Home | History | Annotate | Download | only in glshared
      1 /*-------------------------------------------------------------------------
      2  * drawElements Quality Program OpenGL (ES) Module
      3  * -----------------------------------------------
      4  *
      5  * Copyright 2014 The Android Open Source Project
      6  *
      7  * Licensed under the Apache License, Version 2.0 (the "License");
      8  * you may not use this file except in compliance with the License.
      9  * You may obtain a copy of the License at
     10  *
     11  *      http://www.apache.org/licenses/LICENSE-2.0
     12  *
     13  * Unless required by applicable law or agreed to in writing, software
     14  * distributed under the License is distributed on an "AS IS" BASIS,
     15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16  * See the License for the specific language governing permissions and
     17  * limitations under the License.
     18  *
     19  *//*!
     20  * \file
     21  * \brief rasterization test utils.
     22  *//*--------------------------------------------------------------------*/
     23 
     24 #include "glsRasterizationTestUtil.hpp"
     25 #include "tcuVector.hpp"
     26 #include "tcuSurface.hpp"
     27 #include "tcuTestLog.hpp"
     28 #include "tcuTextureUtil.hpp"
     29 #include "tcuVectorUtil.hpp"
     30 #include "tcuFloat.hpp"
     31 #include "deMath.h"
     32 
     33 #include "rrRasterizer.hpp"
     34 
     35 #include <limits>
     36 
     37 namespace deqp
     38 {
     39 namespace gls
     40 {
     41 namespace RasterizationTestUtil
     42 {
     43 namespace
     44 {
     45 
     46 bool lineLineIntersect (const tcu::Vector<deInt64, 2>& line0Beg, const tcu::Vector<deInt64, 2>& line0End, const tcu::Vector<deInt64, 2>& line1Beg, const tcu::Vector<deInt64, 2>& line1End)
     47 {
     48 	typedef tcu::Vector<deInt64, 2> I64Vec2;
     49 
     50 	// Lines do not intersect if the other line's endpoints are on the same side
     51 	// otherwise, the do intersect
     52 
     53 	// Test line 0
     54 	{
     55 		const I64Vec2 line			= line0End - line0Beg;
     56 		const I64Vec2 v0			= line1Beg - line0Beg;
     57 		const I64Vec2 v1			= line1End - line0Beg;
     58 		const deInt64 crossProduct0	= (line.x() * v0.y() - line.y() * v0.x());
     59 		const deInt64 crossProduct1	= (line.x() * v1.y() - line.y() * v1.x());
     60 
     61 		// check signs
     62 		if ((crossProduct0 < 0 && crossProduct1 < 0) ||
     63 			(crossProduct0 > 0 && crossProduct1 > 0))
     64 			return false;
     65 	}
     66 
     67 	// Test line 1
     68 	{
     69 		const I64Vec2 line			= line1End - line1Beg;
     70 		const I64Vec2 v0			= line0Beg - line1Beg;
     71 		const I64Vec2 v1			= line0End - line1Beg;
     72 		const deInt64 crossProduct0	= (line.x() * v0.y() - line.y() * v0.x());
     73 		const deInt64 crossProduct1	= (line.x() * v1.y() - line.y() * v1.x());
     74 
     75 		// check signs
     76 		if ((crossProduct0 < 0 && crossProduct1 < 0) ||
     77 			(crossProduct0 > 0 && crossProduct1 > 0))
     78 			return false;
     79 	}
     80 
     81 	return true;
     82 }
     83 
     84 bool isTriangleClockwise (const tcu::Vec4& p0, const tcu::Vec4& p1, const tcu::Vec4& p2)
     85 {
     86 	const tcu::Vec2	u				(p1.x() / p1.w() - p0.x() / p0.w(), p1.y() / p1.w() - p0.y() / p0.w());
     87 	const tcu::Vec2	v				(p2.x() / p2.w() - p0.x() / p0.w(), p2.y() / p2.w() - p0.y() / p0.w());
     88 	const float		crossProduct	= (u.x() * v.y() - u.y() * v.x());
     89 
     90 	return crossProduct > 0.0f;
     91 }
     92 
     93 bool compareColors (const tcu::RGBA& colorA, const tcu::RGBA& colorB, int redBits, int greenBits, int blueBits)
     94 {
     95 	const int thresholdRed		= 1 << (8 - redBits);
     96 	const int thresholdGreen	= 1 << (8 - greenBits);
     97 	const int thresholdBlue		= 1 << (8 - blueBits);
     98 
     99 	return	deAbs32(colorA.getRed()   - colorB.getRed())   <= thresholdRed   &&
    100 			deAbs32(colorA.getGreen() - colorB.getGreen()) <= thresholdGreen &&
    101 			deAbs32(colorA.getBlue()  - colorB.getBlue())  <= thresholdBlue;
    102 }
    103 
    104 bool pixelNearLineSegment (const tcu::IVec2& pixel, const tcu::Vec2& p0, const tcu::Vec2& p1)
    105 {
    106 	const tcu::Vec2 pixelCenterPosition = tcu::Vec2((float)pixel.x() + 0.5f, (float)pixel.y() + 0.5f);
    107 
    108 	// "Near" = Distance from the line to the pixel is less than 2 * pixel_max_radius. (pixel_max_radius = sqrt(2) / 2)
    109 	const float maxPixelDistance		= 1.414f;
    110 	const float maxPixelDistanceSquared	= 2.0f;
    111 
    112 	// Near the line
    113 	{
    114 		const tcu::Vec2	line			= p1                  - p0;
    115 		const tcu::Vec2	v				= pixelCenterPosition - p0;
    116 		const float		crossProduct	= (line.x() * v.y() - line.y() * v.x());
    117 
    118 		// distance to line: (line x v) / |line|
    119 		//     |(line x v) / |line|| > maxPixelDistance
    120 		// ==> (line x v)^2 / |line|^2 > maxPixelDistance^2
    121 		// ==> (line x v)^2 > maxPixelDistance^2 * |line|^2
    122 
    123 		if (crossProduct * crossProduct > maxPixelDistanceSquared * tcu::lengthSquared(line))
    124 			return false;
    125 	}
    126 
    127 	// Between the endpoints
    128 	{
    129 		// distance from line endpoint 1 to pixel is less than line length + maxPixelDistance
    130 		const float maxDistance = tcu::length(p1 - p0) + maxPixelDistance;
    131 
    132 		if (tcu::length(pixelCenterPosition - p0) > maxDistance)
    133 			return false;
    134 		if (tcu::length(pixelCenterPosition - p1) > maxDistance)
    135 			return false;
    136 	}
    137 
    138 	return true;
    139 }
    140 
    141 bool pixelOnlyOnASharedEdge (const tcu::IVec2& pixel, const TriangleSceneSpec::SceneTriangle& triangle, const tcu::IVec2& viewportSize)
    142 {
    143 	if (triangle.sharedEdge[0] || triangle.sharedEdge[1] || triangle.sharedEdge[2])
    144 	{
    145 		const tcu::Vec2 triangleNormalizedDeviceSpace[3] =
    146 		{
    147 			tcu::Vec2(triangle.positions[0].x() / triangle.positions[0].w(), triangle.positions[0].y() / triangle.positions[0].w()),
    148 			tcu::Vec2(triangle.positions[1].x() / triangle.positions[1].w(), triangle.positions[1].y() / triangle.positions[1].w()),
    149 			tcu::Vec2(triangle.positions[2].x() / triangle.positions[2].w(), triangle.positions[2].y() / triangle.positions[2].w()),
    150 		};
    151 		const tcu::Vec2 triangleScreenSpace[3] =
    152 		{
    153 			(triangleNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
    154 			(triangleNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
    155 			(triangleNormalizedDeviceSpace[2] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
    156 		};
    157 
    158 		const bool pixelOnEdge0 = pixelNearLineSegment(pixel, triangleScreenSpace[0], triangleScreenSpace[1]);
    159 		const bool pixelOnEdge1 = pixelNearLineSegment(pixel, triangleScreenSpace[1], triangleScreenSpace[2]);
    160 		const bool pixelOnEdge2 = pixelNearLineSegment(pixel, triangleScreenSpace[2], triangleScreenSpace[0]);
    161 
    162 		// If the pixel is on a multiple edges return false
    163 
    164 		if (pixelOnEdge0 && !pixelOnEdge1 && !pixelOnEdge2)
    165 			return triangle.sharedEdge[0];
    166 		if (!pixelOnEdge0 && pixelOnEdge1 && !pixelOnEdge2)
    167 			return triangle.sharedEdge[1];
    168 		if (!pixelOnEdge0 && !pixelOnEdge1 && pixelOnEdge2)
    169 			return triangle.sharedEdge[2];
    170 	}
    171 
    172 	return false;
    173 }
    174 
    175 float triangleArea (const tcu::Vec2& s0, const tcu::Vec2& s1, const tcu::Vec2& s2)
    176 {
    177 	const tcu::Vec2	u				(s1.x() - s0.x(), s1.y() - s0.y());
    178 	const tcu::Vec2	v				(s2.x() - s0.x(), s2.y() - s0.y());
    179 	const float		crossProduct	= (u.x() * v.y() - u.y() * v.x());
    180 
    181 	return crossProduct / 2.0f;
    182 }
    183 
    184 tcu::IVec4 getTriangleAABB (const TriangleSceneSpec::SceneTriangle& triangle, const tcu::IVec2& viewportSize)
    185 {
    186 	const tcu::Vec2 normalizedDeviceSpace[3] =
    187 	{
    188 		tcu::Vec2(triangle.positions[0].x() / triangle.positions[0].w(), triangle.positions[0].y() / triangle.positions[0].w()),
    189 		tcu::Vec2(triangle.positions[1].x() / triangle.positions[1].w(), triangle.positions[1].y() / triangle.positions[1].w()),
    190 		tcu::Vec2(triangle.positions[2].x() / triangle.positions[2].w(), triangle.positions[2].y() / triangle.positions[2].w()),
    191 	};
    192 	const tcu::Vec2 screenSpace[3] =
    193 	{
    194 		(normalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
    195 		(normalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
    196 		(normalizedDeviceSpace[2] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
    197 	};
    198 
    199 	tcu::IVec4 aabb;
    200 
    201 	aabb.x() = (int)deFloatFloor(de::min(de::min(screenSpace[0].x(), screenSpace[1].x()), screenSpace[2].x()));
    202 	aabb.y() = (int)deFloatFloor(de::min(de::min(screenSpace[0].y(), screenSpace[1].y()), screenSpace[2].y()));
    203 	aabb.z() = (int)deFloatCeil (de::max(de::max(screenSpace[0].x(), screenSpace[1].x()), screenSpace[2].x()));
    204 	aabb.w() = (int)deFloatCeil (de::max(de::max(screenSpace[0].y(), screenSpace[1].y()), screenSpace[2].y()));
    205 
    206 	return aabb;
    207 }
    208 
    209 float getExponentEpsilonFromULP (int valueExponent, deUint32 ulp)
    210 {
    211 	DE_ASSERT(ulp < (1u<<10));
    212 
    213 	// assume mediump precision, using ulp as ulps in a 10 bit mantissa
    214 	return tcu::Float32::construct(+1, valueExponent, (1u<<23) + (ulp << (23 - 10))).asFloat() - tcu::Float32::construct(+1, valueExponent, (1u<<23)).asFloat();
    215 }
    216 
    217 float getValueEpsilonFromULP (float value, deUint32 ulp)
    218 {
    219 	DE_ASSERT(value != std::numeric_limits<float>::infinity() && value != -std::numeric_limits<float>::infinity());
    220 
    221 	const int exponent = tcu::Float32(value).exponent();
    222 	return getExponentEpsilonFromULP(exponent, ulp);
    223 }
    224 
    225 float getMaxValueWithinError (float value, deUint32 ulp)
    226 {
    227 	if (value == std::numeric_limits<float>::infinity() || value == -std::numeric_limits<float>::infinity())
    228 		return value;
    229 
    230 	return value + getValueEpsilonFromULP(value, ulp);
    231 }
    232 
    233 float getMinValueWithinError (float value, deUint32 ulp)
    234 {
    235 	if (value == std::numeric_limits<float>::infinity() || value == -std::numeric_limits<float>::infinity())
    236 		return value;
    237 
    238 	return value - getValueEpsilonFromULP(value, ulp);
    239 }
    240 
    241 float getMinFlushToZero (float value)
    242 {
    243 	// flush to zero if that decreases the value
    244 	// assume mediump precision
    245 	if (value > 0.0f && value < tcu::Float32::construct(+1, -14, 1u<<23).asFloat())
    246 		return 0.0f;
    247 	return value;
    248 }
    249 
    250 float getMaxFlushToZero (float value)
    251 {
    252 	// flush to zero if that increases the value
    253 	// assume mediump precision
    254 	if (value < 0.0f && value > tcu::Float32::construct(-1, -14, 1u<<23).asFloat())
    255 		return 0.0f;
    256 	return value;
    257 }
    258 
    259 tcu::IVec3 convertRGB8ToNativeFormat (const tcu::RGBA& color, const RasterizationArguments& args)
    260 {
    261 	tcu::IVec3 pixelNativeColor;
    262 
    263 	for (int channelNdx = 0; channelNdx < 3; ++channelNdx)
    264 	{
    265 		const int channelBitCount	= (channelNdx == 0) ? (args.redBits) : (channelNdx == 1) ? (args.greenBits) : (args.blueBits);
    266 		const int channelPixelValue	= (channelNdx == 0) ? (color.getRed()) : (channelNdx == 1) ? (color.getGreen()) : (color.getBlue());
    267 
    268 		if (channelBitCount <= 8)
    269 			pixelNativeColor[channelNdx] = channelPixelValue >> (8 - channelBitCount);
    270 		else if (channelBitCount == 8)
    271 			pixelNativeColor[channelNdx] = channelPixelValue;
    272 		else
    273 		{
    274 			// just in case someone comes up with 8+ bits framebuffers pixel formats. But as
    275 			// we can only read in rgba8, we have to guess the trailing bits. Guessing 0.
    276 			pixelNativeColor[channelNdx] = channelPixelValue << (channelBitCount - 8);
    277 		}
    278 	}
    279 
    280 	return pixelNativeColor;
    281 }
    282 
    283 /*--------------------------------------------------------------------*//*!
    284  * Returns the maximum value of x / y, where x c [minDividend, maxDividend]
    285  * and y c [minDivisor, maxDivisor]
    286  *//*--------------------------------------------------------------------*/
    287 float maximalRangeDivision (float minDividend, float maxDividend, float minDivisor, float maxDivisor)
    288 {
    289 	DE_ASSERT(minDividend <= maxDividend);
    290 	DE_ASSERT(minDivisor <= maxDivisor);
    291 
    292 	// special cases
    293 	if (minDividend == 0.0f && maxDividend == 0.0f)
    294 		return 0.0f;
    295 	if (minDivisor <= 0.0f && maxDivisor >= 0.0f)
    296 		return std::numeric_limits<float>::infinity();
    297 
    298 	return de::max(de::max(minDividend / minDivisor, minDividend / maxDivisor), de::max(maxDividend / minDivisor, maxDividend / maxDivisor));
    299 }
    300 
    301 /*--------------------------------------------------------------------*//*!
