Home | History | Annotate | Download | only in i965
      1 /*
      2  * Copyright  2012 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  */
     23 
     24 #include "main/teximage.h"
     25 #include "main/fbobject.h"
     26 
     27 #include "glsl/ralloc.h"
     28 
     29 #include "intel_fbo.h"
     30 
     31 #include "brw_blorp.h"
     32 #include "brw_context.h"
     33 #include "brw_eu.h"
     34 #include "brw_state.h"
     35 
     36 
     37 /**
     38  * Helper function for handling mirror image blits.
     39  *
     40  * If coord0 > coord1, swap them and invert the "mirror" boolean.
     41  */
     42 static inline void
     43 fixup_mirroring(bool &mirror, GLint &coord0, GLint &coord1)
     44 {
     45    if (coord0 > coord1) {
     46       mirror = !mirror;
     47       GLint tmp = coord0;
     48       coord0 = coord1;
     49       coord1 = tmp;
     50    }
     51 }
     52 
     53 
     54 /**
     55  * Adjust {src,dst}_x{0,1} to account for clipping and scissoring of
     56  * destination coordinates.
     57  *
     58  * Return true if there is still blitting to do, false if all pixels got
     59  * rejected by the clip and/or scissor.
     60  *
     61  * For clarity, the nomenclature of this function assumes we are clipping and
     62  * scissoring the X coordinate; the exact same logic applies for Y
     63  * coordinates.
     64  *
     65  * Note: this function may also be used to account for clipping of source
     66  * coordinates, by swapping the roles of src and dst.
     67  */
     68 static inline bool
     69 clip_or_scissor(bool mirror, GLint &src_x0, GLint &src_x1, GLint &dst_x0,
     70                 GLint &dst_x1, GLint fb_xmin, GLint fb_xmax)
     71 {
     72    /* If we are going to scissor everything away, stop. */
     73    if (!(fb_xmin < fb_xmax &&
     74          dst_x0 < fb_xmax &&
     75          fb_xmin < dst_x1 &&
     76          dst_x0 < dst_x1)) {
     77       return false;
     78    }
     79 
     80    /* Clip the destination rectangle, and keep track of how many pixels we
     81     * clipped off of the left and right sides of it.
     82     */
     83    GLint pixels_clipped_left = 0;
     84    GLint pixels_clipped_right = 0;
     85    if (dst_x0 < fb_xmin) {
     86       pixels_clipped_left = fb_xmin - dst_x0;
     87       dst_x0 = fb_xmin;
     88    }
     89    if (fb_xmax < dst_x1) {
     90       pixels_clipped_right = dst_x1 - fb_xmax;
     91       dst_x1 = fb_xmax;
     92    }
     93 
     94    /* If we are mirrored, then before applying pixels_clipped_{left,right} to
     95     * the source coordinates, we need to flip them to account for the
     96     * mirroring.
     97     */
     98    if (mirror) {
     99       GLint tmp = pixels_clipped_left;
    100       pixels_clipped_left = pixels_clipped_right;
    101       pixels_clipped_right = tmp;
    102    }
    103 
    104    /* Adjust the source rectangle to remove the pixels corresponding to those
    105     * that were clipped/scissored out of the destination rectangle.
    106     */
    107    src_x0 += pixels_clipped_left;
    108    src_x1 -= pixels_clipped_right;
    109 
    110    return true;
    111 }
    112 
    113 
    114 static struct intel_mipmap_tree *
    115 find_miptree(GLbitfield buffer_bit, struct intel_renderbuffer *irb)
    116 {
    117    struct intel_mipmap_tree *mt = irb->mt;
    118    if (buffer_bit == GL_STENCIL_BUFFER_BIT && mt->stencil_mt)
    119       mt = mt->stencil_mt;
    120    return mt;
    121 }
    122 
    123 void
    124 brw_blorp_blit_miptrees(struct intel_context *intel,
    125                         struct intel_mipmap_tree *src_mt,
    126                         unsigned src_level, unsigned src_layer,
    127                         struct intel_mipmap_tree *dst_mt,
    128                         unsigned dst_level, unsigned dst_layer,
    129                         int src_x0, int src_y0,
    130                         int dst_x0, int dst_y0,
    131                         int dst_x1, int dst_y1,
    132                         bool mirror_x, bool mirror_y)
    133 {
    134    brw_blorp_blit_params params(brw_context(&intel->ctx),
    135                                 src_mt, src_level, src_layer,
    136                                 dst_mt, dst_level, dst_layer,
    137                                 src_x0, src_y0,
    138                                 dst_x0, dst_y0,
    139                                 dst_x1, dst_y1,
    140                                 mirror_x, mirror_y);
    141    brw_blorp_exec(intel, &params);
    142 }
    143 
    144 static void
    145 do_blorp_blit(struct intel_context *intel, GLbitfield buffer_bit,
    146               struct intel_renderbuffer *src_irb,
    147               struct intel_renderbuffer *dst_irb,
    148               GLint srcX0, GLint srcY0,
    149               GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
    150               bool mirror_x, bool mirror_y)
    151 {
    152    /* Find source/dst miptrees */
    153    struct intel_mipmap_tree *src_mt = find_miptree(buffer_bit, src_irb);
    154    struct intel_mipmap_tree *dst_mt = find_miptree(buffer_bit, dst_irb);
    155 
    156    /* Get ready to blit.  This includes depth resolving the src and dst
    157     * buffers if necessary.
    158     */
    159    intel_renderbuffer_resolve_depth(intel, src_irb);
    160    intel_renderbuffer_resolve_depth(intel, dst_irb);
    161 
    162    /* Do the blit */
    163    brw_blorp_blit_miptrees(intel,
    164                            src_mt, src_irb->mt_level, src_irb->mt_layer,
    165                            dst_mt, dst_irb->mt_level, dst_irb->mt_layer,
    166                            srcX0, srcY0, dstX0, dstY0, dstX1, dstY1,
    167                            mirror_x, mirror_y);
    168 
    169    intel_renderbuffer_set_needs_hiz_resolve(dst_irb);
    170    intel_renderbuffer_set_needs_downsample(dst_irb);
    171 }
    172 
    173 
    174 static bool
    175 formats_match(GLbitfield buffer_bit, struct intel_renderbuffer *src_irb,
    176               struct intel_renderbuffer *dst_irb)
    177 {
    178    /* Note: don't just check gl_renderbuffer::Format, because in some cases
    179     * multiple gl_formats resolve to the same native type in the miptree (for
    180     * example MESA_FORMAT_X8_Z24 and MESA_FORMAT_S8_Z24), and we can blit
    181     * between those formats.
    182     */
    183    gl_format src_format = find_miptree(buffer_bit, src_irb)->format;
    184    gl_format dst_format = find_miptree(buffer_bit, dst_irb)->format;
    185 
    186    return _mesa_get_srgb_format_linear(src_format) ==
    187           _mesa_get_srgb_format_linear(dst_format);
    188 }
    189 
    190 
    191 static bool
    192 try_blorp_blit(struct intel_context *intel,
    193                GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
    194                GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
    195                GLenum filter, GLbitfield buffer_bit)
    196 {
    197    struct gl_context *ctx = &intel->ctx;
    198 
    199    /* Sync up the state of window system buffers.  We need to do this before
    200     * we go looking for the buffers.
    201     */
    202    intel_prepare_render(intel);
    203 
    204    const struct gl_framebuffer *read_fb = ctx->ReadBuffer;
    205    const struct gl_framebuffer *draw_fb = ctx->DrawBuffer;
    206 
    207    /* Detect if the blit needs to be mirrored */
    208    bool mirror_x = false, mirror_y = false;
    209    fixup_mirroring(mirror_x, srcX0, srcX1);
    210    fixup_mirroring(mirror_x, dstX0, dstX1);
    211    fixup_mirroring(mirror_y, srcY0, srcY1);
    212    fixup_mirroring(mirror_y, dstY0, dstY1);
    213 
    214    /* Make sure width and height match */
    215    if (srcX1 - srcX0 != dstX1 - dstX0) return false;
    216    if (srcY1 - srcY0 != dstY1 - dstY0) return false;
    217 
    218    /* If the destination rectangle needs to be clipped or scissored, do so.
    219     */
    220    if (!(clip_or_scissor(mirror_x, srcX0, srcX1, dstX0, dstX1,
    221                          draw_fb->_Xmin, draw_fb->_Xmax) &&
    222          clip_or_scissor(mirror_y, srcY0, srcY1, dstY0, dstY1,
    223                          draw_fb->_Ymin, draw_fb->_Ymax))) {
    224       /* Everything got clipped/scissored away, so the blit was successful. */
    225       return true;
    226    }
    227 
    228    /* If the source rectangle needs to be clipped or scissored, do so. */
    229    if (!(clip_or_scissor(mirror_x, dstX0, dstX1, srcX0, srcX1,
    230                          0, read_fb->Width) &&
    231          clip_or_scissor(mirror_y, dstY0, dstY1, srcY0, srcY1,
    232                          0, read_fb->Height))) {
    233       /* Everything got clipped/scissored away, so the blit was successful. */
    234       return true;
    235    }
    236 
    237    /* Account for the fact that in the system framebuffer, the origin is at
    238     * the lower left.
