Home | History | Annotate | Download | only in i18n
      1 /*
      2 *******************************************************************************
      3 * Copyright (C) 1997-2015, International Business Machines Corporation and    *
      4 * others. All Rights Reserved.                                                *
      5 *******************************************************************************
      6 *
      7 * File DECIMFMT.CPP
      8 *
      9 * Modification History:
     10 *
     11 *   Date        Name        Description
     12 *   02/19/97    aliu        Converted from java.
     13 *   03/20/97    clhuang     Implemented with new APIs.
     14 *   03/31/97    aliu        Moved isLONG_MIN to DigitList, and fixed it.
     15 *   04/3/97     aliu        Rewrote parsing and formatting completely, and
     16 *                           cleaned up and debugged.  Actually works now.
     17 *                           Implemented NAN and INF handling, for both parsing
     18 *                           and formatting.  Extensive testing & debugging.
     19 *   04/10/97    aliu        Modified to compile on AIX.
     20 *   04/16/97    aliu        Rewrote to use DigitList, which has been resurrected.
     21 *                           Changed DigitCount to int per code review.
     22 *   07/09/97    helena      Made ParsePosition into a class.
     23 *   08/26/97    aliu        Extensive changes to applyPattern; completely
     24 *                           rewritten from the Java.
     25 *   09/09/97    aliu        Ported over support for exponential formats.
     26 *   07/20/98    stephen     JDK 1.2 sync up.
     27 *                             Various instances of '0' replaced with 'NULL'
     28 *                             Check for grouping size in subFormat()
     29 *                             Brought subParse() in line with Java 1.2
     30 *                             Added method appendAffix()
     31 *   08/24/1998  srl         Removed Mutex calls. This is not a thread safe class!
     32 *   02/22/99    stephen     Removed character literals for EBCDIC safety
     33 *   06/24/99    helena      Integrated Alan's NF enhancements and Java2 bug fixes
     34 *   06/28/99    stephen     Fixed bugs in toPattern().
     35 *   06/29/99    stephen     Fixed operator= to copy fFormatWidth, fPad,
     36 *                             fPadPosition
     37 ********************************************************************************
     38 */
     39 
     40 #include "unicode/utypes.h"
     41 
     42 #if !UCONFIG_NO_FORMATTING
     43 
     44 #include "unicode/uniset.h"
     45 #include "unicode/currpinf.h"
     46 #include "unicode/plurrule.h"
     47 #include "unicode/utf16.h"
     48 #include "unicode/numsys.h"
     49 #include "unicode/localpointer.h"
     50 #include "uresimp.h"
     51 #include "ucurrimp.h"
     52 #include "charstr.h"
     53 #include "patternprops.h"
     54 #include "cstring.h"
     55 #include "uassert.h"
     56 #include "hash.h"
     57 #include "decfmtst.h"
     58 #include "plurrule_impl.h"
     59 #include "decimalformatpattern.h"
     60 #include "fmtableimp.h"
     61 #include "decimfmtimpl.h"
     62 #include "visibledigits.h"
     63 
     64 /*
     65  * On certain platforms, round is a macro defined in math.h
     66  * This undefine is to avoid conflict between the macro and
     67  * the function defined below.
     68  */
     69 #ifdef round
     70 #undef round
     71 #endif
     72 
     73 
     74 U_NAMESPACE_BEGIN
     75 
     76 #ifdef FMT_DEBUG
     77 #include <stdio.h>
     78 static void _debugout(const char *f, int l, const UnicodeString& s) {
     79     char buf[2000];
     80     s.extract((int32_t) 0, s.length(), buf, "utf-8");
     81     printf("%s:%d: %s\n", f,l, buf);
     82 }
     83 #define debugout(x) _debugout(__FILE__,__LINE__,x)
     84 #define debug(x) printf("%s:%d: %s\n", __FILE__,__LINE__, x);
     85 static const UnicodeString dbg_null("<NULL>","");
     86 #define DEREFSTR(x)   ((x!=NULL)?(*x):(dbg_null))
     87 #else
     88 #define debugout(x)
     89 #define debug(x)
     90 #endif
     91 
     92 
     93 /* For currency parsing purose,
     94  * Need to remember all prefix patterns and suffix patterns of
     95  * every currency format pattern,
     96  * including the pattern of default currecny style
     97  * and plural currency style. And the patterns are set through applyPattern.
     98  */
     99 struct AffixPatternsForCurrency : public UMemory {
    100 	// negative prefix pattern
    101 	UnicodeString negPrefixPatternForCurrency;
    102 	// negative suffix pattern
    103 	UnicodeString negSuffixPatternForCurrency;
    104 	// positive prefix pattern
    105 	UnicodeString posPrefixPatternForCurrency;
    106 	// positive suffix pattern
    107 	UnicodeString posSuffixPatternForCurrency;
    108 	int8_t patternType;
    109 
    110 	AffixPatternsForCurrency(const UnicodeString& negPrefix,
    111 							 const UnicodeString& negSuffix,
    112 							 const UnicodeString& posPrefix,
    113 							 const UnicodeString& posSuffix,
    114 							 int8_t type) {
    115 		negPrefixPatternForCurrency = negPrefix;
    116 		negSuffixPatternForCurrency = negSuffix;
    117 		posPrefixPatternForCurrency = posPrefix;
    118 		posSuffixPatternForCurrency = posSuffix;
    119 		patternType = type;
    120 	}
    121 #ifdef FMT_DEBUG
    122   void dump() const  {
    123     debugout( UnicodeString("AffixPatternsForCurrency( -=\"") +
    124               negPrefixPatternForCurrency + (UnicodeString)"\"/\"" +
    125               negSuffixPatternForCurrency + (UnicodeString)"\" +=\"" +
    126               posPrefixPatternForCurrency + (UnicodeString)"\"/\"" +
    127               posSuffixPatternForCurrency + (UnicodeString)"\" )");
    128   }
    129 #endif
    130 };
    131 
    132 /* affix for currency formatting when the currency sign in the pattern
    133  * equals to 3, such as the pattern contains 3 currency sign or
    134  * the formatter style is currency plural format style.
    135  */
    136 struct AffixesForCurrency : public UMemory {
    137 	// negative prefix
    138 	UnicodeString negPrefixForCurrency;
    139 	// negative suffix
    140 	UnicodeString negSuffixForCurrency;
    141 	// positive prefix
    142 	UnicodeString posPrefixForCurrency;
    143 	// positive suffix
    144 	UnicodeString posSuffixForCurrency;
    145 
    146 	int32_t formatWidth;
    147 
    148 	AffixesForCurrency(const UnicodeString& negPrefix,
    149 					   const UnicodeString& negSuffix,
    150 					   const UnicodeString& posPrefix,
    151 					   const UnicodeString& posSuffix) {
    152 		negPrefixForCurrency = negPrefix;
    153 		negSuffixForCurrency = negSuffix;
    154 		posPrefixForCurrency = posPrefix;
    155 		posSuffixForCurrency = posSuffix;
    156 	}
    157 #ifdef FMT_DEBUG
    158   void dump() const {
    159     debugout( UnicodeString("AffixesForCurrency( -=\"") +
    160               negPrefixForCurrency + (UnicodeString)"\"/\"" +
    161               negSuffixForCurrency + (UnicodeString)"\" +=\"" +
    162               posPrefixForCurrency + (UnicodeString)"\"/\"" +
    163               posSuffixForCurrency + (UnicodeString)"\" )");
    164   }
    165 #endif
    166 };
    167 
    168 U_CDECL_BEGIN
    169 
    170 /**
    171  * @internal ICU 4.2
    172  */
    173 static UBool U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2);
    174 
    175 
    176 static UBool
    177 U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2) {
    178     const AffixPatternsForCurrency* affix_1 =
    179         (AffixPatternsForCurrency*)val1.pointer;
    180     const AffixPatternsForCurrency* affix_2 =
    181         (AffixPatternsForCurrency*)val2.pointer;
    182     return affix_1->negPrefixPatternForCurrency ==
    183            affix_2->negPrefixPatternForCurrency &&
    184            affix_1->negSuffixPatternForCurrency ==
    185            affix_2->negSuffixPatternForCurrency &&
    186            affix_1->posPrefixPatternForCurrency ==
    187            affix_2->posPrefixPatternForCurrency &&
    188            affix_1->posSuffixPatternForCurrency ==
    189            affix_2->posSuffixPatternForCurrency &&
    190            affix_1->patternType == affix_2->patternType;
    191 }
    192 
    193 U_CDECL_END
    194 
    195 
    196 
    197 
    198 // *****************************************************************************
    199 // class DecimalFormat
    200 // *****************************************************************************
    201 
    202 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DecimalFormat)
    203 
    204 // Constants for characters used in programmatic (unlocalized) patterns.
    205 #define kPatternZeroDigit            ((UChar)0x0030) /*'0'*/
    206 #define kPatternSignificantDigit     ((UChar)0x0040) /*'@'*/
    207 #define kPatternGroupingSeparator    ((UChar)0x002C) /*','*/
    208 #define kPatternDecimalSeparator     ((UChar)0x002E) /*'.'*/
    209 #define kPatternPerMill              ((UChar)0x2030)
    210 #define kPatternPercent              ((UChar)0x0025) /*'%'*/
    211 #define kPatternDigit                ((UChar)0x0023) /*'#'*/
    212 #define kPatternSeparator            ((UChar)0x003B) /*';'*/
    213 #define kPatternExponent             ((UChar)0x0045) /*'E'*/
    214 #define kPatternPlus                 ((UChar)0x002B) /*'+'*/
    215 #define kPatternMinus                ((UChar)0x002D) /*'-'*/
    216 #define kPatternPadEscape            ((UChar)0x002A) /*'*'*/
    217 #define kQuote                       ((UChar)0x0027) /*'\''*/
    218 /**
    219  * The CURRENCY_SIGN is the standard Unicode symbol for currency.  It
    220  * is used in patterns and substitued with either the currency symbol,
    221  * or if it is doubled, with the international currency symbol.  If the
    222  * CURRENCY_SIGN is seen in a pattern, then the decimal separator is
    223  * replaced with the monetary decimal separator.
    224  */
    225 #define kCurrencySign                ((UChar)0x00A4)
    226 #define kDefaultPad                  ((UChar)0x0020) /* */
    227 
    228 const int32_t DecimalFormat::kDoubleIntegerDigits  = 309;
    229 const int32_t DecimalFormat::kDoubleFractionDigits = 340;
    230 
    231 const int32_t DecimalFormat::kMaxScientificIntegerDigits = 8;
    232 
    233 /**
    234  * These are the tags we expect to see in normal resource bundle files associated
    235  * with a locale.
    236  */
    237 const char DecimalFormat::fgNumberPatterns[]="NumberPatterns"; // Deprecated - not used
    238 static const char fgNumberElements[]="NumberElements";
    239 static const char fgLatn[]="latn";
    240 static const char fgPatterns[]="patterns";
    241 static const char fgDecimalFormat[]="decimalFormat";
    242 static const char fgCurrencyFormat[]="currencyFormat";
    243 
    244 inline int32_t _min(int32_t a, int32_t b) { return (a<b) ? a : b; }
    245 inline int32_t _max(int32_t a, int32_t b) { return (a<b) ? b : a; }
    246 
    247 //------------------------------------------------------------------------------
    248 // Constructs a DecimalFormat instance in the default locale.
    249 
    250 DecimalFormat::DecimalFormat(UErrorCode& status) {
    251     init();
    252     UParseError parseError;
    253     construct(status, parseError);
    254 }
    255 
    256 //------------------------------------------------------------------------------
    257 // Constructs a DecimalFormat instance with the specified number format
    258 // pattern in the default locale.
    259 
    260 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
    261                              UErrorCode& status) {
    262     init();
    263     UParseError parseError;
    264     construct(status, parseError, &pattern);
    265 }
    266 
    267 //------------------------------------------------------------------------------
    268 // Constructs a DecimalFormat instance with the specified number format
    269 // pattern and the number format symbols in the default locale.  The
    270 // created instance owns the symbols.
    271 
    272 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
    273                              DecimalFormatSymbols* symbolsToAdopt,
    274                              UErrorCode& status) {
    275     init();
    276     UParseError parseError;
    277     if (symbolsToAdopt == NULL)
    278         status = U_ILLEGAL_ARGUMENT_ERROR;
    279     construct(status, parseError, &pattern, symbolsToAdopt);
    280 }
    281 
    282 DecimalFormat::DecimalFormat(  const UnicodeString& pattern,
    283                     DecimalFormatSymbols* symbolsToAdopt,
    284                     UParseError& parseErr,
    285                     UErrorCode& status) {
    286     init();
    287     if (symbolsToAdopt == NULL)
    288         status = U_ILLEGAL_ARGUMENT_ERROR;
    289     construct(status,parseErr, &pattern, symbolsToAdopt);
    290 }
    291 
    292 //------------------------------------------------------------------------------
    293 // Constructs a DecimalFormat instance with the specified number format
    294 // pattern and the number format symbols in the default locale.  The
    295 // created instance owns the clone of the symbols.
