Home | History | Annotate | Download | only in gpu
      1 /*
      2  * Copyright 2011 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "GrPathUtils.h"
      9 
     10 #include "GrTypes.h"
     11 #include "SkGeometry.h"
     12 
     13 SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
     14                                           const SkMatrix& viewM,
     15                                           const SkRect& pathBounds) {
     16     // In order to tesselate the path we get a bound on how much the matrix can
     17     // scale when mapping to screen coordinates.
     18     SkScalar stretch = viewM.getMaxScale();
     19     SkScalar srcTol = devTol;
     20 
     21     if (stretch < 0) {
     22         // take worst case mapRadius amoung four corners.
     23         // (less than perfect)
     24         for (int i = 0; i < 4; ++i) {
     25             SkMatrix mat;
     26             mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
     27                              (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
     28             mat.postConcat(viewM);
     29             stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
     30         }
     31     }
     32     return srcTol / stretch;
     33 }
     34 
     35 static const int MAX_POINTS_PER_CURVE = 1 << 10;
     36 static const SkScalar gMinCurveTol = 0.0001f;
     37 
     38 uint32_t GrPathUtils::quadraticPointCount(const SkPoint points[],
     39                                           SkScalar tol) {
     40     if (tol < gMinCurveTol) {
     41         tol = gMinCurveTol;
     42     }
     43     SkASSERT(tol > 0);
     44 
     45     SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
     46     if (d <= tol) {
     47         return 1;
     48     } else {
     49         // Each time we subdivide, d should be cut in 4. So we need to
     50         // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
     51         // points.
     52         // 2^(log4(x)) = sqrt(x);
     53         SkScalar divSqrt = SkScalarSqrt(d / tol);
     54         if (((SkScalar)SK_MaxS32) <= divSqrt) {
     55             return MAX_POINTS_PER_CURVE;
     56         } else {
     57             int temp = SkScalarCeilToInt(divSqrt);
     58             int pow2 = GrNextPow2(temp);
     59             // Because of NaNs & INFs we can wind up with a degenerate temp
     60             // such that pow2 comes out negative. Also, our point generator
     61             // will always output at least one pt.
     62             if (pow2 < 1) {
     63                 pow2 = 1;
     64             }
     65             return SkTMin(pow2, MAX_POINTS_PER_CURVE);
     66         }
     67     }
     68 }
     69 
     70 uint32_t GrPathUtils::generateQuadraticPoints(const SkPoint& p0,
     71                                               const SkPoint& p1,
     72                                               const SkPoint& p2,
     73                                               SkScalar tolSqd,
     74                                               SkPoint** points,
     75                                               uint32_t pointsLeft) {
     76     if (pointsLeft < 2 ||
     77         (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
     78         (*points)[0] = p2;
     79         *points += 1;
     80         return 1;
     81     }
     82 
     83     SkPoint q[] = {
     84         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
     85         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
     86     };
     87     SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
     88 
     89     pointsLeft >>= 1;
     90     uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
     91     uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
     92     return a + b;
     93 }
     94 
     95 uint32_t GrPathUtils::cubicPointCount(const SkPoint points[],
     96                                            SkScalar tol) {
     97     if (tol < gMinCurveTol) {
     98         tol = gMinCurveTol;
     99     }
    100     SkASSERT(tol > 0);
    101 
    102     SkScalar d = SkTMax(
    103         points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
    104         points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
    105     d = SkScalarSqrt(d);
    106     if (d <= tol) {
    107         return 1;
    108     } else {
    109         SkScalar divSqrt = SkScalarSqrt(d / tol);
    110         if (((SkScalar)SK_MaxS32) <= divSqrt) {
    111             return MAX_POINTS_PER_CURVE;
    112         } else {
    113             int temp = SkScalarCeilToInt(SkScalarSqrt(d / tol));
    114             int pow2 = GrNextPow2(temp);
    115             // Because of NaNs & INFs we can wind up with a degenerate temp
    116             // such that pow2 comes out negative. Also, our point generator
    117             // will always output at least one pt.
