1 //===--- HexagonCommonGEP.cpp ---------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #define DEBUG_TYPE "commgep" 11 12 #include "llvm/Pass.h" 13 #include "llvm/ADT/FoldingSet.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/Analysis/LoopInfo.h" 16 #include "llvm/Analysis/PostDominators.h" 17 #include "llvm/CodeGen/MachineFunctionAnalysis.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Dominators.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/Verifier.h" 23 #include "llvm/Support/Allocator.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 30 #include <map> 31 #include <set> 32 #include <vector> 33 34 #include "HexagonTargetMachine.h" 35 36 using namespace llvm; 37 38 static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true), 39 cl::Hidden, cl::ZeroOrMore); 40 41 static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden, 42 cl::ZeroOrMore); 43 44 static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true), 45 cl::Hidden, cl::ZeroOrMore); 46 47 namespace llvm { 48 void initializeHexagonCommonGEPPass(PassRegistry&); 49 } 50 51 namespace { 52 struct GepNode; 53 typedef std::set<GepNode*> NodeSet; 54 typedef std::map<GepNode*,Value*> NodeToValueMap; 55 typedef std::vector<GepNode*> NodeVect; 56 typedef std::map<GepNode*,NodeVect> NodeChildrenMap; 57 typedef std::set<Use*> UseSet; 58 typedef std::map<GepNode*,UseSet> NodeToUsesMap; 59 60 // Numbering map for gep nodes. Used to keep track of ordering for 61 // gep nodes. 62 struct NodeOrdering { 63 NodeOrdering() : LastNum(0) {} 64 65 void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); } 66 void clear() { Map.clear(); } 67 68 bool operator()(const GepNode *N1, const GepNode *N2) const { 69 auto F1 = Map.find(N1), F2 = Map.find(N2); 70 assert(F1 != Map.end() && F2 != Map.end()); 71 return F1->second < F2->second; 72 } 73 74 private: 75 std::map<const GepNode *, unsigned> Map; 76 unsigned LastNum; 77 }; 78 79 class HexagonCommonGEP : public FunctionPass { 80 public: 81 static char ID; 82 HexagonCommonGEP() : FunctionPass(ID) { 83 initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry()); 84 } 85 virtual bool runOnFunction(Function &F); 86 virtual const char *getPassName() const { 87 return "Hexagon Common GEP"; 88 } 89 90 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 91 AU.addRequired<DominatorTreeWrapperPass>(); 92 AU.addPreserved<DominatorTreeWrapperPass>(); 93 AU.addRequired<PostDominatorTree>(); 94 AU.addPreserved<PostDominatorTree>(); 95 AU.addRequired<LoopInfoWrapperPass>(); 96 AU.addPreserved<LoopInfoWrapperPass>(); 97 FunctionPass::getAnalysisUsage(AU); 98 } 99 100 private: 101 typedef std::map<Value*,GepNode*> ValueToNodeMap; 102 typedef std::vector<Value*> ValueVect; 103 typedef std::map<GepNode*,ValueVect> NodeToValuesMap; 104 105 void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order); 106 bool isHandledGepForm(GetElementPtrInst *GepI); 107 void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM); 108 void collect(); 109 void common(); 110 111 BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM, 112 NodeToValueMap &Loc); 113 BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM, 114 NodeToValueMap &Loc); 115 bool isInvariantIn(Value *Val, Loop *L); 116 bool isInvariantIn(GepNode *Node, Loop *L); 117 bool isInMainPath(BasicBlock *B, Loop *L); 118 BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM, 119 NodeToValueMap &Loc); 120 void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc); 121 void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM, 122 NodeToValueMap &Loc); 123 void computeNodePlacement(NodeToValueMap &Loc); 124 125 Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At, 126 BasicBlock *LocB); 127 void getAllUsersForNode(GepNode *Node, ValueVect &Values, 128 NodeChildrenMap &NCM); 129 void materialize(NodeToValueMap &Loc); 130 131 void removeDeadCode(); 132 133 NodeVect Nodes; 134 NodeToUsesMap Uses; 135 NodeOrdering NodeOrder; // Node ordering, for deterministic behavior. 136 SpecificBumpPtrAllocator<GepNode> *Mem; 137 LLVMContext *Ctx; 138 LoopInfo *LI; 139 DominatorTree *DT; 140 PostDominatorTree *PDT; 141 Function *Fn; 142 }; 143 } 144 145 146 char HexagonCommonGEP::ID = 0; 147 INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP", 148 false, false) 149 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 150 INITIALIZE_PASS_DEPENDENCY(PostDominatorTree) 151 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 152 INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP", 153 false, false) 154 155 namespace { 156 struct GepNode { 157 enum { 158 None = 0, 159 Root = 0x01, 160 Internal = 0x02, 161 Used = 0x04 162 }; 163 164 uint32_t Flags; 165 union { 166 GepNode *Parent; 167 Value *BaseVal; 168 }; 169 Value *Idx; 170 Type *PTy; // Type of the pointer operand. 