    296 
    297 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
    298                              const DecimalFormatSymbols& symbols,
    299                              UErrorCode& status) {
    300     init();
    301     UParseError parseError;
    302     construct(status, parseError, &pattern, new DecimalFormatSymbols(symbols));
    303 }
    304 
    305 //------------------------------------------------------------------------------
    306 // Constructs a DecimalFormat instance with the specified number format
    307 // pattern, the number format symbols, and the number format style.
    308 // The created instance owns the clone of the symbols.
    309 
    310 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
    311                              DecimalFormatSymbols* symbolsToAdopt,
    312                              UNumberFormatStyle style,
    313                              UErrorCode& status) {
    314     init();
    315     fStyle = style;
    316     UParseError parseError;
    317     construct(status, parseError, &pattern, symbolsToAdopt);
    318 }
    319 
    320 //-----------------------------------------------------------------------------
    321 // Common DecimalFormat initialization.
    322 //    Put all fields of an uninitialized object into a known state.
    323 //    Common code, shared by all constructors.
    324 //    Can not fail. Leave the object in good enough shape that the destructor
    325 //    or assignment operator can run successfully.
    326 void
    327 DecimalFormat::init() {
    328     fBoolFlags.clear();
    329     fStyle = UNUM_DECIMAL;
    330     fAffixPatternsForCurrency = NULL;
    331     fCurrencyPluralInfo = NULL;
    332 #if UCONFIG_HAVE_PARSEALLINPUT
    333     fParseAllInput = UNUM_MAYBE;
    334 #endif
    335 
    336     fStaticSets = NULL;
    337     fImpl = NULL;
    338 }
    339 
    340 //------------------------------------------------------------------------------
    341 // Constructs a DecimalFormat instance with the specified number format
    342 // pattern and the number format symbols in the desired locale.  The
    343 // created instance owns the symbols.
    344 
    345 void
    346 DecimalFormat::construct(UErrorCode&            status,
    347                          UParseError&           parseErr,
    348                          const UnicodeString*   pattern,
    349                          DecimalFormatSymbols*  symbolsToAdopt)
    350 {
    351     LocalPointer<DecimalFormatSymbols> adoptedSymbols(symbolsToAdopt);
    352     if (U_FAILURE(status))
    353         return;
    354 
    355     if (adoptedSymbols.isNull())
    356     {
    357         adoptedSymbols.adoptInstead(
    358                 new DecimalFormatSymbols(Locale::getDefault(), status));
    359         if (adoptedSymbols.isNull() && U_SUCCESS(status)) {
    360             status = U_MEMORY_ALLOCATION_ERROR;
    361         }
    362         if (U_FAILURE(status)) {
    363             return;
    364         }
    365     }
    366     fStaticSets = DecimalFormatStaticSets::getStaticSets(status);
    367     if (U_FAILURE(status)) {
    368         return;
    369     }
    370 
    371     UnicodeString str;
    372     // Uses the default locale's number format pattern if there isn't
    373     // one specified.
    374     if (pattern == NULL)
    375     {
    376         UErrorCode nsStatus = U_ZERO_ERROR;
    377         LocalPointer<NumberingSystem> ns(
    378                 NumberingSystem::createInstance(nsStatus));
    379         if (U_FAILURE(nsStatus)) {
    380             status = nsStatus;
    381             return;
    382         }
    383 
    384         int32_t len = 0;
    385         UResourceBundle *top = ures_open(NULL, Locale::getDefault().getName(), &status);
    386 
    387         UResourceBundle *resource = ures_getByKeyWithFallback(top, fgNumberElements, NULL, &status);
    388         resource = ures_getByKeyWithFallback(resource, ns->getName(), resource, &status);
    389         resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
    390         const UChar *resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
    391         if ( status == U_MISSING_RESOURCE_ERROR && uprv_strcmp(fgLatn,ns->getName())) {
    392             status = U_ZERO_ERROR;
    393             resource = ures_getByKeyWithFallback(top, fgNumberElements, resource, &status);
    394             resource = ures_getByKeyWithFallback(resource, fgLatn, resource, &status);
    395             resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
    396             resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
    397         }
    398         str.setTo(TRUE, resStr, len);
    399         pattern = &str;
    400         ures_close(resource);
    401         ures_close(top);
    402     }
    403 
    404     fImpl = new DecimalFormatImpl(this, *pattern, adoptedSymbols.getAlias(), parseErr, status);
    405     if (fImpl) {
    406         adoptedSymbols.orphan();
    407     } else if (U_SUCCESS(status)) {
    408         status = U_MEMORY_ALLOCATION_ERROR;
    409     }
    410     if (U_FAILURE(status)) {
    411         return;
    412     }
    413 
    414     if (U_FAILURE(status))
    415     {
    416         return;
    417     }
    418 
    419     const UnicodeString* patternUsed;
    420     UnicodeString currencyPluralPatternForOther;
    421     // apply pattern
    422     if (fStyle == UNUM_CURRENCY_PLURAL) {
    423         fCurrencyPluralInfo = new CurrencyPluralInfo(fImpl->fSymbols->getLocale(), status);
    424         if (U_FAILURE(status)) {
    425             return;
    426         }
    427 
    428         // the pattern used in format is not fixed until formatting,
    429         // in which, the number is known and
    430         // will be used to pick the right pattern based on plural count.
    431         // Here, set the pattern as the pattern of plural count == "other".
    432         // For most locale, the patterns are probably the same for all
    433         // plural count. If not, the right pattern need to be re-applied
    434         // during format.
    435         fCurrencyPluralInfo->getCurrencyPluralPattern(UNICODE_STRING("other", 5), currencyPluralPatternForOther);
    436         // TODO(refactor): Revisit, we are setting the pattern twice.
    437         fImpl->applyPatternFavorCurrencyPrecision(
    438                 currencyPluralPatternForOther, status);
    439         patternUsed = &currencyPluralPatternForOther;
    440 
    441     } else {
    442         patternUsed = pattern;
    443     }
    444 
    445     if (patternUsed->indexOf(kCurrencySign) != -1) {
    446         // initialize for currency, not only for plural format,
    447         // but also for mix parsing
    448         if (fCurrencyPluralInfo == NULL) {
    449            fCurrencyPluralInfo = new CurrencyPluralInfo(fImpl->fSymbols->getLocale(), status);
    450            if (U_FAILURE(status)) {
    451                return;
    452            }
    453         }
    454         // need it for mix parsing
    455         setupCurrencyAffixPatterns(status);
    456     }
    457 }
    458 
    459 static void
    460 applyPatternWithNoSideEffects(
    461         const UnicodeString& pattern,
    462         UParseError& parseError,
    463         UnicodeString &negPrefix,
    464         UnicodeString &negSuffix,
    465         UnicodeString &posPrefix,
    466         UnicodeString &posSuffix,
    467         UErrorCode& status) {
    468         if (U_FAILURE(status))
    469     {
    470         return;
    471     }
    472     DecimalFormatPatternParser patternParser;
    473     DecimalFormatPattern out;
    474     patternParser.applyPatternWithoutExpandAffix(
    475         pattern,
    476         out,
    477         parseError,
    478         status);
    479     if (U_FAILURE(status)) {
    480       return;
    481     }
    482     negPrefix = out.fNegPrefixPattern;
    483     negSuffix = out.fNegSuffixPattern;
    484     posPrefix = out.fPosPrefixPattern;
    485     posSuffix = out.fPosSuffixPattern;
    486 }
    487 
    488 void
    489 DecimalFormat::setupCurrencyAffixPatterns(UErrorCode& status) {
    490     if (U_FAILURE(status)) {
    491         return;
    492     }
    493     UParseError parseErr;
    494     fAffixPatternsForCurrency = initHashForAffixPattern(status);
    495     if (U_FAILURE(status)) {
    496         return;
    497     }
    498 
    499     NumberingSystem *ns = NumberingSystem::createInstance(fImpl->fSymbols->getLocale(),status);
    500     if (U_FAILURE(status)) {
    501         return;
    502     }
    503 
    504     // Save the default currency patterns of this locale.
    505     // Here, chose onlyApplyPatternWithoutExpandAffix without
    506     // expanding the affix patterns into affixes.
    507     UnicodeString currencyPattern;
    508     UErrorCode error = U_ZERO_ERROR;
    509 
    510     UResourceBundle *resource = ures_open(NULL, fImpl->fSymbols->getLocale().getName(), &error);
    511     UResourceBundle *numElements = ures_getByKeyWithFallback(resource, fgNumberElements, NULL, &error);
    512     resource = ures_getByKeyWithFallback(numElements, ns->getName(), resource, &error);
    513     resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
    514     int32_t patLen = 0;
    515     const UChar *patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat,  &patLen, &error);
    516     if ( error == U_MISSING_RESOURCE_ERROR && uprv_strcmp(ns->getName(),fgLatn)) {
    517         error = U_ZERO_ERROR;
    518         resource = ures_getByKeyWithFallback(numElements, fgLatn, resource, &error);
    519         resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
    520         patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat,  &patLen, &error);
    521     }
    522     ures_close(numElements);
    523     ures_close(resource);
    524     delete ns;
    525 
    526     if (U_SUCCESS(error)) {
    527         UnicodeString negPrefix;
    528         UnicodeString negSuffix;
    529         UnicodeString posPrefix;
    530         UnicodeString posSuffix;
    531         applyPatternWithNoSideEffects(UnicodeString(patResStr, patLen),
    532                                        parseErr,
    533                 negPrefix, negSuffix, posPrefix, posSuffix,  status);
    534         AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
    535                                                     negPrefix,
    536                                                     negSuffix,
    537                                                     posPrefix,
    538                                                     posSuffix,
    539                                                     UCURR_SYMBOL_NAME);
    540         fAffixPatternsForCurrency->put(UNICODE_STRING("default", 7), affixPtn, status);
    541     }
    542 
    543     // save the unique currency plural patterns of this locale.