    118             if (pow2 < 1) {
    119                 pow2 = 1;
    120             }
    121             return SkTMin(pow2, MAX_POINTS_PER_CURVE);
    122         }
    123     }
    124 }
    125 
    126 uint32_t GrPathUtils::generateCubicPoints(const SkPoint& p0,
    127                                           const SkPoint& p1,
    128                                           const SkPoint& p2,
    129                                           const SkPoint& p3,
    130                                           SkScalar tolSqd,
    131                                           SkPoint** points,
    132                                           uint32_t pointsLeft) {
    133     if (pointsLeft < 2 ||
    134         (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
    135          p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
    136         (*points)[0] = p3;
    137         *points += 1;
    138         return 1;
    139     }
    140     SkPoint q[] = {
    141         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
    142         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
    143         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
    144     };
    145     SkPoint r[] = {
    146         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
    147         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
    148     };
    149     SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
    150     pointsLeft >>= 1;
    151     uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
    152     uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
    153     return a + b;
    154 }
    155 
    156 int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths,
    157                                      SkScalar tol) {
    158     if (tol < gMinCurveTol) {
    159         tol = gMinCurveTol;
    160     }
    161     SkASSERT(tol > 0);
    162 
    163     int pointCount = 0;
    164     *subpaths = 1;
    165 
    166     bool first = true;
    167 
    168     SkPath::Iter iter(path, false);
    169     SkPath::Verb verb;
    170 
    171     SkPoint pts[4];
    172     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
    173 
    174         switch (verb) {
    175             case SkPath::kLine_Verb:
    176                 pointCount += 1;
    177                 break;
    178             case SkPath::kConic_Verb: {
    179                 SkScalar weight = iter.conicWeight();
    180                 SkAutoConicToQuads converter;
    181                 const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.25f);
    182                 for (int i = 0; i < converter.countQuads(); ++i) {
    183                     pointCount += quadraticPointCount(quadPts + 2*i, tol);
    184                 }
    185             }
    186             case SkPath::kQuad_Verb:
    187                 pointCount += quadraticPointCount(pts, tol);
    188                 break;
    189             case SkPath::kCubic_Verb:
    190                 pointCount += cubicPointCount(pts, tol);
    191                 break;
    192             case SkPath::kMove_Verb:
    193                 pointCount += 1;
    194                 if (!first) {
    195                     ++(*subpaths);
    196                 }
    197                 break;
    198             default:
    199                 break;
    200         }
    201         first = false;
    202     }
    203     return pointCount;
    204 }
    205 
    206 void GrPathUtils::QuadUVMatrix::set(const SkPoint qPts[3]) {
    207     SkMatrix m;
    208     // We want M such that M * xy_pt = uv_pt
    209     // We know M * control_pts = [0  1/2 1]
    210     //                           [0  0   1]
    211     //                           [1  1   1]
    212     // And control_pts = [x0 x1 x2]
    213     //                   [y0 y1 y2]
    214     //                   [1  1  1 ]
    215     // We invert the control pt matrix and post concat to both sides to get M.
    216     // Using the known form of the control point matrix and the result, we can
    217     // optimize and improve precision.
    218 
    219     double x0 = qPts[0].fX;
    220     double y0 = qPts[0].fY;
    221     double x1 = qPts[1].fX;
    222     double y1 = qPts[1].fY;
    223     double x2 = qPts[2].fX;
    224     double y2 = qPts[2].fY;
    225     double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2;
    226 
    227     if (!sk_float_isfinite(det)
    228         || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
    229         // The quad is degenerate. Hopefully this is rare. Find the pts that are
    230         // farthest apart to compute a line (unless it is really a pt).
    231         SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
    232         int maxEdge = 0;
    233         SkScalar d = qPts[1].distanceToSqd(qPts[2]);
    234         if (d > maxD) {
    235             maxD = d;
    236             maxEdge = 1;
    237         }
    238         d = qPts[2].distanceToSqd(qPts[0]);
    239         if (d > maxD) {
    240             maxD = d;
    241             maxEdge = 2;
    242         }
    243         // We could have a tolerance here, not sure if it would improve anything
    244         if (maxD > 0) {
    245             // Set the matrix to give (u = 0, v = distance_to_line)
    246             SkVector lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
    247             // when looking from the point 0 down the line we want positive
    248             // distances to be to the left. This matches the non-degenerate
    249             // case.