    302  * Returns the minimum value of x / y, where x c [minDividend, maxDividend]
    303  * and y c [minDivisor, maxDivisor]
    304  *//*--------------------------------------------------------------------*/
    305 float minimalRangeDivision (float minDividend, float maxDividend, float minDivisor, float maxDivisor)
    306 {
    307 	DE_ASSERT(minDividend <= maxDividend);
    308 	DE_ASSERT(minDivisor <= maxDivisor);
    309 
    310 	// special cases
    311 	if (minDividend == 0.0f && maxDividend == 0.0f)
    312 		return 0.0f;
    313 	if (minDivisor <= 0.0f && maxDivisor >= 0.0f)
    314 		return -std::numeric_limits<float>::infinity();
    315 
    316 	return de::min(de::min(minDividend / minDivisor, minDividend / maxDivisor), de::min(maxDividend / minDivisor, maxDividend / maxDivisor));
    317 }
    318 
    319 static bool isLineXMajor (const tcu::Vec2& lineScreenSpaceP0, const tcu::Vec2& lineScreenSpaceP1)
    320 {
    321 	return de::abs(lineScreenSpaceP1.x() - lineScreenSpaceP0.x()) >= de::abs(lineScreenSpaceP1.y() - lineScreenSpaceP0.y());
    322 }
    323 
    324 static bool isPackedSSLineXMajor (const tcu::Vec4& packedLine)
    325 {
    326 	const tcu::Vec2 lineScreenSpaceP0 = packedLine.swizzle(0, 1);
    327 	const tcu::Vec2 lineScreenSpaceP1 = packedLine.swizzle(2, 3);
    328 
    329 	return isLineXMajor(lineScreenSpaceP0, lineScreenSpaceP1);
    330 }
    331 
    332 struct InterpolationRange
    333 {
    334 	tcu::Vec3 max;
    335 	tcu::Vec3 min;
    336 };
    337 
    338 struct LineInterpolationRange
    339 {
    340 	tcu::Vec2 max;
    341 	tcu::Vec2 min;
    342 };
    343 
    344 InterpolationRange calcTriangleInterpolationWeights (const tcu::Vec4& p0, const tcu::Vec4& p1, const tcu::Vec4& p2, const tcu::Vec2& ndpixel)
    345 {
    346 	const int roundError		= 1;
    347 	const int barycentricError	= 3;
    348 	const int divError			= 8;
    349 
    350 	const tcu::Vec2 nd0 = p0.swizzle(0, 1) / p0.w();
    351 	const tcu::Vec2 nd1 = p1.swizzle(0, 1) / p1.w();
    352 	const tcu::Vec2 nd2 = p2.swizzle(0, 1) / p2.w();
    353 
    354 	const float ka = triangleArea(ndpixel, nd1, nd2);
    355 	const float kb = triangleArea(ndpixel, nd2, nd0);
    356 	const float kc = triangleArea(ndpixel, nd0, nd1);
    357 
    358 	const float kaMax = getMaxFlushToZero(getMaxValueWithinError(ka, barycentricError));
    359 	const float kbMax = getMaxFlushToZero(getMaxValueWithinError(kb, barycentricError));
    360 	const float kcMax = getMaxFlushToZero(getMaxValueWithinError(kc, barycentricError));
    361 	const float kaMin = getMinFlushToZero(getMinValueWithinError(ka, barycentricError));
    362 	const float kbMin = getMinFlushToZero(getMinValueWithinError(kb, barycentricError));
    363 	const float kcMin = getMinFlushToZero(getMinValueWithinError(kc, barycentricError));
    364 	DE_ASSERT(kaMin <= kaMax);
    365 	DE_ASSERT(kbMin <= kbMax);
    366 	DE_ASSERT(kcMin <= kcMax);
    367 
    368 	// calculate weights: vec3(ka / p0.w, kb / p1.w, kc / p2.w) / (ka / p0.w + kb / p1.w + kc / p2.w)
    369 	const float maxPreDivisionValues[3] =
    370 	{
    371 		getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(kaMax / p0.w()), divError)),
    372 		getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(kbMax / p1.w()), divError)),
    373 		getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(kcMax / p2.w()), divError)),
    374 	};
    375 	const float minPreDivisionValues[3] =
    376 	{
    377 		getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(kaMin / p0.w()), divError)),
    378 		getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(kbMin / p1.w()), divError)),
    379 		getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(kcMin / p2.w()), divError)),
    380 	};
    381 	DE_ASSERT(minPreDivisionValues[0] <= maxPreDivisionValues[0]);
    382 	DE_ASSERT(minPreDivisionValues[1] <= maxPreDivisionValues[1]);
    383 	DE_ASSERT(minPreDivisionValues[2] <= maxPreDivisionValues[2]);
    384 
    385 	const float maxDivisor = getMaxFlushToZero(getMaxValueWithinError(maxPreDivisionValues[0] + maxPreDivisionValues[1] + maxPreDivisionValues[2], 2*roundError));
    386 	const float minDivisor = getMinFlushToZero(getMinValueWithinError(minPreDivisionValues[0] + minPreDivisionValues[1] + minPreDivisionValues[2], 2*roundError));
    387 	DE_ASSERT(minDivisor <= maxDivisor);
    388 
    389 	InterpolationRange returnValue;
    390 
    391 	returnValue.max.x() = getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(maximalRangeDivision(minPreDivisionValues[0], maxPreDivisionValues[0], minDivisor, maxDivisor)), divError));
    392 	returnValue.max.y() = getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(maximalRangeDivision(minPreDivisionValues[1], maxPreDivisionValues[1], minDivisor, maxDivisor)), divError));
    393 	returnValue.max.z() = getMaxFlushToZero(getMaxValueWithinError(getMaxFlushToZero(maximalRangeDivision(minPreDivisionValues[2], maxPreDivisionValues[2], minDivisor, maxDivisor)), divError));
    394 	returnValue.min.x() = getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(minimalRangeDivision(minPreDivisionValues[0], maxPreDivisionValues[0], minDivisor, maxDivisor)), divError));
    395 	returnValue.min.y() = getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(minimalRangeDivision(minPreDivisionValues[1], maxPreDivisionValues[1], minDivisor, maxDivisor)), divError));
    396 	returnValue.min.z() = getMinFlushToZero(getMinValueWithinError(getMinFlushToZero(minimalRangeDivision(minPreDivisionValues[2], maxPreDivisionValues[2], minDivisor, maxDivisor)), divError));
    397 
    398 	DE_ASSERT(returnValue.min.x() <= returnValue.max.x());
    399 	DE_ASSERT(returnValue.min.y() <= returnValue.max.y());
    400 	DE_ASSERT(returnValue.min.z() <= returnValue.max.z());
    401 
    402 	return returnValue;
    403 }
    404 
    405 LineInterpolationRange calcLineInterpolationWeights (const tcu::Vec2& pa, float wa, const tcu::Vec2& pb, float wb, const tcu::Vec2& pr)
    406 {
    407 	const int roundError	= 1;
    408 	const int divError		= 3;
    409 
    410 	// calc weights:
    411 	//			(1-t) / wa					t / wb
    412 	//		-------------------	,	-------------------
    413 	//		(1-t) / wa + t / wb		(1-t) / wa + t / wb
    414 
    415 	// Allow 1 ULP
    416 	const float		dividend	= tcu::dot(pr - pa, pb - pa);
    417 	const float		dividendMax	= getMaxValueWithinError(dividend, 1);
    418 	const float		dividendMin	= getMinValueWithinError(dividend, 1);
    419 	DE_ASSERT(dividendMin <= dividendMax);
    420 
    421 	// Assuming lengthSquared will not be implemented as sqrt(x)^2, allow 1 ULP
    422 	const float		divisor		= tcu::lengthSquared(pb - pa);
    423 	const float		divisorMax	= getMaxValueWithinError(divisor, 1);
    424 	const float		divisorMin	= getMinValueWithinError(divisor, 1);
    425 	DE_ASSERT(divisorMin <= divisorMax);
    426 
    427 	// Allow 3 ULP precision for division
    428 	const float		tMax		= getMaxValueWithinError(maximalRangeDivision(dividendMin, dividendMax, divisorMin, divisorMax), divError);
    429 	const float		tMin		= getMinValueWithinError(minimalRangeDivision(dividendMin, dividendMax, divisorMin, divisorMax), divError);
    430 	DE_ASSERT(tMin <= tMax);
    431 
    432 	const float		perspectiveTMax			= getMaxValueWithinError(maximalRangeDivision(tMin, tMax, wb, wb), divError);
    433 	const float		perspectiveTMin			= getMinValueWithinError(minimalRangeDivision(tMin, tMax, wb, wb), divError);
    434 	DE_ASSERT(perspectiveTMin <= perspectiveTMax);
    435 
    436 	const float		perspectiveInvTMax		= getMaxValueWithinError(maximalRangeDivision((1.0f - tMax), (1.0f - tMin), wa, wa), divError);
    437 	const float		perspectiveInvTMin		= getMinValueWithinError(minimalRangeDivision((1.0f - tMax), (1.0f - tMin), wa, wa), divError);
    438 	DE_ASSERT(perspectiveInvTMin <= perspectiveInvTMax);
    439 
    440 	const float		perspectiveDivisorMax	= getMaxValueWithinError(perspectiveTMax + perspectiveInvTMax, roundError);
    441 	const float		perspectiveDivisorMin	= getMinValueWithinError(perspectiveTMin + perspectiveInvTMin, roundError);
    442 	DE_ASSERT(perspectiveDivisorMin <= perspectiveDivisorMax);
    443 
    444 	LineInterpolationRange returnValue;
    445 	returnValue.max.x() = getMaxValueWithinError(maximalRangeDivision(perspectiveInvTMin,	perspectiveInvTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
    446 	returnValue.max.y() = getMaxValueWithinError(maximalRangeDivision(perspectiveTMin,		perspectiveTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
    447 	returnValue.min.x() = getMinValueWithinError(minimalRangeDivision(perspectiveInvTMin,	perspectiveInvTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
    448 	returnValue.min.y() = getMinValueWithinError(minimalRangeDivision(perspectiveTMin,		perspectiveTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
    449 
    450 	DE_ASSERT(returnValue.min.x() <= returnValue.max.x());
    451 	DE_ASSERT(returnValue.min.y() <= returnValue.max.y());
    452 
    453 	return returnValue;
    454 }
    455 
    456 LineInterpolationRange calcLineInterpolationWeightsAxisProjected (const tcu::Vec2& pa, float wa, const tcu::Vec2& pb, float wb, const tcu::Vec2& pr)
    457 {
    458 	const int	roundError		= 1;
    459 	const int	divError		= 3;
    460 	const bool	isXMajor		= isLineXMajor(pa, pb);
    461 	const int	majorAxisNdx	= (isXMajor) ? (0) : (1);
    462 
    463 	// calc weights:
    464 	//			(1-t) / wa					t / wb
    465 	//		-------------------	,	-------------------
    466 	//		(1-t) / wa + t / wb		(1-t) / wa + t / wb
    467 
    468 	// Use axis projected (inaccurate) method, i.e. for X-major lines:
    469 	//     (xd - xa) * (xb - xa)      xd - xa
    470 	// t = ---------------------  ==  -------
    471 	//       ( xb - xa ) ^ 2          xb - xa
    472 
    473 	// Allow 1 ULP
    474 	const float		dividend	= (pr[majorAxisNdx] - pa[majorAxisNdx]);
    475 	const float		dividendMax	= getMaxValueWithinError(dividend, 1);
    476 	const float		dividendMin	= getMinValueWithinError(dividend, 1);
    477 	DE_ASSERT(dividendMin <= dividendMax);
    478 
    479 	// Allow 1 ULP
    480 	const float		divisor		= (pb[majorAxisNdx] - pa[majorAxisNdx]);
    481 	const float		divisorMax	= getMaxValueWithinError(divisor, 1);
    482 	const float		divisorMin	= getMinValueWithinError(divisor, 1);
    483 	DE_ASSERT(divisorMin <= divisorMax);
    484 
    485 	// Allow 3 ULP precision for division
    486 	const float		tMax		= getMaxValueWithinError(maximalRangeDivision(dividendMin, dividendMax, divisorMin, divisorMax), divError);
    487 	const float		tMin		= getMinValueWithinError(minimalRangeDivision(dividendMin, dividendMax, divisorMin, divisorMax), divError);
    488 	DE_ASSERT(tMin <= tMax);
    489 
    490 	const float		perspectiveTMax			= getMaxValueWithinError(maximalRangeDivision(tMin, tMax, wb, wb), divError);
    491 	const float		perspectiveTMin			= getMinValueWithinError(minimalRangeDivision(tMin, tMax, wb, wb), divError);
    492 	DE_ASSERT(perspectiveTMin <= perspectiveTMax);
    493 
    494 	const float		perspectiveInvTMax		= getMaxValueWithinError(maximalRangeDivision((1.0f - tMax), (1.0f - tMin), wa, wa), divError);
    495 	const float		perspectiveInvTMin		= getMinValueWithinError(minimalRangeDivision((1.0f - tMax), (1.0f - tMin), wa, wa), divError);
    496 	DE_ASSERT(perspectiveInvTMin <= perspectiveInvTMax);
    497 
    498 	const float		perspectiveDivisorMax	= getMaxValueWithinError(perspectiveTMax + perspectiveInvTMax, roundError);
    499 	const float		perspectiveDivisorMin	= getMinValueWithinError(perspectiveTMin + perspectiveInvTMin, roundError);
    500 	DE_ASSERT(perspectiveDivisorMin <= perspectiveDivisorMax);
    501 
    502 	LineInterpolationRange returnValue;
    503 	returnValue.max.x() = getMaxValueWithinError(maximalRangeDivision(perspectiveInvTMin,	perspectiveInvTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
    504 	returnValue.max.y() = getMaxValueWithinError(maximalRangeDivision(perspectiveTMin,		perspectiveTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
    505 	returnValue.min.x() = getMinValueWithinError(minimalRangeDivision(perspectiveInvTMin,	perspectiveInvTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
    506 	returnValue.min.y() = getMinValueWithinError(minimalRangeDivision(perspectiveTMin,		perspectiveTMax,	perspectiveDivisorMin, perspectiveDivisorMax), divError);
    507 
    508 	DE_ASSERT(returnValue.min.x() <= returnValue.max.x());
    509 	DE_ASSERT(returnValue.min.y() <= returnValue.max.y());
    510 
    511 	return returnValue;
    512 }
    513 
    514 template <typename WeightEquation>
    515 LineInterpolationRange calcSingleSampleLineInterpolationRangeWithWeightEquation (const tcu::Vec2&	pa,
    516 																				 float				wa,
    517 																				 const tcu::Vec2&	pb,
    518 																				 float				wb,
    519 																				 const tcu::IVec2&	pixel,
    520 																				 int				subpixelBits,
    521 																				 WeightEquation		weightEquation)
    522 {
    523 	// allow interpolation weights anywhere in the central subpixels
    524 	const float testSquareSize = (2.0f / (float)(1UL << subpixelBits));
    525 	const float testSquarePos  = (0.5f - testSquareSize / 2);
    526 
    527 	const tcu::Vec2 corners[4] =
    528 	{
    529 		tcu::Vec2((float)pixel.x() + testSquarePos + 0.0f,				(float)pixel.y() + testSquarePos + 0.0f),
    530 		tcu::Vec2((float)pixel.x() + testSquarePos + 0.0f,				(float)pixel.y() + testSquarePos + testSquareSize),
    531 		tcu::Vec2((float)pixel.x() + testSquarePos + testSquareSize,	(float)pixel.y() + testSquarePos + testSquareSize),
    532 		tcu::Vec2((float)pixel.x() + testSquarePos + testSquareSize,	(float)pixel.y() + testSquarePos + 0.0f),
    533 	};
    534 
    535 	// calculate interpolation as a line
    536 	const LineInterpolationRange weights[4] =
    537 	{
    538 		weightEquation(pa, wa, pb, wb, corners[0]),
    539 		weightEquation(pa, wa, pb, wb, corners[1]),
    540 		weightEquation(pa, wa, pb, wb, corners[2]),
    541 		weightEquation(pa, wa, pb, wb, corners[3]),
    542 	};
    543 
    544 	const tcu::Vec2 minWeights = tcu::min(tcu::min(weights[0].min, weights[1].min), tcu::min(weights[2].min, weights[3].min));
    545 	const tcu::Vec2 maxWeights = tcu::max(tcu::max(weights[0].max, weights[1].max), tcu::max(weights[2].max, weights[3].max));
    546 
    547 	LineInterpolationRange result;
    548 	result.min = minWeights;
    549 	result.max = maxWeights;
    550 	return result;
    551 }
    552 
    553 LineInterpolationRange calcSingleSampleLineInterpolationRange (const tcu::Vec2& pa, float wa, const tcu::Vec2& pb, float wb, const tcu::IVec2& pixel, int subpixelBits)
    554 {
    555 	return calcSingleSampleLineInterpolationRangeWithWeightEquation(pa, wa, pb, wb, pixel, subpixelBits, calcLineInterpolationWeights);
    556 }
    557 
    558 LineInterpolationRange calcSingleSampleLineInterpolationRangeAxisProjected (const tcu::Vec2& pa, float wa, const tcu::Vec2& pb, float wb, const tcu::IVec2& pixel, int subpixelBits)
    559 {
    560 	return calcSingleSampleLineInterpolationRangeWithWeightEquation(pa, wa, pb, wb, pixel, subpixelBits, calcLineInterpolationWeightsAxisProjected);
    561 }
    562 
    563 struct TriangleInterpolator
    564 {
    565 	const TriangleSceneSpec& scene;
    566 
    567 	TriangleInterpolator (const TriangleSceneSpec& scene_)
    568 		: scene(scene_)
    569 	{
    570 	}
    571 
    572 	InterpolationRange interpolate (int primitiveNdx, const tcu::IVec2 pixel, const tcu::IVec2 viewportSize, bool multisample, int subpixelBits) const
    573 	{
    574 		// allow anywhere in the pixel area in multisample
    575 		// allow only in the center subpixels (4 subpixels) in singlesample
    576 		const float testSquareSize = (multisample) ? (1.0f) : (2.0f / (float)(1UL << subpixelBits));
    577 		const float testSquarePos  = (multisample) ? (0.0f) : (0.5f - testSquareSize / 2);
    578 		const tcu::Vec2 corners[4] =
    579 		{
    580 			tcu::Vec2(((float)pixel.x() + testSquarePos + 0.0f)           / (float)viewportSize.x() * 2.0f - 1.0f, ((float)pixel.y() + testSquarePos + 0.0f          ) / (float)viewportSize.y() * 2.0f - 1.0f),
    581 			tcu::Vec2(((float)pixel.x() + testSquarePos + 0.0f)           / (float)viewportSize.x() * 2.0f - 1.0f, ((float)pixel.y() + testSquarePos + testSquareSize) / (float)viewportSize.y() * 2.0f - 1.0f),
    582 			tcu::Vec2(((float)pixel.x() + testSquarePos + testSquareSize) / (float)viewportSize.x() * 2.0f - 1.0f, ((float)pixel.y() + testSquarePos + testSquareSize) / (float)viewportSize.y() * 2.0f - 1.0f),
    583 			tcu::Vec2(((float)pixel.x() + testSquarePos + testSquareSize) / (float)viewportSize.x() * 2.0f - 1.0f, ((float)pixel.y() + testSquarePos + 0.0f          ) / (float)viewportSize.y() * 2.0f - 1.0f),
    584 		};
    585 		const InterpolationRange weights[4] =
    586 		{
    587 			calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0], scene.triangles[primitiveNdx].positions[1], scene.triangles[primitiveNdx].positions[2], corners[0]),
    588 			calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0], scene.triangles[primitiveNdx].positions[1], scene.triangles[primitiveNdx].positions[2], corners[1]),
    589 			calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0], scene.triangles[primitiveNdx].positions[1], scene.triangles[primitiveNdx].positions[2], corners[2]),
    590 			calcTriangleInterpolationWeights(scene.triangles[primitiveNdx].positions[0], scene.triangles[primitiveNdx].positions[1], scene.triangles[primitiveNdx].positions[2], corners[3]),
    591 		};
    592 
    593 		InterpolationRange result;
    594 		result.min = tcu::min(tcu::min(weights[0].min, weights[1].min), tcu::min(weights[2].min, weights[3].min));
    595 		result.max = tcu::max(tcu::max(weights[0].max, weights[1].max), tcu::max(weights[2].max, weights[3].max));
    596 		return result;
    597 	}
    598 };
    599 
    600 /*--------------------------------------------------------------------*//*!