171 172 GepNode() : Flags(0), Parent(0), Idx(0), PTy(0) {} 173 GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) { 174 if (Flags & Root) 175 BaseVal = N->BaseVal; 176 else 177 Parent = N->Parent; 178 } 179 friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN); 180 }; 181 182 183 Type *next_type(Type *Ty, Value *Idx) { 184 // Advance the type. 185 if (!Ty->isStructTy()) { 186 Type *NexTy = cast<SequentialType>(Ty)->getElementType(); 187 return NexTy; 188 } 189 // Otherwise it is a struct type. 190 ConstantInt *CI = dyn_cast<ConstantInt>(Idx); 191 assert(CI && "Struct type with non-constant index"); 192 int64_t i = CI->getValue().getSExtValue(); 193 Type *NextTy = cast<StructType>(Ty)->getElementType(i); 194 return NextTy; 195 } 196 197 198 raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) { 199 OS << "{ {"; 200 bool Comma = false; 201 if (GN.Flags & GepNode::Root) { 202 OS << "root"; 203 Comma = true; 204 } 205 if (GN.Flags & GepNode::Internal) { 206 if (Comma) 207 OS << ','; 208 OS << "internal"; 209 Comma = true; 210 } 211 if (GN.Flags & GepNode::Used) { 212 if (Comma) 213 OS << ','; 214 OS << "used"; 215 Comma = true; 216 } 217 OS << "} "; 218 if (GN.Flags & GepNode::Root) 219 OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')'; 220 else 221 OS << "Parent:" << GN.Parent; 222 223 OS << " Idx:"; 224 if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx)) 225 OS << CI->getValue().getSExtValue(); 226 else if (GN.Idx->hasName()) 227 OS << GN.Idx->getName(); 228 else 229 OS << "<anon> =" << *GN.Idx; 230 231 OS << " PTy:"; 232 if (GN.PTy->isStructTy()) { 233 StructType *STy = cast<StructType>(GN.PTy); 234 if (!STy->isLiteral()) 235 OS << GN.PTy->getStructName(); 236 else 237 OS << "<anon-struct>:" << *STy; 238 } 239 else 240 OS << *GN.PTy; 241 OS << " }"; 242 return OS; 243 } 244 245 246 template <typename NodeContainer> 247 void dump_node_container(raw_ostream &OS, const NodeContainer &S) { 248 typedef typename NodeContainer::const_iterator const_iterator; 249 for (const_iterator I = S.begin(), E = S.end(); I != E; ++I) 250 OS << *I << ' ' << **I << '\n'; 251 } 252 253 raw_ostream &operator<< (raw_ostream &OS, 254 const NodeVect &S) LLVM_ATTRIBUTE_UNUSED; 255 raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) { 256 dump_node_container(OS, S); 257 return OS; 258 } 259 260 261 raw_ostream &operator<< (raw_ostream &OS, 262 const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED; 263 raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){ 264 typedef NodeToUsesMap::const_iterator const_iterator; 265 for (const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 266 const UseSet &Us = I->second; 267 OS << I->first << " -> #" << Us.size() << '{'; 268 for (UseSet::const_iterator J = Us.begin(), F = Us.end(); J != F; ++J) { 269 User *R = (*J)->getUser(); 270 if (R->hasName()) 271 OS << ' ' << R->getName(); 272 else 273 OS << " <?>(" << *R << ')'; 274 } 275 OS << " }\n"; 276 } 277 return OS; 278 } 279 280 281 struct in_set { 282 in_set(const NodeSet &S) : NS(S) {} 283 bool operator() (GepNode *N) const { 284 return NS.find(N) != NS.end(); 285 } 286 private: 287 const NodeSet &NS; 288 }; 289 } 290 291 292 inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) { 293 return A.Allocate(); 294 } 295 296 297 void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root, 298 ValueVect &Order) { 299 // Compute block ordering for a typical DT-based traversal of the flow 300 // graph: "before visiting a block, all of its dominators must have been 301 // visited". 302 303 Order.push_back(Root); 304 DomTreeNode *DTN = DT->getNode(Root); 305 typedef GraphTraits<DomTreeNode*> GTN; 306 typedef GTN::ChildIteratorType Iter; 307 for (Iter I = GTN::child_begin(DTN), E = GTN::child_end(DTN); I != E; ++I) 308 getBlockTraversalOrder((*I)->getBlock(), Order); 309 } 310 311 312 bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) { 313 // No vector GEPs. 314 if (!GepI->getType()->isPointerTy()) 315 return false; 316 // No GEPs without any indices. (Is this possible?) 317 if (GepI->idx_begin() == GepI->idx_end()) 318 return false; 319 return true; 320 } 321 322 323 void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI, 324 ValueToNodeMap &NM) { 325 DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n'); 326 GepNode *N = new (*Mem) GepNode; 327 Value *PtrOp = GepI->getPointerOperand(); 328 ValueToNodeMap::iterator F = NM.find(PtrOp); 329 if (F == NM.end()) { 330 N->BaseVal = PtrOp; 331 N->Flags |= GepNode::Root; 332 } else { 333 // If PtrOp was a GEP instruction, it must have already been processed. 334 // The ValueToNodeMap entry for it is the last gep node in the generated 335 // chain. Link to it here. 336 N->Parent = F->second; 337 } 338 N->PTy = PtrOp->getType(); 339 N->Idx = *GepI->idx_begin(); 340 341 // Collect the list of users of this GEP instruction. Will add it to the 342 // last node created for it. 343 UseSet Us; 344 for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end(); 345 UI != UE; ++UI) { 346 // Check if this gep is used by anything other than other geps that 347 // we will process. 348 if (isa<GetElementPtrInst>(*UI)) { 349 GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI); 350 if (isHandledGepForm(UserG)) 351 continue; 352 } 353 Us.insert(&UI.getUse()); 354 } 355 Nodes.push_back(N); 356 NodeOrder.insert(N); 357 358 // Skip the first index operand, since we only handle 0. This dereferences 359 // the pointer operand. 