    250             lineVec.setOrthog(lineVec, SkPoint::kLeft_Side);
    251             lineVec.dot(qPts[0]);
    252             // first row
    253             fM[0] = 0;
    254             fM[1] = 0;
    255             fM[2] = 0;
    256             // second row
    257             fM[3] = lineVec.fX;
    258             fM[4] = lineVec.fY;
    259             fM[5] = -lineVec.dot(qPts[maxEdge]);
    260         } else {
    261             // It's a point. It should cover zero area. Just set the matrix such
    262             // that (u, v) will always be far away from the quad.
    263             fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
    264             fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
    265         }
    266     } else {
    267         double scale = 1.0/det;
    268 
    269         // compute adjugate matrix
    270         double a0, a1, a2, a3, a4, a5, a6, a7, a8;
    271         a0 = y1-y2;
    272         a1 = x2-x1;
    273         a2 = x1*y2-x2*y1;
    274 
    275         a3 = y2-y0;
    276         a4 = x0-x2;
    277         a5 = x2*y0-x0*y2;
    278 
    279         a6 = y0-y1;
    280         a7 = x1-x0;
    281         a8 = x0*y1-x1*y0;
    282 
    283         // this performs the uv_pts*adjugate(control_pts) multiply,
    284         // then does the scale by 1/det afterwards to improve precision
    285         m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale);
    286         m[SkMatrix::kMSkewX]  = (float)((0.5*a4 + a7)*scale);
    287         m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale);
    288 
    289         m[SkMatrix::kMSkewY]  = (float)(a6*scale);
    290         m[SkMatrix::kMScaleY] = (float)(a7*scale);
    291         m[SkMatrix::kMTransY] = (float)(a8*scale);
    292 
    293         m[SkMatrix::kMPersp0] = (float)((a0 + a3 + a6)*scale);
    294         m[SkMatrix::kMPersp1] = (float)((a1 + a4 + a7)*scale);
    295         m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale);
    296 
    297         // The matrix should not have perspective.
    298         SkDEBUGCODE(static const SkScalar gTOL = 1.f / 100.f);
    299         SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp0)) < gTOL);
    300         SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp1)) < gTOL);
    301 
    302         // It may not be normalized to have 1.0 in the bottom right
    303         float m33 = m.get(SkMatrix::kMPersp2);
    304         if (1.f != m33) {
    305             m33 = 1.f / m33;
    306             fM[0] = m33 * m.get(SkMatrix::kMScaleX);
    307             fM[1] = m33 * m.get(SkMatrix::kMSkewX);
    308             fM[2] = m33 * m.get(SkMatrix::kMTransX);
    309             fM[3] = m33 * m.get(SkMatrix::kMSkewY);
    310             fM[4] = m33 * m.get(SkMatrix::kMScaleY);
    311             fM[5] = m33 * m.get(SkMatrix::kMTransY);
    312         } else {
    313             fM[0] = m.get(SkMatrix::kMScaleX);
    314             fM[1] = m.get(SkMatrix::kMSkewX);
    315             fM[2] = m.get(SkMatrix::kMTransX);
    316             fM[3] = m.get(SkMatrix::kMSkewY);
    317             fM[4] = m.get(SkMatrix::kMScaleY);
    318             fM[5] = m.get(SkMatrix::kMTransY);
    319         }
    320     }
    321 }
    322 
    323 ////////////////////////////////////////////////////////////////////////////////
    324 
    325 // k = (y2 - y0, x0 - x2, (x2 - x0)*y0 - (y2 - y0)*x0 )
    326 // l = (2*w * (y1 - y0), 2*w * (x0 - x1), 2*w * (x1*y0 - x0*y1))
    327 // m = (2*w * (y2 - y1), 2*w * (x1 - x2), 2*w * (x2*y1 - x1*y2))
    328 void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkScalar klm[9]) {
    329     const SkScalar w2 = 2.f * weight;
    330     klm[0] = p[2].fY - p[0].fY;
    331     klm[1] = p[0].fX - p[2].fX;
    332     klm[2] = (p[2].fX - p[0].fX) * p[0].fY - (p[2].fY - p[0].fY) * p[0].fX;
    333 
    334     klm[3] = w2 * (p[1].fY - p[0].fY);
    335     klm[4] = w2 * (p[0].fX - p[1].fX);
    336     klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
    337 
    338     klm[6] = w2 * (p[2].fY - p[1].fY);
    339     klm[7] = w2 * (p[1].fX - p[2].fX);
    340     klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
    341 
    342     // scale the max absolute value of coeffs to 10
    343     SkScalar scale = 0.f;
    344     for (int i = 0; i < 9; ++i) {
    345        scale = SkMaxScalar(scale, SkScalarAbs(klm[i]));
    346     }
    347     SkASSERT(scale > 0.f);
    348     scale = 10.f / scale;
    349     for (int i = 0; i < 9; ++i) {
    350         klm[i] *= scale;
    351     }
    352 }
    353 
    354 ////////////////////////////////////////////////////////////////////////////////
    355 
    356 namespace {
    357 
    358 // a is the first control point of the cubic.