    239     */
    240    if (_mesa_is_winsys_fbo(read_fb)) {
    241       GLint tmp = read_fb->Height - srcY0;
    242       srcY0 = read_fb->Height - srcY1;
    243       srcY1 = tmp;
    244       mirror_y = !mirror_y;
    245    }
    246    if (_mesa_is_winsys_fbo(draw_fb)) {
    247       GLint tmp = draw_fb->Height - dstY0;
    248       dstY0 = draw_fb->Height - dstY1;
    249       dstY1 = tmp;
    250       mirror_y = !mirror_y;
    251    }
    252 
    253    /* Find buffers */
    254    struct intel_renderbuffer *src_irb;
    255    struct intel_renderbuffer *dst_irb;
    256    switch (buffer_bit) {
    257    case GL_COLOR_BUFFER_BIT:
    258       src_irb = intel_renderbuffer(read_fb->_ColorReadBuffer);
    259       for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) {
    260          dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]);
    261          if (dst_irb && !formats_match(buffer_bit, src_irb, dst_irb))
    262             return false;
    263       }
    264       for (unsigned i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; ++i) {
    265          dst_irb = intel_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[i]);
    266          do_blorp_blit(intel, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
    267                        dstX0, dstY0, dstX1, dstY1, mirror_x, mirror_y);
    268       }
    269       break;
    270    case GL_DEPTH_BUFFER_BIT:
    271       src_irb =
    272          intel_renderbuffer(read_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
    273       dst_irb =
    274          intel_renderbuffer(draw_fb->Attachment[BUFFER_DEPTH].Renderbuffer);
    275       if (!formats_match(buffer_bit, src_irb, dst_irb))
    276          return false;
    277       do_blorp_blit(intel, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
    278                     dstX0, dstY0, dstX1, dstY1, mirror_x, mirror_y);
    279       break;
    280    case GL_STENCIL_BUFFER_BIT:
    281       src_irb =
    282          intel_renderbuffer(read_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
    283       dst_irb =
    284          intel_renderbuffer(draw_fb->Attachment[BUFFER_STENCIL].Renderbuffer);
    285       if (!formats_match(buffer_bit, src_irb, dst_irb))
    286          return false;
    287       do_blorp_blit(intel, buffer_bit, src_irb, dst_irb, srcX0, srcY0,
    288                     dstX0, dstY0, dstX1, dstY1, mirror_x, mirror_y);
    289       break;
    290    default:
    291       assert(false);
    292    }
    293 
    294    return true;
    295 }
    296 
    297 GLbitfield
    298 brw_blorp_framebuffer(struct intel_context *intel,
    299                       GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
    300                       GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
    301                       GLbitfield mask, GLenum filter)
    302 {
    303    /* BLORP is not supported before Gen6. */
    304    if (intel->gen < 6)
    305       return mask;
    306 
    307    static GLbitfield buffer_bits[] = {
    308       GL_COLOR_BUFFER_BIT,
    309       GL_DEPTH_BUFFER_BIT,
    310       GL_STENCIL_BUFFER_BIT,
    311    };
    312 
    313    for (unsigned int i = 0; i < ARRAY_SIZE(buffer_bits); ++i) {
    314       if ((mask & buffer_bits[i]) &&
    315        try_blorp_blit(intel,
    316                       srcX0, srcY0, srcX1, srcY1,
    317                       dstX0, dstY0, dstX1, dstY1,
    318                       filter, buffer_bits[i])) {
    319          mask &= ~buffer_bits[i];
    320       }
    321    }
    322 
    323    return mask;
    324 }
    325 
    326 
    327 /**
    328  * Enum to specify the order of arguments in a sampler message
    329  */
    330 enum sampler_message_arg
    331 {
    332    SAMPLER_MESSAGE_ARG_U_FLOAT,
    333    SAMPLER_MESSAGE_ARG_V_FLOAT,
    334    SAMPLER_MESSAGE_ARG_U_INT,
    335    SAMPLER_MESSAGE_ARG_V_INT,
    336    SAMPLER_MESSAGE_ARG_SI_INT,
    337    SAMPLER_MESSAGE_ARG_MCS_INT,
    338    SAMPLER_MESSAGE_ARG_ZERO_INT,
    339 };
    340 
    341 /**
    342  * Generator for WM programs used in BLORP blits.
    343  *
    344  * The bulk of the work done by the WM program is to wrap and unwrap the
    345  * coordinate transformations used by the hardware to store surfaces in
    346  * memory.  The hardware transforms a pixel location (X, Y, S) (where S is the
    347  * sample index for a multisampled surface) to a memory offset by the
    348  * following formulas:
    349  *
    350  *   offset = tile(tiling_format, encode_msaa(num_samples, layout, X, Y, S))
    351  *   (X, Y, S) = decode_msaa(num_samples, layout, detile(tiling_format, offset))
    352  *
    353  * For a single-sampled surface, or for a multisampled surface using
    354  * INTEL_MSAA_LAYOUT_UMS, encode_msaa() and decode_msaa are the identity
    355  * function:
    356  *
    357  *   encode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
    358  *   decode_msaa(1, NONE, X, Y, 0) = (X, Y, 0)
    359  *   encode_msaa(n, UMS, X, Y, S) = (X, Y, S)
    360  *   decode_msaa(n, UMS, X, Y, S) = (X, Y, S)
    361  *
    362  * For a 4x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
    363  * embeds the sample number into bit 1 of the X and Y coordinates:
    364  *
    365  *   encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
    366  *     where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
    367  *           Y' = (Y & ~0b1 ) << 1 | (S & 0b10) | (Y & 0b1)
    368  *   decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
    369  *     where X' = (X & ~0b11) >> 1 | (X & 0b1)
    370  *           Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
    371  *           S = (Y & 0b10) | (X & 0b10) >> 1
    372  *
    373  * For an 8x multisampled surface using INTEL_MSAA_LAYOUT_IMS, encode_msaa()
    374  * embeds the sample number into bits 1 and 2 of the X coordinate and bit 1 of
    375  * the Y coordinate:
    376  *
    377  *   encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
    378  *     where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1 | (X & 0b1)
    379  *           Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
    380  *   decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
    381  *     where X' = (X & ~0b111) >> 2 | (X & 0b1)
    382  *           Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
    383  *           S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
    384  *
    385  * For X tiling, tile() combines together the low-order bits of the X and Y
    386  * coordinates in the pattern 0byyyxxxxxxxxx, creating 4k tiles that are 512
    387  * bytes wide and 8 rows high:
    388  *
    389  *   tile(x_tiled, X, Y, S) = A
    390  *     where A = tile_num << 12 | offset
    391  *           tile_num = (Y' >> 3) * tile_pitch + (X' >> 9)
    392  *           offset = (Y' & 0b111) << 9
    393  *                    | (X & 0b111111111)
    394  *           X' = X * cpp
    395  *           Y' = Y + S * qpitch
    396  *   detile(x_tiled, A) = (X, Y, S)
    397  *     where X = X' / cpp
    398  *           Y = Y' % qpitch
    399  *           S = Y' / qpitch
    400  *           Y' = (tile_num / tile_pitch) << 3
    401  *                | (A & 0b111000000000) >> 9
    402  *           X' = (tile_num % tile_pitch) << 9
    403  *                | (A & 0b111111111)
    404  *
    405  * (In all tiling formulas, cpp is the number of bytes occupied by a single
    406  * sample ("chars per pixel"), tile_pitch is the number of 4k tiles required
    407  * to fill the width of the surface, and qpitch is the spacing (in rows)
    408  * between array slices).
    409  *
    410  * For Y tiling, tile() combines together the low-order bits of the X and Y
    411  * coordinates in the pattern 0bxxxyyyyyxxxx, creating 4k tiles that are 128
    412  * bytes wide and 32 rows high:
    413  *
    414  *   tile(y_tiled, X, Y, S) = A
    415  *     where A = tile_num << 12 | offset
    416  *           tile_num = (Y' >> 5) * tile_pitch + (X' >> 7)
    417  *           offset = (X' & 0b1110000) << 5
    418  *                    | (Y' & 0b11111) << 4
    419  *                    | (X' & 0b1111)
    420  *           X' = X * cpp
    421  *           Y' = Y + S * qpitch
    422  *   detile(y_tiled, A) = (X, Y, S)
    423  *     where X = X' / cpp
    424  *           Y = Y' % qpitch
    425  *           S = Y' / qpitch
    426  *           Y' = (tile_num / tile_pitch) << 5
    427  *                | (A & 0b111110000) >> 4
    428  *           X' = (tile_num % tile_pitch) << 7
    429  *                | (A & 0b111000000000) >> 5
    430  *                | (A & 0b1111)
    431  *
    432  * For W tiling, tile() combines together the low-order bits of the X and Y
    433  * coordinates in the pattern 0bxxxyyyyxyxyx, creating 4k tiles that are 64
    434  * bytes wide and 64 rows high (note that W tiling is only used for stencil
    435  * buffers, which always have cpp = 1 and S=0):
    436  *
    437  *   tile(w_tiled, X, Y, S) = A
    438  *     where A = tile_num << 12 | offset
    439  *           tile_num = (Y' >> 6) * tile_pitch + (X' >> 6)
    440  *           offset = (X' & 0b111000) << 6
    441  *                    | (Y' & 0b111100) << 3
    442  *                    | (X' & 0b100) << 2
    443  *                    | (Y' & 0b10) << 2
    444  *                    | (X' & 0b10) << 1
    445  *                    | (Y' & 0b1) << 1
    446  *                    | (X' & 0b1)
    447  *           X' = X * cpp = X
    448  *           Y' = Y + S * qpitch
    449  *   detile(w_tiled, A) = (X, Y, S)
    450  *     where X = X' / cpp = X'
    451  *           Y = Y' % qpitch = Y'
    452  *           S = Y / qpitch = 0
    453  *           Y' = (tile_num / tile_pitch) << 6
    454  *                | (A & 0b111100000) >> 3
    455  *                | (A & 0b1000) >> 2
    456  *                | (A & 0b10) >> 1
    457  *           X' = (tile_num % tile_pitch) << 6
    458  *                | (A & 0b111000000000) >> 6
    459  *                | (A & 0b10000) >> 2
    460  *                | (A & 0b100) >> 1
    461  *                | (A & 0b1)
    462  *
    463  * Finally, for a non-tiled surface, tile() simply combines together the X and
    464  * Y coordinates in the natural way:
    465  *
    466  *   tile(untiled, X, Y, S) = A
    467  *     where A = Y * pitch + X'
    468  *           X' = X * cpp
    469  *           Y' = Y + S * qpitch
    470  *   detile(untiled, A) = (X, Y, S)
    471  *     where X = X' / cpp
    472  *           Y = Y' % qpitch
    473  *           S = Y' / qpitch
    474  *           X' = A % pitch
    475  *           Y' = A / pitch
    476  *
    477  * (In these formulas, pitch is the number of bytes occupied by a single row
    478  * of samples).
    479  */
    480 class brw_blorp_blit_program
    481 {
    482 public:
    483    brw_blorp_blit_program(struct brw_context *brw,
    484                           const brw_blorp_blit_prog_key *key);
    485    ~brw_blorp_blit_program();
    486 
    487    const GLuint *compile(struct brw_context *brw, GLuint *program_size);
    488 
    489    brw_blorp_prog_data prog_data;
    490 
    491 private:
    492    void alloc_regs();
    493    void alloc_push_const_regs(int base_reg);
    494    void compute_frag_coords();
    495    void translate_tiling(bool old_tiled_w, bool new_tiled_w);
    496    void encode_msaa(unsigned num_samples, intel_msaa_layout layout);
    497    void decode_msaa(unsigned num_samples, intel_msaa_layout layout);
    498    void kill_if_outside_dst_rect();
    499    void translate_dst_to_src();
    500    void single_to_blend();
    501    void manual_blend(unsigned num_samples);
    502    void sample(struct brw_reg dst);
    503    void texel_fetch(struct brw_reg dst);
    504    void mcs_fetch();
    505    void expand_to_32_bits(struct brw_reg src, struct brw_reg dst);
    506    void texture_lookup(struct brw_reg dst, GLuint msg_type,
    507                        const sampler_message_arg *args, int num_args);
    508    void render_target_write();
    509 
    510    /**
    511     * Base-2 logarithm of the maximum number of samples that can be blended.