360 GepNode *PN = N; 361 Type *PtrTy = cast<PointerType>(PtrOp->getType())->getElementType(); 362 for (User::op_iterator OI = GepI->idx_begin()+1, OE = GepI->idx_end(); 363 OI != OE; ++OI) { 364 Value *Op = *OI; 365 GepNode *Nx = new (*Mem) GepNode; 366 Nx->Parent = PN; // Link Nx to the previous node. 367 Nx->Flags |= GepNode::Internal; 368 Nx->PTy = PtrTy; 369 Nx->Idx = Op; 370 Nodes.push_back(Nx); 371 NodeOrder.insert(Nx); 372 PN = Nx; 373 374 PtrTy = next_type(PtrTy, Op); 375 } 376 377 // After last node has been created, update the use information. 378 if (!Us.empty()) { 379 PN->Flags |= GepNode::Used; 380 Uses[PN].insert(Us.begin(), Us.end()); 381 } 382 383 // Link the last node with the originating GEP instruction. This is to 384 // help with linking chained GEP instructions. 385 NM.insert(std::make_pair(GepI, PN)); 386 } 387 388 389 void HexagonCommonGEP::collect() { 390 // Establish depth-first traversal order of the dominator tree. 391 ValueVect BO; 392 getBlockTraversalOrder(&Fn->front(), BO); 393 394 // The creation of gep nodes requires DT-traversal. When processing a GEP 395 // instruction that uses another GEP instruction as the base pointer, the 396 // gep node for the base pointer should already exist. 397 ValueToNodeMap NM; 398 for (ValueVect::iterator I = BO.begin(), E = BO.end(); I != E; ++I) { 399 BasicBlock *B = cast<BasicBlock>(*I); 400 for (BasicBlock::iterator J = B->begin(), F = B->end(); J != F; ++J) { 401 if (!isa<GetElementPtrInst>(J)) 402 continue; 403 GetElementPtrInst *GepI = cast<GetElementPtrInst>(J); 404 if (isHandledGepForm(GepI)) 405 processGepInst(GepI, NM); 406 } 407 } 408 409 DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes); 410 } 411 412 413 namespace { 414 void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM, 415 NodeVect &Roots) { 416 typedef NodeVect::const_iterator const_iterator; 417 for (const_iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 418 GepNode *N = *I; 419 if (N->Flags & GepNode::Root) { 420 Roots.push_back(N); 421 continue; 422 } 423 GepNode *PN = N->Parent; 424 NCM[PN].push_back(N); 425 } 426 } 427 428 void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM, NodeSet &Nodes) { 429 NodeVect Work; 430 Work.push_back(Root); 431 Nodes.insert(Root); 432 433 while (!Work.empty()) { 434 NodeVect::iterator First = Work.begin(); 435 GepNode *N = *First; 436 Work.erase(First); 437 NodeChildrenMap::iterator CF = NCM.find(N); 438 if (CF != NCM.end()) { 439 Work.insert(Work.end(), CF->second.begin(), CF->second.end()); 440 Nodes.insert(CF->second.begin(), CF->second.end()); 441 } 442 } 443 } 444 } 445 446 447 namespace { 448 typedef std::set<NodeSet> NodeSymRel; 449 typedef std::pair<GepNode*,GepNode*> NodePair; 450 typedef std::set<NodePair> NodePairSet; 451 452 const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) { 453 for (NodeSymRel::iterator I = Rel.begin(), E = Rel.end(); I != E; ++I) 454 if (I->count(N)) 455 return &*I; 456 return 0; 457 } 458 459 // Create an ordered pair of GepNode pointers. The pair will be used in 460 // determining equality. The only purpose of the ordering is to eliminate 461 // duplication due to the commutativity of equality/non-equality. 462 NodePair node_pair(GepNode *N1, GepNode *N2) { 463 uintptr_t P1 = uintptr_t(N1), P2 = uintptr_t(N2); 464 if (P1 <= P2) 465 return std::make_pair(N1, N2); 466 return std::make_pair(N2, N1); 467 } 468 469 unsigned node_hash(GepNode *N) { 470 // Include everything except flags and parent. 471 FoldingSetNodeID ID; 472 ID.AddPointer(N->Idx); 473 ID.AddPointer(N->PTy); 474 return ID.ComputeHash(); 475 } 476 477 bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq, NodePairSet &Ne) { 478 // Don't cache the result for nodes with different hashes. The hash 479 // comparison is fast enough. 480 if (node_hash(N1) != node_hash(N2)) 481 return false; 482 483 NodePair NP = node_pair(N1, N2); 484 NodePairSet::iterator FEq = Eq.find(NP); 485 if (FEq != Eq.end()) 486 return true; 487 NodePairSet::iterator FNe = Ne.find(NP); 488 if (FNe != Ne.end()) 489 return false; 490 // Not previously compared. 491 bool Root1 = N1->Flags & GepNode::Root; 492 bool Root2 = N2->Flags & GepNode::Root; 493 NodePair P = node_pair(N1, N2); 494 // If the Root flag has different values, the nodes are different. 495 // If both nodes are root nodes, but their base pointers differ, 496 // they are different. 497 if (Root1 != Root2 || (Root1 && N1->BaseVal != N2->BaseVal)) { 498 Ne.insert(P); 499 return false; 500 } 501 // Here the root flags are identical, and for root nodes the 502 // base pointers are equal, so the root nodes are equal. 503 // For non-root nodes, compare their parent nodes. 504 if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) { 505 Eq.insert(P); 506 return true; 507 } 508 return false; 509 } 510 } 511 512 513 void HexagonCommonGEP::common() { 514 // The essence of this commoning is finding gep nodes that are equal. 515 // To do this we need to compare all pairs of nodes. To save time, 516 // first, partition the set of all nodes into sets of potentially equal 517 // nodes, and then compare pairs from within each partition. 