    359 // ab is the vector from a to the second control point.
    360 // dc is the vector from the fourth to the third control point.
    361 // d is the fourth control point.
    362 // p is the candidate quadratic control point.
    363 // this assumes that the cubic doesn't inflect and is simple
    364 bool is_point_within_cubic_tangents(const SkPoint& a,
    365                                     const SkVector& ab,
    366                                     const SkVector& dc,
    367                                     const SkPoint& d,
    368                                     SkPathPriv::FirstDirection dir,
    369                                     const SkPoint p) {
    370     SkVector ap = p - a;
    371     SkScalar apXab = ap.cross(ab);
    372     if (SkPathPriv::kCW_FirstDirection == dir) {
    373         if (apXab > 0) {
    374             return false;
    375         }
    376     } else {
    377         SkASSERT(SkPathPriv::kCCW_FirstDirection == dir);
    378         if (apXab < 0) {
    379             return false;
    380         }
    381     }
    382 
    383     SkVector dp = p - d;
    384     SkScalar dpXdc = dp.cross(dc);
    385     if (SkPathPriv::kCW_FirstDirection == dir) {
    386         if (dpXdc < 0) {
    387             return false;
    388         }
    389     } else {
    390         SkASSERT(SkPathPriv::kCCW_FirstDirection == dir);
    391         if (dpXdc > 0) {
    392             return false;
    393         }
    394     }
    395     return true;
    396 }
    397 
    398 void convert_noninflect_cubic_to_quads(const SkPoint p[4],
    399                                        SkScalar toleranceSqd,
    400                                        bool constrainWithinTangents,
    401                                        SkPathPriv::FirstDirection dir,
    402                                        SkTArray<SkPoint, true>* quads,
    403                                        int sublevel = 0) {
    404 
    405     // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
    406     // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
    407 
    408     SkVector ab = p[1] - p[0];
    409     SkVector dc = p[2] - p[3];
    410 
    411     if (ab.lengthSqd() < SK_ScalarNearlyZero) {
    412         if (dc.lengthSqd() < SK_ScalarNearlyZero) {
    413             SkPoint* degQuad = quads->push_back_n(3);
    414             degQuad[0] = p[0];
    415             degQuad[1] = p[0];
    416             degQuad[2] = p[3];
    417             return;
    418         }
    419         ab = p[2] - p[0];
    420     }
    421     if (dc.lengthSqd() < SK_ScalarNearlyZero) {
    422         dc = p[1] - p[3];
    423     }
    424 
    425     // When the ab and cd tangents are degenerate or nearly parallel with vector from d to a the
    426     // constraint that the quad point falls between the tangents becomes hard to enforce and we are
    427     // likely to hit the max subdivision count. However, in this case the cubic is approaching a
    428     // line and the accuracy of the quad point isn't so important. We check if the two middle cubic
    429     // control points are very close to the baseline vector. If so then we just pick quadratic
    430     // points on the control polygon.
