1 /* 2 * Copyright 2012 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24 #include "main/teximage.h" 25 #include "main/fbobject.h" 26 27 #include "glsl/ralloc.h" 28 29 #include "intel_fbo.h" 30 31 #include "brw_blorp.h" 32 #include "brw_context.h" 33 #include "brw_eu.h" 34 #include "brw_state.h" 35 36 37 /** 38 * Helper function for handling mirror image blits. 39 * 40 * If coord0 > coord1, swap them and invert the "mirror" boolean. 41 */ 42 static inline void 43 fixup_mirroring(bool &mirror, GLint &coord0, GLint &coord1) 44 { 45 if (coord0 > coord1) { 46 mirror = !mirror; 47 GLint tmp = coord0; 48 coord0 = coord1; 49 coord1 = tmp; 50 } 51 } 52 53 54 /** 55 * Adjust {src,dst}_x{0,1} to account for clipping and scissoring of 56 * destination coordinates. 57 * 58 * Return true if there is still blitting to do, false if all pixels got 59 * rejected by the clip and/or scissor. 60 * 61 * For clarity, the nomenclature of this function assumes we are clipping and 62 * scissoring the X coordinate; the exact same logic applies for Y 63 * coordinates. 64 * 65 * Note: this function may also be used to account for clipping of source 66 * coordinates, by swapping the roles of src and dst. 67 */ 68 static inline bool 69 clip_or_scissor(bool mirror, GLint &src_x0, GLint &src_x1, GLint &dst_x0, 70 GLint &dst_x1, GLint fb_xmin, GLint fb_xmax) 71 { 72 /* If we are going to scissor everything away, stop. */ 73 if (!(fb_xmin < fb_xmax && 74 dst_x0 < fb_xmax && 75 fb_xmin < dst_x1 && 76 dst_x0 < dst_x1)) { 77 return false; 78 } 79 80 /* Clip the destination rectangle, and keep track of how many pixels we 81 * clipped off of the left and right sides of it. 82 */ 83 GLint pixels_clipped_left = 0; 84 GLint pixels_clipped_right = 0; 85 if (dst_x0 < fb_xmin) { 86 pixels_clipped_left = fb_xmin - dst_x0; 87 dst_x0 = fb_xmin; 88 } 89 if (fb_xmax < dst_x1) { 90 pixels_clipped_right = dst_x1 - fb_xmax; 91 dst_x1 = fb_xmax; 92 } 93 94 /* If we are mirrored, then before applying pixels_clipped_{left,right} to 95 * the source coordinates, we need to flip them to account for the 96 * mirroring. 97 */ 98 if (mirror) { 99 GLint tmp = pixels_clipped_left; 100 pixels_clipped_left = pixels_clipped_right; 101 pixels_clipped_right = tmp; 102 } 103 104 /* Adjust the source rectangle to remove the pixels corresponding to those 105 * that were clipped/scissored out of the destination rectangle. 106 */ 107 src_x0 += pixels_clipped_left; 108 src_x1 -= pixels_clipped_right; 109 110 return true; 111 } 112 113 114 static struct intel_mipmap_tree * 115 find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb) 116 { 117 struct intel_mipmap_tree *mt = irb->mt; 118 if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt) 119 mt = mt->stencil_mt; 120 return mt; 121 } 122 123 void 124 brw_blorp_blit_miptrees(struct intel_context *intel, 125 struct intel_mipmap_tree *src_mt, 126 unsigned src_level, unsigned src_layer, 127 struct intel_mipmap_tree *dst_mt, 128 unsigned dst_level, unsigned dst_layer, 129 int src_x0, int src_y0, 130 int dst_x0, int dst_y0, 131 int dst_x1, int dst_y1, 132 bool mirror_x, bool mirror_y) 133 { 134 brw_blorp_blit_params params(brw_context(&intel->ctx), 135 src_mt, src_level, src_layer, 136 dst_mt, dst_level, dst_layer, 137 src_x0, src_y0, 138 dst_x0, dst_y0, 139 dst_x1, dst_y1, 140 mirror_x, mirror_y); 141 brw_blorp_exec(intel, ¶ms); 142 } 143 144 static void 145 do_blorp_blit(struct intel_context *intel, GLbitfield buffer_bit, 146 struct intel_renderbuffer *src_irb, 147 struct intel_renderbuffer *dst_irb, 148 GLint srcX0, GLint srcY0, 149 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, 150 bool mirror_x, bool mirror_y) 151 { 152 /* Find source/dst miptrees */ 153 struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb); 154 struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb); 155 156 /* Get ready to blit. This includes depth resolving the src and dst 157 * buffers if necessary. 158 */ 159 intel_renderbuffer_resolve_depth(intel, src_irb); 160 intel_renderbuffer_resolve_depth(intel, dst_irb); 161 162 /* Do the blit */ 163 brw_blorp_blit_miptrees(intel, 164 src_mt, src_irb->mt_level, src_irb->mt_layer, 165 dst_mt, dst_irb->mt_level, dst_irb->mt_layer, 166 srcX0, srcY0, dstX0, dstY0, dstX1, dstY1, 167 mirror_x, mirror_y); 168 169 intel_renderbuffer_set_needs_hiz_resolve(dst_irb); 170 intel_renderbuffer_set_needs_downsample(dst_irb); 171 } 172 173 174 static bool 175 formats_match(GLbitfield buffer_bit, struct intel_renderbuffer *src_irb, 176 struct intel_renderbuffer *dst_irb) 177 { 178 /* Note: don't just check gl_renderbuffer::Format, because in some cases 179 * multiple gl_formats resolve to the same native type in the miptree (for 180 * example MESA_FORMAT_X8_Z24 and MESA_FORMAT_S8_Z24), and we can blit 181 * between those formats. 182 */ 183 gl_format src_format = find_miptree(buffer_bit, src_irb)->format; 184 gl_format dst_format = find_miptree(buffer_bit, dst_irb)->format; 185 186 return _mesa_get_srgb_format_linear(src_format) == 187 _mesa_get_srgb_format_linear(dst_format); 188 } 189 190 191 static bool 192 try_blorp_blit(struct intel_context *intel, 193 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, 194 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, 195 GLenum filter, GLbitfield buffer_bit) 196 { 197 struct gl_context *ctx = &intel->ctx; 198 199 /* Sync up the state of window system buffers. We need to do this before 200 * we go looking for the buffers. 201 */ 202 intel_prepare_render(intel); 203 204 const struct gl_framebuffer *read_fb = ctx->ReadBuffer; 205 const struct gl_framebuffer *draw_fb = ctx->DrawBuffer; 206 207 /* Detect if the blit needs to be mirrored */ 208 bool mirror_x = false, mirror_y = false; 209 fixup_mirroring(mirror_x, srcX0, srcX1); 210 fixup_mirroring(mirror_x, dstX0, dstX1); 211 fixup_mirroring(mirror_y, srcY0, srcY1); 212 fixup_mirroring(mirror_y, dstY0, dstY1); 213 214 /* Make sure width and height match */ 215 if (srcX1 - srcX0 != dstX1 - dstX0) return false; 216 if (srcY1 - srcY0 != dstY1 - dstY0) return false; 217 218 /* If the destination rectangle needs to be clipped or scissored, do so. 219 */ 220 if (!(clip_or_scissor(mirror_x, srcX0, srcX1, dstX0, dstX1, 221 draw_fb->_Xmin, draw_fb->_Xmax) && 222 clip_or_scissor(mirror_y, srcY0, srcY1, dstY0, dstY1, 223 draw_fb->_Ymin, draw_fb->_Ymax))) { 224 /* Everything got clipped/scissored away, so the blit was successful. */ 225 return true; 226 } 227 228 /* If the source rectangle needs to be clipped or scissored, do so. */ 229 if (!(clip_or_scissor(mirror_x, dstX0, dstX1, srcX0, srcX1, 230 0, read_fb->Width) && 231 clip_or_scissor(mirror_y, dstY0, dstY1, srcY0, srcY1, 232 0, read_fb->Height))) { 233 /* Everything got clipped/scissored away, so the blit was successful. */ 234 return true; 235 } 236 237 /* Account for the fact that in the system framebuffer, the origin is at 238 * the lower left. 239 */ 240 if (_mesa_is_winsys_fbo(read_fb)) { 241 GLint tmp = read_fb->Height - srcY0; 242 srcY0 = read_fb->Height - srcY1; 243 srcY1 = tmp; 244 mirror_y = !mirror_y; 245 } 246 if (_mesa_is_winsys_fbo(draw_fb)) { 247 GLint tmp = draw_fb->Height - dstY0; 248 dstY0 = draw_fb->Height - dstY1; 249 dstY1 = tmp; 250 mirror_y = !mirror_y; 251 } 252 253 /* Find buffers */ 254 struct intel_renderbuffer *src_irb; 255 struct intel_renderbuffer *dst_irb; 256 switch (buffer_bit) { 257 case GL_COLOR_BUFFER_BIT: 258 src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer); 259 for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) { 260 dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]); 261 if (dst_irb && !formats_match(buffer_bit, src_irb, dst_irb)) 262 return false; 263 } 264 for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) { 265 dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]); 266 do_blorp_blit(intel, buffer_bit, src_irb, dst_irb, srcX0, srcY0, 267 dstX0, dstY0, dstX1, dstY1, mirror_x, mirror_y); 268 } 269 break; 270 case GL_DEPTH_BUFFER_BIT: 271 src_irb = 272 intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer); 273 dst_irb = 274 intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer); 275 if (!formats_match(buffer_bit, src_irb, dst_irb)) 276 return false; 277 do_blorp_blit(intel, buffer_bit, src_irb, dst_irb, srcX0, srcY0, 278 dstX0, dstY0, dstX1, dstY1, mirror_x, mirror_y); 279 break; 280 case