Home | History | Annotate | Download | only in Analysis
      1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains routines that help analyze properties that chains of
     11 // computations have.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Analysis/ValueTracking.h"
     16 #include "llvm/ADT/Optional.h"
     17 #include "llvm/ADT/SmallPtrSet.h"
     18 #include "llvm/Analysis/AssumptionCache.h"
     19 #include "llvm/Analysis/InstructionSimplify.h"
     20 #include "llvm/Analysis/MemoryBuiltins.h"
     21 #include "llvm/Analysis/LoopInfo.h"
     22 #include "llvm/IR/CallSite.h"
     23 #include "llvm/IR/ConstantRange.h"
     24 #include "llvm/IR/Constants.h"
     25 #include "llvm/IR/DataLayout.h"
     26 #include "llvm/IR/Dominators.h"
     27 #include "llvm/IR/GetElementPtrTypeIterator.h"
     28 #include "llvm/IR/GlobalAlias.h"
     29 #include "llvm/IR/GlobalVariable.h"
     30 #include "llvm/IR/Instructions.h"
     31 #include "llvm/IR/IntrinsicInst.h"
     32 #include "llvm/IR/LLVMContext.h"
     33 #include "llvm/IR/Metadata.h"
     34 #include "llvm/IR/Operator.h"
     35 #include "llvm/IR/PatternMatch.h"
     36 #include "llvm/IR/Statepoint.h"
     37 #include "llvm/Support/Debug.h"
     38 #include "llvm/Support/MathExtras.h"
     39 #include <cstring>
     40 using namespace llvm;
     41 using namespace llvm::PatternMatch;
     42 
     43 const unsigned MaxDepth = 6;
     44 
     45 /// Enable an experimental feature to leverage information about dominating
     46 /// conditions to compute known bits.  The individual options below control how
     47 /// hard we search.  The defaults are chosen to be fairly aggressive.  If you
     48 /// run into compile time problems when testing, scale them back and report
     49 /// your findings.
     50 static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions",
     51                                          cl::Hidden, cl::init(false));
     52 
     53 // This is expensive, so we only do it for the top level query value.
     54 // (TODO: evaluate cost vs profit, consider higher thresholds)
     55 static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth",
     56                                                cl::Hidden, cl::init(1));
     57 
     58 /// How many dominating blocks should be scanned looking for dominating
     59 /// conditions?
     60 static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks",
     61                                                    cl::Hidden,
     62                                                    cl::init(20));
     63 
     64 // Controls the number of uses of the value searched for possible
     65 // dominating comparisons.
     66 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
     67                                               cl::Hidden, cl::init(20));
     68 
     69 // If true, don't consider only compares whose only use is a branch.
     70 static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use",
     71                                                cl::Hidden, cl::init(false));
     72 
     73 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
     74 /// 0). For vector types, returns the element type's bitwidth.
     75 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
     76   if (unsigned BitWidth = Ty->getScalarSizeInBits())
     77     return BitWidth;
     78 
     79   return DL.getPointerTypeSizeInBits(Ty);
     80 }
     81 
     82 // Many of these functions have internal versions that take an assumption
     83 // exclusion set. This is because of the potential for mutual recursion to
     84 // cause computeKnownBits to repeatedly visit the same assume intrinsic. The
     85 // classic case of this is assume(x = y), which will attempt to determine
     86 // bits in x from bits in y, which will attempt to determine bits in y from
     87 // bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
     88 // isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
     89 // isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on.
     90 typedef SmallPtrSet<const Value *, 8> ExclInvsSet;
     91 
     92 namespace {
     93 // Simplifying using an assume can only be done in a particular control-flow
     94 // context (the context instruction provides that context). If an assume and
     95 // the context instruction are not in the same block then the DT helps in
     96 // figuring out if we can use it.
     97 struct Query {
     98   ExclInvsSet ExclInvs;
     99   AssumptionCache *AC;
    100   const Instruction *CxtI;
    101   const DominatorTree *DT;
    102 
    103   Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr,
    104         const DominatorTree *DT = nullptr)
    105       : AC(AC), CxtI(CxtI), DT(DT) {}
    106 
    107   Query(const Query &Q, const Value *NewExcl)
    108       : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) {
    109     ExclInvs.insert(NewExcl);
    110   }
    111 };
    112 } // end anonymous namespace
    113 
    114 // Given the provided Value and, potentially, a context instruction, return
    115 // the preferred context instruction (if any).
    116 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
    117   // If we've been provided with a context instruction, then use that (provided
    118   // it has been inserted).
    119   if (CxtI && CxtI->getParent())
    120     return CxtI;
    121 
    122   // If the value is really an already-inserted instruction, then use that.
    123   CxtI = dyn_cast<Instruction>(V);
    124   if (CxtI && CxtI->getParent())
    125     return CxtI;
    126 
    127   return nullptr;
    128 }
    129 
    130 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
    131                              const DataLayout &DL, unsigned Depth,
    132                              const Query &Q);
    133 
    134 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
    135                             const DataLayout &DL, unsigned Depth,
    136                             AssumptionCache *AC, const Instruction *CxtI,
    137                             const DominatorTree *DT) {
    138   ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth,
    139                      Query(AC, safeCxtI(V, CxtI), DT));
    140 }
    141 
    142 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
    143                                AssumptionCache *AC, const Instruction *CxtI,
    144                                const DominatorTree *DT) {
    145   assert(LHS->getType() == RHS->getType() &&
    146          "LHS and RHS should have the same type");
    147   assert(LHS->getType()->isIntOrIntVectorTy() &&
    148          "LHS and RHS should be integers");
    149   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
    150   APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
    151   APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
    152   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
    153   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
    154   return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
    155 }
    156 
    157 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
    158                            const DataLayout &DL, unsigned Depth,
    159                            const Query &Q);
    160 
    161 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
    162                           const DataLayout &DL, unsigned Depth,
    163                           AssumptionCache *AC, const Instruction *CxtI,
    164                           const DominatorTree *DT) {
    165   ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth,
    166                    Query(AC, safeCxtI(V, CxtI), DT));
    167 }
    168 
    169 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
    170                                    const Query &Q, const DataLayout &DL);
    171 
    172 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
    173                                   unsigned Depth, AssumptionCache *AC,
    174                                   const Instruction *CxtI,
    175                                   const DominatorTree *DT) {
    176   return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
    177                                   Query(AC, safeCxtI(V, CxtI), DT), DL);
    178 }
    179 
    180 static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
    181                            const Query &Q);
    182 
    183 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
    184                           AssumptionCache *AC, const Instruction *CxtI,
    185                           const DominatorTree *DT) {
    186   return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
    187 }
    188 
    189 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
    190                               AssumptionCache *AC, const Instruction *CxtI,
    191                               const DominatorTree *DT) {
    192   bool NonNegative, Negative;
    193   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
    194   return NonNegative;
    195 }
    196 
    197 static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
    198                            const Query &Q);
    199 
    200 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
    201                           AssumptionCache *AC, const Instruction *CxtI,
    202                           const DominatorTree *DT) {
    203   return ::isKnownNonEqual(V1, V2, DL, Query(AC,
    204                                              safeCxtI(V1, safeCxtI(V2, CxtI)),
    205                                              DT));
    206 }
    207 
    208 static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
    209                               unsigned Depth, const Query &Q);
    210 
    211 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
    212                              unsigned Depth, AssumptionCache *AC,
    213                              const Instruction *CxtI, const DominatorTree *DT) {
    214   return ::MaskedValueIsZero(V, Mask, DL, Depth,
    215                              Query(AC, safeCxtI(V, CxtI), DT));
    216 }
    217 
    218 static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL,
    219                                    unsigned Depth, const Query &Q);
    220 
    221 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
    222                                   unsigned Depth, AssumptionCache *AC,
    223                                   const Instruction *CxtI,
    224                                   const DominatorTree *DT) {
    225   return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
    226 }
    227 
    228 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
    229                                    APInt &KnownZero, APInt &KnownOne,
    230                                    APInt &KnownZero2, APInt &KnownOne2,
    231                                    const DataLayout &DL, unsigned Depth,
    232                                    const Query &Q) {
    233   if (!Add) {
    234     if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
    235       // We know that the top bits of C-X are clear if X contains less bits
    236       // than C (i.e. no wrap-around can happen).  For example, 20-X is
    237       // positive if we can prove that X is >= 0 and < 16.
    238       if (!CLHS->getValue().isNegative()) {
    239         unsigned BitWidth = KnownZero.getBitWidth();
    240         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
    241         // NLZ can't be BitWidth with no sign bit
    242         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
    243         computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
    244 
    245         // If all of the MaskV bits are known to be zero, then we know the
    246         // output top bits are zero, because we now know that the output is
    247         // from [0-C].
    248         if ((KnownZero2 & MaskV) == MaskV) {
    249           unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
    250           // Top bits known zero.
    251           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
    252         }
    253       }
    254     }
    255   }
    256 
    257   unsigned BitWidth = KnownZero.getBitWidth();
    258 
    259   // If an initial sequence of bits in the result is not needed, the
    260   // corresponding bits in the operands are not needed.
    261   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
    262   computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q);
    263   computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q);
    264 
    265   // Carry in a 1 for a subtract, rather than a 0.
    266   APInt CarryIn(BitWidth, 0);
    267   if (!Add) {
    268     // Sum = LHS + ~RHS + 1
    269     std::swap(KnownZero2, KnownOne2);
    270     CarryIn.setBit(0);
    271   }
    272 
    273   APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
    274   APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
    275 
    276   // Compute known bits of the carry.
    277   APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
    278   APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
    279 
    280   // Compute set of known bits (where all three relevant bits are known).
    281   APInt LHSKnown = LHSKnownZero | LHSKnownOne;
    282   APInt RHSKnown = KnownZero2 | KnownOne2;
    283   APInt CarryKnown = CarryKnownZero | CarryKnownOne;
    284   APInt Known = LHSKnown & RHSKnown & CarryKnown;
    285 
    286   assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
    287          "known bits of sum differ");
    288 
    289   // Compute known bits of the result.
    290   KnownZero = ~PossibleSumOne & Known;
    291   KnownOne = PossibleSumOne & Known;
    292 
    293   // Are we still trying to solve for the sign bit?
    294   if (!Known.isNegative()) {
    295     if (NSW) {
    296       // Adding two non-negative numbers, or subtracting a negative number from
    297       // a non-negative one, can't wrap into negative.
    298       if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
    299         KnownZero |= APInt::getSignBit(BitWidth);
    300       // Adding two negative numbers, or subtracting a non-negative number from
    301       // a negative one, can't wrap into non-negative.
    302       else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
    303         KnownOne |= APInt::getSignBit(BitWidth);
    304     }
    305   }
    306 }
    307 
    308 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
    309                                 APInt &KnownZero, APInt &KnownOne,
    310                                 APInt &KnownZero2, APInt &KnownOne2,
    311                                 const DataLayout &DL, unsigned Depth,
    312                                 const Query &Q) {
    313   unsigned BitWidth = KnownZero.getBitWidth();
    314   computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q);
    315   computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q);
    316 
    317   bool isKnownNegative = false;
    318   bool isKnownNonNegative = false;
    319   // If the multiplication is known not to overflow, compute the sign bit.
    320   if (NSW) {
    321     if (Op0 == Op1) {
    322       // The product of a number with itself is non-negative.
    323       isKnownNonNegative = true;
    324     } else {
    325       bool isKnownNonNegativeOp1 = KnownZero.isNegative();
    326       bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
    327       bool isKnownNegativeOp1 = KnownOne.isNegative();
    328       bool isKnownNegativeOp0 = KnownOne2.isNegative();
    329       // The product of two numbers with the same sign is non-negative.
    330       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
    331         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
    332       // The product of a negative number and a non-negative number is either
    333       // negative or zero.
    334       if (!isKnownNonNegative)
    335         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
    336                            isKnownNonZero(Op0, DL, Depth, Q)) ||
    337                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
    338                            isKnownNonZero(Op1, DL, Depth, Q));
    339     }
    340   }
    341 
    342   // If low bits are zero in either operand, output low known-0 bits.
    343   // Also compute a conservative estimate for high known-0 bits.
    344   // More trickiness is possible, but this is sufficient for the
    345   // interesting case of alignment computation.
    346   KnownOne.clearAllBits();
    347   unsigned TrailZ = KnownZero.countTrailingOnes() +
    348                     KnownZero2.countTrailingOnes();
    349   unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
    350                              KnownZero2.countLeadingOnes(),
    351                              BitWidth) - BitWidth;
    352 
    353   TrailZ = std::min(TrailZ, BitWidth);
    354   LeadZ = std::min(LeadZ, BitWidth);
    355   KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
    356               APInt::getHighBitsSet(BitWidth, LeadZ);
    357 
    358   // Only make use of no-wrap flags if we failed to compute the sign bit
    359   // directly.  This matters if the multiplication always overflows, in
    360   // which case we prefer to follow the result of the direct computation,
    361   // though as the program is invoking undefined behaviour we can choose
    362   // whatever we like here.
    363   if (isKnownNonNegative && !KnownOne.isNegative())
    364     KnownZero.setBit(BitWidth - 1);
    365   else if (isKnownNegative && !KnownZero.isNegative())
    366     KnownOne.setBit(BitWidth - 1);
    367 }
    368 
    369 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
    370                                              APInt &KnownZero,
    371                                              APInt &KnownOne) {
    372   unsigned BitWidth = KnownZero.getBitWidth();
    373   unsigned NumRanges = Ranges.getNumOperands() / 2;
    374   assert(NumRanges >= 1);
    375 
    376   KnownZero.setAllBits();
    377   KnownOne.setAllBits();
    378 
    379   for (unsigned i = 0; i < NumRanges; ++i) {
    380     ConstantInt *Lower =
    381         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
    382     ConstantInt *Upper =
    383         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
    384     ConstantRange Range(Lower->getValue(), Upper->getValue());
    385 
    386     // The first CommonPrefixBits of all values in Range are equal.
    387     unsigned CommonPrefixBits =
    388         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
    389 
    390     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
    391     KnownOne &= Range.getUnsignedMax() & Mask;
    392     KnownZero &= ~Range.getUnsignedMax() & Mask;
    393   }
    394 }
    395 
    396 static bool isEphemeralValueOf(Instruction *I, const Value *E) {
    397   SmallVector<const Value *, 16> WorkSet(1, I);
    398   SmallPtrSet<const Value *, 32> Visited;
    399   SmallPtrSet<const Value *, 16> EphValues;
    400 
    401   // The instruction defining an assumption's condition itself is always
    402   // considered ephemeral to that assumption (even if it has other
    403   // non-ephemeral users). See r246696's test case for an example.
    404   if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
    405     return true;
    406 
    407   while (!WorkSet.empty()) {
    408     const Value *V = WorkSet.pop_back_val();
    409     if (!Visited.insert(V).second)
    410       continue;
    411 
    412     // If all uses of this value are ephemeral, then so is this value.
    413     if (std::all_of(V->user_begin(), V->user_end(),
    414                     [&](const User *U) { return EphValues.count(U); })) {
    415       if (V == E)
    416         return true;
    417 
    418       EphValues.insert(V);
    419       if (const User *U = dyn_cast<User>(V))
    420         for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
    421              J != JE; ++J) {
    422           if (isSafeToSpeculativelyExecute(*J))
    423             WorkSet.push_back(*J);
    424         }
    425     }
    426   }
    427 
    428   return false;
    429 }
    430 
    431 // Is this an intrinsic that cannot be speculated but also cannot trap?
    432 static bool isAssumeLikeIntrinsic(const Instruction *I) {
    433   if (const CallInst *CI = dyn_cast<CallInst>(I))
    434     if (Function *F = CI->getCalledFunction())
    435       switch (F->getIntrinsicID()) {
    436       default: break;
    437       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
    438       case Intrinsic::assume:
    439       case Intrinsic::dbg_declare:
    440       case Intrinsic::dbg_value:
    441       case Intrinsic::invariant_start:
    442       case Intrinsic::invariant_end:
    443       case Intrinsic::lifetime_start:
    444       case Intrinsic::lifetime_end:
    445       case Intrinsic::objectsize:
    446       case Intrinsic::ptr_annotation:
    447       case Intrinsic::var_annotation:
    448         return true;
    449       }
    450 
    451   return false;
    452 }
    453 
    454 static bool isValidAssumeForContext(Value *V, const Query &Q) {
    455   Instruction *Inv = cast<Instruction>(V);
    456 
    457   // There are two restrictions on the use of an assume:
    458   //  1. The assume must dominate the context (or the control flow must
    459   //     reach the assume whenever it reaches the context).
    460   //  2. The context must not be in the assume's set of ephemeral values
    461   //     (otherwise we will use the assume to prove that the condition
    462   //     feeding the assume is trivially true, thus causing the removal of
    463   //     the assume).
    464 
    465   if (Q.DT) {
    466     if (Q.DT->dominates(Inv, Q.CxtI)) {
    467       return true;
    468     } else if (Inv->getParent() == Q.CxtI->getParent()) {
    469       // The context comes first, but they're both in the same block. Make sure
    470       // there is nothing in between that might interrupt the control flow.
    471       for (BasicBlock::const_iterator I =
    472              std::next(BasicBlock::const_iterator(Q.CxtI)),
    473                                       IE(Inv); I != IE; ++I)
    474         if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
    475           return false;
    476 
    477       return !isEphemeralValueOf(Inv, Q.CxtI);
    478     }
    479 
    480     return false;
    481   }
    482 
    483   // When we don't have a DT, we do a limited search...
    484   if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) {
    485     return true;
    486   } else if (Inv->getParent() == Q.CxtI->getParent()) {
    487     // Search forward from the assume until we reach the context (or the end
    488     // of the block); the common case is that the assume will come first.
    489     for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
    490          IE = Inv->getParent()->end(); I != IE; ++I)
    491       if (&*I == Q.CxtI)
    492         return true;
    493 
    494     // The context must come first...
    495     for (BasicBlock::const_iterator I =
    496            std::next(BasicBlock::const_iterator(Q.CxtI)),
    497                                     IE(Inv); I != IE; ++I)
    498       if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
    499         return false;
    500 
    501     return !isEphemeralValueOf(Inv, Q.CxtI);
    502   }
    503 
    504   return false;
    505 }
    506 
    507 bool llvm::isValidAssumeForContext(const Instruction *I,
    508                                    const Instruction *CxtI,
    509                                    const DominatorTree *DT) {
    510   return ::isValidAssumeForContext(const_cast<Instruction *>(I),
    511                                    Query(nullptr, CxtI, DT));
    512 }
    513 
    514 template<typename LHS, typename RHS>
    515 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
    516                         CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
    517 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
    518   return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
    519 }
    520 
    521 template<typename LHS, typename RHS>
    522 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
    523                         BinaryOp_match<RHS, LHS, Instruction::And>>
    524 m_c_And(const LHS &L, const RHS &R) {
    525   return m_CombineOr(m_And(L, R), m_And(R, L));
    526 }
    527 
    528 template<typename LHS, typename RHS>
    529 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
    530                         BinaryOp_match<RHS, LHS, Instruction::Or>>
    531 m_c_Or(const LHS &L, const RHS &R) {
    532   return m_CombineOr(m_Or(L, R), m_Or(R, L));
    533 }
    534 
    535 template<typename LHS, typename RHS>
    536 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
    537                         BinaryOp_match<RHS, LHS, Instruction::Xor>>
    538 m_c_Xor(const LHS &L, const RHS &R) {
    539   return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
    540 }
    541 
    542 /// Compute known bits in 'V' under the assumption that the condition 'Cmp' is
    543 /// true (at the context instruction.)  This is mostly a utility function for
    544 /// the prototype dominating conditions reasoning below.