    431 
    432     if (constrainWithinTangents) {
    433         SkVector da = p[0] - p[3];
    434         bool doQuads = dc.lengthSqd() < SK_ScalarNearlyZero ||
    435                        ab.lengthSqd() < SK_ScalarNearlyZero;
    436         if (!doQuads) {
    437             SkScalar invDALengthSqd = da.lengthSqd();
    438             if (invDALengthSqd > SK_ScalarNearlyZero) {
    439                 invDALengthSqd = SkScalarInvert(invDALengthSqd);
    440                 // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
    441                 // same goes for point c using vector cd.
    442                 SkScalar detABSqd = ab.cross(da);
    443                 detABSqd = SkScalarSquare(detABSqd);
    444                 SkScalar detDCSqd = dc.cross(da);
    445                 detDCSqd = SkScalarSquare(detDCSqd);
    446                 if (SkScalarMul(detABSqd, invDALengthSqd) < toleranceSqd &&
    447                     SkScalarMul(detDCSqd, invDALengthSqd) < toleranceSqd) {
    448                     doQuads = true;
    449                 }
    450             }
    451         }
    452         if (doQuads) {
    453             SkPoint b = p[0] + ab;
    454             SkPoint c = p[3] + dc;
    455             SkPoint mid = b + c;
    456             mid.scale(SK_ScalarHalf);
    457             // Insert two quadratics to cover the case when ab points away from d and/or dc
    458             // points away from a.
    459             if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
    460                 SkPoint* qpts = quads->push_back_n(6);
    461                 qpts[0] = p[0];
    462                 qpts[1] = b;
    463                 qpts[2] = mid;
    464                 qpts[3] = mid;
    465                 qpts[4] = c;
    466                 qpts[5] = p[3];
    467             } else {
    468                 SkPoint* qpts = quads->push_back_n(3);
    469                 qpts[0] = p[0];
    470                 qpts[1] = mid;
    471                 qpts[2] = p[3];
    472             }
    473             return;
    474         }
    475     }
    476 
    477     static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
    478     static const int kMaxSubdivs = 10;
    479 
    480     ab.scale(kLengthScale);
    481     dc.scale(kLengthScale);
    482 
    483     // e0 and e1 are extrapolations along vectors ab and dc.
    484     SkVector c0 = p[0];
    485     c0 += ab;
    486     SkVector c1 = p[3];
    487     c1 += dc;
    488 
    489     SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1);
    490     if (dSqd < toleranceSqd) {
    491         SkPoint cAvg = c0;
    492         cAvg += c1;
    493         cAvg.scale(SK_ScalarHalf);
    494 
    495         bool subdivide = false;
    496 
    497         if (constrainWithinTangents &&
    498             !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
    499             // choose a new cAvg that is the intersection of the two tangent lines.
    500             ab.setOrthog(ab);
    501             SkScalar z0 = -ab.dot(p[0]);
    502             dc.setOrthog(dc);
    503             SkScalar z1 = -dc.dot(p[3]);
    504             cAvg.fX = SkScalarMul(ab.fY, z1) - SkScalarMul(z0, dc.fY);
    505             cAvg.fY = SkScalarMul(z0, dc.fX) - SkScalarMul(ab.fX, z1);
    506             SkScalar z = SkScalarMul(ab.fX, dc.fY) - SkScalarMul(ab.fY, dc.fX);
    507             z = SkScalarInvert(z);
    508             cAvg.fX *= z;
    509             cAvg.fY *= z;
    510             if (sublevel <= kMaxSubdivs) {
    511                 SkScalar d0Sqd = c0.distanceToSqd(cAvg);
    512                 SkScalar d1Sqd = c1.distanceToSqd(cAvg);
    513                 // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
    514                 // the distances and tolerance can't be negative.
