVector<MachineInstr*, 4> NewTerminators; 821 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 822 I != E; ++I) 823 NewTerminators.push_back(&*I); 824 825 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 826 E = Terminators.end(); I != E; ++I) { 827 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) == 828 NewTerminators.end()) 829 Indexes->removeMachineInstrFromMaps(*I); 830 } 831 } 832 833 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 834 NMBB->addSuccessor(Succ); 835 if (!NMBB->isLayoutSuccessor(Succ)) { 836 Cond.clear(); 837 TII->InsertBranch(*NMBB, Succ, nullptr, Cond, DL); 838 839 if (Indexes) { 840 for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end(); 841 I != E; ++I) { 842 // Some instructions may have been moved to NMBB by updateTerminator(), 843 // so we first remove any instruction that already has an index. 844 if (Indexes->hasIndex(&*I)) 845 Indexes->removeMachineInstrFromMaps(&*I); 846 Indexes->insertMachineInstrInMaps(&*I); 847 } 848 } 849 } 850 851 // Fix PHI nodes in Succ so they refer to NMBB instead of this 852 for (MachineBasicBlock::instr_iterator 853 i = Succ->instr_begin(),e = Succ->instr_end(); 854 i != e && i->isPHI(); ++i) 855 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 856 if (i->getOperand(ni+1).getMBB() == this) 857 i->getOperand(ni+1).setMBB(NMBB); 858 859 // Inherit live-ins from the successor 860 for (const auto &LI : Succ->liveins()) 861 NMBB->addLiveIn(LI); 862 863 // Update LiveVariables. 864 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 865 if (LV) { 866 // Restore kills of virtual registers that were killed by the terminators. 867 while (!KilledRegs.empty()) { 868 unsigned Reg = KilledRegs.pop_back_val(); 869 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 870 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 871 continue; 872 if (TargetRegisterInfo::isVirtualRegister(Reg)) 873 LV->getVarInfo(Reg).Kills.push_back(&*I); 874 DEBUG(dbgs() << "Restored terminator kill: " << *I); 875 break; 876 } 877 } 878 // Update relevant live-through information. 879 LV->addNewBlock(NMBB, this, Succ); 880 } 881 882 if (LIS) { 883 // After splitting the edge and updating SlotIndexes, live intervals may be 884 // in one of two situations, depending on whether this block was the last in 885 // the function. If the original block was the last in the function, all 886 // live intervals will end prior to the beginning of the new split block. If 887 // the original block was not at the end of the function, all live intervals 888 // will extend to the end of the new split block. 889 890 bool isLastMBB = 891 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 892 893 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 894 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 895 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 896 897 // Find the registers used from NMBB in PHIs in Succ. 898 SmallSet<unsigned, 8> PHISrcRegs; 899 for (MachineBasicBlock::instr_iterator 900 I = Succ->instr_begin(), E = Succ->instr_end(); 901 I != E && I->isPHI(); ++I) { 902 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 903 if (I->getOperand(ni+1).getMBB() == NMBB) { 904 MachineOperand &MO = I->getOperand(ni); 905 unsigned Reg = MO.getReg(); 906 PHISrcRegs.insert(Reg); 907 if (MO.isUndef()) 908 continue; 909 910 LiveInterval &LI = LIS->getInterval(Reg); 911 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 912 assert(VNI && 913 "PHI sources should be live out of their predecessors."); 914 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 915 } 916 } 917 } 918 919 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 920 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 921 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 922 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 923 continue; 924 925 LiveInterval &LI = LIS->getInterval(Reg); 926 if (!LI.liveAt(PrevIndex)) 927 continue; 928 929 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 930 if (isLiveOut && isLastMBB) { 931 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 932 assert(VNI && "LiveInterval should have VNInfo where it is live."); 933 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 934 } else if (!isLiveOut && !isLastMBB) { 935 LI.removeSegment(StartIndex, EndIndex); 936 } 937 } 938 939 // Update all intervals for registers whose uses may have been modified by 940 // updateTerminator(). 941 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 942 } 943 944 if (MachineDominatorTree *MDT = 945 P->getAnalysisIfAvailable<MachineDominatorTree>()) 946 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 947 948 if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>()) 949 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 950 // If one or the other blocks were not in a loop, the new block is not 951 // either, and thus LI doesn't need to be updated. 952 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 953 if (TIL == DestLoop) { 954 // Both in the same loop, the NMBB joins loop. 955 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 956 } else if (TIL->contains(DestLoop)) { 957 // Edge from an outer loop to an inner loop. Add to the outer loop. 958 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 959 } else if (DestLoop->contains(TIL)) { 960 // Edge from an inner loop to an outer loop. Add to the outer loop. 961 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 962 } else { 963 // Edge from two loops with no containment relation. Because these 964 // are natural loops, we know that the destination block must be the 965 // header of its loop (adding a branch into a loop elsewhere would 966 // create an irreducible loop). 