518 typedef std::map<unsigned,NodeSet> NodeSetMap; 519 NodeSetMap MaybeEq; 520 521 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 522 GepNode *N = *I; 523 unsigned H = node_hash(N); 524 MaybeEq[H].insert(N); 525 } 526 527 // Compute the equivalence relation for the gep nodes. Use two caches, 528 // one for equality and the other for non-equality. 529 NodeSymRel EqRel; // Equality relation (as set of equivalence classes). 530 NodePairSet Eq, Ne; // Caches. 531 for (NodeSetMap::iterator I = MaybeEq.begin(), E = MaybeEq.end(); 532 I != E; ++I) { 533 NodeSet &S = I->second; 534 for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) { 535 GepNode *N = *NI; 536 // If node already has a class, then the class must have been created 537 // in a prior iteration of this loop. Since equality is transitive, 538 // nothing more will be added to that class, so skip it. 539 if (node_class(N, EqRel)) 540 continue; 541 542 // Create a new class candidate now. 543 NodeSet C; 544 for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ) 545 if (node_eq(N, *NJ, Eq, Ne)) 546 C.insert(*NJ); 547 // If Tmp is empty, N would be the only element in it. Don't bother 548 // creating a class for it then. 549 if (!C.empty()) { 550 C.insert(N); // Finalize the set before adding it to the relation. 551 std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C); 552 (void)Ins; 553 assert(Ins.second && "Cannot add a class"); 554 } 555 } 556 } 557 558 DEBUG({ 559 dbgs() << "Gep node equality:\n"; 560 for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I) 561 dbgs() << "{ " << I->first << ", " << I->second << " }\n"; 562 563 dbgs() << "Gep equivalence classes:\n"; 564 for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) { 565 dbgs() << '{'; 566 const NodeSet &S = *I; 567 for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) { 568 if (J != S.begin()) 569 dbgs() << ','; 570 dbgs() << ' ' << *J; 571 } 572 dbgs() << " }\n"; 573 } 574 }); 575 576 577 // Create a projection from a NodeSet to the minimal element in it. 578 typedef std::map<const NodeSet*,GepNode*> ProjMap; 579 ProjMap PM; 580 for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) { 581 const NodeSet &S = *I; 582 GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder); 583 std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min)); 584 (void)Ins; 585 assert(Ins.second && "Cannot add minimal element"); 586 587 // Update the min element's flags, and user list. 588 uint32_t Flags = 0; 589 UseSet &MinUs = Uses[Min]; 590 for (NodeSet::iterator J = S.begin(), F = S.end(); J != F; ++J) { 591 GepNode *N = *J; 592 uint32_t NF = N->Flags; 593 // If N is used, append all original values of N to the list of 594 // original values of Min. 595 if (NF & GepNode::Used) 596 MinUs.insert(Uses[N].begin(), Uses[N].end()); 597 Flags |= NF; 598 } 599 if (MinUs.empty()) 600 Uses.erase(Min); 601 602 // The collected flags should include all the flags from the min element. 603 assert((Min->Flags & Flags) == Min->Flags); 604 Min->Flags = Flags; 605 } 606 607 // Commoning: for each non-root gep node, replace "Parent" with the 608 // selected (minimum) node from the corresponding equivalence class. 609 // If a given parent does not have an equivalence class, leave it 610 // unchanged (it means that it's the only element in its class). 611 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 612 GepNode *N = *I; 613 if (N->Flags & GepNode::Root) 614 continue; 615 const NodeSet *PC = node_class(N->Parent, EqRel); 616 if (!PC) 617 continue; 618 ProjMap::iterator F = PM.find(PC); 619 if (F == PM.end()) 620 continue; 621 // Found a replacement, use it. 622 GepNode *Rep = F->second; 623 N->Parent = Rep; 624 } 625 626 DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes); 627 628 // Finally, erase the nodes that are no longer used. 629 NodeSet Erase; 630 for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { 631 GepNode *N = *I; 632 const NodeSet *PC = node_class(N, EqRel); 633 if (!PC) 634 continue; 635 ProjMap::iterator F = PM.find(PC); 636 if (F == PM.end()) 637 continue; 638 if (N == F->second) 639 continue; 640 // Node for removal. 641 Erase.insert(*I); 642 } 643 NodeVect::iterator NewE = std::remove_if(Nodes.begin(), Nodes.end(), 644 in_set(Erase)); 645 Nodes.resize(std::distance(Nodes.begin(), NewE)); 646 647 DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes); 648 } 649 650 651 namespace { 652 template <typename T> 653 BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) { 654 DEBUG({ 655 dbgs() << "NCD of {"; 656 for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); 657 I != E; ++I) { 658 if (!*I) 659 continue; 660 BasicBlock *B = cast<BasicBlock>(*I); 661 dbgs() << ' ' << B->getName(); 662 } 663 dbgs() << " }\n"; 664 }); 665 666 // Allow null basic blocks in Blocks. In such cases, return 0. 667 typename T::iterator I = Blocks.begin(), E = Blocks.end(); 668 if (I == E || !*I) 669 return 0; 670 BasicBlock *Dom = cast<BasicBlock>(*I); 671 while (++I != E) { 672 BasicBlock *B = cast_or_null<BasicBlock>(*I); 673 Dom = B ? DT->findNearestCommonDominator(Dom, B) : 0; 674 if (!Dom) 675 return 0; 676 } 677 DEBUG(dbgs() << "computed:" << Dom->getName() << '\n'); 678 return Dom; 679 } 680 681 template <typename T> 682 BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) { 683 // If two blocks, A and B, dominate a block C, then A dominates B, 684 // or B dominates A. 685 typename T::iterator I = Blocks.begin(), E = Blocks.end(); 686 // Find the first non-null block. 