    515                 // (d0 + d1)^2 > toleranceSqd
    516                 // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
    517                 SkScalar d0d1 = SkScalarSqrt(SkScalarMul(d0Sqd, d1Sqd));
    518                 subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
    519             }
    520         }
    521         if (!subdivide) {
    522             SkPoint* pts = quads->push_back_n(3);
    523             pts[0] = p[0];
    524             pts[1] = cAvg;
    525             pts[2] = p[3];
    526             return;
    527         }
    528     }
    529     SkPoint choppedPts[7];
    530     SkChopCubicAtHalf(p, choppedPts);
    531     convert_noninflect_cubic_to_quads(choppedPts + 0,
    532                                       toleranceSqd,
    533                                       constrainWithinTangents,
    534                                       dir,
    535                                       quads,
    536                                       sublevel + 1);
    537     convert_noninflect_cubic_to_quads(choppedPts + 3,
    538                                       toleranceSqd,
    539                                       constrainWithinTangents,
    540                                       dir,
    541                                       quads,
    542                                       sublevel + 1);
    543 }
    544 }
    545 
    546 void GrPathUtils::convertCubicToQuads(const SkPoint p[4],
    547                                       SkScalar tolScale,
    548                                       SkTArray<SkPoint, true>* quads) {
    549     SkPoint chopped[10];
    550     int count = SkChopCubicAtInflections(p, chopped);
    551 
    552     const SkScalar tolSqd = SkScalarSquare(tolScale);
    553 
    554     for (int i = 0; i < count; ++i) {
    555         SkPoint* cubic = chopped + 3*i;
    556         // The direction param is ignored if the third param is false.
    557         convert_noninflect_cubic_to_quads(cubic, tolSqd, false,
    558                                           SkPathPriv::kCCW_FirstDirection, quads);
    559     }
    560 }
    561 
    562 void GrPathUtils::convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
    563                                                          SkScalar tolScale,
    564                                                          SkPathPriv::FirstDirection dir,
    565                                                          SkTArray<SkPoint, true>* quads) {
    566     SkPoint chopped[10];
    567     int count = SkChopCubicAtInflections(p, chopped);
    568 
    569     const SkScalar tolSqd = SkScalarSquare(tolScale);
    570 
    571     for (int i = 0; i < count; ++i) {
    572         SkPoint* cubic = chopped + 3*i;
    573         convert_noninflect_cubic_to_quads(cubic, tolSqd, true, dir, quads);
    574     }
    575 }
    576 
    577 ////////////////////////////////////////////////////////////////////////////////
    578 
    579 // Solves linear system to extract klm
    580 // P.K = k (similarly for l, m)
    581 // Where P is matrix of control points
    582 // K is coefficients for the line K
    583 // k is vector of values of K evaluated at the control points
    584 // Solving for K, thus K = P^(-1) . k
    585 static void calc_cubic_klm(const SkPoint p[4], const SkScalar controlK[4],
    586                            const SkScalar controlL[4], const SkScalar controlM[4],
    587                            SkScalar k[3], SkScalar l[3], SkScalar m[3]) {
    588     SkMatrix matrix;
    589     matrix.setAll(p[0].fX, p[0].fY, 1.f,
    590                   p[1].fX, p[1].fY, 1.f,
    591                   p[2].fX, p[2].fY, 1.f);
    592     SkMatrix inverse;
    593     if (matrix.invert(&inverse)) {
    594        inverse.mapHomogeneousPoints(k, controlK, 1);
    595        inverse.mapHomogeneousPoints(l, controlL, 1);
    596        inverse.mapHomogeneousPoints(m, controlM, 1);
    597     }
    598 
    599 }
    600 
    601 static void set_serp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
    602     SkScalar tempSqrt = SkScalarSqrt(9.f * d[1] * d[1] - 12.f * d[0] * d[2]);
    603     SkScalar ls = 3.f * d[1] - tempSqrt;
    604     SkScalar lt = 6.f * d[0];