    545 static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp,
    546                                               APInt &KnownZero,
    547                                               APInt &KnownOne,
    548                                               const DataLayout &DL,
    549                                               unsigned Depth, const Query &Q) {
    550   Value *LHS = Cmp->getOperand(0);
    551   Value *RHS = Cmp->getOperand(1);
    552   // TODO: We could potentially be more aggressive here.  This would be worth
    553   // evaluating.  If we can, explore commoning this code with the assume
    554   // handling logic.
    555   if (LHS != V && RHS != V)
    556     return;
    557 
    558   const unsigned BitWidth = KnownZero.getBitWidth();
    559 
    560   switch (Cmp->getPredicate()) {
    561   default:
    562     // We know nothing from this condition
    563     break;
    564   // TODO: implement unsigned bound from below (known one bits)
    565   // TODO: common condition check implementations with assumes
    566   // TODO: implement other patterns from assume (e.g. V & B == A)
    567   case ICmpInst::ICMP_SGT:
    568     if (LHS == V) {
    569       APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
    570       computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
    571       if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) {
    572         // We know that the sign bit is zero.
    573         KnownZero |= APInt::getSignBit(BitWidth);
    574       }
    575     }
    576     break;
    577   case ICmpInst::ICMP_EQ:
    578     {
    579       APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
    580       if (LHS == V)
    581         computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
    582       else if (RHS == V)
    583         computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
    584       else
    585         llvm_unreachable("missing use?");
    586       KnownZero |= KnownZeroTemp;
    587       KnownOne |= KnownOneTemp;
    588     }
    589     break;
    590   case ICmpInst::ICMP_ULE:
    591     if (LHS == V) {
    592       APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
    593       computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
    594       // The known zero bits carry over
    595       unsigned SignBits = KnownZeroTemp.countLeadingOnes();
    596       KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
    597     }
    598     break;
    599   case ICmpInst::ICMP_ULT:
    600     if (LHS == V) {
    601       APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
    602       computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q);
    603       // Whatever high bits in rhs are zero are known to be zero (if rhs is a
    604       // power of 2, then one more).
    605       unsigned SignBits = KnownZeroTemp.countLeadingOnes();
    606       if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL))
    607         SignBits++;
    608       KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
    609     }
    610     break;
    611   };
    612 }
    613 
    614 /// Compute known bits in 'V' from conditions which are known to be true along
    615 /// all paths leading to the context instruction.  In particular, look for
    616 /// cases where one branch of an interesting condition dominates the context
    617 /// instruction.  This does not do general dataflow.
    618 /// NOTE: This code is EXPERIMENTAL and currently off by default.
    619 static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero,
    620                                                     APInt &KnownOne,
    621                                                     const DataLayout &DL,
    622                                                     unsigned Depth,
    623                                                     const Query &Q) {
    624   // Need both the dominator tree and the query location to do anything useful
    625   if (!Q.DT || !Q.CxtI)
    626     return;
    627   Instruction *Cxt = const_cast<Instruction *>(Q.CxtI);
    628   // The context instruction might be in a statically unreachable block.  If
    629   // so, asking dominator queries may yield suprising results.  (e.g. the block
    630   // may not have a dom tree node)
    631   if (!Q.DT->isReachableFromEntry(Cxt->getParent()))
    632     return;
    633 
    634   // Avoid useless work
    635   if (auto VI = dyn_cast<Instruction>(V))
    636     if (VI->getParent() == Cxt->getParent())
    637       return;
    638 
    639   // Note: We currently implement two options.  It's not clear which of these
    640   // will survive long term, we need data for that.
    641   // Option 1 - Try walking the dominator tree looking for conditions which
    642   // might apply.  This works well for local conditions (loop guards, etc..),
    643   // but not as well for things far from the context instruction (presuming a
    644   // low max blocks explored).  If we can set an high enough limit, this would
    645   // be all we need.
    646   // Option 2 - We restrict out search to those conditions which are uses of
    647   // the value we're interested in.  This is independent of dom structure,
    648   // but is slightly less powerful without looking through lots of use chains.
    649   // It does handle conditions far from the context instruction (e.g. early
    650   // function exits on entry) really well though.
    651 
    652   // Option 1 - Search the dom tree
    653   unsigned NumBlocksExplored = 0;
    654   BasicBlock *Current = Cxt->getParent();
    655   while (true) {
    656     // Stop searching if we've gone too far up the chain
    657     if (NumBlocksExplored >= DomConditionsMaxDomBlocks)
    658       break;
    659     NumBlocksExplored++;
    660 
    661     if (!Q.DT->getNode(Current)->getIDom())
    662       break;
    663     Current = Q.DT->getNode(Current)->getIDom()->getBlock();
    664     if (!Current)
    665       // found function entry
    666       break;
    667 
    668     BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator());
    669     if (!BI || BI->isUnconditional())
    670       continue;
    671     ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition());
    672     if (!Cmp)
    673       continue;
    674 
    675     // We're looking for conditions that are guaranteed to hold at the context
    676     // instruction.  Finding a condition where one path dominates the context
    677     // isn't enough because both the true and false cases could merge before
    678     // the context instruction we're actually interested in.  Instead, we need
    679     // to ensure that the taken *edge* dominates the context instruction.  We
    680     // know that the edge must be reachable since we started from a reachable
    681     // block.
    682     BasicBlock *BB0 = BI->getSuccessor(0);
    683     BasicBlockEdge Edge(BI->getParent(), BB0);
    684     if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
    685       continue;
    686 
    687     computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
    688                                       Q);
    689   }
    690 
    691   // Option 2 - Search the other uses of V
    692   unsigned NumUsesExplored = 0;
    693   for (auto U : V->users()) {
    694     // Avoid massive lists
    695     if (NumUsesExplored >= DomConditionsMaxUses)
    696       break;
    697     NumUsesExplored++;
    698     // Consider only compare instructions uniquely controlling a branch
    699     ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
    700     if (!Cmp)
    701       continue;
    702 
    703     if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
    704       continue;
    705 
    706     for (auto *CmpU : Cmp->users()) {
    707       BranchInst *BI = dyn_cast<BranchInst>(CmpU);
    708       if (!BI || BI->isUnconditional())
    709         continue;
    710       // We're looking for conditions that are guaranteed to hold at the
    711       // context instruction.  Finding a condition where one path dominates
    712       // the context isn't enough because both the true and false cases could
    713       // merge before the context instruction we're actually interested in.
    714       // Instead, we need to ensure that the taken *edge* dominates the context
    715       // instruction.
    716       BasicBlock *BB0 = BI->getSuccessor(0);
    717       BasicBlockEdge Edge(BI->getParent(), BB0);
    718       if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
    719         continue;
    720 
    721       computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth,
    722                                         Q);
    723     }
    724   }
    725 }
    726 
    727 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
    728                                        APInt &KnownOne, const DataLayout &DL,
    729                                        unsigned Depth, const Query &Q) {
    730   // Use of assumptions is context-sensitive. If we don't have a context, we
    731   // cannot use them!
    732   if (!Q.AC || !Q.CxtI)
    733     return;
    734 
    735   unsigned BitWidth = KnownZero.getBitWidth();
    736 
    737   for (auto &AssumeVH : Q.AC->assumptions()) {
    738     if (!AssumeVH)
    739       continue;
    740     CallInst *I = cast<CallInst>(AssumeVH);
    741     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
    742            "Got assumption for the wrong function!");
    743     if (Q.ExclInvs.count(I))
    744       continue;
    745 
    746     // Warning: This loop can end up being somewhat performance sensetive.
    747     // We're running this loop for once for each value queried resulting in a
    748     // runtime of ~O(#assumes * #values).
    749 
    750     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
    751            "must be an assume intrinsic");
    752 
    753     Value *Arg = I->getArgOperand(0);
    754 
    755     if (Arg == V && isValidAssumeForContext(I, Q)) {
    756       assert(BitWidth == 1 && "assume operand is not i1?");
    757       KnownZero.clearAllBits();
    758       KnownOne.setAllBits();
    759       return;
    760     }
    761 
    762     // The remaining tests are all recursive, so bail out if we hit the limit.
    763     if (Depth == MaxDepth)
    764       continue;
    765 
    766     Value *A, *B;
    767     auto m_V = m_CombineOr(m_Specific(V),
    768                            m_CombineOr(m_PtrToInt(m_Specific(V)),
    769                            m_BitCast(m_Specific(V))));
    770 
    771     CmpInst::Predicate Pred;
    772     ConstantInt *C;
    773     // assume(v = a)
    774     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
    775         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
    776       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
    777       computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
    778       KnownZero |= RHSKnownZero;
    779       KnownOne  |= RHSKnownOne;
    780     // assume(v & b = a)
    781     } else if (match(Arg,
    782                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
    783                Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
    784       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
    785       computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
    786       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
    787       computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
    788 
    789       // For those bits in the mask that are known to be one, we can propagate
    790       // known bits from the RHS to V.
    791       KnownZero |= RHSKnownZero & MaskKnownOne;
    792       KnownOne  |= RHSKnownOne  & MaskKnownOne;
    793     // assume(~(v & b) = a)
    794     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
    795                                    m_Value(A))) &&
    796                Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
    797       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
    798       computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
    799       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
    800       computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I));
    801 
    802       // For those bits in the mask that are known to be one, we can propagate
    803       // inverted known bits from the RHS to V.
    804       KnownZero |= RHSKnownOne  & MaskKnownOne;
    805       KnownOne  |= RHSKnownZero & MaskKnownOne;
    806     // assume(v | b = a)
    807     } else if (match(Arg,
    808                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
    809                Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
    810       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
    811       computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
    812       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
    813       computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
    814 
    815       // For those bits in B that are known to be zero, we can propagate known
    816       // bits from the RHS to V.
    817       KnownZero |= RHSKnownZero & BKnownZero;
    818       KnownOne  |= RHSKnownOne  & BKnownZero;
    819     // assume(~(v | b) = a)
    820     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
    821                                    m_Value(A))) &&
    822                Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
    823       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
    824       computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
    825       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
    826       computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
    827 
    828       // For those bits in B that are known to be zero, we can propagate
    829       // inverted known bits from the RHS to V.
    830       KnownZero |= RHSKnownOne  & BKnownZero;
    831       KnownOne  |= RHSKnownZero & BKnownZero;
    832     // assume(v ^ b = a)
    833     } else if (match(Arg,
    834                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
    835                Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
    836       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
    837       computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
    838       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
    839       computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
    840 
    841       // For those bits in B that are known to be zero, we can propagate known
    842       // bits from the RHS to V. For those bits in B that are known to be one,
    843       // we can propagate inverted known bits from the RHS to V.
    844       KnownZero |= RHSKnownZero & BKnownZero;
    845       KnownOne  |= RHSKnownOne  & BKnownZero;
    846       KnownZero |= RHSKnownOne  & BKnownOne;
    847       KnownOne  |= RHSKnownZero & BKnownOne;
    848     // assume(~(v ^ b) = a)
    849     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
    850                                    m_Value(A))) &&
    851                Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
    852       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
    853       computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
    854       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
    855       computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I));
    856 
    857       // For those bits in B that are known to be zero, we can propagate
    858       // inverted known bits from the RHS to V. For those bits in B that are
    859       // known to be one, we can propagate known bits from the RHS to V.
    860       KnownZero |= RHSKnownOne  & BKnownZero;
    861       KnownOne  |= RHSKnownZero & BKnownZero;
    862       KnownZero |= RHSKnownZero & BKnownOne;
    863       KnownOne  |= RHSKnownOne  & BKnownOne;
    864     // assume(v << c = a)
    865     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
    866                                    m_Value(A))) &&
    867                Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
    868       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
    869       computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
    870       // For those bits in RHS that are known, we can propagate them to known
    871       // bits in V shifted to the right by C.
    872       KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
    873       KnownOne  |= RHSKnownOne.lshr(C->getZExtValue());
    874     // assume(~(v << c) = a)
    875     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
    876                                    m_Value(A))) &&
    877                Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
    878       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
    879       computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
    880       // For those bits in RHS that are known, we can propagate them inverted
    881       // to known bits in V shifted to the right by C.
    882       KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
    883       KnownOne  |= RHSKnownZero.lshr(C->getZExtValue());
    884     // assume(v >> c = a)
    885     } else if (match(Arg,
    886                      m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
    887                                                 m_AShr(m_V, m_ConstantInt(C))),
    888                               m_Value(A))) &&
    889                Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
    890       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
    891       computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
    892       // For those bits in RHS that are known, we can propagate them to known
    893       // bits in V shifted to the right by C.
    894       KnownZero |= RHSKnownZero << C->getZExtValue();
    895       KnownOne  |= RHSKnownOne  << C->getZExtValue();
    896     // assume(~(v >> c) = a)
    897     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
    898                                              m_LShr(m_V, m_ConstantInt(C)),
    899                                              m_AShr(m_V, m_ConstantInt(C)))),
    900                                    m_Value(A))) &&
    901                Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) {
    902       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
    903       computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
    904       // For those bits in RHS that are known, we can propagate them inverted
    905       // to known bits in V shifted to the right by C.
    906       KnownZero |= RHSKnownOne  << C->getZExtValue();
    907       KnownOne  |= RHSKnownZero << C->getZExtValue();
    908     // assume(v >=_s c) where c is non-negative
    909     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
    910                Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) {
    911       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
    912       computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
    913 
    914       if (RHSKnownZero.isNegative()) {
    915         // We know that the sign bit is zero.
    916         KnownZero |= APInt::getSignBit(BitWidth);
    917       }
    918     // assume(v >_s c) where c is at least -1.
    919     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
    920                Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) {
    921       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
    922       computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
    923 
    924       if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
    925         // We know that the sign bit is zero.
    926         KnownZero |= APInt::getSignBit(BitWidth);
    927       }
    928     // assume(v <=_s c) where c is negative
    929     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
    930                Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) {
    931       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
    932       computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
    933 
    934       if (RHSKnownOne.isNegative()) {
    935         // We know that the sign bit is one.
    936         KnownOne |= APInt::getSignBit(BitWidth);
    937       }
    938     // assume(v <_s c) where c is non-positive
    939     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
    940                Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) {
    941       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
    942       computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
    943 
    944       if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
    945         // We know that the sign bit is one.
    946         KnownOne |= APInt::getSignBit(BitWidth);
    947       }
    948     // assume(v <=_u c)
    949     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
    950                Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) {
    951       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
    952       computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
    953 
    954       // Whatever high bits in c are zero are known to be zero.
    955       KnownZero |=
    956         APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
    957     // assume(v <_u c)
    958     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
    959                Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) {
    960       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
    961       computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I));
    962 
    963       // Whatever high bits in c are zero are known to be zero (if c is a power
    964       // of 2, then one more).
    965       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL))
    966         KnownZero |=
    967           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
    968       else
    969         KnownZero |=
    970           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
    971     }
    972   }
    973 }
    974 
    975 // Compute known bits from a shift operator, including those with a
    976 // non-constant shift amount. KnownZero and KnownOne are the outputs of this
    977 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
    978 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
    979 // functors that, given the known-zero or known-one bits respectively, and a
    980 // shift amount, compute the implied known-zero or known-one bits of the shift
    981 // operator's result respectively for that shift amount. The results from calling
    982 // KZF and KOF are conservatively combined for all permitted shift amounts.
    983 template <typename KZFunctor, typename KOFunctor>
    984 static void computeKnownBitsFromShiftOperator(Operator *I,
    985               APInt &KnownZero, APInt &KnownOne,
    986               APInt &KnownZero2, APInt &KnownOne2,
    987               const DataLayout &DL, unsigned Depth, const Query &Q,
    988               KZFunctor KZF, KOFunctor KOF) {
    989   unsigned BitWidth = KnownZero.getBitWidth();
    990 
    991   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
    992     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
    993 
    994     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
    995     KnownZero = KZF(KnownZero, ShiftAmt);
    996     KnownOne  = KOF(KnownOne, ShiftAmt);
    997     return;
    998   }
    999 
   1000   computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
   1001 
   1002   // Note: We cannot use KnownZero.getLimitedValue() here, because if
   1003   // BitWidth > 64 and any upper bits are known, we'll end up returning the
   1004   // limit value (which implies all bits are known).
   1005   uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
   1006   uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
   1007 
   1008   // It would be more-clearly correct to use the two temporaries for this
   1009   // calculation. Reusing the APInts here to prevent unnecessary allocations.
   1010   KnownZero.clearAllBits(), KnownOne.clearAllBits();
   1011 
   1012   // If we know the shifter operand is nonzero, we can sometimes infer more
   1013   // known bits. However this is expensive to compute, so be lazy about it and
   1014   // only compute it when absolutely necessary.
   1015   Optional<bool> ShifterOperandIsNonZero;
   1016 
   1017   // Early exit if we can't constrain any well-defined shift amount.
   1018   if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
   1019     ShifterOperandIsNonZero =
   1020         isKnownNonZero(I->getOperand(1), DL, Depth + 1, Q);
   1021     if (!*ShifterOperandIsNonZero)
   1022       return;
   1023   }
   1024 
   1025   computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
   1026 
   1027   KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
   1028   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
   1029     // Combine the shifted known input bits only for those shift amounts
   1030     // compatible with its known constraints.
   1031     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
   1032       continue;
   1033     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
   1034       continue;
   1035     // If we know the shifter is nonzero, we may be able to infer more known
   1036     // bits. This check is sunk down as far as possible to avoid the expensive
   1037     // call to isKnownNonZero if the cheaper checks above fail.
   1038     if (ShiftAmt == 0) {
   1039       if (!ShifterOperandIsNonZero.hasValue())
   1040         ShifterOperandIsNonZero =
   1041             isKnownNonZero(I->getOperand(1), DL, Depth + 1, Q);
   1042       if (*ShifterOperandIsNonZero)
   1043         continue;
   1044     }
   1045 
   1046     KnownZero &= KZF(KnownZero2, ShiftAmt);
   1047     KnownOne  &= KOF(KnownOne2, ShiftAmt);
   1048   }
   1049 
   1050   // If there are no compatible shift amounts, then we've proven that the shift
   1051   // amount must be >= the BitWidth, and the result is undefined. We could
   1052   // return anything we'd like, but we need to make sure the sets of known bits
   1053   // stay disjoint (it should be better for some other code to actually
   1054   // propagate the undef than to pick a value here using known bits).