    544     Hashtable* pluralPtn = fCurrencyPluralInfo->fPluralCountToCurrencyUnitPattern;
    545     const UHashElement* element = NULL;
    546     int32_t pos = UHASH_FIRST;
    547     Hashtable pluralPatternSet;
    548     while ((element = pluralPtn->nextElement(pos)) != NULL) {
    549         const UHashTok valueTok = element->value;
    550         const UnicodeString* value = (UnicodeString*)valueTok.pointer;
    551         const UHashTok keyTok = element->key;
    552         const UnicodeString* key = (UnicodeString*)keyTok.pointer;
    553         if (pluralPatternSet.geti(*value) != 1) {
    554             UnicodeString negPrefix;
    555             UnicodeString negSuffix;
    556             UnicodeString posPrefix;
    557             UnicodeString posSuffix;
    558             pluralPatternSet.puti(*value, 1, status);
    559             applyPatternWithNoSideEffects(
    560                     *value, parseErr,
    561                     negPrefix, negSuffix, posPrefix, posSuffix, status);
    562             AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
    563                                                     negPrefix,
    564                                                     negSuffix,
    565                                                     posPrefix,
    566                                                     posSuffix,
    567                                                     UCURR_LONG_NAME);
    568             fAffixPatternsForCurrency->put(*key, affixPtn, status);
    569         }
    570     }
    571 }
    572 
    573 
    574 //------------------------------------------------------------------------------
    575 
    576 DecimalFormat::~DecimalFormat()
    577 {
    578     deleteHashForAffixPattern();
    579     delete fCurrencyPluralInfo;
    580     delete fImpl;
    581 }
    582 
    583 //------------------------------------------------------------------------------
    584 // copy constructor
    585 
    586 DecimalFormat::DecimalFormat(const DecimalFormat &source) :
    587     NumberFormat(source) {
    588     init();
    589     *this = source;
    590 }
    591 
    592 //------------------------------------------------------------------------------
    593 // assignment operator
    594 
    595 template <class T>
    596 static void _clone_ptr(T** pdest, const T* source) {
    597     delete *pdest;
    598     if (source == NULL) {
    599         *pdest = NULL;
    600     } else {
    601         *pdest = static_cast<T*>(source->clone());
    602     }
    603 }
    604 
    605 DecimalFormat&
    606 DecimalFormat::operator=(const DecimalFormat& rhs)
    607 {
    608     if(this != &rhs) {
    609         UErrorCode status = U_ZERO_ERROR;
    610         NumberFormat::operator=(rhs);
    611         if (fImpl == NULL) {
    612             fImpl = new DecimalFormatImpl(this, *rhs.fImpl, status);
    613         } else {
    614             fImpl->assign(*rhs.fImpl, status);
    615         }
    616         fStaticSets     = DecimalFormatStaticSets::getStaticSets(status);
    617         fStyle = rhs.fStyle;
    618         _clone_ptr(&fCurrencyPluralInfo, rhs.fCurrencyPluralInfo);
    619         deleteHashForAffixPattern();
    620         if (rhs.fAffixPatternsForCurrency) {
    621             UErrorCode status = U_ZERO_ERROR;
    622             fAffixPatternsForCurrency = initHashForAffixPattern(status);
    623             copyHashForAffixPattern(rhs.fAffixPatternsForCurrency,
    624                                     fAffixPatternsForCurrency, status);
    625         }
    626     }
    627 
    628     return *this;
    629 }
    630 
    631 //------------------------------------------------------------------------------
    632 
    633 UBool
    634 DecimalFormat::operator==(const Format& that) const
    635 {
    636     if (this == &that)
    637         return TRUE;
    638 
    639     // NumberFormat::operator== guarantees this cast is safe
    640     const DecimalFormat* other = (DecimalFormat*)&that;
    641 
    642     return (
    643         NumberFormat::operator==(that) &&
    644         fBoolFlags.getAll() == other->fBoolFlags.getAll() &&
    645         *fImpl == *other->fImpl);
    646 
    647 }
    648 
    649 //------------------------------------------------------------------------------
    650 
    651 Format*
    652 DecimalFormat::clone() const
    653 {
    654     return new DecimalFormat(*this);
    655 }
    656 
    657 
    658 FixedDecimal
    659 DecimalFormat::getFixedDecimal(double number, UErrorCode &status) const {
    660     VisibleDigitsWithExponent digits;
    661     initVisibleDigitsWithExponent(number, digits, status);
    662     if (U_FAILURE(status)) {
    663         return FixedDecimal();
    664     }
    665     return FixedDecimal(digits.getMantissa());
    666 }
    667 
    668 VisibleDigitsWithExponent &
    669 DecimalFormat::initVisibleDigitsWithExponent(
    670         double number,
    671         VisibleDigitsWithExponent &digits,
    672         UErrorCode &status) const {
    673     return fImpl->initVisibleDigitsWithExponent(number, digits, status);
    674 }
    675 
    676 FixedDecimal
    677 DecimalFormat::getFixedDecimal(const Formattable &number, UErrorCode &status) const {
    678     VisibleDigitsWithExponent digits;
    679     initVisibleDigitsWithExponent(number, digits, status);
    680     if (U_FAILURE(status)) {
    681         return FixedDecimal();
    682     }
    683     return FixedDecimal(digits.getMantissa());
    684 }
    685 
    686 VisibleDigitsWithExponent &
    687 DecimalFormat::initVisibleDigitsWithExponent(
    688         const Formattable &number,
    689         VisibleDigitsWithExponent &digits,
    690         UErrorCode &status) const {
    691     if (U_FAILURE(status)) {
    692         return digits;
    693     }
    694     if (!number.isNumeric()) {
    695         status = U_ILLEGAL_ARGUMENT_ERROR;
    696         return digits;
    697     }
    698 
    699     DigitList *dl = number.getDigitList();
    700     if (dl != NULL) {
    701         DigitList dlCopy(*dl);
    702         return fImpl->initVisibleDigitsWithExponent(
    703                 dlCopy, digits, status);
    704     }
    705 
    706     Formattable::Type type = number.getType();
    707     if (type == Formattable::kDouble || type == Formattable::kLong) {
    708         return fImpl->initVisibleDigitsWithExponent(
    709                 number.getDouble(status), digits, status);
    710     }
    711     return fImpl->initVisibleDigitsWithExponent(
    712             number.getInt64(), digits, status);
    713 }
    714 
    715 
    716 // Create a fixed decimal from a DigitList.
    717 //    The digit list may be modified.
    718 //    Internal function only.
    719 FixedDecimal
    720 DecimalFormat::getFixedDecimal(DigitList &number, UErrorCode &status) const {
    721     VisibleDigitsWithExponent digits;
    722     initVisibleDigitsWithExponent(number, digits, status);
    723     if (U_FAILURE(status)) {
    724         return FixedDecimal();
    725     }
    726     return FixedDecimal(digits.getMantissa());
    727 }
    728 
    729 VisibleDigitsWithExponent &
    730 DecimalFormat::initVisibleDigitsWithExponent(
    731         DigitList &number,
    732         VisibleDigitsWithExponent &digits,
    733         UErrorCode &status) const {
    734     return fImpl->initVisibleDigitsWithExponent(
    735             number, digits, status);
    736 }
    737 
    738 
    739 //------------------------------------------------------------------------------
    740 
    741 UnicodeString&
    742 DecimalFormat::format(int32_t number,
    743                       UnicodeString& appendTo,
    744                       FieldPosition& fieldPosition) const
    745 {
    746     UErrorCode status = U_ZERO_ERROR;
    747     return fImpl->format(number, appendTo, fieldPosition, status);
    748 }
    749 
    750 UnicodeString&
    751 DecimalFormat::format(int32_t number,
    752                       UnicodeString& appendTo,
    753                       FieldPosition& fieldPosition,
    754                       UErrorCode& status) const
    755 {
    756     return fImpl->format(number, appendTo, fieldPosition, status);
    757 }
    758 
    759 UnicodeString&
    760 DecimalFormat::format(int32_t number,
    761                       UnicodeString& appendTo,
    762                       FieldPositionIterator* posIter,
    763                       UErrorCode& status) const
    764 {
    765     return fImpl->format(number, appendTo, posIter, status);
    766 }
    767 
    768 
    769 //------------------------------------------------------------------------------
    770 
    771 UnicodeString&
    772 DecimalFormat::format(int64_t number,
    773                       UnicodeString& appendTo,
    774                       FieldPosition& fieldPosition) const
    775 {
    776     UErrorCode status = U_ZERO_ERROR; /* ignored */
    777     return fImpl->format(number, appendTo, fieldPosition, status);
    778 }
    779 
    780 UnicodeString&
    781 DecimalFormat::format(int64_t number,
    782                       UnicodeString& appendTo,
    783                       FieldPosition& fieldPosition,
    784                       UErrorCode& status) const
    785 {
    786     return fImpl->format(number, appendTo, fieldPosition, status);
    787 }
    788 
    789 UnicodeString&
    790 DecimalFormat::format(int64_t number,
    791                       UnicodeString& appendTo,
    792                       FieldPositionIterator* posIter,
    793                       UErrorCode& status) const
    794 {
    795     return fImpl->format(number, appendTo, posIter, status);
    796 }
    797 
    798 //------------------------------------------------------------------------------
    799 
    800 UnicodeString&
    801 DecimalFormat::format(  double number,
    802                         UnicodeString& appendTo,
    803                         FieldPosition& fieldPosition) const
    804 {
    805     UErrorCode status = U_ZERO_ERROR; /* ignored */
    806     return fImpl->format(number, appendTo, fieldPosition, status);
    807 }
    808 
    809 UnicodeString&
    810 DecimalFormat::format(  double number,
    811                         UnicodeString& appendTo,
    812                         FieldPosition& fieldPosition,
    813                         UErrorCode& status) const
    814 {
    815     return fImpl->format(number, appendTo, fieldPosition, status);
    816 }
    817 
    818 UnicodeString&
    819 DecimalFormat::format(  double number,
    820                         UnicodeString& appendTo,
    821                         FieldPositionIterator* posIter,
    822                         UErrorCode& status) const
    823 {
    824     return fImpl->format(number, appendTo, posIter, status);
    825 }
    826 
    827 //------------------------------------------------------------------------------
    828 
    829 
    830 UnicodeString&
    831 DecimalFormat::format(const StringPiece &number,
    832                       UnicodeString &toAppendTo,
    833                       FieldPositionIterator *posIter,
    834                       UErrorCode &status) const
    835 {
    836   return fImpl->format(number, toAppendTo, posIter, status);
    837 }
    838 
    839 
    840 UnicodeString&
    841 DecimalFormat::format(const DigitList &number,
    842                       UnicodeString &appendTo,
    843                       FieldPositionIterator *posIter,
    844                       UErrorCode &status) const {
    845     return fImpl->format(number, appendTo, posIter, status);
    846 }
    847 
    848 
    849 UnicodeString&
    850 DecimalFormat::format(const DigitList &number,
    851                      UnicodeString& appendTo,
    852                      FieldPosition& pos,
    853                      UErrorCode &status) const {
    854     return fImpl->format(number, appendTo, pos, status);
    855 }
    856 
    857 UnicodeString&
    858 DecimalFormat::format(const VisibleDigitsWithExponent &number,
    859                       UnicodeString &appendTo,
    860                       FieldPositionIterator *posIter,
    861                       UErrorCode &status) const {
    862     return fImpl->format(number, appendTo, posIter, status);
    863 }
    864 
    865 
    866 UnicodeString&
    867 DecimalFormat::format(const VisibleDigitsWithExponent &number,
    868                      UnicodeString& appendTo,
    869                      FieldPosition& pos,
    870                      UErrorCode &status) const {
    871     return fImpl->format(number, appendTo, pos, status);
    872 }
    873 
    874 DigitList&
    875 DecimalFormat::_round(const DigitList& number, DigitList& adjustedNum, UBool& isNegative, UErrorCode& status) const {
    876     adjustedNum = number;
    877     fImpl->round(adjustedNum, status);
    878     isNegative = !adjustedNum.isPositive();
    879     return adjustedNum;
    880 }
    881 
    882 void
    883 DecimalFormat::parse(const UnicodeString& text,
    884                      Formattable& result,
    885                      ParsePosition& parsePosition) const {
    886     parse(text, result, parsePosition, NULL);
    887 }
    888 
    889 CurrencyAmount* DecimalFormat::parseCurrency(const UnicodeString& text,
    890                                              ParsePosition& pos) const {
    891     Formattable parseResult;
    892     int32_t start = pos.getIndex();
    893     UChar curbuf[4] = {};
    894     parse(text, parseResult, pos, curbuf);
    895     if (pos.getIndex() != start) {
    896         UErrorCode ec = U_ZERO_ERROR;
    897         LocalPointer<CurrencyAmount> currAmt(new CurrencyAmount(parseResult, curbuf, ec), ec);
    898         if (U_FAILURE(ec)) {
    899             pos.setIndex(start); // indicate failure
    900         } else {
    901             return currAmt.orphan();
    902         }
    903     }
    904     return NULL;
    905 }
    906 
    907 /**
    908  * Parses the given text as a number, optionally providing a currency amount.
    909  * @param text the string to parse
    910  * @param result output parameter for the numeric result.
    911  * @param parsePosition input-output position; on input, the
    912  * position within text to match; must have 0 <= pos.getIndex() <
    913  * text.length(); on output, the position after the last matched
    914  * character. If the parse fails, the position in unchanged upon
    915  * output.
    916  * @param currency if non-NULL, it should point to a 4-UChar buffer.
    917  * In this case the text is parsed as a currency format, and the
    918  * ISO 4217 code for the parsed currency is put into the buffer.
    919  * Otherwise the text is parsed as a non-currency format.
    920  */
    921 void DecimalFormat::parse(const UnicodeString& text,
    922                           Formattable& result,
    923                           ParsePosition& parsePosition,
    924                           UChar* currency) const {
    925     int32_t startIdx, backup;
    926     int32_t i = startIdx = backup = parsePosition.getIndex();
    927 
    928     // clear any old contents in the result.  In particular, clears any DigitList
    929     //   that it may be holding.
    930     result.setLong(0);
    931     if (currency != NULL) {
    932         for (int32_t ci=0; ci<4; ci++) {
    933             currency[ci] = 0;
    934         }
    935     }
    936 
    937     // Handle NaN as a special case:
    938     int32_t formatWidth = fImpl->getOldFormatWidth();
    939 
    940     // Skip padding characters, if around prefix
    941     if (formatWidth > 0 && (
    942             fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadBeforePrefix ||
    943             fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadAfterPrefix)) {
    944         i = skipPadding(text, i);
    945     }
    946 
    947     if (isLenient()) {
    948         // skip any leading whitespace
    949         i = backup = skipUWhiteSpace(text, i);
    950     }
    951 
    952     // If the text is composed of the representation of NaN, returns NaN.length
    953     const UnicodeString *nan = &fImpl->getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
    954     int32_t nanLen = (text.compare(i, nan->length(), *nan)
    955                       ? 0 : nan->length());
    956     if (nanLen) {
    957         i += nanLen;
    958         if (formatWidth > 0 && (fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadBeforeSuffix || fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadAfterSuffix)) {
    959             i = skipPadding(text, i);
    960         }
    961         parsePosition.setIndex(i);
    962         result.setDouble(uprv_getNaN());
    963         return;
    964     }
    965 
    966     // NaN parse failed; start over
    967     i = backup;
    968     parsePosition.setIndex(i);
    969 
    970     // status is used to record whether a number is infinite.