    512     */
    513    static const unsigned LOG2_MAX_BLEND_SAMPLES = 3;
    514 
    515    void *mem_ctx;
    516    struct brw_context *brw;
    517    const brw_blorp_blit_prog_key *key;
    518    struct brw_compile func;
    519 
    520    /* Thread dispatch header */
    521    struct brw_reg R0;
    522 
    523    /* Pixel X/Y coordinates (always in R1). */
    524    struct brw_reg R1;
    525 
    526    /* Push constants */
    527    struct brw_reg dst_x0;
    528    struct brw_reg dst_x1;
    529    struct brw_reg dst_y0;
    530    struct brw_reg dst_y1;
    531    struct {
    532       struct brw_reg multiplier;
    533       struct brw_reg offset;
    534    } x_transform, y_transform;
    535 
    536    /* Data read from texture (4 vec16's per array element) */
    537    struct brw_reg texture_data[LOG2_MAX_BLEND_SAMPLES + 1];
    538 
    539    /* Auxiliary storage for the contents of the MCS surface.
    540     *
    541     * Since the sampler always returns 8 registers worth of data, this is 8
    542     * registers wide, even though we only use the first 2 registers of it.
    543     */
    544    struct brw_reg mcs_data;
    545 
    546    /* X coordinates.  We have two of them so that we can perform coordinate
    547     * transformations easily.
    548     */
    549    struct brw_reg x_coords[2];
    550 
    551    /* Y coordinates.  We have two of them so that we can perform coordinate
    552     * transformations easily.
    553     */
    554    struct brw_reg y_coords[2];
    555 
    556    /* Which element of x_coords and y_coords is currently in use.
    557     */
    558    int xy_coord_index;
    559 
    560    /* True if, at the point in the program currently being compiled, the
    561     * sample index is known to be zero.
    562     */
    563    bool s_is_zero;
    564 
    565    /* Register storing the sample index when s_is_zero is false. */
    566    struct brw_reg sample_index;
    567 
    568    /* Temporaries */
    569    struct brw_reg t1;
    570    struct brw_reg t2;
    571 
    572    /* MRF used for sampling and render target writes */
    573    GLuint base_mrf;
    574 };
    575 
    576 brw_blorp_blit_program::brw_blorp_blit_program(
    577       struct brw_context *brw,
    578       const brw_blorp_blit_prog_key *key)
    579    : mem_ctx(ralloc_context(NULL)),
    580      brw(brw),
    581      key(key)
    582 {
    583    brw_init_compile(brw, &func, mem_ctx);
    584 }
    585 
    586 brw_blorp_blit_program::~brw_blorp_blit_program()
    587 {
    588    ralloc_free(mem_ctx);
    589 }
    590 
    591 const GLuint *
    592 brw_blorp_blit_program::compile(struct brw_context *brw,
    593                                 GLuint *program_size)
    594 {
    595    /* Sanity checks */
    596    if (key->dst_tiled_w && key->rt_samples > 0) {
    597       /* If the destination image is W tiled and multisampled, then the thread
    598        * must be dispatched once per sample, not once per pixel.  This is
    599        * necessary because after conversion between W and Y tiling, there's no
    600        * guarantee that all samples corresponding to a single pixel will still
    601        * be together.
    602        */
    603       assert(key->persample_msaa_dispatch);
    604    }
    605 
    606    if (key->blend) {
    607       /* We are blending, which means we won't have an opportunity to
    608        * translate the tiling and sample count for the texture surface.  So
    609        * the surface state for the texture must be configured with the correct
    610        * tiling and sample count.
    611        */
    612       assert(!key->src_tiled_w);
    613       assert(key->tex_samples == key->src_samples);
    614       assert(key->tex_layout == key->src_layout);
    615       assert(key->tex_samples > 0);
    616    }
    617 
    618    if (key->persample_msaa_dispatch) {
    619       /* It only makes sense to do persample dispatch if the render target is
    620        * configured as multisampled.
    621        */
    622       assert(key->rt_samples > 0);
    623    }
    624 
    625    /* Make sure layout is consistent with sample count */
    626    assert((key->tex_layout == INTEL_MSAA_LAYOUT_NONE) ==
    627           (key->tex_samples == 0));
    628    assert((key->rt_layout == INTEL_MSAA_LAYOUT_NONE) ==
    629           (key->rt_samples == 0));
    630    assert((key->src_layout == INTEL_MSAA_LAYOUT_NONE) ==
    631           (key->src_samples == 0));
    632    assert((key->dst_layout == INTEL_MSAA_LAYOUT_NONE) ==
    633           (key->dst_samples == 0));
    634 
    635    /* Set up prog_data */
    636    memset(&prog_data, 0, sizeof(prog_data));
    637    prog_data.persample_msaa_dispatch = key->persample_msaa_dispatch;
    638 
    639    brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
    640 
    641    alloc_regs();
    642    compute_frag_coords();
    643 
    644    /* Render target and texture hardware don't support W tiling. */
    645    const bool rt_tiled_w = false;
    646    const bool tex_tiled_w = false;
    647 
    648    /* The address that data will be written to is determined by the
    649     * coordinates supplied to the WM thread and the tiling and sample count of
    650     * the render target, according to the formula:
    651     *
    652     * (X, Y, S) = decode_msaa(rt_samples, detile(rt_tiling, offset))
    653     *
    654     * If the actual tiling and sample count of the destination surface are not
    655     * the same as the configuration of the render target, then these
    656     * coordinates are wrong and we have to adjust them to compensate for the
    657     * difference.
    658     */
    659    if (rt_tiled_w != key->dst_tiled_w ||
    660        key->rt_samples != key->dst_samples ||
    661        key->rt_layout != key->dst_layout) {
    662       encode_msaa(key->rt_samples, key->rt_layout);
    663       /* Now (X, Y, S) = detile(rt_tiling, offset) */
    664       translate_tiling(rt_tiled_w, key->dst_tiled_w);
    665       /* Now (X, Y, S) = detile(dst_tiling, offset) */
    666       decode_msaa(key->dst_samples, key->dst_layout);
    667    }
    668 
    669    /* Now (X, Y, S) = decode_msaa(dst_samples, detile(dst_tiling, offset)).
    670     *
    671     * That is: X, Y and S now contain the true coordinates and sample index of
    672     * the data that the WM thread should output.
    673     *
    674     * If we need to kill pixels that are outside the destination rectangle,
    675     * now is the time to do it.
    676     */
    677 
    678    if (key->use_kill)
    679       kill_if_outside_dst_rect();
    680 
    681    /* Next, apply a translation to obtain coordinates in the source image. */
    682    translate_dst_to_src();
    683 
    684    /* If the source image is not multisampled, then we want to fetch sample
    685     * number 0, because that's the only sample there is.
    686     */
    687    if (key->src_samples == 0)
    688       s_is_zero = true;
    689 
    690    /* X, Y, and S are now the coordinates of the pixel in the source image
    691     * that we want to texture from.  Exception: if we are blending, then S is
    692     * irrelevant, because we are going to fetch all samples.
    693     */
    694    if (key->blend) {
    695       if (brw->intel.gen == 6) {
    696          /* Gen6 hardware an automatically blend using the SAMPLE message */
    697          single_to_blend();
    698          sample(texture_data[0]);
    699       } else {
    700          /* Gen7+ hardware doesn't automaticaly blend. */
    701          manual_blend(key->src_samples);
    702       }
    703    } else {
    704       /* We aren't blending, which means we just want to fetch a single sample
    705        * from the source surface.  The address that we want to fetch from is
    706        * related to the X, Y and S values according to the formula:
    707        *
    708        * (X, Y, S) = decode_msaa(src_samples, detile(src_tiling, offset)).
    709        *
    710        * If the actual tiling and sample count of the source surface are not
    711        * the same as the configuration of the texture, then we need to adjust
    712        * the coordinates to compensate for the difference.
    713        */
    714       if (tex_tiled_w != key->src_tiled_w ||
    715           key->tex_samples != key->src_samples ||
    716           key->tex_layout != key->src_layout) {
    717          encode_msaa(key->src_samples, key->src_layout);
    718          /* Now (X, Y, S) = detile(src_tiling, offset) */
    719          translate_tiling(key->src_tiled_w, tex_tiled_w);
    720          /* Now (X, Y, S) = detile(tex_tiling, offset) */
    721          decode_msaa(key->tex_samples, key->tex_layout);
    722       }
    723 
    724       /* Now (X, Y, S) = decode_msaa(tex_samples, detile(tex_tiling, offset)).
    725        *
    726        * In other words: X, Y, and S now contain values which, when passed to
    727        * the texturing unit, will cause data to be read from the correct
    728        * memory location.  So we can fetch the texel now.
    729        */
    730       if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
    731          mcs_fetch();
    732       texel_fetch(texture_data[0]);
    733    }
    734 
    735    /* Finally, write the fetched (or blended) value to the render target and
    736     * terminate the thread.
    737     */
    738    render_target_write();
    739    return brw_get_program(&func, program_size);
    740 }
    741 
    742 void
    743 brw_blorp_blit_program::alloc_push_const_regs(int base_reg)
    744 {
    745 #define CONST_LOC(name) offsetof(brw_blorp_wm_push_constants, name)
    746 #define ALLOC_REG(name) \
    747    this->name = \
    748       brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, base_reg, CONST_LOC(name) / 2)
    749 
    750    ALLOC_REG(dst_x0);
    751    ALLOC_REG(dst_x1);
    752    ALLOC_REG(dst_y0);
    753    ALLOC_REG(dst_y1);
    754    ALLOC_REG(x_transform.multiplier);
    755    ALLOC_REG(x_transform.offset);
    756    ALLOC_REG(y_transform.multiplier);
    757    ALLOC_REG(y_transform.offset);
    758 #undef CONST_LOC
    759 #undef ALLOC_REG
    760 }
    761 
    762 void
    763 brw_blorp_blit_program::alloc_regs()
    764 {
    765    int reg = 0;
    766    this->R0 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
    767    this->R1 = retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW);
    768    prog_data.first_curbe_grf = reg;
    769    alloc_push_const_regs(reg);
    770    reg += BRW_BLORP_NUM_PUSH_CONST_REGS;
    771    for (unsigned i = 0; i < ARRAY_SIZE(texture_data); ++i) {
    772       this->texture_data[i] =
    773          retype(vec16(brw_vec8_grf(reg, 0)), key->texture_data_type);
    774       reg += 8;
    775    }
    776    this->mcs_data =
    777       retype(brw_vec8_grf(reg, 0), BRW_REGISTER_TYPE_UD); reg += 8;
    778    for (int i = 0; i < 2; ++i) {
    779       this->x_coords[i]
    780          = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
    781       this->y_coords[i]
    782          = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
    783    }
    784    this->xy_coord_index = 0;
    785    this->sample_index
    786       = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
    787    this->t1 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
    788    this->t2 = vec16(retype(brw_vec8_grf(reg++, 0), BRW_REGISTER_TYPE_UW));
    789 
    790    /* Make sure we didn't run out of registers */
    791    assert(reg <= GEN7_MRF_HACK_START);
    792 
    793    int mrf = 2;
    794    this->base_mrf = mrf;
    795 }
    796 
    797 /* In the code that follows, X and Y can be used to quickly refer to the
    798  * active elements of x_coords and y_coords, and Xp and Yp ("X prime" and "Y
    799  * prime") to the inactive elements.