   1055   if ((KnownZero & KnownOne) != 0)
   1056     KnownZero.clearAllBits(), KnownOne.clearAllBits();
   1057 }
   1058 
   1059 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
   1060                                          APInt &KnownOne, const DataLayout &DL,
   1061                                          unsigned Depth, const Query &Q) {
   1062   unsigned BitWidth = KnownZero.getBitWidth();
   1063 
   1064   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
   1065   switch (I->getOpcode()) {
   1066   default: break;
   1067   case Instruction::Load:
   1068     if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
   1069       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
   1070     break;
   1071   case Instruction::And: {
   1072     // If either the LHS or the RHS are Zero, the result is zero.
   1073     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
   1074     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
   1075 
   1076     // Output known-1 bits are only known if set in both the LHS & RHS.
   1077     KnownOne &= KnownOne2;
   1078     // Output known-0 are known to be clear if zero in either the LHS | RHS.
   1079     KnownZero |= KnownZero2;
   1080 
   1081     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
   1082     // here we handle the more general case of adding any odd number by
   1083     // matching the form add(x, add(x, y)) where y is odd.
   1084     // TODO: This could be generalized to clearing any bit set in y where the
   1085     // following bit is known to be unset in y.
   1086     Value *Y = nullptr;
   1087     if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
   1088                                       m_Value(Y))) ||
   1089         match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
   1090                                       m_Value(Y)))) {
   1091       APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
   1092       computeKnownBits(Y, KnownZero3, KnownOne3, DL, Depth + 1, Q);
   1093       if (KnownOne3.countTrailingOnes() > 0)
   1094         KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
   1095     }
   1096     break;
   1097   }
   1098   case Instruction::Or: {
   1099     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
   1100     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
   1101 
   1102     // Output known-0 bits are only known if clear in both the LHS & RHS.
   1103     KnownZero &= KnownZero2;
   1104     // Output known-1 are known to be set if set in either the LHS | RHS.
   1105     KnownOne |= KnownOne2;
   1106     break;
   1107   }
   1108   case Instruction::Xor: {
   1109     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q);
   1110     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
   1111 
   1112     // Output known-0 bits are known if clear or set in both the LHS & RHS.
   1113     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
   1114     // Output known-1 are known to be set if set in only one of the LHS, RHS.
   1115     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
   1116     KnownZero = KnownZeroOut;
   1117     break;
   1118   }
   1119   case Instruction::Mul: {
   1120     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
   1121     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
   1122                         KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
   1123     break;
   1124   }
   1125   case Instruction::UDiv: {
   1126     // For the purposes of computing leading zeros we can conservatively
   1127     // treat a udiv as a logical right shift by the power of 2 known to
   1128     // be less than the denominator.
   1129     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q);
   1130     unsigned LeadZ = KnownZero2.countLeadingOnes();
   1131 
   1132     KnownOne2.clearAllBits();
   1133     KnownZero2.clearAllBits();
   1134     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
   1135     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
   1136     if (RHSUnknownLeadingOnes != BitWidth)
   1137       LeadZ = std::min(BitWidth,
   1138                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
   1139 
   1140     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
   1141     break;
   1142   }
   1143   case Instruction::Select:
   1144     computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q);
   1145     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
   1146 
   1147     // Only known if known in both the LHS and RHS.
   1148     KnownOne &= KnownOne2;
   1149     KnownZero &= KnownZero2;
   1150     break;
   1151   case Instruction::FPTrunc:
   1152   case Instruction::FPExt:
   1153   case Instruction::FPToUI:
   1154   case Instruction::FPToSI:
   1155   case Instruction::SIToFP:
   1156   case Instruction::UIToFP:
   1157     break; // Can't work with floating point.
   1158   case Instruction::PtrToInt:
   1159   case Instruction::IntToPtr:
   1160   case Instruction::AddrSpaceCast: // Pointers could be different sizes.
   1161     // FALL THROUGH and handle them the same as zext/trunc.
   1162   case Instruction::ZExt:
   1163   case Instruction::Trunc: {
   1164     Type *SrcTy = I->getOperand(0)->getType();
   1165 
   1166     unsigned SrcBitWidth;
   1167     // Note that we handle pointer operands here because of inttoptr/ptrtoint
   1168     // which fall through here.
   1169     SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType());
   1170 
   1171     assert(SrcBitWidth && "SrcBitWidth can't be zero");
   1172     KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
   1173     KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
   1174     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
   1175     KnownZero = KnownZero.zextOrTrunc(BitWidth);
   1176     KnownOne = KnownOne.zextOrTrunc(BitWidth);
   1177     // Any top bits are known to be zero.
   1178     if (BitWidth > SrcBitWidth)
   1179       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
   1180     break;
   1181   }
   1182   case Instruction::BitCast: {
   1183     Type *SrcTy = I->getOperand(0)->getType();
   1184     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
   1185          SrcTy->isFloatingPointTy()) &&
   1186         // TODO: For now, not handling conversions like:
   1187         // (bitcast i64 %x to <2 x i32>)
   1188         !I->getType()->isVectorTy()) {
   1189       computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
   1190       break;
   1191     }
   1192     break;
   1193   }
   1194   case Instruction::SExt: {
   1195     // Compute the bits in the result that are not present in the input.
   1196     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
   1197 
   1198     KnownZero = KnownZero.trunc(SrcBitWidth);
   1199     KnownOne = KnownOne.trunc(SrcBitWidth);
   1200     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
   1201     KnownZero = KnownZero.zext(BitWidth);
   1202     KnownOne = KnownOne.zext(BitWidth);
   1203 
   1204     // If the sign bit of the input is known set or clear, then we know the
   1205     // top bits of the result.
   1206     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
   1207       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
   1208     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
   1209       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
   1210     break;
   1211   }
   1212   case Instruction::Shl: {
   1213     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
   1214     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
   1215       return (KnownZero << ShiftAmt) |
   1216              APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
   1217     };
   1218 
   1219     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
   1220       return KnownOne << ShiftAmt;
   1221     };
   1222 
   1223     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
   1224                                       KnownZero2, KnownOne2, DL, Depth, Q,
   1225                                       KZF, KOF);
   1226     break;
   1227   }
   1228   case Instruction::LShr: {
   1229     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
   1230     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
   1231       return APIntOps::lshr(KnownZero, ShiftAmt) |
   1232              // High bits known zero.
   1233              APInt::getHighBitsSet(BitWidth, ShiftAmt);
   1234     };
   1235 
   1236     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
   1237       return APIntOps::lshr(KnownOne, ShiftAmt);
   1238     };
   1239 
   1240     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
   1241                                       KnownZero2, KnownOne2, DL, Depth, Q,
   1242                                       KZF, KOF);
   1243     break;
   1244   }
   1245   case Instruction::AShr: {
   1246     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
   1247     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
   1248       return APIntOps::ashr(KnownZero, ShiftAmt);
   1249     };
   1250 
   1251     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
   1252       return APIntOps::ashr(KnownOne, ShiftAmt);
   1253     };
   1254 
   1255     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
   1256                                       KnownZero2, KnownOne2, DL, Depth, Q,
   1257                                       KZF, KOF);
   1258     break;
   1259   }
   1260   case Instruction::Sub: {
   1261     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
   1262     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
   1263                            KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
   1264                            Depth, Q);
   1265     break;
   1266   }
   1267   case Instruction::Add: {
   1268     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
   1269     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
   1270                            KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
   1271                            Depth, Q);
   1272     break;
   1273   }
   1274   case Instruction::SRem:
   1275     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
   1276       APInt RA = Rem->getValue().abs();
   1277       if (RA.isPowerOf2()) {
   1278         APInt LowBits = RA - 1;
   1279         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1,
   1280                          Q);
   1281 
   1282         // The low bits of the first operand are unchanged by the srem.
   1283         KnownZero = KnownZero2 & LowBits;
   1284         KnownOne = KnownOne2 & LowBits;
   1285 
   1286         // If the first operand is non-negative or has all low bits zero, then
   1287         // the upper bits are all zero.
   1288         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
   1289           KnownZero |= ~LowBits;
   1290 
   1291         // If the first operand is negative and not all low bits are zero, then
   1292         // the upper bits are all one.
   1293         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
   1294           KnownOne |= ~LowBits;
   1295 
   1296         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1297       }
   1298     }
   1299 
   1300     // The sign bit is the LHS's sign bit, except when the result of the
   1301     // remainder is zero.
   1302     if (KnownZero.isNonNegative()) {
   1303       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
   1304       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL,
   1305                        Depth + 1, Q);
   1306       // If it's known zero, our sign bit is also zero.
   1307       if (LHSKnownZero.isNegative())
   1308         KnownZero.setBit(BitWidth - 1);
   1309     }
   1310 
   1311     break;
   1312   case Instruction::URem: {
   1313     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
   1314       APInt RA = Rem->getValue();
   1315       if (RA.isPowerOf2()) {
   1316         APInt LowBits = (RA - 1);
   1317         computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
   1318                          Q);
   1319         KnownZero |= ~LowBits;
   1320         KnownOne &= LowBits;
   1321         break;
   1322       }
   1323     }
   1324 
   1325     // Since the result is less than or equal to either operand, any leading
   1326     // zero bits in either operand must also exist in the result.
   1327     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q);
   1328     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q);
   1329 
   1330     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
   1331                                 KnownZero2.countLeadingOnes());
   1332     KnownOne.clearAllBits();
   1333     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
   1334     break;
   1335   }
   1336 
   1337   case Instruction::Alloca: {
   1338     AllocaInst *AI = cast<AllocaInst>(I);
   1339     unsigned Align = AI->getAlignment();
   1340     if (Align == 0)
   1341       Align = DL.getABITypeAlignment(AI->getType()->getElementType());
   1342 
   1343     if (Align > 0)
   1344       KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
   1345     break;
   1346   }
   1347   case Instruction::GetElementPtr: {
   1348     // Analyze all of the subscripts of this getelementptr instruction
   1349     // to determine if we can prove known low zero bits.
   1350     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
   1351     computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL,
   1352                      Depth + 1, Q);
   1353     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
   1354 
   1355     gep_type_iterator GTI = gep_type_begin(I);
   1356     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
   1357       Value *Index = I->getOperand(i);
   1358       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
   1359         // Handle struct member offset arithmetic.
   1360 
   1361         // Handle case when index is vector zeroinitializer
   1362         Constant *CIndex = cast<Constant>(Index);
   1363         if (CIndex->isZeroValue())
   1364           continue;
   1365 
   1366         if (CIndex->getType()->isVectorTy())
   1367           Index = CIndex->getSplatValue();
   1368 
   1369         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
   1370         const StructLayout *SL = DL.getStructLayout(STy);
   1371         uint64_t Offset = SL->getElementOffset(Idx);
   1372         TrailZ = std::min<unsigned>(TrailZ,
   1373                                     countTrailingZeros(Offset));
   1374       } else {
   1375         // Handle array index arithmetic.
   1376         Type *IndexedTy = GTI.getIndexedType();
   1377         if (!IndexedTy->isSized()) {
   1378           TrailZ = 0;
   1379           break;
   1380         }
   1381         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
   1382         uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy);
   1383         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
   1384         computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1,
   1385                          Q);
   1386         TrailZ = std::min(TrailZ,
   1387                           unsigned(countTrailingZeros(TypeSize) +
   1388                                    LocalKnownZero.countTrailingOnes()));
   1389       }
   1390     }
   1391 
   1392     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
   1393     break;
   1394   }
   1395   case Instruction::PHI: {
   1396     PHINode *P = cast<PHINode>(I);
   1397     // Handle the case of a simple two-predecessor recurrence PHI.
   1398     // There's a lot more that could theoretically be done here, but
   1399     // this is sufficient to catch some interesting cases.
   1400     if (P->getNumIncomingValues() == 2) {
   1401       for (unsigned i = 0; i != 2; ++i) {
   1402         Value *L = P->getIncomingValue(i);
   1403         Value *R = P->getIncomingValue(!i);
   1404         Operator *LU = dyn_cast<Operator>(L);
   1405         if (!LU)
   1406           continue;
   1407         unsigned Opcode = LU->getOpcode();
   1408         // Check for operations that have the property that if
   1409         // both their operands have low zero bits, the result
   1410         // will have low zero bits.
   1411         if (Opcode == Instruction::Add ||
   1412             Opcode == Instruction::Sub ||
   1413             Opcode == Instruction::And ||
   1414             Opcode == Instruction::Or ||
   1415             Opcode == Instruction::Mul) {
   1416           Value *LL = LU->getOperand(0);
   1417           Value *LR = LU->getOperand(1);
   1418           // Find a recurrence.
   1419           if (LL == I)
   1420             L = LR;
   1421           else if (LR == I)
   1422             L = LL;
   1423           else
   1424             break;
   1425           // Ok, we have a PHI of the form L op= R. Check for low
   1426           // zero bits.
   1427           computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q);
   1428 
   1429           // We need to take the minimum number of known bits
   1430           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
   1431           computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q);
   1432 
   1433           KnownZero = APInt::getLowBitsSet(BitWidth,
   1434                                            std::min(KnownZero2.countTrailingOnes(),
   1435                                                     KnownZero3.countTrailingOnes()));
   1436           break;
   1437         }
   1438       }
   1439     }
   1440 
   1441     // Unreachable blocks may have zero-operand PHI nodes.
   1442     if (P->getNumIncomingValues() == 0)
   1443       break;
   1444 
   1445     // Otherwise take the unions of the known bit sets of the operands,
   1446     // taking conservative care to avoid excessive recursion.
   1447     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
   1448       // Skip if every incoming value references to ourself.
   1449       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
   1450         break;
   1451 
   1452       KnownZero = APInt::getAllOnesValue(BitWidth);
   1453       KnownOne = APInt::getAllOnesValue(BitWidth);
   1454       for (Value *IncValue : P->incoming_values()) {
   1455         // Skip direct self references.
   1456         if (IncValue == P) continue;
   1457 
   1458         KnownZero2 = APInt(BitWidth, 0);
   1459         KnownOne2 = APInt(BitWidth, 0);
   1460         // Recurse, but cap the recursion to one level, because we don't
   1461         // want to waste time spinning around in loops.
   1462         computeKnownBits(IncValue, KnownZero2, KnownOne2, DL,
   1463                          MaxDepth - 1, Q);
   1464         KnownZero &= KnownZero2;
   1465         KnownOne &= KnownOne2;
   1466         // If all bits have been ruled out, there's no need to check
   1467         // more operands.
   1468         if (!KnownZero && !KnownOne)
   1469           break;
   1470       }
   1471     }
   1472     break;
   1473   }
   1474   case Instruction::Call:
   1475   case Instruction::Invoke:
   1476     if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
   1477       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
   1478     // If a range metadata is attached to this IntrinsicInst, intersect the
   1479     // explicit range specified by the metadata and the implicit range of
   1480     // the intrinsic.
   1481     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
   1482       switch (II->getIntrinsicID()) {
   1483       default: break;
   1484       case Intrinsic::bswap:
   1485         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL,
   1486                          Depth + 1, Q);
   1487         KnownZero |= KnownZero2.byteSwap();
   1488         KnownOne |= KnownOne2.byteSwap();
   1489         break;
   1490       case Intrinsic::ctlz:
   1491       case Intrinsic::cttz: {
   1492         unsigned LowBits = Log2_32(BitWidth)+1;
   1493         // If this call is undefined for 0, the result will be less than 2^n.
   1494         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
   1495           LowBits -= 1;
   1496         KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
   1497         break;
   1498       }
   1499       case Intrinsic::ctpop: {
   1500         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL,
   1501                          Depth + 1, Q);
   1502         // We can bound the space the count needs.  Also, bits known to be zero
   1503         // can't contribute to the population.
   1504         unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
   1505         unsigned LeadingZeros =
   1506           APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
   1507         assert(LeadingZeros <= BitWidth);
   1508         KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
   1509         KnownOne &= ~KnownZero;
   1510         // TODO: we could bound KnownOne using the lower bound on the number
   1511         // of bits which might be set provided by popcnt KnownOne2.
   1512         break;
   1513       }
   1514       case Intrinsic::fabs: {
   1515         Type *Ty = II->getType();
   1516         APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
   1517         KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
   1518         break;
   1519       }
   1520       case Intrinsic::x86_sse42_crc32_64_64:
   1521         KnownZero |= APInt::getHighBitsSet(64, 32);
   1522         break;
   1523       }
   1524     }
   1525     break;
   1526   case Instruction::ExtractValue:
   1527     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
   1528       ExtractValueInst *EVI = cast<ExtractValueInst>(I);
   1529       if (EVI->getNumIndices() != 1) break;
   1530       if (EVI->getIndices()[0] == 0) {
   1531         switch (II->getIntrinsicID()) {
   1532         default: break;
   1533         case Intrinsic::uadd_with_overflow:
   1534         case Intrinsic::sadd_with_overflow:
   1535           computeKnownBitsAddSub(true, II->getArgOperand(0),
   1536                                  II->getArgOperand(1), false, KnownZero,
   1537                                  KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
   1538           break;
   1539         case Intrinsic::usub_with_overflow:
   1540         case Intrinsic::ssub_with_overflow:
   1541           computeKnownBitsAddSub(false, II->getArgOperand(0),
   1542                                  II->getArgOperand(1), false, KnownZero,
   1543                                  KnownOne, KnownZero2, KnownOne2, DL, Depth, Q);
   1544           break;
   1545         case Intrinsic::umul_with_overflow:
   1546         case Intrinsic::smul_with_overflow:
   1547           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
   1548                               KnownZero, KnownOne, KnownZero2, KnownOne2, DL,
   1549                               Depth, Q);
   1550           break;
   1551         }
   1552       }
   1553     }
   1554   }
   1555 }
   1556 
   1557 static unsigned getAlignment(const Value *V, const DataLayout &DL) {
   1558   unsigned Align = 0;
   1559   if (auto *GO = dyn_cast<GlobalObject>(V)) {
   1560     Align = GO->getAlignment();
   1561     if (Align == 0) {
   1562       if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
   1563         Type *ObjectType = GVar->getType()->getElementType();
   1564         if (ObjectType->isSized()) {
   1565           // If the object is defined in the current Module, we'll be giving
   1566           // it the preferred alignment. Otherwise, we have to assume that it
   1567           // may only have the minimum ABI alignment.
   1568           if (GVar->isStrongDefinitionForLinker())
   1569             Align = DL.getPreferredAlignment(GVar);
   1570           else
   1571             Align = DL.getABITypeAlignment(ObjectType);
   1572         }
   1573       }
   1574     }
   1575   } else if (const Argument *A = dyn_cast<Argument>(V)) {
   1576     Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
   1577 
   1578     if (!Align && A->hasStructRetAttr()) {
   1579       // An sret parameter has at least the ABI alignment of the return type.
   1580       Type *EltTy = cast<PointerType>(A->getType())->getElementType();
   1581       if (EltTy->isSized())
   1582         Align = DL.getABITypeAlignment(EltTy);
   1583     }
   1584   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
   1585     Align = AI->getAlignment();
   1586   else if (auto CS = ImmutableCallSite(V))
   1587     Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex);
   1588   else if (const LoadInst *LI = dyn_cast<LoadInst>(V))
   1589     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
   1590       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
   1591       Align = CI->getLimitedValue();
   1592     }
   1593 
   1594   return Align;
   1595 }
   1596 
   1597 /// Determine which bits of V are known to be either zero or one and return
   1598 /// them in the KnownZero/KnownOne bit sets.