GL_STENCIL_BUFFER_BIT: 281 src_irb = 282 intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer); 283 dst_irb = 284 intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer); 285 if (!formats_match(buffer_bit, src_irb, dst_irb)) 286 return false; 287 do_blorp_blit(intel, buffer_bit, src_irb, dst_irb, srcX0, srcY0, 288 dstX0, dstY0, dstX1, dstY1, mirror_x, mirror_y); 289 break; 290 default: 291 assert(false); 292 } 293 294 return true; 295 } 296 297 GLbitfield 298 brw_blorp_framebuffer(struct intel_context *intel, 299 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, 300 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, 301 GLbitfield mask, GLenum filter) 302 { 303 /* BLORP is not supported before Gen6. */ 304 if (intel->gen < 6) 305 return mask; 306 307 static GLbitfield buffer_bits[] = { 308 GL_COLOR_BUFFER_BIT, 309 GL_DEPTH_BUFFER_BIT, 310 GL_STENCIL_BUFFER_BIT, 311 }; 312 313 for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) { 314 if ((mask & buffer_bits[i]) && 315 try_blorp_blit(intel, 316 srcX0, srcY0, srcX1, srcY1, 317 dstX0, dstY0, dstX1, dstY1, 318 filter, buffer_bits[i])) { 319 mask &= ~buffer_bits[i]; 320 } 321 } 322 323 return mask; 324 } 325 326 327 /** 328 * Enum to specify the order of arguments in a sampler message 329 */ 330 enum sampler_message_arg 331 { 332 SAMPLER_MESSAGE_ARG_U_FLOAT, 333 SAMPLER_MESSAGE_ARG_V_FLOAT, 334 SAMPLER_MESSAGE_ARG_U_INT, 335 SAMPLER_MESSAGE_ARG_V_INT, 336 SAMPLER_MESSAGE_ARG_SI_INT, 337 SAMPLER_MESSAGE_ARG_MCS_INT, 338 SAMPLER_MESSAGE_ARG_ZERO_INT, 339 }; 340 341 /** 342 * Generator for WM programs used in BLORP blits. 343 * 344 * The bulk of the work done by the WM program is to wrap and unwrap the 345 * coordinate transformations used by the hardware to store surfaces in 346 * memory. The hardware transforms a pixel location (X, Y, S) (where S is the 347 * sample index for a multisampled surface) to a memory offset by the 348 * following formulas: 349 * 350 * offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S)) 351 * (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset)) 352 * 353 * For a single-sampled surface, or for a multisampled surface using 354 * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity 355 * function: 356 * 357 * encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0) 358 * decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0) 359 * encode_msaa(n, UMS, X, Y, S) = (X, Y, S) 360 * decode_msaa(n, UMS, X, Y, S) = (X, Y, S) 361 * 362 * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa() 363 * embeds the sample number into bit 1 of the X and Y coordinates: 364 * 365 * encode_msaa(4, IMS, X, Y, S) = (X', Y', 0) 366 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1) 367 * Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1) 368 * decode_msaa(4, IMS, X, Y, 0) = (X', Y', S) 369 * where X' = (X & ~0b11) >> 1 | (X & 0b1) 370 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1) 371 * S = (Y & 0b10) | (X & 0b10) >> 1 372 * 373 * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa() 374 * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of 375 * the Y coordinate: 376 * 377 * encode_msaa(8, IMS, X, Y, S) = (X', Y', 0) 378 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1) 379 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1) 380 * decode_msaa(8, IMS, X, Y, 0) = (X', Y', S) 381 * where X' = (X & ~0b111) >> 2 | (X & 0b1) 382 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1) 383 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1 384 * 385 * For X tiling, tile() combines together the low-order bits of the X and Y 386 * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512 387 * bytes wide and 8 rows high: 388 * 389 * tile(x_tiled, X, Y, S) = A 390 * where A = tile_num << 12 | offset 391 * tile_num = (Y' >> 3) * tile_pitch + (X' >> 9) 392 * offset = (Y' & 0b111) << 9 393 * | (X & 0b111111111) 394 * X' = X * cpp 395 * Y' = Y + S * qpitch 396 * detile(x_tiled, A) = (X, Y, S) 397 * where X = X' / cpp 398 * Y = Y' % qpitch 399 * S = Y' / qpitch 400 * Y' = (tile_num / tile_pitch) << 3 401 * | (A & 0b111000000000) >> 9 402 * X' = (tile_num % tile_pitch) << 9 403 * | (A & 0b111111111) 404 * 405 * (In all tiling formulas, cpp is the number of bytes occupied by a single 406 * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required 407 * to fill the width of the surface, and qpitch is the spacing (in rows) 408 * between array slices). 409 * 410 * For Y tiling, tile() combines together the low-order bits of the X and Y 411 * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128 412 * bytes wide and 32 rows high: 413 * 414 * tile(y_tiled, X, Y, S) = A 415 * where A = tile_num << 12 | offset 416 * tile_num = (Y' >> 5) * tile_pitch + (X' >> 7) 417 * offset = (X' & 0b1110000) << 5 418 * | (Y' & 0b11111) << 4 419 * | (X' & 0b1111) 420 * X' = X * cpp 421 * Y' = Y + S * qpitch 422 * detile(y_tiled, A) = (X, Y, S) 423 * where X = X' / cpp 424 * Y = Y' % qpitch 425 * S = Y' / qpitch 426 * Y' = (tile_num / tile_pitch) << 5 427 * | (A & 0b111110000) >> 4 428 * X' = (tile_num % tile_pitch) << 7 429 * | (A & 0b111000000000) >> 5 430 * | (A & 0b1111) 431 * 432 * For W tiling, tile() combines together the low-order bits of the X and Y 433 * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64 434 * bytes wide and 64 rows high (note that W tiling is only used for stencil 435 * buffers, which always have cpp = 1 and S=0): 436 * 437 * tile(w_tiled, X, Y, S) = A 438 * where A = tile_num << 12 | offset 439 * tile_num = (Y' >> 6) * tile_pitch + (X' >> 6) 440 * offset = (X' & 0b111000) << 6 441 * | (Y' & 0b111100) << 3 442 * | (X' & 0b100) << 2 443 * | (Y' & 0b10) << 2 444 * | (X' & 0b10) << 1 445 * | (Y' & 0b1) << 1 446 * | (X' & 0b1) 447 * X' = X * cpp = X 448 * Y' = Y + S * qpitch 449 * detile(w_tiled, A) = (X, Y, S) 450 * where X = X' / cpp = X' 451 * Y = Y' % qpitch = Y' 452 * S = Y / qpitch = 0 453 * Y' = (tile_num / tile_pitch) << 6 454 * | (A & 0b111100000) >> 3 455 * | (A & 0b1000) >> 2 456 * | (A & 0b10) >> 1 457 * X' = (tile_num % tile_pitch) << 6 458 * | (A & 0b111000000000) >> 6 459 * | (A & 0b10000) >> 2 460 * | (A & 0b100) >> 1 461 * | (A & 0b1) 462 * 463 * Finally, for a non-tiled surface, tile() simply combines together the X and 464 * Y coordinates in the natural way: 465 * 466 * tile(untiled, X, Y, S) = A 467 * where A = Y * pitch + X' 468 * X' = X * cpp 469 * Y' = Y + S * qpitch 470 * detile(untiled, A) = (X, Y, S) 471 * where X = X' / cpp 472 * Y = Y' % qpitch 473 * S = Y' / qpitch 474 * X' = A % pitch 475 * Y' = A / pitch 476 * 477 * (In these formulas, pitch is the number of bytes occupied by a single row 478 * of samples). 479 */ 480 class brw_blorp_blit_program 481 { 482 public: 483 brw_blorp_blit_program(struct brw_context *brw, 484 const brw_blorp_blit_prog_key *key); 485 ~brw_blorp_blit_program(); 486 487 const GLuint *compile(struct brw_context *brw, GLuint *program_size); 488 489 brw_blorp_prog_data prog_data; 490 491 private: 492 void alloc_regs(); 493 void alloc_push_const_regs(int base_reg); 494 void compute_frag_coords(); 495 void translate_tiling(bool old_tiled_w, bool new_tiled_w); 496 void encode_msaa(unsigned num_samples, intel_msaa_layout layout); 497 void decode_msaa(unsigned num_samples, intel_msaa_layout layout); 498 void kill_if_outside_dst_rect(); 499 void translate_dst_to_src(); 500 void single_to_blend(); 501 void manual_blend(unsigned num_samples); 502 void sample(struct brw_reg dst); 503 void texel_fetch(struct brw_reg dst); 504 void mcs_fetch(); 505 void expand_to_32_bits(struct brw_reg src, struct brw_reg dst); 506 void texture_lookup(struct brw_reg dst, GLuint msg_type, 507 const sampler_message_arg *args, int num_args); 508 void render_target_write(); 509 510 /** 511 * Base-2 logarithm of the maximum number of samples that can be blended. 512 */ 513 static const unsigned LOG2_MAX_BLEND_SAMPLES = 3; 514 515 void *mem_ctx; 516 struct brw_context *brw; 517 const brw_blorp_blit_prog_key *key; 518 struct brw_compile func; 519 520 /* Thread dispatch header */ 521 struct brw_reg R0; 522 523 /* Pixel X/Y coordinates (always in R1). */ 524 struct brw_reg R1; 525 526 /* Push constants */ 527 struct brw_reg dst_x0; 528 struct brw_reg dst_x1; 529 struct brw_reg dst_y0; 530 struct brw_reg dst_y1; 531 struct { 532 struct brw_reg multiplier; 533 struct brw_reg offset; 534 } x_transform, y_transform; 535 536 /* Data read from texture (4 vec16's per array element) */ 537 struct brw_reg texture_data[LOG2_MAX_BLEND_SAMPLES + 1]; 538 539 /* Auxiliary storage for the contents of the MCS surface. 