    971     UBool status[fgStatusLength];
    972 
    973     DigitList *digits = result.getInternalDigitList(); // get one from the stack buffer
    974     if (digits == NULL) {
    975         return;    // no way to report error from here.
    976     }
    977 
    978     if (fImpl->fMonetary) {
    979         if (!parseForCurrency(text, parsePosition, *digits,
    980                               status, currency)) {
    981           return;
    982         }
    983     } else {
    984         if (!subparse(text,
    985                       &fImpl->fAffixes.fNegativePrefix.getOtherVariant().toString(),
    986                       &fImpl->fAffixes.fNegativeSuffix.getOtherVariant().toString(),
    987                       &fImpl->fAffixes.fPositivePrefix.getOtherVariant().toString(),
    988                       &fImpl->fAffixes.fPositiveSuffix.getOtherVariant().toString(),
    989                       FALSE, UCURR_SYMBOL_NAME,
    990                       parsePosition, *digits, status, currency)) {
    991             debug("!subparse(...) - rewind");
    992             parsePosition.setIndex(startIdx);
    993             return;
    994         }
    995     }
    996 
    997     // Handle infinity
    998     if (status[fgStatusInfinite]) {
    999         double inf = uprv_getInfinity();
   1000         result.setDouble(digits->isPositive() ? inf : -inf);
   1001         // TODO:  set the dl to infinity, and let it fall into the code below.
   1002     }
   1003 
   1004     else {
   1005 
   1006         if (!fImpl->fMultiplier.isZero()) {
   1007             UErrorCode ec = U_ZERO_ERROR;
   1008             digits->div(fImpl->fMultiplier, ec);
   1009         }
   1010 
   1011         if (fImpl->fScale != 0) {
   1012             DigitList ten;
   1013             ten.set((int32_t)10);
   1014             if (fImpl->fScale > 0) {
   1015                 for (int32_t i = fImpl->fScale; i > 0; i--) {
   1016                     UErrorCode ec = U_ZERO_ERROR;
   1017                     digits->div(ten,ec);
   1018                 }
   1019             } else {
   1020                 for (int32_t i = fImpl->fScale; i < 0; i++) {
   1021                     UErrorCode ec = U_ZERO_ERROR;
   1022                     digits->mult(ten,ec);
   1023                 }
   1024             }
   1025         }
   1026 
   1027         // Negative zero special case:
   1028         //    if parsing integerOnly, change to +0, which goes into an int32 in a Formattable.
   1029         //    if not parsing integerOnly, leave as -0, which a double can represent.
   1030         if (digits->isZero() && !digits->isPositive() && isParseIntegerOnly()) {
   1031             digits->setPositive(TRUE);
   1032         }
   1033         result.adoptDigitList(digits);
   1034     }
   1035 }
   1036 
   1037 
   1038 
   1039 UBool
   1040 DecimalFormat::parseForCurrency(const UnicodeString& text,
   1041                                 ParsePosition& parsePosition,
   1042                                 DigitList& digits,
   1043                                 UBool* status,
   1044                                 UChar* currency) const {
   1045     UnicodeString positivePrefix;
   1046     UnicodeString positiveSuffix;
   1047     UnicodeString negativePrefix;
   1048     UnicodeString negativeSuffix;
   1049     fImpl->fPositivePrefixPattern.toString(positivePrefix);
   1050     fImpl->fPositiveSuffixPattern.toString(positiveSuffix);
   1051     fImpl->fNegativePrefixPattern.toString(negativePrefix);
   1052     fImpl->fNegativeSuffixPattern.toString(negativeSuffix);
   1053 
   1054     int origPos = parsePosition.getIndex();
   1055     int maxPosIndex = origPos;
   1056     int maxErrorPos = -1;
   1057     // First, parse against current pattern.
   1058     // Since current pattern could be set by applyPattern(),
   1059     // it could be an arbitrary pattern, and it may not be the one
   1060     // defined in current locale.
   1061     UBool tmpStatus[fgStatusLength];
   1062     ParsePosition tmpPos(origPos);
   1063     DigitList tmpDigitList;
   1064     UBool found;
   1065     if (fStyle == UNUM_CURRENCY_PLURAL) {
   1066         found = subparse(text,
   1067                          &negativePrefix, &negativeSuffix,
   1068                          &positivePrefix, &positiveSuffix,
   1069                          TRUE, UCURR_LONG_NAME,
   1070                          tmpPos, tmpDigitList, tmpStatus, currency);
   1071     } else {
   1072         found = subparse(text,
   1073                          &negativePrefix, &negativeSuffix,
   1074                          &positivePrefix, &positiveSuffix,
   1075                          TRUE, UCURR_SYMBOL_NAME,
   1076                          tmpPos, tmpDigitList, tmpStatus, currency);
   1077     }
   1078     if (found) {
   1079         if (tmpPos.getIndex() > maxPosIndex) {
   1080             maxPosIndex = tmpPos.getIndex();
   1081             for (int32_t i = 0; i < fgStatusLength; ++i) {
   1082                 status[i] = tmpStatus[i];
   1083             }
   1084             digits = tmpDigitList;
   1085         }
   1086     } else {
   1087         maxErrorPos = tmpPos.getErrorIndex();
   1088     }
   1089     // Then, parse against affix patterns.
   1090     // Those are currency patterns and currency plural patterns.
   1091     int32_t pos = UHASH_FIRST;
   1092     const UHashElement* element = NULL;
   1093     while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
   1094         const UHashTok valueTok = element->value;
   1095         const AffixPatternsForCurrency* affixPtn = (AffixPatternsForCurrency*)valueTok.pointer;
   1096         UBool tmpStatus[fgStatusLength];
   1097         ParsePosition tmpPos(origPos);
   1098         DigitList tmpDigitList;
   1099 
   1100 #ifdef FMT_DEBUG
   1101         debug("trying affix for currency..");
   1102         affixPtn->dump();
   1103 #endif
   1104 
   1105         UBool result = subparse(text,
   1106                                 &affixPtn->negPrefixPatternForCurrency,
   1107                                 &affixPtn->negSuffixPatternForCurrency,
   1108                                 &affixPtn->posPrefixPatternForCurrency,
   1109                                 &affixPtn->posSuffixPatternForCurrency,
   1110                                 TRUE, affixPtn->patternType,
   1111                                 tmpPos, tmpDigitList, tmpStatus, currency);
   1112         if (result) {
   1113             found = true;
   1114             if (tmpPos.getIndex() > maxPosIndex) {
   1115                 maxPosIndex = tmpPos.getIndex();
   1116                 for (int32_t i = 0; i < fgStatusLength; ++i) {
   1117                     status[i] = tmpStatus[i];
   1118                 }
   1119                 digits = tmpDigitList;
   1120             }
   1121         } else {
   1122             maxErrorPos = (tmpPos.getErrorIndex() > maxErrorPos) ?
   1123                           tmpPos.getErrorIndex() : maxErrorPos;
   1124         }
   1125     }
   1126     // Finally, parse against simple affix to find the match.
   1127     // For example, in TestMonster suite,
   1128     // if the to-be-parsed text is "-\u00A40,00".
   1129     // complexAffixCompare will not find match,
   1130     // since there is no ISO code matches "\u00A4",
   1131     // and the parse stops at "\u00A4".
   1132     // We will just use simple affix comparison (look for exact match)
   1133     // to pass it.
   1134     //
   1135     // TODO: We should parse against simple affix first when
   1136     // output currency is not requested. After the complex currency
   1137     // parsing implementation was introduced, the default currency
   1138     // instance parsing slowed down because of the new code flow.
   1139     // I filed #10312 - Yoshito
   1140     UBool tmpStatus_2[fgStatusLength];
   1141     ParsePosition tmpPos_2(origPos);
   1142     DigitList tmpDigitList_2;
   1143 
   1144     // Disable complex currency parsing and try it again.
   1145     UBool result = subparse(text,
   1146                             &fImpl->fAffixes.fNegativePrefix.getOtherVariant().toString(),
   1147                             &fImpl->fAffixes.fNegativeSuffix.getOtherVariant().toString(),
   1148                             &fImpl->fAffixes.fPositivePrefix.getOtherVariant().toString(),
   1149                             &fImpl->fAffixes.fPositiveSuffix.getOtherVariant().toString(),
   1150                             FALSE /* disable complex currency parsing */, UCURR_SYMBOL_NAME,
   1151                             tmpPos_2, tmpDigitList_2, tmpStatus_2,
   1152                             currency);
   1153     if (result) {
   1154         if (tmpPos_2.getIndex() > maxPosIndex) {
   1155             maxPosIndex = tmpPos_2.getIndex();
   1156             for (int32_t i = 0; i < fgStatusLength; ++i) {
   1157                 status[i] = tmpStatus_2[i];
   1158             }
   1159             digits = tmpDigitList_2;
   1160         }
   1161         found = true;
   1162     } else {
   1163             maxErrorPos = (tmpPos_2.getErrorIndex() > maxErrorPos) ?
   1164                           tmpPos_2.getErrorIndex() : maxErrorPos;
   1165     }
   1166 
   1167     if (!found) {
   1168         //parsePosition.setIndex(origPos);
   1169         parsePosition.setErrorIndex(maxErrorPos);
   1170     } else {
   1171         parsePosition.setIndex(maxPosIndex);
   1172         parsePosition.setErrorIndex(-1);
   1173     }
   1174     return found;
   1175 }
   1176 
   1177 
   1178 /**
   1179  * Parse the given text into a number.  The text is parsed beginning at
   1180  * parsePosition, until an unparseable character is seen.
   1181  * @param text the string to parse.
   1182  * @param negPrefix negative prefix.
   1183  * @param negSuffix negative suffix.
   1184  * @param posPrefix positive prefix.
   1185  * @param posSuffix positive suffix.
   1186  * @param complexCurrencyParsing whether it is complex currency parsing or not.
   1187  * @param type the currency type to parse against, LONG_NAME only or not.
   1188  * @param parsePosition The position at which to being parsing.  Upon
   1189  * return, the first unparsed character.
   1190  * @param digits the DigitList to set to the parsed value.
   1191  * @param status output param containing boolean status flags indicating
   1192  * whether the value was infinite and whether it was positive.
   1193  * @param currency return value for parsed currency, for generic
   1194  * currency parsing mode, or NULL for normal parsing. In generic
   1195  * currency parsing mode, any currency is parsed, not just the
   1196  * currency that this formatter is set to.
   1197  */
   1198 UBool DecimalFormat::subparse(const UnicodeString& text,
   1199                               const UnicodeString* negPrefix,
   1200                               const UnicodeString* negSuffix,
   1201                               const UnicodeString* posPrefix,
   1202                               const UnicodeString* posSuffix,
   1203                               UBool complexCurrencyParsing,
   1204                               int8_t type,
   1205                               ParsePosition& parsePosition,
   1206                               DigitList& digits, UBool* status,
   1207                               UChar* currency) const
   1208 {
   1209     //  The parsing process builds up the number as char string, in the neutral format that
   1210     //  will be acceptable to the decNumber library, then at the end passes that string
   1211     //  off for conversion to a decNumber.
   1212     UErrorCode err = U_ZERO_ERROR;
   1213     CharString parsedNum;
   1214     digits.setToZero();
   1215 
   1216     int32_t position = parsePosition.getIndex();
   1217     int32_t oldStart = position;
   1218     int32_t textLength = text.length(); // One less pointer to follow
   1219     UBool strictParse = !isLenient();
   1220     UChar32 zero = fImpl->getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
   1221     const UnicodeString *groupingString = &fImpl->getConstSymbol(
   1222             !fImpl->fMonetary ?