    800  *
    801  * S can be used to quickly refer to sample_index.
    802  */
    803 #define X x_coords[xy_coord_index]
    804 #define Y y_coords[xy_coord_index]
    805 #define Xp x_coords[!xy_coord_index]
    806 #define Yp y_coords[!xy_coord_index]
    807 #define S sample_index
    808 
    809 /* Quickly swap the roles of (X, Y) and (Xp, Yp).  Saves us from having to do
    810  * MOVs to transfor (Xp, Yp) to (X, Y) after a coordinate transformation.
    811  */
    812 #define SWAP_XY_AND_XPYP() xy_coord_index = !xy_coord_index;
    813 
    814 /**
    815  * Emit code to compute the X and Y coordinates of the pixels being rendered
    816  * by this WM invocation.
    817  *
    818  * Assuming the render target is set up for Y tiling, these (X, Y) values are
    819  * related to the address offset where outputs will be written by the formula:
    820  *
    821  *   (X, Y, S) = decode_msaa(detile(offset)).
    822  *
    823  * (See brw_blorp_blit_program).
    824  */
    825 void
    826 brw_blorp_blit_program::compute_frag_coords()
    827 {
    828    /* R1.2[15:0] = X coordinate of upper left pixel of subspan 0 (pixel 0)
    829     * R1.3[15:0] = X coordinate of upper left pixel of subspan 1 (pixel 4)
    830     * R1.4[15:0] = X coordinate of upper left pixel of subspan 2 (pixel 8)
    831     * R1.5[15:0] = X coordinate of upper left pixel of subspan 3 (pixel 12)
    832     *
    833     * Pixels within a subspan are laid out in this arrangement:
    834     * 0 1
    835     * 2 3
    836     *
    837     * So, to compute the coordinates of each pixel, we need to read every 2nd
    838     * 16-bit value (vstride=2) from R1, starting at the 4th 16-bit value
    839     * (suboffset=4), and duplicate each value 4 times (hstride=0, width=4).
    840     * In other words, the data we want to access is R1.4<2;4,0>UW.
    841     *
    842     * Then, we need to add the repeating sequence (0, 1, 0, 1, ...) to the
    843     * result, since pixels n+1 and n+3 are in the right half of the subspan.
    844     */
    845    brw_ADD(&func, X, stride(suboffset(R1, 4), 2, 4, 0), brw_imm_v(0x10101010));
    846 
    847    /* Similarly, Y coordinates for subspans come from R1.2[31:16] through
    848     * R1.5[31:16], so to get pixel Y coordinates we need to start at the 5th
    849     * 16-bit value instead of the 4th (R1.5<2;4,0>UW instead of
    850     * R1.4<2;4,0>UW).
    851     *
    852     * And we need to add the repeating sequence (0, 0, 1, 1, ...), since
    853     * pixels n+2 and n+3 are in the bottom half of the subspan.
    854     */
    855    brw_ADD(&func, Y, stride(suboffset(R1, 5), 2, 4, 0), brw_imm_v(0x11001100));
    856 
    857    if (key->persample_msaa_dispatch) {
    858       switch (key->rt_samples) {
    859       case 4:
    860          /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 4.
    861           * Therefore, subspan 0 will represent sample 0, subspan 1 will
    862           * represent sample 1, and so on.
    863           *
    864           * So we need to populate S with the sequence (0, 0, 0, 0, 1, 1, 1,
    865           * 1, 2, 2, 2, 2, 3, 3, 3, 3).  The easiest way to do this is to
    866           * populate a temporary variable with the sequence (0, 1, 2, 3), and
    867           * then copy from it using vstride=1, width=4, hstride=0.
    868           */
    869          brw_MOV(&func, t1, brw_imm_v(0x3210));
    870          brw_MOV(&func, S, stride(t1, 1, 4, 0));
    871          break;
    872       case 8: {
    873          /* The WM will be run in MSDISPMODE_PERSAMPLE with num_samples == 8.
    874           * Therefore, subspan 0 will represent sample N (where N is 0 or 4),
    875           * subspan 1 will represent sample 1, and so on.  We can find the
    876           * value of N by looking at R0.0 bits 7:6 ("Starting Sample Pair
    877           * Index") and multiplying by two (since samples are always delivered
    878           * in pairs).  That is, we compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 &
    879           * 0xc0) >> 5.
    880           *
    881           * Then we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1, 2,
    882           * 2, 2, 2, 3, 3, 3, 3), which we compute by populating a temporary
    883           * variable with the sequence (0, 1, 2, 3), and then reading from it
    884           * using vstride=1, width=4, hstride=0.
    885           */
    886          struct brw_reg t1_ud1 = vec1(retype(t1, BRW_REGISTER_TYPE_UD));
    887          struct brw_reg r0_ud1 = vec1(retype(R0, BRW_REGISTER_TYPE_UD));
    888          brw_AND(&func, t1_ud1, r0_ud1, brw_imm_ud(0xc0));
    889          brw_SHR(&func, t1_ud1, t1_ud1, brw_imm_ud(5));
    890          brw_MOV(&func, t2, brw_imm_v(0x3210));
    891          brw_ADD(&func, S, retype(t1_ud1, BRW_REGISTER_TYPE_UW),
    892                  stride(t2, 1, 4, 0));
    893          break;
    894       }
    895       default:
    896          assert(!"Unrecognized sample count in "
    897                 "brw_blorp_blit_program::compute_frag_coords()");
    898          break;
    899       }
    900       s_is_zero = false;
    901    } else {
    902       /* Either the destination surface is single-sampled, or the WM will be
    903        * run in MSDISPMODE_PERPIXEL (which causes a single fragment dispatch
    904        * per pixel).  In either case, it's not meaningful to compute a sample
    905        * value.  Just set it to 0.
    906        */
    907       s_is_zero = true;
    908    }
    909 }
    910 
    911 /**
    912  * Emit code to compensate for the difference between Y and W tiling.
    913  *
    914  * This code modifies the X and Y coordinates according to the formula:
    915  *
    916  *   (X', Y', S') = detile(new_tiling, tile(old_tiling, X, Y, S))
    917  *
    918  * (See brw_blorp_blit_program).
    919  *
    920  * It can only translate between W and Y tiling, so new_tiling and old_tiling
    921  * are booleans where true represents W tiling and false represents Y tiling.
    922  */
    923 void
    924 brw_blorp_blit_program::translate_tiling(bool old_tiled_w, bool new_tiled_w)
    925 {
    926    if (old_tiled_w == new_tiled_w)
    927       return;
    928 
    929    /* In the code that follows, we can safely assume that S = 0, because W
    930     * tiling formats always use IMS layout.
    931     */
    932    assert(s_is_zero);
    933 
    934    if (new_tiled_w) {
    935       /* Given X and Y coordinates that describe an address using Y tiling,
    936        * translate to the X and Y coordinates that describe the same address
    937        * using W tiling.
    938        *
    939        * If we break down the low order bits of X and Y, using a
    940        * single letter to represent each low-order bit:
    941        *
    942        *   X = A << 7 | 0bBCDEFGH
    943        *   Y = J << 5 | 0bKLMNP                                       (1)
    944        *
    945        * Then we can apply the Y tiling formula to see the memory offset being
    946        * addressed:
    947        *
    948        *   offset = (J * tile_pitch + A) << 12 | 0bBCDKLMNPEFGH       (2)
    949        *
    950        * If we apply the W detiling formula to this memory location, that the
    951        * corresponding X' and Y' coordinates are:
    952        *
    953        *   X' = A << 6 | 0bBCDPFH                                     (3)
    954        *   Y' = J << 6 | 0bKLMNEG
    955        *
    956        * Combining (1) and (3), we see that to transform (X, Y) to (X', Y'),
    957        * we need to make the following computation:
    958        *
    959        *   X' = (X & ~0b1011) >> 1 | (Y & 0b1) << 2 | X & 0b1         (4)
    960        *   Y' = (Y & ~0b1) << 1 | (X & 0b1000) >> 2 | (X & 0b10) >> 1
    961        */
    962       brw_AND(&func, t1, X, brw_imm_uw(0xfff4)); /* X & ~0b1011 */
    963       brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1011) >> 1 */
    964       brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
    965       brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b1) << 2 */
    966       brw_OR(&func, t1, t1, t2); /* (X & ~0b1011) >> 1 | (Y & 0b1) << 2 */
    967       brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
    968       brw_OR(&func, Xp, t1, t2);
    969       brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
    970       brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
    971       brw_AND(&func, t2, X, brw_imm_uw(8)); /* X & 0b1000 */
    972       brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b1000) >> 2 */
    973       brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (X & 0b1000) >> 2 */
    974       brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
    975       brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
    976       brw_OR(&func, Yp, t1, t2);
    977       SWAP_XY_AND_XPYP();
    978    } else {
    979       /* Applying the same logic as above, but in reverse, we obtain the
    980        * formulas:
    981        *
    982        * X' = (X & ~0b101) << 1 | (Y & 0b10) << 2 | (Y & 0b1) << 1 | X & 0b1
    983        * Y' = (Y & ~0b11) >> 1 | (X & 0b100) >> 2
    984        */
    985       brw_AND(&func, t1, X, brw_imm_uw(0xfffa)); /* X & ~0b101 */
    986       brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b101) << 1 */
    987       brw_AND(&func, t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
    988       brw_SHL(&func, t2, t2, brw_imm_uw(2)); /* (Y & 0b10) << 2 */
    989       brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2 */
    990       brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
    991       brw_SHL(&func, t2, t2, brw_imm_uw(1)); /* (Y & 0b1) << 1 */
    992       brw_OR(&func, t1, t1, t2); /* (X & ~0b101) << 1 | (Y & 0b10) << 2
    993                                     | (Y & 0b1) << 1 */
    994       brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
    995       brw_OR(&func, Xp, t1, t2);
    996       brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
    997       brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
    998       brw_AND(&func, t2, X, brw_imm_uw(4)); /* X & 0b100 */
    999       brw_SHR(&func, t2, t2, brw_imm_uw(2)); /* (X & 0b100) >> 2 */
   1000       brw_OR(&func, Yp, t1, t2);
   1001       SWAP_XY_AND_XPYP();
   1002    }
   1003 }
   1004 
   1005 /**
   1006  * Emit code to compensate for the difference between MSAA and non-MSAA
   1007  * surfaces.