   1599 ///
   1600 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
   1601 /// we cannot optimize based on the assumption that it is zero without changing
   1602 /// it to be an explicit zero.  If we don't change it to zero, other code could
   1603 /// optimized based on the contradictory assumption that it is non-zero.
   1604 /// Because instcombine aggressively folds operations with undef args anyway,
   1605 /// this won't lose us code quality.
   1606 ///
   1607 /// This function is defined on values with integer type, values with pointer
   1608 /// type, and vectors of integers.  In the case
   1609 /// where V is a vector, known zero, and known one values are the
   1610 /// same width as the vector element, and the bit is set only if it is true
   1611 /// for all of the elements in the vector.
   1612 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
   1613                       const DataLayout &DL, unsigned Depth, const Query &Q) {
   1614   assert(V && "No Value?");
   1615   assert(Depth <= MaxDepth && "Limit Search Depth");
   1616   unsigned BitWidth = KnownZero.getBitWidth();
   1617 
   1618   assert((V->getType()->isIntOrIntVectorTy() ||
   1619           V->getType()->isFPOrFPVectorTy() ||
   1620           V->getType()->getScalarType()->isPointerTy()) &&
   1621          "Not integer, floating point, or pointer type!");
   1622   assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
   1623          (!V->getType()->isIntOrIntVectorTy() ||
   1624           V->getType()->getScalarSizeInBits() == BitWidth) &&
   1625          KnownZero.getBitWidth() == BitWidth &&
   1626          KnownOne.getBitWidth() == BitWidth &&
   1627          "V, KnownOne and KnownZero should have same BitWidth");
   1628 
   1629   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
   1630     // We know all of the bits for a constant!
   1631     KnownOne = CI->getValue();
   1632     KnownZero = ~KnownOne;
   1633     return;
   1634   }
   1635   // Null and aggregate-zero are all-zeros.
   1636   if (isa<ConstantPointerNull>(V) ||
   1637       isa<ConstantAggregateZero>(V)) {
   1638     KnownOne.clearAllBits();
   1639     KnownZero = APInt::getAllOnesValue(BitWidth);
   1640     return;
   1641   }
   1642   // Handle a constant vector by taking the intersection of the known bits of
   1643   // each element.  There is no real need to handle ConstantVector here, because
   1644   // we don't handle undef in any particularly useful way.
   1645   if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
   1646     // We know that CDS must be a vector of integers. Take the intersection of
   1647     // each element.
   1648     KnownZero.setAllBits(); KnownOne.setAllBits();
   1649     APInt Elt(KnownZero.getBitWidth(), 0);
   1650     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
   1651       Elt = CDS->getElementAsInteger(i);
   1652       KnownZero &= ~Elt;
   1653       KnownOne &= Elt;
   1654     }
   1655     return;
   1656   }
   1657 
   1658   // Start out not knowing anything.
   1659   KnownZero.clearAllBits(); KnownOne.clearAllBits();
   1660 
   1661   // Limit search depth.
   1662   // All recursive calls that increase depth must come after this.
   1663   if (Depth == MaxDepth)
   1664     return;
   1665 
   1666   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
   1667   // the bits of its aliasee.
   1668   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
   1669     if (!GA->mayBeOverridden())
   1670       computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q);
   1671     return;
   1672   }
   1673 
   1674   if (Operator *I = dyn_cast<Operator>(V))
   1675     computeKnownBitsFromOperator(I, KnownZero, KnownOne, DL, Depth, Q);
   1676 
   1677   // Aligned pointers have trailing zeros - refine KnownZero set
   1678   if (V->getType()->isPointerTy()) {
   1679     unsigned Align = getAlignment(V, DL);
   1680     if (Align)
   1681       KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
   1682   }
   1683 
   1684   // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition
   1685   // strictly refines KnownZero and KnownOne. Therefore, we run them after
   1686   // computeKnownBitsFromOperator.
   1687 
   1688   // Check whether a nearby assume intrinsic can determine some known bits.
   1689   computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q);
   1690 
   1691   // Check whether there's a dominating condition which implies something about
   1692   // this value at the given context.
   1693   if (EnableDomConditions && Depth <= DomConditionsMaxDepth)
   1694     computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth,
   1695                                             Q);
   1696 
   1697   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
   1698 }
   1699 
   1700 /// Determine whether the sign bit is known to be zero or one.
   1701 /// Convenience wrapper around computeKnownBits.
   1702 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
   1703                     const DataLayout &DL, unsigned Depth, const Query &Q) {
   1704   unsigned BitWidth = getBitWidth(V->getType(), DL);
   1705   if (!BitWidth) {
   1706     KnownZero = false;
   1707     KnownOne = false;
   1708     return;
   1709   }
   1710   APInt ZeroBits(BitWidth, 0);
   1711   APInt OneBits(BitWidth, 0);
   1712   computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q);
   1713   KnownOne = OneBits[BitWidth - 1];
   1714   KnownZero = ZeroBits[BitWidth - 1];
   1715 }
   1716 
   1717 /// Return true if the given value is known to have exactly one
   1718 /// bit set when defined. For vectors return true if every element is known to
   1719 /// be a power of two when defined. Supports values with integer or pointer
   1720 /// types and vectors of integers.
   1721 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
   1722                             const Query &Q, const DataLayout &DL) {
   1723   if (Constant *C = dyn_cast<Constant>(V)) {
   1724     if (C->isNullValue())
   1725       return OrZero;
   1726     if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
   1727       return CI->getValue().isPowerOf2();
   1728     // TODO: Handle vector constants.
   1729   }
   1730 
   1731   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
   1732   // it is shifted off the end then the result is undefined.
   1733   if (match(V, m_Shl(m_One(), m_Value())))
   1734     return true;
   1735 
   1736   // (signbit) >>l X is clearly a power of two if the one is not shifted off the
   1737   // bottom.  If it is shifted off the bottom then the result is undefined.
   1738   if (match(V, m_LShr(m_SignBit(), m_Value())))
   1739     return true;
   1740 
   1741   // The remaining tests are all recursive, so bail out if we hit the limit.
   1742   if (Depth++ == MaxDepth)
   1743     return false;
   1744 
   1745   Value *X = nullptr, *Y = nullptr;
   1746   // A shift of a power of two is a power of two or zero.
   1747   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
   1748                  match(V, m_Shr(m_Value(X), m_Value()))))
   1749     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL);
   1750 
   1751   if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
   1752     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL);
   1753 
   1754   if (SelectInst *SI = dyn_cast<SelectInst>(V))
   1755     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) &&
   1756            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL);
   1757 
   1758   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
   1759     // A power of two and'd with anything is a power of two or zero.
   1760     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) ||
   1761         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL))
   1762       return true;
   1763     // X & (-X) is always a power of two or zero.
   1764     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
   1765       return true;
   1766     return false;
   1767   }
   1768 
   1769   // Adding a power-of-two or zero to the same power-of-two or zero yields
   1770   // either the original power-of-two, a larger power-of-two or zero.
   1771   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
   1772     OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
   1773     if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
   1774       if (match(X, m_And(m_Specific(Y), m_Value())) ||
   1775           match(X, m_And(m_Value(), m_Specific(Y))))
   1776         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL))
   1777           return true;
   1778       if (match(Y, m_And(m_Specific(X), m_Value())) ||
   1779           match(Y, m_And(m_Value(), m_Specific(X))))
   1780         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL))
   1781           return true;
   1782 
   1783       unsigned BitWidth = V->getType()->getScalarSizeInBits();
   1784       APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
   1785       computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q);
   1786 
   1787       APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
   1788       computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q);
   1789       // If i8 V is a power of two or zero:
   1790       //  ZeroBits: 1 1 1 0 1 1 1 1
   1791       // ~ZeroBits: 0 0 0 1 0 0 0 0
   1792       if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
   1793         // If OrZero isn't set, we cannot give back a zero result.
   1794         // Make sure either the LHS or RHS has a bit set.
   1795         if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
   1796           return true;
   1797     }
   1798   }
   1799 
   1800   // An exact divide or right shift can only shift off zero bits, so the result
   1801   // is a power of two only if the first operand is a power of two and not
   1802   // copying a sign bit (sdiv int_min, 2).
   1803   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
   1804       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
   1805     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
   1806                                   Depth, Q, DL);
   1807   }
   1808 
   1809   return false;
   1810 }
   1811 
   1812 /// \brief Test whether a GEP's result is known to be non-null.
   1813 ///
   1814 /// Uses properties inherent in a GEP to try to determine whether it is known
   1815 /// to be non-null.
   1816 ///
   1817 /// Currently this routine does not support vector GEPs.
   1818 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL,
   1819                               unsigned Depth, const Query &Q) {
   1820   if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
   1821     return false;
   1822 
   1823   // FIXME: Support vector-GEPs.
   1824   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
   1825 
   1826   // If the base pointer is non-null, we cannot walk to a null address with an
   1827   // inbounds GEP in address space zero.
   1828   if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q))
   1829     return true;
   1830 
   1831   // Walk the GEP operands and see if any operand introduces a non-zero offset.
   1832   // If so, then the GEP cannot produce a null pointer, as doing so would
   1833   // inherently violate the inbounds contract within address space zero.
   1834   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
   1835        GTI != GTE; ++GTI) {
   1836     // Struct types are easy -- they must always be indexed by a constant.
   1837     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
   1838       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
   1839       unsigned ElementIdx = OpC->getZExtValue();
   1840       const StructLayout *SL = DL.getStructLayout(STy);
   1841       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
   1842       if (ElementOffset > 0)
   1843         return true;
   1844       continue;
   1845     }
   1846 
   1847     // If we have a zero-sized type, the index doesn't matter. Keep looping.
   1848     if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
   1849       continue;
   1850 
   1851     // Fast path the constant operand case both for efficiency and so we don't
   1852     // increment Depth when just zipping down an all-constant GEP.
   1853     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
   1854       if (!OpC->isZero())
   1855         return true;
   1856       continue;
   1857     }
   1858 
   1859     // We post-increment Depth here because while isKnownNonZero increments it
   1860     // as well, when we pop back up that increment won't persist. We don't want
   1861     // to recurse 10k times just because we have 10k GEP operands. We don't
   1862     // bail completely out because we want to handle constant GEPs regardless
   1863     // of depth.
   1864     if (Depth++ >= MaxDepth)
   1865       continue;
   1866 
   1867     if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q))
   1868       return true;
   1869   }
   1870 
   1871   return false;
   1872 }
   1873 
   1874 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
   1875 /// ensure that the value it's attached to is never Value?  'RangeType' is
   1876 /// is the type of the value described by the range.
   1877 static bool rangeMetadataExcludesValue(MDNode* Ranges,
   1878                                        const APInt& Value) {
   1879   const unsigned NumRanges = Ranges->getNumOperands() / 2;
   1880   assert(NumRanges >= 1);
   1881   for (unsigned i = 0; i < NumRanges; ++i) {
   1882     ConstantInt *Lower =
   1883         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
   1884     ConstantInt *Upper =
   1885         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
   1886     ConstantRange Range(Lower->getValue(), Upper->getValue());
   1887     if (Range.contains(Value))
   1888       return false;
   1889   }
   1890   return true;
   1891 }
   1892 
   1893 /// Return true if the given value is known to be non-zero when defined.
   1894 /// For vectors return true if every element is known to be non-zero when
   1895 /// defined. Supports values with integer or pointer type and vectors of
   1896 /// integers.
   1897 bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
   1898                     const Query &Q) {
   1899   if (Constant *C = dyn_cast<Constant>(V)) {
   1900     if (C->isNullValue())
   1901       return false;
   1902     if (isa<ConstantInt>(C))
   1903       // Must be non-zero due to null test above.
   1904       return true;
   1905     // TODO: Handle vectors
   1906     return false;
   1907   }
   1908 
   1909   if (Instruction* I = dyn_cast<Instruction>(V)) {
   1910     if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
   1911       // If the possible ranges don't contain zero, then the value is
   1912       // definitely non-zero.
   1913       if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
   1914         const APInt ZeroValue(Ty->getBitWidth(), 0);
   1915         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
   1916           return true;
   1917       }
   1918     }
   1919   }
   1920 
   1921   // The remaining tests are all recursive, so bail out if we hit the limit.
   1922   if (Depth++ >= MaxDepth)
   1923     return false;
   1924 
   1925   // Check for pointer simplifications.
   1926   if (V->getType()->isPointerTy()) {
   1927     if (isKnownNonNull(V))
   1928       return true;
   1929     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
   1930       if (isGEPKnownNonNull(GEP, DL, Depth, Q))
   1931         return true;
   1932   }
   1933 
   1934   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL);
   1935 
   1936   // X | Y != 0 if X != 0 or Y != 0.
   1937   Value *X = nullptr, *Y = nullptr;
   1938   if (match(V, m_Or(m_Value(X), m_Value(Y))))
   1939     return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q);
   1940 
   1941   // ext X != 0 if X != 0.
   1942   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
   1943     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), DL, Depth, Q);
   1944 
   1945   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
   1946   // if the lowest bit is shifted off the end.
   1947   if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
   1948     // shl nuw can't remove any non-zero bits.
   1949     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
   1950     if (BO->hasNoUnsignedWrap())
   1951       return isKnownNonZero(X, DL, Depth, Q);
   1952 
   1953     APInt KnownZero(BitWidth, 0);
   1954     APInt KnownOne(BitWidth, 0);
   1955     computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
   1956     if (KnownOne[0])
   1957       return true;
   1958   }
   1959   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
   1960   // defined if the sign bit is shifted off the end.
   1961   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
   1962     // shr exact can only shift out zero bits.
   1963     PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
   1964     if (BO->isExact())
   1965       return isKnownNonZero(X, DL, Depth, Q);
   1966 
   1967     bool XKnownNonNegative, XKnownNegative;
   1968     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
   1969     if (XKnownNegative)
   1970       return true;
   1971 
   1972     // If the shifter operand is a constant, and all of the bits shifted
   1973     // out are known to be zero, and X is known non-zero then at least one
   1974     // non-zero bit must remain.
   1975     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
   1976       APInt KnownZero(BitWidth, 0);
   1977       APInt KnownOne(BitWidth, 0);
   1978       computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
   1979 
   1980       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
   1981       // Is there a known one in the portion not shifted out?
   1982       if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
   1983         return true;
   1984       // Are all the bits to be shifted out known zero?
   1985       if (KnownZero.countTrailingOnes() >= ShiftVal)
   1986         return isKnownNonZero(X, DL, Depth, Q);
   1987     }
   1988   }
   1989   // div exact can only produce a zero if the dividend is zero.
   1990   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
   1991     return isKnownNonZero(X, DL, Depth, Q);
   1992   }
   1993   // X + Y.
   1994   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
   1995     bool XKnownNonNegative, XKnownNegative;
   1996     bool YKnownNonNegative, YKnownNegative;
   1997     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q);
   1998     ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q);
   1999 
   2000     // If X and Y are both non-negative (as signed values) then their sum is not
   2001     // zero unless both X and Y are zero.
   2002     if (XKnownNonNegative && YKnownNonNegative)
   2003       if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q))
   2004         return true;
   2005 
   2006     // If X and Y are both negative (as signed values) then their sum is not
   2007     // zero unless both X and Y equal INT_MIN.
   2008     if (BitWidth && XKnownNegative && YKnownNegative) {
   2009       APInt KnownZero(BitWidth, 0);
   2010       APInt KnownOne(BitWidth, 0);
   2011       APInt Mask = APInt::getSignedMaxValue(BitWidth);
   2012       // The sign bit of X is set.  If some other bit is set then X is not equal
   2013       // to INT_MIN.
   2014       computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q);
   2015       if ((KnownOne & Mask) != 0)
   2016         return true;
   2017       // The sign bit of Y is set.  If some other bit is set then Y is not equal
   2018       // to INT_MIN.
   2019       computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q);
   2020       if ((KnownOne & Mask) != 0)
   2021         return true;
   2022     }
   2023 
   2024     // The sum of a non-negative number and a power of two is not zero.
   2025     if (XKnownNonNegative &&
   2026         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL))
   2027       return true;
   2028     if (YKnownNonNegative &&
   2029         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL))
   2030       return true;
   2031   }
   2032   // X * Y.
   2033   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
   2034     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
   2035     // If X and Y are non-zero then so is X * Y as long as the multiplication
   2036     // does not overflow.
   2037     if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
   2038         isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q))
   2039       return true;
   2040   }
   2041   // (C ? X : Y) != 0 if X != 0 and Y != 0.
   2042   else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
   2043     if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) &&
   2044         isKnownNonZero(SI->getFalseValue(), DL, Depth, Q))
   2045       return true;
   2046   }
   2047   // PHI
   2048   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
   2049     // Try and detect a recurrence that monotonically increases from a
   2050     // starting value, as these are common as induction variables.
   2051     if (PN->getNumIncomingValues() == 2) {
   2052       Value *Start = PN->getIncomingValue(0);
   2053       Value *Induction = PN->getIncomingValue(1);
   2054       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
   2055         std::swap(Start, Induction);
   2056       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
   2057         if (!C->isZero() && !C->isNegative()) {
   2058           ConstantInt *X;
   2059           if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
   2060                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
   2061               !X->isNegative())
   2062             return true;
   2063         }
   2064       }
   2065     }
   2066   }
   2067 
   2068   if (!BitWidth) return false;
   2069   APInt KnownZero(BitWidth, 0);
   2070   APInt KnownOne(BitWidth, 0);
   2071   computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
   2072   return KnownOne != 0;
   2073 }
   2074 
   2075 /// Return true if V2 == V1 + X, where X is known non-zero.
   2076 static bool isAddOfNonZero(Value *V1, Value *V2, const DataLayout &DL,
   2077                            const Query &Q) {
   2078   BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
   2079   if (!BO || BO->getOpcode() != Instruction::Add)
   2080     return false;
   2081   Value *Op = nullptr;
   2082   if (V2 == BO->getOperand(0))
   2083     Op = BO->getOperand(1);
   2084   else if (V2 == BO->getOperand(1))
   2085     Op = BO->getOperand(0);
   2086   else
   2087     return false;
   2088   return isKnownNonZero(Op, DL, 0, Q);
   2089 }
   2090 
   2091 /// Return true if it is known that V1 != V2.
   2092 static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
   2093                             const Query &Q) {
   2094   if (V1->getType()->isVectorTy() || V1 == V2)
   2095     return false;
   2096   if (V1->getType() != V2->getType())
   2097     // We can't look through casts yet.
   2098     return false;
   2099   if (isAddOfNonZero(V1, V2, DL, Q) || isAddOfNonZero(V2, V1, DL, Q))
   2100     return true;
   2101 
   2102   if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
   2103     // Are any known bits in V1 contradictory to known bits in V2? If V1
   2104     // has a known zero where V2 has a known one, they must not be equal.