    601  * Used only by verifyMultisampleLineGroupInterpolation to calculate
    602  * correct line interpolations for the triangulated lines.
    603  *//*--------------------------------------------------------------------*/
    604 struct MultisampleLineInterpolator
    605 {
    606 	const LineSceneSpec& scene;
    607 
    608 	MultisampleLineInterpolator (const LineSceneSpec& scene_)
    609 		: scene(scene_)
    610 	{
    611 	}
    612 
    613 	InterpolationRange interpolate (int primitiveNdx, const tcu::IVec2 pixel, const tcu::IVec2 viewportSize, bool multisample, int subpixelBits) const
    614 	{
    615 		DE_ASSERT(multisample);
    616 		DE_UNREF(multisample);
    617 		DE_UNREF(subpixelBits);
    618 
    619 		// in triangulation, one line emits two triangles
    620 		const int		lineNdx		= primitiveNdx / 2;
    621 
    622 		// allow interpolation weights anywhere in the pixel
    623 		const tcu::Vec2 corners[4] =
    624 		{
    625 			tcu::Vec2((float)pixel.x() + 0.0f, (float)pixel.y() + 0.0f),
    626 			tcu::Vec2((float)pixel.x() + 0.0f, (float)pixel.y() + 1.0f),
    627 			tcu::Vec2((float)pixel.x() + 1.0f, (float)pixel.y() + 1.0f),
    628 			tcu::Vec2((float)pixel.x() + 1.0f, (float)pixel.y() + 0.0f),
    629 		};
    630 
    631 		const float		wa = scene.lines[lineNdx].positions[0].w();
    632 		const float		wb = scene.lines[lineNdx].positions[1].w();
    633 		const tcu::Vec2	pa = tcu::Vec2((scene.lines[lineNdx].positions[0].x() / wa + 1.0f) * 0.5f * (float)viewportSize.x(),
    634 									   (scene.lines[lineNdx].positions[0].y() / wa + 1.0f) * 0.5f * (float)viewportSize.y());
    635 		const tcu::Vec2	pb = tcu::Vec2((scene.lines[lineNdx].positions[1].x() / wb + 1.0f) * 0.5f * (float)viewportSize.x(),
    636 									   (scene.lines[lineNdx].positions[1].y() / wb + 1.0f) * 0.5f * (float)viewportSize.y());
    637 
    638 		// calculate interpolation as a line
    639 		const LineInterpolationRange weights[4] =
    640 		{
    641 			calcLineInterpolationWeights(pa, wa, pb, wb, corners[0]),
    642 			calcLineInterpolationWeights(pa, wa, pb, wb, corners[1]),
    643 			calcLineInterpolationWeights(pa, wa, pb, wb, corners[2]),
    644 			calcLineInterpolationWeights(pa, wa, pb, wb, corners[3]),
    645 		};
    646 
    647 		const tcu::Vec2 minWeights = tcu::min(tcu::min(weights[0].min, weights[1].min), tcu::min(weights[2].min, weights[3].min));
    648 		const tcu::Vec2 maxWeights = tcu::max(tcu::max(weights[0].max, weights[1].max), tcu::max(weights[2].max, weights[3].max));
    649 
    650 		// convert to three-component form. For all triangles, the vertex 0 is always emitted by the line starting point, and vertex 2 by the ending point
    651 		InterpolationRange result;
    652 		result.min = tcu::Vec3(minWeights.x(), 0.0f, minWeights.y());
    653 		result.max = tcu::Vec3(maxWeights.x(), 0.0f, maxWeights.y());
    654 		return result;
    655 	}
    656 };
    657 
    658 template <typename Interpolator>
    659 bool verifyTriangleGroupInterpolationWithInterpolator (const tcu::Surface& surface, const TriangleSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log, const Interpolator& interpolator)
    660 {
    661 	const tcu::RGBA		invalidPixelColor	= tcu::RGBA(255, 0, 0, 255);
    662 	const bool			multisampled		= (args.numSamples != 0);
    663 	const tcu::IVec2	viewportSize		= tcu::IVec2(surface.getWidth(), surface.getHeight());
    664 	const int			errorFloodThreshold	= 4;
    665 	int					errorCount			= 0;
    666 	int					invalidPixels		= 0;
    667 	int					subPixelBits		= args.subpixelBits;
    668 	tcu::Surface		errorMask			(surface.getWidth(), surface.getHeight());
    669 
    670 	tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
    671 
    672 	// log format
    673 
    674 	log << tcu::TestLog::Message << "Verifying rasterization result. Native format is RGB" << args.redBits << args.greenBits << args.blueBits << tcu::TestLog::EndMessage;
    675 	if (args.redBits > 8 || args.greenBits > 8 || args.blueBits > 8)
    676 		log << tcu::TestLog::Message << "Warning! More than 8 bits in a color channel, this may produce false negatives." << tcu::TestLog::EndMessage;
    677 
    678 	// subpixel bits in in a valid range?
    679 
    680 	if (subPixelBits < 0)
    681 	{
    682 		log << tcu::TestLog::Message << "Invalid subpixel count (" << subPixelBits << "), assuming 0" << tcu::TestLog::EndMessage;
    683 		subPixelBits = 0;
    684 	}
    685 	else if (subPixelBits > 16)
    686 	{
    687 		// At high subpixel bit counts we might overflow. Checking at lower bit count is ok, but is less strict
    688 		log << tcu::TestLog::Message << "Subpixel count is greater than 16 (" << subPixelBits << "). Checking results using less strict 16 bit requirements. This may produce false positives." << tcu::TestLog::EndMessage;
    689 		subPixelBits = 16;
    690 	}
    691 
    692 	// check pixels
    693 
    694 	for (int y = 0; y < surface.getHeight(); ++y)
    695 	for (int x = 0; x < surface.getWidth();  ++x)
    696 	{
    697 		const tcu::RGBA		color				= surface.getPixel(x, y);
    698 		bool				stackBottomFound	= false;
    699 		int					stackSize			= 0;
    700 		tcu::Vec4			colorStackMin;
    701 		tcu::Vec4			colorStackMax;
    702 
    703 		// Iterate triangle coverage front to back, find the stack of pontentially contributing fragments
    704 		for (int triNdx = (int)scene.triangles.size() - 1; triNdx >= 0; --triNdx)
    705 		{
    706 			const CoverageType coverage = calculateTriangleCoverage(scene.triangles[triNdx].positions[0],
    707 																	scene.triangles[triNdx].positions[1],
    708 																	scene.triangles[triNdx].positions[2],
    709 																	tcu::IVec2(x, y),
    710 																	viewportSize,
    711 																	subPixelBits,
    712 																	multisampled);
    713 
    714 			if (coverage == COVERAGE_FULL || coverage == COVERAGE_PARTIAL)
    715 			{
    716 				// potentially contributes to the result fragment's value
    717 				const InterpolationRange weights = interpolator.interpolate(triNdx, tcu::IVec2(x, y), viewportSize, multisampled, subPixelBits);
    718 
    719 				const tcu::Vec4 fragmentColorMax =	de::clamp(weights.max.x(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[0] +
    720 													de::clamp(weights.max.y(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[1] +
    721 													de::clamp(weights.max.z(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[2];
    722 				const tcu::Vec4 fragmentColorMin =	de::clamp(weights.min.x(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[0] +
    723 													de::clamp(weights.min.y(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[1] +
    724 													de::clamp(weights.min.z(), 0.0f, 1.0f) * scene.triangles[triNdx].colors[2];
    725 
    726 				if (stackSize++ == 0)
    727 				{
    728 					// first triangle, set the values properly
    729 					colorStackMin = fragmentColorMin;
    730 					colorStackMax = fragmentColorMax;
    731 				}
    732 				else
    733 				{
    734 					// contributing triangle
    735 					colorStackMin = tcu::min(colorStackMin, fragmentColorMin);
    736 					colorStackMax = tcu::max(colorStackMax, fragmentColorMax);
    737 				}
    738 
    739 				if (coverage == COVERAGE_FULL)
    740 				{
    741 					// loop terminates, this is the bottommost fragment
    742 					stackBottomFound = true;
    743 					break;
    744 				}
    745 			}
    746 		}
    747 
    748 		// Partial coverage == background may be visible
    749 		if (stackSize != 0 && !stackBottomFound)
    750 		{
    751 			stackSize++;
    752 			colorStackMin = tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f);
    753 		}
    754 
    755 		// Is the result image color in the valid range.
    756 		if (stackSize == 0)
    757 		{
    758 			// No coverage, allow only background (black, value=0)
    759 			const tcu::IVec3	pixelNativeColor	= convertRGB8ToNativeFormat(color, args);
    760 			const int			threshold			= 1;
    761 
    762 			if (pixelNativeColor.x() > threshold ||
    763 				pixelNativeColor.y() > threshold ||
    764 				pixelNativeColor.z() > threshold)
    765 			{
    766 				++errorCount;
    767 
    768 				// don't fill the logs with too much data
    769 				if (errorCount < errorFloodThreshold)
    770 				{
    771 					log << tcu::TestLog::Message
    772 						<< "Found an invalid pixel at (" << x << "," << y << ")\n"
    773 						<< "\tPixel color:\t\t" << color << "\n"
    774 						<< "\tExpected background color.\n"
    775 						<< tcu::TestLog::EndMessage;
    776 				}
    777 
    778 				++invalidPixels;
    779 				errorMask.setPixel(x, y, invalidPixelColor);
    780 			}
    781 		}
    782 		else
    783 		{
    784 			DE_ASSERT(stackSize);
    785 
    786 			// Each additional step in the stack may cause conversion error of 1 bit due to undefined rounding direction
    787 			const int			thresholdRed	= stackSize - 1;
    788 			const int			thresholdGreen	= stackSize - 1;
    789 			const int			thresholdBlue	= stackSize - 1;
    790 
    791 			const tcu::Vec3		valueRangeMin	= tcu::Vec3(colorStackMin.xyz());
    792 			const tcu::Vec3		valueRangeMax	= tcu::Vec3(colorStackMax.xyz());
    793 
    794 			const tcu::IVec3	formatLimit		((1 << args.redBits) - 1, (1 << args.greenBits) - 1, (1 << args.blueBits) - 1);
    795 			const tcu::Vec3		colorMinF		(de::clamp(valueRangeMin.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
    796 												 de::clamp(valueRangeMin.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
    797 												 de::clamp(valueRangeMin.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
    798 			const tcu::Vec3		colorMaxF		(de::clamp(valueRangeMax.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
    799 												 de::clamp(valueRangeMax.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
    800 												 de::clamp(valueRangeMax.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
    801 			const tcu::IVec3	colorMin		((int)deFloatFloor(colorMinF.x()),
    802 												 (int)deFloatFloor(colorMinF.y()),
    803 												 (int)deFloatFloor(colorMinF.z()));
    804 			const tcu::IVec3	colorMax		((int)deFloatCeil (colorMaxF.x()),
    805 												 (int)deFloatCeil (colorMaxF.y()),
    806 												 (int)deFloatCeil (colorMaxF.z()));
    807 
    808 			// Convert pixel color from rgba8 to the real pixel format. Usually rgba8 or 565
    809 			const tcu::IVec3 pixelNativeColor = convertRGB8ToNativeFormat(color, args);
    810 
    811 			// Validity check
    812 			if (pixelNativeColor.x() < colorMin.x() - thresholdRed   ||
    813 				pixelNativeColor.y() < colorMin.y() - thresholdGreen ||
    814 				pixelNativeColor.z() < colorMin.z() - thresholdBlue  ||
    815 				pixelNativeColor.x() > colorMax.x() + thresholdRed   ||
    816 				pixelNativeColor.y() > colorMax.y() + thresholdGreen ||
    817 				pixelNativeColor.z() > colorMax.z() + thresholdBlue)
    818 			{
    819 				++errorCount;
    820 
    821 				// don't fill the logs with too much data
    822 				if (errorCount <= errorFloodThreshold)
    823 				{
    824 					log << tcu::TestLog::Message
    825 						<< "Found an invalid pixel at (" << x << "," << y << ")\n"
    826 						<< "\tPixel color:\t\t" << color << "\n"
    827 						<< "\tNative color:\t\t" << pixelNativeColor << "\n"
    828 						<< "\tAllowed error:\t\t" << tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue) << "\n"
    829 						<< "\tReference native color min: " << tcu::clamp(colorMin - tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue), tcu::IVec3(0,0,0), formatLimit) << "\n"
    830 						<< "\tReference native color max: " << tcu::clamp(colorMax + tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue), tcu::IVec3(0,0,0), formatLimit) << "\n"
    831 						<< "\tReference native float min: " << tcu::clamp(colorMinF - tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue).cast<float>(), tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
    832 						<< "\tReference native float max: " << tcu::clamp(colorMaxF + tcu::IVec3(thresholdRed, thresholdGreen, thresholdBlue).cast<float>(), tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
    833 						<< "\tFmin:\t" << tcu::clamp(valueRangeMin, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
    834 						<< "\tFmax:\t" << tcu::clamp(valueRangeMax, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
    835 						<< tcu::TestLog::EndMessage;
    836 				}
    837 
    838 				++invalidPixels;
    839 				errorMask.setPixel(x, y, invalidPixelColor);
    840 			}
    841 		}
    842 	}
    843 
    844 	// don't just hide failures
    845 	if (errorCount > errorFloodThreshold)
    846 		log << tcu::TestLog::Message << "Omitted " << (errorCount-errorFloodThreshold) << " pixel error description(s)." << tcu::TestLog::EndMessage;
    847 
    848 	// report result
    849 	if (invalidPixels)
    850 	{
    851 		log << tcu::TestLog::Message << invalidPixels << " invalid pixel(s) found." << tcu::TestLog::EndMessage;
    852 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
    853 			<< tcu::TestLog::Image("Result", "Result",			surface)
    854 			<< tcu::TestLog::Image("ErrorMask", "ErrorMask",	errorMask)
    855 			<< tcu::TestLog::EndImageSet;
    856 
    857 		return false;
    858 	}
    859 	else
    860 	{
    861 		log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
    862 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
    863 			<< tcu::TestLog::Image("Result", "Result", surface)
    864 			<< tcu::TestLog::EndImageSet;
    865 
    866 		return true;
    867 	}
    868 }
    869 
    870 bool verifyMultisampleLineGroupRasterization (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
    871 {
    872 	// Multisampled line == 2 triangles
    873 
    874 	const tcu::Vec2		viewportSize	= tcu::Vec2((float)surface.getWidth(), (float)surface.getHeight());
    875 	const float			halfLineWidth	= scene.lineWidth * 0.5f;
    876 	TriangleSceneSpec	triangleScene;
    877 
    878 	triangleScene.triangles.resize(2 * scene.lines.size());
    879 	for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
    880 	{
    881 		// Transform to screen space, add pixel offsets, convert back to normalized device space, and test as triangles
    882 		const tcu::Vec2 lineNormalizedDeviceSpace[2] =
    883 		{
    884 			tcu::Vec2(scene.lines[lineNdx].positions[0].x() / scene.lines[lineNdx].positions[0].w(), scene.lines[lineNdx].positions[0].y() / scene.lines[lineNdx].positions[0].w()),
    885 			tcu::Vec2(scene.lines[lineNdx].positions[1].x() / scene.lines[lineNdx].positions[1].w(), scene.lines[lineNdx].positions[1].y() / scene.lines[lineNdx].positions[1].w()),
    886 		};
    887 		const tcu::Vec2 lineScreenSpace[2] =
    888 		{
    889 			(lineNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
    890 			(lineNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
    891 		};
    892 
    893 		const tcu::Vec2 lineDir			= tcu::normalize(lineScreenSpace[1] - lineScreenSpace[0]);
    894 		const tcu::Vec2 lineNormalDir	= tcu::Vec2(lineDir.y(), -lineDir.x());
    895 
    896 		const tcu::Vec2 lineQuadScreenSpace[4] =
    897 		{
    898 			lineScreenSpace[0] + lineNormalDir * halfLineWidth,
    899 			lineScreenSpace[0] - lineNormalDir * halfLineWidth,
    900 			lineScreenSpace[1] - lineNormalDir * halfLineWidth,
    901 			lineScreenSpace[1] + lineNormalDir * halfLineWidth,
    902 		};
    903 		const tcu::Vec2 lineQuadNormalizedDeviceSpace[4] =
    904 		{
    905 			lineQuadScreenSpace[0] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
    906 			lineQuadScreenSpace[1] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
    907 			lineQuadScreenSpace[2] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