   1008  *
   1009  * This code modifies the X and Y coordinates according to the formula:
   1010  *
   1011  *   (X', Y', S') = encode_msaa(num_samples, IMS, X, Y, S)
   1012  *
   1013  * (See brw_blorp_blit_program).
   1014  */
   1015 void
   1016 brw_blorp_blit_program::encode_msaa(unsigned num_samples,
   1017                                     intel_msaa_layout layout)
   1018 {
   1019    switch (layout) {
   1020    case INTEL_MSAA_LAYOUT_NONE:
   1021       /* No translation necessary, and S should already be zero. */
   1022       assert(s_is_zero);
   1023       break;
   1024    case INTEL_MSAA_LAYOUT_CMS:
   1025       /* We can't compensate for compressed layout since at this point in the
   1026        * program we haven't read from the MCS buffer.
   1027        */
   1028       assert(!"Bad layout in encode_msaa");
   1029       break;
   1030    case INTEL_MSAA_LAYOUT_UMS:
   1031       /* No translation necessary. */
   1032       break;
   1033    case INTEL_MSAA_LAYOUT_IMS:
   1034       switch (num_samples) {
   1035       case 4:
   1036          /* encode_msaa(4, IMS, X, Y, S) = (X', Y', 0)
   1037           *   where X' = (X & ~0b1) << 1 | (S & 0b1) << 1 | (X & 0b1)
   1038           *         Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
   1039           */
   1040          brw_AND(&func, t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
   1041          if (!s_is_zero) {
   1042             brw_AND(&func, t2, S, brw_imm_uw(1)); /* S & 0b1 */
   1043             brw_OR(&func, t1, t1, t2); /* (X & ~0b1) | (S & 0b1) */
   1044          }
   1045          brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b1) << 1
   1046                                                    | (S & 0b1) << 1 */
   1047          brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
   1048          brw_OR(&func, Xp, t1, t2);
   1049          brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
   1050          brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
   1051          if (!s_is_zero) {
   1052             brw_AND(&func, t2, S, brw_imm_uw(2)); /* S & 0b10 */
   1053             brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
   1054          }
   1055          brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
   1056          brw_OR(&func, Yp, t1, t2);
   1057          break;
   1058       case 8:
   1059          /* encode_msaa(8, IMS, X, Y, S) = (X', Y', 0)
   1060           *   where X' = (X & ~0b1) << 2 | (S & 0b100) | (S & 0b1) << 1
   1061           *              | (X & 0b1)
   1062           *         Y' = (Y & ~0b1) << 1 | (S & 0b10) | (Y & 0b1)
   1063           */
   1064          brw_AND(&func, t1, X, brw_imm_uw(0xfffe)); /* X & ~0b1 */
   1065          brw_SHL(&func, t1, t1, brw_imm_uw(2)); /* (X & ~0b1) << 2 */
   1066          if (!s_is_zero) {
   1067             brw_AND(&func, t2, S, brw_imm_uw(4)); /* S & 0b100 */
   1068             brw_OR(&func, t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100) */
   1069             brw_AND(&func, t2, S, brw_imm_uw(1)); /* S & 0b1 */
   1070             brw_SHL(&func, t2, t2, brw_imm_uw(1)); /* (S & 0b1) << 1 */
   1071             brw_OR(&func, t1, t1, t2); /* (X & ~0b1) << 2 | (S & 0b100)
   1072                                           | (S & 0b1) << 1 */
   1073          }
   1074          brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
   1075          brw_OR(&func, Xp, t1, t2);
   1076          brw_AND(&func, t1, Y, brw_imm_uw(0xfffe)); /* Y & ~0b1 */
   1077          brw_SHL(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b1) << 1 */
   1078          if (!s_is_zero) {
   1079             brw_AND(&func, t2, S, brw_imm_uw(2)); /* S & 0b10 */
   1080             brw_OR(&func, t1, t1, t2); /* (Y & ~0b1) << 1 | (S & 0b10) */
   1081          }
   1082          brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
   1083          brw_OR(&func, Yp, t1, t2);
   1084          break;
   1085       }
   1086       SWAP_XY_AND_XPYP();
   1087       s_is_zero = true;
   1088       break;
   1089    }
   1090 }
   1091 
   1092 /**
   1093  * Emit code to compensate for the difference between MSAA and non-MSAA
   1094  * surfaces.
   1095  *
   1096  * This code modifies the X and Y coordinates according to the formula:
   1097  *
   1098  *   (X', Y', S) = decode_msaa(num_samples, IMS, X, Y, S)
   1099  *
   1100  * (See brw_blorp_blit_program).
   1101  */
   1102 void
   1103 brw_blorp_blit_program::decode_msaa(unsigned num_samples,
   1104                                     intel_msaa_layout layout)
   1105 {
   1106    switch (layout) {
   1107    case INTEL_MSAA_LAYOUT_NONE:
   1108       /* No translation necessary, and S should already be zero. */
   1109       assert(s_is_zero);
   1110       break;
   1111    case INTEL_MSAA_LAYOUT_CMS:
   1112       /* We can't compensate for compressed layout since at this point in the
   1113        * program we don't have access to the MCS buffer.
   1114        */
   1115       assert(!"Bad layout in encode_msaa");
   1116       break;
   1117    case INTEL_MSAA_LAYOUT_UMS:
   1118       /* No translation necessary. */
   1119       break;
   1120    case INTEL_MSAA_LAYOUT_IMS:
   1121       assert(s_is_zero);
   1122       switch (num_samples) {
   1123       case 4:
   1124          /* decode_msaa(4, IMS, X, Y, 0) = (X', Y', S)
   1125           *   where X' = (X & ~0b11) >> 1 | (X & 0b1)
   1126           *         Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
   1127           *         S = (Y & 0b10) | (X & 0b10) >> 1
   1128           */
   1129          brw_AND(&func, t1, X, brw_imm_uw(0xfffc)); /* X & ~0b11 */
   1130          brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (X & ~0b11) >> 1 */
   1131          brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
   1132          brw_OR(&func, Xp, t1, t2);
   1133          brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
   1134          brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
   1135          brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
   1136          brw_OR(&func, Yp, t1, t2);
   1137          brw_AND(&func, t1, Y, brw_imm_uw(2)); /* Y & 0b10 */
   1138          brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
   1139          brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
   1140          brw_OR(&func, S, t1, t2);
   1141          break;
   1142       case 8:
   1143          /* decode_msaa(8, IMS, X, Y, 0) = (X', Y', S)
   1144           *   where X' = (X & ~0b111) >> 2 | (X & 0b1)
   1145           *         Y' = (Y & ~0b11) >> 1 | (Y & 0b1)
   1146           *         S = (X & 0b100) | (Y & 0b10) | (X & 0b10) >> 1
   1147           */
   1148          brw_AND(&func, t1, X, brw_imm_uw(0xfff8)); /* X & ~0b111 */
   1149          brw_SHR(&func, t1, t1, brw_imm_uw(2)); /* (X & ~0b111) >> 2 */
   1150          brw_AND(&func, t2, X, brw_imm_uw(1)); /* X & 0b1 */
   1151          brw_OR(&func, Xp, t1, t2);
   1152          brw_AND(&func, t1, Y, brw_imm_uw(0xfffc)); /* Y & ~0b11 */
   1153          brw_SHR(&func, t1, t1, brw_imm_uw(1)); /* (Y & ~0b11) >> 1 */
   1154          brw_AND(&func, t2, Y, brw_imm_uw(1)); /* Y & 0b1 */
   1155          brw_OR(&func, Yp, t1, t2);
   1156          brw_AND(&func, t1, X, brw_imm_uw(4)); /* X & 0b100 */
   1157          brw_AND(&func, t2, Y, brw_imm_uw(2)); /* Y & 0b10 */
   1158          brw_OR(&func, t1, t1, t2); /* (X & 0b100) | (Y & 0b10) */
   1159          brw_AND(&func, t2, X, brw_imm_uw(2)); /* X & 0b10 */
   1160          brw_SHR(&func, t2, t2, brw_imm_uw(1)); /* (X & 0b10) >> 1 */
   1161          brw_OR(&func, S, t1, t2);
   1162          break;
   1163       }
   1164       s_is_zero = false;
   1165       SWAP_XY_AND_XPYP();
   1166       break;
   1167    }
   1168 }
   1169 
   1170 /**
   1171  * Emit code that kills pixels whose X and Y coordinates are outside the
   1172  * boundary of the rectangle defined by the push constants (dst_x0, dst_y0,
   1173  * dst_x1, dst_y1).
   1174  */
   1175 void
   1176 brw_blorp_blit_program::kill_if_outside_dst_rect()
   1177 {
   1178    struct brw_reg f0 = brw_flag_reg();
   1179    struct brw_reg g1 = retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_UW);
   1180    struct brw_reg null16 = vec16(retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
   1181 
   1182    brw_CMP(&func, null16, BRW_CONDITIONAL_GE, X, dst_x0);
   1183    brw_CMP(&func, null16, BRW_CONDITIONAL_GE, Y, dst_y0);
   1184    brw_CMP(&func, null16, BRW_CONDITIONAL_L, X, dst_x1);
   1185    brw_CMP(&func, null16, BRW_CONDITIONAL_L, Y, dst_y1);
   1186 
   1187    brw_set_predicate_control(&func, BRW_PREDICATE_NONE);
   1188    brw_push_insn_state(&func);
   1189    brw_set_mask_control(&func, BRW_MASK_DISABLE);
   1190    brw_AND(&func, g1, f0, g1);
   1191    brw_pop_insn_state(&func);
   1192 }
   1193 
   1194 /**
   1195  * Emit code to translate from destination (X, Y) coordinates to source (X, Y)
   1196  * coordinates.
   1197  */
   1198 void
   1199 brw_blorp_blit_program::translate_dst_to_src()
   1200 {
   1201    brw_MUL(&func, Xp, X, x_transform.multiplier);
   1202    brw_MUL(&func, Yp, Y, y_transform.multiplier);
   1203    brw_ADD(&func, Xp, Xp, x_transform.offset);
   1204    brw_ADD(&func, Yp, Yp, y_transform.offset);
   1205    SWAP_XY_AND_XPYP();
   1206 }
   1207 
   1208 /**
   1209  * Emit code to transform the X and Y coordinates as needed for blending
   1210  * together the different samples in an MSAA texture.
   1211  */
   1212 void
   1213 brw_blorp_blit_program::single_to_blend()
   1214 {
   1215    /* When looking up samples in an MSAA texture using the SAMPLE message,
   1216     * Gen6 requires the texture coordinates to be odd integers (so that they
   1217     * correspond to the center of a 2x2 block representing the four samples
   1218     * that maxe up a pixel).  So we need to multiply our X and Y coordinates
   1219     * each by 2 and then add 1.