   1223             DecimalFormatSymbols::kGroupingSeparatorSymbol : DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
   1224     UChar32 groupingChar = groupingString->char32At(0);
   1225     int32_t groupingStringLength = groupingString->length();
   1226     int32_t groupingCharLength   = U16_LENGTH(groupingChar);
   1227     UBool   groupingUsed = isGroupingUsed();
   1228 #ifdef FMT_DEBUG
   1229     UChar dbgbuf[300];
   1230     UnicodeString s(dbgbuf,0,300);;
   1231     s.append((UnicodeString)"PARSE \"").append(text.tempSubString(position)).append((UnicodeString)"\" " );
   1232 #define DBGAPPD(x) if(x) { s.append(UnicodeString(#x "="));  if(x->isEmpty()) { s.append(UnicodeString("<empty>")); } else { s.append(*x); } s.append(UnicodeString(" ")); } else { s.append(UnicodeString(#x "=NULL ")); }
   1233     DBGAPPD(negPrefix);
   1234     DBGAPPD(negSuffix);
   1235     DBGAPPD(posPrefix);
   1236     DBGAPPD(posSuffix);
   1237     debugout(s);
   1238 #endif
   1239 
   1240     UBool fastParseOk = false; /* TRUE iff fast parse is OK */
   1241     // UBool fastParseHadDecimal = FALSE; /* true if fast parse saw a decimal point. */
   1242     if((fImpl->isParseFastpath()) && !fImpl->fMonetary &&
   1243        text.length()>0 &&
   1244        text.length()<32 &&
   1245        (posPrefix==NULL||posPrefix->isEmpty()) &&
   1246        (posSuffix==NULL||posSuffix->isEmpty()) &&
   1247        //            (negPrefix==NULL||negPrefix->isEmpty()) &&
   1248        //            (negSuffix==NULL||(negSuffix->isEmpty()) ) &&
   1249        TRUE) {  // optimized path
   1250       int j=position;
   1251       int l=text.length();
   1252       int digitCount=0;
   1253       UChar32 ch = text.char32At(j);
   1254       const UnicodeString *decimalString = &fImpl->getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
   1255       UChar32 decimalChar = 0;
   1256       UBool intOnly = FALSE;
   1257       UChar32 lookForGroup = (groupingUsed&&intOnly&&strictParse)?groupingChar:0;
   1258 
   1259       int32_t decimalCount = decimalString->countChar32(0,3);
   1260       if(isParseIntegerOnly()) {
   1261         decimalChar = 0; // not allowed
   1262         intOnly = TRUE; // Don't look for decimals.
   1263       } else if(decimalCount==1) {
   1264         decimalChar = decimalString->char32At(0); // Look for this decimal
   1265       } else if(decimalCount==0) {
   1266         decimalChar=0; // NO decimal set
   1267       } else {
   1268         j=l+1;//Set counter to end of line, so that we break. Unknown decimal situation.
   1269       }
   1270 
   1271 #ifdef FMT_DEBUG
   1272       printf("Preparing to do fastpath parse: decimalChar=U+%04X, groupingChar=U+%04X, first ch=U+%04X intOnly=%c strictParse=%c\n",
   1273         decimalChar, groupingChar, ch,
   1274         (intOnly)?'y':'n',
   1275         (strictParse)?'y':'n');
   1276 #endif
   1277       if(ch==0x002D) { // '-'
   1278         j=l+1;//=break - negative number.
   1279 
   1280         /*
   1281           parsedNum.append('-',err);
   1282           j+=U16_LENGTH(ch);
   1283           if(j<l) ch = text.char32At(j);
   1284         */
   1285       } else {
   1286         parsedNum.append('+',err);
   1287       }
   1288       while(j<l) {
   1289         int32_t digit = ch - zero;
   1290         if(digit >=0 && digit <= 9) {
   1291           parsedNum.append((char)(digit + '0'), err);
   1292           if((digitCount>0) || digit!=0 || j==(l-1)) {
   1293             digitCount++;
   1294           }
   1295         } else if(ch == 0) { // break out
   1296           digitCount=-1;
   1297           break;
   1298         } else if(ch == decimalChar) {
   1299           parsedNum.append((char)('.'), err);
   1300           decimalChar=0; // no more decimals.
   1301           // fastParseHadDecimal=TRUE;
   1302         } else if(ch == lookForGroup) {
   1303           // ignore grouping char. No decimals, so it has to be an ignorable grouping sep
   1304         } else if(intOnly && (lookForGroup!=0) && !u_isdigit(ch)) {
   1305           // parsing integer only and can fall through
   1306         } else {
   1307           digitCount=-1; // fail - fall through to slow parse
   1308           break;
   1309         }
   1310         j+=U16_LENGTH(ch);
   1311         ch = text.char32At(j); // for next
   1312       }
   1313       if(
   1314          ((j==l)||intOnly) // end OR only parsing integer
   1315          && (digitCount>0)) { // and have at least one digit
   1316         fastParseOk=true; // Fast parse OK!
   1317 
   1318 #ifdef SKIP_OPT
   1319         debug("SKIP_OPT");
   1320         /* for testing, try it the slow way. also */
   1321         fastParseOk=false;
   1322         parsedNum.clear();
   1323 #else
   1324         parsePosition.setIndex(position=j);
   1325         status[fgStatusInfinite]=false;
   1326 #endif
   1327       } else {
   1328         // was not OK. reset, retry
   1329 #ifdef FMT_DEBUG
   1330         printf("Fall through: j=%d, l=%d, digitCount=%d\n", j, l, digitCount);
   1331 #endif
   1332         parsedNum.clear();
   1333       }
   1334     } else {
   1335 #ifdef FMT_DEBUG
   1336       printf("Could not fastpath parse. ");
   1337       printf("text.length()=%d ", text.length());
   1338       printf("posPrefix=%p posSuffix=%p ", posPrefix, posSuffix);
   1339 
   1340       printf("\n");
   1341 #endif
   1342     }
   1343 
   1344   UnicodeString formatPattern;
   1345   toPattern(formatPattern);
   1346 
   1347   if(!fastParseOk
   1348 #if UCONFIG_HAVE_PARSEALLINPUT
   1349      && fParseAllInput!=UNUM_YES
   1350 #endif
   1351      )
   1352   {
   1353     int32_t formatWidth = fImpl->getOldFormatWidth();
   1354     // Match padding before prefix
   1355     if (formatWidth > 0 && fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadBeforePrefix) {
   1356         position = skipPadding(text, position);
   1357     }
   1358 
   1359     // Match positive and negative prefixes; prefer longest match.
   1360     int32_t posMatch = compareAffix(text, position, FALSE, TRUE, posPrefix, complexCurrencyParsing, type, currency);
   1361     int32_t negMatch = compareAffix(text, position, TRUE,  TRUE, negPrefix, complexCurrencyParsing, type, currency);
   1362     if (posMatch >= 0 && negMatch >= 0) {
   1363         if (posMatch > negMatch) {
   1364             negMatch = -1;
   1365         } else if (negMatch > posMatch) {
   1366             posMatch = -1;
   1367         }
   1368     }
   1369     if (posMatch >= 0) {
   1370         position += posMatch;
   1371         parsedNum.append('+', err);
   1372     } else if (negMatch >= 0) {
   1373         position += negMatch;
   1374         parsedNum.append('-', err);
   1375     } else if (strictParse){
   1376         parsePosition.setErrorIndex(position);
   1377         return FALSE;
   1378     } else {
   1379         // Temporary set positive. This might be changed after checking suffix
   1380         parsedNum.append('+', err);
   1381     }
   1382 
   1383     // Match padding before prefix
   1384     if (formatWidth > 0 && fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadAfterPrefix) {
   1385         position = skipPadding(text, position);
   1386     }
   1387 
   1388     if (! strictParse) {
   1389         position = skipUWhiteSpace(text, position);
   1390     }
   1391 
   1392     // process digits or Inf, find decimal position
   1393     const UnicodeString *inf = &fImpl->getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
   1394     int32_t infLen = (text.compare(position, inf->length(), *inf)
   1395         ? 0 : inf->length());
   1396     position += infLen; // infLen is non-zero when it does equal to infinity
   1397     status[fgStatusInfinite] = infLen != 0;
   1398 
   1399     if (infLen != 0) {
   1400         parsedNum.append("Infinity", err);
   1401     } else {
   1402         // We now have a string of digits, possibly with grouping symbols,
   1403         // and decimal points.  We want to process these into a DigitList.
   1404         // We don't want to put a bunch of leading zeros into the DigitList
   1405         // though, so we keep track of the location of the decimal point,
   1406         // put only significant digits into the DigitList, and adjust the
   1407         // exponent as needed.
   1408 
   1409 
   1410         UBool strictFail = FALSE; // did we exit with a strict parse failure?
   1411         int32_t lastGroup = -1; // where did we last see a grouping separator?
   1412         int32_t digitStart = position;
   1413         int32_t gs2 = fImpl->fEffGrouping.fGrouping2 == 0 ? fImpl->fEffGrouping.fGrouping : fImpl->fEffGrouping.fGrouping2;
   1414 
   1415         const UnicodeString *decimalString;
   1416         if (fImpl->fMonetary) {
   1417             decimalString = &fImpl->getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
   1418         } else {
   1419             decimalString = &fImpl->getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
   1420         }
   1421         UChar32 decimalChar = decimalString->char32At(0);
   1422         int32_t decimalStringLength = decimalString->length();
   1423         int32_t decimalCharLength   = U16_LENGTH(decimalChar);
   1424 
   1425         UBool sawDecimal = FALSE;
   1426         UChar32 sawDecimalChar = 0xFFFF;
   1427         UBool sawGrouping = FALSE;
   1428         UChar32 sawGroupingChar = 0xFFFF;
   1429         UBool sawDigit = FALSE;
   1430         int32_t backup = -1;
   1431         int32_t digit;
   1432 
   1433         // equivalent grouping and decimal support
   1434         const UnicodeSet *decimalSet = NULL;
   1435         const UnicodeSet *groupingSet = NULL;
   1436 
   1437         if (decimalCharLength == decimalStringLength) {
   1438             decimalSet = DecimalFormatStaticSets::getSimilarDecimals(decimalChar, strictParse);
   1439         }
   1440 
   1441         if (groupingCharLength == groupingStringLength) {
   1442             if (strictParse) {
   1443                 groupingSet = fStaticSets->fStrictDefaultGroupingSeparators;
   1444             } else {
   1445                 groupingSet = fStaticSets->fDefaultGroupingSeparators;
   1446             }
   1447         }
   1448 
   1449         // We need to test groupingChar and decimalChar separately from groupingSet and decimalSet, if the sets are even initialized.
   1450         // If sawDecimal is TRUE, only consider sawDecimalChar and NOT decimalSet
   1451         // If a character matches decimalSet, don't consider it to be a member of the groupingSet.
   1452 
   1453         // We have to track digitCount ourselves, because digits.fCount will
   1454         // pin when the maximum allowable digits is reached.
   1455         int32_t digitCount = 0;
   1456         int32_t integerDigitCount = 0;
   1457 
   1458         for (; position < textLength; )
   1459         {
   1460             UChar32 ch = text.char32At(position);
   1461 
   1462             /* We recognize all digit ranges, not only the Latin digit range
   1463              * '0'..'9'.  We do so by using the Character.digit() method,
   1464              * which converts a valid Unicode digit to the range 0..9.
   1465              *
   1466              * The character 'ch' may be a digit.  If so, place its value
   1467              * from 0 to 9 in 'digit'.  First try using the locale digit,
   1468              * which may or MAY NOT be a standard Unicode digit range.  If
   1469              * this fails, try using the standard Unicode digit ranges by
   1470              * calling Character.digit().  If this also fails, digit will
   1471              * have a value outside the range 0..9.
   1472              */
   1473             digit = ch - zero;
   1474             if (digit < 0 || digit > 9)
   1475             {
   1476                 digit = u_charDigitValue(ch);
   1477             }
   1478 
   1479             // As a last resort, look through the localized digits if the zero digit
   1480             // is not a "standard" Unicode digit.
   1481             if ( (digit < 0 || digit > 9) && u_charDigitValue(zero) != 0) {
   1482                 digit = 0;
   1483                 if ( fImpl->getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kZeroDigitSymbol)).char32At(0) == ch ) {
   1484                     break;
   1485                 }
   1486                 for (digit = 1 ; digit < 10 ; digit++ ) {
   1487                     if ( fImpl->getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kOneDigitSymbol+digit-1)).char32At(0) == ch ) {
   1488                         break;
   1489                     }
   1490                 }
   1491             }
   1492 
   1493             if (digit >= 0 && digit <= 9)
   1494             {
   1495                 if (strictParse && backup != -1) {
   1496                     // comma followed by digit, so group before comma is a
   1497                     // secondary group.  If there was a group separator
   1498                     // before that, the group must == the secondary group
   1499                     // length, else it can be <= the the secondary group
   1500                     // length.