    908 			lineQuadScreenSpace[3] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
    909 		};
    910 
    911 		triangleScene.triangles[lineNdx*2 + 0].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);	triangleScene.triangles[lineNdx*2 + 0].sharedEdge[0] = false;
    912 		triangleScene.triangles[lineNdx*2 + 0].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[1].x(), lineQuadNormalizedDeviceSpace[1].y(), 0.0f, 1.0f);	triangleScene.triangles[lineNdx*2 + 0].sharedEdge[1] = false;
    913 		triangleScene.triangles[lineNdx*2 + 0].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);	triangleScene.triangles[lineNdx*2 + 0].sharedEdge[2] = true;
    914 
    915 		triangleScene.triangles[lineNdx*2 + 1].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);	triangleScene.triangles[lineNdx*2 + 1].sharedEdge[0] = true;
    916 		triangleScene.triangles[lineNdx*2 + 1].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);	triangleScene.triangles[lineNdx*2 + 1].sharedEdge[1] = false;
    917 		triangleScene.triangles[lineNdx*2 + 1].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[3].x(), lineQuadNormalizedDeviceSpace[3].y(), 0.0f, 1.0f);	triangleScene.triangles[lineNdx*2 + 1].sharedEdge[2] = false;
    918 	}
    919 
    920 	return verifyTriangleGroupRasterization(surface, triangleScene, args, log);
    921 }
    922 
    923 bool verifyMultisampleLineGroupInterpolation (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
    924 {
    925 	// Multisampled line == 2 triangles
    926 
    927 	const tcu::Vec2		viewportSize	= tcu::Vec2((float)surface.getWidth(), (float)surface.getHeight());
    928 	const float			halfLineWidth	= scene.lineWidth * 0.5f;
    929 	TriangleSceneSpec	triangleScene;
    930 
    931 	triangleScene.triangles.resize(2 * scene.lines.size());
    932 	for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
    933 	{
    934 		// Transform to screen space, add pixel offsets, convert back to normalized device space, and test as triangles
    935 		const tcu::Vec2 lineNormalizedDeviceSpace[2] =
    936 		{
    937 			tcu::Vec2(scene.lines[lineNdx].positions[0].x() / scene.lines[lineNdx].positions[0].w(), scene.lines[lineNdx].positions[0].y() / scene.lines[lineNdx].positions[0].w()),
    938 			tcu::Vec2(scene.lines[lineNdx].positions[1].x() / scene.lines[lineNdx].positions[1].w(), scene.lines[lineNdx].positions[1].y() / scene.lines[lineNdx].positions[1].w()),
    939 		};
    940 		const tcu::Vec2 lineScreenSpace[2] =
    941 		{
    942 			(lineNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
    943 			(lineNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize,
    944 		};
    945 
    946 		const tcu::Vec2 lineDir			= tcu::normalize(lineScreenSpace[1] - lineScreenSpace[0]);
    947 		const tcu::Vec2 lineNormalDir	= tcu::Vec2(lineDir.y(), -lineDir.x());
    948 
    949 		const tcu::Vec2 lineQuadScreenSpace[4] =
    950 		{
    951 			lineScreenSpace[0] + lineNormalDir * halfLineWidth,
    952 			lineScreenSpace[0] - lineNormalDir * halfLineWidth,
    953 			lineScreenSpace[1] - lineNormalDir * halfLineWidth,
    954 			lineScreenSpace[1] + lineNormalDir * halfLineWidth,
    955 		};
    956 		const tcu::Vec2 lineQuadNormalizedDeviceSpace[4] =
    957 		{
    958 			lineQuadScreenSpace[0] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
    959 			lineQuadScreenSpace[1] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
    960 			lineQuadScreenSpace[2] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
    961 			lineQuadScreenSpace[3] / viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
    962 		};
    963 
    964 		triangleScene.triangles[lineNdx*2 + 0].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);
    965 		triangleScene.triangles[lineNdx*2 + 0].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[1].x(), lineQuadNormalizedDeviceSpace[1].y(), 0.0f, 1.0f);
    966 		triangleScene.triangles[lineNdx*2 + 0].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);
    967 
    968 		triangleScene.triangles[lineNdx*2 + 0].sharedEdge[0] = false;
    969 		triangleScene.triangles[lineNdx*2 + 0].sharedEdge[1] = false;
    970 		triangleScene.triangles[lineNdx*2 + 0].sharedEdge[2] = true;
    971 
    972 		triangleScene.triangles[lineNdx*2 + 0].colors[0] = scene.lines[lineNdx].colors[0];
    973 		triangleScene.triangles[lineNdx*2 + 0].colors[1] = scene.lines[lineNdx].colors[0];
    974 		triangleScene.triangles[lineNdx*2 + 0].colors[2] = scene.lines[lineNdx].colors[1];
    975 
    976 		triangleScene.triangles[lineNdx*2 + 1].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);
    977 		triangleScene.triangles[lineNdx*2 + 1].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);
    978 		triangleScene.triangles[lineNdx*2 + 1].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[3].x(), lineQuadNormalizedDeviceSpace[3].y(), 0.0f, 1.0f);
    979 
    980 		triangleScene.triangles[lineNdx*2 + 1].sharedEdge[0] = true;
    981 		triangleScene.triangles[lineNdx*2 + 1].sharedEdge[1] = false;
    982 		triangleScene.triangles[lineNdx*2 + 1].sharedEdge[2] = false;
    983 
    984 		triangleScene.triangles[lineNdx*2 + 1].colors[0] = scene.lines[lineNdx].colors[0];
    985 		triangleScene.triangles[lineNdx*2 + 1].colors[1] = scene.lines[lineNdx].colors[1];
    986 		triangleScene.triangles[lineNdx*2 + 1].colors[2] = scene.lines[lineNdx].colors[1];
    987 	}
    988 
    989 	return verifyTriangleGroupInterpolationWithInterpolator(surface, triangleScene, args, log, MultisampleLineInterpolator(scene));
    990 }
    991 
    992 bool verifyMultisamplePointGroupRasterization (const tcu::Surface& surface, const PointSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
    993 {
    994 	// Multisampled point == 2 triangles
    995 
    996 	const tcu::Vec2		viewportSize	= tcu::Vec2((float)surface.getWidth(), (float)surface.getHeight());
    997 	TriangleSceneSpec	triangleScene;
    998 
    999 	triangleScene.triangles.resize(2 * scene.points.size());
   1000 	for (int pointNdx = 0; pointNdx < (int)scene.points.size(); ++pointNdx)
   1001 	{
   1002 		// Transform to screen space, add pixel offsets, convert back to normalized device space, and test as triangles
   1003 		const tcu::Vec2	pointNormalizedDeviceSpace			= tcu::Vec2(scene.points[pointNdx].position.x() / scene.points[pointNdx].position.w(), scene.points[pointNdx].position.y() / scene.points[pointNdx].position.w());
   1004 		const tcu::Vec2	pointScreenSpace					= (pointNormalizedDeviceSpace + tcu::Vec2(1.0f, 1.0f)) * 0.5f * viewportSize;
   1005 		const float		offset								= scene.points[pointNdx].pointSize * 0.5f;
   1006 		const tcu::Vec2	lineQuadNormalizedDeviceSpace[4]	=
   1007 		{
   1008 			(pointScreenSpace + tcu::Vec2(-offset, -offset))/ viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
   1009 			(pointScreenSpace + tcu::Vec2(-offset,  offset))/ viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
   1010 			(pointScreenSpace + tcu::Vec2( offset,  offset))/ viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
   1011 			(pointScreenSpace + tcu::Vec2( offset, -offset))/ viewportSize * 2.0f - tcu::Vec2(1.0f, 1.0f),
   1012 		};
   1013 
   1014 		triangleScene.triangles[pointNdx*2 + 0].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);	triangleScene.triangles[pointNdx*2 + 0].sharedEdge[0] = false;
   1015 		triangleScene.triangles[pointNdx*2 + 0].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[1].x(), lineQuadNormalizedDeviceSpace[1].y(), 0.0f, 1.0f);	triangleScene.triangles[pointNdx*2 + 0].sharedEdge[1] = false;
   1016 		triangleScene.triangles[pointNdx*2 + 0].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);	triangleScene.triangles[pointNdx*2 + 0].sharedEdge[2] = true;
   1017 
   1018 		triangleScene.triangles[pointNdx*2 + 1].positions[0] = tcu::Vec4(lineQuadNormalizedDeviceSpace[0].x(), lineQuadNormalizedDeviceSpace[0].y(), 0.0f, 1.0f);	triangleScene.triangles[pointNdx*2 + 1].sharedEdge[0] = true;
   1019 		triangleScene.triangles[pointNdx*2 + 1].positions[1] = tcu::Vec4(lineQuadNormalizedDeviceSpace[2].x(), lineQuadNormalizedDeviceSpace[2].y(), 0.0f, 1.0f);	triangleScene.triangles[pointNdx*2 + 1].sharedEdge[1] = false;
   1020 		triangleScene.triangles[pointNdx*2 + 1].positions[2] = tcu::Vec4(lineQuadNormalizedDeviceSpace[3].x(), lineQuadNormalizedDeviceSpace[3].y(), 0.0f, 1.0f);	triangleScene.triangles[pointNdx*2 + 1].sharedEdge[2] = false;
   1021 	}
   1022 
   1023 	return verifyTriangleGroupRasterization(surface, triangleScene, args, log);
   1024 }
   1025 
   1026 void genScreenSpaceLines (std::vector<tcu::Vec4>& screenspaceLines, const std::vector<LineSceneSpec::SceneLine>& lines, const tcu::IVec2& viewportSize)
   1027 {
   1028 	DE_ASSERT(screenspaceLines.size() == lines.size());
   1029 
   1030 	for (int lineNdx = 0; lineNdx < (int)lines.size(); ++lineNdx)
   1031 	{
   1032 		const tcu::Vec2 lineNormalizedDeviceSpace[2] =
   1033 		{
   1034 			tcu::Vec2(lines[lineNdx].positions[0].x() / lines[lineNdx].positions[0].w(), lines[lineNdx].positions[0].y() / lines[lineNdx].positions[0].w()),
   1035 			tcu::Vec2(lines[lineNdx].positions[1].x() / lines[lineNdx].positions[1].w(), lines[lineNdx].positions[1].y() / lines[lineNdx].positions[1].w()),
   1036 		};
   1037 		const tcu::Vec4 lineScreenSpace[2] =
   1038 		{
   1039 			tcu::Vec4((lineNormalizedDeviceSpace[0].x() + 1.0f) * 0.5f * (float)viewportSize.x(), (lineNormalizedDeviceSpace[0].y() + 1.0f) * 0.5f * (float)viewportSize.y(), 0.0f, 1.0f),
   1040 			tcu::Vec4((lineNormalizedDeviceSpace[1].x() + 1.0f) * 0.5f * (float)viewportSize.x(), (lineNormalizedDeviceSpace[1].y() + 1.0f) * 0.5f * (float)viewportSize.y(), 0.0f, 1.0f),
   1041 		};
   1042 
   1043 		screenspaceLines[lineNdx] = tcu::Vec4(lineScreenSpace[0].x(), lineScreenSpace[0].y(), lineScreenSpace[1].x(), lineScreenSpace[1].y());
   1044 	}
   1045 }
   1046 
   1047 bool verifySinglesampleLineGroupRasterization (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
   1048 {
   1049 	DE_ASSERT(deFloatFrac(scene.lineWidth) != 0.5f); // rounding direction is not defined, disallow undefined cases
   1050 	DE_ASSERT(scene.lines.size() < 255); // indices are stored as unsigned 8-bit ints
   1051 
   1052 	bool					allOK				= true;
   1053 	bool					overdrawInReference	= false;
   1054 	int						referenceFragments	= 0;
   1055 	int						resultFragments		= 0;
   1056 	int						lineWidth			= deFloorFloatToInt32(scene.lineWidth + 0.5f);
   1057 	bool					imageShown			= false;
   1058 	std::vector<bool>		lineIsXMajor		(scene.lines.size());
   1059 	std::vector<tcu::Vec4>	screenspaceLines(scene.lines.size());
   1060 
   1061 	// Reference renderer produces correct fragments using the diamond-rule. Make 2D int array, each cell contains the highest index (first index = 1) of the overlapping lines or 0 if no line intersects the pixel
   1062 	tcu::TextureLevel referenceLineMap(tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8), surface.getWidth(), surface.getHeight());
   1063 	tcu::clear(referenceLineMap.getAccess(), tcu::IVec4(0, 0, 0, 0));
   1064 
   1065 	genScreenSpaceLines(screenspaceLines, scene.lines, tcu::IVec2(surface.getWidth(), surface.getHeight()));
   1066 
   1067 	for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
   1068 	{
   1069 		rr::SingleSampleLineRasterizer rasterizer(tcu::IVec4(0, 0, surface.getWidth(), surface.getHeight()));
   1070 		rasterizer.init(tcu::Vec4(screenspaceLines[lineNdx][0],
   1071 								  screenspaceLines[lineNdx][1],
   1072 								  0.0f,
   1073 								  1.0f),
   1074 						tcu::Vec4(screenspaceLines[lineNdx][2],
   1075 								  screenspaceLines[lineNdx][3],
   1076 								  0.0f,
   1077 								  1.0f),
   1078 						scene.lineWidth);
   1079 
   1080 		// calculate majority of later use
   1081 		lineIsXMajor[lineNdx] = isPackedSSLineXMajor(screenspaceLines[lineNdx]);
   1082 
   1083 		for (;;)
   1084 		{
   1085 			const int			maxPackets			= 32;
   1086 			int					numRasterized		= 0;
   1087 			rr::FragmentPacket	packets[maxPackets];
   1088 
   1089 			rasterizer.rasterize(packets, DE_NULL, maxPackets, numRasterized);
   1090 
   1091 			for (int packetNdx = 0; packetNdx < numRasterized; ++packetNdx)
   1092 			{
   1093 				for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
   1094 				{
   1095 					if ((deUint32)packets[packetNdx].coverage & (1 << fragNdx))
   1096 					{
   1097 						const tcu::IVec2 fragPos = packets[packetNdx].position + tcu::IVec2(fragNdx%2, fragNdx/2);
   1098 
   1099 						// Check for overdraw
   1100 						if (!overdrawInReference)
   1101 							overdrawInReference = referenceLineMap.getAccess().getPixelInt(fragPos.x(), fragPos.y()).x() != 0;
   1102 
   1103 						// Output pixel
   1104 						referenceLineMap.getAccess().setPixel(tcu::IVec4(lineNdx + 1, 0, 0, 0), fragPos.x(), fragPos.y());
   1105 					}
   1106 				}
   1107 			}
   1108 
   1109 			if (numRasterized != maxPackets)
   1110 				break;
   1111 		}
   1112 	}
   1113 
   1114 	// Requirement 1: The coordinates of a fragment produced by the algorithm may not deviate by more than one unit
   1115 	{
   1116 		tcu::Surface	errorMask			(surface.getWidth(), surface.getHeight());
   1117 		bool			missingFragments	= false;
   1118 
   1119 		tcu::clear(errorMask.getAccess(), tcu::IVec4(0, 255, 0, 255));
   1120 
   1121 		log << tcu::TestLog::Message << "Searching for deviating fragments." << tcu::TestLog::EndMessage;
   1122 
   1123 		for (int y = 0; y < referenceLineMap.getHeight(); ++y)
   1124 		for (int x = 0; x < referenceLineMap.getWidth(); ++x)
   1125 		{
   1126 			const bool reference	= referenceLineMap.getAccess().getPixelInt(x, y).x() != 0;
   1127 			const bool result		= compareColors(surface.getPixel(x, y), tcu::RGBA::white(), args.redBits, args.greenBits, args.blueBits);
   1128 
   1129 			if (reference)
   1130 				++referenceFragments;
   1131 			if (result)
   1132 				++resultFragments;
   1133 
   1134 			if (reference == result)
   1135 				continue;
   1136 
   1137 			// Reference fragment here, matching result fragment must be nearby
   1138 			if (reference && !result)
   1139 			{
   1140 				bool foundFragment = false;
   1141 
   1142 				if (x == 0 || y == 0 || x == referenceLineMap.getWidth() - 1 || y == referenceLineMap.getHeight() -1)
   1143 				{
   1144 					// image boundary, missing fragment could be over the image edge
   1145 					foundFragment = true;
   1146 				}
   1147 
   1148 				// find nearby fragment
   1149 				for (int dy = -1; dy < 2 && !foundFragment; ++dy)
   1150 				for (int dx = -1; dx < 2 && !foundFragment; ++dx)
   1151 				{
   1152 					if (compareColors(surface.getPixel(x+dx, y+dy), tcu::RGBA::white(), args.redBits, args.greenBits, args.blueBits))
   1153 						foundFragment = true;
   1154 				}
   1155 
   1156 				if (!foundFragment)
   1157 				{
   1158 					missingFragments = true;
   1159 					errorMask.setPixel(x, y, tcu::RGBA::red());
   1160 				}
   1161 			}
   1162 		}
   1163 
   1164 		if (missingFragments)
   1165 		{
   1166 			log << tcu::TestLog::Message << "Invalid deviation(s) found." << tcu::TestLog::EndMessage;
   1167 			log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
   1168 				<< tcu::TestLog::Image("Result", "Result",			surface)
   1169 				<< tcu::TestLog::Image("ErrorMask", "ErrorMask",	errorMask)
   1170 				<< tcu::TestLog::EndImageSet;
   1171 
   1172 			imageShown = true;
   1173 			allOK = false;
   1174 		}
   1175 		else
   1176 		{
   1177 			log << tcu::TestLog::Message << "No invalid deviations found." << tcu::TestLog::EndMessage;
   1178 		}
   1179 	}
   1180 
   1181 	// Requirement 2: The total number of fragments produced by the algorithm may differ from
   1182 	//                that produced by the diamond-exit rule by no more than one.