   1220     */
   1221    brw_SHL(&func, t1, X, brw_imm_w(1));
   1222    brw_SHL(&func, t2, Y, brw_imm_w(1));
   1223    brw_ADD(&func, Xp, t1, brw_imm_w(1));
   1224    brw_ADD(&func, Yp, t2, brw_imm_w(1));
   1225    SWAP_XY_AND_XPYP();
   1226 }
   1227 
   1228 
   1229 /**
   1230  * Count the number of trailing 1 bits in the given value.  For example:
   1231  *
   1232  * count_trailing_one_bits(0) == 0
   1233  * count_trailing_one_bits(7) == 3
   1234  * count_trailing_one_bits(11) == 2
   1235  */
   1236 inline int count_trailing_one_bits(unsigned value)
   1237 {
   1238 #if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
   1239    return __builtin_ctz(~value);
   1240 #else
   1241    return _mesa_bitcount(value & ~(value + 1));
   1242 #endif
   1243 }
   1244 
   1245 
   1246 void
   1247 brw_blorp_blit_program::manual_blend(unsigned num_samples)
   1248 {
   1249    if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
   1250       mcs_fetch();
   1251 
   1252    /* We add together samples using a binary tree structure, e.g. for 4x MSAA:
   1253     *
   1254     *   result = ((sample[0] + sample[1]) + (sample[2] + sample[3])) / 4
   1255     *
   1256     * This ensures that when all samples have the same value, no numerical
   1257     * precision is lost, since each addition operation always adds two equal
   1258     * values, and summing two equal floating point values does not lose
   1259     * precision.
   1260     *
   1261     * We perform this computation by treating the texture_data array as a
   1262     * stack and performing the following operations:
   1263     *
   1264     * - push sample 0 onto stack
   1265     * - push sample 1 onto stack
   1266     * - add top two stack entries
   1267     * - push sample 2 onto stack
   1268     * - push sample 3 onto stack
   1269     * - add top two stack entries
   1270     * - add top two stack entries
   1271     * - divide top stack entry by 4
   1272     *
   1273     * Note that after pushing sample i onto the stack, the number of add
   1274     * operations we do is equal to the number of trailing 1 bits in i.  This
   1275     * works provided the total number of samples is a power of two, which it
   1276     * always is for i965.
   1277     *
   1278     * For integer formats, we replace the add operations with average
   1279     * operations and skip the final division.
   1280     */
   1281    typedef struct brw_instruction *(*brw_op2_ptr)(struct brw_compile *,
   1282                                                   struct brw_reg,
   1283                                                   struct brw_reg,
   1284                                                   struct brw_reg);
   1285    brw_op2_ptr combine_op =
   1286       key->texture_data_type == BRW_REGISTER_TYPE_F ? brw_ADD : brw_AVG;
   1287    unsigned stack_depth = 0;
   1288    for (unsigned i = 0; i < num_samples; ++i) {
   1289       assert(stack_depth == _mesa_bitcount(i)); /* Loop invariant */
   1290 
   1291       /* Push sample i onto the stack */
   1292       assert(stack_depth < ARRAY_SIZE(texture_data));
   1293       if (i == 0) {
   1294          s_is_zero = true;
   1295       } else {
   1296          s_is_zero = false;
   1297          brw_MOV(&func, S, brw_imm_uw(i));
   1298       }
   1299       texel_fetch(texture_data[stack_depth++]);
   1300 
   1301       if (i == 0 && key->tex_layout == INTEL_MSAA_LAYOUT_CMS) {
   1302          /* The Ivy Bridge PRM, Vol4 Part1 p27 (Multisample Control Surface)
   1303           * suggests an optimization:
   1304           *
   1305           *     "A simple optimization with probable large return in
   1306           *     performance is to compare the MCS value to zero (indicating
   1307           *     all samples are on sample slice 0), and sample only from
   1308           *     sample slice 0 using ld2dss if MCS is zero."
   1309           *
   1310           * Note that in the case where the MCS value is zero, sampling from
   1311           * sample slice 0 using ld2dss and sampling from sample 0 using
   1312           * ld2dms are equivalent (since all samples are on sample slice 0).
   1313           * Since we have already sampled from sample 0, all we need to do is
   1314           * skip the remaining fetches and averaging if MCS is zero.
   1315           */
   1316          brw_CMP(&func, vec16(brw_null_reg()), BRW_CONDITIONAL_NZ,
   1317                  mcs_data, brw_imm_ud(0));
   1318          brw_IF(&func, BRW_EXECUTE_16);
   1319       }
   1320 
   1321       /* Do count_trailing_one_bits(i) times */
   1322       for (int j = count_trailing_one_bits(i); j-- > 0; ) {
   1323          assert(stack_depth >= 2);
   1324          --stack_depth;
   1325 
   1326          /* TODO: should use a smaller loop bound for non_RGBA formats */
   1327          for (int k = 0; k < 4; ++k) {
   1328             combine_op(&func, offset(texture_data[stack_depth - 1], 2*k),
   1329                        offset(vec8(texture_data[stack_depth - 1]), 2*k),
   1330                        offset(vec8(texture_data[stack_depth]), 2*k));
   1331          }
   1332       }
   1333    }
   1334 
   1335    /* We should have just 1 sample on the stack now. */
   1336    assert(stack_depth == 1);
   1337 
   1338    if (key->texture_data_type == BRW_REGISTER_TYPE_F) {
   1339       /* Scale the result down by a factor of num_samples */
   1340       /* TODO: should use a smaller loop bound for non-RGBA formats */
   1341       for (int j = 0; j < 4; ++j) {
   1342          brw_MUL(&func, offset(texture_data[0], 2*j),
   1343                  offset(vec8(texture_data[0]), 2*j),
   1344                  brw_imm_f(1.0/num_samples));
   1345       }
   1346    }
   1347 
   1348    if (key->tex_layout == INTEL_MSAA_LAYOUT_CMS)
   1349       brw_ENDIF(&func);
   1350 }
   1351 
   1352 /**
   1353  * Emit code to look up a value in the texture using the SAMPLE message (which
   1354  * does blending of MSAA surfaces).
   1355  */
   1356 void
   1357 brw_blorp_blit_program::sample(struct brw_reg dst)
   1358 {
   1359    static const sampler_message_arg args[2] = {
   1360       SAMPLER_MESSAGE_ARG_U_FLOAT,
   1361       SAMPLER_MESSAGE_ARG_V_FLOAT
   1362    };
   1363 
   1364    texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE, args, ARRAY_SIZE(args));
   1365 }
   1366 
   1367 /**
   1368  * Emit code to look up a value in the texture using the SAMPLE_LD message
   1369  * (which does a simple texel fetch).
   1370  */
   1371 void
   1372 brw_blorp_blit_program::texel_fetch(struct brw_reg dst)
   1373 {
   1374    static const sampler_message_arg gen6_args[5] = {
   1375       SAMPLER_MESSAGE_ARG_U_INT,
   1376       SAMPLER_MESSAGE_ARG_V_INT,
   1377       SAMPLER_MESSAGE_ARG_ZERO_INT, /* R */
   1378       SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
   1379       SAMPLER_MESSAGE_ARG_SI_INT
   1380    };
   1381    static const sampler_message_arg gen7_ld_args[3] = {
   1382       SAMPLER_MESSAGE_ARG_U_INT,
   1383       SAMPLER_MESSAGE_ARG_ZERO_INT, /* LOD */
   1384       SAMPLER_MESSAGE_ARG_V_INT
   1385    };
   1386    static const sampler_message_arg gen7_ld2dss_args[3] = {
   1387       SAMPLER_MESSAGE_ARG_SI_INT,
   1388       SAMPLER_MESSAGE_ARG_U_INT,
   1389       SAMPLER_MESSAGE_ARG_V_INT
   1390    };
   1391    static const sampler_message_arg gen7_ld2dms_args[4] = {
   1392       SAMPLER_MESSAGE_ARG_SI_INT,
   1393       SAMPLER_MESSAGE_ARG_MCS_INT,
   1394       SAMPLER_MESSAGE_ARG_U_INT,
   1395       SAMPLER_MESSAGE_ARG_V_INT
   1396    };
   1397 
   1398    switch (brw->intel.gen) {
   1399    case 6:
   1400       texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen6_args,
   1401                      s_is_zero ? 2 : 5);
   1402       break;
   1403    case 7:
   1404       switch (key->tex_layout) {
   1405       case INTEL_MSAA_LAYOUT_IMS:
   1406          /* From the Ivy Bridge PRM, Vol4 Part1 p72 (Multisampled Surface Storage
   1407           * Format):
   1408           *
   1409           *     If this field is MSFMT_DEPTH_STENCIL
   1410           *     [a.k.a. INTEL_MSAA_LAYOUT_IMS], the only sampling engine
   1411           *     messages allowed are "ld2dms", "resinfo", and "sampleinfo".
   1412           *
   1413           * So fall through to emit the same message as we use for
   1414           * INTEL_MSAA_LAYOUT_CMS.
