1 //===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the LiveRangeCalc class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LiveRangeCalc.h" 15 #include "llvm/CodeGen/MachineDominators.h" 16 #include "llvm/CodeGen/MachineRegisterInfo.h" 17 18 using namespace llvm; 19 20 #define DEBUG_TYPE "regalloc" 21 22 void LiveRangeCalc::resetLiveOutMap() { 23 unsigned NumBlocks = MF->getNumBlockIDs(); 24 Seen.clear(); 25 Seen.resize(NumBlocks); 26 Map.resize(NumBlocks); 27 } 28 29 void LiveRangeCalc::reset(const MachineFunction *mf, 30 SlotIndexes *SI, 31 MachineDominatorTree *MDT, 32 VNInfo::Allocator *VNIA) { 33 MF = mf; 34 MRI = &MF->getRegInfo(); 35 Indexes = SI; 36 DomTree = MDT; 37 Alloc = VNIA; 38 resetLiveOutMap(); 39 LiveIn.clear(); 40 } 41 42 43 static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc, 44 LiveRange &LR, const MachineOperand &MO) { 45 const MachineInstr *MI = MO.getParent(); 46 SlotIndex DefIdx = 47 Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber()); 48 49 // Create the def in LR. This may find an existing def. 50 LR.createDeadDef(DefIdx, Alloc); 51 } 52 53 void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) { 54 assert(MRI && Indexes && "call reset() first"); 55 56 // Step 1: Create minimal live segments for every definition of Reg. 57 // Visit all def operands. If the same instruction has multiple defs of Reg, 58 // createDeadDef() will deduplicate. 59 const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); 60 unsigned Reg = LI.reg; 61 for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { 62 if (!MO.isDef() && !MO.readsReg()) 63 continue; 64 65 unsigned SubReg = MO.getSubReg(); 66 if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) { 67 LaneBitmask Mask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg) 68 : MRI->getMaxLaneMaskForVReg(Reg); 69 70 // If this is the first time we see a subregister def, initialize 71 // subranges by creating a copy of the main range. 72 if (!LI.hasSubRanges() && !LI.empty()) { 73 LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg); 74 LI.createSubRangeFrom(*Alloc, ClassMask, LI); 75 } 76 77 for (LiveInterval::SubRange &S : LI.subranges()) { 78 // A Mask for subregs common to the existing subrange and current def. 79 LaneBitmask Common = S.LaneMask & Mask; 80 if (Common == 0) 81 continue; 82 // A Mask for subregs covered by the subrange but not the current def. 83 LaneBitmask LRest = S.LaneMask & ~Mask; 84 LiveInterval::SubRange *CommonRange; 85 if (LRest != 0) { 86 // Split current subrange into Common and LRest ranges. 87 S.LaneMask = LRest; 88 CommonRange = LI.createSubRangeFrom(*Alloc, Common, S); 89 } else { 90 assert(Common == S.LaneMask); 91 CommonRange = &S; 92 } 93 if (MO.isDef()) 94 createDeadDef(*Indexes, *Alloc, *CommonRange, MO); 95 Mask &= ~Common; 96 } 97 // Create a new SubRange for subregs we did not cover yet. 98 if (Mask != 0) { 99 LiveInterval::SubRange *NewRange = LI.createSubRange(*Alloc, Mask); 100 if (MO.isDef()) 101 createDeadDef(*Indexes, *Alloc, *NewRange, MO); 102 } 103 } 104 105 // Create the def in the main liverange. We do not have to do this if 106 // subranges are tracked as we recreate the main range later in this case. 107 if (MO.isDef() && !LI.hasSubRanges()) 108 createDeadDef(*Indexes, *Alloc, LI, MO); 109 } 110 111 // We may have created empty live ranges for partially undefined uses, we 112 // can't keep them because we won't find defs in them later. 113 LI.removeEmptySubRanges(); 114 115 // Step 2: Extend live segments to all uses, constructing SSA form as 116 // necessary. 117 if (LI.hasSubRanges()) { 118 for (LiveInterval::SubRange &S : LI.subranges()) { 119 resetLiveOutMap(); 120 extendToUses(S, Reg, S.LaneMask); 121 } 122 LI.clear(); 123 LI.constructMainRangeFromSubranges(*Indexes, *Alloc); 124 } else { 125 resetLiveOutMap(); 126 extendToUses(LI, Reg, ~0u); 127 } 128 } 129 130 131 void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) { 132 assert(MRI && Indexes && "call reset() first"); 133 134 // Visit all def operands. If the same instruction has multiple defs of Reg, 135 // LR.createDeadDef() will deduplicate. 