   2105     auto BitWidth = Ty->getBitWidth();
   2106     APInt KnownZero1(BitWidth, 0);
   2107     APInt KnownOne1(BitWidth, 0);
   2108     computeKnownBits(V1, KnownZero1, KnownOne1, DL, 0, Q);
   2109     APInt KnownZero2(BitWidth, 0);
   2110     APInt KnownOne2(BitWidth, 0);
   2111     computeKnownBits(V2, KnownZero2, KnownOne2, DL, 0, Q);
   2112 
   2113     auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
   2114     if (OppositeBits.getBoolValue())
   2115       return true;
   2116   }
   2117   return false;
   2118 }
   2119 
   2120 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
   2121 /// simplify operations downstream. Mask is known to be zero for bits that V
   2122 /// cannot have.
   2123 ///
   2124 /// This function is defined on values with integer type, values with pointer
   2125 /// type, and vectors of integers.  In the case
   2126 /// where V is a vector, the mask, known zero, and known one values are the
   2127 /// same width as the vector element, and the bit is set only if it is true
   2128 /// for all of the elements in the vector.
   2129 bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
   2130                        unsigned Depth, const Query &Q) {
   2131   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
   2132   computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
   2133   return (KnownZero & Mask) == Mask;
   2134 }
   2135 
   2136 
   2137 
   2138 /// Return the number of times the sign bit of the register is replicated into
   2139 /// the other bits. We know that at least 1 bit is always equal to the sign bit
   2140 /// (itself), but other cases can give us information. For example, immediately
   2141 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
   2142 /// other, so we return 3.
   2143 ///
   2144 /// 'Op' must have a scalar integer type.
   2145 ///
   2146 unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth,
   2147                             const Query &Q) {
   2148   unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType());
   2149   unsigned Tmp, Tmp2;
   2150   unsigned FirstAnswer = 1;
   2151 
   2152   // Note that ConstantInt is handled by the general computeKnownBits case
   2153   // below.
   2154 
   2155   if (Depth == 6)
   2156     return 1;  // Limit search depth.
   2157 
   2158   Operator *U = dyn_cast<Operator>(V);
   2159   switch (Operator::getOpcode(V)) {
   2160   default: break;
   2161   case Instruction::SExt:
   2162     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
   2163     return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp;
   2164 
   2165   case Instruction::SDiv: {
   2166     const APInt *Denominator;
   2167     // sdiv X, C -> adds log(C) sign bits.
   2168     if (match(U->getOperand(1), m_APInt(Denominator))) {
   2169 
   2170       // Ignore non-positive denominator.
   2171       if (!Denominator->isStrictlyPositive())
   2172         break;
   2173 
   2174       // Calculate the incoming numerator bits.
   2175       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
   2176 
   2177       // Add floor(log(C)) bits to the numerator bits.
   2178       return std::min(TyBits, NumBits + Denominator->logBase2());
   2179     }
   2180     break;
   2181   }
   2182 
   2183   case Instruction::SRem: {
   2184     const APInt *Denominator;
   2185     // srem X, C -> we know that the result is within [-C+1,C) when C is a
   2186     // positive constant.  This let us put a lower bound on the number of sign
   2187     // bits.
   2188     if (match(U->getOperand(1), m_APInt(Denominator))) {
   2189 
   2190       // Ignore non-positive denominator.
   2191       if (!Denominator->isStrictlyPositive())
   2192         break;
   2193 
   2194       // Calculate the incoming numerator bits. SRem by a positive constant
   2195       // can't lower the number of sign bits.
   2196       unsigned NumrBits =
   2197           ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
   2198 
   2199       // Calculate the leading sign bit constraints by examining the
   2200       // denominator.  Given that the denominator is positive, there are two
   2201       // cases:
   2202       //
   2203       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
   2204       //     (1 << ceilLogBase2(C)).
   2205       //
   2206       //  2. the numerator is negative.  Then the result range is (-C,0] and
   2207       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
   2208       //
   2209       // Thus a lower bound on the number of sign bits is `TyBits -
   2210       // ceilLogBase2(C)`.
   2211 
   2212       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
   2213       return std::max(NumrBits, ResBits);
   2214     }
   2215     break;
   2216   }
   2217 
   2218   case Instruction::AShr: {
   2219     Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
   2220     // ashr X, C   -> adds C sign bits.  Vectors too.
   2221     const APInt *ShAmt;
   2222     if (match(U->getOperand(1), m_APInt(ShAmt))) {
   2223       Tmp += ShAmt->getZExtValue();
   2224       if (Tmp > TyBits) Tmp = TyBits;
   2225     }
   2226     return Tmp;
   2227   }
   2228   case Instruction::Shl: {
   2229     const APInt *ShAmt;
   2230     if (match(U->getOperand(1), m_APInt(ShAmt))) {
   2231       // shl destroys sign bits.
   2232       Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
   2233       Tmp2 = ShAmt->getZExtValue();
   2234       if (Tmp2 >= TyBits ||      // Bad shift.
   2235           Tmp2 >= Tmp) break;    // Shifted all sign bits out.
   2236       return Tmp - Tmp2;
   2237     }
   2238     break;
   2239   }
   2240   case Instruction::And:
   2241   case Instruction::Or:
   2242   case Instruction::Xor:    // NOT is handled here.
   2243     // Logical binary ops preserve the number of sign bits at the worst.
   2244     Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
   2245     if (Tmp != 1) {
   2246       Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
   2247       FirstAnswer = std::min(Tmp, Tmp2);
   2248       // We computed what we know about the sign bits as our first
   2249       // answer. Now proceed to the generic code that uses
   2250       // computeKnownBits, and pick whichever answer is better.
   2251     }
   2252     break;
   2253 
   2254   case Instruction::Select:
   2255     Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
   2256     if (Tmp == 1) return 1;  // Early out.
   2257     Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q);
   2258     return std::min(Tmp, Tmp2);
   2259 
   2260   case Instruction::Add:
   2261     // Add can have at most one carry bit.  Thus we know that the output
   2262     // is, at worst, one more bit than the inputs.
   2263     Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
   2264     if (Tmp == 1) return 1;  // Early out.
   2265 
   2266     // Special case decrementing a value (ADD X, -1):
   2267     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
   2268       if (CRHS->isAllOnesValue()) {
   2269         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
   2270         computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1,
   2271                          Q);
   2272 
   2273         // If the input is known to be 0 or 1, the output is 0/-1, which is all
   2274         // sign bits set.
   2275         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
   2276           return TyBits;
   2277 
   2278         // If we are subtracting one from a positive number, there is no carry
   2279         // out of the result.
   2280         if (KnownZero.isNegative())
   2281           return Tmp;
   2282       }
   2283 
   2284     Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
   2285     if (Tmp2 == 1) return 1;
   2286     return std::min(Tmp, Tmp2)-1;
   2287 
   2288   case Instruction::Sub:
   2289     Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q);
   2290     if (Tmp2 == 1) return 1;
   2291 
   2292     // Handle NEG.
   2293     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
   2294       if (CLHS->isNullValue()) {
   2295         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
   2296         computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1,
   2297                          Q);
   2298         // If the input is known to be 0 or 1, the output is 0/-1, which is all
   2299         // sign bits set.
   2300         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
   2301           return TyBits;
   2302 
   2303         // If the input is known to be positive (the sign bit is known clear),
   2304         // the output of the NEG has the same number of sign bits as the input.
   2305         if (KnownZero.isNegative())
   2306           return Tmp2;
   2307 
   2308         // Otherwise, we treat this like a SUB.
   2309       }
   2310 
   2311     // Sub can have at most one carry bit.  Thus we know that the output
   2312     // is, at worst, one more bit than the inputs.
   2313     Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q);
   2314     if (Tmp == 1) return 1;  // Early out.
   2315     return std::min(Tmp, Tmp2)-1;
   2316 
   2317   case Instruction::PHI: {
   2318     PHINode *PN = cast<PHINode>(U);
   2319     unsigned NumIncomingValues = PN->getNumIncomingValues();
   2320     // Don't analyze large in-degree PHIs.
   2321     if (NumIncomingValues > 4) break;
   2322     // Unreachable blocks may have zero-operand PHI nodes.
   2323     if (NumIncomingValues == 0) break;
   2324 
   2325     // Take the minimum of all incoming values.  This can't infinitely loop
   2326     // because of our depth threshold.
   2327     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q);
   2328     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
   2329       if (Tmp == 1) return Tmp;
   2330       Tmp = std::min(
   2331           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q));
   2332     }
   2333     return Tmp;
   2334   }
   2335 
   2336   case Instruction::Trunc:
   2337     // FIXME: it's tricky to do anything useful for this, but it is an important
   2338     // case for targets like X86.
   2339     break;
   2340   }
   2341 
   2342   // Finally, if we can prove that the top bits of the result are 0's or 1's,
   2343   // use this information.
   2344   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
   2345   APInt Mask;
   2346   computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q);
   2347 
   2348   if (KnownZero.isNegative()) {        // sign bit is 0
   2349     Mask = KnownZero;
   2350   } else if (KnownOne.isNegative()) {  // sign bit is 1;
   2351     Mask = KnownOne;
   2352   } else {
   2353     // Nothing known.
   2354     return FirstAnswer;
   2355   }
   2356 
   2357   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
   2358   // the number of identical bits in the top of the input value.
   2359   Mask = ~Mask;
   2360   Mask <<= Mask.getBitWidth()-TyBits;
   2361   // Return # leading zeros.  We use 'min' here in case Val was zero before
   2362   // shifting.  We don't want to return '64' as for an i32 "0".
   2363   return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
   2364 }
   2365 
   2366 /// This function computes the integer multiple of Base that equals V.
   2367 /// If successful, it returns true and returns the multiple in
   2368 /// Multiple. If unsuccessful, it returns false. It looks
   2369 /// through SExt instructions only if LookThroughSExt is true.
   2370 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
   2371                            bool LookThroughSExt, unsigned Depth) {
   2372   const unsigned MaxDepth = 6;
   2373 
   2374   assert(V && "No Value?");
   2375   assert(Depth <= MaxDepth && "Limit Search Depth");
   2376   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
   2377 
   2378   Type *T = V->getType();
   2379 
   2380   ConstantInt *CI = dyn_cast<ConstantInt>(V);
   2381 
   2382   if (Base == 0)
   2383     return false;
   2384 
   2385   if (Base == 1) {
   2386     Multiple = V;
   2387     return true;
   2388   }
   2389 
   2390   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
   2391   Constant *BaseVal = ConstantInt::get(T, Base);
   2392   if (CO && CO == BaseVal) {
   2393     // Multiple is 1.
   2394     Multiple = ConstantInt::get(T, 1);
   2395     return true;
   2396   }
   2397 
   2398   if (CI && CI->getZExtValue() % Base == 0) {
   2399     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
   2400     return true;
   2401   }
   2402 
   2403   if (Depth == MaxDepth) return false;  // Limit search depth.
   2404 
   2405   Operator *I = dyn_cast<Operator>(V);
   2406   if (!I) return false;
   2407 
   2408   switch (I->getOpcode()) {
   2409   default: break;
   2410   case Instruction::SExt:
   2411     if (!LookThroughSExt) return false;
   2412     // otherwise fall through to ZExt
   2413   case Instruction::ZExt:
   2414     return ComputeMultiple(I->getOperand(0), Base, Multiple,
   2415                            LookThroughSExt, Depth+1);
   2416   case Instruction::Shl:
   2417   case Instruction::Mul: {
   2418     Value *Op0 = I->getOperand(0);
   2419     Value *Op1 = I->getOperand(1);
   2420 
   2421     if (I->getOpcode() == Instruction::Shl) {
   2422       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
   2423       if (!Op1CI) return false;
   2424       // Turn Op0 << Op1 into Op0 * 2^Op1
   2425       APInt Op1Int = Op1CI->getValue();
   2426       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
   2427       APInt API(Op1Int.getBitWidth(), 0);
   2428       API.setBit(BitToSet);
   2429       Op1 = ConstantInt::get(V->getContext(), API);
   2430     }
   2431 
   2432     Value *Mul0 = nullptr;
   2433     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
   2434       if (Constant *Op1C = dyn_cast<Constant>(Op1))
   2435         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
   2436           if (Op1C->getType()->getPrimitiveSizeInBits() <
   2437               MulC->getType()->getPrimitiveSizeInBits())
   2438             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
   2439           if (Op1C->getType()->getPrimitiveSizeInBits() >
   2440               MulC->getType()->getPrimitiveSizeInBits())
   2441             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
   2442 
   2443           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
   2444           Multiple = ConstantExpr::getMul(MulC, Op1C);
   2445           return true;
   2446         }
   2447 
   2448       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
   2449         if (Mul0CI->getValue() == 1) {
   2450           // V == Base * Op1, so return Op1
   2451           Multiple = Op1;
   2452           return true;
   2453         }
   2454     }
   2455 
   2456     Value *Mul1 = nullptr;
   2457     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
   2458       if (Constant *Op0C = dyn_cast<Constant>(Op0))
   2459         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
   2460           if (Op0C->getType()->getPrimitiveSizeInBits() <
   2461               MulC->getType()->getPrimitiveSizeInBits())
   2462             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
   2463           if (Op0C->getType()->getPrimitiveSizeInBits() >
   2464               MulC->getType()->getPrimitiveSizeInBits())
   2465             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
   2466 
   2467           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
   2468           Multiple = ConstantExpr::getMul(MulC, Op0C);
   2469           return true;
   2470         }
   2471 
   2472       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
   2473         if (Mul1CI->getValue() == 1) {
   2474           // V == Base * Op0, so return Op0
   2475           Multiple = Op0;
   2476           return true;
   2477         }
   2478     }
   2479   }
   2480   }
   2481 
   2482   // We could not determine if V is a multiple of Base.
   2483   return false;
   2484 }
   2485 
   2486 /// Return true if we can prove that the specified FP value is never equal to
   2487 /// -0.0.
   2488 ///
   2489 /// NOTE: this function will need to be revisited when we support non-default
   2490 /// rounding modes!
   2491 ///
   2492 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
   2493   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
   2494     return !CFP->getValueAPF().isNegZero();
   2495 
   2496   // FIXME: Magic number! At the least, this should be given a name because it's
   2497   // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
   2498   // expose it as a parameter, so it can be used for testing / experimenting.
   2499   if (Depth == 6)
   2500     return false;  // Limit search depth.
   2501 
   2502   const Operator *I = dyn_cast<Operator>(V);
   2503   if (!I) return false;
   2504 
   2505   // Check if the nsz fast-math flag is set
   2506   if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
   2507     if (FPO->hasNoSignedZeros())
   2508       return true;
   2509 
   2510   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
   2511   if (I->getOpcode() == Instruction::FAdd)
   2512     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
   2513       if (CFP->isNullValue())
   2514         return true;
   2515 
   2516   // sitofp and uitofp turn into +0.0 for zero.
   2517   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
   2518     return true;
   2519 
   2520   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
   2521     // sqrt(-0.0) = -0.0, no other negative results are possible.
   2522     if (II->getIntrinsicID() == Intrinsic::sqrt)
   2523       return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
   2524 
   2525   if (const CallInst *CI = dyn_cast<CallInst>(I))
   2526     if (const Function *F = CI->getCalledFunction()) {
   2527       if (F->isDeclaration()) {
   2528         // abs(x) != -0.0
   2529         if (F->getName() == "abs") return true;
   2530         // fabs[lf](x) != -0.0
   2531         if (F->getName() == "fabs") return true;
   2532         if (F->getName() == "fabsf") return true;
   2533         if (F->getName() == "fabsl") return true;
   2534         if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
   2535             F->getName() == "sqrtl")
   2536           return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
   2537       }
   2538     }
   2539 
   2540   return false;
   2541 }
   2542 
   2543 bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) {
   2544   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
   2545     return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
   2546 
   2547   // FIXME: Magic number! At the least, this should be given a name because it's
   2548   // used similarly in CannotBeNegativeZero(). A better fix may be to
   2549   // expose it as a parameter, so it can be used for testing / experimenting.
   2550   if (Depth == 6)
   2551     return false;  // Limit search depth.
   2552 
   2553   const Operator *I = dyn_cast<Operator>(V);
   2554   if (!I) return false;
   2555 
   2556   switch (I->getOpcode()) {
   2557   default: break;
   2558   case Instruction::FMul:
   2559     // x*x is always non-negative or a NaN.
   2560     if (I->getOperand(0) == I->getOperand(1))
   2561       return true;
   2562     // Fall through
   2563   case Instruction::FAdd:
   2564   case Instruction::FDiv:
   2565   case Instruction::FRem:
   2566     return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
   2567            CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
   2568   case Instruction::FPExt:
   2569   case Instruction::FPTrunc:
   2570     // Widening/narrowing never change sign.
   2571     return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
   2572   case Instruction::Call:
   2573     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
   2574       switch (II->getIntrinsicID()) {
   2575       default: break;
   2576       case Intrinsic::exp:
   2577       case Intrinsic::exp2:
   2578       case Intrinsic::fabs:
   2579       case Intrinsic::sqrt:
   2580         return true;
   2581       case Intrinsic::powi:
   2582         if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
   2583           // powi(x,n) is non-negative if n is even.
   2584           if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
   2585             return true;
   2586         }
   2587         return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
   2588       case Intrinsic::fma:
   2589       case Intrinsic::fmuladd:
   2590         // x*x+y is non-negative if y is non-negative.
   2591         return I->getOperand(0) == I->getOperand(1) &&
   2592                CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
   2593       }
   2594     break;
   2595   }
   2596   return false;
   2597 }
   2598 
   2599 /// If the specified value can be set by repeating the same byte in memory,
   2600 /// return the i8 value that it is represented with.  This is
   2601 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
   2602 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
   2603 /// byte store (e.g. i16 0x1234), return null.
   2604 Value *llvm::isBytewiseValue(Value *V) {
   2605   // All byte-wide stores are splatable, even of arbitrary variables.
   2606   if (V->getType()->isIntegerTy(8)) return V;
   2607 
   2608   // Handle 'null' ConstantArrayZero etc.
   2609   if (Constant *C = dyn_cast<Constant>(V))
   2610     if (C->isNullValue())
   2611       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
   2612 
   2613   // Constant float and double values can be handled as integer values if the
   2614   // corresponding integer value is "byteable".  An important case is 0.0.
   2615   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
   2616     if (CFP->getType()->isFloatTy())
   2617       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
   2618     if (CFP->getType()->isDoubleTy())
   2619       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
   2620     // Don't handle long double formats, which have strange constraints.
   2621   }
   2622 
   2623   // We can handle constant integers that are multiple of 8 bits.
   2624   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
   2625     if (CI->getBitWidth() % 8 == 0) {
   2626       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
   2627 
   2628       if (!CI->getValue().isSplat(8))
   2629         return nullptr;
   2630       return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
   2631     }
   2632   }
   2633 
   2634   // A ConstantDataArray/Vector is splatable if all its members are equal and
   2635   // also splatable.