540 * 541 * Since the sampler always returns 8 registers worth of data, this is 8 542 * registers wide, even though we only use the first 2 registers of it. 543 */ 544 struct brw_reg mcs_data; 545 546 /* X coordinates. We have two of them so that we can perform coordinate 547 * transformations easily. 548 */ 549 struct brw_reg x_coords[2]; 550 551 /* Y coordinates. We have two of them so that we can perform coordinate 552 * transformations easily. 553 */ 554 struct brw_reg y_coords[2]; 555 556 /* Which element of x_coords and y_coords is currently in use. 557 */ 558 int xy_coord_index; 559 560 /* True if, at the point in the program currently being compiled, the 561 * sample index is known to be zero. 562 */ 563 bool s_is_zero; 564 565 /* Register storing the sample index when s_is_zero is false. */ 566 struct brw_reg sample_index; 567 568 /* Temporaries */ 569 struct brw_reg t1; 570 struct brw_reg t2; 571 572 /* MRF used for sampling and render target writes */ 573 GLuint base_mrf; 574 }; 575 576 brw_blorp_blit_program::brw_blorp_blit_program( 577 struct brw_context *brw, 578 const brw_blorp_blit_prog_key *key) 579 : mem_ctx(ralloc_context(NULL)), 580 brw(brw), 581 key(key) 582 { 583 brw_init_compile(brw, &func, mem_ctx); 584 } 585 586 brw_blorp_blit_program::~brw_blorp_blit_program() 587 { 588 ralloc_free(mem_ctx); 589 } 590 591 const GLuint * 592 brw_blorp_blit_program::compile(struct brw_context *brw, 593 GLuint *program_size) 594 { 595 /* Sanity checks */ 596 if (key->dst_tiled_w && key->rt_samples > 0) { 597 /* If the destination image is W tiled and multisampled, then the thread 598 * must be dispatched once per sample, not once per pixel. This is 599 * necessary because after conversion between W and Y tiling, there's no 600 * guarantee that all samples corresponding to a single pixel will still 601 * be together. 602 */ 603 assert(key->persample_msaa_dispatch); 604 } 605 606 if (key->blend) { 607 /* We are blending, which means we won't have an opportunity to 608 * translate the tiling and sample count for the texture surface. So 609 * the surface state for the texture must be configured with the correct 610 * tiling and sample count. 611 */ 612 assert(!key->src_tiled_w); 613 assert(key->tex_samples == key->src_samples); 614 assert(key->tex_layout == key->src_layout); 615 assert(key->tex_samples > 0); 616 } 617 618 if (key->persample_msaa_dispatch) { 619 /* It only makes sense to do persample dispatch if the render target is 620 * configured as multisampled. 621 */ 622 assert(key->rt_samples > 0); 623 } 624 625 /* Make sure layout is consistent with sample count */ 626 assert((key->tex_layout == INTEL_MSAA_LAYOUT_NONE) == 627 (key->tex_samples == 0)); 628 assert((key->rt_layout == INTEL_MSAA_LAYOUT_NONE) == 629 (key->rt_samples == 0)); 630 assert((key->src_layout == INTEL_MSAA_LAYOUT_NONE) == 631 (key->src_samples == 0)); 632 assert((key->dst_layout == INTEL_MSAA_LAYOUT_NONE) == 633 (key->dst_samples == 0)); 634 635 /* Set up prog_data */ 636 memset(&prog_data, 0, sizeof(prog_data)); 637 prog_data.persample_msaa_dispatch = key->persample_msaa_dispatch; 638 639 brw_set_compression_control(&func, BRW_COMPRESSION_NONE); 640 641 alloc_regs(); 642 compute_frag_coords(); 643 644 /* Render target and texture hardware don't support W tiling. */ 645 const bool rt_tiled_w = false; 646 const bool tex_tiled_w = false; 647 648 /* The address that data will be written to is determined by the 649 * coordinates supplied to the WM thread and the tiling and sample count of 650 * the render target, according to the formula: 651 * 652 * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset)) 653 * 654 * If the actual tiling and sample count of the destination surface are not 655 * the same as the configuration of the render target, then these 656 * coordinates are wrong and we have to adjust them to compensate for the 657 * difference. 658 */ 659 if (rt_tiled_w != key->dst_tiled_w || 660 key->rt_samples != key->dst_samples || 661 key->rt_layout != key->dst_layout) { 662 encode_msaa(key->rt_samples, key->rt_layout); 663 /* Now (X, Y, S) = detile(rt_tiling, offset) */ 664 translate_tiling(rt_tiled_w, key->dst_tiled_w); 665 /* Now (X, Y, S) = detile(dst_tiling, offset) */ 666 decode_msaa(key->dst_samples, key->dst_layout); 667 } 668 669 /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)). 670 * 671 * That is: X, Y and S now contain the true coordinates and sample index of 672 * the data that the WM thread should output. 673 * 674 * If we need to kill pixels that are outside the destination rectangle, 675 * now is the time to do it. 676 */ 677 678 if (key->use_kill) 679 kill_if_outside_dst_rect(); 680 681 /* Next, apply a translation to obtain coordinates in the source image. */ 682 translate_dst_to_src(); 683 684 /* If the source image is not multisampled, then we want to fetch sample 685 * number 0, because that's the only sample there is. 686 */ 687 if (key->src_samples == 0) 688 s_is_zero = true; 689 690 /* X, Y, and S are now the coordinates of the pixel in the source image 691 * that we want to texture from. Exception: if we are blending, then S is 692 * irrelevant, because we are going to fetch all samples. 693 */ 694 if (key->blend) { 695 if (brw->intel.gen == 6) { 696 /* Gen6 hardware an automatically blend using the SAMPLE message */ 697 single_to_blend(); 698 sample(texture_data[0]); 699 } else { 700 /* Gen7+ hardware doesn't automaticaly blend. */ 701 manual_blend(key->src_samples); 702 } 703 } else { 704 /* We aren't blending, which means we just want to fetch a single sample 705 * from the source surface. The address that we want to fetch from is 706 * related to the X, Y and S values according to the formula: 707 * 708 * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)). 709 * 710 * If the actual tiling and sample count of the source surface are not 711 * the same as the configuration of the texture, then we need to adjust 712 * the coordinates to compensate for the difference. 713 */ 714 if (tex_tiled_w != key->src_tiled_w || 715 key->tex_samples != key->src_samples || 716 key->tex_layout != key->src_layout) { 717 encode_msaa(key->src_samples, key->src_layout); 718 /* Now (X, Y, S) = detile(src_tiling, offset) */ 719 translate_tiling(key->src_tiled_w, tex_tiled_w); 720 /* Now (X, Y, S) = detile(tex_tiling, offset) */ 721 decode_msaa(key->tex_samples, key->tex_layout); 722 } 723 724 /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)). 725 * 726 * In other words: X, Y, and S now contain values which, when passed to 727 * the texturing unit, will cause data to be read from the correct 728 * memory location. So we can fetch the texel now. 729 */ 730 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS) 731 mcs_fetch(); 732 texel_fetch(texture_data[0]); 733 } 734 735 /* Finally, write the fetched (or blended) value to the render target and 736 * terminate the thread. 737 */ 738 render_target_write(); 739 return brw_get_program(&func, program_size); 740 } 741 742 void 743 brw_blorp_blit_program::alloc_push_const_regs(int base_reg) 744 { 745 #define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name) 746 #define ALLOC_REG(name) \ 747 this->name = \ 748 brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, base_reg, CONST_LOC(name) / 2) 749 750 ALLOC_REG(dst_x0); 751 ALLOC_REG(dst_x1); 752 ALLOC_REG(dst_y0); 753 ALLOC_REG(dst_y1); 754 ALLOC_REG(x_transform.multiplier); 755 ALLOC_REG(x_transform.offset); 756 ALLOC_REG(y_transform.multiplier); 757 ALLOC_REG(y_transform.offset); 758 #undef CONST_LOC 759 #undef ALLOC_REG 760 } 761 762 void 763 brw_blorp_blit_program::alloc_regs() 764 { 765 int reg = 0; 766 this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW); 767 this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW); 768 prog_data.first_curbe_grf = reg; 769 alloc_push_const_regs(reg); 770 reg += BRW_BLORP_NUM_PUSH_CONST_REGS; 771 for (unsigned i = 0; i < ARRAY_SIZE(texture_data); ++i) { 772 this->texture_data[i] = 773 retype(vec16(brw_vec8_grf(reg, 0)), key->texture_data_type); 774 reg += 8; 775 } 776 this->mcs_data = 777 retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 8; 778 for (int i = 0; i < 2; ++i) { 779 this->x_coords[i] 780 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW)); 781 this->y_coords[i] 782 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW)); 783 } 784 this->xy_coord_index = 0; 785 this->sample_index 786 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW)); 787 this->t1 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW)); 788 this->t2 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW)); 789 790 /* Make sure we didn't run out of registers */ 791 assert(reg <= GEN7_MRF_HACK_START); 792 793 int mrf = 2; 794 this->base_mrf = mrf; 795 } 796 797 /* In the code that follows, X and Y can be used to quickly refer to the 798 * active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y 799 * prime") to the inactive elements. 