   1183 	{
   1184 		// Check is not valid if the primitives intersect or otherwise share same fragments
   1185 		if (!overdrawInReference)
   1186 		{
   1187 			int allowedDeviation = (int)scene.lines.size() * lineWidth; // one pixel per primitive in the major direction
   1188 
   1189 			log << tcu::TestLog::Message << "Verifying fragment counts:\n"
   1190 				<< "\tDiamond-exit rule: " << referenceFragments << " fragments.\n"
   1191 				<< "\tResult image: " << resultFragments << " fragments.\n"
   1192 				<< "\tAllowing deviation of " << allowedDeviation << " fragments.\n"
   1193 				<< tcu::TestLog::EndMessage;
   1194 
   1195 			if (deAbs32(referenceFragments - resultFragments) > allowedDeviation)
   1196 			{
   1197 				tcu::Surface reference(surface.getWidth(), surface.getHeight());
   1198 
   1199 				// show a helpful reference image
   1200 				tcu::clear(reference.getAccess(), tcu::IVec4(0, 0, 0, 255));
   1201 				for (int y = 0; y < surface.getHeight(); ++y)
   1202 				for (int x = 0; x < surface.getWidth(); ++x)
   1203 					if (referenceLineMap.getAccess().getPixelInt(x, y).x())
   1204 						reference.setPixel(x, y, tcu::RGBA::white());
   1205 
   1206 				log << tcu::TestLog::Message << "Invalid fragment count in result image." << tcu::TestLog::EndMessage;
   1207 				log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
   1208 					<< tcu::TestLog::Image("Reference", "Reference",	reference)
   1209 					<< tcu::TestLog::Image("Result", "Result",			surface)
   1210 					<< tcu::TestLog::EndImageSet;
   1211 
   1212 				allOK = false;
   1213 				imageShown = true;
   1214 			}
   1215 			else
   1216 			{
   1217 				log << tcu::TestLog::Message << "Fragment count is valid." << tcu::TestLog::EndMessage;
   1218 			}
   1219 		}
   1220 		else
   1221 		{
   1222 			log << tcu::TestLog::Message << "Overdraw in scene. Fragment count cannot be verified. Skipping fragment count checks." << tcu::TestLog::EndMessage;
   1223 		}
   1224 	}
   1225 
   1226 	// Requirement 3: Line width must be constant
   1227 	{
   1228 		bool invalidWidthFound = false;
   1229 
   1230 		log << tcu::TestLog::Message << "Verifying line widths of the x-major lines." << tcu::TestLog::EndMessage;
   1231 		for (int y = 1; y < referenceLineMap.getHeight() - 1; ++y)
   1232 		{
   1233 			bool	fullyVisibleLine		= false;
   1234 			bool	previousPixelUndefined	= false;
   1235 			int		currentLine				= 0;
   1236 			int		currentWidth			= 1;
   1237 
   1238 			for (int x = 1; x < referenceLineMap.getWidth() - 1; ++x)
   1239 			{
   1240 				const bool	result	= compareColors(surface.getPixel(x, y), tcu::RGBA::white(), args.redBits, args.greenBits, args.blueBits);
   1241 				int			lineID	= 0;
   1242 
   1243 				// Which line does this fragment belong to?
   1244 
   1245 				if (result)
   1246 				{
   1247 					bool multipleNearbyLines = false;
   1248 
   1249 					for (int dy = -1; dy < 2; ++dy)
   1250 					for (int dx = -1; dx < 2; ++dx)
   1251 					{
   1252 						const int nearbyID = referenceLineMap.getAccess().getPixelInt(x+dx, y+dy).x();
   1253 						if (nearbyID)
   1254 						{
   1255 							if (lineID && lineID != nearbyID)
   1256 								multipleNearbyLines = true;
   1257 							lineID = nearbyID;
   1258 						}
   1259 					}
   1260 
   1261 					if (multipleNearbyLines)
   1262 					{
   1263 						// Another line is too close, don't try to calculate width here
   1264 						previousPixelUndefined = true;
   1265 						continue;
   1266 					}
   1267 				}
   1268 
   1269 				// Only line with id of lineID is nearby
   1270 
   1271 				if (previousPixelUndefined)
   1272 				{
   1273 					// The line might have been overdrawn or not
   1274 					currentLine = lineID;
   1275 					currentWidth = 1;
   1276 					fullyVisibleLine = false;
   1277 					previousPixelUndefined = false;
   1278 				}
   1279 				else if (lineID == currentLine)
   1280 				{
   1281 					// Current line continues
   1282 					++currentWidth;
   1283 				}
   1284 				else if (lineID > currentLine)
   1285 				{
   1286 					// Another line was drawn over or the line ends
   1287 					currentLine = lineID;
   1288 					currentWidth = 1;
   1289 					fullyVisibleLine = true;
   1290 				}
   1291 				else
   1292 				{
   1293 					// The line ends
   1294 					if (fullyVisibleLine && !lineIsXMajor[currentLine-1])
   1295 					{
   1296 						// check width
   1297 						if (currentWidth != lineWidth)
   1298 						{
   1299 							log << tcu::TestLog::Message << "\tInvalid line width at (" << x - currentWidth << ", " << y << ") - (" << x - 1 << ", " << y << "). Detected width of " << currentWidth << ", expected " << lineWidth << tcu::TestLog::EndMessage;
   1300 							invalidWidthFound = true;
   1301 						}
   1302 					}
   1303 
   1304 					currentLine = lineID;
   1305 					currentWidth = 1;
   1306 					fullyVisibleLine = false;
   1307 				}
   1308 			}
   1309 		}
   1310 
   1311 		log << tcu::TestLog::Message << "Verifying line widths of the y-major lines." << tcu::TestLog::EndMessage;
   1312 		for (int x = 1; x < referenceLineMap.getWidth() - 1; ++x)
   1313 		{
   1314 			bool	fullyVisibleLine		= false;
   1315 			bool	previousPixelUndefined	= false;
   1316 			int		currentLine				= 0;
   1317 			int		currentWidth			= 1;
   1318 
   1319 			for (int y = 1; y < referenceLineMap.getHeight() - 1; ++y)
   1320 			{
   1321 				const bool	result	= compareColors(surface.getPixel(x, y), tcu::RGBA::white(), args.redBits, args.greenBits, args.blueBits);
   1322 				int			lineID	= 0;
   1323 
   1324 				// Which line does this fragment belong to?
   1325 
   1326 				if (result)
   1327 				{
   1328 					bool multipleNearbyLines = false;
   1329 
   1330 					for (int dy = -1; dy < 2; ++dy)
   1331 					for (int dx = -1; dx < 2; ++dx)
   1332 					{
   1333 						const int nearbyID = referenceLineMap.getAccess().getPixelInt(x+dx, y+dy).x();
   1334 						if (nearbyID)
   1335 						{
   1336 							if (lineID && lineID != nearbyID)
   1337 								multipleNearbyLines = true;
   1338 							lineID = nearbyID;
   1339 						}
   1340 					}
   1341 
   1342 					if (multipleNearbyLines)
   1343 					{
   1344 						// Another line is too close, don't try to calculate width here
   1345 						previousPixelUndefined = true;
   1346 						continue;
   1347 					}
   1348 				}
   1349 
   1350 				// Only line with id of lineID is nearby
   1351 
   1352 				if (previousPixelUndefined)
   1353 				{
   1354 					// The line might have been overdrawn or not
   1355 					currentLine = lineID;
   1356 					currentWidth = 1;
   1357 					fullyVisibleLine = false;
   1358 					previousPixelUndefined = false;
   1359 				}
   1360 				else if (lineID == currentLine)
   1361 				{
   1362 					// Current line continues
   1363 					++currentWidth;
   1364 				}
   1365 				else if (lineID > currentLine)
   1366 				{
   1367 					// Another line was drawn over or the line ends
   1368 					currentLine = lineID;
   1369 					currentWidth = 1;
   1370 					fullyVisibleLine = true;
   1371 				}
   1372 				else
   1373 				{
   1374 					// The line ends
   1375 					if (fullyVisibleLine && lineIsXMajor[currentLine-1])
   1376 					{
   1377 						// check width
   1378 						if (currentWidth != lineWidth)
   1379 						{
   1380 							log << tcu::TestLog::Message << "\tInvalid line width at (" << x << ", " << y - currentWidth << ") - (" << x  << ", " << y - 1 << "). Detected width of " << currentWidth << ", expected " << lineWidth << tcu::TestLog::EndMessage;
   1381 							invalidWidthFound = true;
   1382 						}
   1383 					}
   1384 
   1385 					currentLine = lineID;
   1386 					currentWidth = 1;
   1387 					fullyVisibleLine = false;
   1388 				}
   1389 			}
   1390 		}
   1391 
   1392 		if (invalidWidthFound)
   1393 		{
   1394 			log << tcu::TestLog::Message << "Invalid line width found, image is not valid." << tcu::TestLog::EndMessage;
   1395 			allOK = false;
   1396 		}
   1397 		else
   1398 		{
   1399 			log << tcu::TestLog::Message << "Line widths are valid." << tcu::TestLog::EndMessage;
   1400 		}
   1401 	}
   1402 
   1403 	//\todo [2013-10-24 jarkko].
   1404 	//Requirement 4. If two line segments share a common endpoint, and both segments are either
   1405 	//x-major (both left-to-right or both right-to-left) or y-major (both bottom-totop
   1406 	//or both top-to-bottom), then rasterizing both segments may not produce
   1407 	//duplicate fragments, nor may any fragments be omitted so as to interrupt
   1408 	//continuity of the connected segments.
   1409 
   1410 	if (!imageShown)
   1411 	{
   1412 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
   1413 			<< tcu::TestLog::Image("Result", "Result", surface)
   1414 			<< tcu::TestLog::EndImageSet;
   1415 	}
   1416 
   1417 	return allOK;
   1418 }
   1419 
   1420 struct SingleSampleNarrowLineCandidate
   1421 {
   1422 	int			lineNdx;
   1423 	tcu::IVec3	colorMin;
   1424 	tcu::IVec3	colorMax;
   1425 	tcu::Vec3	colorMinF;
   1426 	tcu::Vec3	colorMaxF;
   1427 	tcu::Vec3	valueRangeMin;
   1428 	tcu::Vec3	valueRangeMax;
   1429 };
   1430 
   1431 void setMaskMapCoverageBitForLine (int bitNdx, const tcu::Vec2& screenSpaceP0, const tcu::Vec2& screenSpaceP1, float lineWidth, tcu::PixelBufferAccess maskMap)
   1432 {
   1433 	enum
   1434 	{
   1435 		MAX_PACKETS = 32,
   1436 	};
   1437 
   1438 	rr::SingleSampleLineRasterizer	rasterizer				(tcu::IVec4(0, 0, maskMap.getWidth(), maskMap.getHeight()));
   1439 	int								numRasterized			= MAX_PACKETS;
   1440 	rr::FragmentPacket				packets[MAX_PACKETS];
   1441 
   1442 	rasterizer.init(tcu::Vec4(screenSpaceP0.x(), screenSpaceP0.y(), 0.0f, 1.0f),
   1443 					tcu::Vec4(screenSpaceP1.x(), screenSpaceP1.y(), 0.0f, 1.0f),
   1444 					lineWidth);
   1445 
   1446 	while (numRasterized == MAX_PACKETS)
   1447 	{
   1448 		rasterizer.rasterize(packets, DE_NULL, MAX_PACKETS, numRasterized);
   1449 
   1450 		for (int packetNdx = 0; packetNdx < numRasterized; ++packetNdx)
   1451 		{
   1452 			for (int fragNdx = 0; fragNdx < 4; ++fragNdx)
   1453 			{
   1454 				if ((deUint32)packets[packetNdx].coverage & (1 << fragNdx))
   1455 				{
   1456 					const tcu::IVec2	fragPos			= packets[packetNdx].position + tcu::IVec2(fragNdx%2, fragNdx/2);
   1457 
   1458 					DE_ASSERT(deInBounds32(fragPos.x(), 0, maskMap.getWidth()));
   1459 					DE_ASSERT(deInBounds32(fragPos.y(), 0, maskMap.getHeight()));
   1460 
   1461 					const deUint32		previousMask	= maskMap.getPixelUint(fragPos.x(), fragPos.y()).x();
   1462 					const deUint32		newMask			= (previousMask) | ((deUint32)1u << bitNdx);
   1463 
   1464 					maskMap.setPixel(tcu::UVec4(newMask, 0, 0, 0), fragPos.x(), fragPos.y());
   1465 				}
   1466 			}
   1467 		}
   1468 	}
   1469 }
   1470 
   1471 void setMaskMapCoverageBitForLines (const std::vector<tcu::Vec4>& screenspaceLines, float lineWidth, tcu::PixelBufferAccess maskMap)
   1472 {
   1473 	for (int lineNdx = 0; lineNdx < (int)screenspaceLines.size(); ++lineNdx)
   1474 	{
   1475 		const tcu::Vec2 pa = screenspaceLines[lineNdx].swizzle(0, 1);
   1476 		const tcu::Vec2 pb = screenspaceLines[lineNdx].swizzle(2, 3);
   1477 
   1478 		setMaskMapCoverageBitForLine(lineNdx, pa, pb, lineWidth, maskMap);
   1479 	}
   1480 }
   1481 
   1482 // verify line interpolation assuming line pixels are interpolated independently depending only on screen space location
   1483 bool verifyLineGroupPixelIndependentInterpolation (const tcu::Surface&				surface,
   1484 												   const LineSceneSpec&				scene,
   1485 												   const RasterizationArguments&	args,
   1486 												   tcu::TestLog&					log,
   1487 												   LineInterpolationMethod			interpolationMethod)
   1488 {
   1489 	DE_ASSERT(scene.lines.size() < 8); // coverage indices are stored as bitmask in a unsigned 8-bit ints
   1490 	DE_ASSERT(interpolationMethod == LINEINTERPOLATION_STRICTLY_CORRECT || interpolationMethod == LINEINTERPOLATION_PROJECTED);
   1491 
   1492 	const tcu::RGBA			invalidPixelColor	= tcu::RGBA(255, 0, 0, 255);
   1493 	const tcu::IVec2		viewportSize		= tcu::IVec2(surface.getWidth(), surface.getHeight());
   1494 	const int				errorFloodThreshold	= 4;
   1495 	int						errorCount			= 0;
   1496 	tcu::Surface			errorMask			(surface.getWidth(), surface.getHeight());
   1497 	int						invalidPixels		= 0;
   1498 	std::vector<tcu::Vec4>	screenspaceLines	(scene.lines.size()); //!< packed (x0, y0, x1, y1)
   1499 
   1500 	// Reference renderer produces correct fragments using the diamond-exit-rule. Make 2D int array, store line coverage as a 8-bit bitfield
   1501 	// The map is used to find lines with potential coverage to a given pixel
   1502 	tcu::TextureLevel		referenceLineMap	(tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8), surface.getWidth(), surface.getHeight());
   1503 
   1504 	tcu::clear(referenceLineMap.getAccess(), tcu::IVec4(0, 0, 0, 0));
   1505 	tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
   1506 
   1507 	// log format
   1508 
   1509 	log << tcu::TestLog::Message << "Verifying rasterization result. Native format is RGB" << args.redBits << args.greenBits << args.blueBits << tcu::TestLog::EndMessage;
   1510 	if (args.redBits > 8 || args.greenBits > 8 || args.blueBits > 8)
   1511 		log << tcu::TestLog::Message << "Warning! More than 8 bits in a color channel, this may produce false negatives." << tcu::TestLog::EndMessage;
   1512 
   1513 	// prepare lookup map
   1514 
   1515 	genScreenSpaceLines(screenspaceLines, scene.lines, viewportSize);
   1516 	setMaskMapCoverageBitForLines(screenspaceLines, scene.lineWidth, referenceLineMap.getAccess());
   1517 
   1518 	// Find all possible lines with coverage, check pixel color matches one of them
   1519 
   1520 	for (int y = 1; y < surface.getHeight() - 1; ++y)
   1521 	for (int x = 1; x < surface.getWidth()  - 1; ++x)
   1522 	{
   1523 		const tcu::RGBA		color					= surface.getPixel(x, y);
   1524 		const tcu::IVec3	pixelNativeColor		= convertRGB8ToNativeFormat(color, args);	// Convert pixel color from rgba8 to the real pixel format. Usually rgba8 or 565
   1525 		int					lineCoverageSet			= 0;										// !< lines that may cover this fragment
   1526 		int					lineSurroundingCoverage = 0xFFFF;									// !< lines that will cover this fragment
   1527 		bool				matchFound				= false;
   1528 		const tcu::IVec3	formatLimit				((1 << args.redBits) - 1, (1 << args.greenBits) - 1, (1 << args.blueBits) - 1);
   1529 
   1530 		std::vector<SingleSampleNarrowLineCandidate> candidates;
   1531 
   1532 		// Find lines with possible coverage
   1533 
   1534 		for (int dy = -1; dy < 2; ++dy)
   1535 		for (int dx = -1; dx < 2; ++dx)
   1536 		{
   1537 			const int coverage = referenceLineMap.getAccess().getPixelInt(x+dx, y+dy).x();
   1538 
   1539 			lineCoverageSet			|= coverage;
   1540 			lineSurroundingCoverage	&= coverage;
   1541 		}
   1542 
   1543 		// background color is possible?