    605     SkScalar ms = 3.f * d[1] + tempSqrt;
    606     SkScalar mt = 6.f * d[0];
    607 
    608     k[0] = ls * ms;
    609     k[1] = (3.f * ls * ms - ls * mt - lt * ms) / 3.f;
    610     k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
    611     k[3] = (lt - ls) * (mt - ms);
    612 
    613     l[0] = ls * ls * ls;
    614     const SkScalar lt_ls = lt - ls;
    615     l[1] = ls * ls * lt_ls * -1.f;
    616     l[2] = lt_ls * lt_ls * ls;
    617     l[3] = -1.f * lt_ls * lt_ls * lt_ls;
    618 
    619     m[0] = ms * ms * ms;
    620     const SkScalar mt_ms = mt - ms;
    621     m[1] = ms * ms * mt_ms * -1.f;
    622     m[2] = mt_ms * mt_ms * ms;
    623     m[3] = -1.f * mt_ms * mt_ms * mt_ms;
    624 
    625     // If d0 < 0 we need to flip the orientation of our curve
    626     // This is done by negating the k and l values
    627     // We want negative distance values to be on the inside
    628     if ( d[0] > 0) {
    629         for (int i = 0; i < 4; ++i) {
    630             k[i] = -k[i];
    631             l[i] = -l[i];
    632         }
    633     }
    634 }
    635 
    636 static void set_loop_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
    637     SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
    638     SkScalar ls = d[1] - tempSqrt;
    639     SkScalar lt = 2.f * d[0];
    640     SkScalar ms = d[1] + tempSqrt;
    641     SkScalar mt = 2.f * d[0];
    642 
    643     k[0] = ls * ms;
    644     k[1] = (3.f * ls*ms - ls * mt - lt * ms) / 3.f;
    645     k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
    646     k[3] = (lt - ls) * (mt - ms);
    647 
    648     l[0] = ls * ls * ms;
    649     l[1] = (ls * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/-3.f;
    650     l[2] = ((lt - ls) * (ls * (2.f * mt - 3.f * ms) + lt * ms))/3.f;
    651     l[3] = -1.f * (lt - ls) * (lt - ls) * (mt - ms);
    652 
    653     m[0] = ls * ms * ms;
    654     m[1] = (ms * (ls * (2.f * mt - 3.f * ms) + lt * ms))/-3.f;
    655     m[2] = ((mt - ms) * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/3.f;
    656     m[3] = -1.f * (lt - ls) * (mt - ms) * (mt - ms);
    657 
    658 
    659     // If (d0 < 0 && sign(k1) > 0) || (d0 > 0 && sign(k1) < 0),
    660     // we need to flip the orientation of our curve.
    661     // This is done by negating the k and l values
    662     if ( (d[0] < 0 && k[1] > 0) || (d[0] > 0 && k[1] < 0)) {
    663         for (int i = 0; i < 4; ++i) {
    664             k[i] = -k[i];
    665             l[i] = -l[i];
    666         }
    667     }
    668 }
    669 
    670 static void set_cusp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
    671     const SkScalar ls = d[2];
    672     const SkScalar lt = 3.f * d[1];
    673 
    674     k[0] = ls;
    675     k[1] = ls - lt / 3.f;
    676     k[2] = ls - 2.f * lt / 3.f;
    677     k[3] = ls - lt;
    678 
    679     l[0] = ls * ls * ls;
    680     const SkScalar ls_lt = ls - lt;
    681     l[1] = ls * ls * ls_lt;
    682     l[2] = ls_lt * ls_lt * ls;
    683     l[3] = ls_lt * ls_lt * ls_lt;
    684 
    685     m[0] = 1.f;
    686     m[1] = 1.f;
    687     m[2] = 1.f;
    688     m[3] = 1.f;
    689 }
    690 
    691 // For the case when a cubic is actually a quadratic
    692 // M =
    693 // 0     0     0
    694 // 1/3   0     1/3
    695 // 2/3   1/3   2/3
    696 // 1     1     1
    697 static void set_quadratic_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
    698     k[0] = 0.f;
    699     k[1] = 1.f/3.f;
    700     k[2] = 2.f/3.f;
    701     k[3] = 1.f;
    702 
    703     l[0] = 0.f;
    704     l[1] = 0.f;
    705     l[2] = 1.f/3.f;
    706     l[3] = 1.f;
    707 
    708     m[0] = 0.f;
    709     m[1] = 1.f/3.f;
    710     m[2] = 2.f/3.f;
    711     m[3] = 1.f;
    712 
    713     // If d2 < 0 we need to flip the orientation of our curve
    714     // This is done by negating the k and l values
    715     if ( d[2] > 0) {
    716         for (int i = 0; i < 4; ++i) {
    717             k[i] = -k[i];
    718             l[i] = -l[i];
    719         }
    720     }
    721 }
    722 
    723 int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkScalar klm[9],
    724                                              SkScalar klm_rev[3]) {