136 for (MachineOperand &MO : MRI->def_operands(Reg)) 137 createDeadDef(*Indexes, *Alloc, LR, MO); 138 } 139 140 141 void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, 142 LaneBitmask Mask) { 143 // Visit all operands that read Reg. This may include partial defs. 144 const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); 145 for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { 146 // Clear all kill flags. They will be reinserted after register allocation 147 // by LiveIntervalAnalysis::addKillFlags(). 148 if (MO.isUse()) 149 MO.setIsKill(false); 150 else { 151 // We only care about uses, but on the main range (mask ~0u) this includes 152 // the "virtual" reads happening for subregister defs. 153 if (Mask != ~0u) 154 continue; 155 } 156 157 if (!MO.readsReg()) 158 continue; 159 unsigned SubReg = MO.getSubReg(); 160 if (SubReg != 0) { 161 LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(SubReg); 162 // Ignore uses not covering the current subrange. 163 if ((SubRegMask & Mask) == 0) 164 continue; 165 } 166 167 // Determine the actual place of the use. 168 const MachineInstr *MI = MO.getParent(); 169 unsigned OpNo = (&MO - &MI->getOperand(0)); 170 SlotIndex UseIdx; 171 if (MI->isPHI()) { 172 assert(!MO.isDef() && "Cannot handle PHI def of partial register."); 173 // The actual place where a phi operand is used is the end of the pred 174 // MBB. PHI operands are paired: (Reg, PredMBB). 175 UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB()); 176 } else { 177 // Check for early-clobber redefs. 178 bool isEarlyClobber = false; 179 unsigned DefIdx; 180 if (MO.isDef()) 181 isEarlyClobber = MO.isEarlyClobber(); 182 else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) { 183 // FIXME: This would be a lot easier if tied early-clobber uses also 184 // had an early-clobber flag. 185 isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber(); 186 } 187 UseIdx = Indexes->getInstructionIndex(MI).getRegSlot(isEarlyClobber); 188 } 189 190 // MI is reading Reg. We may have visited MI before if it happens to be 191 // reading Reg multiple times. That is OK, extend() is idempotent. 192 extend(LR, UseIdx, Reg); 193 } 194 } 195 196 197 void LiveRangeCalc::updateFromLiveIns() { 198 LiveRangeUpdater Updater; 199 for (const LiveInBlock &I : LiveIn) { 200 if (!I.DomNode) 201 continue; 202 MachineBasicBlock *MBB = I.DomNode->getBlock(); 203 assert(I.Value && "No live-in value found"); 204 SlotIndex Start, End; 205 std::tie(Start, End) = Indexes->getMBBRange(MBB); 206 207 if (I.Kill.isValid()) 208 // Value is killed inside this block. 209 End = I.Kill; 210 else { 211 // The value is live-through, update LiveOut as well. 212 // Defer the Domtree lookup until it is needed. 213 assert(Seen.test(MBB->getNumber())); 214 Map[MBB] = LiveOutPair(I.Value, nullptr); 215 } 216 Updater.setDest(&I.LR); 217 Updater.add(Start, End, I.Value); 218 } 219 LiveIn.clear(); 220 } 221 222 223 void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg) { 224 assert(Use.isValid() && "Invalid SlotIndex"); 225 assert(Indexes && "Missing SlotIndexes"); 226 assert(DomTree && "Missing dominator tree"); 227 228 MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot()); 229 assert(UseMBB && "No MBB at Use"); 230 231 // Is there a def in the same MBB we can extend? 232 if (LR.extendInBlock(Indexes->getMBBStartIdx(UseMBB), Use)) 233 return; 234 235 // Find the single reaching def, or determine if Use is jointly dominated by 236 // multiple values, and we may need to create even more phi-defs to preserve 237 // VNInfo SSA form. Perform a search for all predecessor blocks where we 238 // know the dominating VNInfo. 