Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2013 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: mierle (at) gmail.com (Keir Mierle)
     30 
     31 #include "ceres/c_api.h"
     32 
     33 #include <cmath>
     34 
     35 #include "glog/logging.h"
     36 #include "gtest/gtest.h"
     37 
     38 // Duplicated from curve_fitting.cc.
     39 int num_observations = 67;
     40 double data[] = {
     41   0.000000e+00, 1.133898e+00,
     42   7.500000e-02, 1.334902e+00,
     43   1.500000e-01, 1.213546e+00,
     44   2.250000e-01, 1.252016e+00,
     45   3.000000e-01, 1.392265e+00,
     46   3.750000e-01, 1.314458e+00,
     47   4.500000e-01, 1.472541e+00,
     48   5.250000e-01, 1.536218e+00,
     49   6.000000e-01, 1.355679e+00,
     50   6.750000e-01, 1.463566e+00,
     51   7.500000e-01, 1.490201e+00,
     52   8.250000e-01, 1.658699e+00,
     53   9.000000e-01, 1.067574e+00,
     54   9.750000e-01, 1.464629e+00,
     55   1.050000e+00, 1.402653e+00,
     56   1.125000e+00, 1.713141e+00,
     57   1.200000e+00, 1.527021e+00,
     58   1.275000e+00, 1.702632e+00,
     59   1.350000e+00, 1.423899e+00,
     60   1.425000e+00, 1.543078e+00,
     61   1.500000e+00, 1.664015e+00,
     62   1.575000e+00, 1.732484e+00,
     63   1.650000e+00, 1.543296e+00,
     64   1.725000e+00, 1.959523e+00,
     65   1.800000e+00, 1.685132e+00,
     66   1.875000e+00, 1.951791e+00,
     67   1.950000e+00, 2.095346e+00,
     68   2.025000e+00, 2.361460e+00,
     69   2.100000e+00, 2.169119e+00,
     70   2.175000e+00, 2.061745e+00,
     71   2.250000e+00, 2.178641e+00,
     72   2.325000e+00, 2.104346e+00,
     73   2.400000e+00, 2.584470e+00,
     74   2.475000e+00, 1.914158e+00,
     75   2.550000e+00, 2.368375e+00,
     76   2.625000e+00, 2.686125e+00,
     77   2.700000e+00, 2.712395e+00,
     78   2.775000e+00, 2.499511e+00,
     79   2.850000e+00, 2.558897e+00,
     80   2.925000e+00, 2.309154e+00,
     81   3.000000e+00, 2.869503e+00,
     82   3.075000e+00, 3.116645e+00,
     83   3.150000e+00, 3.094907e+00,
     84   3.225000e+00, 2.471759e+00,
     85   3.300000e+00, 3.017131e+00,
     86   3.375000e+00, 3.232381e+00,
     87   3.450000e+00, 2.944596e+00,
     88   3.525000e+00, 3.385343e+00,
     89   3.600000e+00, 3.199826e+00,
     90   3.675000e+00, 3.423039e+00,
     91   3.750000e+00, 3.621552e+00,
     92   3.825000e+00, 3.559255e+00,
     93   3.900000e+00, 3.530713e+00,
     94   3.975000e+00, 3.561766e+00,
     95   4.050000e+00, 3.544574e+00,
     96   4.125000e+00, 3.867945e+00,
     97   4.200000e+00, 4.049776e+00,
     98   4.275000e+00, 3.885601e+00,
     99   4.350000e+00, 4.110505e+00,
    100   4.425000e+00, 4.345320e+00,
    101   4.500000e+00, 4.161241e+00,
    102   4.575000e+00, 4.363407e+00,
    103   4.650000e+00, 4.161576e+00,
    104   4.725000e+00, 4.619728e+00,
    105   4.800000e+00, 4.737410e+00,
    106   4.875000e+00, 4.727863e+00,
    107   4.950000e+00, 4.669206e+00,
    108 };
    109 
    110 // A test cost function, similar to the one in curve_fitting.c.