687 while (I != E && !*I) 688 ++I; 689 if (I == E) 690 return DT->getRoot(); 691 BasicBlock *DomB = cast<BasicBlock>(*I); 692 while (++I != E) { 693 if (!*I) 694 continue; 695 BasicBlock *B = cast<BasicBlock>(*I); 696 if (DT->dominates(B, DomB)) 697 continue; 698 if (!DT->dominates(DomB, B)) 699 return 0; 700 DomB = B; 701 } 702 return DomB; 703 } 704 705 // Find the first use in B of any value from Values. If no such use, 706 // return B->end(). 707 template <typename T> 708 BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) { 709 BasicBlock::iterator FirstUse = B->end(), BEnd = B->end(); 710 typedef typename T::iterator iterator; 711 for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) { 712 Value *V = *I; 713 // If V is used in a PHI node, the use belongs to the incoming block, 714 // not the block with the PHI node. In the incoming block, the use 715 // would be considered as being at the end of it, so it cannot 716 // influence the position of the first use (which is assumed to be 717 // at the end to start with). 718 if (isa<PHINode>(V)) 719 continue; 720 if (!isa<Instruction>(V)) 721 continue; 722 Instruction *In = cast<Instruction>(V); 723 if (In->getParent() != B) 724 continue; 725 BasicBlock::iterator It = In->getIterator(); 726 if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd)) 727 FirstUse = It; 728 } 729 return FirstUse; 730 } 731 732 bool is_empty(const BasicBlock *B) { 733 return B->empty() || (&*B->begin() == B->getTerminator()); 734 } 735 } 736 737 738 BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node, 739 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 740 DEBUG(dbgs() << "Loc for node:" << Node << '\n'); 741 // Recalculate the placement for Node, assuming that the locations of 742 // its children in Loc are valid. 743 // Return 0 if there is no valid placement for Node (for example, it 744 // uses an index value that is not available at the location required 745 // to dominate all children, etc.). 746 747 // Find the nearest common dominator for: 748 // - all users, if the node is used, and 749 // - all children. 750 ValueVect Bs; 751 if (Node->Flags & GepNode::Used) { 752 // Append all blocks with uses of the original values to the 753 // block vector Bs. 754 NodeToUsesMap::iterator UF = Uses.find(Node); 755 assert(UF != Uses.end() && "Used node with no use information"); 756 UseSet &Us = UF->second; 757 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) { 758 Use *U = *I; 759 User *R = U->getUser(); 760 if (!isa<Instruction>(R)) 761 continue; 762 BasicBlock *PB = isa<PHINode>(R) 763 ? cast<PHINode>(R)->getIncomingBlock(*U) 764 : cast<Instruction>(R)->getParent(); 765 Bs.push_back(PB); 766 } 767 } 768 // Append the location of each child. 769 NodeChildrenMap::iterator CF = NCM.find(Node); 770 if (CF != NCM.end()) { 771 NodeVect &Cs = CF->second; 772 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) { 773 GepNode *CN = *I; 774 NodeToValueMap::iterator LF = Loc.find(CN); 775 // If the child is only used in GEP instructions (i.e. is not used in 776 // non-GEP instructions), the nearest dominator computed for it may 777 // have been null. In such case it won't have a location available. 778 if (LF == Loc.end()) 779 continue; 780 Bs.push_back(LF->second); 781 } 782 } 783 784 BasicBlock *DomB = nearest_common_dominator(DT, Bs); 785 if (!DomB) 786 return 0; 787 // Check if the index used by Node dominates the computed dominator. 788 Instruction *IdxI = dyn_cast<Instruction>(Node->Idx); 789 if (IdxI && !DT->dominates(IdxI->getParent(), DomB)) 790 return 0; 791 792 // Avoid putting nodes into empty blocks. 793 while (is_empty(DomB)) { 794 DomTreeNode *N = (*DT)[DomB]->getIDom(); 795 if (!N) 796 break; 797 DomB = N->getBlock(); 798 } 799 800 // Otherwise, DomB is fine. Update the location map. 801 Loc[Node] = DomB; 802 return DomB; 803 } 804 805 806 BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node, 807 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 808 DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n'); 809 // Recalculate the placement of Node, after recursively recalculating the 810 // placements of all its children. 811 NodeChildrenMap::iterator CF = NCM.find(Node); 812 if (CF != NCM.end()) { 813 NodeVect &Cs = CF->second; 814 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) 815 recalculatePlacementRec(*I, NCM, Loc); 816 } 817 BasicBlock *LB = recalculatePlacement(Node, NCM, Loc); 818 DEBUG(dbgs() << "LocRec end for node:" << Node << '\n'); 819 return LB; 820 } 821 822 823 bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) { 824 if (isa<Constant>(Val) || isa<Argument>(Val)) 825 return true; 826 Instruction *In = dyn_cast<Instruction>(Val); 827 if (!In) 828 return false; 829 BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent(); 830 return DT->properlyDominates(DefB, HdrB); 831 } 832 833 834 bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) { 835 if (Node->Flags & GepNode::Root) 836 if (!isInvariantIn(Node->BaseVal, L)) 837 return false; 838 return isInvariantIn(Node->Idx, L); 839 } 840 841 842 bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) { 843 BasicBlock *HB = L->getHeader(); 844 BasicBlock *LB = L->getLoopLatch(); 845 // B must post-dominate the loop header or dominate the loop latch. 