   2636   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
   2637     Value *Elt = CA->getElementAsConstant(0);
   2638     Value *Val = isBytewiseValue(Elt);
   2639     if (!Val)
   2640       return nullptr;
   2641 
   2642     for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
   2643       if (CA->getElementAsConstant(I) != Elt)
   2644         return nullptr;
   2645 
   2646     return Val;
   2647   }
   2648 
   2649   // Conceptually, we could handle things like:
   2650   //   %a = zext i8 %X to i16
   2651   //   %b = shl i16 %a, 8
   2652   //   %c = or i16 %a, %b
   2653   // but until there is an example that actually needs this, it doesn't seem
   2654   // worth worrying about.
   2655   return nullptr;
   2656 }
   2657 
   2658 
   2659 // This is the recursive version of BuildSubAggregate. It takes a few different
   2660 // arguments. Idxs is the index within the nested struct From that we are
   2661 // looking at now (which is of type IndexedType). IdxSkip is the number of
   2662 // indices from Idxs that should be left out when inserting into the resulting
   2663 // struct. To is the result struct built so far, new insertvalue instructions
   2664 // build on that.
   2665 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
   2666                                 SmallVectorImpl<unsigned> &Idxs,
   2667                                 unsigned IdxSkip,
   2668                                 Instruction *InsertBefore) {
   2669   llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
   2670   if (STy) {
   2671     // Save the original To argument so we can modify it
   2672     Value *OrigTo = To;
   2673     // General case, the type indexed by Idxs is a struct
   2674     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   2675       // Process each struct element recursively
   2676       Idxs.push_back(i);
   2677       Value *PrevTo = To;
   2678       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
   2679                              InsertBefore);
   2680       Idxs.pop_back();
   2681       if (!To) {
   2682         // Couldn't find any inserted value for this index? Cleanup
   2683         while (PrevTo != OrigTo) {
   2684           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
   2685           PrevTo = Del->getAggregateOperand();
   2686           Del->eraseFromParent();
   2687         }
   2688         // Stop processing elements
   2689         break;
   2690       }
   2691     }
   2692     // If we successfully found a value for each of our subaggregates
   2693     if (To)
   2694       return To;
   2695   }
   2696   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
   2697   // the struct's elements had a value that was inserted directly. In the latter
   2698   // case, perhaps we can't determine each of the subelements individually, but
   2699   // we might be able to find the complete struct somewhere.
   2700 
   2701   // Find the value that is at that particular spot
   2702   Value *V = FindInsertedValue(From, Idxs);
   2703 
   2704   if (!V)
   2705     return nullptr;
   2706 
   2707   // Insert the value in the new (sub) aggregrate
   2708   return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
   2709                                        "tmp", InsertBefore);
   2710 }
   2711 
   2712 // This helper takes a nested struct and extracts a part of it (which is again a
   2713 // struct) into a new value. For example, given the struct:
   2714 // { a, { b, { c, d }, e } }
   2715 // and the indices "1, 1" this returns
   2716 // { c, d }.
   2717 //
   2718 // It does this by inserting an insertvalue for each element in the resulting
   2719 // struct, as opposed to just inserting a single struct. This will only work if
   2720 // each of the elements of the substruct are known (ie, inserted into From by an
   2721 // insertvalue instruction somewhere).
   2722 //
   2723 // All inserted insertvalue instructions are inserted before InsertBefore
   2724 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
   2725                                 Instruction *InsertBefore) {
   2726   assert(InsertBefore && "Must have someplace to insert!");
   2727   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
   2728                                                              idx_range);
   2729   Value *To = UndefValue::get(IndexedType);
   2730   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
   2731   unsigned IdxSkip = Idxs.size();
   2732 
   2733   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
   2734 }
   2735 
   2736 /// Given an aggregrate and an sequence of indices, see if
   2737 /// the scalar value indexed is already around as a register, for example if it
   2738 /// were inserted directly into the aggregrate.
   2739 ///
   2740 /// If InsertBefore is not null, this function will duplicate (modified)
   2741 /// insertvalues when a part of a nested struct is extracted.
   2742 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
   2743                                Instruction *InsertBefore) {
   2744   // Nothing to index? Just return V then (this is useful at the end of our
   2745   // recursion).
   2746   if (idx_range.empty())
   2747     return V;
   2748   // We have indices, so V should have an indexable type.
   2749   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
   2750          "Not looking at a struct or array?");
   2751   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
   2752          "Invalid indices for type?");
   2753 
   2754   if (Constant *C = dyn_cast<Constant>(V)) {
   2755     C = C->getAggregateElement(idx_range[0]);
   2756     if (!C) return nullptr;
   2757     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
   2758   }
   2759 
   2760   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
   2761     // Loop the indices for the insertvalue instruction in parallel with the
   2762     // requested indices
   2763     const unsigned *req_idx = idx_range.begin();
   2764     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
   2765          i != e; ++i, ++req_idx) {
   2766       if (req_idx == idx_range.end()) {
   2767         // We can't handle this without inserting insertvalues
   2768         if (!InsertBefore)
   2769           return nullptr;
   2770 
   2771         // The requested index identifies a part of a nested aggregate. Handle
   2772         // this specially. For example,
   2773         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
   2774         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
   2775         // %C = extractvalue {i32, { i32, i32 } } %B, 1
   2776         // This can be changed into
   2777         // %A = insertvalue {i32, i32 } undef, i32 10, 0
   2778         // %C = insertvalue {i32, i32 } %A, i32 11, 1
   2779         // which allows the unused 0,0 element from the nested struct to be
   2780         // removed.
   2781         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
   2782                                  InsertBefore);
   2783       }
   2784 
   2785       // This insert value inserts something else than what we are looking for.
   2786       // See if the (aggregate) value inserted into has the value we are
   2787       // looking for, then.
   2788       if (*req_idx != *i)
   2789         return FindInsertedValue(I->getAggregateOperand(), idx_range,
   2790                                  InsertBefore);
   2791     }
   2792     // If we end up here, the indices of the insertvalue match with those
   2793     // requested (though possibly only partially). Now we recursively look at
   2794     // the inserted value, passing any remaining indices.
   2795     return FindInsertedValue(I->getInsertedValueOperand(),
   2796                              makeArrayRef(req_idx, idx_range.end()),
   2797                              InsertBefore);
   2798   }
   2799 
   2800   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
   2801     // If we're extracting a value from an aggregate that was extracted from
   2802     // something else, we can extract from that something else directly instead.
   2803     // However, we will need to chain I's indices with the requested indices.
   2804 
   2805     // Calculate the number of indices required
   2806     unsigned size = I->getNumIndices() + idx_range.size();
   2807     // Allocate some space to put the new indices in
   2808     SmallVector<unsigned, 5> Idxs;
   2809     Idxs.reserve(size);
   2810     // Add indices from the extract value instruction
   2811     Idxs.append(I->idx_begin(), I->idx_end());
   2812 
   2813     // Add requested indices
   2814     Idxs.append(idx_range.begin(), idx_range.end());
   2815 
   2816     assert(Idxs.size() == size
   2817            && "Number of indices added not correct?");
   2818 
   2819     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
   2820   }
   2821   // Otherwise, we don't know (such as, extracting from a function return value
   2822   // or load instruction)
   2823   return nullptr;
   2824 }
   2825 
   2826 /// Analyze the specified pointer to see if it can be expressed as a base
   2827 /// pointer plus a constant offset. Return the base and offset to the caller.
   2828 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
   2829                                               const DataLayout &DL) {
   2830   unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
   2831   APInt ByteOffset(BitWidth, 0);
   2832   while (1) {
   2833     if (Ptr->getType()->isVectorTy())
   2834       break;
   2835 
   2836     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
   2837       APInt GEPOffset(BitWidth, 0);
   2838       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
   2839         break;
   2840 
   2841       ByteOffset += GEPOffset;
   2842 
   2843       Ptr = GEP->getPointerOperand();
   2844     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
   2845                Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
   2846       Ptr = cast<Operator>(Ptr)->getOperand(0);
   2847     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
   2848       if (GA->mayBeOverridden())
   2849         break;
   2850       Ptr = GA->getAliasee();
   2851     } else {
   2852       break;
   2853     }
   2854   }
   2855   Offset = ByteOffset.getSExtValue();
   2856   return Ptr;
   2857 }
   2858 
   2859 
   2860 /// This function computes the length of a null-terminated C string pointed to
   2861 /// by V. If successful, it returns true and returns the string in Str.
   2862 /// If unsuccessful, it returns false.
   2863 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
   2864                                  uint64_t Offset, bool TrimAtNul) {
   2865   assert(V);
   2866 
   2867   // Look through bitcast instructions and geps.
   2868   V = V->stripPointerCasts();
   2869 
   2870   // If the value is a GEP instruction or constant expression, treat it as an
   2871   // offset.
   2872   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
   2873     // Make sure the GEP has exactly three arguments.
   2874     if (GEP->getNumOperands() != 3)
   2875       return false;
   2876 
   2877     // Make sure the index-ee is a pointer to array of i8.
   2878     PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
   2879     ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
   2880     if (!AT || !AT->getElementType()->isIntegerTy(8))
   2881       return false;
   2882 
   2883     // Check to make sure that the first operand of the GEP is an integer and
   2884     // has value 0 so that we are sure we're indexing into the initializer.
   2885     const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
   2886     if (!FirstIdx || !FirstIdx->isZero())
   2887       return false;
   2888 
   2889     // If the second index isn't a ConstantInt, then this is a variable index
   2890     // into the array.  If this occurs, we can't say anything meaningful about
   2891     // the string.
   2892     uint64_t StartIdx = 0;
   2893     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
   2894       StartIdx = CI->getZExtValue();
   2895     else
   2896       return false;
   2897     return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
   2898                                  TrimAtNul);
   2899   }
   2900 
   2901   // The GEP instruction, constant or instruction, must reference a global
   2902   // variable that is a constant and is initialized. The referenced constant
   2903   // initializer is the array that we'll use for optimization.
   2904   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
   2905   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
   2906     return false;
   2907 
   2908   // Handle the all-zeros case
   2909   if (GV->getInitializer()->isNullValue()) {
   2910     // This is a degenerate case. The initializer is constant zero so the
   2911     // length of the string must be zero.
   2912     Str = "";
   2913     return true;
   2914   }
   2915 
   2916   // Must be a Constant Array
   2917   const ConstantDataArray *Array =
   2918     dyn_cast<ConstantDataArray>(GV->getInitializer());
   2919   if (!Array || !Array->isString())
   2920     return false;
   2921 
   2922   // Get the number of elements in the array
   2923   uint64_t NumElts = Array->getType()->getArrayNumElements();
   2924 
   2925   // Start out with the entire array in the StringRef.
   2926   Str = Array->getAsString();
   2927 
   2928   if (Offset > NumElts)
   2929     return false;
   2930 
   2931   // Skip over 'offset' bytes.
   2932   Str = Str.substr(Offset);
   2933 
   2934   if (TrimAtNul) {
   2935     // Trim off the \0 and anything after it.  If the array is not nul
   2936     // terminated, we just return the whole end of string.  The client may know
   2937     // some other way that the string is length-bound.
   2938     Str = Str.substr(0, Str.find('\0'));
   2939   }
   2940   return true;
   2941 }
   2942 
   2943 // These next two are very similar to the above, but also look through PHI
   2944 // nodes.
   2945 // TODO: See if we can integrate these two together.
   2946 
   2947 /// If we can compute the length of the string pointed to by
   2948 /// the specified pointer, return 'len+1'.  If we can't, return 0.
   2949 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
   2950   // Look through noop bitcast instructions.
   2951   V = V->stripPointerCasts();
   2952 
   2953   // If this is a PHI node, there are two cases: either we have already seen it
   2954   // or we haven't.
   2955   if (PHINode *PN = dyn_cast<PHINode>(V)) {
   2956     if (!PHIs.insert(PN).second)
   2957       return ~0ULL;  // already in the set.
   2958 
   2959     // If it was new, see if all the input strings are the same length.
   2960     uint64_t LenSoFar = ~0ULL;
   2961     for (Value *IncValue : PN->incoming_values()) {
   2962       uint64_t Len = GetStringLengthH(IncValue, PHIs);
   2963       if (Len == 0) return 0; // Unknown length -> unknown.
   2964 
   2965       if (Len == ~0ULL) continue;
   2966 
   2967       if (Len != LenSoFar && LenSoFar != ~0ULL)
   2968         return 0;    // Disagree -> unknown.
   2969       LenSoFar = Len;
   2970     }
   2971 
   2972     // Success, all agree.
   2973     return LenSoFar;
   2974   }
   2975 
   2976   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
   2977   if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
   2978     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
   2979     if (Len1 == 0) return 0;
   2980     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
   2981     if (Len2 == 0) return 0;
   2982     if (Len1 == ~0ULL) return Len2;
   2983     if (Len2 == ~0ULL) return Len1;
   2984     if (Len1 != Len2) return 0;
   2985     return Len1;
   2986   }
   2987 
   2988   // Otherwise, see if we can read the string.
   2989   StringRef StrData;
   2990   if (!getConstantStringInfo(V, StrData))
   2991     return 0;
   2992 
   2993   return StrData.size()+1;
   2994 }
   2995 
   2996 /// If we can compute the length of the string pointed to by
   2997 /// the specified pointer, return 'len+1'.  If we can't, return 0.
   2998 uint64_t llvm::GetStringLength(Value *V) {
   2999   if (!V->getType()->isPointerTy()) return 0;
   3000 
   3001   SmallPtrSet<PHINode*, 32> PHIs;
   3002   uint64_t Len = GetStringLengthH(V, PHIs);
   3003   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
   3004   // an empty string as a length.
   3005   return Len == ~0ULL ? 1 : Len;
   3006 }
   3007 
   3008 /// \brief \p PN defines a loop-variant pointer to an object.  Check if the
   3009 /// previous iteration of the loop was referring to the same object as \p PN.
   3010 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
   3011   // Find the loop-defined value.
   3012   Loop *L = LI->getLoopFor(PN->getParent());
   3013   if (PN->getNumIncomingValues() != 2)
   3014     return true;
   3015 
   3016   // Find the value from previous iteration.
   3017   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
   3018   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
   3019     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
   3020   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
   3021     return true;
   3022 
   3023   // If a new pointer is loaded in the loop, the pointer references a different
   3024   // object in every iteration.  E.g.:
   3025   //    for (i)
   3026   //       int *p = a[i];
   3027   //       ...
   3028   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
   3029     if (!L->isLoopInvariant(Load->getPointerOperand()))
   3030       return false;
   3031   return true;
   3032 }
   3033 
   3034 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
   3035                                  unsigned MaxLookup) {
   3036   if (!V->getType()->isPointerTy())
   3037     return V;
   3038   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
   3039     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
   3040       V = GEP->getPointerOperand();
   3041     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
   3042                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
   3043       V = cast<Operator>(V)->getOperand(0);
   3044     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
   3045       if (GA->mayBeOverridden())
   3046         return V;
   3047       V = GA->getAliasee();
   3048     } else {
   3049       // See if InstructionSimplify knows any relevant tricks.
   3050       if (Instruction *I = dyn_cast<Instruction>(V))
   3051         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
   3052         if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
   3053           V = Simplified;
   3054           continue;
   3055         }
   3056 
   3057       return V;
   3058     }
   3059     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
   3060   }
   3061   return V;
   3062 }
   3063 
   3064 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
   3065                                 const DataLayout &DL, LoopInfo *LI,
   3066                                 unsigned MaxLookup) {
   3067   SmallPtrSet<Value *, 4> Visited;
   3068   SmallVector<Value *, 4> Worklist;
   3069   Worklist.push_back(V);
   3070   do {
   3071     Value *P = Worklist.pop_back_val();
   3072     P = GetUnderlyingObject(P, DL, MaxLookup);
   3073 
   3074     if (!Visited.insert(P).second)
   3075       continue;
   3076 
   3077     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
   3078       Worklist.push_back(SI->getTrueValue());
   3079       Worklist.push_back(SI->getFalseValue());
   3080       continue;
   3081     }
   3082 
   3083     if (PHINode *PN = dyn_cast<PHINode>(P)) {
   3084       // If this PHI changes the underlying object in every iteration of the
   3085       // loop, don't look through it.  Consider:
   3086       //   int **A;
   3087       //   for (i) {
   3088       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
   3089       //     Curr = A[i];
   3090       //     *Prev, *Curr;
   3091       //
   3092       // Prev is tracking Curr one iteration behind so they refer to different
   3093       // underlying objects.
   3094       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
   3095           isSameUnderlyingObjectInLoop(PN, LI))
   3096         for (Value *IncValue : PN->incoming_values())
   3097           Worklist.push_back(IncValue);
   3098       continue;
   3099     }
   3100 
   3101     Objects.push_back(P);
   3102   } while (!Worklist.empty());
   3103 }
   3104 
   3105 /// Return true if the only users of this pointer are lifetime markers.
   3106 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
   3107   for (const User *U : V->users()) {
   3108     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
   3109     if (!II) return false;
   3110 
   3111     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
   3112         II->getIntrinsicID() != Intrinsic::lifetime_end)
   3113       return false;
   3114   }
   3115   return true;
   3116 }
   3117 
   3118 static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset,
   3119                                            Type *Ty, const DataLayout &DL,
   3120                                            const Instruction *CtxI,
   3121                                            const DominatorTree *DT,
   3122                                            const TargetLibraryInfo *TLI) {
   3123   assert(Offset.isNonNegative() && "offset can't be negative");
   3124   assert(Ty->isSized() && "must be sized");
   3125 
   3126   APInt DerefBytes(Offset.getBitWidth(), 0);
   3127   bool CheckForNonNull = false;
   3128   if (const Argument *A = dyn_cast<Argument>(BV)) {
   3129     DerefBytes = A->getDereferenceableBytes();
   3130     if (!DerefBytes.getBoolValue()) {
   3131       DerefBytes = A->getDereferenceableOrNullBytes();
   3132       CheckForNonNull = true;
   3133     }
   3134   } else if (auto CS = ImmutableCallSite(BV)) {
   3135     DerefBytes = CS.getDereferenceableBytes(0);
   3136     if (!DerefBytes.getBoolValue()) {
   3137       DerefBytes = CS.getDereferenceableOrNullBytes(0);
   3138       CheckForNonNull = true;
   3139     }
   3140   } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) {
   3141     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
   3142       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
   3143       DerefBytes = CI->getLimitedValue();
   3144     }
   3145     if (!DerefBytes.getBoolValue()) {
   3146       if (MDNode *MD =
   3147               LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
   3148         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
   3149         DerefBytes = CI->getLimitedValue();
   3150       }
   3151       CheckForNonNull = true;
   3152     }
   3153   }
   3154 
   3155   if (DerefBytes.getBoolValue())
   3156     if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty)))
   3157       if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI))
   3158         return true;
   3159 
   3160   return false;
   3161 }
   3162 
   3163 static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL,
   3164                                            const Instruction *CtxI,
   3165                                            const DominatorTree *DT,
   3166                                            const TargetLibraryInfo *TLI) {
   3167   Type *VTy = V->getType();
   3168   Type *Ty = VTy->getPointerElementType();
   3169   if (!Ty->isSized())
   3170     return false;
   3171 
   3172   APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
   3173   return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI);
   3174 }
   3175 
   3176 static bool isAligned(const Value *Base, APInt Offset, unsigned Align,
   3177                       const DataLayout &DL) {
   3178   APInt BaseAlign(Offset.getBitWidth(), getAlignment(Base, DL));
   3179 
   3180   if (!BaseAlign) {
   3181     Type *Ty = Base->getType()->getPointerElementType();
   3182     if (!Ty->isSized())
   3183       return false;
   3184     BaseAlign = DL.getABITypeAlignment(Ty);
   3185   }
   3186 
   3187   APInt Alignment(Offset.getBitWidth(), Align);
   3188 
   3189   assert(Alignment.isPowerOf2() && "must be a power of 2!");
   3190   return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
   3191 }
   3192 
   3193 static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
   3194   Type *Ty = Base->getType();
   3195   assert(Ty->isSized() && "must be sized");
   3196   APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
   3197   return isAligned(Base, Offset, Align, DL);
   3198 }
   3199 
   3200 /// Test if V is always a pointer to allocated and suitably aligned memory for
   3201 /// a simple load or store.