   1415           */
   1416       case INTEL_MSAA_LAYOUT_CMS:
   1417          texture_lookup(dst, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS,
   1418                         gen7_ld2dms_args, ARRAY_SIZE(gen7_ld2dms_args));
   1419          break;
   1420       case INTEL_MSAA_LAYOUT_UMS:
   1421          texture_lookup(dst, GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS,
   1422                         gen7_ld2dss_args, ARRAY_SIZE(gen7_ld2dss_args));
   1423          break;
   1424       case INTEL_MSAA_LAYOUT_NONE:
   1425          assert(s_is_zero);
   1426          texture_lookup(dst, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, gen7_ld_args,
   1427                         ARRAY_SIZE(gen7_ld_args));
   1428          break;
   1429       }
   1430       break;
   1431    default:
   1432       assert(!"Should not get here.");
   1433       break;
   1434    };
   1435 }
   1436 
   1437 void
   1438 brw_blorp_blit_program::mcs_fetch()
   1439 {
   1440    static const sampler_message_arg gen7_ld_mcs_args[2] = {
   1441       SAMPLER_MESSAGE_ARG_U_INT,
   1442       SAMPLER_MESSAGE_ARG_V_INT
   1443    };
   1444    texture_lookup(vec16(mcs_data), GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS,
   1445                   gen7_ld_mcs_args, ARRAY_SIZE(gen7_ld_mcs_args));
   1446 }
   1447 
   1448 void
   1449 brw_blorp_blit_program::expand_to_32_bits(struct brw_reg src,
   1450                                           struct brw_reg dst)
   1451 {
   1452    brw_MOV(&func, vec8(dst), vec8(src));
   1453    brw_set_compression_control(&func, BRW_COMPRESSION_2NDHALF);
   1454    brw_MOV(&func, offset(vec8(dst), 1), suboffset(vec8(src), 8));
   1455    brw_set_compression_control(&func, BRW_COMPRESSION_NONE);
   1456 }
   1457 
   1458 void
   1459 brw_blorp_blit_program::texture_lookup(struct brw_reg dst,
   1460                                        GLuint msg_type,
   1461                                        const sampler_message_arg *args,
   1462                                        int num_args)
   1463 {
   1464    struct brw_reg mrf =
   1465       retype(vec16(brw_message_reg(base_mrf)), BRW_REGISTER_TYPE_UD);
   1466    for (int arg = 0; arg < num_args; ++arg) {
   1467       switch (args[arg]) {
   1468       case SAMPLER_MESSAGE_ARG_U_FLOAT:
   1469          expand_to_32_bits(X, retype(mrf, BRW_REGISTER_TYPE_F));
   1470          break;
   1471       case SAMPLER_MESSAGE_ARG_V_FLOAT:
   1472          expand_to_32_bits(Y, retype(mrf, BRW_REGISTER_TYPE_F));
   1473          break;
   1474       case SAMPLER_MESSAGE_ARG_U_INT:
   1475          expand_to_32_bits(X, mrf);
   1476          break;
   1477       case SAMPLER_MESSAGE_ARG_V_INT:
   1478          expand_to_32_bits(Y, mrf);
   1479          break;
   1480       case SAMPLER_MESSAGE_ARG_SI_INT:
   1481          /* Note: on Gen7, this code may be reached with s_is_zero==true
   1482           * because in Gen7's ld2dss message, the sample index is the first
   1483           * argument.  When this happens, we need to move a 0 into the
   1484           * appropriate message register.
   1485           */
   1486          if (s_is_zero)
   1487             brw_MOV(&func, mrf, brw_imm_ud(0));
   1488          else
   1489             expand_to_32_bits(S, mrf);
   1490          break;
   1491       case SAMPLER_MESSAGE_ARG_MCS_INT:
   1492          switch (key->tex_layout) {
   1493          case INTEL_MSAA_LAYOUT_CMS:
   1494             brw_MOV(&func, mrf, mcs_data);
   1495             break;
   1496          case INTEL_MSAA_LAYOUT_IMS:
   1497             /* When sampling from an IMS surface, MCS data is not relevant,
   1498              * and the hardware ignores it.  So don't bother populating it.
   1499              */
   1500             break;
   1501          default:
   1502             /* We shouldn't be trying to send MCS data with any other
   1503              * layouts.
   1504              */
   1505             assert (!"Unsupported layout for MCS data");
   1506             break;
   1507          }
   1508          break;
   1509       case SAMPLER_MESSAGE_ARG_ZERO_INT:
   1510          brw_MOV(&func, mrf, brw_imm_ud(0));
   1511          break;
   1512       }
   1513       mrf.nr += 2;
   1514    }
   1515 
   1516    brw_SAMPLE(&func,
   1517               retype(dst, BRW_REGISTER_TYPE_UW) /* dest */,
   1518               base_mrf /* msg_reg_nr */,
   1519               brw_message_reg(base_mrf) /* src0 */,
   1520               BRW_BLORP_TEXTURE_BINDING_TABLE_INDEX,
   1521               0 /* sampler */,
   1522               WRITEMASK_XYZW,
   1523               msg_type,
   1524               8 /* response_length.  TODO: should be smaller for non-RGBA formats? */,
   1525               mrf.nr - base_mrf /* msg_length */,
   1526               0 /* header_present */,
   1527               BRW_SAMPLER_SIMD_MODE_SIMD16,
   1528               BRW_SAMPLER_RETURN_FORMAT_FLOAT32);
   1529 }
   1530 
   1531 #undef X
   1532 #undef Y
   1533 #undef U
   1534 #undef V
   1535 #undef S
   1536 #undef SWAP_XY_AND_XPYP
   1537 
   1538 void
   1539 brw_blorp_blit_program::render_target_write()
   1540 {
   1541    struct brw_reg mrf_rt_write =
   1542       retype(vec16(brw_message_reg(base_mrf)), key->texture_data_type);
   1543    int mrf_offset = 0;
   1544 
   1545    /* If we may have killed pixels, then we need to send R0 and R1 in a header
   1546     * so that the render target knows which pixels we killed.
   1547     */
   1548    bool use_header = key->use_kill;
   1549    if (use_header) {
   1550       /* Copy R0/1 to MRF */
   1551       brw_MOV(&func, retype(mrf_rt_write, BRW_REGISTER_TYPE_UD),
   1552               retype(R0, BRW_REGISTER_TYPE_UD));
   1553       mrf_offset += 2;
   1554    }
   1555 
   1556    /* Copy texture data to MRFs */
   1557    for (int i = 0; i < 4; ++i) {
   1558       /* E.g. mov(16) m2.0<1>:f r2.0<8;8,1>:f { Align1, H1 } */
   1559       brw_MOV(&func, offset(mrf_rt_write, mrf_offset),
   1560               offset(vec8(texture_data[0]), 2*i));
   1561       mrf_offset += 2;
   1562    }
   1563 
   1564    /* Now write to the render target and terminate the thread */
   1565    brw_fb_WRITE(&func,
   1566                 16 /* dispatch_width */,
   1567                 base_mrf /* msg_reg_nr */,
   1568                 mrf_rt_write /* src0 */,
   1569                 BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE,
   1570                 BRW_BLORP_RENDERBUFFER_BINDING_TABLE_INDEX,
   1571                 mrf_offset /* msg_length.  TODO: Should be smaller for non-RGBA formats. */,
   1572                 0 /* response_length */,
   1573                 true /* eot */,
   1574                 use_header);
   1575 }
   1576 
   1577 
   1578 void
   1579 brw_blorp_coord_transform_params::setup(GLuint src0, GLuint dst0, GLuint dst1,
   1580                                         bool mirror)
   1581 {
   1582    if (!mirror) {
   1583       /* When not mirroring a coordinate (say, X), we need:
   1584        *   x' - src_x0 = x - dst_x0
   1585        * Therefore:
   1586        *   x' = 1*x + (src_x0 - dst_x0)
   1587        */
   1588       multiplier = 1;
   1589       offset = src0 - dst0;
   1590    } else {
   1591       /* When mirroring X we need:
   1592        *   x' - src_x0 = dst_x1 - x - 1
   1593        * Therefore:
   1594        *   x' = -1*x + (src_x0 + dst_x1 - 1)
   1595        */
   1596       multiplier = -1;
   1597       offset = src0 + dst1 - 1;
   1598    }
   1599 }
   1600 
   1601 
   1602 /**
   1603  * Determine which MSAA layout the GPU pipeline should be configured for,
   1604  * based on the chip generation, the number of samples, and the true layout of
   1605  * the image in memory.
   1606  */
   1607 inline intel_msaa_layout
   1608 compute_msaa_layout_for_pipeline(struct brw_context *brw, unsigned num_samples,
   1609                                  intel_msaa_layout true_layout)
   1610 {
   1611    if (num_samples <= 1) {
   1612       /* When configuring the GPU for non-MSAA, we can still accommodate IMS
   1613        * format buffers, by transforming coordinates appropriately.
   1614        */
   1615       assert(true_layout == INTEL_MSAA_LAYOUT_NONE ||
   1616              true_layout == INTEL_MSAA_LAYOUT_IMS);
   1617       return INTEL_MSAA_LAYOUT_NONE;
   1618    } else {
   1619       assert(true_layout != INTEL_MSAA_LAYOUT_NONE);
   1620    }
   1621 
   1622    /* Prior to Gen7, all MSAA surfaces use IMS layout. */
   1623    if (brw->intel.gen == 6) {
   1624       assert(true_layout == INTEL_MSAA_LAYOUT_IMS);
   1625    }
   1626 
   1627    return true_layout;
   1628 }
   1629 
   1630 
   1631 brw_blorp_blit_params::brw_blorp_blit_params(struct brw_context *brw,
   1632                                              struct intel_mipmap_tree *src_mt,
   1633                                              unsigned src_level, unsigned src_layer,
   1634                                              struct intel_mipmap_tree *dst_mt,
   1635                                              unsigned dst_level, unsigned dst_layer,
   1636                                              GLuint src_x0, GLuint src_y0,
   1637                                              GLuint dst_x0, GLuint dst_y0,
   1638                                              GLuint dst_x1, GLuint dst_y1,
   1639                                              bool mirror_x, bool mirror_y)
   1640 {
   1641    src.set(brw, src_mt, src_level, src_layer);
   1642    dst.set(brw, dst_mt, dst_level, dst_layer);
   1643 
   1644    /* If we are blitting from sRGB to linear or vice versa, we still want the
   1645     * blit to be a direct copy, so we need source and destination to use the
   1646     * same format.  However, we want the destination sRGB/linear state to be
   1647     * correct (so that sRGB blending is used when doing an MSAA resolve to an
   1648     * sRGB surface, and linear blending is used when doing an MSAA resolve to
   1649     * a linear surface).  Since blorp blits don't support any format
   1650     * conversion (except between sRGB and linear), we can accomplish this by
   1651     * simply setting up the source to use the same format as the destination.
   1652     */
   1653    assert(_mesa_get_srgb_format_linear(src_mt->format) ==
   1654           _mesa_get_srgb_format_linear(dst_mt->format));
   1655    src.brw_surfaceformat = dst.brw_surfaceformat;
   1656 
   1657    use_wm_prog = true;
   1658    memset(&wm_prog_key, 0, sizeof(wm_prog_key));
   1659 
   1660    /* texture_data_type indicates the register type that should be used to
   1661     * manipulate texture data.
   1662     */
   1663    switch (_mesa_get_format_datatype(src_mt->format)) {
   1664    case GL_UNSIGNED_NORMALIZED:
   1665    case GL_SIGNED_NORMALIZED:
   1666    case GL_FLOAT:
   1667       wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
   1668       break;
   1669    case GL_UNSIGNED_INT:
   1670       if (src_mt->format == MESA_FORMAT_S8) {
   1671          /* We process stencil as though it's an unsigned normalized color */
   1672          wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_F;
   1673       } else {
   1674          wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_UD;
   1675       }
   1676       break;
   1677    case GL_INT:
   1678       wm_prog_key.texture_data_type = BRW_REGISTER_TYPE_D;
   1679       break;
   1680    default:
   1681       assert(!"Unrecognized blorp format");
   1682       break;
   1683    }
   1684 
   1685    if (brw->intel.gen > 6) {
   1686       /* Gen7's rendering hardware only supports the IMS layout for depth and
   1687        * stencil render targets.  Blorp always maps its destination surface as
   1688        * a color render target (even if it's actually a depth or stencil
   1689        * buffer).  So if the destination is IMS, we'll have to map it as a
   1690        * single-sampled texture and interleave the samples ourselves.