846 if (PDT->dominates(B, HB)) 847 return true; 848 if (LB && DT->dominates(B, LB)) 849 return true; 850 return false; 851 } 852 853 854 namespace { 855 BasicBlock *preheader(DominatorTree *DT, Loop *L) { 856 if (BasicBlock *PH = L->getLoopPreheader()) 857 return PH; 858 if (!OptSpeculate) 859 return 0; 860 DomTreeNode *DN = DT->getNode(L->getHeader()); 861 if (!DN) 862 return 0; 863 return DN->getIDom()->getBlock(); 864 } 865 } 866 867 868 BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node, 869 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 870 // Find the "topmost" location for Node: it must be dominated by both, 871 // its parent (or the BaseVal, if it's a root node), and by the index 872 // value. 873 ValueVect Bs; 874 if (Node->Flags & GepNode::Root) { 875 if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal)) 876 Bs.push_back(PIn->getParent()); 877 } else { 878 Bs.push_back(Loc[Node->Parent]); 879 } 880 if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx)) 881 Bs.push_back(IIn->getParent()); 882 BasicBlock *TopB = nearest_common_dominatee(DT, Bs); 883 884 // Traverse the loop nest upwards until we find a loop in which Node 885 // is no longer invariant, or until we get to the upper limit of Node's 886 // placement. The traversal will also stop when a suitable "preheader" 887 // cannot be found for a given loop. The "preheader" may actually be 888 // a regular block outside of the loop (i.e. not guarded), in which case 889 // the Node will be speculated. 890 // For nodes that are not in the main path of the containing loop (i.e. 891 // are not executed in each iteration), do not move them out of the loop. 892 BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]); 893 if (LocB) { 894 Loop *Lp = LI->getLoopFor(LocB); 895 while (Lp) { 896 if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp)) 897 break; 898 BasicBlock *NewLoc = preheader(DT, Lp); 899 if (!NewLoc || !DT->dominates(TopB, NewLoc)) 900 break; 901 Lp = Lp->getParentLoop(); 902 LocB = NewLoc; 903 } 904 } 905 Loc[Node] = LocB; 906 907 // Recursively compute the locations of all children nodes. 908 NodeChildrenMap::iterator CF = NCM.find(Node); 909 if (CF != NCM.end()) { 910 NodeVect &Cs = CF->second; 911 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) 912 adjustForInvariance(*I, NCM, Loc); 913 } 914 return LocB; 915 } 916 917 918 namespace { 919 struct LocationAsBlock { 920 LocationAsBlock(const NodeToValueMap &L) : Map(L) {} 921 const NodeToValueMap ⤅ 922 }; 923 924 raw_ostream &operator<< (raw_ostream &OS, 925 const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ; 926 raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) { 927 for (NodeToValueMap::const_iterator I = Loc.Map.begin(), E = Loc.Map.end(); 928 I != E; ++I) { 929 OS << I->first << " -> "; 930 BasicBlock *B = cast<BasicBlock>(I->second); 931 OS << B->getName() << '(' << B << ')'; 932 OS << '\n'; 933 } 934 return OS; 935 } 936 937 inline bool is_constant(GepNode *N) { 938 return isa<ConstantInt>(N->Idx); 939 } 940 } 941 942 943 void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U, 944 NodeToValueMap &Loc) { 945 User *R = U->getUser(); 946 DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " 947 << *R << '\n'); 948 BasicBlock *PB = cast<Instruction>(R)->getParent(); 949 950 GepNode *N = Node; 951 GepNode *C = 0, *NewNode = 0; 952 while (is_constant(N) && !(N->Flags & GepNode::Root)) { 953 // XXX if (single-use) dont-replicate; 954 GepNode *NewN = new (*Mem) GepNode(N); 955 Nodes.push_back(NewN); 956 Loc[NewN] = PB; 957 958 if (N == Node) 959 NewNode = NewN; 960 NewN->Flags &= ~GepNode::Used; 961 if (C) 962 C->Parent = NewN; 963 C = NewN; 964 N = N->Parent; 965 } 966 if (!NewNode) 967 return; 968 969 // Move over all uses that share the same user as U from Node to NewNode. 970 NodeToUsesMap::iterator UF = Uses.find(Node); 971 assert(UF != Uses.end()); 972 UseSet &Us = UF->second; 973 UseSet NewUs; 974 for (UseSet::iterator I = Us.begin(); I != Us.end(); ) { 975 User *S = (*I)->getUser(); 976 UseSet::iterator Nx = std::next(I); 977 if (S == R) { 978 NewUs.insert(*I); 979 Us.erase(I); 980 } 981 I = Nx; 982 } 983 if (Us.empty()) { 984 Node->Flags &= ~GepNode::Used; 985 Uses.erase(UF); 986 } 987 988 // Should at least have U in NewUs. 989 NewNode->Flags |= GepNode::Used; 990 DEBUG(dbgs() << "new node: " << NewNode << " " << *NewNode << '\n'); 991 assert(!NewUs.empty()); 992 Uses[NewNode] = NewUs; 993 } 994 995 996 void HexagonCommonGEP::separateConstantChains(GepNode *Node, 997 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 998 // First approximation: extract all chains. 