   1544 		if (lineSurroundingCoverage == 0 && compareColors(color, tcu::RGBA::black(), args.redBits, args.greenBits, args.blueBits))
   1545 			continue;
   1546 
   1547 		// Check those lines
   1548 
   1549 		for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
   1550 		{
   1551 			if (((lineCoverageSet >> lineNdx) & 0x01) != 0)
   1552 			{
   1553 				const float						wa				= scene.lines[lineNdx].positions[0].w();
   1554 				const float						wb				= scene.lines[lineNdx].positions[1].w();
   1555 				const tcu::Vec2					pa				= screenspaceLines[lineNdx].swizzle(0, 1);
   1556 				const tcu::Vec2					pb				= screenspaceLines[lineNdx].swizzle(2, 3);
   1557 
   1558 				const LineInterpolationRange	range			= (interpolationMethod == LINEINTERPOLATION_STRICTLY_CORRECT)
   1559 																	? (calcSingleSampleLineInterpolationRange(pa, wa, pb, wb, tcu::IVec2(x, y), args.subpixelBits))
   1560 																	: (calcSingleSampleLineInterpolationRangeAxisProjected(pa, wa, pb, wb, tcu::IVec2(x, y), args.subpixelBits));
   1561 
   1562 				const tcu::Vec4					valueMin		= de::clamp(range.min.x(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[0] + de::clamp(range.min.y(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[1];
   1563 				const tcu::Vec4					valueMax		= de::clamp(range.max.x(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[0] + de::clamp(range.max.y(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[1];
   1564 
   1565 				const tcu::Vec3					colorMinF		(de::clamp(valueMin.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
   1566 																 de::clamp(valueMin.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
   1567 																 de::clamp(valueMin.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
   1568 				const tcu::Vec3					colorMaxF		(de::clamp(valueMax.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
   1569 																 de::clamp(valueMax.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
   1570 																 de::clamp(valueMax.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
   1571 				const tcu::IVec3				colorMin		((int)deFloatFloor(colorMinF.x()),
   1572 																 (int)deFloatFloor(colorMinF.y()),
   1573 																 (int)deFloatFloor(colorMinF.z()));
   1574 				const tcu::IVec3				colorMax		((int)deFloatCeil (colorMaxF.x()),
   1575 																 (int)deFloatCeil (colorMaxF.y()),
   1576 																 (int)deFloatCeil (colorMaxF.z()));
   1577 
   1578 				// Verify validity
   1579 				if (pixelNativeColor.x() < colorMin.x() ||
   1580 					pixelNativeColor.y() < colorMin.y() ||
   1581 					pixelNativeColor.z() < colorMin.z() ||
   1582 					pixelNativeColor.x() > colorMax.x() ||
   1583 					pixelNativeColor.y() > colorMax.y() ||
   1584 					pixelNativeColor.z() > colorMax.z())
   1585 				{
   1586 					if (errorCount < errorFloodThreshold)
   1587 					{
   1588 						// Store candidate information for logging
   1589 						SingleSampleNarrowLineCandidate candidate;
   1590 
   1591 						candidate.lineNdx		= lineNdx;
   1592 						candidate.colorMin		= colorMin;
   1593 						candidate.colorMax		= colorMax;
   1594 						candidate.colorMinF		= colorMinF;
   1595 						candidate.colorMaxF		= colorMaxF;
   1596 						candidate.valueRangeMin	= valueMin.swizzle(0, 1, 2);
   1597 						candidate.valueRangeMax	= valueMax.swizzle(0, 1, 2);
   1598 
   1599 						candidates.push_back(candidate);
   1600 					}
   1601 				}
   1602 				else
   1603 				{
   1604 					matchFound = true;
   1605 					break;
   1606 				}
   1607 			}
   1608 		}
   1609 
   1610 		if (matchFound)
   1611 			continue;
   1612 
   1613 		// invalid fragment
   1614 		++invalidPixels;
   1615 		errorMask.setPixel(x, y, invalidPixelColor);
   1616 
   1617 		++errorCount;
   1618 
   1619 		// don't fill the logs with too much data
   1620 		if (errorCount < errorFloodThreshold)
   1621 		{
   1622 			log << tcu::TestLog::Message
   1623 				<< "Found an invalid pixel at (" << x << "," << y << "), " << (int)candidates.size() << " candidate reference value(s) found:\n"
   1624 				<< "\tPixel color:\t\t" << color << "\n"
   1625 				<< "\tNative color:\t\t" << pixelNativeColor << "\n"
   1626 				<< tcu::TestLog::EndMessage;
   1627 
   1628 			for (int candidateNdx = 0; candidateNdx < (int)candidates.size(); ++candidateNdx)
   1629 			{
   1630 				const SingleSampleNarrowLineCandidate& candidate = candidates[candidateNdx];
   1631 
   1632 				log << tcu::TestLog::Message << "\tCandidate (line " << candidate.lineNdx << "):\n"
   1633 					<< "\t\tReference native color min: " << tcu::clamp(candidate.colorMin, tcu::IVec3(0,0,0), formatLimit) << "\n"
   1634 					<< "\t\tReference native color max: " << tcu::clamp(candidate.colorMax, tcu::IVec3(0,0,0), formatLimit) << "\n"
   1635 					<< "\t\tReference native float min: " << tcu::clamp(candidate.colorMinF, tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
   1636 					<< "\t\tReference native float max: " << tcu::clamp(candidate.colorMaxF, tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
   1637 					<< "\t\tFmin:\t" << tcu::clamp(candidate.valueRangeMin, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
   1638 					<< "\t\tFmax:\t" << tcu::clamp(candidate.valueRangeMax, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
   1639 					<< tcu::TestLog::EndMessage;
   1640 			}
   1641 		}
   1642 	}
   1643 
   1644 	// don't just hide failures
   1645 	if (errorCount > errorFloodThreshold)
   1646 		log << tcu::TestLog::Message << "Omitted " << (errorCount-errorFloodThreshold) << " pixel error description(s)." << tcu::TestLog::EndMessage;
   1647 
   1648 	// report result
   1649 	if (invalidPixels)
   1650 	{
   1651 		log << tcu::TestLog::Message << invalidPixels << " invalid pixel(s) found." << tcu::TestLog::EndMessage;
   1652 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
   1653 			<< tcu::TestLog::Image("Result", "Result",			surface)
   1654 			<< tcu::TestLog::Image("ErrorMask", "ErrorMask",	errorMask)
   1655 			<< tcu::TestLog::EndImageSet;
   1656 
   1657 		return false;
   1658 	}
   1659 	else
   1660 	{
   1661 		log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
   1662 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
   1663 			<< tcu::TestLog::Image("Result", "Result", surface)
   1664 			<< tcu::TestLog::EndImageSet;
   1665 
   1666 		return true;
   1667 	}
   1668 }
   1669 
   1670 bool verifySinglesampleNarrowLineGroupInterpolation (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
   1671 {
   1672 	DE_ASSERT(scene.lineWidth == 1.0f);
   1673 	return verifyLineGroupPixelIndependentInterpolation(surface, scene, args, log, LINEINTERPOLATION_STRICTLY_CORRECT);
   1674 }
   1675 
   1676 bool verifyLineGroupInterpolationWithProjectedWeights (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
   1677 {
   1678 	return verifyLineGroupPixelIndependentInterpolation(surface, scene, args, log, LINEINTERPOLATION_PROJECTED);
   1679 }
   1680 
   1681 struct SingleSampleWideLineCandidate
   1682 {
   1683 	struct InterpolationPointCandidate
   1684 	{
   1685 		tcu::IVec2	interpolationPoint;
   1686 		tcu::IVec3	colorMin;
   1687 		tcu::IVec3	colorMax;
   1688 		tcu::Vec3	colorMinF;
   1689 		tcu::Vec3	colorMaxF;
   1690 		tcu::Vec3	valueRangeMin;
   1691 		tcu::Vec3	valueRangeMax;
   1692 	};
   1693 
   1694 	int							lineNdx;
   1695 	int							numCandidates;
   1696 	InterpolationPointCandidate	interpolationCandidates[3];
   1697 };
   1698 
   1699 // return point on line at a given position on a given axis
   1700 tcu::Vec2 getLineCoordAtAxisCoord (const tcu::Vec2& pa, const tcu::Vec2& pb, bool isXAxis, float axisCoord)
   1701 {
   1702 	const int	fixedCoordNdx		= (isXAxis) ? (0) : (1);
   1703 	const int	varyingCoordNdx		= (isXAxis) ? (1) : (0);
   1704 
   1705 	const float	fixedDifference		= pb[fixedCoordNdx] - pa[fixedCoordNdx];
   1706 	const float	varyingDifference	= pb[varyingCoordNdx] - pa[varyingCoordNdx];
   1707 
   1708 	DE_ASSERT(fixedDifference != 0.0f);
   1709 
   1710 	const float	resultFixedCoord	= axisCoord;
   1711 	const float	resultVaryingCoord	= pa[varyingCoordNdx] + (axisCoord - pa[fixedCoordNdx]) * (varyingDifference / fixedDifference);
   1712 
   1713 	return (isXAxis) ? (tcu::Vec2(resultFixedCoord, resultVaryingCoord))
   1714 					 : (tcu::Vec2(resultVaryingCoord, resultFixedCoord));
   1715 }
   1716 
   1717 bool isBlack (const tcu::RGBA& c)
   1718 {
   1719 	return c.getRed() == 0 && c.getGreen() == 0 && c.getBlue() == 0;
   1720 }
   1721 
   1722 bool verifySinglesampleWideLineGroupInterpolation (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
   1723 {
   1724 	DE_ASSERT(deFloatFrac(scene.lineWidth) != 0.5f); // rounding direction is not defined, disallow undefined cases
   1725 	DE_ASSERT(scene.lines.size() < 8); // coverage indices are stored as bitmask in a unsigned 8-bit ints
   1726 
   1727 	enum
   1728 	{
   1729 		FLAG_ROOT_NOT_SET = (1u << 16)
   1730 	};
   1731 
   1732 	const tcu::RGBA						invalidPixelColor	= tcu::RGBA(255, 0, 0, 255);
   1733 	const tcu::IVec2					viewportSize		= tcu::IVec2(surface.getWidth(), surface.getHeight());
   1734 	const int							errorFloodThreshold	= 4;
   1735 	int									errorCount			= 0;
   1736 	tcu::Surface						errorMask			(surface.getWidth(), surface.getHeight());
   1737 	int									invalidPixels		= 0;
   1738 	std::vector<tcu::Vec4>				effectiveLines		(scene.lines.size()); //!< packed (x0, y0, x1, y1)
   1739 	std::vector<bool>					lineIsXMajor		(scene.lines.size());
   1740 
   1741 	// for each line, for every distinct major direction fragment, store root pixel location (along
   1742 	// minor direction);
   1743 	std::vector<std::vector<deUint32> >	rootPixelLocation	(scene.lines.size()); //!< packed [16b - flags] [16b - coordinate]
   1744 
   1745 	// log format
   1746 
   1747 	log << tcu::TestLog::Message << "Verifying rasterization result. Native format is RGB" << args.redBits << args.greenBits << args.blueBits << tcu::TestLog::EndMessage;
   1748 	if (args.redBits > 8 || args.greenBits > 8 || args.blueBits > 8)
   1749 		log << tcu::TestLog::Message << "Warning! More than 8 bits in a color channel, this may produce false negatives." << tcu::TestLog::EndMessage;
   1750 
   1751 	// Reference renderer produces correct fragments using the diamond-exit-rule. Make 2D int array, store line coverage as a 8-bit bitfield
   1752 	// The map is used to find lines with potential coverage to a given pixel
   1753 	tcu::TextureLevel referenceLineMap(tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8), surface.getWidth(), surface.getHeight());
   1754 	tcu::clear(referenceLineMap.getAccess(), tcu::IVec4(0, 0, 0, 0));
   1755 
   1756 	tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
   1757 
   1758 	// calculate mask and effective line coordinates
   1759 	{
   1760 		std::vector<tcu::Vec4> screenspaceLines(scene.lines.size());
   1761 
   1762 		genScreenSpaceLines(screenspaceLines, scene.lines, viewportSize);
   1763 		setMaskMapCoverageBitForLines(screenspaceLines, scene.lineWidth, referenceLineMap.getAccess());
   1764 
   1765 		for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
   1766 		{
   1767 			const tcu::Vec2	lineScreenSpaceP0	= screenspaceLines[lineNdx].swizzle(0, 1);
   1768 			const tcu::Vec2	lineScreenSpaceP1	= screenspaceLines[lineNdx].swizzle(2, 3);
   1769 			const bool		isXMajor			= isPackedSSLineXMajor(screenspaceLines[lineNdx]);
   1770 
   1771 			lineIsXMajor[lineNdx] = isXMajor;
   1772 
   1773 			// wide line interpolations are calculated for a line moved in minor direction
   1774 			{
   1775 				const float		offsetLength	= (scene.lineWidth - 1.0f) / 2.0f;
   1776 				const tcu::Vec2	offsetDirection	= (isXMajor) ? (tcu::Vec2(0.0f, -1.0f)) : (tcu::Vec2(-1.0f, 0.0f));
   1777 				const tcu::Vec2	offset			= offsetDirection * offsetLength;
   1778 
   1779 				effectiveLines[lineNdx] = tcu::Vec4(lineScreenSpaceP0.x() + offset.x(),
   1780 													lineScreenSpaceP0.y() + offset.y(),
   1781 													lineScreenSpaceP1.x() + offset.x(),
   1782 													lineScreenSpaceP1.y() + offset.y());
   1783 			}
   1784 		}
   1785 	}
   1786 
   1787 	for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
   1788 	{
   1789 		// Calculate root pixel lookup table for this line. Since the implementation's fragment
   1790 		// major coordinate range might not be a subset of the correct line range (they are allowed
   1791 		// to vary by one pixel), we must extend the domain to cover whole viewport along major
   1792 		// dimension.
   1793 		//
   1794 		// Expanding line strip to (effectively) infinite line might result in exit-diamnod set
   1795 		// that is not a superset of the exit-diamond set of the line strip. In practice, this
   1796 		// won't be an issue, since the allow-one-pixel-variation rule should tolerate this even
   1797 		// if the original and extended line would resolve differently a diamond the line just
   1798 		// touches (precision lost in expansion changes enter/exit status).
   1799 
   1800 		{
   1801 			const bool						isXMajor			= lineIsXMajor[lineNdx];
   1802 			const int						majorSize			= (isXMajor) ? (surface.getWidth()) : (surface.getHeight());
   1803 			rr::LineExitDiamondGenerator	diamondGenerator;
   1804 			rr::LineExitDiamond				diamonds[32];
   1805 			int								numRasterized		= DE_LENGTH_OF_ARRAY(diamonds);
   1806 
   1807 			// Expand to effectively infinite line (endpoints are just one pixel over viewport boundaries)
   1808 			const tcu::Vec2					expandedP0		= getLineCoordAtAxisCoord(effectiveLines[lineNdx].swizzle(0, 1), effectiveLines[lineNdx].swizzle(2, 3), isXMajor, -1.0f);
   1809 			const tcu::Vec2					expandedP1		= getLineCoordAtAxisCoord(effectiveLines[lineNdx].swizzle(0, 1), effectiveLines[lineNdx].swizzle(2, 3), isXMajor, (float)majorSize + 1.0f);
   1810 
   1811 			diamondGenerator.init(tcu::Vec4(expandedP0.x(), expandedP0.y(), 0.0f, 1.0f),
   1812 								  tcu::Vec4(expandedP1.x(), expandedP1.y(), 0.0f, 1.0f));
   1813 
   1814 			rootPixelLocation[lineNdx].resize(majorSize, FLAG_ROOT_NOT_SET);
   1815 
   1816 			while (numRasterized == DE_LENGTH_OF_ARRAY(diamonds))
   1817 			{
   1818 				diamondGenerator.rasterize(diamonds, DE_LENGTH_OF_ARRAY(diamonds), numRasterized);
   1819 
   1820 				for (int packetNdx = 0; packetNdx < numRasterized; ++packetNdx)
   1821 				{
   1822 					const tcu::IVec2	fragPos			= diamonds[packetNdx].position;
   1823 					const int			majorPos		= (isXMajor) ? (fragPos.x()) : (fragPos.y());
   1824 					const int			rootPos			= (isXMajor) ? (fragPos.y()) : (fragPos.x());
   1825 					const deUint32		packed			= (deUint32)((deUint16)((deInt16)rootPos));
   1826 
   1827 					// infinite line will generate some diamonds outside the viewport
   1828 					if (deInBounds32(majorPos, 0, majorSize))
   1829 					{
   1830 						DE_ASSERT((rootPixelLocation[lineNdx][majorPos] & FLAG_ROOT_NOT_SET) != 0u);
   1831 						rootPixelLocation[lineNdx][majorPos] = packed;
   1832 					}
   1833 				}
   1834 			}
   1835 
   1836 			// Filled whole lookup table
   1837 			for (int majorPos = 0; majorPos < majorSize; ++majorPos)
   1838 				DE_ASSERT((rootPixelLocation[lineNdx][majorPos] & FLAG_ROOT_NOT_SET) == 0u);
   1839 		}
   1840 	}
   1841 
   1842 	// Find all possible lines with coverage, check pixel color matches one of them
   1843 
   1844 	for (int y = 1; y < surface.getHeight() - 1; ++y)
   1845 	for (int x = 1; x < surface.getWidth()  - 1; ++x)
   1846 	{
   1847 		const tcu::RGBA		color					= surface.getPixel(x, y);
   1848 		const tcu::IVec3	pixelNativeColor		= convertRGB8ToNativeFormat(color, args);	// Convert pixel color from rgba8 to the real pixel format. Usually rgba8 or 565
   1849 		int					lineCoverageSet			= 0;										// !< lines that may cover this fragment
   1850 		int					lineSurroundingCoverage = 0xFFFF;									// !< lines that will cover this fragment
   1851 		bool				matchFound				= false;
   1852 		const tcu::IVec3	formatLimit				((1 << args.redBits) - 1, (1 << args.greenBits) - 1, (1 << args.blueBits) - 1);
   1853 
   1854 		std::vector<SingleSampleWideLineCandidate> candidates;
   1855 
   1856 		// Find lines with possible coverage
   1857 
   1858 		for (int dy = -1; dy < 2; ++dy)
   1859 		for (int dx = -1; dx < 2; ++dx)
   1860 		{
   1861 			const int coverage = referenceLineMap.getAccess().getPixelInt(x+dx, y+dy).x();
   1862 
   1863 			lineCoverageSet			|= coverage;
   1864 			lineSurroundingCoverage	&= coverage;
   1865 		}
   1866 
   1867 		// background color is possible?