   1691        */
   1692       if (dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS)
   1693          dst.num_samples = 0;
   1694    }
   1695 
   1696    if (dst.map_stencil_as_y_tiled && dst.num_samples > 1) {
   1697       /* If the destination surface is a W-tiled multisampled stencil buffer
   1698        * that we're mapping as Y tiled, then we need to arrange for the WM
   1699        * program to run once per sample rather than once per pixel, because
   1700        * the memory layout of related samples doesn't match between W and Y
   1701        * tiling.
   1702        */
   1703       wm_prog_key.persample_msaa_dispatch = true;
   1704    }
   1705 
   1706    if (src.num_samples > 0 && dst.num_samples > 1) {
   1707       /* We are blitting from a multisample buffer to a multisample buffer, so
   1708        * we must preserve samples within a pixel.  This means we have to
   1709        * arrange for the WM program to run once per sample rather than once
   1710        * per pixel.
   1711        */
   1712       wm_prog_key.persample_msaa_dispatch = true;
   1713    }
   1714 
   1715    /* The render path must be configured to use the same number of samples as
   1716     * the destination buffer.
   1717     */
   1718    num_samples = dst.num_samples;
   1719 
   1720    GLenum base_format = _mesa_get_format_base_format(src_mt->format);
   1721    if (base_format != GL_DEPTH_COMPONENT && /* TODO: what about depth/stencil? */
   1722        base_format != GL_STENCIL_INDEX &&
   1723        src_mt->num_samples > 1 && dst_mt->num_samples <= 1) {
   1724       /* We are downsampling a color buffer, so blend. */
   1725       wm_prog_key.blend = true;
   1726    }
   1727 
   1728    /* src_samples and dst_samples are the true sample counts */
   1729    wm_prog_key.src_samples = src_mt->num_samples;
   1730    wm_prog_key.dst_samples = dst_mt->num_samples;
   1731 
   1732    /* tex_samples and rt_samples are the sample counts that are set up in
   1733     * SURFACE_STATE.
   1734     */
   1735    wm_prog_key.tex_samples = src.num_samples;
   1736    wm_prog_key.rt_samples  = dst.num_samples;
   1737 
   1738    /* tex_layout and rt_layout indicate the MSAA layout the GPU pipeline will
   1739     * use to access the source and destination surfaces.
   1740     */
   1741    wm_prog_key.tex_layout =
   1742       compute_msaa_layout_for_pipeline(brw, src.num_samples, src.msaa_layout);
   1743    wm_prog_key.rt_layout =
   1744       compute_msaa_layout_for_pipeline(brw, dst.num_samples, dst.msaa_layout);
   1745 
   1746    /* src_layout and dst_layout indicate the true MSAA layout used by src and
   1747     * dst.
   1748     */
   1749    wm_prog_key.src_layout = src_mt->msaa_layout;
   1750    wm_prog_key.dst_layout = dst_mt->msaa_layout;
   1751 
   1752    wm_prog_key.src_tiled_w = src.map_stencil_as_y_tiled;
   1753    wm_prog_key.dst_tiled_w = dst.map_stencil_as_y_tiled;
   1754    x0 = wm_push_consts.dst_x0 = dst_x0;
   1755    y0 = wm_push_consts.dst_y0 = dst_y0;
   1756    x1 = wm_push_consts.dst_x1 = dst_x1;
   1757    y1 = wm_push_consts.dst_y1 = dst_y1;
   1758    wm_push_consts.x_transform.setup(src_x0, dst_x0, dst_x1, mirror_x);
   1759    wm_push_consts.y_transform.setup(src_y0, dst_y0, dst_y1, mirror_y);
   1760 
   1761    if (dst.num_samples <= 1 && dst_mt->num_samples > 1) {
   1762       /* We must expand the rectangle we send through the rendering pipeline,
   1763        * to account for the fact that we are mapping the destination region as
   1764        * single-sampled when it is in fact multisampled.  We must also align
   1765        * it to a multiple of the multisampling pattern, because the
   1766        * differences between multisampled and single-sampled surface formats
   1767        * will mean that pixels are scrambled within the multisampling pattern.
   1768        * TODO: what if this makes the coordinates too large?
   1769        *
   1770        * Note: this only works if the destination surface uses the IMS layout.
   1771        * If it's UMS, then we have no choice but to set up the rendering
   1772        * pipeline as multisampled.
   1773        */
   1774       assert(dst_mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS);
   1775       switch (dst_mt->num_samples) {
   1776       case 4:
   1777          x0 = ROUND_DOWN_TO(x0 * 2, 4);
   1778          y0 = ROUND_DOWN_TO(y0 * 2, 4);
   1779          x1 = ALIGN(x1 * 2, 4);
   1780          y1 = ALIGN(y1 * 2, 4);
   1781          break;
   1782       case 8:
   1783          x0 = ROUND_DOWN_TO(x0 * 4, 8);
   1784          y0 = ROUND_DOWN_TO(y0 * 2, 4);
   1785          x1 = ALIGN(x1 * 4, 8);
   1786          y1 = ALIGN(y1 * 2, 4);
   1787          break;
   1788       default:
   1789          assert(!"Unrecognized sample count in brw_blorp_blit_params ctor");
   1790          break;
   1791       }
   1792       wm_prog_key.use_kill = true;
   1793    }
   1794 
   1795    if (dst.map_stencil_as_y_tiled) {
   1796       /* We must modify the rectangle we send through the rendering pipeline
   1797        * (and the size and x/y offset of the destination surface), to account
   1798        * for the fact that we are mapping it as Y-tiled when it is in fact
   1799        * W-tiled.
   1800        *
   1801        * Both Y tiling and W tiling can be understood as organizations of
   1802        * 32-byte sub-tiles; within each 32-byte sub-tile, the layout of pixels
   1803        * is different, but the layout of the 32-byte sub-tiles within the 4k
   1804        * tile is the same (8 sub-tiles across by 16 sub-tiles down, in
   1805        * column-major order).  In Y tiling, the sub-tiles are 16 bytes wide
   1806        * and 2 rows high; in W tiling, they are 8 bytes wide and 4 rows high.
   1807        *
   1808        * Therefore, to account for the layout differences within the 32-byte
   1809        * sub-tiles, we must expand the rectangle so the X coordinates of its
   1810        * edges are multiples of 8 (the W sub-tile width), and its Y
   1811        * coordinates of its edges are multiples of 4 (the W sub-tile height).
   1812        * Then we need to scale the X and Y coordinates of the rectangle to
   1813        * account for the differences in aspect ratio between the Y and W
   1814        * sub-tiles.  We need to modify the layer width and height similarly.
   1815        *
   1816        * A correction needs to be applied when MSAA is in use: since
   1817        * INTEL_MSAA_LAYOUT_IMS uses an interleaving pattern whose height is 4,
   1818        * we need to align the Y coordinates to multiples of 8, so that when
   1819        * they are divided by two they are still multiples of 4.
   1820        *
   1821        * Note: Since the x/y offset of the surface will be applied using the
   1822        * SURFACE_STATE command packet, it will be invisible to the swizzling
   1823        * code in the shader; therefore it needs to be in a multiple of the
   1824        * 32-byte sub-tile size.  Fortunately it is, since the sub-tile is 8
   1825        * pixels wide and 4 pixels high (when viewed as a W-tiled stencil
   1826        * buffer), and the miplevel alignment used for stencil buffers is 8
   1827        * pixels horizontally and either 4 or 8 pixels vertically (see
   1828        * intel_horizontal_texture_alignment_unit() and
   1829        * intel_vertical_texture_alignment_unit()).
   1830        *
   1831        * Note: Also, since the SURFACE_STATE command packet can only apply
   1832        * offsets that are multiples of 4 pixels horizontally and 2 pixels
   1833        * vertically, it is important that the offsets will be multiples of
   1834        * these sizes after they are converted into Y-tiled coordinates.
   1835        * Fortunately they will be, since we know from above that the offsets
   1836        * are a multiple of the 32-byte sub-tile size, and in Y-tiled
   1837        * coordinates the sub-tile is 16 pixels wide and 2 pixels high.
   1838        *
   1839        * TODO: what if this makes the coordinates (or the texture size) too
   1840        * large?
   1841        */
   1842       const unsigned x_align = 8, y_align = dst.num_samples != 0 ? 8 : 4;
   1843       x0 = ROUND_DOWN_TO(x0, x_align) * 2;
   1844       y0 = ROUND_DOWN_TO(y0, y_align) / 2;
   1845       x1 = ALIGN(x1, x_align) * 2;
   1846       y1 = ALIGN(y1, y_align) / 2;
   1847       dst.width = ALIGN(dst.width, x_align) * 2;
   1848       dst.height = ALIGN(dst.height, y_align) / 2;
   1849       dst.x_offset *= 2;
   1850       dst.y_offset /= 2;
   1851       wm_prog_key.use_kill = true;
   1852    }
   1853 
   1854    if (src.map_stencil_as_y_tiled) {
   1855       /* We must modify the size and x/y offset of the source surface to
   1856        * account for the fact that we are mapping it as Y-tiled when it is in
   1857        * fact W tiled.
   1858        *
   1859        * See the comments above concerning x/y offset alignment for the
   1860        * destination surface.
   1861        *
   1862        * TODO: what if this makes the texture size too large?
   1863        */
   1864       const unsigned x_align = 8, y_align = src.num_samples != 0 ? 8 : 4;
   1865       src.width = ALIGN(src.width, x_align) * 2;
   1866       src.height = ALIGN(src.height, y_align) / 2;
   1867       src.x_offset *= 2;
   1868       src.y_offset /= 2;
   1869    }
   1870 }
   1871 
   1872 uint32_t
   1873 brw_blorp_blit_params::get_wm_prog(struct brw_context *brw,
   1874                                    brw_blorp_prog_data **prog_data) const
   1875 {
   1876    uint32_t prog_offset;
   1877    if (!brw_search_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
   1878                          &this->wm_prog_key, sizeof(this->wm_prog_key),
   1879                          &prog_offset, prog_data)) {
   1880       brw_blorp_blit_program prog(brw, &this->wm_prog_key);
   1881       GLuint program_size;
   1882       const GLuint *program = prog.compile(brw, &program_size);
   1883       brw_upload_cache(&brw->cache, BRW_BLORP_BLIT_PROG,
   1884                        &this->wm_prog_key, sizeof(this->wm_prog_key),
   1885                        program, program_size,
   1886                        &prog.prog_data, sizeof(prog.prog_data),
   1887                        &prog_offset, prog_data);
   1888    }
   1889    return prog_offset;
   1890 }
   1891