800 * 801 * S can be used to quickly refer to sample_index. 802 */ 803 #define X x_coords[xy_coord_index] 804 #define Y y_coords[xy_coord_index] 805 #define Xp x_coords[!xy_coord_index] 806 #define Yp y_coords[!xy_coord_index] 807 #define S sample_index 808 809 /* Quickly swap the roles of (X, Y) and (Xp, Yp). Saves us from having to do 810 * MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation. 811 */ 812 #define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index; 813 814 /** 815 * Emit code to compute the X and Y coordinates of the pixels being rendered 816 * by this WM invocation. 817 * 818 * Assuming the render target is set up for Y tiling, these (X, Y) values are 819 * related to the address offset where outputs will be written by the formula: 820 * 821 * (X, Y, S) = decode_msaa(detile(offset)). 822 * 823 * (See brw_blorp_blit_program). 824 */ 825 void 826 brw_blorp_blit_program::compute_frag_coords() 827 { 828 /* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0) 829 * R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4) 830 * R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8) 831 * R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12) 832 * 833 * Pixels within a subspan are laid out in this arrangement: 834 * 0 1 835 * 2 3 836 * 837 * So, to compute the coordinates of each pixel, we need to read every 2nd 838 * 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value 839 * (suboffset=4), and duplicate each value 4 times (hstride=0, width=4). 840 * In other words, the data we want to access is R1.4<2;4,0>UW. 841 * 842 * Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the 843 * result, since pixels n+1 and n+3 are in the right half of the subspan. 844 */ 845 brw_ADD(&func, X, stride(suboffset(R1, 4), 2, 4, 0), brw_imm_v(0x10101010)); 846 847 /* Similarly, Y coordinates for subspans come from R1.2[31:16] through 848 * R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th 849 * 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of 850 * R1.4<2;4,0>UW). 851 * 852 * And we need to add the repeating sequence (0, 0, 1, 1, ...), since 853 * pixels n+2 and n+3 are in the bottom half of the subspan. 854 */ 855 brw_ADD(&func, Y, stride(suboffset(R1, 5), 2, 4, 0), brw_imm_v(0x11001100)); 856 857 if (key->persample_msaa_dispatch) { 858 switch (key->rt_samples) { 859 case 4: 860 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 4. 861 * Therefore, subspan 0 will represent sample 0, subspan 1 will 862 * represent sample 1, and so on. 863 * 864 * So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1, 865 * 1, 2, 2, 2, 2, 3, 3, 3, 3). The easiest way to do this is to 866 * populate a temporary variable with the sequence (0, 1, 2, 3), and 867 * then copy from it using vstride=1, width=4, hstride=0. 868 */ 869 brw_MOV(&func, t1, brw_imm_v(0x3210)); 870 brw_MOV(&func, S, stride(t1, 1, 4, 0)); 871 break; 872 case 8: { 873 /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 8. 874 * Therefore, subspan 0 will represent sample N (where N is 0 or 4), 875 * subspan 1 will represent sample 1, and so on. We can find the 876 * value of N by looking at R0.0 bits 7:6 ("Starting Sample Pair 877 * Index") and multiplying by two (since samples are always delivered 878 * in pairs). That is, we compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 879 * 0xc0) >> 5. 880 * 881 * Then we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 882 * 2, 2, 2, 3, 3, 3, 3), which we compute by populating a temporary 883 * variable with the sequence (0, 1, 2, 3), and then reading from it 884 * using vstride=1, width=4, hstride=0. 885 */ 886 struct brw_reg t1_ud1 = vec1(retype(t1, BRW_REGISTER_TYPE_UD)); 887 struct brw_reg r0_ud1 = vec1(retype(R0, BRW_REGISTER_TYPE_UD)); 888 brw_AND(&func, t1_ud1, r0_ud1, brw_imm_ud(0xc0)); 889 brw_SHR(&func, t1_ud1, t1_ud1, brw_imm_ud(5)); 890 brw_MOV(&func, t2, brw_imm_v(0x3210)); 891 brw_ADD(&func, S, retype(t1_ud1, BRW_REGISTER_TYPE_UW), 892 stride(t2, 1, 4, 0)); 893 break; 894 } 895 default: 896 assert(!"Unrecognized sample count in " 897 "brw_blorp_blit_program::compute_frag_coords()"); 898 break; 899 } 900 s_is_zero = false; 901 } else { 902 /* Either the destination surface is single-sampled, or the WM will be 903 * run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch 904 * per pixel). In either case, it's not meaningful to compute a sample 905 * value. Just set it to 0. 906 */ 907 s_is_zero = true; 908 } 909 } 910 911 /** 912 * Emit code to compensate for the difference between Y and W tiling. 913 * 914 * This code modifies the X and Y coordinates according to the formula: 915 * 916 * (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S)) 917 * 918 * (See brw_blorp_blit_program). 919 * 920 * It can only translate between W and Y tiling, so new_tiling and old_tiling 921 * are booleans where true represents W tiling and false represents Y tiling. 922 */ 923 void 924 brw_blorp_blit_program::translate_tiling(bool old_tiled_w, bool new_tiled_w) 925 { 926 if (old_tiled_w == new_tiled_w) 927 return; 928 929 /* In the code that follows, we can safely assume that S = 0, because W 930 * tiling formats always use IMS layout. 931 */ 932 assert(s_is_zero); 933 934 if (new_tiled_w) { 935 /* Given X and Y coordinates that describe an address using Y tiling, 936 * translate to the X and Y coordinates that describe the same address 937 * using W tiling. 938 * 939 * If we break down the low order bits of X and Y, using a 940 * single letter to represent each low-order bit: 941 * 942 * X = A << 7 | 0bBCDEFGH 943 * Y = J << 5 | 0bKLMNP (1) 944 * 945 * Then we can apply the Y tiling formula to see the memory offset being 946 * addressed: 947 * 948 * offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH (2) 949 * 950 * If we apply the W detiling formula to this memory location, that the 951 * corresponding X' and Y' coordinates are: 952 * 953 * X' = A << 6 | 0bBCDPFH (3) 954 * Y' = J << 6 | 0bKLMNEG 955 * 956 * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'), 957 * we need to make the following computation: 958 * 959 * X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1 (4) 960 * Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1 961 */ 962 brw_AND(&func, t1, X, brw_imm_uw(0xfff4)); /* X & ~0b1011 */ 963 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */ 964 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */ 965 brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b1) << 2 */ 966 brw_OR(&func, t1, t1, t2); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */ 967 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */ 968 brw_OR(&func, Xp, t1, t2); 969 brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */ 970 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */ 971 brw_AND(&func, t2, X, brw_imm_uw(8)); /* X & 0b1000 */ 972 brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */ 973 brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */ 974 brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */ 975 brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */ 976 brw_OR(&func, Yp, t1, t2); 977 SWAP_XY_AND_XPYP(); 978 } else { 979 /* Applying the same logic as above, but in reverse, we obtain the 980 * formulas: 981 * 982 * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1 983 * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2 984 */ 985 brw_AND(&func, t1, X, brw_imm_uw(0xfffa)); /* X & ~0b101 */ 986 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b101) << 1 */ 987 brw_AND(&func, t2, Y, brw_imm_uw(2)); /* Y & 0b10 */ 988 brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b10) << 2 */ 989 brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */ 990 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */ 991 brw_SHL(&func, t2, t2, brw_imm_uw(1)); /* (Y & 0b1) << 1 */ 992 brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 993 | (Y & 0b1) << 1 */ 994 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */ 995 brw_OR(&func, Xp, t1, t2); 996 brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */ 997 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */ 998 brw_AND(&func, t2, X, brw_imm_uw(4)); /* X & 0b100 */ 999 brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b100) >> 2 */ 1000 brw_OR(&func, Yp, t1, t2); 1001 SWAP_XY_AND_XPYP(); 1002 } 1003 } 1004 1005 /** 1006 * Emit code to compensate for the difference between MSAA and non-MSAA 1007 * surfaces. 