   1868 		if (lineSurroundingCoverage == 0 && compareColors(color, tcu::RGBA::black(), args.redBits, args.greenBits, args.blueBits))
   1869 			continue;
   1870 
   1871 		// Check those lines
   1872 
   1873 		for (int lineNdx = 0; lineNdx < (int)scene.lines.size(); ++lineNdx)
   1874 		{
   1875 			if (((lineCoverageSet >> lineNdx) & 0x01) != 0)
   1876 			{
   1877 				const float						wa				= scene.lines[lineNdx].positions[0].w();
   1878 				const float						wb				= scene.lines[lineNdx].positions[1].w();
   1879 				const tcu::Vec2					pa				= effectiveLines[lineNdx].swizzle(0, 1);
   1880 				const tcu::Vec2					pb				= effectiveLines[lineNdx].swizzle(2, 3);
   1881 
   1882 				// \note Wide line fragments are generated by replicating the root fragment for each
   1883 				//       fragment column (row for y-major). Calculate interpolation at the root
   1884 				//       fragment.
   1885 				const bool						isXMajor		= lineIsXMajor[lineNdx];
   1886 				const int						majorPosition	= (isXMajor) ? (x) : (y);
   1887 				const deUint32					minorInfoPacked	= rootPixelLocation[lineNdx][majorPosition];
   1888 				const int						minorPosition	= (int)((deInt16)((deUint16)(minorInfoPacked & 0xFFFFu)));
   1889 				const tcu::IVec2				idealRootPos	= (isXMajor) ? (tcu::IVec2(majorPosition, minorPosition)) : (tcu::IVec2(minorPosition, majorPosition));
   1890 				const tcu::IVec2				minorDirection	= (isXMajor) ? (tcu::IVec2(0, 1)) : (tcu::IVec2(1, 0));
   1891 
   1892 				SingleSampleWideLineCandidate	candidate;
   1893 
   1894 				candidate.lineNdx		= lineNdx;
   1895 				candidate.numCandidates	= 0;
   1896 				DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(candidate.interpolationCandidates) == 3);
   1897 
   1898 				// Interpolation happens at the root fragment, which is then replicated in minor
   1899 				// direction. Search for implementation's root position near accurate root.
   1900 				for (int minorOffset = -1; minorOffset < 2; ++minorOffset)
   1901 				{
   1902 					const tcu::IVec2				rootPosition	= idealRootPos + minorOffset * minorDirection;
   1903 
   1904 					// A fragment can be root fragment only if it exists
   1905 					// \note root fragment can "exist" outside viewport
   1906 					// \note no pixel format theshold since in this case allowing only black is more conservative
   1907 					if (deInBounds32(rootPosition.x(), 0, surface.getWidth()) &&
   1908 						deInBounds32(rootPosition.y(), 0, surface.getHeight()) &&
   1909 						isBlack(surface.getPixel(rootPosition.x(), rootPosition.y())))
   1910 					{
   1911 						continue;
   1912 					}
   1913 
   1914 					const LineInterpolationRange	range			= calcSingleSampleLineInterpolationRange(pa, wa, pb, wb, rootPosition, args.subpixelBits);
   1915 
   1916 					const tcu::Vec4					valueMin		= de::clamp(range.min.x(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[0] + de::clamp(range.min.y(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[1];
   1917 					const tcu::Vec4					valueMax		= de::clamp(range.max.x(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[0] + de::clamp(range.max.y(), 0.0f, 1.0f) * scene.lines[lineNdx].colors[1];
   1918 
   1919 					const tcu::Vec3					colorMinF		(de::clamp(valueMin.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
   1920 																	 de::clamp(valueMin.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
   1921 																	 de::clamp(valueMin.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
   1922 					const tcu::Vec3					colorMaxF		(de::clamp(valueMax.x() * (float)formatLimit.x(), 0.0f, (float)formatLimit.x()),
   1923 																	 de::clamp(valueMax.y() * (float)formatLimit.y(), 0.0f, (float)formatLimit.y()),
   1924 																	 de::clamp(valueMax.z() * (float)formatLimit.z(), 0.0f, (float)formatLimit.z()));
   1925 					const tcu::IVec3				colorMin		((int)deFloatFloor(colorMinF.x()),
   1926 																	 (int)deFloatFloor(colorMinF.y()),
   1927 																	 (int)deFloatFloor(colorMinF.z()));
   1928 					const tcu::IVec3				colorMax		((int)deFloatCeil (colorMaxF.x()),
   1929 																	 (int)deFloatCeil (colorMaxF.y()),
   1930 																	 (int)deFloatCeil (colorMaxF.z()));
   1931 
   1932 					// Verify validity
   1933 					if (pixelNativeColor.x() < colorMin.x() ||
   1934 						pixelNativeColor.y() < colorMin.y() ||
   1935 						pixelNativeColor.z() < colorMin.z() ||
   1936 						pixelNativeColor.x() > colorMax.x() ||
   1937 						pixelNativeColor.y() > colorMax.y() ||
   1938 						pixelNativeColor.z() > colorMax.z())
   1939 					{
   1940 						if (errorCount < errorFloodThreshold)
   1941 						{
   1942 							// Store candidate information for logging
   1943 							SingleSampleWideLineCandidate::InterpolationPointCandidate& interpolationCandidate = candidate.interpolationCandidates[candidate.numCandidates++];
   1944 							DE_ASSERT(candidate.numCandidates <= DE_LENGTH_OF_ARRAY(candidate.interpolationCandidates));
   1945 
   1946 							interpolationCandidate.interpolationPoint	= rootPosition;
   1947 							interpolationCandidate.colorMin				= colorMin;
   1948 							interpolationCandidate.colorMax				= colorMax;
   1949 							interpolationCandidate.colorMinF			= colorMinF;
   1950 							interpolationCandidate.colorMaxF			= colorMaxF;
   1951 							interpolationCandidate.valueRangeMin		= valueMin.swizzle(0, 1, 2);
   1952 							interpolationCandidate.valueRangeMax		= valueMax.swizzle(0, 1, 2);
   1953 						}
   1954 					}
   1955 					else
   1956 					{
   1957 						matchFound = true;
   1958 						break;
   1959 					}
   1960 				}
   1961 
   1962 				if (!matchFound)
   1963 				{
   1964 					// store info for logging
   1965 					if (errorCount < errorFloodThreshold && candidate.numCandidates > 0)
   1966 						candidates.push_back(candidate);
   1967 				}
   1968 				else
   1969 				{
   1970 					// no need to check other lines
   1971 					break;
   1972 				}
   1973 			}
   1974 		}
   1975 
   1976 		if (matchFound)
   1977 			continue;
   1978 
   1979 		// invalid fragment
   1980 		++invalidPixels;
   1981 		errorMask.setPixel(x, y, invalidPixelColor);
   1982 
   1983 		++errorCount;
   1984 
   1985 		// don't fill the logs with too much data
   1986 		if (errorCount < errorFloodThreshold)
   1987 		{
   1988 			tcu::MessageBuilder msg(&log);
   1989 
   1990 			msg	<< "Found an invalid pixel at (" << x << "," << y << "), " << (int)candidates.size() << " candidate reference value(s) found:\n"
   1991 				<< "\tPixel color:\t\t" << color << "\n"
   1992 				<< "\tNative color:\t\t" << pixelNativeColor << "\n";
   1993 
   1994 			for (int lineCandidateNdx = 0; lineCandidateNdx < (int)candidates.size(); ++lineCandidateNdx)
   1995 			{
   1996 				const SingleSampleWideLineCandidate& candidate = candidates[lineCandidateNdx];
   1997 
   1998 				msg << "\tCandidate line (line " << candidate.lineNdx << "):\n";
   1999 
   2000 				for (int interpolationCandidateNdx = 0; interpolationCandidateNdx < candidate.numCandidates; ++interpolationCandidateNdx)
   2001 				{
   2002 					const SingleSampleWideLineCandidate::InterpolationPointCandidate& interpolationCandidate = candidate.interpolationCandidates[interpolationCandidateNdx];
   2003 
   2004 					msg	<< "\t\tCandidate interpolation point (index " << interpolationCandidateNdx << "):\n"
   2005 						<< "\t\t\tRoot fragment position (non-replicated fragment): " << interpolationCandidate.interpolationPoint << ":\n"
   2006 						<< "\t\t\tReference native color min: " << tcu::clamp(interpolationCandidate.colorMin, tcu::IVec3(0,0,0), formatLimit) << "\n"
   2007 						<< "\t\t\tReference native color max: " << tcu::clamp(interpolationCandidate.colorMax, tcu::IVec3(0,0,0), formatLimit) << "\n"
   2008 						<< "\t\t\tReference native float min: " << tcu::clamp(interpolationCandidate.colorMinF, tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
   2009 						<< "\t\t\tReference native float max: " << tcu::clamp(interpolationCandidate.colorMaxF, tcu::Vec3(0.0f, 0.0f, 0.0f), formatLimit.cast<float>()) << "\n"
   2010 						<< "\t\t\tFmin:\t" << tcu::clamp(interpolationCandidate.valueRangeMin, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n"
   2011 						<< "\t\t\tFmax:\t" << tcu::clamp(interpolationCandidate.valueRangeMax, tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::Vec3(1.0f, 1.0f, 1.0f)) << "\n";
   2012 				}
   2013 			}
   2014 
   2015 			msg << tcu::TestLog::EndMessage;
   2016 		}
   2017 	}
   2018 
   2019 	// don't just hide failures
   2020 	if (errorCount > errorFloodThreshold)
   2021 		log << tcu::TestLog::Message << "Omitted " << (errorCount-errorFloodThreshold) << " pixel error description(s)." << tcu::TestLog::EndMessage;
   2022 
   2023 	// report result
   2024 	if (invalidPixels)
   2025 	{
   2026 		log << tcu::TestLog::Message << invalidPixels << " invalid pixel(s) found." << tcu::TestLog::EndMessage;
   2027 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
   2028 			<< tcu::TestLog::Image("Result", "Result",			surface)
   2029 			<< tcu::TestLog::Image("ErrorMask", "ErrorMask",	errorMask)
   2030 			<< tcu::TestLog::EndImageSet;
   2031 
   2032 		return false;
   2033 	}
   2034 	else
   2035 	{
   2036 		log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
   2037 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
   2038 			<< tcu::TestLog::Image("Result", "Result", surface)
   2039 			<< tcu::TestLog::EndImageSet;
   2040 
   2041 		return true;
   2042 	}
   2043 }
   2044 
   2045 } // anonymous
   2046 
   2047 CoverageType calculateTriangleCoverage (const tcu::Vec4& p0, const tcu::Vec4& p1, const tcu::Vec4& p2, const tcu::IVec2& pixel, const tcu::IVec2& viewportSize, int subpixelBits, bool multisample)
   2048 {
   2049 	typedef tcu::Vector<deInt64, 2> I64Vec2;
   2050 
   2051 	const deUint64		numSubPixels						= ((deUint64)1) << subpixelBits;
   2052 	const deUint64		pixelHitBoxSize						= (multisample) ? (numSubPixels) : (2+2);	//!< allow 4 central (2x2) for non-multisample pixels. Rounding may move edges 1 subpixel to any direction.
   2053 	const bool			order								= isTriangleClockwise(p0, p1, p2);			//!< clockwise / counter-clockwise
   2054 	const tcu::Vec4&	orderedP0							= p0;										//!< vertices of a clockwise triangle
   2055 	const tcu::Vec4&	orderedP1							= (order) ? (p1) : (p2);
   2056 	const tcu::Vec4&	orderedP2							= (order) ? (p2) : (p1);
   2057 	const tcu::Vec2		triangleNormalizedDeviceSpace[3]	=
   2058 	{
   2059 		tcu::Vec2(orderedP0.x() / orderedP0.w(), orderedP0.y() / orderedP0.w()),
   2060 		tcu::Vec2(orderedP1.x() / orderedP1.w(), orderedP1.y() / orderedP1.w()),
   2061 		tcu::Vec2(orderedP2.x() / orderedP2.w(), orderedP2.y() / orderedP2.w()),
   2062 	};
   2063 	const tcu::Vec2		triangleScreenSpace[3]				=
   2064 	{
   2065 		(triangleNormalizedDeviceSpace[0] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
   2066 		(triangleNormalizedDeviceSpace[1] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
   2067 		(triangleNormalizedDeviceSpace[2] + tcu::Vec2(1.0f, 1.0f)) * 0.5f * tcu::Vec2((float)viewportSize.x(), (float)viewportSize.y()),
   2068 	};
   2069 
   2070 	// Broad bounding box - pixel check
   2071 	{
   2072 		const float minX = de::min(de::min(triangleScreenSpace[0].x(), triangleScreenSpace[1].x()), triangleScreenSpace[2].x());
   2073 		const float minY = de::min(de::min(triangleScreenSpace[0].y(), triangleScreenSpace[1].y()), triangleScreenSpace[2].y());
   2074 		const float maxX = de::max(de::max(triangleScreenSpace[0].x(), triangleScreenSpace[1].x()), triangleScreenSpace[2].x());
   2075 		const float maxY = de::max(de::max(triangleScreenSpace[0].y(), triangleScreenSpace[1].y()), triangleScreenSpace[2].y());
   2076 
   2077 		if ((float)pixel.x() > maxX + 1 ||
   2078 			(float)pixel.y() > maxY + 1 ||
   2079 			(float)pixel.x() < minX - 1 ||
   2080 			(float)pixel.y() < minY - 1)
   2081 			return COVERAGE_NONE;
   2082 	}
   2083 
   2084 	// Broad triangle - pixel area intersection
   2085 	{
   2086 		const I64Vec2 pixelCenterPosition = I64Vec2(pixel.x(), pixel.y()) * I64Vec2(numSubPixels, numSubPixels) + I64Vec2(numSubPixels / 2, numSubPixels / 2);
   2087 		const I64Vec2 triangleSubPixelSpaceRound[3] =
   2088 		{
   2089 			I64Vec2(deRoundFloatToInt32(triangleScreenSpace[0].x() * (float)numSubPixels), deRoundFloatToInt32(triangleScreenSpace[0].y() * (float)numSubPixels)),
   2090 			I64Vec2(deRoundFloatToInt32(triangleScreenSpace[1].x() * (float)numSubPixels), deRoundFloatToInt32(triangleScreenSpace[1].y() * (float)numSubPixels)),
   2091 			I64Vec2(deRoundFloatToInt32(triangleScreenSpace[2].x() * (float)numSubPixels), deRoundFloatToInt32(triangleScreenSpace[2].y() * (float)numSubPixels)),
   2092 		};
   2093 
   2094 		// Check (using cross product) if pixel center is
   2095 		// a) too far from any edge
   2096 		// b) fully inside all edges
   2097 		bool insideAllEdges = true;
   2098 		for (int vtxNdx = 0; vtxNdx < 3; ++vtxNdx)
   2099 		{
   2100 			const int		otherVtxNdx				= (vtxNdx + 1) % 3;
   2101 			const deInt64	maxPixelDistanceSquared	= pixelHitBoxSize*pixelHitBoxSize; // Max distance from the pixel center from within the pixel is (sqrt(2) * boxWidth/2). Use 2x value for rounding tolerance
   2102 			const I64Vec2	edge					= triangleSubPixelSpaceRound[otherVtxNdx]	- triangleSubPixelSpaceRound[vtxNdx];
   2103 			const I64Vec2	v						= pixelCenterPosition						- triangleSubPixelSpaceRound[vtxNdx];
   2104 			const deInt64	crossProduct			= (edge.x() * v.y() - edge.y() * v.x());
   2105 
   2106 			// distance from edge: (edge x v) / |edge|
   2107 			//     (edge x v) / |edge| > maxPixelDistance
   2108 			// ==> (edge x v)^2 / edge^2 > maxPixelDistance^2    | edge x v > 0
   2109 			// ==> (edge x v)^2 > maxPixelDistance^2 * edge^2
   2110 			if (crossProduct < 0 && crossProduct*crossProduct > maxPixelDistanceSquared * tcu::lengthSquared(edge))
   2111 				return COVERAGE_NONE;
   2112 			if (crossProduct < 0 || crossProduct*crossProduct < maxPixelDistanceSquared * tcu::lengthSquared(edge))
   2113 				insideAllEdges = false;
   2114 		}
   2115 
   2116 		if (insideAllEdges)
   2117 			return COVERAGE_FULL;
   2118 	}
   2119 
   2120 	// Accurate intersection for edge pixels
   2121 	{
   2122 		//  In multisampling, the sample points can be anywhere in the pixel, and in single sampling only in the center.