999 NodeSet Ns; 1000 nodes_for_root(Node, NCM, Ns); 1001 1002 DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n'); 1003 // Collect all used nodes together with the uses from loads and stores, 1004 // where the GEP node could be folded into the load/store instruction. 1005 NodeToUsesMap FNs; // Foldable nodes. 1006 for (NodeSet::iterator I = Ns.begin(), E = Ns.end(); I != E; ++I) { 1007 GepNode *N = *I; 1008 if (!(N->Flags & GepNode::Used)) 1009 continue; 1010 NodeToUsesMap::iterator UF = Uses.find(N); 1011 assert(UF != Uses.end()); 1012 UseSet &Us = UF->second; 1013 // Loads/stores that use the node N. 1014 UseSet LSs; 1015 for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) { 1016 Use *U = *J; 1017 User *R = U->getUser(); 1018 // We're interested in uses that provide the address. It can happen 1019 // that the value may also be provided via GEP, but we won't handle 1020 // those cases here for now. 1021 if (LoadInst *Ld = dyn_cast<LoadInst>(R)) { 1022 unsigned PtrX = LoadInst::getPointerOperandIndex(); 1023 if (&Ld->getOperandUse(PtrX) == U) 1024 LSs.insert(U); 1025 } else if (StoreInst *St = dyn_cast<StoreInst>(R)) { 1026 unsigned PtrX = StoreInst::getPointerOperandIndex(); 1027 if (&St->getOperandUse(PtrX) == U) 1028 LSs.insert(U); 1029 } 1030 } 1031 // Even if the total use count is 1, separating the chain may still be 1032 // beneficial, since the constant chain may be longer than the GEP alone 1033 // would be (e.g. if the parent node has a constant index and also has 1034 // other children). 1035 if (!LSs.empty()) 1036 FNs.insert(std::make_pair(N, LSs)); 1037 } 1038 1039 DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs); 1040 1041 for (NodeToUsesMap::iterator I = FNs.begin(), E = FNs.end(); I != E; ++I) { 1042 GepNode *N = I->first; 1043 UseSet &Us = I->second; 1044 for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) 1045 separateChainForNode(N, *J, Loc); 1046 } 1047 } 1048 1049 1050 void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) { 1051 // Compute the inverse of the Node.Parent links. Also, collect the set 1052 // of root nodes. 1053 NodeChildrenMap NCM; 1054 NodeVect Roots; 1055 invert_find_roots(Nodes, NCM, Roots); 1056 1057 // Compute the initial placement determined by the users' locations, and 1058 // the locations of the child nodes. 1059 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) 1060 recalculatePlacementRec(*I, NCM, Loc); 1061 1062 DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc)); 1063 1064 if (OptEnableInv) { 1065 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) 1066 adjustForInvariance(*I, NCM, Loc); 1067 1068 DEBUG(dbgs() << "Node placement after adjustment for invariance:\n" 1069 << LocationAsBlock(Loc)); 1070 } 1071 if (OptEnableConst) { 1072 for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) 1073 separateConstantChains(*I, NCM, Loc); 1074 } 1075 DEBUG(dbgs() << "Node use information:\n" << Uses); 1076 1077 // At the moment, there is no further refinement of the initial placement. 1078 // Such a refinement could include splitting the nodes if they are placed 1079 // too far from some of its users. 1080 1081 DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc)); 1082 } 1083 1084 1085 Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At, 1086 BasicBlock *LocB) { 1087 DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName() 1088 << " for nodes:\n" << NA); 1089 unsigned Num = NA.size(); 1090 GepNode *RN = NA[0]; 1091 assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root"); 1092 1093 Value *NewInst = 0; 1094 Value *Input = RN->BaseVal; 1095 Value **IdxList = new Value*[Num+1]; 1096 unsigned nax = 0; 1097 do { 1098 unsigned IdxC = 0; 1099 // If the type of the input of the first node is not a pointer, 1100 // we need to add an artificial i32 0 to the indices (because the 1101 // actual input in the IR will be a pointer). 1102 if (!NA[nax]->PTy->isPointerTy()) { 1103 Type *Int32Ty = Type::getInt32Ty(*Ctx); 1104 IdxList[IdxC++] = ConstantInt::get(Int32Ty, 0); 1105 } 1106 1107 // Keep adding indices from NA until we have to stop and generate 1108 // an "intermediate" GEP. 1109 while (++nax <= Num) { 1110 GepNode *N = NA[nax-1]; 1111 IdxList[IdxC++] = N->Idx; 1112 if (nax < Num) { 1113 // We have to stop, if the expected type of the output of this node 1114 // is not the same as the input type of the next node. 1115 Type *NextTy = next_type(N->PTy, N->Idx); 1116 if (NextTy != NA[nax]->PTy) 1117 break; 1118 } 1119 } 1120 ArrayRef<Value*> A(IdxList, IdxC); 1121 Type *InpTy = Input->getType(); 1122 Type *ElTy = cast<PointerType>(InpTy->getScalarType())->getElementType(); 1123 NewInst = GetElementPtrInst::Create(ElTy, Input, A, "cgep", &*At); 1124 DEBUG(dbgs() << "new GEP: " << *NewInst << '\n'); 1125 Input = NewInst; 1126 } while (nax <= Num); 1127 1128 delete[] IdxList; 1129 return NewInst; 1130 } 1131 1132 1133 void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values, 1134 NodeChildrenMap &NCM) { 1135 NodeVect Work; 1136 Work.push_back(Node); 1137 1138 while (!Work.empty()) { 1139 NodeVect::iterator First = Work.begin(); 1140 GepNode *N = *First; 1141 Work.erase(First); 1142 if (N->Flags & GepNode::Used) { 1143 NodeToUsesMap::iterator UF = Uses.find(N); 1144 assert(UF != Uses.end() && "No use information for used node"); 1145 UseSet &Us = UF->second; 1146 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) 1147 Values.push_back((*I)->getUser()); 1148 } 1149 NodeChildrenMap::iterator CF = NCM.find(N); 1150 if (CF != NCM.end()) { 1151 NodeVect &Cs = CF->second; 1152 Work.insert(Work.end(), Cs.begin(), Cs.end()); 1153 } 1154 } 1155 } 1156 1157 1158 void HexagonCommonGEP::materialize(NodeToValueMap &Loc) { 1159 DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n'); 1160 NodeChildrenMap NCM; 1161 NodeVect Roots; 1162 // Compute the inversion again, since computing placement could alter 1163 // "parent" relation between nodes. 