   1501                     if ((lastGroup != -1 && backup - lastGroup - 1 != gs2) ||
   1502                         (lastGroup == -1 && position - digitStart - 1 > gs2)) {
   1503                         strictFail = TRUE;
   1504                         break;
   1505                     }
   1506 
   1507                     lastGroup = backup;
   1508                 }
   1509 
   1510                 // Cancel out backup setting (see grouping handler below)
   1511                 backup = -1;
   1512                 sawDigit = TRUE;
   1513 
   1514                 // Note: this will append leading zeros
   1515                 parsedNum.append((char)(digit + '0'), err);
   1516 
   1517                 // count any digit that's not a leading zero
   1518                 if (digit > 0 || digitCount > 0 || sawDecimal) {
   1519                     digitCount += 1;
   1520 
   1521                     // count any integer digit that's not a leading zero
   1522                     if (! sawDecimal) {
   1523                         integerDigitCount += 1;
   1524                     }
   1525                 }
   1526 
   1527                 position += U16_LENGTH(ch);
   1528             }
   1529             else if (groupingStringLength > 0 &&
   1530                 matchGrouping(groupingChar, sawGrouping, sawGroupingChar, groupingSet,
   1531                             decimalChar, decimalSet,
   1532                             ch) && groupingUsed)
   1533             {
   1534                 if (sawDecimal) {
   1535                     break;
   1536                 }
   1537 
   1538                 if (strictParse) {
   1539                     if ((!sawDigit || backup != -1)) {
   1540                         // leading group, or two group separators in a row
   1541                         strictFail = TRUE;
   1542                         break;
   1543                     }
   1544                 }
   1545 
   1546                 // Ignore grouping characters, if we are using them, but require
   1547                 // that they be followed by a digit.  Otherwise we backup and
   1548                 // reprocess them.
   1549                 backup = position;
   1550                 position += groupingStringLength;
   1551                 sawGrouping=TRUE;
   1552                 // Once we see a grouping character, we only accept that grouping character from then on.
   1553                 sawGroupingChar=ch;
   1554             }
   1555             else if (matchDecimal(decimalChar,sawDecimal,sawDecimalChar, decimalSet, ch))
   1556             {
   1557                 if (strictParse) {
   1558                     if (backup != -1 ||
   1559                         (lastGroup != -1 && position - lastGroup != fImpl->fEffGrouping.fGrouping + 1)) {
   1560                         strictFail = TRUE;
   1561                         break;
   1562                     }
   1563                 }
   1564 
   1565                 // If we're only parsing integers, or if we ALREADY saw the
   1566                 // decimal, then don't parse this one.
   1567                 if (isParseIntegerOnly() || sawDecimal) {
   1568                     break;
   1569                 }
   1570 
   1571                 parsedNum.append('.', err);
   1572                 position += decimalStringLength;
   1573                 sawDecimal = TRUE;
   1574                 // Once we see a decimal character, we only accept that decimal character from then on.
   1575                 sawDecimalChar=ch;
   1576                 // decimalSet is considered to consist of (ch,ch)
   1577             }
   1578             else {
   1579 
   1580                 if(!fBoolFlags.contains(UNUM_PARSE_NO_EXPONENT) || // don't parse if this is set unless..
   1581                    isScientificNotation()) { // .. it's an exponent format - ignore setting and parse anyways
   1582                     const UnicodeString *tmp;
   1583                     tmp = &fImpl->getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
   1584                     // TODO: CASE
   1585                     if (!text.caseCompare(position, tmp->length(), *tmp, U_FOLD_CASE_DEFAULT))    // error code is set below if !sawDigit
   1586                     {
   1587                         // Parse sign, if present
   1588                         int32_t pos = position + tmp->length();
   1589                         char exponentSign = '+';
   1590 
   1591                         if (pos < textLength)
   1592                         {
   1593                             tmp = &fImpl->getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
   1594                             if (!text.compare(pos, tmp->length(), *tmp))
   1595                             {
   1596                                 pos += tmp->length();
   1597                             }
   1598                             else {
   1599                                 tmp = &fImpl->getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
   1600                                 if (!text.compare(pos, tmp->length(), *tmp))
   1601                                 {
   1602                                     exponentSign = '-';
   1603                                     pos += tmp->length();
   1604                                 }
   1605                             }
   1606                         }
   1607 
   1608                         UBool sawExponentDigit = FALSE;
   1609                         while (pos < textLength) {
   1610                             ch = text[(int32_t)pos];
   1611                             digit = ch - zero;
   1612 
   1613                             if (digit < 0 || digit > 9) {
   1614                                 digit = u_charDigitValue(ch);
   1615                             }
   1616                             if (0 <= digit && digit <= 9) {
   1617                                 if (!sawExponentDigit) {
   1618                                     parsedNum.append('E', err);
   1619                                     parsedNum.append(exponentSign, err);
   1620                                     sawExponentDigit = TRUE;
   1621                                 }
   1622                                 ++pos;
   1623                                 parsedNum.append((char)(digit + '0'), err);
   1624                             } else {
   1625                                 break;
   1626                             }
   1627                         }
   1628 
   1629                         if (sawExponentDigit) {
   1630                             position = pos; // Advance past the exponent
   1631                         }
   1632 
   1633                         break; // Whether we fail or succeed, we exit this loop
   1634                     } else {
   1635                         break;
   1636                     }
   1637                 } else { // not parsing exponent
   1638                     break;
   1639               }
   1640             }
   1641         }
   1642 
   1643         // if we didn't see a decimal and it is required, check to see if the pattern had one
   1644         if(!sawDecimal && isDecimalPatternMatchRequired())
   1645         {
   1646             if(formatPattern.indexOf(DecimalFormatSymbols::kDecimalSeparatorSymbol) != 0)
   1647             {
   1648                 parsePosition.setIndex(oldStart);
   1649                 parsePosition.setErrorIndex(position);
   1650                 debug("decimal point match required fail!");
   1651                 return FALSE;
   1652             }
   1653         }
   1654 
   1655         if (backup != -1)
   1656         {
   1657             position = backup;
   1658         }
   1659 
   1660         if (strictParse && !sawDecimal) {
   1661             if (lastGroup != -1 && position - lastGroup != fImpl->fEffGrouping.fGrouping + 1) {
   1662                 strictFail = TRUE;
   1663             }
   1664         }
   1665 
   1666         if (strictFail) {
   1667             // only set with strictParse and a grouping separator error
   1668 
   1669             parsePosition.setIndex(oldStart);
   1670             parsePosition.setErrorIndex(position);
   1671             debug("strictFail!");
   1672             return FALSE;
   1673         }
   1674 
   1675         // If there was no decimal point we have an integer
   1676 
   1677         // If none of the text string was recognized.  For example, parse
   1678         // "x" with pattern "#0.00" (return index and error index both 0)
   1679         // parse "$" with pattern "$#0.00". (return index 0 and error index
   1680         // 1).
   1681         if (!sawDigit && digitCount == 0) {
   1682 #ifdef FMT_DEBUG
   1683             debug("none of text rec");
   1684             printf("position=%d\n",position);
   1685 #endif
   1686             parsePosition.setIndex(oldStart);
   1687             parsePosition.setErrorIndex(oldStart);
   1688             return FALSE;
   1689         }
   1690     }
   1691 
   1692     // Match padding before suffix
   1693     if (formatWidth > 0 && fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadBeforeSuffix) {
   1694         position = skipPadding(text, position);
   1695     }
   1696 
   1697     int32_t posSuffixMatch = -1, negSuffixMatch = -1;
   1698 
   1699     // Match positive and negative suffixes; prefer longest match.
   1700     if (posMatch >= 0 || (!strictParse && negMatch < 0)) {
   1701         posSuffixMatch = compareAffix(text, position, FALSE, FALSE, posSuffix, complexCurrencyParsing, type, currency);
   1702     }
   1703     if (negMatch >= 0) {
   1704         negSuffixMatch = compareAffix(text, position, TRUE, FALSE, negSuffix, complexCurrencyParsing, type, currency);
   1705     }
   1706     if (posSuffixMatch >= 0 && negSuffixMatch >= 0) {
   1707         if (posSuffixMatch > negSuffixMatch) {
   1708             negSuffixMatch = -1;
   1709         } else if (negSuffixMatch > posSuffixMatch) {
   1710             posSuffixMatch = -1;
   1711         }
   1712     }
   1713 
   1714     // Fail if neither or both
   1715     if (strictParse && ((posSuffixMatch >= 0) == (negSuffixMatch >= 0))) {
   1716         parsePosition.setErrorIndex(position);
   1717         debug("neither or both");
   1718         return FALSE;
   1719     }
   1720 
   1721     position += (posSuffixMatch >= 0 ? posSuffixMatch : (negSuffixMatch >= 0 ? negSuffixMatch : 0));
   1722 
   1723     // Match padding before suffix
   1724     if (formatWidth > 0 && fImpl->fAffixes.fPadPosition == DigitAffixesAndPadding::kPadAfterSuffix) {
   1725         position = skipPadding(text, position);
   1726     }
   1727 
   1728     parsePosition.setIndex(position);
   1729 
   1730     parsedNum.data()[0] = (posSuffixMatch >= 0 || (!strictParse && negMatch < 0 && negSuffixMatch < 0)) ? '+' : '-';
   1731 #ifdef FMT_DEBUG
   1732 printf("PP -> %d, SLOW = [%s]!    pp=%d, os=%d, err=%s\n", position, parsedNum.data(), parsePosition.getIndex(),oldStart,u_errorName(err));
   1733 #endif
   1734   } /* end SLOW parse */
   1735   if(parsePosition.getIndex() == oldStart)
   1736     {
   1737 #ifdef FMT_DEBUG
   1738       printf(" PP didnt move, err\n");
   1739 #endif
   1740         parsePosition.setErrorIndex(position);
   1741         return FALSE;
   1742     }
   1743 #if UCONFIG_HAVE_PARSEALLINPUT
   1744   else if (fParseAllInput==UNUM_YES&&parsePosition.getIndex()!=textLength)
   1745     {
   1746 #ifdef FMT_DEBUG
   1747       printf(" PP didnt consume all (UNUM_YES), err\n");
   1748 #endif
   1749         parsePosition.setErrorIndex(position);
   1750         return FALSE;
   1751     }
   1752 #endif
   1753     // uint32_t bits = (fastParseOk?kFastpathOk:0) |
   1754     //   (fastParseHadDecimal?0:kNoDecimal);
   1755     //printf("FPOK=%d, FPHD=%d, bits=%08X\n", fastParseOk, fastParseHadDecimal, bits);
   1756     digits.set(parsedNum.toStringPiece(),
   1757                err,
   1758                0//bits
   1759                );
   1760 
   1761     if (U_FAILURE(err)) {
   1762 #ifdef FMT_DEBUG
   1763       printf(" err setting %s\n", u_errorName(err));
   1764 #endif
   1765         parsePosition.setErrorIndex(position);
   1766         return FALSE;
   1767     }
   1768 
   1769     // check if we missed a required decimal point
   1770     if(fastParseOk && isDecimalPatternMatchRequired())
   1771     {
   1772         if(formatPattern.indexOf(DecimalFormatSymbols::kDecimalSeparatorSymbol) != 0)
   1773         {
   1774             parsePosition.setIndex(oldStart);
   1775             parsePosition.setErrorIndex(position);
   1776             debug("decimal point match required fail!");
   1777             return FALSE;
   1778         }
   1779     }
   1780 
   1781 
   1782     return TRUE;
   1783 }
   1784 
   1785 /**
   1786  * Starting at position, advance past a run of pad characters, if any.
   1787  * Return the index of the first character after position that is not a pad
   1788  * character.  Result is >= position.
   1789  */
   1790 int32_t DecimalFormat::skipPadding(const UnicodeString& text, int32_t position) const {
   1791     int32_t padLen = U16_LENGTH(fImpl->fAffixes.fPadChar);
   1792     while (position < text.length() &&
   1793            text.char32At(position) == fImpl->fAffixes.fPadChar) {
   1794         position += padLen;
   1795     }
   1796     return position;
   1797 }
   1798 
   1799 /**
   1800  * Return the length matched by the given affix, or -1 if none.
   1801  * Runs of white space in the affix, match runs of white space in
   1802  * the input.  Pattern white space and input white space are
   1803  * determined differently; see code.
   1804  * @param text input text
   1805  * @param pos offset into input at which to begin matching
   1806  * @param isNegative
   1807  * @param isPrefix
   1808  * @param affixPat affix pattern used for currency affix comparison.
   1809  * @param complexCurrencyParsing whether it is currency parsing or not
   1810  * @param type the currency type to parse against, LONG_NAME only or not.
   1811  * @param currency return value for parsed currency, for generic
   1812  * currency parsing mode, or null for normal parsing. In generic
   1813  * currency parsing mode, any currency is parsed, not just the
   1814  * currency that this formatter is set to.