1008 * 1009 * This code modifies the X and Y coordinates according to the formula: 1010 * 1011 * (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S) 1012 * 1013 * (See brw_blorp_blit_program). 1014 */ 1015 void 1016 brw_blorp_blit_program::encode_msaa(unsigned num_samples, 1017 intel_msaa_layout layout) 1018 { 1019 switch (layout) { 1020 case INTEL_MSAA_LAYOUT_NONE: 1021 /* No translation necessary, and S should already be zero. */ 1022 assert(s_is_zero); 1023 break; 1024 case INTEL_MSAA_LAYOUT_CMS: 1025 /* We can't compensate for compressed layout since at this point in the 1026 * program we haven't read from the MCS buffer. 1027 */ 1028 assert(!"Bad layout in encode_msaa"); 1029 break; 1030 case INTEL_MSAA_LAYOUT_UMS: 1031 /* No translation necessary. */ 1032 break; 1033 case INTEL_MSAA_LAYOUT_IMS: 1034 switch (num_samples) { 1035 case 4: 1036 /* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0) 1037 * where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1) 1038 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1) 1039 */ 1040 brw_AND(&func, t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */ 1041 if (!s_is_zero) { 1042 brw_AND(&func, t2, S, brw_imm_uw(1)); /* S & 0b1 */ 1043 brw_OR(&func, t1, t1, t2); /* (X & ~0b1) | (S & 0b1) */ 1044 } 1045 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1) << 1 1046 | (S & 0b1) << 1 */ 1047 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */ 1048 brw_OR(&func, Xp, t1, t2); 1049 brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */ 1050 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */ 1051 if (!s_is_zero) { 1052 brw_AND(&func, t2, S, brw_imm_uw(2)); /* S & 0b10 */ 1053 brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */ 1054 } 1055 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */ 1056 brw_OR(&func, Yp, t1, t2); 1057 break; 1058 case 8: 1059 /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0) 1060 * where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 1061 * | (X & 0b1) 1062 * Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1) 1063 */ 1064 brw_AND(&func, t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */ 1065 brw_SHL(&func, t1, t1, brw_imm_uw(2)); /* (X & ~0b1) << 2 */ 1066 if (!s_is_zero) { 1067 brw_AND(&func, t2, S, brw_imm_uw(4)); /* S & 0b100 */ 1068 brw_OR(&func, t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100) */ 1069 brw_AND(&func, t2, S, brw_imm_uw(1)); /* S & 0b1 */ 1070 brw_SHL(&func, t2, t2, brw_imm_uw(1)); /* (S & 0b1) << 1 */ 1071 brw_OR(&func, t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100) 1072 | (S & 0b1) << 1 */ 1073 } 1074 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */ 1075 brw_OR(&func, Xp, t1, t2); 1076 brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */ 1077 brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */ 1078 if (!s_is_zero) { 1079 brw_AND(&func, t2, S, brw_imm_uw(2)); /* S & 0b10 */ 1080 brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */ 1081 } 1082 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */ 1083 brw_OR(&func, Yp, t1, t2); 1084 break; 1085 } 1086 SWAP_XY_AND_XPYP(); 1087 s_is_zero = true; 1088 break; 1089 } 1090 } 1091 1092 /** 1093 * Emit code to compensate for the difference between MSAA and non-MSAA 1094 * surfaces. 1095 * 1096 * This code modifies the X and Y coordinates according to the formula: 1097 * 1098 * (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S) 1099 * 1100 * (See brw_blorp_blit_program). 1101 */ 1102 void 1103 brw_blorp_blit_program::decode_msaa(unsigned num_samples, 1104 intel_msaa_layout layout) 1105 { 1106 switch (layout) { 1107 case INTEL_MSAA_LAYOUT_NONE: 1108 /* No translation necessary, and S should already be zero. */ 1109 assert(s_is_zero); 1110 break; 1111 case INTEL_MSAA_LAYOUT_CMS: 1112 /* We can't compensate for compressed layout since at this point in the 1113 * program we don't have access to the MCS buffer. 1114 */ 1115 assert(!"Bad layout in encode_msaa"); 1116 break; 1117 case INTEL_MSAA_LAYOUT_UMS: 1118 /* No translation necessary. */ 1119 break; 1120 case INTEL_MSAA_LAYOUT_IMS: 1121 assert(s_is_zero); 1122 switch (num_samples) { 1123 case 4: 1124 /* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S) 1125 * where X' = (X & ~0b11) >> 1 | (X & 0b1) 1126 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1) 1127 * S = (Y & 0b10) | (X & 0b10) >> 1 1128 */ 1129 brw_AND(&func, t1, X, brw_imm_uw(0xfffc)); /* X & ~0b11 */ 1130 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */ 1131 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */ 1132 brw_OR(&func, Xp, t1, t2); 1133 brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */ 1134 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */ 1135 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */ 1136 brw_OR(&func, Yp, t1, t2); 1137 brw_AND(&func, t1, Y, brw_imm_uw(2)); /* Y & 0b10 */ 1138 brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */ 1139 brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */ 1140 brw_OR(&func, S, t1, t2); 1141 break; 1142 case 8: 1143 /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S) 1144 * where X' = (X & ~0b111) >> 2 | (X & 0b1) 1145 * Y' = (Y & ~0b11) >> 1 | (Y & 0b1) 1146 * S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1 1147 */ 1148 brw_AND(&func, t1, X, brw_imm_uw(0xfff8)); /* X & ~0b111 */ 1149 brw_SHR(&func, t1, t1, brw_imm_uw(2)); /* (X & ~0b111) >> 2 */ 1150 brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */ 1151 brw_OR(&func, Xp, t1, t2); 1152 brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */ 1153 brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */ 1154 brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */ 1155 brw_OR(&func, Yp, t1, t2); 1156 brw_AND(&func, t1, X, brw_imm_uw(4)); /* X & 0b100 */ 1157 brw_AND(&func, t2, Y, brw_imm_uw(2)); /* Y & 0b10 */ 1158 brw_OR(&func, t1, t1, t2); /* (X & 0b100) | (Y & 0b10) */ 1159 brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */ 1160 brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */ 1161 brw_OR(&func, S, t1, t2); 1162 break; 1163 } 1164 s_is_zero = false; 1165 SWAP_XY_AND_XPYP(); 1166 break; 1167 } 1168 } 1169 1170 /** 1171 * Emit code that kills pixels whose X and Y coordinates are outside the 1172 * boundary of the rectangle defined by the push constants (dst_x0, dst_y0, 1173 * dst_x1, dst_y1). 1174 */ 1175 void 1176 brw_blorp_blit_program::kill_if_outside_dst_rect() 1177 { 1178 struct brw_reg f0 = brw_flag_reg(); 1179 struct brw_reg g1 = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW); 1180 struct brw_reg null16 = vec16(retype(brw_null_reg(), BRW_REGISTER_TYPE_UW)); 1181 1182 brw_CMP(&func, null16, BRW_CONDITIONAL_GE, X, dst_x0); 1183 brw_CMP(&func, null16, BRW_CONDITIONAL_GE, Y, dst_y0); 1184 brw_CMP(&func, null16, BRW_CONDITIONAL_L, X, dst_x1); 1185 brw_CMP(&func, null16, BRW_CONDITIONAL_L, Y, dst_y1); 1186 1187 brw_set_predicate_control(&func, BRW_PREDICATE_NONE); 1188 brw_push_insn_state(&func); 1189 brw_set_mask_control(&func, BRW_MASK_DISABLE); 1190 brw_AND(&func, g1, f0, g1); 1191 brw_pop_insn_state(&func); 1192 } 1193 1194 /** 1195 * Emit code to translate from destination (X, Y) coordinates to source (X, Y) 1196 * coordinates. 1197 */ 1198 void 1199 brw_blorp_blit_program::translate_dst_to_src() 1200 { 1201 brw_MUL(&func, Xp, X, x_transform.multiplier); 1202 brw_MUL(&func, Yp, Y, y_transform.multiplier); 1203 brw_ADD(&func, Xp, Xp, x_transform.offset); 1204 brw_ADD(&func, Yp, Yp, y_transform.offset); 1205 SWAP_XY_AND_XPYP(); 1206 } 1207 1208 /** 1209 * Emit code to transform the X and Y coordinates as needed for blending 1210 * together the different samples in an MSAA texture. 