    111 int exponential_residual(void* user_data,
    112                          double** parameters,
    113                          double* residuals,
    114                          double** jacobians) {
    115   double* measurement = (double*) user_data;
    116   double x = measurement[0];
    117   double y = measurement[1];
    118   double m = parameters[0][0];
    119   double c = parameters[1][0];
    120 
    121   residuals[0] = y - exp(m * x + c);
    122   if (jacobians == NULL) {
    123     return 1;
    124   }
    125   if (jacobians[0] != NULL) {
    126     jacobians[0][0] = - x * exp(m * x + c);  // dr/dm
    127   }
    128   if (jacobians[1] != NULL) {
    129     jacobians[1][0] =     - exp(m * x + c);  // dr/dc
    130   }
    131   return 1;
    132 }
    133 
    134 namespace ceres {
    135 namespace internal {
    136 
    137 TEST(C_API, SimpleEndToEndTest) {
    138   double m = 0.0;
    139   double c = 0.0;
    140   double *parameter_pointers[] = { &m, &c };
    141   int parameter_sizes[] = { 1, 1 };
    142 
    143   ceres_problem_t* problem = ceres_create_problem();
    144   for (int i = 0; i < num_observations; ++i) {
    145     ceres_problem_add_residual_block(
    146         problem,
    147         exponential_residual,  // Cost function
    148         &data[2 * i],          // Points to the (x,y) measurement
    149         NULL,                  // Loss function
    150         NULL,                  // Loss function user data
    151         1,                     // Number of residuals
    152         2,                     // Number of parameter blocks
    153         parameter_sizes,
    154         parameter_pointers);
    155   }
    156 
    157   ceres_solve(problem);
    158 
    159   EXPECT_NEAR(0.3, m, 0.02);
    160   EXPECT_NEAR(0.1, c, 0.04);
    161 
    162   ceres_free_problem(problem);
    163 }
    164 
    165 template<typename T>
    166 class ScopedSetValue {
    167  public:
    168   ScopedSetValue(T* variable, T new_value)
    169       : variable_(variable), old_value_(*variable) {
    170     *variable = new_value;
    171   }
    172   ~ScopedSetValue() {
    173     *variable_ = old_value_;
    174   }
    175 
    176  private:
    177   T* variable_;
    178   T old_value_;
    179 };
    180 
    181 TEST(C_API, LossFunctions) {
    182   double m = 0.2;
    183   double c = 0.03;
    184   double *parameter_pointers[] = { &m, &c };
    185   int parameter_sizes[] = { 1, 1 };
    186 
    187   // Create two outliers, but be careful to leave the data intact.
    188   ScopedSetValue<double> outlier1x(&data[12], 2.5);
    189   ScopedSetValue<double> outlier1y(&data[13], 1.0e3);
    190   ScopedSetValue<double> outlier2x(&data[14], 3.2);
    191   ScopedSetValue<double> outlier2y(&data[15], 30e3);
    192 
    193   // Create a cauchy cost function, and reuse it many times.
    194   void* cauchy_loss_data =
    195       ceres_create_cauchy_loss_function_data(5.0);
    196 
    197   ceres_problem_t* problem = ceres_create_problem();
    198   for (int i = 0; i < num_observations; ++i) {
    199     ceres_problem_add_residual_block(
    200         problem,
    201         exponential_residual,  // Cost function
    202         &data[2 * i],          // Points to the (x,y) measurement
    203         ceres_stock_loss_function,
    204         cauchy_loss_data,      // Loss function user data
    205         1,                     // Number of residuals
    206         2,                     // Number of parameter blocks
    207         parameter_sizes,
    208         parameter_pointers);
    209   }
    210 
    211   ceres_solve(problem);
    212 
    213   EXPECT_NEAR(0.3, m, 0.02);
    214   EXPECT_NEAR(0.1, c, 0.04);
    215 
    216   ceres_free_stock_loss_function_data(cauchy_loss_data);
    217   ceres_free_problem(problem);
    218 }
    219 
    220 }  // namespace internal
    221 }  // namespace ceres
    222