   3202 static bool isDereferenceableAndAlignedPointer(
   3203     const Value *V, unsigned Align, const DataLayout &DL,
   3204     const Instruction *CtxI, const DominatorTree *DT,
   3205     const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) {
   3206   // Note that it is not safe to speculate into a malloc'd region because
   3207   // malloc may return null.
   3208 
   3209   // These are obviously ok if aligned.
   3210   if (isa<AllocaInst>(V))
   3211     return isAligned(V, Align, DL);
   3212 
   3213   // It's not always safe to follow a bitcast, for example:
   3214   //   bitcast i8* (alloca i8) to i32*
   3215   // would result in a 4-byte load from a 1-byte alloca. However,
   3216   // if we're casting from a pointer from a type of larger size
   3217   // to a type of smaller size (or the same size), and the alignment
   3218   // is at least as large as for the resulting pointer type, then
   3219   // we can look through the bitcast.
   3220   if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
   3221     Type *STy = BC->getSrcTy()->getPointerElementType(),
   3222          *DTy = BC->getDestTy()->getPointerElementType();
   3223     if (STy->isSized() && DTy->isSized() &&
   3224         (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) &&
   3225         (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy)))
   3226       return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL,
   3227                                                 CtxI, DT, TLI, Visited);
   3228   }
   3229 
   3230   // Global variables which can't collapse to null are ok.
   3231   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
   3232     if (!GV->hasExternalWeakLinkage())
   3233       return isAligned(V, Align, DL);
   3234 
   3235   // byval arguments are okay.
   3236   if (const Argument *A = dyn_cast<Argument>(V))
   3237     if (A->hasByValAttr())
   3238       return isAligned(V, Align, DL);
   3239 
   3240   if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI))
   3241     return isAligned(V, Align, DL);
   3242 
   3243   // For GEPs, determine if the indexing lands within the allocated object.
   3244   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
   3245     Type *VTy = GEP->getType();
   3246     Type *Ty = VTy->getPointerElementType();
   3247     const Value *Base = GEP->getPointerOperand();
   3248 
   3249     // Conservatively require that the base pointer be fully dereferenceable
   3250     // and aligned.
   3251     if (!Visited.insert(Base).second)
   3252       return false;
   3253     if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI,
   3254                                             Visited))
   3255       return false;
   3256 
   3257     APInt Offset(DL.getPointerTypeSizeInBits(VTy), 0);
   3258     if (!GEP->accumulateConstantOffset(DL, Offset))
   3259       return false;
   3260 
   3261     // Check if the load is within the bounds of the underlying object
   3262     // and offset is aligned.
   3263     uint64_t LoadSize = DL.getTypeStoreSize(Ty);
   3264     Type *BaseType = Base->getType()->getPointerElementType();
   3265     assert(isPowerOf2_32(Align) && "must be a power of 2!");
   3266     return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) &&
   3267            !(Offset & APInt(Offset.getBitWidth(), Align-1));
   3268   }
   3269 
   3270   // For gc.relocate, look through relocations
   3271   if (const IntrinsicInst *I = dyn_cast<IntrinsicInst>(V))
   3272     if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) {
   3273       GCRelocateOperands RelocateInst(I);
   3274       return isDereferenceableAndAlignedPointer(
   3275           RelocateInst.getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited);
   3276     }
   3277 
   3278   if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
   3279     return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL,
   3280                                               CtxI, DT, TLI, Visited);
   3281 
   3282   // If we don't know, assume the worst.
   3283   return false;
   3284 }
   3285 
   3286 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
   3287                                               const DataLayout &DL,
   3288                                               const Instruction *CtxI,
   3289                                               const DominatorTree *DT,
   3290                                               const TargetLibraryInfo *TLI) {
   3291   // When dereferenceability information is provided by a dereferenceable
   3292   // attribute, we know exactly how many bytes are dereferenceable. If we can
   3293   // determine the exact offset to the attributed variable, we can use that
   3294   // information here.
   3295   Type *VTy = V->getType();
   3296   Type *Ty = VTy->getPointerElementType();
   3297 
   3298   // Require ABI alignment for loads without alignment specification
   3299   if (Align == 0)
   3300     Align = DL.getABITypeAlignment(Ty);
   3301 
   3302   if (Ty->isSized()) {
   3303     APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
   3304     const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
   3305 
   3306     if (Offset.isNonNegative())
   3307       if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) &&
   3308           isAligned(BV, Offset, Align, DL))
   3309         return true;
   3310   }
   3311 
   3312   SmallPtrSet<const Value *, 32> Visited;
   3313   return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI,
   3314                                               Visited);
   3315 }
   3316 
   3317 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
   3318                                     const Instruction *CtxI,
   3319                                     const DominatorTree *DT,
   3320                                     const TargetLibraryInfo *TLI) {
   3321   return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI);
   3322 }
   3323 
   3324 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
   3325                                         const Instruction *CtxI,
   3326                                         const DominatorTree *DT,
   3327                                         const TargetLibraryInfo *TLI) {
   3328   const Operator *Inst = dyn_cast<Operator>(V);
   3329   if (!Inst)
   3330     return false;
   3331 
   3332   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
   3333     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
   3334       if (C->canTrap())
   3335         return false;
   3336 
   3337   switch (Inst->getOpcode()) {
   3338   default:
   3339     return true;
   3340   case Instruction::UDiv:
   3341   case Instruction::URem: {
   3342     // x / y is undefined if y == 0.
   3343     const APInt *V;
   3344     if (match(Inst->getOperand(1), m_APInt(V)))
   3345       return *V != 0;
   3346     return false;
   3347   }
   3348   case Instruction::SDiv:
   3349   case Instruction::SRem: {
   3350     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
   3351     const APInt *Numerator, *Denominator;
   3352     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
   3353       return false;
   3354     // We cannot hoist this division if the denominator is 0.
   3355     if (*Denominator == 0)
   3356       return false;
   3357     // It's safe to hoist if the denominator is not 0 or -1.
   3358     if (*Denominator != -1)
   3359       return true;
   3360     // At this point we know that the denominator is -1.  It is safe to hoist as
   3361     // long we know that the numerator is not INT_MIN.
   3362     if (match(Inst->getOperand(0), m_APInt(Numerator)))
   3363       return !Numerator->isMinSignedValue();
   3364     // The numerator *might* be MinSignedValue.
   3365     return false;
   3366   }
   3367   case Instruction::Load: {
   3368     const LoadInst *LI = cast<LoadInst>(Inst);
   3369     if (!LI->isUnordered() ||
   3370         // Speculative load may create a race that did not exist in the source.
   3371         LI->getParent()->getParent()->hasFnAttribute(
   3372             Attribute::SanitizeThread) ||
   3373         // Speculative load may load data from dirty regions.
   3374         LI->getParent()->getParent()->hasFnAttribute(
   3375             Attribute::SanitizeAddress))
   3376       return false;
   3377     const DataLayout &DL = LI->getModule()->getDataLayout();
   3378     return isDereferenceableAndAlignedPointer(
   3379         LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
   3380   }
   3381   case Instruction::Call: {
   3382     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
   3383       switch (II->getIntrinsicID()) {
   3384       // These synthetic intrinsics have no side-effects and just mark
   3385       // information about their operands.
   3386       // FIXME: There are other no-op synthetic instructions that potentially
   3387       // should be considered at least *safe* to speculate...
   3388       case Intrinsic::dbg_declare:
   3389       case Intrinsic::dbg_value:
   3390         return true;
   3391 
   3392       case Intrinsic::bswap:
   3393       case Intrinsic::ctlz:
   3394       case Intrinsic::ctpop:
   3395       case Intrinsic::cttz:
   3396       case Intrinsic::objectsize:
   3397       case Intrinsic::sadd_with_overflow:
   3398       case Intrinsic::smul_with_overflow:
   3399       case Intrinsic::ssub_with_overflow:
   3400       case Intrinsic::uadd_with_overflow:
   3401       case Intrinsic::umul_with_overflow:
   3402       case Intrinsic::usub_with_overflow:
   3403         return true;
   3404       // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
   3405       // errno like libm sqrt would.
   3406       case Intrinsic::sqrt:
   3407       case Intrinsic::fma:
   3408       case Intrinsic::fmuladd:
   3409       case Intrinsic::fabs:
   3410       case Intrinsic::minnum:
   3411       case Intrinsic::maxnum:
   3412         return true;
   3413       // TODO: some fp intrinsics are marked as having the same error handling
   3414       // as libm. They're safe to speculate when they won't error.
   3415       // TODO: are convert_{from,to}_fp16 safe?
   3416       // TODO: can we list target-specific intrinsics here?
   3417       default: break;
   3418       }
   3419     }
   3420     return false; // The called function could have undefined behavior or
   3421                   // side-effects, even if marked readnone nounwind.
   3422   }
   3423   case Instruction::VAArg:
   3424   case Instruction::Alloca:
   3425   case Instruction::Invoke:
   3426   case Instruction::PHI:
   3427   case Instruction::Store:
   3428   case Instruction::Ret:
   3429   case Instruction::Br:
   3430   case Instruction::IndirectBr:
   3431   case Instruction::Switch:
   3432   case Instruction::Unreachable:
   3433   case Instruction::Fence:
   3434   case Instruction::AtomicRMW:
   3435   case Instruction::AtomicCmpXchg:
   3436   case Instruction::LandingPad:
   3437   case Instruction::Resume:
   3438   case Instruction::CatchSwitch:
   3439   case Instruction::CatchPad:
   3440   case Instruction::CatchRet:
   3441   case Instruction::CleanupPad:
   3442   case Instruction::CleanupRet:
   3443     return false; // Misc instructions which have effects
   3444   }
   3445 }
   3446 
   3447 bool llvm::mayBeMemoryDependent(const Instruction &I) {
   3448   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
   3449 }
   3450 
   3451 /// Return true if we know that the specified value is never null.
   3452 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
   3453   assert(V->getType()->isPointerTy() && "V must be pointer type");
   3454 
   3455   // Alloca never returns null, malloc might.
   3456   if (isa<AllocaInst>(V)) return true;
   3457 
   3458   // A byval, inalloca, or nonnull argument is never null.
   3459   if (const Argument *A = dyn_cast<Argument>(V))
   3460     return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
   3461 
   3462   // A global variable in address space 0 is non null unless extern weak.
   3463   // Other address spaces may have null as a valid address for a global,
   3464   // so we can't assume anything.
   3465   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
   3466     return !GV->hasExternalWeakLinkage() &&
   3467            GV->getType()->getAddressSpace() == 0;
   3468 
   3469   // A Load tagged w/nonnull metadata is never null.
   3470   if (const LoadInst *LI = dyn_cast<LoadInst>(V))
   3471     return LI->getMetadata(LLVMContext::MD_nonnull);
   3472 
   3473   if (auto CS = ImmutableCallSite(V))
   3474     if (CS.isReturnNonNull())
   3475       return true;
   3476 
   3477   // operator new never returns null.
   3478   if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
   3479     return true;
   3480 
   3481   return false;
   3482 }
   3483 
   3484 static bool isKnownNonNullFromDominatingCondition(const Value *V,
   3485                                                   const Instruction *CtxI,
   3486                                                   const DominatorTree *DT) {
   3487   assert(V->getType()->isPointerTy() && "V must be pointer type");
   3488 
   3489   unsigned NumUsesExplored = 0;
   3490   for (auto U : V->users()) {
   3491     // Avoid massive lists
   3492     if (NumUsesExplored >= DomConditionsMaxUses)
   3493       break;
   3494     NumUsesExplored++;
   3495     // Consider only compare instructions uniquely controlling a branch
   3496     const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
   3497     if (!Cmp)
   3498       continue;
   3499 
   3500     if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
   3501       continue;
   3502 
   3503     for (auto *CmpU : Cmp->users()) {
   3504       const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
   3505       if (!BI)
   3506         continue;
   3507 
   3508       assert(BI->isConditional() && "uses a comparison!");
   3509 
   3510       BasicBlock *NonNullSuccessor = nullptr;
   3511       CmpInst::Predicate Pred;
   3512 
   3513       if (match(const_cast<ICmpInst*>(Cmp),
   3514                 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
   3515         if (Pred == ICmpInst::ICMP_EQ)
   3516           NonNullSuccessor = BI->getSuccessor(1);
   3517         else if (Pred == ICmpInst::ICMP_NE)
   3518           NonNullSuccessor = BI->getSuccessor(0);
   3519       }
   3520 
   3521       if (NonNullSuccessor) {
   3522         BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
   3523         if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
   3524           return true;
   3525       }
   3526     }
   3527   }
   3528 
   3529   return false;
   3530 }
   3531 
   3532 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
   3533                    const DominatorTree *DT, const TargetLibraryInfo *TLI) {
   3534   if (isKnownNonNull(V, TLI))
   3535     return true;
   3536 
   3537   return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
   3538 }
   3539 
   3540 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
   3541                                                    const DataLayout &DL,
   3542                                                    AssumptionCache *AC,
   3543                                                    const Instruction *CxtI,
   3544                                                    const DominatorTree *DT) {
   3545   // Multiplying n * m significant bits yields a result of n + m significant
   3546   // bits. If the total number of significant bits does not exceed the
   3547   // result bit width (minus 1), there is no overflow.
   3548   // This means if we have enough leading zero bits in the operands
   3549   // we can guarantee that the result does not overflow.
   3550   // Ref: "Hacker's Delight" by Henry Warren
   3551   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
   3552   APInt LHSKnownZero(BitWidth, 0);
   3553   APInt LHSKnownOne(BitWidth, 0);
   3554   APInt RHSKnownZero(BitWidth, 0);
   3555   APInt RHSKnownOne(BitWidth, 0);
   3556   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
   3557                    DT);
   3558   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
   3559                    DT);
   3560   // Note that underestimating the number of zero bits gives a more
   3561   // conservative answer.
   3562   unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
   3563                       RHSKnownZero.countLeadingOnes();
   3564   // First handle the easy case: if we have enough zero bits there's
   3565   // definitely no overflow.
   3566   if (ZeroBits >= BitWidth)
   3567     return OverflowResult::NeverOverflows;
   3568 
   3569   // Get the largest possible values for each operand.
   3570   APInt LHSMax = ~LHSKnownZero;
   3571   APInt RHSMax = ~RHSKnownZero;
   3572 
   3573   // We know the multiply operation doesn't overflow if the maximum values for
   3574   // each operand will not overflow after we multiply them together.
   3575   bool MaxOverflow;
   3576   LHSMax.umul_ov(RHSMax, MaxOverflow);
   3577   if (!MaxOverflow)
   3578     return OverflowResult::NeverOverflows;
   3579 
   3580   // We know it always overflows if multiplying the smallest possible values for
   3581   // the operands also results in overflow.
   3582   bool MinOverflow;
   3583   LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
   3584   if (MinOverflow)
   3585     return OverflowResult::AlwaysOverflows;
   3586 
   3587   return OverflowResult::MayOverflow;
   3588 }
   3589 
   3590 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
   3591                                                    const DataLayout &DL,
   3592                                                    AssumptionCache *AC,
   3593                                                    const Instruction *CxtI,
   3594                                                    const DominatorTree *DT) {
   3595   bool LHSKnownNonNegative, LHSKnownNegative;
   3596   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
   3597                  AC, CxtI, DT);
   3598   if (LHSKnownNonNegative || LHSKnownNegative) {
   3599     bool RHSKnownNonNegative, RHSKnownNegative;
   3600     ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
   3601                    AC, CxtI, DT);
   3602 
   3603     if (LHSKnownNegative && RHSKnownNegative) {
   3604       // The sign bit is set in both cases: this MUST overflow.
   3605       // Create a simple add instruction, and insert it into the struct.
   3606       return OverflowResult::AlwaysOverflows;
   3607     }
   3608 
   3609     if (LHSKnownNonNegative && RHSKnownNonNegative) {
   3610       // The sign bit is clear in both cases: this CANNOT overflow.
   3611       // Create a simple add instruction, and insert it into the struct.
   3612       return OverflowResult::NeverOverflows;
   3613     }
   3614   }
   3615 
   3616   return OverflowResult::MayOverflow;
   3617 }
   3618 
   3619 static OverflowResult computeOverflowForSignedAdd(
   3620     Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
   3621     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
   3622   if (Add && Add->hasNoSignedWrap()) {
   3623     return OverflowResult::NeverOverflows;
   3624   }
   3625 
   3626   bool LHSKnownNonNegative, LHSKnownNegative;
   3627   bool RHSKnownNonNegative, RHSKnownNegative;
   3628   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
   3629                  AC, CxtI, DT);
   3630   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
   3631                  AC, CxtI, DT);
   3632 
   3633   if ((LHSKnownNonNegative && RHSKnownNegative) ||
   3634       (LHSKnownNegative && RHSKnownNonNegative)) {
   3635     // The sign bits are opposite: this CANNOT overflow.
   3636     return OverflowResult::NeverOverflows;
   3637   }
   3638 
   3639   // The remaining code needs Add to be available. Early returns if not so.
   3640   if (!Add)
   3641     return OverflowResult::MayOverflow;
   3642 
   3643   // If the sign of Add is the same as at least one of the operands, this add
   3644   // CANNOT overflow. This is particularly useful when the sum is
   3645   // @llvm.assume'ed non-negative rather than proved so from analyzing its
   3646   // operands.
   3647   bool LHSOrRHSKnownNonNegative =
   3648       (LHSKnownNonNegative || RHSKnownNonNegative);
   3649   bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
   3650   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
   3651     bool AddKnownNonNegative, AddKnownNegative;
   3652     ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
   3653                    /*Depth=*/0, AC, CxtI, DT);
   3654     if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
   3655         (AddKnownNegative && LHSOrRHSKnownNegative)) {
   3656       return OverflowResult::NeverOverflows;
   3657     }
   3658   }
   3659 
   3660   return OverflowResult::MayOverflow;
   3661 }
   3662 
   3663 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
   3664                                                  const DataLayout &DL,
   3665                                                  AssumptionCache *AC,
   3666                                                  const Instruction *CxtI,
   3667                                                  const DominatorTree *DT) {
   3668   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
   3669                                        Add, DL, AC, CxtI, DT);
   3670 }
   3671 
   3672 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
   3673                                                  const DataLayout &DL,
   3674                                                  AssumptionCache *AC,
   3675                                                  const Instruction *CxtI,
   3676                                                  const DominatorTree *DT) {
   3677   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
   3678 }
   3679 
   3680 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
   3681   // FIXME: This conservative implementation can be relaxed. E.g. most
   3682   // atomic operations are guaranteed to terminate on most platforms
   3683   // and most functions terminate.