1211 */ 1212 void 1213 brw_blorp_blit_program::single_to_blend() 1214 { 1215 /* When looking up samples in an MSAA texture using the SAMPLE message, 1216 * Gen6 requires the texture coordinates to be odd integers (so that they 1217 * correspond to the center of a 2x2 block representing the four samples 1218 * that maxe up a pixel). So we need to multiply our X and Y coordinates 1219 * each by 2 and then add 1. 1220 */ 1221 brw_SHL(&func, t1, X, brw_imm_w(1)); 1222 brw_SHL(&func, t2, Y, brw_imm_w(1)); 1223 brw_ADD(&func, Xp, t1, brw_imm_w(1)); 1224 brw_ADD(&func, Yp, t2, brw_imm_w(1)); 1225 SWAP_XY_AND_XPYP(); 1226 } 1227 1228 1229 /** 1230 * Count the number of trailing 1 bits in the given value. For example: 1231 * 1232 * count_trailing_one_bits(0) == 0 1233 * count_trailing_one_bits(7) == 3 1234 * count_trailing_one_bits(11) == 2 1235 */ 1236 inline int count_trailing_one_bits(unsigned value) 1237 { 1238 #if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */ 1239 return __builtin_ctz(~value); 1240 #else 1241 return _mesa_bitcount(value & ~(value + 1)); 1242 #endif 1243 } 1244 1245 1246 void 1247 brw_blorp_blit_program::manual_blend(unsigned num_samples) 1248 { 1249 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS) 1250 mcs_fetch(); 1251 1252 /* We add together samples using a binary tree structure, e.g. for 4x MSAA: 1253 * 1254 * result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4 1255 * 1256 * This ensures that when all samples have the same value, no numerical 1257 * precision is lost, since each addition operation always adds two equal 1258 * values, and summing two equal floating point values does not lose 1259 * precision. 1260 * 1261 * We perform this computation by treating the texture_data array as a 1262 * stack and performing the following operations: 1263 * 1264 * - push sample 0 onto stack 1265 * - push sample 1 onto stack 1266 * - add top two stack entries 1267 * - push sample 2 onto stack 1268 * - push sample 3 onto stack 1269 * - add top two stack entries 1270 * - add top two stack entries 1271 * - divide top stack entry by 4 1272 * 1273 * Note that after pushing sample i onto the stack, the number of add 1274 * operations we do is equal to the number of trailing 1 bits in i. This 1275 * works provided the total number of samples is a power of two, which it 1276 * always is for i965. 1277 * 1278 * For integer formats, we replace the add operations with average 1279 * operations and skip the final division. 1280 */ 1281 typedef struct brw_instruction *(*brw_op2_ptr)(struct brw_compile *, 1282 struct brw_reg, 1283 struct brw_reg, 1284 struct brw_reg); 1285 brw_op2_ptr combine_op = 1286 key->texture_data_type == BRW_REGISTER_TYPE_F ? brw_ADD : brw_AVG; 1287 unsigned stack_depth = 0; 1288 for (unsigned i = 0; i < num_samples; ++i) { 1289 assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */ 1290 1291 /* Push sample i onto the stack */ 1292 assert(stack_depth < ARRAY_SIZE(texture_data)); 1293 if (i == 0) { 1294 s_is_zero = true; 1295 } else { 1296 s_is_zero = false; 1297 brw_MOV(&func, S, brw_imm_uw(i)); 1298 } 1299 texel_fetch(texture_data[stack_depth++]); 1300 1301 if (i == 0 && key->tex_layout == INTEL_MSAA_LAYOUT_CMS) { 1302 /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface) 1303 * suggests an optimization: 1304 * 1305 * "A simple optimization with probable large return in 1306 * performance is to compare the MCS value to zero (indicating 1307 * all samples are on sample slice 0), and sample only from 1308 * sample slice 0 using ld2dss if MCS is zero." 1309 * 1310 * Note that in the case where the MCS value is zero, sampling from 1311 * sample slice 0 using ld2dss and sampling from sample 0 using 1312 * ld2dms are equivalent (since all samples are on sample slice 0). 1313 * Since we have already sampled from sample 0, all we need to do is 1314 * skip the remaining fetches and averaging if MCS is zero. 1315 */ 1316 brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_NZ, 1317 mcs_data, brw_imm_ud(0)); 1318 brw_IF(&func, BRW_EXECUTE_16); 1319 } 1320 1321 /* Do count_trailing_one_bits(i) times */ 1322 for (int j = count_trailing_one_bits(i); j-- > 0; ) { 1323 assert(stack_depth >= 2); 1324 --stack_depth; 1325 1326 /* TODO: should use a smaller loop bound for non_RGBA formats */ 1327 for (int k = 0; k < 4; ++k) { 1328 combine_op(&func, offset(texture_data[stack_depth - 1], 2*k), 1329 offset(vec8(texture_data[stack_depth - 1]), 2*k), 1330 offset(vec8(texture_data[stack_depth]), 2*k)); 1331 } 1332 } 1333 } 1334 1335 /* We should have just 1 sample on the stack now. */ 1336 assert(stack_depth == 1); 1337 1338 if (key->texture_data_type == BRW_REGISTER_TYPE_F) { 1339 /* Scale the result down by a factor of num_samples */ 1340 /* TODO: should use a smaller loop bound for non-RGBA formats */ 1341 for (int j = 0; j < 4; ++j) { 1342 brw_MUL(&func, offset(texture_data[0], 2*j), 1343 offset(vec8(texture_data[0]), 2*j), 1344 brw_imm_f(1.0/num_samples)); 1345 } 1346 } 1347 1348 if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS) 1349 brw_ENDIF(&func); 1350 } 1351 1352 /** 1353 * Emit code to look up a value in the texture using the SAMPLE message (which 1354 * does blending of MSAA surfaces). 1355 */ 1356 void 1357 brw_blorp_blit_program::sample(struct brw_reg dst) 1358 { 1359 static const sampler_message_arg args[2] = { 1360 SAMPLER_MESSAGE_ARG_U_FLOAT, 1361 SAMPLER_MESSAGE_ARG_V_FLOAT 1362 }; 1363 1364 texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE, args, ARRAY_SIZE(args)); 1365 } 1366 1367 /** 1368 * Emit code to look up a value in the texture using the SAMPLE_LD message 1369 * (which does a simple texel fetch). 1370 */ 1371 void 1372 brw_blorp_blit_program::texel_fetch(struct brw_reg dst) 1373 { 1374 static const sampler_message_arg gen6_args[5] = { 1375 SAMPLER_MESSAGE_ARG_U_INT, 1376 SAMPLER_MESSAGE_ARG_V_INT, 1377 SAMPLER_MESSAGE_ARG_ZERO_INT, /* R */ 1378 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */ 1379 SAMPLER_MESSAGE_ARG_SI_INT 1380 }; 1381 static const sampler_message_arg gen7_ld_args[3] = { 1382 SAMPLER_MESSAGE_ARG_U_INT, 1383 SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */ 1384 SAMPLER_MESSAGE_ARG_V_INT 1385 }; 1386 static const sampler_message_arg gen7_ld2dss_args[3] = { 1387 SAMPLER_MESSAGE_ARG_SI_INT, 1388 SAMPLER_MESSAGE_ARG_U_INT, 1389 SAMPLER_MESSAGE_ARG_V_INT 1390 }; 1391 static const sampler_message_arg gen7_ld2dms_args[4] = { 1392 SAMPLER_MESSAGE_ARG_SI_INT, 1393 SAMPLER_MESSAGE_ARG_MCS_INT, 1394 SAMPLER_MESSAGE_ARG_U_INT, 1395 SAMPLER_MESSAGE_ARG_V_INT 1396 }; 1397 1398 switch (brw->intel.gen) { 1399 case 6: 1400 texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen6_args, 1401 s_is_zero ? 2 : 5); 1402 break; 1403 case 7: 1404 switch (key->tex_layout) { 1405 case INTEL_MSAA_LAYOUT_IMS: 1406 /* From the Ivy Bridge PRM, Vol4 Part1 p72 (Multisampled Surface Storage 1407 * Format): 1408 * 1409 * If this field is MSFMT_DEPTH_STENCIL 1410 * [a.k.a. INTEL_MSAA_LAYOUT_IMS], the only sampling engine 1411 * messages allowed are "ld2dms", "resinfo", and "sampleinfo". 