   1815  * @return length of input that matches, or -1 if match failure
   1816  */
   1817 int32_t DecimalFormat::compareAffix(const UnicodeString& text,
   1818                                     int32_t pos,
   1819                                     UBool isNegative,
   1820                                     UBool isPrefix,
   1821                                     const UnicodeString* affixPat,
   1822                                     UBool complexCurrencyParsing,
   1823                                     int8_t type,
   1824                                     UChar* currency) const
   1825 {
   1826     const UnicodeString *patternToCompare;
   1827     if (currency != NULL ||
   1828         (fImpl->fMonetary && complexCurrencyParsing)) {
   1829 
   1830         if (affixPat != NULL) {
   1831             return compareComplexAffix(*affixPat, text, pos, type, currency);
   1832         }
   1833     }
   1834 
   1835     if (isNegative) {
   1836         if (isPrefix) {
   1837             patternToCompare = &fImpl->fAffixes.fNegativePrefix.getOtherVariant().toString();
   1838         }
   1839         else {
   1840             patternToCompare = &fImpl->fAffixes.fNegativeSuffix.getOtherVariant().toString();
   1841         }
   1842     }
   1843     else {
   1844         if (isPrefix) {
   1845             patternToCompare = &fImpl->fAffixes.fPositivePrefix.getOtherVariant().toString();
   1846         }
   1847         else {
   1848             patternToCompare = &fImpl->fAffixes.fPositiveSuffix.getOtherVariant().toString();
   1849         }
   1850     }
   1851     return compareSimpleAffix(*patternToCompare, text, pos, isLenient());
   1852 }
   1853 
   1854 UBool DecimalFormat::equalWithSignCompatibility(UChar32 lhs, UChar32 rhs) const {
   1855     if (lhs == rhs) {
   1856         return TRUE;
   1857     }
   1858     U_ASSERT(fStaticSets != NULL); // should already be loaded
   1859     const UnicodeSet *minusSigns = fStaticSets->fMinusSigns;
   1860     const UnicodeSet *plusSigns = fStaticSets->fPlusSigns;
   1861     return (minusSigns->contains(lhs) && minusSigns->contains(rhs)) ||
   1862         (plusSigns->contains(lhs) && plusSigns->contains(rhs));
   1863 }
   1864 
   1865 // check for LRM 0x200E, RLM 0x200F, ALM 0x061C
   1866 #define IS_BIDI_MARK(c) (c==0x200E || c==0x200F || c==0x061C)
   1867 
   1868 #define TRIM_BUFLEN 32
   1869 UnicodeString& DecimalFormat::trimMarksFromAffix(const UnicodeString& affix, UnicodeString& trimmedAffix) {
   1870     UChar trimBuf[TRIM_BUFLEN];
   1871     int32_t affixLen = affix.length();
   1872     int32_t affixPos, trimLen = 0;
   1873 
   1874     for (affixPos = 0; affixPos < affixLen; affixPos++) {
   1875         UChar c = affix.charAt(affixPos);
   1876         if (!IS_BIDI_MARK(c)) {
   1877             if (trimLen < TRIM_BUFLEN) {
   1878                 trimBuf[trimLen++] = c;
   1879             } else {
   1880                 trimLen = 0;
   1881                 break;
   1882             }
   1883         }
   1884     }
   1885     return (trimLen > 0)? trimmedAffix.setTo(trimBuf, trimLen): trimmedAffix.setTo(affix);
   1886 }
   1887 
   1888 /**
   1889  * Return the length matched by the given affix, or -1 if none.
   1890  * Runs of white space in the affix, match runs of white space in
   1891  * the input.  Pattern white space and input white space are
   1892  * determined differently; see code.
   1893  * @param affix pattern string, taken as a literal
   1894  * @param input input text
   1895  * @param pos offset into input at which to begin matching
   1896  * @return length of input that matches, or -1 if match failure
   1897  */
   1898 int32_t DecimalFormat::compareSimpleAffix(const UnicodeString& affix,
   1899                                           const UnicodeString& input,
   1900                                           int32_t pos,
   1901                                           UBool lenient) const {
   1902     int32_t start = pos;
   1903     UnicodeString trimmedAffix;
   1904     // For more efficiency we should keep lazily-created trimmed affixes around in
   1905     // instance variables instead of trimming each time they are used (the next step)
   1906     trimMarksFromAffix(affix, trimmedAffix);
   1907     UChar32 affixChar = trimmedAffix.char32At(0);
   1908     int32_t affixLength = trimmedAffix.length();
   1909     int32_t inputLength = input.length();
   1910     int32_t affixCharLength = U16_LENGTH(affixChar);
   1911     UnicodeSet *affixSet;
   1912     UErrorCode status = U_ZERO_ERROR;
   1913 
   1914     U_ASSERT(fStaticSets != NULL); // should already be loaded
   1915 
   1916     if (U_FAILURE(status)) {
   1917         return -1;
   1918     }
   1919     if (!lenient) {
   1920         affixSet = fStaticSets->fStrictDashEquivalents;
   1921 
   1922         // If the trimmedAffix is exactly one character long and that character
   1923         // is in the dash set and the very next input character is also
   1924         // in the dash set, return a match.
   1925         if (affixCharLength == affixLength && affixSet->contains(affixChar))  {
   1926             UChar32 ic = input.char32At(pos);
   1927             if (affixSet->contains(ic)) {
   1928                 pos += U16_LENGTH(ic);
   1929                 pos = skipBidiMarks(input, pos); // skip any trailing bidi marks
   1930                 return pos - start;
   1931             }
   1932         }
   1933 
   1934         for (int32_t i = 0; i < affixLength; ) {
   1935             UChar32 c = trimmedAffix.char32At(i);
   1936             int32_t len = U16_LENGTH(c);
   1937             if (PatternProps::isWhiteSpace(c)) {
   1938                 // We may have a pattern like: \u200F \u0020
   1939                 //        and input text like: \u200F \u0020
   1940                 // Note that U+200F and U+0020 are Pattern_White_Space but only
   1941                 // U+0020 is UWhiteSpace.  So we have to first do a direct
   1942                 // match of the run of Pattern_White_Space in the pattern,
   1943                 // then match any extra characters.
   1944                 UBool literalMatch = FALSE;
   1945                 while (pos < inputLength) {
   1946                     UChar32 ic = input.char32At(pos);
   1947                     if (ic == c) {
   1948                         literalMatch = TRUE;
   1949                         i += len;
   1950                         pos += len;
   1951                         if (i == affixLength) {
   1952                             break;
   1953                         }
   1954                         c = trimmedAffix.char32At(i);
   1955                         len = U16_LENGTH(c);
   1956                         if (!PatternProps::isWhiteSpace(c)) {
   1957                             break;
   1958                         }
   1959                     } else if (IS_BIDI_MARK(ic)) {
   1960                         pos ++; // just skip over this input text
   1961                     } else {
   1962                         break;
   1963                     }
   1964                 }
   1965 
   1966                 // Advance over run in pattern
   1967                 i = skipPatternWhiteSpace(trimmedAffix, i);
   1968 
   1969                 // Advance over run in input text
   1970                 // Must see at least one white space char in input,
   1971                 // unless we've already matched some characters literally.
   1972                 int32_t s = pos;
   1973                 pos = skipUWhiteSpace(input, pos);
   1974                 if (pos == s && !literalMatch) {
   1975                     return -1;
   1976                 }
   1977 
   1978                 // If we skip UWhiteSpace in the input text, we need to skip it in the pattern.
   1979                 // Otherwise, the previous lines may have skipped over text (such as U+00A0) that
   1980                 // is also in the trimmedAffix.
   1981                 i = skipUWhiteSpace(trimmedAffix, i);
   1982             } else {
   1983                 UBool match = FALSE;
   1984                 while (pos < inputLength) {
   1985                     UChar32 ic = input.char32At(pos);
   1986                     if (!match && ic == c) {
   1987                         i += len;
   1988                         pos += len;
   1989                         match = TRUE;
   1990                     } else if (IS_BIDI_MARK(ic)) {
   1991                         pos++; // just skip over this input text
   1992                     } else {
   1993                         break;
   1994                     }
   1995                 }
   1996                 if (!match) {
   1997                     return -1;
   1998                 }
   1999             }
   2000         }
   2001     } else {
   2002         UBool match = FALSE;
   2003 
   2004         affixSet = fStaticSets->fDashEquivalents;
   2005 
   2006         if (affixCharLength == affixLength && affixSet->contains(affixChar))  {
   2007             pos = skipUWhiteSpaceAndMarks(input, pos);
   2008             UChar32 ic = input.char32At(pos);
   2009 
   2010             if (affixSet->contains(ic)) {
   2011                 pos += U16_LENGTH(ic);
   2012                 pos = skipBidiMarks(input, pos);
   2013                 return pos - start;
   2014             }
   2015         }
   2016 
   2017         for (int32_t i = 0; i < affixLength; )
   2018         {
   2019             //i = skipRuleWhiteSpace(trimmedAffix, i);
   2020             i = skipUWhiteSpace(trimmedAffix, i);
   2021             pos = skipUWhiteSpaceAndMarks(input, pos);
   2022 
   2023             if (i >= affixLength || pos >= inputLength) {
   2024                 break;
   2025             }
   2026 
   2027             UChar32 c = trimmedAffix.char32At(i);
   2028             UChar32 ic = input.char32At(pos);
   2029 
   2030             if (!equalWithSignCompatibility(ic, c)) {
   2031                 return -1;
   2032             }
   2033 
   2034             match = TRUE;
   2035             i += U16_LENGTH(c);
   2036             pos += U16_LENGTH(ic);
   2037             pos = skipBidiMarks(input, pos);
   2038         }
   2039 
   2040         if (affixLength > 0 && ! match) {
   2041             return -1;
   2042         }
   2043     }
   2044     return pos - start;
   2045 }
   2046 
   2047 /**
   2048  * Skip over a run of zero or more Pattern_White_Space characters at
   2049  * pos in text.
   2050  */
   2051 int32_t DecimalFormat::skipPatternWhiteSpace(const UnicodeString& text, int32_t pos) {
   2052     const UChar* s = text.getBuffer();
   2053     return (int32_t)(PatternProps::skipWhiteSpace(s + pos, text.length() - pos) - s);
   2054 }
   2055 
   2056 /**
   2057  * Skip over a run of zero or more isUWhiteSpace() characters at pos
   2058  * in text.
   2059  */
   2060 int32_t DecimalFormat::skipUWhiteSpace(const UnicodeString& text, int32_t pos) {
   2061     while (pos < text.length()) {
   2062         UChar32 c = text.char32At(pos);
   2063         if (!u_isUWhiteSpace(c)) {
   2064             break;
   2065         }
   2066         pos += U16_LENGTH(c);
   2067     }
   2068     return pos;
   2069 }
   2070 
   2071 /**
   2072  * Skip over a run of zero or more isUWhiteSpace() characters or bidi marks at pos
   2073  * in text.
   2074  */
   2075 int32_t DecimalFormat::skipUWhiteSpaceAndMarks(const UnicodeString& text, int32_t pos) {
   2076     while (pos < text.length()) {
   2077         UChar32 c = text.char32At(pos);
   2078         if (!u_isUWhiteSpace(c) && !IS_BIDI_MARK(c)) { // u_isUWhiteSpace doesn't include LRM,RLM,ALM
   2079             break;
   2080         }
   2081         pos += U16_LENGTH(c);
   2082     }
   2083     return pos;
   2084 }
   2085 
   2086 /**
   2087  * Skip over a run of zero or more bidi marks at pos in text.
   2088  */
   2089 int32_t DecimalFormat::skipBidiMarks(const UnicodeString& text, int32_t pos) {
   2090     while (pos < text.length()) {
   2091         UChar c = text.charAt(pos);
   2092         if (!IS_BIDI_MARK(c)) {
   2093             break;
   2094         }
   2095         pos++;
   2096     }
   2097     return pos;
   2098 }
   2099 
   2100 /**
   2101  * Return the length matched by the given affix, or -1 if none.
   2102  * @param affixPat pattern string
   2103  * @param input input text
   2104  * @param pos offset into input at which to begin matching
   2105  * @param type the currency type to parse against, LONG_NAME only or not.
   2106  * @param currency return value for parsed currency, for generic
   2107  * currency parsing mode, or null for normal parsing. In generic
   2108  * currency parsing mode, any currency is parsed, not just the
   2109  * currency that this formatter is set to.