1164 invert_find_roots(Nodes, NCM, Roots); 1165 1166 while (!Roots.empty()) { 1167 NodeVect::iterator First = Roots.begin(); 1168 GepNode *Root = *First, *Last = *First; 1169 Roots.erase(First); 1170 1171 NodeVect NA; // Nodes to assemble. 1172 // Append to NA all child nodes up to (and including) the first child 1173 // that: 1174 // (1) has more than 1 child, or 1175 // (2) is used, or 1176 // (3) has a child located in a different block. 1177 bool LastUsed = false; 1178 unsigned LastCN = 0; 1179 // The location may be null if the computation failed (it can legitimately 1180 // happen for nodes created from dead GEPs). 1181 Value *LocV = Loc[Last]; 1182 if (!LocV) 1183 continue; 1184 BasicBlock *LastB = cast<BasicBlock>(LocV); 1185 do { 1186 NA.push_back(Last); 1187 LastUsed = (Last->Flags & GepNode::Used); 1188 if (LastUsed) 1189 break; 1190 NodeChildrenMap::iterator CF = NCM.find(Last); 1191 LastCN = (CF != NCM.end()) ? CF->second.size() : 0; 1192 if (LastCN != 1) 1193 break; 1194 GepNode *Child = CF->second.front(); 1195 BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]); 1196 if (ChildB != 0 && LastB != ChildB) 1197 break; 1198 Last = Child; 1199 } while (true); 1200 1201 BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator(); 1202 if (LastUsed || LastCN > 0) { 1203 ValueVect Urs; 1204 getAllUsersForNode(Root, Urs, NCM); 1205 BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB); 1206 if (FirstUse != LastB->end()) 1207 InsertAt = FirstUse; 1208 } 1209 1210 // Generate a new instruction for NA. 1211 Value *NewInst = fabricateGEP(NA, InsertAt, LastB); 1212 1213 // Convert all the children of Last node into roots, and append them 1214 // to the Roots list. 1215 if (LastCN > 0) { 1216 NodeVect &Cs = NCM[Last]; 1217 for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) { 1218 GepNode *CN = *I; 1219 CN->Flags &= ~GepNode::Internal; 1220 CN->Flags |= GepNode::Root; 1221 CN->BaseVal = NewInst; 1222 Roots.push_back(CN); 1223 } 1224 } 1225 1226 // Lastly, if the Last node was used, replace all uses with the new GEP. 1227 // The uses reference the original GEP values. 1228 if (LastUsed) { 1229 NodeToUsesMap::iterator UF = Uses.find(Last); 1230 assert(UF != Uses.end() && "No use information found"); 1231 UseSet &Us = UF->second; 1232 for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) { 1233 Use *U = *I; 1234 U->set(NewInst); 1235 } 1236 } 1237 } 1238 } 1239 1240 1241 void HexagonCommonGEP::removeDeadCode() { 1242 ValueVect BO; 1243 BO.push_back(&Fn->front()); 1244 1245 for (unsigned i = 0; i < BO.size(); ++i) { 1246 BasicBlock *B = cast<BasicBlock>(BO[i]); 1247 DomTreeNode *N = DT->getNode(B); 1248 typedef GraphTraits<DomTreeNode*> GTN; 1249 typedef GTN::ChildIteratorType Iter; 1250 for (Iter I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) 1251 BO.push_back((*I)->getBlock()); 1252 } 1253 1254 for (unsigned i = BO.size(); i > 0; --i) { 1255 BasicBlock *B = cast<BasicBlock>(BO[i-1]); 1256 BasicBlock::InstListType &IL = B->getInstList(); 1257 typedef BasicBlock::InstListType::reverse_iterator reverse_iterator; 1258 ValueVect Ins; 1259 for (reverse_iterator I = IL.rbegin(), E = IL.rend(); I != E; ++I) 1260 Ins.push_back(&*I); 1261 for (ValueVect::iterator I = Ins.begin(), E = Ins.end(); I != E; ++I) { 1262 Instruction *In = cast<Instruction>(*I); 1263 if (isInstructionTriviallyDead(In)) 1264 In->eraseFromParent(); 1265 } 1266 } 1267 } 1268 1269 1270 bool HexagonCommonGEP::runOnFunction(Function &F) { 1271 // For now bail out on C++ exception handling. 1272 for (Function::iterator A = F.begin(), Z = F.end(); A != Z; ++A) 1273 for (BasicBlock::iterator I = A->begin(), E = A->end(); I != E; ++I) 1274 if (isa<InvokeInst>(I) || isa<LandingPadInst>(I)) 1275 return false; 1276 1277 Fn = &F; 1278 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1279 PDT = &getAnalysis<PostDominatorTree>(); 1280 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1281 Ctx = &F.getContext(); 1282 1283 Nodes.clear(); 1284 Uses.clear(); 1285 NodeOrder.clear(); 1286 1287 SpecificBumpPtrAllocator<GepNode> Allocator; 1288 Mem = &Allocator; 1289 1290 collect(); 1291 common(); 1292 1293 NodeToValueMap Loc; 1294 computeNodePlacement(Loc); 1295 materialize(Loc); 1296 removeDeadCode(); 1297 1298 #ifdef XDEBUG 1299 // Run this only when expensive checks are enabled. 1300 verifyFunction(F); 1301 #endif 1302 return true; 1303 } 1304 1305 1306 namespace llvm { 1307 FunctionPass *createHexagonCommonGEP() { 1308 return new HexagonCommonGEP(); 1309 } 1310 } 1311