967 assert(DestLoop->getHeader() == Succ && 968 "Should not create irreducible loops!"); 969 if (MachineLoop *P = DestLoop->getParentLoop()) 970 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 971 } 972 } 973 } 974 975 return NMBB; 976 } 977 978 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 979 /// neighboring instructions so the bundle won't be broken by removing MI. 980 static void unbundleSingleMI(MachineInstr *MI) { 981 // Removing the first instruction in a bundle. 982 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 983 MI->unbundleFromSucc(); 984 // Removing the last instruction in a bundle. 985 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 986 MI->unbundleFromPred(); 987 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 988 // are already fine. 989 } 990 991 MachineBasicBlock::instr_iterator 992 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 993 unbundleSingleMI(&*I); 994 return Insts.erase(I); 995 } 996 997 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 998 unbundleSingleMI(MI); 999 MI->clearFlag(MachineInstr::BundledPred); 1000 MI->clearFlag(MachineInstr::BundledSucc); 1001 return Insts.remove(MI); 1002 } 1003 1004 MachineBasicBlock::instr_iterator 1005 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1006 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1007 "Cannot insert instruction with bundle flags"); 1008 // Set the bundle flags when inserting inside a bundle. 1009 if (I != instr_end() && I->isBundledWithPred()) { 1010 MI->setFlag(MachineInstr::BundledPred); 1011 MI->setFlag(MachineInstr::BundledSucc); 1012 } 1013 return Insts.insert(I, MI); 1014 } 1015 1016 /// This method unlinks 'this' from the containing function, and returns it, but 1017 /// does not delete it. 1018 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1019 assert(getParent() && "Not embedded in a function!"); 1020 getParent()->remove(this); 1021 return this; 1022 } 1023 1024 /// This method unlinks 'this' from the containing function, and deletes it. 1025 void MachineBasicBlock::eraseFromParent() { 1026 assert(getParent() && "Not embedded in a function!"); 1027 getParent()->erase(this); 1028 } 1029 1030 /// Given a machine basic block that branched to 'Old', change the code and CFG 1031 /// so that it branches to 'New' instead. 1032 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1033 MachineBasicBlock *New) { 1034 assert(Old != New && "Cannot replace self with self!"); 1035 1036 MachineBasicBlock::instr_iterator I = instr_end(); 1037 while (I != instr_begin()) { 1038 --I; 1039 if (!I->isTerminator()) break; 1040 1041 // Scan the operands of this machine instruction, replacing any uses of Old 1042 // with New. 1043 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1044 if (I->getOperand(i).isMBB() && 1045 I->getOperand(i).getMBB() == Old) 1046 I->getOperand(i).setMBB(New); 1047 } 1048 1049 // Update the successor information. 1050 replaceSuccessor(Old, New); 1051 } 1052 1053 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1054 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1055 /// MBB successors from the CFG. DestA and DestB can be null. 1056 /// 1057 /// Besides DestA and DestB, retain other edges leading to LandingPads 1058 /// (currently there can be only one; we don't check or require that here). 1059 /// Note it is possible that DestA and/or DestB are LandingPads. 1060 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1061 MachineBasicBlock *DestB, 1062 bool IsCond) { 1063 // The values of DestA and DestB frequently come from a call to the 1064 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1065 // values from there. 1066 // 1067 // 1. If both DestA and DestB are null, then the block ends with no branches 1068 // (it falls through to its successor). 1069 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1070 // with only an unconditional branch. 1071 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1072 // with a conditional branch that falls through to a successor (DestB). 1073 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1074 // conditional branch followed by an unconditional branch. DestA is the 1075 // 'true' destination and DestB is the 'false' destination. 1076 1077 bool Changed = false; 1078 1079 MachineFunction::iterator FallThru = std::next(getIterator()); 1080 1081 if (!DestA && !DestB) { 1082 // Block falls through to successor. 1083 DestA = &*FallThru; 1084 DestB = &*FallThru; 1085 } else if (DestA && !DestB) { 1086 if (IsCond) 1087 // Block ends in conditional jump that falls through to successor. 