239 if (findReachingDefs(LR, *UseMBB, Use, PhysReg)) 240 return; 241 242 // When there were multiple different values, we may need new PHIs. 243 calculateValues(); 244 } 245 246 247 // This function is called by a client after using the low-level API to add 248 // live-out and live-in blocks. The unique value optimization is not 249 // available, SplitEditor::transferValues handles that case directly anyway. 250 void LiveRangeCalc::calculateValues() { 251 assert(Indexes && "Missing SlotIndexes"); 252 assert(DomTree && "Missing dominator tree"); 253 updateSSA(); 254 updateFromLiveIns(); 255 } 256 257 258 bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB, 259 SlotIndex Use, unsigned PhysReg) { 260 unsigned UseMBBNum = UseMBB.getNumber(); 261 262 // Block numbers where LR should be live-in. 263 SmallVector<unsigned, 16> WorkList(1, UseMBBNum); 264 265 // Remember if we have seen more than one value. 266 bool UniqueVNI = true; 267 VNInfo *TheVNI = nullptr; 268 269 // Using Seen as a visited set, perform a BFS for all reaching defs. 270 for (unsigned i = 0; i != WorkList.size(); ++i) { 271 MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]); 272 273 #ifndef NDEBUG 274 if (MBB->pred_empty()) { 275 MBB->getParent()->verify(); 276 errs() << "Use of " << PrintReg(PhysReg) 277 << " does not have a corresponding definition on every path:\n"; 278 const MachineInstr *MI = Indexes->getInstructionFromIndex(Use); 279 if (MI != nullptr) 280 errs() << Use << " " << *MI; 281 llvm_unreachable("Use not jointly dominated by defs."); 282 } 283 284 if (TargetRegisterInfo::isPhysicalRegister(PhysReg) && 285 !MBB->isLiveIn(PhysReg)) { 286 MBB->getParent()->verify(); 287 errs() << "The register " << PrintReg(PhysReg) 288 << " needs to be live in to BB#" << MBB->getNumber() 289 << ", but is missing from the live-in list.\n"; 290 llvm_unreachable("Invalid global physical register"); 291 } 292 #endif 293 294 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 295 PE = MBB->pred_end(); PI != PE; ++PI) { 296 MachineBasicBlock *Pred = *PI; 297 298 // Is this a known live-out block? 299 if (Seen.test(Pred->getNumber())) { 300 if (VNInfo *VNI = Map[Pred].first) { 301 if (TheVNI && TheVNI != VNI) 302 UniqueVNI = false; 303 TheVNI = VNI; 304 } 305 continue; 306 } 307 308 SlotIndex Start, End; 309 std::tie(Start, End) = Indexes->getMBBRange(Pred); 310 311 // First time we see Pred. Try to determine the live-out value, but set 312 // it as null if Pred is live-through with an unknown value. 313 VNInfo *VNI = LR.extendInBlock(Start, End); 314 setLiveOutValue(Pred, VNI); 315 if (VNI) { 316 if (TheVNI && TheVNI != VNI) 317 UniqueVNI = false; 318 TheVNI = VNI; 319 continue; 320 } 321 322 // No, we need a live-in value for Pred as well 323 if (Pred != &UseMBB) 324 WorkList.push_back(Pred->getNumber()); 325 else 326 // Loopback to UseMBB, so value is really live through. 327 Use = SlotIndex(); 328 } 329 } 330 331 LiveIn.clear(); 332 333 // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but 334 // neither require it. Skip the sorting overhead for small updates. 335 if (WorkList.size() > 4) 336 array_pod_sort(WorkList.begin(), WorkList.end()); 337 338 // If a unique reaching def was found, blit in the live ranges immediately. 339 if (UniqueVNI) { 340 LiveRangeUpdater Updater(&LR); 341 for (SmallVectorImpl<unsigned>::const_iterator I = WorkList.begin(), 342 E = WorkList.end(); I != E; ++I) { 343 SlotIndex Start, End; 344 std::tie(Start, End) = Indexes->getMBBRange(*I); 345 // Trim the live range in UseMBB. 