    725     // Variable to store the two parametric values at the loop double point
    726     SkScalar smallS = 0.f;
    727     SkScalar largeS = 0.f;
    728 
    729     SkScalar d[3];
    730     SkCubicType cType = SkClassifyCubic(src, d);
    731 
    732     int chop_count = 0;
    733     if (kLoop_SkCubicType == cType) {
    734         SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
    735         SkScalar ls = d[1] - tempSqrt;
    736         SkScalar lt = 2.f * d[0];
    737         SkScalar ms = d[1] + tempSqrt;
    738         SkScalar mt = 2.f * d[0];
    739         ls = ls / lt;
    740         ms = ms / mt;
    741         // need to have t values sorted since this is what is expected by SkChopCubicAt
    742         if (ls <= ms) {
    743             smallS = ls;
    744             largeS = ms;
    745         } else {
    746             smallS = ms;
    747             largeS = ls;
    748         }
    749 
    750         SkScalar chop_ts[2];
    751         if (smallS > 0.f && smallS < 1.f) {
    752             chop_ts[chop_count++] = smallS;
    753         }
    754         if (largeS > 0.f && largeS < 1.f) {
    755             chop_ts[chop_count++] = largeS;
    756         }
    757         if(dst) {
    758             SkChopCubicAt(src, dst, chop_ts, chop_count);
    759         }
    760     } else {
    761         if (dst) {
    762             memcpy(dst, src, sizeof(SkPoint) * 4);
    763         }
    764     }
    765 
    766     if (klm && klm_rev) {
    767         // Set klm_rev to to match the sub_section of cubic that needs to have its orientation
    768         // flipped. This will always be the section that is the "loop"
    769         if (2 == chop_count) {
    770             klm_rev[0] = 1.f;
    771             klm_rev[1] = -1.f;
    772             klm_rev[2] = 1.f;
    773         } else if (1 == chop_count) {
    774             if (smallS < 0.f) {
    775                 klm_rev[0] = -1.f;
    776                 klm_rev[1] = 1.f;
    777             } else {
    778                 klm_rev[0] = 1.f;
    779                 klm_rev[1] = -1.f;
    780             }
    781         } else {
    782             if (smallS < 0.f && largeS > 1.f) {
    783                 klm_rev[0] = -1.f;
    784             } else {
    785                 klm_rev[0] = 1.f;
    786             }
    787         }
    788         SkScalar controlK[4];
    789         SkScalar controlL[4];
    790         SkScalar controlM[4];
    791 
    792         if (kSerpentine_SkCubicType == cType || (kCusp_SkCubicType == cType && 0.f != d[0])) {
    793             set_serp_klm(d, controlK, controlL, controlM);
    794         } else if (kLoop_SkCubicType == cType) {
    795             set_loop_klm(d, controlK, controlL, controlM);
    796         } else if (kCusp_SkCubicType == cType) {
    797             SkASSERT(0.f == d[0]);
    798             set_cusp_klm(d, controlK, controlL, controlM);
    799         } else if (kQuadratic_SkCubicType == cType) {
    800             set_quadratic_klm(d, controlK, controlL, controlM);
    801         }
    802 
    803         calc_cubic_klm(src, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
    804     }
    805     return chop_count + 1;
    806 }
    807 
    808 void GrPathUtils::getCubicKLM(const SkPoint p[4], SkScalar klm[9]) {
    809     SkScalar d[3];
    810     SkCubicType cType = SkClassifyCubic(p, d);
    811 
    812     SkScalar controlK[4];
    813     SkScalar controlL[4];
    814     SkScalar controlM[4];
    815 
    816     if (kSerpentine_SkCubicType == cType || (kCusp_SkCubicType == cType && 0.f != d[0])) {
    817         set_serp_klm(d, controlK, controlL, controlM);
    818     } else if (kLoop_SkCubicType == cType) {
    819         set_loop_klm(d, controlK, controlL, controlM);
    820     } else if (kCusp_SkCubicType == cType) {
    821         SkASSERT(0.f == d[0]);
    822         set_cusp_klm(d, controlK, controlL, controlM);
    823     } else if (kQuadratic_SkCubicType == cType) {
    824         set_quadratic_klm(d, controlK, controlL, controlM);
    825     }
    826 
    827     calc_cubic_klm(p, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
    828 }
    829