   2123 		const I64Vec2 pixelCorners[4] =
   2124 		{
   2125 			I64Vec2((pixel.x()+0) * numSubPixels, (pixel.y()+0) * numSubPixels),
   2126 			I64Vec2((pixel.x()+1) * numSubPixels, (pixel.y()+0) * numSubPixels),
   2127 			I64Vec2((pixel.x()+1) * numSubPixels, (pixel.y()+1) * numSubPixels),
   2128 			I64Vec2((pixel.x()+0) * numSubPixels, (pixel.y()+1) * numSubPixels),
   2129 		};
   2130 		const I64Vec2 pixelCenterCorners[4] =
   2131 		{
   2132 			I64Vec2(pixel.x() * numSubPixels + numSubPixels/2 + 0, pixel.y() * numSubPixels + numSubPixels/2 + 0),
   2133 			I64Vec2(pixel.x() * numSubPixels + numSubPixels/2 + 1, pixel.y() * numSubPixels + numSubPixels/2 + 0),
   2134 			I64Vec2(pixel.x() * numSubPixels + numSubPixels/2 + 1, pixel.y() * numSubPixels + numSubPixels/2 + 1),
   2135 			I64Vec2(pixel.x() * numSubPixels + numSubPixels/2 + 0, pixel.y() * numSubPixels + numSubPixels/2 + 1),
   2136 		};
   2137 
   2138 		// both rounding directions
   2139 		const I64Vec2 triangleSubPixelSpaceFloor[3] =
   2140 		{
   2141 			I64Vec2(deFloorFloatToInt32(triangleScreenSpace[0].x() * (float)numSubPixels), deFloorFloatToInt32(triangleScreenSpace[0].y() * (float)numSubPixels)),
   2142 			I64Vec2(deFloorFloatToInt32(triangleScreenSpace[1].x() * (float)numSubPixels), deFloorFloatToInt32(triangleScreenSpace[1].y() * (float)numSubPixels)),
   2143 			I64Vec2(deFloorFloatToInt32(triangleScreenSpace[2].x() * (float)numSubPixels), deFloorFloatToInt32(triangleScreenSpace[2].y() * (float)numSubPixels)),
   2144 		};
   2145 		const I64Vec2 triangleSubPixelSpaceCeil[3] =
   2146 		{
   2147 			I64Vec2(deCeilFloatToInt32(triangleScreenSpace[0].x() * (float)numSubPixels), deCeilFloatToInt32(triangleScreenSpace[0].y() * (float)numSubPixels)),
   2148 			I64Vec2(deCeilFloatToInt32(triangleScreenSpace[1].x() * (float)numSubPixels), deCeilFloatToInt32(triangleScreenSpace[1].y() * (float)numSubPixels)),
   2149 			I64Vec2(deCeilFloatToInt32(triangleScreenSpace[2].x() * (float)numSubPixels), deCeilFloatToInt32(triangleScreenSpace[2].y() * (float)numSubPixels)),
   2150 		};
   2151 		const I64Vec2* const corners = (multisample) ? (pixelCorners) : (pixelCenterCorners);
   2152 
   2153 		// Test if any edge (with any rounding) intersects the pixel (boundary). If it does => Partial. If not => fully inside or outside
   2154 
   2155 		for (int edgeNdx = 0; edgeNdx < 3; ++edgeNdx)
   2156 		for (int startRounding = 0; startRounding < 4; ++startRounding)
   2157 		for (int endRounding = 0; endRounding < 4; ++endRounding)
   2158 		{
   2159 			const int		nextEdgeNdx	= (edgeNdx+1) % 3;
   2160 			const I64Vec2	startPos	((startRounding&0x01)	? (triangleSubPixelSpaceFloor[edgeNdx].x())		: (triangleSubPixelSpaceCeil[edgeNdx].x()),		(startRounding&0x02)	? (triangleSubPixelSpaceFloor[edgeNdx].y())		: (triangleSubPixelSpaceCeil[edgeNdx].y()));
   2161 			const I64Vec2	endPos		((endRounding&0x01)		? (triangleSubPixelSpaceFloor[nextEdgeNdx].x())	: (triangleSubPixelSpaceCeil[nextEdgeNdx].x()),	(endRounding&0x02)		? (triangleSubPixelSpaceFloor[nextEdgeNdx].y())	: (triangleSubPixelSpaceCeil[nextEdgeNdx].y()));
   2162 
   2163 			for (int pixelEdgeNdx = 0; pixelEdgeNdx < 4; ++pixelEdgeNdx)
   2164 			{
   2165 				const int pixelEdgeEnd = (pixelEdgeNdx + 1) % 4;
   2166 
   2167 				if (lineLineIntersect(startPos, endPos, corners[pixelEdgeNdx], corners[pixelEdgeEnd]))
   2168 					return COVERAGE_PARTIAL;
   2169 			}
   2170 		}
   2171 
   2172 		// fully inside or outside
   2173 		for (int edgeNdx = 0; edgeNdx < 3; ++edgeNdx)
   2174 		{
   2175 			const int		nextEdgeNdx		= (edgeNdx+1) % 3;
   2176 			const I64Vec2&	startPos		= triangleSubPixelSpaceFloor[edgeNdx];
   2177 			const I64Vec2&	endPos			= triangleSubPixelSpaceFloor[nextEdgeNdx];
   2178 			const I64Vec2	edge			= endPos - startPos;
   2179 			const I64Vec2	v				= corners[0] - endPos;
   2180 			const deInt64	crossProduct	= (edge.x() * v.y() - edge.y() * v.x());
   2181 
   2182 			// a corner of the pixel is outside => "fully inside" option is impossible
   2183 			if (crossProduct < 0)
   2184 				return COVERAGE_NONE;
   2185 		}
   2186 
   2187 		return COVERAGE_FULL;
   2188 	}
   2189 }
   2190 
   2191 bool verifyTriangleGroupRasterization (const tcu::Surface& surface, const TriangleSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log, VerificationMode mode)
   2192 {
   2193 	DE_ASSERT(mode < VERIFICATIONMODE_LAST);
   2194 
   2195 	const tcu::RGBA		backGroundColor				= tcu::RGBA(0, 0, 0, 255);
   2196 	const tcu::RGBA		triangleColor				= tcu::RGBA(255, 255, 255, 255);
   2197 	const tcu::RGBA		missingPixelColor			= tcu::RGBA(255, 0, 255, 255);
   2198 	const tcu::RGBA		unexpectedPixelColor		= tcu::RGBA(255, 0, 0, 255);
   2199 	const tcu::RGBA		partialPixelColor			= tcu::RGBA(255, 255, 0, 255);
   2200 	const tcu::RGBA		primitivePixelColor			= tcu::RGBA(30, 30, 30, 255);
   2201 	const int			weakVerificationThreshold	= 10;
   2202 	const bool			multisampled				= (args.numSamples != 0);
   2203 	const tcu::IVec2	viewportSize				= tcu::IVec2(surface.getWidth(), surface.getHeight());
   2204 	int					missingPixels				= 0;
   2205 	int					unexpectedPixels			= 0;
   2206 	int					subPixelBits				= args.subpixelBits;
   2207 	tcu::TextureLevel	coverageMap					(tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT8), surface.getWidth(), surface.getHeight());
   2208 	tcu::Surface		errorMask					(surface.getWidth(), surface.getHeight());
   2209 
   2210 	// subpixel bits in in a valid range?
   2211 
   2212 	if (subPixelBits < 0)
   2213 	{
   2214 		log << tcu::TestLog::Message << "Invalid subpixel count (" << subPixelBits << "), assuming 0" << tcu::TestLog::EndMessage;
   2215 		subPixelBits = 0;
   2216 	}
   2217 	else if (subPixelBits > 16)
   2218 	{
   2219 		// At high subpixel bit counts we might overflow. Checking at lower bit count is ok, but is less strict
   2220 		log << tcu::TestLog::Message << "Subpixel count is greater than 16 (" << subPixelBits << "). Checking results using less strict 16 bit requirements. This may produce false positives." << tcu::TestLog::EndMessage;
   2221 		subPixelBits = 16;
   2222 	}
   2223 
   2224 	// generate coverage map
   2225 
   2226 	tcu::clear(coverageMap.getAccess(), tcu::IVec4(COVERAGE_NONE, 0, 0, 0));
   2227 
   2228 	for (int triNdx = 0; triNdx < (int)scene.triangles.size(); ++triNdx)
   2229 	{
   2230 		const tcu::IVec4 aabb = getTriangleAABB(scene.triangles[triNdx], viewportSize);
   2231 
   2232 		for (int y = de::max(0, aabb.y()); y <= de::min(aabb.w(), coverageMap.getHeight() - 1); ++y)
   2233 		for (int x = de::max(0, aabb.x()); x <= de::min(aabb.z(), coverageMap.getWidth() - 1); ++x)
   2234 		{
   2235 			if (coverageMap.getAccess().getPixelUint(x, y).x() == COVERAGE_FULL)
   2236 				continue;
   2237 
   2238 			const CoverageType coverage = calculateTriangleCoverage(scene.triangles[triNdx].positions[0],
   2239 																	scene.triangles[triNdx].positions[1],
   2240 																	scene.triangles[triNdx].positions[2],
   2241 																	tcu::IVec2(x, y),
   2242 																	viewportSize,
   2243 																	subPixelBits,
   2244 																	multisampled);
   2245 
   2246 			if (coverage == COVERAGE_FULL)
   2247 			{
   2248 				coverageMap.getAccess().setPixel(tcu::IVec4(COVERAGE_FULL, 0, 0, 0), x, y);
   2249 			}
   2250 			else if (coverage == COVERAGE_PARTIAL)
   2251 			{
   2252 				CoverageType resultCoverage = COVERAGE_PARTIAL;
   2253 
   2254 				// Sharing an edge with another triangle?
   2255 				// There should always be such a triangle, but the pixel in the other triangle might be
   2256 				// on multiple edges, some of which are not shared. In these cases the coverage cannot be determined.
   2257 				// Assume full coverage if the pixel is only on a shared edge in shared triangle too.
   2258 				if (pixelOnlyOnASharedEdge(tcu::IVec2(x, y), scene.triangles[triNdx], viewportSize))
   2259 				{
   2260 					bool friendFound = false;
   2261 					for (int friendTriNdx = 0; friendTriNdx < (int)scene.triangles.size(); ++friendTriNdx)
   2262 					{
   2263 						if (friendTriNdx != triNdx && pixelOnlyOnASharedEdge(tcu::IVec2(x, y), scene.triangles[friendTriNdx], viewportSize))
   2264 						{
   2265 							friendFound = true;
   2266 							break;
   2267 						}
   2268 					}
   2269 
   2270 					if (friendFound)
   2271 						resultCoverage = COVERAGE_FULL;
   2272 				}
   2273 
   2274 				coverageMap.getAccess().setPixel(tcu::IVec4(resultCoverage, 0, 0, 0), x, y);
   2275 			}
   2276 		}
   2277 	}
   2278 
   2279 	// check pixels
   2280 
   2281 	tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f));
   2282 
   2283 	for (int y = 0; y < surface.getHeight(); ++y)
   2284 	for (int x = 0; x < surface.getWidth(); ++x)
   2285 	{
   2286 		const tcu::RGBA		color				= surface.getPixel(x, y);
   2287 		const bool			imageNoCoverage		= compareColors(color, backGroundColor, args.redBits, args.greenBits, args.blueBits);
   2288 		const bool			imageFullCoverage	= compareColors(color, triangleColor, args.redBits, args.greenBits, args.blueBits);
   2289 		CoverageType		referenceCoverage	= (CoverageType)coverageMap.getAccess().getPixelUint(x, y).x();
   2290 
   2291 		switch (referenceCoverage)
   2292 		{
   2293 			case COVERAGE_NONE:
   2294 				if (!imageNoCoverage)
   2295 				{
   2296 					// coverage where there should not be
   2297 					++unexpectedPixels;
   2298 					errorMask.setPixel(x, y, unexpectedPixelColor);
   2299 				}
   2300 				break;
   2301 
   2302 			case COVERAGE_PARTIAL:
   2303 				// anything goes
   2304 				errorMask.setPixel(x, y, partialPixelColor);
   2305 				break;
   2306 
   2307 			case COVERAGE_FULL:
   2308 				if (!imageFullCoverage)
   2309 				{
   2310 					// no coverage where there should be
   2311 					++missingPixels;
   2312 					errorMask.setPixel(x, y, missingPixelColor);
   2313 				}
   2314 				else
   2315 				{
   2316 					errorMask.setPixel(x, y, primitivePixelColor);
   2317 				}
   2318 				break;
   2319 
   2320 			default:
   2321 				DE_ASSERT(false);
   2322 		};
   2323 	}
   2324 
   2325 	// Output results
   2326 	log << tcu::TestLog::Message << "Verifying rasterization result." << tcu::TestLog::EndMessage;
   2327 
   2328 	if (((mode == VERIFICATIONMODE_STRICT) && (missingPixels + unexpectedPixels > 0)) ||
   2329 		((mode == VERIFICATIONMODE_WEAK)   && (missingPixels + unexpectedPixels > weakVerificationThreshold)))
   2330 	{
   2331 		log << tcu::TestLog::Message << "Invalid pixels found:\n\t"
   2332 			<< missingPixels << " missing pixels. (Marked with purple)\n\t"
   2333 			<< unexpectedPixels << " incorrectly filled pixels. (Marked with red)\n\t"
   2334 			<< "Unknown (subpixel on edge) pixels are marked with yellow."
   2335 			<< tcu::TestLog::EndMessage;
   2336 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
   2337 			<< tcu::TestLog::Image("Result",	"Result",		surface)
   2338 			<< tcu::TestLog::Image("ErrorMask", "ErrorMask",	errorMask)
   2339 			<< tcu::TestLog::EndImageSet;
   2340 
   2341 		return false;
   2342 	}
   2343 	else
   2344 	{
   2345 		log << tcu::TestLog::Message << "No invalid pixels found." << tcu::TestLog::EndMessage;
   2346 		log << tcu::TestLog::ImageSet("Verification result", "Result of rendering")
   2347 			<< tcu::TestLog::Image("Result", "Result", surface)
   2348 			<< tcu::TestLog::EndImageSet;
   2349 
   2350 		return true;
   2351 	}
   2352 }
   2353 
   2354 bool verifyLineGroupRasterization (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
   2355 {
   2356 	const bool multisampled = args.numSamples != 0;
   2357 
   2358 	if (multisampled)
   2359 		return verifyMultisampleLineGroupRasterization(surface, scene, args, log);
   2360 	else
   2361 		return verifySinglesampleLineGroupRasterization(surface, scene, args, log);
   2362 }
   2363 
   2364 bool verifyPointGroupRasterization (const tcu::Surface& surface, const PointSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
   2365 {
   2366 	// Splitting to triangles is a valid solution in multisampled cases and even in non-multisample cases too.
   2367 	return verifyMultisamplePointGroupRasterization(surface, scene, args, log);
   2368 }
   2369 
   2370 bool verifyTriangleGroupInterpolation (const tcu::Surface& surface, const TriangleSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
   2371 {
   2372 	return verifyTriangleGroupInterpolationWithInterpolator(surface, scene, args, log, TriangleInterpolator(scene));
   2373 }
   2374 
   2375 LineInterpolationMethod verifyLineGroupInterpolation (const tcu::Surface& surface, const LineSceneSpec& scene, const RasterizationArguments& args, tcu::TestLog& log)
   2376 {
   2377 	const bool multisampled = args.numSamples != 0;
   2378 
   2379 	if (multisampled)
   2380 	{
   2381 		if (verifyMultisampleLineGroupInterpolation(surface, scene, args, log))
   2382 			return LINEINTERPOLATION_STRICTLY_CORRECT;
   2383 		return LINEINTERPOLATION_INCORRECT;
   2384 	}
   2385 	else
   2386 	{
   2387 		const bool isNarrow = (scene.lineWidth == 1.0f);
   2388 
   2389 		// accurate interpolation
   2390 		if (isNarrow)
   2391 		{
   2392 			if (verifySinglesampleNarrowLineGroupInterpolation(surface, scene, args, log))
   2393 				return LINEINTERPOLATION_STRICTLY_CORRECT;
   2394 		}
   2395 		else
   2396 		{
   2397 			if (verifySinglesampleWideLineGroupInterpolation(surface, scene, args, log))
   2398 				return LINEINTERPOLATION_STRICTLY_CORRECT;
   2399 		}
   2400 
   2401 		// check with projected (inaccurate) interpolation
   2402 		log << tcu::TestLog::Message << "Accurate verification failed, checking with projected weights (inaccurate equation)." << tcu::TestLog::EndMessage;
   2403 		if (verifyLineGroupInterpolationWithProjectedWeights(surface, scene, args, log))
   2404 			return LINEINTERPOLATION_PROJECTED;
   2405 
   2406 		return LINEINTERPOLATION_INCORRECT;
   2407 	}
   2408 }
   2409 
   2410 } // StateQueryUtil
   2411 } // gls
   2412 } // deqp
   2413