1412 * 1413 * So fall through to emit the same message as we use for 1414 * INTEL_MSAA_LAYOUT_CMS. 1415 */ 1416 case INTEL_MSAA_LAYOUT_CMS: 1417 texture_lookup(dst, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS, 1418 gen7_ld2dms_args, ARRAY_SIZE(gen7_ld2dms_args)); 1419 break; 1420 case INTEL_MSAA_LAYOUT_UMS: 1421 texture_lookup(dst, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS, 1422 gen7_ld2dss_args, ARRAY_SIZE(gen7_ld2dss_args)); 1423 break; 1424 case INTEL_MSAA_LAYOUT_NONE: 1425 assert(s_is_zero); 1426 texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen7_ld_args, 1427 ARRAY_SIZE(gen7_ld_args)); 1428 break; 1429 } 1430 break; 1431 default: 1432 assert(!"Should not get here."); 1433 break; 1434 }; 1435 } 1436 1437 void 1438 brw_blorp_blit_program::mcs_fetch() 1439 { 1440 static const sampler_message_arg gen7_ld_mcs_args[2] = { 1441 SAMPLER_MESSAGE_ARG_U_INT, 1442 SAMPLER_MESSAGE_ARG_V_INT 1443 }; 1444 texture_lookup(vec16(mcs_data), GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS, 1445 gen7_ld_mcs_args, ARRAY_SIZE(gen7_ld_mcs_args)); 1446 } 1447 1448 void 1449 brw_blorp_blit_program::expand_to_32_bits(struct brw_reg src, 1450 struct brw_reg dst) 1451 { 1452 brw_MOV(&func, vec8(dst), vec8(src)); 1453 brw_set_compression_control(&func, BRW_COMPRESSION_2NDHALF); 1454 brw_MOV(&func, offset(vec8(dst), 1), suboffset(vec8(src), 8)); 1455 brw_set_compression_control(&func, BRW_COMPRESSION_NONE); 1456 } 1457 1458 void 1459 brw_blorp_blit_program::texture_lookup(struct brw_reg dst, 1460 GLuint msg_type, 1461 const sampler_message_arg *args, 1462 int num_args) 1463 { 1464 struct brw_reg mrf = 1465 retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_UD); 1466 for (int arg = 0; arg < num_args; ++arg) { 1467 switch (args[arg]) { 1468 case SAMPLER_MESSAGE_ARG_U_FLOAT: 1469 expand_to_32_bits(X, retype(mrf, BRW_REGISTER_TYPE_F)); 1470 break; 1471 case SAMPLER_MESSAGE_ARG_V_FLOAT: 1472 expand_to_32_bits(Y, retype(mrf, BRW_REGISTER_TYPE_F)); 1473 break; 1474 case SAMPLER_MESSAGE_ARG_U_INT: 1475 expand_to_32_bits(X, mrf); 1476 break; 1477 case SAMPLER_MESSAGE_ARG_V_INT: 1478 expand_to_32_bits(Y, mrf); 1479 break; 1480 case SAMPLER_MESSAGE_ARG_SI_INT: 1481 /* Note: on Gen7, this code may be reached with s_is_zero==true 1482 * because in Gen7's ld2dss message, the sample index is the first 1483 * argument. When this happens, we need to move a 0 into the 1484 * appropriate message register. 1485 */ 1486 if (s_is_zero) 1487 brw_MOV(&func, mrf, brw_imm_ud(0)); 1488 else 1489 expand_to_32_bits(S, mrf); 1490 break; 1491 case SAMPLER_MESSAGE_ARG_MCS_INT: 1492 switch (key->tex_layout) { 1493 case INTEL_MSAA_LAYOUT_CMS: 1494 brw_MOV(&func, mrf, mcs_data); 1495 break; 1496 case INTEL_MSAA_LAYOUT_IMS: 1497 /* When sampling from an IMS surface, MCS data is not relevant, 1498 * and the hardware ignores it. So don't bother populating it. 1499 */ 1500 break; 1501 default: 1502 /* We shouldn't be trying to send MCS data with any other 1503 * layouts. 1504 */ 1505 assert (!"Unsupported layout for MCS data"); 1506 break; 1507 } 1508 break; 1509 case SAMPLER_MESSAGE_ARG_ZERO_INT: 1510 brw_MOV(&func, mrf, brw_imm_ud(0)); 1511 break; 1512 } 1513 mrf.nr += 2; 1514 } 1515 1516 brw_SAMPLE(&func, 1517 retype(dst, BRW_REGISTER_TYPE_UW) /* dest */, 1518 base_mrf /* msg_reg_nr */, 1519 brw_message_reg(base_mrf) /* src0 */, 1520 BRW_BLORP_TEXTURE_BINDING_TABLE_INDEX, 1521 0 /* sampler */, 1522 WRITEMASK_XYZW, 1523 msg_type, 1524 8 /* response_length. TODO: should be smaller for non-RGBA formats? */, 1525 mrf.nr - base_mrf /* msg_length */, 1526 0 /* header_present */, 1527 BRW_SAMPLER_SIMD_MODE_SIMD16, 1528 BRW_SAMPLER_RETURN_FORMAT_FLOAT32); 1529 } 1530 1531 #undef X 1532 #undef Y 1533 #undef U 1534 #undef V 1535 #undef S 1536 #undef SWAP_XY_AND_XPYP 1537 1538 void 1539 brw_blorp_blit_program::render_target_write() 1540 { 1541 struct brw_reg mrf_rt_write = 1542 retype(vec16(brw_message_reg(base_mrf)), key->texture_data_type); 1543 int mrf_offset = 0; 1544 1545 /* If we may have killed pixels, then we need to send R0 and R1 in a header 1546 * so that the render target knows which pixels we killed. 1547 */ 1548 bool use_header = key->use_kill; 1549 if (use_header) { 1550 /* Copy R0/1 to MRF */ 1551 brw_MOV(&func, retype(mrf_rt_write, BRW_REGISTER_TYPE_UD), 1552 retype(R0, BRW_REGISTER_TYPE_UD)); 1553 mrf_offset += 2; 1554 } 1555 1556 /* Copy texture data to MRFs */ 1557 for (int i = 0; i < 4; ++i) { 1558 /* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */ 1559 brw_MOV(&func, offset(mrf_rt_write, mrf_offset), 1560 offset(vec8(texture_data[0]), 2*i)); 1561 mrf_offset += 2; 1562 } 1563 1564 /* Now write to the render target and terminate the thread */ 1565 brw_fb_WRITE(&func, 1566 16 /* dispatch_width */, 1567 base_mrf /* msg_reg_nr */, 1568 mrf_rt_write /* src0 */, 1569 BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE, 1570 BRW_BLORP_RENDERBUFFER_BINDING_TABLE_INDEX, 1571 mrf_offset /* msg_length. TODO: Should be smaller for non-RGBA formats. */, 1572 0 /* response_length */, 1573 true /* eot */, 1574 use_header); 1575 } 1576 1577 1578 void 1579 brw_blorp_coord_transform_params::setup(GLuint src0, GLuint dst0, GLuint dst1, 1580 bool mirror) 1581 { 1582 if (!mirror) { 1583 /* When not mirroring a coordinate (say, X), we need: 1584 * x' - src_x0 = x - dst_x0 1585 * Therefore: 1586 * x' = 1*x + (src_x0 - dst_x0) 1587 */ 1588 multiplier = 1; 1589 offset = src0 - dst0; 1590 } else { 1591 /* When mirroring X we need: 1592 * x' - src_x0 = dst_x1 - x - 1 1593 * Therefore: 1594 * x' = -1*x + (src_x0 + dst_x1 - 1) 1595 */ 1596 multiplier = -1; 1597 offset = src0 + dst1 - 1; 1598 } 1599 } 1600 1601 1602 /** 1603 * Determine which MSAA layout the GPU pipeline should be configured for, 1604 * based on the chip generation, the number of samples, and the true layout of 1605 * the image in memory. 1606 */ 1607 inline intel_msaa_layout 1608 compute_msaa_layout_for_pipeline(struct brw_context *brw, unsigned num_samples, 1609 intel_msaa_layout true_layout) 1610 { 1611 if (num_samples <= 1) { 1612 /* When configuring the GPU for non-MSAA, we can still accommodate IMS 1613 * format buffers, by transforming coordinates appropriately. 1614 */ 1615 assert(true_layout == INTEL_MSAA_LAYOUT_NONE || 1616 true_layout == INTEL_MSAA_LAYOUT_IMS); 1617 return INTEL_MSAA_LAYOUT_NONE; 1618 } else { 1619 assert(true_layout != INTEL_MSAA_LAYOUT_NONE); 1620 } 1621 1622 /* Prior to Gen7, all MSAA surfaces use IMS layout. */ 1623 if (brw->intel.gen == 6) { 1624 assert(true_layout == INTEL_MSAA_LAYOUT_IMS); 1625 } 1626 1627 return true_layout; 1628 } 1629 1630 1631 brw_blorp_blit_params::brw_blorp_blit_params(struct brw_context *brw, 1632 struct intel_mipmap_tree *src_mt, 1633 unsigned src_level, unsigned src_layer, 1634 struct intel_mipmap_tree *dst_mt, 1635 unsigned dst_level, unsigned dst_layer, 1636 GLuint src_x0, GLuint src_y0, 1637 GLuint dst_x0, GLuint dst_y0, 1638 GLuint dst_x1, GLuint dst_y1, 1639 bool mirror_x, bool mirror_y) 1640 { 1641 src.set(brw, src_mt, src_level, src_layer); 1642 dst.set(brw, dst_mt, dst_level, dst_layer); 1643 1644 /* If we are blitting from sRGB to linear or vice versa, we still want the 1645 * blit to be a direct copy, so we need source and destination to use the 1646 * same format. However, we want the destination sRGB/linear state to be 1647 * correct (so that sRGB blending is used when doing an MSAA resolve to an 1648 * sRGB surface, and linear blending is used when doing an MSAA resolve to 1649 * a linear surface). Since blorp blits don't support any format 1650 * conversion (except between sRGB and linear), we can accomplish this by 1651 * simply setting up the source to use the same format as the destination. 1652 */ 1653 assert(_mesa_get_srgb_format_linear(src_mt->format) == 1654 _mesa_get_srgb_format_linear(dst_mt->format)); 1655 src.brw_surfaceformat = dst.brw_surfaceformat; 1656 1657 use_wm_prog = true; 1658 memset(&wm_prog_key, 0, sizeof(wm_prog_key)); 1659 1660 /* texture_data_type indicates the register type that should be used to 1661 * manipulate texture data. 1662 */ 1663 switch (_mesa_get_format_datatype(src_mt->format)) { 1664 case GL_UNSIGNED_NORMALIZED: 1665 case GL_SIGNED_NORMALIZED: 1666 case GL_FLOAT: 1667 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F; 1668 break; 1669 case GL_UNSIGNED_INT: 1670 if (src_mt->format == MESA_FORMAT_S8) { 1671 /* We process stencil as though it's an unsigned normalized color */ 1672 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F; 1673 } else { 1674 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_UD; 1675 } 1676 break; 1677 case GL_INT: 1678 wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_D; 1679 break; 1680 default: 1681 assert(!"Unrecognized blorp format"); 1682 break; 1683 } 1684 1685 if (brw->intel.gen > 6) { 1686 /* Gen7's rendering hardware only supports the IMS layout for depth and 1687 * stencil render targets. Blorp always maps its destination surface as 1688 * a color render target (even if it's actually a depth or stencil 1689 * buffer). So if the destination is IMS, we'll have to map it as a 1690 * single-sampled texture and interleave the samples ourselves. 