   3684 
   3685   return !I->isAtomic() &&       // atomics may never succeed on some platforms
   3686          !isa<CallInst>(I) &&    // could throw and might not terminate
   3687          !isa<InvokeInst>(I) &&  // might not terminate and could throw to
   3688                                  //   non-successor (see bug 24185 for details).
   3689          !isa<ResumeInst>(I) &&  // has no successors
   3690          !isa<ReturnInst>(I);    // has no successors
   3691 }
   3692 
   3693 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
   3694                                                   const Loop *L) {
   3695   // The loop header is guaranteed to be executed for every iteration.
   3696   //
   3697   // FIXME: Relax this constraint to cover all basic blocks that are
   3698   // guaranteed to be executed at every iteration.
   3699   if (I->getParent() != L->getHeader()) return false;
   3700 
   3701   for (const Instruction &LI : *L->getHeader()) {
   3702     if (&LI == I) return true;
   3703     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
   3704   }
   3705   llvm_unreachable("Instruction not contained in its own parent basic block.");
   3706 }
   3707 
   3708 bool llvm::propagatesFullPoison(const Instruction *I) {
   3709   switch (I->getOpcode()) {
   3710     case Instruction::Add:
   3711     case Instruction::Sub:
   3712     case Instruction::Xor:
   3713     case Instruction::Trunc:
   3714     case Instruction::BitCast:
   3715     case Instruction::AddrSpaceCast:
   3716       // These operations all propagate poison unconditionally. Note that poison
   3717       // is not any particular value, so xor or subtraction of poison with
   3718       // itself still yields poison, not zero.
   3719       return true;
   3720 
   3721     case Instruction::AShr:
   3722     case Instruction::SExt:
   3723       // For these operations, one bit of the input is replicated across
   3724       // multiple output bits. A replicated poison bit is still poison.
   3725       return true;
   3726 
   3727     case Instruction::Shl: {
   3728       // Left shift *by* a poison value is poison. The number of
   3729       // positions to shift is unsigned, so no negative values are
   3730       // possible there. Left shift by zero places preserves poison. So
   3731       // it only remains to consider left shift of poison by a positive
   3732       // number of places.
   3733       //
   3734       // A left shift by a positive number of places leaves the lowest order bit
   3735       // non-poisoned. However, if such a shift has a no-wrap flag, then we can
   3736       // make the poison operand violate that flag, yielding a fresh full-poison
   3737       // value.
   3738       auto *OBO = cast<OverflowingBinaryOperator>(I);
   3739       return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
   3740     }
   3741 
   3742     case Instruction::Mul: {
   3743       // A multiplication by zero yields a non-poison zero result, so we need to
   3744       // rule out zero as an operand. Conservatively, multiplication by a
   3745       // non-zero constant is not multiplication by zero.
   3746       //
   3747       // Multiplication by a non-zero constant can leave some bits
   3748       // non-poisoned. For example, a multiplication by 2 leaves the lowest
   3749       // order bit unpoisoned. So we need to consider that.
   3750       //
   3751       // Multiplication by 1 preserves poison. If the multiplication has a
   3752       // no-wrap flag, then we can make the poison operand violate that flag
   3753       // when multiplied by any integer other than 0 and 1.
   3754       auto *OBO = cast<OverflowingBinaryOperator>(I);
   3755       if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
   3756         for (Value *V : OBO->operands()) {
   3757           if (auto *CI = dyn_cast<ConstantInt>(V)) {
   3758             // A ConstantInt cannot yield poison, so we can assume that it is
   3759             // the other operand that is poison.
   3760             return !CI->isZero();
   3761           }
   3762         }
   3763       }
   3764       return false;
   3765     }
   3766 
   3767     case Instruction::GetElementPtr:
   3768       // A GEP implicitly represents a sequence of additions, subtractions,
   3769       // truncations, sign extensions and multiplications. The multiplications
   3770       // are by the non-zero sizes of some set of types, so we do not have to be
   3771       // concerned with multiplication by zero. If the GEP is in-bounds, then
   3772       // these operations are implicitly no-signed-wrap so poison is propagated
   3773       // by the arguments above for Add, Sub, Trunc, SExt and Mul.
   3774       return cast<GEPOperator>(I)->isInBounds();
   3775 
   3776     default:
   3777       return false;
   3778   }
   3779 }
   3780 
   3781 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
   3782   switch (I->getOpcode()) {
   3783     case Instruction::Store:
   3784       return cast<StoreInst>(I)->getPointerOperand();
   3785 
   3786     case Instruction::Load:
   3787       return cast<LoadInst>(I)->getPointerOperand();
   3788 
   3789     case Instruction::AtomicCmpXchg:
   3790       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
   3791 
   3792     case Instruction::AtomicRMW:
   3793       return cast<AtomicRMWInst>(I)->getPointerOperand();
   3794 
   3795     case Instruction::UDiv:
   3796     case Instruction::SDiv:
   3797     case Instruction::URem:
   3798     case Instruction::SRem:
   3799       return I->getOperand(1);
   3800 
   3801     default:
   3802       return nullptr;
   3803   }
   3804 }
   3805 
   3806 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
   3807   // We currently only look for uses of poison values within the same basic
   3808   // block, as that makes it easier to guarantee that the uses will be
   3809   // executed given that PoisonI is executed.
   3810   //
   3811   // FIXME: Expand this to consider uses beyond the same basic block. To do
   3812   // this, look out for the distinction between post-dominance and strong
   3813   // post-dominance.
   3814   const BasicBlock *BB = PoisonI->getParent();
   3815 
   3816   // Set of instructions that we have proved will yield poison if PoisonI
   3817   // does.
   3818   SmallSet<const Value *, 16> YieldsPoison;
   3819   YieldsPoison.insert(PoisonI);
   3820 
   3821   for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end();
   3822        I != E; ++I) {
   3823     if (&*I != PoisonI) {
   3824       const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I);
   3825       if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true;
   3826       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
   3827         return false;
   3828     }
   3829 
   3830     // Mark poison that propagates from I through uses of I.
   3831     if (YieldsPoison.count(&*I)) {
   3832       for (const User *User : I->users()) {
   3833         const Instruction *UserI = cast<Instruction>(User);
   3834         if (UserI->getParent() == BB && propagatesFullPoison(UserI))
   3835           YieldsPoison.insert(User);
   3836       }
   3837     }
   3838   }
   3839   return false;
   3840 }
   3841 
   3842 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
   3843   if (FMF.noNaNs())
   3844     return true;
   3845 
   3846   if (auto *C = dyn_cast<ConstantFP>(V))
   3847     return !C->isNaN();
   3848   return false;
   3849 }
   3850 
   3851 static bool isKnownNonZero(Value *V) {
   3852   if (auto *C = dyn_cast<ConstantFP>(V))
   3853     return !C->isZero();
   3854   return false;
   3855 }
   3856 
   3857 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
   3858                                               FastMathFlags FMF,
   3859                                               Value *CmpLHS, Value *CmpRHS,
   3860                                               Value *TrueVal, Value *FalseVal,
   3861                                               Value *&LHS, Value *&RHS) {
   3862   LHS = CmpLHS;
   3863   RHS = CmpRHS;
   3864 
   3865   // If the predicate is an "or-equal"  (FP) predicate, then signed zeroes may
   3866   // return inconsistent results between implementations.
   3867   //   (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
   3868   //   minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
   3869   // Therefore we behave conservatively and only proceed if at least one of the
   3870   // operands is known to not be zero, or if we don't care about signed zeroes.
   3871   switch (Pred) {
   3872   default: break;
   3873   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
   3874   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
   3875     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
   3876         !isKnownNonZero(CmpRHS))
   3877       return {SPF_UNKNOWN, SPNB_NA, false};
   3878   }
   3879 
   3880   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
   3881   bool Ordered = false;
   3882 
   3883   // When given one NaN and one non-NaN input:
   3884   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
   3885   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
   3886   //     ordered comparison fails), which could be NaN or non-NaN.
   3887   // so here we discover exactly what NaN behavior is required/accepted.
   3888   if (CmpInst::isFPPredicate(Pred)) {
   3889     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
   3890     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
   3891 
   3892     if (LHSSafe && RHSSafe) {
   3893       // Both operands are known non-NaN.
   3894       NaNBehavior = SPNB_RETURNS_ANY;
   3895     } else if (CmpInst::isOrdered(Pred)) {
   3896       // An ordered comparison will return false when given a NaN, so it
   3897       // returns the RHS.
   3898       Ordered = true;
   3899       if (LHSSafe)
   3900         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
   3901         NaNBehavior = SPNB_RETURNS_NAN;
   3902       else if (RHSSafe)
   3903         NaNBehavior = SPNB_RETURNS_OTHER;
   3904       else
   3905         // Completely unsafe.
   3906         return {SPF_UNKNOWN, SPNB_NA, false};
   3907     } else {
   3908       Ordered = false;
   3909       // An unordered comparison will return true when given a NaN, so it
   3910       // returns the LHS.
   3911       if (LHSSafe)
   3912         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
   3913         NaNBehavior = SPNB_RETURNS_OTHER;
   3914       else if (RHSSafe)
   3915         NaNBehavior = SPNB_RETURNS_NAN;
   3916       else
   3917         // Completely unsafe.
   3918         return {SPF_UNKNOWN, SPNB_NA, false};
   3919     }
   3920   }
   3921 
   3922   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
   3923     std::swap(CmpLHS, CmpRHS);
   3924     Pred = CmpInst::getSwappedPredicate(Pred);
   3925     if (NaNBehavior == SPNB_RETURNS_NAN)
   3926       NaNBehavior = SPNB_RETURNS_OTHER;
   3927     else if (NaNBehavior == SPNB_RETURNS_OTHER)
   3928       NaNBehavior = SPNB_RETURNS_NAN;
   3929     Ordered = !Ordered;
   3930   }
   3931 
   3932   // ([if]cmp X, Y) ? X : Y
   3933   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
   3934     switch (Pred) {
   3935     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
   3936     case ICmpInst::ICMP_UGT:
   3937     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
   3938     case ICmpInst::ICMP_SGT:
   3939     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
   3940     case ICmpInst::ICMP_ULT:
   3941     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
   3942     case ICmpInst::ICMP_SLT:
   3943     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
   3944     case FCmpInst::FCMP_UGT:
   3945     case FCmpInst::FCMP_UGE:
   3946     case FCmpInst::FCMP_OGT:
   3947     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
   3948     case FCmpInst::FCMP_ULT:
   3949     case FCmpInst::FCMP_ULE:
   3950     case FCmpInst::FCMP_OLT:
   3951     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
   3952     }
   3953   }
   3954 
   3955   if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
   3956     if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
   3957         (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
   3958 
   3959       // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
   3960       // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
   3961       if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
   3962         return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
   3963       }
   3964 
   3965       // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
   3966       // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
   3967       if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
   3968         return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
   3969       }
   3970     }
   3971 
   3972     // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
   3973     if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
   3974       if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() &&
   3975           (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
   3976            match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
   3977         LHS = TrueVal;
   3978         RHS = FalseVal;
   3979         return {SPF_SMIN, SPNB_NA, false};
   3980       }
   3981     }
   3982   }
   3983 
   3984   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
   3985 
   3986   return {SPF_UNKNOWN, SPNB_NA, false};
   3987 }
   3988 
   3989 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
   3990                               Instruction::CastOps *CastOp) {
   3991   CastInst *CI = dyn_cast<CastInst>(V1);
   3992   Constant *C = dyn_cast<Constant>(V2);
   3993   CastInst *CI2 = dyn_cast<CastInst>(V2);
   3994   if (!CI)
   3995     return nullptr;
   3996   *CastOp = CI->getOpcode();
   3997 
   3998   if (CI2) {
   3999     // If V1 and V2 are both the same cast from the same type, we can look
   4000     // through V1.
   4001     if (CI2->getOpcode() == CI->getOpcode() &&
   4002         CI2->getSrcTy() == CI->getSrcTy())
   4003       return CI2->getOperand(0);
   4004     return nullptr;
   4005   } else if (!C) {
   4006     return nullptr;
   4007   }
   4008 
   4009   if (isa<SExtInst>(CI) && CmpI->isSigned()) {
   4010     Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy());
   4011     // This is only valid if the truncated value can be sign-extended
   4012     // back to the original value.
   4013     if (ConstantExpr::getSExt(T, C->getType()) == C)
   4014       return T;
   4015     return nullptr;
   4016   }
   4017   if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
   4018     return ConstantExpr::getTrunc(C, CI->getSrcTy());
   4019 
   4020   if (isa<TruncInst>(CI))
   4021     return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
   4022 
   4023   if (isa<FPToUIInst>(CI))
   4024     return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
   4025 
   4026   if (isa<FPToSIInst>(CI))
   4027     return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
   4028 
   4029   if (isa<UIToFPInst>(CI))
   4030     return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
   4031 
   4032   if (isa<SIToFPInst>(CI))
   4033     return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
   4034 
   4035   if (isa<FPTruncInst>(CI))
   4036     return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
   4037 
   4038   if (isa<FPExtInst>(CI))
   4039     return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
   4040 
   4041   return nullptr;
   4042 }
   4043 
   4044 SelectPatternResult llvm::matchSelectPattern(Value *V,
   4045                                              Value *&LHS, Value *&RHS,
   4046                                              Instruction::CastOps *CastOp) {
   4047   SelectInst *SI = dyn_cast<SelectInst>(V);
   4048   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
   4049 
   4050   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
   4051   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
   4052 
   4053   CmpInst::Predicate Pred = CmpI->getPredicate();
   4054   Value *CmpLHS = CmpI->getOperand(0);
   4055   Value *CmpRHS = CmpI->getOperand(1);
   4056   Value *TrueVal = SI->getTrueValue();
   4057   Value *FalseVal = SI->getFalseValue();
   4058   FastMathFlags FMF;
   4059   if (isa<FPMathOperator>(CmpI))
   4060     FMF = CmpI->getFastMathFlags();
   4061 
   4062   // Bail out early.
   4063   if (CmpI->isEquality())
   4064     return {SPF_UNKNOWN, SPNB_NA, false};
   4065 
   4066   // Deal with type mismatches.
   4067   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
   4068     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
   4069       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
   4070                                   cast<CastInst>(TrueVal)->getOperand(0), C,
   4071                                   LHS, RHS);
   4072     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
   4073       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
   4074                                   C, cast<CastInst>(FalseVal)->getOperand(0),
   4075                                   LHS, RHS);
   4076   }
   4077   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
   4078                               LHS, RHS);
   4079 }
   4080 
   4081 ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
   4082   const unsigned NumRanges = Ranges.getNumOperands() / 2;
   4083   assert(NumRanges >= 1 && "Must have at least one range!");
   4084   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
   4085 
   4086   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
   4087   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
   4088 
   4089   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
   4090 
   4091   for (unsigned i = 1; i < NumRanges; ++i) {
   4092     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
   4093     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
   4094 
   4095     // Note: unionWith will potentially create a range that contains values not
   4096     // contained in any of the original N ranges.
   4097     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
   4098   }
   4099 
   4100   return CR;
   4101 }
   4102 
   4103 /// Return true if "icmp Pred LHS RHS" is always true.
   4104 static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
   4105                             const DataLayout &DL, unsigned Depth,
   4106                             AssumptionCache *AC, const Instruction *CxtI,
   4107                             const DominatorTree *DT) {
   4108   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
   4109   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
   4110     return true;
   4111 
   4112   switch (Pred) {
   4113   default:
   4114     return false;
   4115 
   4116   case CmpInst::ICMP_SLE: {
   4117     const APInt *C;
   4118 
   4119     // LHS s<= LHS +_{nsw} C   if C >= 0
   4120     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
   4121       return !C->isNegative();
   4122     return false;
   4123   }
   4124 
   4125   case CmpInst::ICMP_ULE: {
   4126     const APInt *C;
   4127 
   4128     // LHS u<= LHS +_{nuw} C   for any C
   4129     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
   4130       return true;
   4131 
   4132     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
   4133     auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
   4134                                        const APInt *&CA, const APInt *&CB) {
   4135       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
   4136           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
   4137         return true;
   4138 
   4139       // If X & C == 0 then (X | C) == X +_{nuw} C
   4140       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
   4141           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
   4142         unsigned BitWidth = CA->getBitWidth();
   4143         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
   4144         computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
   4145 
   4146         if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
   4147           return true;
   4148       }
   4149 
   4150       return false;
   4151     };
   4152 
   4153     Value *X;
   4154     const APInt *CLHS, *CRHS;
   4155     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
   4156       return CLHS->ule(*CRHS);
   4157 
   4158     return false;
   4159   }
   4160   }
   4161 }
   4162 
   4163 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
   4164 /// ALHS ARHS" is true.
   4165 static bool isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS,
   4166                                   Value *ARHS, Value *BLHS, Value *BRHS,
   4167                                   const DataLayout &DL, unsigned Depth,
   4168                                   AssumptionCache *AC, const Instruction *CxtI,
   4169                                   const DominatorTree *DT) {
   4170   switch (Pred) {
   4171   default:
   4172     return false;
   4173 
   4174   case CmpInst::ICMP_SLT:
   4175   case CmpInst::ICMP_SLE:
   4176     return isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
   4177                            DT) &&
   4178            isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI,
   4179                            DT);
   4180 
   4181   case CmpInst::ICMP_ULT:
   4182   case CmpInst::ICMP_ULE:
   4183     return isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
   4184                            DT) &&
   4185            isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI,
   4186                            DT);
   4187   }
   4188 }
   4189 
   4190 bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL,
   4191                               unsigned Depth, AssumptionCache *AC,
   4192                               const Instruction *CxtI,
   4193                               const DominatorTree *DT) {
   4194   assert(LHS->getType() == RHS->getType() && "mismatched type");
   4195   Type *OpTy = LHS->getType();
   4196   assert(OpTy->getScalarType()->isIntegerTy(1));
   4197 
   4198   // LHS ==> RHS by definition
   4199   if (LHS == RHS) return true;
   4200 
   4201   if (OpTy->isVectorTy())
   4202     // TODO: extending the code below to handle vectors
   4203     return false;
   4204   assert(OpTy->isIntegerTy(1) && "implied by above");
   4205 
   4206   ICmpInst::Predicate APred, BPred;
   4207   Value *ALHS, *ARHS;
   4208   Value *BLHS, *BRHS;
   4209 
   4210   if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
   4211       !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
   4212     return false;
   4213 
   4214   if (APred == BPred)
   4215     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
   4216                                  CxtI, DT);
   4217 
   4218   return false;
   4219 }
   4220