1088 DestB = &*FallThru; 1089 } else { 1090 assert(DestA && DestB && IsCond && 1091 "CFG in a bad state. Cannot correct CFG edges"); 1092 } 1093 1094 // Remove superfluous edges. I.e., those which aren't destinations of this 1095 // basic block, duplicate edges, or landing pads. 1096 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1097 MachineBasicBlock::succ_iterator SI = succ_begin(); 1098 while (SI != succ_end()) { 1099 const MachineBasicBlock *MBB = *SI; 1100 if (!SeenMBBs.insert(MBB).second || 1101 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1102 // This is a superfluous edge, remove it. 1103 SI = removeSuccessor(SI); 1104 Changed = true; 1105 } else { 1106 ++SI; 1107 } 1108 } 1109 1110 if (Changed) 1111 normalizeSuccProbs(); 1112 return Changed; 1113 } 1114 1115 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1116 /// instructions. Return UnknownLoc if there is none. 1117 DebugLoc 1118 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1119 DebugLoc DL; 1120 instr_iterator E = instr_end(); 1121 if (MBBI == E) 1122 return DL; 1123 1124 // Skip debug declarations, we don't want a DebugLoc from them. 1125 while (MBBI != E && MBBI->isDebugValue()) 1126 MBBI++; 1127 if (MBBI != E) 1128 DL = MBBI->getDebugLoc(); 1129 return DL; 1130 } 1131 1132 /// Return probability of the edge from this block to MBB. 1133 BranchProbability 1134 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1135 if (Probs.empty()) 1136 return BranchProbability(1, succ_size()); 1137 1138 const auto &Prob = *getProbabilityIterator(Succ); 1139 if (Prob.isUnknown()) { 1140 // For unknown probabilities, collect the sum of all known ones, and evenly 1141 // ditribute the complemental of the sum to each unknown probability. 1142 unsigned KnownProbNum = 0; 1143 auto Sum = BranchProbability::getZero(); 1144 for (auto &P : Probs) { 1145 if (!P.isUnknown()) { 1146 Sum += P; 1147 KnownProbNum++; 1148 } 1149 } 1150 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1151 } else 1152 return Prob; 1153 } 1154 1155 /// Set successor probability of a given iterator. 1156 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1157 BranchProbability Prob) { 1158 assert(!Prob.isUnknown()); 1159 if (Probs.empty()) 1160 return; 1161 *getProbabilityIterator(I) = Prob; 1162 } 1163 1164 /// Return probability iterator corresonding to the I successor iterator 1165 MachineBasicBlock::const_probability_iterator 1166 MachineBasicBlock::getProbabilityIterator( 1167 MachineBasicBlock::const_succ_iterator I) const { 1168 assert(Probs.size() == Successors.size() && "Async probability list!"); 1169 const size_t index = std::distance(Successors.begin(), I); 1170 assert(index < Probs.size() && "Not a current successor!"); 1171 return Probs.begin() + index; 1172 } 1173 1174 /// Return probability iterator corresonding to the I successor iterator. 1175 MachineBasicBlock::probability_iterator 1176 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1177 assert(Probs.size() == Successors.size() && "Async probability list!"); 1178 const size_t index = std::distance(Successors.begin(), I); 1179 assert(index < Probs.size() && "Not a current successor!"); 1180 return Probs.begin() + index; 1181 } 1182 1183 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1184 /// as of just before "MI". 1185 /// 1186 /// Search is localised to a neighborhood of 1187 /// Neighborhood instructions before (searching for defs or kills) and N 1188 /// instructions after (searching just for defs) MI. 1189 MachineBasicBlock::LivenessQueryResult 1190 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1191 unsigned Reg, const_iterator Before, 1192 unsigned Neighborhood) const { 1193 unsigned N = Neighborhood; 1194 1195 // Start by searching backwards from Before, looking for kills, reads or defs. 1196 const_iterator I(Before); 1197 // If this is the first insn in the block, don't search backwards. 1198 if (I != begin()) { 1199 do { 1200 --I; 1201 1202 MachineOperandIteratorBase::PhysRegInfo Info = 1203 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1204 1205 // Defs happen after uses so they take precedence if both are present. 1206 1207 // Register is dead after a dead def of the full register. 1208 if (Info.DeadDef) 1209 return LQR_Dead; 1210 // Register is (at least partially) live after a def. 1211 if (Info.Defined) 1212 return LQR_Live; 1213 // Register is dead after a full kill or clobber and no def. 1214 if (Info.Killed || Info.Clobbered) 1215 return LQR_Dead; 1216 // Register must be live if we read it. 1217 if (Info.Read) 1218 return LQR_Live; 1219 } while (I != begin() && --N > 0); 1220 } 1221 1222 // Did we get to the start of the block? 1223 if (I == begin()) { 1224 // If so, the register's state is definitely defined by the live-in state. 1225 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1226 ++RAI) 1227 if (isLiveIn(*RAI)) 1228 return LQR_Live; 1229 1230 return LQR_Dead; 1231 } 1232 1233 N = Neighborhood; 1234 1235 // Try searching forwards from Before, looking for reads or defs. 1236 I = const_iterator(Before); 1237 // If this is the last insn in the block, don't search forwards. 1238 if (I != end()) { 1239 for (++I; I != end() && N > 0; ++I, --N) { 1240 MachineOperandIteratorBase::PhysRegInfo Info = 1241 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1242 1243 // Register is live when we read it here. 1244 if (Info.Read) 1245 return LQR_Live; 1246 // Register is dead if we can fully overwrite or clobber it here. 1247 if (Info.FullyDefined || Info.Clobbered) 1248 return LQR_Dead; 1249 } 1250 } 1251 1252 // At this point we have no idea of the liveness of the register. 1253 return LQR_Unknown; 1254 } 1255 1256 const uint32_t * 1257 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1258 // EH funclet entry does not preserve any registers. 1259 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1260 } 1261 1262 const uint32_t * 1263 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1264 // If we see a return block with successors, this must be a funclet return, 1265 // which does not preserve any registers. If there are no successors, we don't 1266 // care what kind of return it is, putting a mask after it is a no-op. 1267 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1268 } 1269