1691 */ 1692 if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) 1693 dst.num_samples = 0; 1694 } 1695 1696 if (dst.map_stencil_as_y_tiled && dst.num_samples > 1) { 1697 /* If the destination surface is a W-tiled multisampled stencil buffer 1698 * that we're mapping as Y tiled, then we need to arrange for the WM 1699 * program to run once per sample rather than once per pixel, because 1700 * the memory layout of related samples doesn't match between W and Y 1701 * tiling. 1702 */ 1703 wm_prog_key.persample_msaa_dispatch = true; 1704 } 1705 1706 if (src.num_samples > 0 && dst.num_samples > 1) { 1707 /* We are blitting from a multisample buffer to a multisample buffer, so 1708 * we must preserve samples within a pixel. This means we have to 1709 * arrange for the WM program to run once per sample rather than once 1710 * per pixel. 1711 */ 1712 wm_prog_key.persample_msaa_dispatch = true; 1713 } 1714 1715 /* The render path must be configured to use the same number of samples as 1716 * the destination buffer. 1717 */ 1718 num_samples = dst.num_samples; 1719 1720 GLenum base_format = _mesa_get_format_base_format(src_mt->format); 1721 if (base_format != GL_DEPTH_COMPONENT && /* TODO: what about depth/stencil? */ 1722 base_format != GL_STENCIL_INDEX && 1723 src_mt->num_samples > 1 && dst_mt->num_samples <= 1) { 1724 /* We are downsampling a color buffer, so blend. */ 1725 wm_prog_key.blend = true; 1726 } 1727 1728 /* src_samples and dst_samples are the true sample counts */ 1729 wm_prog_key.src_samples = src_mt->num_samples; 1730 wm_prog_key.dst_samples = dst_mt->num_samples; 1731 1732 /* tex_samples and rt_samples are the sample counts that are set up in 1733 * SURFACE_STATE. 1734 */ 1735 wm_prog_key.tex_samples = src.num_samples; 1736 wm_prog_key.rt_samples = dst.num_samples; 1737 1738 /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will 1739 * use to access the source and destination surfaces. 1740 */ 1741 wm_prog_key.tex_layout = 1742 compute_msaa_layout_for_pipeline(brw, src.num_samples, src.msaa_layout); 1743 wm_prog_key.rt_layout = 1744 compute_msaa_layout_for_pipeline(brw, dst.num_samples, dst.msaa_layout); 1745 1746 /* src_layout and dst_layout indicate the true MSAA layout used by src and 1747 * dst. 1748 */ 1749 wm_prog_key.src_layout = src_mt->msaa_layout; 1750 wm_prog_key.dst_layout = dst_mt->msaa_layout; 1751 1752 wm_prog_key.src_tiled_w = src.map_stencil_as_y_tiled; 1753 wm_prog_key.dst_tiled_w = dst.map_stencil_as_y_tiled; 1754 x0 = wm_push_consts.dst_x0 = dst_x0; 1755 y0 = wm_push_consts.dst_y0 = dst_y0; 1756 x1 = wm_push_consts.dst_x1 = dst_x1; 1757 y1 = wm_push_consts.dst_y1 = dst_y1; 1758 wm_push_consts.x_transform.setup(src_x0, dst_x0, dst_x1, mirror_x); 1759 wm_push_consts.y_transform.setup(src_y0, dst_y0, dst_y1, mirror_y); 1760 1761 if (dst.num_samples <= 1 && dst_mt->num_samples > 1) { 1762 /* We must expand the rectangle we send through the rendering pipeline, 1763 * to account for the fact that we are mapping the destination region as 1764 * single-sampled when it is in fact multisampled. We must also align 1765 * it to a multiple of the multisampling pattern, because the 1766 * differences between multisampled and single-sampled surface formats 1767 * will mean that pixels are scrambled within the multisampling pattern. 1768 * TODO: what if this makes the coordinates too large? 1769 * 1770 * Note: this only works if the destination surface uses the IMS layout. 1771 * If it's UMS, then we have no choice but to set up the rendering 1772 * pipeline as multisampled. 1773 */ 1774 assert(dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS); 1775 switch (dst_mt->num_samples) { 1776 case 4: 1777 x0 = ROUND_DOWN_TO(x0 * 2, 4); 1778 y0 = ROUND_DOWN_TO(y0 * 2, 4); 1779 x1 = ALIGN(x1 * 2, 4); 1780 y1 = ALIGN(y1 * 2, 4); 1781 break; 1782 case 8: 1783 x0 = ROUND_DOWN_TO(x0 * 4, 8); 1784 y0 = ROUND_DOWN_TO(y0 * 2, 4); 1785 x1 = ALIGN(x1 * 4, 8); 1786 y1 = ALIGN(y1 * 2, 4); 1787 break; 1788 default: 1789 assert(!"Unrecognized sample count in brw_blorp_blit_params ctor"); 1790 break; 1791 } 1792 wm_prog_key.use_kill = true; 1793 } 1794 1795 if (dst.map_stencil_as_y_tiled) { 1796 /* We must modify the rectangle we send through the rendering pipeline 1797 * (and the size and x/y offset of the destination surface), to account 1798 * for the fact that we are mapping it as Y-tiled when it is in fact 1799 * W-tiled. 1800 * 1801 * Both Y tiling and W tiling can be understood as organizations of 1802 * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels 1803 * is different, but the layout of the 32-byte sub-tiles within the 4k 1804 * tile is the same (8 sub-tiles across by 16 sub-tiles down, in 1805 * column-major order). In Y tiling, the sub-tiles are 16 bytes wide 1806 * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high. 1807 * 1808 * Therefore, to account for the layout differences within the 32-byte 1809 * sub-tiles, we must expand the rectangle so the X coordinates of its 1810 * edges are multiples of 8 (the W sub-tile width), and its Y 1811 * coordinates of its edges are multiples of 4 (the W sub-tile height). 1812 * Then we need to scale the X and Y coordinates of the rectangle to 1813 * account for the differences in aspect ratio between the Y and W 1814 * sub-tiles. We need to modify the layer width and height similarly. 1815 * 1816 * A correction needs to be applied when MSAA is in use: since 1817 * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4, 1818 * we need to align the Y coordinates to multiples of 8, so that when 1819 * they are divided by two they are still multiples of 4. 1820 * 1821 * Note: Since the x/y offset of the surface will be applied using the 1822 * SURFACE_STATE command packet, it will be invisible to the swizzling 1823 * code in the shader; therefore it needs to be in a multiple of the 1824 * 32-byte sub-tile size. Fortunately it is, since the sub-tile is 8 1825 * pixels wide and 4 pixels high (when viewed as a W-tiled stencil 1826 * buffer), and the miplevel alignment used for stencil buffers is 8 1827 * pixels horizontally and either 4 or 8 pixels vertically (see 1828 * intel_horizontal_texture_alignment_unit() and 1829 * intel_vertical_texture_alignment_unit()). 1830 * 1831 * Note: Also, since the SURFACE_STATE command packet can only apply 1832 * offsets that are multiples of 4 pixels horizontally and 2 pixels 1833 * vertically, it is important that the offsets will be multiples of 1834 * these sizes after they are converted into Y-tiled coordinates. 1835 * Fortunately they will be, since we know from above that the offsets 1836 * are a multiple of the 32-byte sub-tile size, and in Y-tiled 1837 * coordinates the sub-tile is 16 pixels wide and 2 pixels high. 1838 * 1839 * TODO: what if this makes the coordinates (or the texture size) too 1840 * large? 1841 */ 1842 const unsigned x_align = 8, y_align = dst.num_samples != 0 ? 8 : 4; 1843 x0 = ROUND_DOWN_TO(x0, x_align) * 2; 1844 y0 = ROUND_DOWN_TO(y0, y_align) / 2; 1845 x1 = ALIGN(x1, x_align) * 2; 1846 y1 = ALIGN(y1, y_align) / 2; 1847 dst.width = ALIGN(dst.width, x_align) * 2; 1848 dst.height = ALIGN(dst.height, y_align) / 2; 1849 dst.x_offset *= 2; 1850 dst.y_offset /= 2; 1851 wm_prog_key.use_kill = true; 1852 } 1853 1854 if (src.map_stencil_as_y_tiled) { 1855 /* We must modify the size and x/y offset of the source surface to 1856 * account for the fact that we are mapping it as Y-tiled when it is in 1857 * fact W tiled. 1858 * 1859 * See the comments above concerning x/y offset alignment for the 1860 * destination surface. 1861 * 1862 * TODO: what if this makes the texture size too large? 1863 */ 1864 const unsigned x_align = 8, y_align = src.num_samples != 0 ? 8 : 4; 1865 src.width = ALIGN(src.width, x_align) * 2; 1866 src.height = ALIGN(src.height, y_align) / 2; 1867 src.x_offset *= 2; 1868 src.y_offset /= 2; 1869 } 1870 } 1871 1872 uint32_t 1873 brw_blorp_blit_params::get_wm_prog(struct brw_context *brw, 1874 brw_blorp_prog_data **prog_data) const 1875 { 1876 uint32_t prog_offset; 1877 if (!brw_search_cache(&brw->cache, BRW_BLORP_BLIT_PROG, 1878 &this->wm_prog_key, sizeof(this->wm_prog_key), 1879 &prog_offset, prog_data)) { 1880 brw_blorp_blit_program prog(brw, &this->wm_prog_key); 1881 GLuint program_size; 1882 const GLuint *program = prog.compile(brw, &program_size); 1883 brw_upload_cache(&brw->cache, BRW_BLORP_BLIT_PROG, 1884 &this->wm_prog_key, sizeof(this->wm_prog_key), 1885 program, program_size, 1886 &prog.prog_data, sizeof(prog.prog_data), 1887 &prog_offset, prog_data); 1888 } 1889 return prog_offset; 1890 } 1891