346 if (*I == UseMBBNum && Use.isValid()) 347 End = Use; 348 else 349 Map[MF->getBlockNumbered(*I)] = LiveOutPair(TheVNI, nullptr); 350 Updater.add(Start, End, TheVNI); 351 } 352 return true; 353 } 354 355 // Multiple values were found, so transfer the work list to the LiveIn array 356 // where UpdateSSA will use it as a work list. 357 LiveIn.reserve(WorkList.size()); 358 for (SmallVectorImpl<unsigned>::const_iterator 359 I = WorkList.begin(), E = WorkList.end(); I != E; ++I) { 360 MachineBasicBlock *MBB = MF->getBlockNumbered(*I); 361 addLiveInBlock(LR, DomTree->getNode(MBB)); 362 if (MBB == &UseMBB) 363 LiveIn.back().Kill = Use; 364 } 365 366 return false; 367 } 368 369 370 // This is essentially the same iterative algorithm that SSAUpdater uses, 371 // except we already have a dominator tree, so we don't have to recompute it. 372 void LiveRangeCalc::updateSSA() { 373 assert(Indexes && "Missing SlotIndexes"); 374 assert(DomTree && "Missing dominator tree"); 375 376 // Interate until convergence. 377 unsigned Changes; 378 do { 379 Changes = 0; 380 // Propagate live-out values down the dominator tree, inserting phi-defs 381 // when necessary. 382 for (LiveInBlock &I : LiveIn) { 383 MachineDomTreeNode *Node = I.DomNode; 384 // Skip block if the live-in value has already been determined. 385 if (!Node) 386 continue; 387 MachineBasicBlock *MBB = Node->getBlock(); 388 MachineDomTreeNode *IDom = Node->getIDom(); 389 LiveOutPair IDomValue; 390 391 // We need a live-in value to a block with no immediate dominator? 392 // This is probably an unreachable block that has survived somehow. 393 bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber()); 394 395 // IDom dominates all of our predecessors, but it may not be their 396 // immediate dominator. Check if any of them have live-out values that are 397 // properly dominated by IDom. If so, we need a phi-def here. 398 if (!needPHI) { 399 IDomValue = Map[IDom->getBlock()]; 400 401 // Cache the DomTree node that defined the value. 402 if (IDomValue.first && !IDomValue.second) 403 Map[IDom->getBlock()].second = IDomValue.second = 404 DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def)); 405 406 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 407 PE = MBB->pred_end(); PI != PE; ++PI) { 408 LiveOutPair &Value = Map[*PI]; 409 if (!Value.first || Value.first == IDomValue.first) 410 continue; 411 412 // Cache the DomTree node that defined the value. 413 if (!Value.second) 414 Value.second = 415 DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def)); 416 417 // This predecessor is carrying something other than IDomValue. 418 // It could be because IDomValue hasn't propagated yet, or it could be 419 // because MBB is in the dominance frontier of that value. 420 if (DomTree->dominates(IDom, Value.second)) { 421 needPHI = true; 422 break; 423 } 424 } 425 } 426 427 // The value may be live-through even if Kill is set, as can happen when 428 // we are called from extendRange. In that case LiveOutSeen is true, and 429 // LiveOut indicates a foreign or missing value. 430 LiveOutPair &LOP = Map[MBB]; 431 432 // Create a phi-def if required. 433 if (needPHI) { 434 ++Changes; 435 assert(Alloc && "Need VNInfo allocator to create PHI-defs"); 436 SlotIndex Start, End; 437 std::tie(Start, End) = Indexes->getMBBRange(MBB); 438 LiveRange &LR = I.LR; 439 VNInfo *VNI = LR.getNextValue(Start, *Alloc); 440 I.Value = VNI; 441 // This block is done, we know the final value. 442 I.DomNode = nullptr; 443 444 // Add liveness since updateFromLiveIns now skips this node. 445 if (I.Kill.isValid()) 446 LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI)); 447 else { 448 LR.addSegment(LiveInterval::Segment(Start, End, VNI)); 449 LOP = LiveOutPair(VNI, Node); 450 } 451 } else if (IDomValue.first) { 452 // No phi-def here. Remember incoming value. 453 I.Value = IDomValue.first; 454 455 // If the IDomValue is killed in the block, don't propagate through. 456 if (I.Kill.isValid()) 457 continue; 458 459 // Propagate IDomValue if it isn't killed: 460 // MBB is live-out and doesn't define its own value. 461 if (LOP.first == IDomValue.first) 462 continue; 463 ++Changes; 464 LOP = IDomValue; 465 } 466 } 467 } while (Changes); 468 } 469