   2110  * @return length of input that matches, or -1 if match failure
   2111  */
   2112 int32_t DecimalFormat::compareComplexAffix(const UnicodeString& affixPat,
   2113                                            const UnicodeString& text,
   2114                                            int32_t pos,
   2115                                            int8_t type,
   2116                                            UChar* currency) const
   2117 {
   2118     int32_t start = pos;
   2119     U_ASSERT(currency != NULL || fImpl->fMonetary);
   2120 
   2121     for (int32_t i=0;
   2122          i<affixPat.length() && pos >= 0; ) {
   2123         UChar32 c = affixPat.char32At(i);
   2124         i += U16_LENGTH(c);
   2125 
   2126         if (c == kQuote) {
   2127             U_ASSERT(i <= affixPat.length());
   2128             c = affixPat.char32At(i);
   2129             i += U16_LENGTH(c);
   2130 
   2131             const UnicodeString* affix = NULL;
   2132 
   2133             switch (c) {
   2134             case kCurrencySign: {
   2135                 // since the currency names in choice format is saved
   2136                 // the same way as other currency names,
   2137                 // do not need to do currency choice parsing here.
   2138                 // the general currency parsing parse against all names,
   2139                 // including names in choice format.
   2140                 UBool intl = i<affixPat.length() &&
   2141                     affixPat.char32At(i) == kCurrencySign;
   2142                 if (intl) {
   2143                     ++i;
   2144                 }
   2145                 UBool plural = i<affixPat.length() &&
   2146                     affixPat.char32At(i) == kCurrencySign;
   2147                 if (plural) {
   2148                     ++i;
   2149                     intl = FALSE;
   2150                 }
   2151                 // Parse generic currency -- anything for which we
   2152                 // have a display name, or any 3-letter ISO code.
   2153                 // Try to parse display name for our locale; first
   2154                 // determine our locale.
   2155                 const char* loc = fCurrencyPluralInfo->getLocale().getName();
   2156                 ParsePosition ppos(pos);
   2157                 UChar curr[4];
   2158                 UErrorCode ec = U_ZERO_ERROR;
   2159                 // Delegate parse of display name => ISO code to Currency
   2160                 uprv_parseCurrency(loc, text, ppos, type, curr, ec);
   2161 
   2162                 // If parse succeeds, populate currency[0]
   2163                 if (U_SUCCESS(ec) && ppos.getIndex() != pos) {
   2164                     if (currency) {
   2165                         u_strcpy(currency, curr);
   2166                     } else {
   2167                         // The formatter is currency-style but the client has not requested
   2168                         // the value of the parsed currency. In this case, if that value does
   2169                         // not match the formatter's current value, then the parse fails.
   2170                         UChar effectiveCurr[4];
   2171                         getEffectiveCurrency(effectiveCurr, ec);
   2172                         if ( U_FAILURE(ec) || u_strncmp(curr,effectiveCurr,4) != 0 ) {
   2173                             pos = -1;
   2174                             continue;
   2175                         }
   2176                     }
   2177                     pos = ppos.getIndex();
   2178                 } else if (!isLenient()){
   2179                     pos = -1;
   2180                 }
   2181                 continue;
   2182             }
   2183             case kPatternPercent:
   2184                 affix = &fImpl->getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
   2185                 break;
   2186             case kPatternPerMill:
   2187                 affix = &fImpl->getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
   2188                 break;
   2189             case kPatternPlus:
   2190                 affix = &fImpl->getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
   2191                 break;
   2192             case kPatternMinus:
   2193                 affix = &fImpl->getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
   2194                 break;
   2195             default:
   2196                 // fall through to affix!=0 test, which will fail
   2197                 break;
   2198             }
   2199 
   2200             if (affix != NULL) {
   2201                 pos = match(text, pos, *affix);
   2202                 continue;
   2203             }
   2204         }
   2205 
   2206         pos = match(text, pos, c);
   2207         if (PatternProps::isWhiteSpace(c)) {
   2208             i = skipPatternWhiteSpace(affixPat, i);
   2209         }
   2210     }
   2211     return pos - start;
   2212 }
   2213 
   2214 /**
   2215  * Match a single character at text[pos] and return the index of the
   2216  * next character upon success.  Return -1 on failure.  If
   2217  * ch is a Pattern_White_Space then match a run of white space in text.
   2218  */
   2219 int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, UChar32 ch) {
   2220     if (PatternProps::isWhiteSpace(ch)) {
   2221         // Advance over run of white space in input text
   2222         // Must see at least one white space char in input
   2223         int32_t s = pos;
   2224         pos = skipPatternWhiteSpace(text, pos);
   2225         if (pos == s) {
   2226             return -1;
   2227         }
   2228         return pos;
   2229     }
   2230     return (pos >= 0 && text.char32At(pos) == ch) ?
   2231         (pos + U16_LENGTH(ch)) : -1;
   2232 }
   2233 
   2234 /**
   2235  * Match a string at text[pos] and return the index of the next
   2236  * character upon success.  Return -1 on failure.  Match a run of
   2237  * white space in str with a run of white space in text.
   2238  */
   2239 int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, const UnicodeString& str) {
   2240     for (int32_t i=0; i<str.length() && pos >= 0; ) {
   2241         UChar32 ch = str.char32At(i);
   2242         i += U16_LENGTH(ch);
   2243         if (PatternProps::isWhiteSpace(ch)) {
   2244             i = skipPatternWhiteSpace(str, i);
   2245         }
   2246         pos = match(text, pos, ch);
   2247     }
   2248     return pos;
   2249 }
   2250 
   2251 UBool DecimalFormat::matchSymbol(const UnicodeString &text, int32_t position, int32_t length, const UnicodeString &symbol,
   2252                          UnicodeSet *sset, UChar32 schar)
   2253 {
   2254     if (sset != NULL) {
   2255         return sset->contains(schar);
   2256     }
   2257 
   2258     return text.compare(position, length, symbol) == 0;
   2259 }
   2260 
   2261 UBool DecimalFormat::matchDecimal(UChar32 symbolChar,
   2262                             UBool sawDecimal,  UChar32 sawDecimalChar,
   2263                              const UnicodeSet *sset, UChar32 schar) {
   2264    if(sawDecimal) {
   2265        return schar==sawDecimalChar;
   2266    } else if(schar==symbolChar) {
   2267        return TRUE;
   2268    } else if(sset!=NULL) {
   2269         return sset->contains(schar);
   2270    } else {
   2271        return FALSE;
   2272    }
   2273 }
   2274 
   2275 UBool DecimalFormat::matchGrouping(UChar32 groupingChar,
   2276                             UBool sawGrouping, UChar32 sawGroupingChar,
   2277                              const UnicodeSet *sset,
   2278                              UChar32 /*decimalChar*/, const UnicodeSet *decimalSet,
   2279                              UChar32 schar) {
   2280     if(sawGrouping) {
   2281         return schar==sawGroupingChar;  // previously found
   2282     } else if(schar==groupingChar) {
   2283         return TRUE; // char from symbols
   2284     } else if(sset!=NULL) {
   2285         return sset->contains(schar) &&  // in groupingSet but...
   2286            ((decimalSet==NULL) || !decimalSet->contains(schar)); // Exclude decimalSet from groupingSet
   2287     } else {
   2288         return FALSE;
   2289     }
   2290 }
   2291 
   2292 
   2293 
   2294 //------------------------------------------------------------------------------
   2295 // Gets the pointer to the localized decimal format symbols
   2296 
   2297 const DecimalFormatSymbols*
   2298 DecimalFormat::getDecimalFormatSymbols() const
   2299 {
   2300     return &fImpl->getDecimalFormatSymbols();
   2301 }
   2302 
   2303 //------------------------------------------------------------------------------
   2304 // De-owning the current localized symbols and adopt the new symbols.
   2305 
   2306 void
   2307 DecimalFormat::adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt)
   2308 {
   2309     if (symbolsToAdopt == NULL) {
   2310         return; // do not allow caller to set fSymbols to NULL
   2311     }
   2312     fImpl->adoptDecimalFormatSymbols(symbolsToAdopt);
   2313 }
   2314 //------------------------------------------------------------------------------
   2315 // Setting the symbols is equlivalent to adopting a newly created localized
   2316 // symbols.
   2317 
   2318 void
   2319 DecimalFormat::setDecimalFormatSymbols(const DecimalFormatSymbols& symbols)
   2320 {
   2321     adoptDecimalFormatSymbols(new DecimalFormatSymbols(symbols));
   2322 }
   2323 
   2324 
   2325 const CurrencyPluralInfo*
   2326 DecimalFormat::getCurrencyPluralInfo(void) const
   2327 {
   2328     return fCurrencyPluralInfo;
   2329 }
   2330 
   2331 
   2332 void
   2333 DecimalFormat::adoptCurrencyPluralInfo(CurrencyPluralInfo* toAdopt)
   2334 {
   2335     if (toAdopt != NULL) {
   2336         delete fCurrencyPluralInfo;
   2337         fCurrencyPluralInfo = toAdopt;
   2338         // re-set currency affix patterns and currency affixes.
   2339         if (fImpl->fMonetary) {
   2340             UErrorCode status = U_ZERO_ERROR;
   2341             if (fAffixPatternsForCurrency) {
   2342                 deleteHashForAffixPattern();
   2343             }
   2344             setupCurrencyAffixPatterns(status);
   2345         }
   2346     }
   2347 }
   2348 
   2349 void
   2350 DecimalFormat::setCurrencyPluralInfo(const CurrencyPluralInfo& info)
   2351 {
   2352     adoptCurrencyPluralInfo(info.clone());
   2353 }
   2354 
   2355 
   2356 //------------------------------------------------------------------------------
   2357 // Gets the positive prefix of the number pattern.
   2358 
   2359 UnicodeString&
   2360 DecimalFormat::getPositivePrefix(UnicodeString& result) const
   2361 {
   2362     return fImpl->getPositivePrefix(result);
   2363 }
   2364 
   2365 //------------------------------------------------------------------------------
   2366 // Sets the positive prefix of the number pattern.
   2367 
   2368 void
   2369 DecimalFormat::setPositivePrefix(const UnicodeString& newValue)
   2370 {
   2371     fImpl->setPositivePrefix(newValue);
   2372 }
   2373 
   2374 //------------------------------------------------------------------------------
   2375 // Gets the negative prefix  of the number pattern.
   2376 
   2377 UnicodeString&
   2378 DecimalFormat::getNegativePrefix(UnicodeString& result) const
   2379 {
   2380     return fImpl->getNegativePrefix(result);
   2381 }
   2382 
   2383 //------------------------------------------------------------------------------
   2384 // Gets the negative prefix  of the number pattern.
   2385 
   2386 void
   2387 DecimalFormat::setNegativePrefix(const UnicodeString& newValue)
   2388 {
   2389     fImpl->setNegativePrefix(newValue);
   2390 }
   2391 
   2392 //------------------------------------------------------------------------------
   2393 // Gets the positive suffix of the number pattern.
   2394 
   2395 UnicodeString&
   2396 DecimalFormat::getPositiveSuffix(UnicodeString& result) const
   2397 {
   2398     return fImpl->getPositiveSuffix(result);
   2399 }
   2400 
   2401 //------------------------------------------------------------------------------
   2402 // Sets the positive suffix of the number pattern.
   2403 
   2404 void
   2405 DecimalFormat::setPositiveSuffix(const UnicodeString& newValue)
   2406 {
   2407     fImpl->setPositiveSuffix(newValue);
   2408 }
   2409 
   2410 //------------------------------------------------------------------------------
   2411 // Gets the negative suffix of the number pattern.
   2412 
   2413 UnicodeString&
   2414 DecimalFormat::getNegativeSuffix(UnicodeString& result) const
   2415 {
   2416     return fImpl->getNegativeSuffix(result);
   2417 }
   2418 
   2419 //------------------------------------------------------------------------------
   2420 // Sets the negative suffix of the number pattern.
   2421 
   2422 void
   2423 DecimalFormat::setNegativeSuffix(const UnicodeString& newValue)
   2424 {
   2425     fImpl->setNegativeSuffix(newValue);
   2426 }
   2427 
   2428 //------------------------------------------------------------------------------
   2429 // Gets the multiplier of the number pattern.
   2430 //   Multipliers are stored as decimal numbers (DigitLists) because that
   2431 //      is the most convenient for muliplying or dividing the numbers to be formatted.
   2432 //   A NULL multiplier implies one, and the scaling operations are skipped.
   2433 
   2434 int32_t
   2435 DecimalFormat::getMultiplier() const
   2436 {
   2437     return fImpl->getMultiplier();
   2438 }
   2439 
   2440 //------------------------------------------------------------------------------
   2441 // Sets the multiplier of the number pattern.
   2442 void
   2443 DecimalFormat::setMultiplier(int32_t newValue)
   2444 {
   2445     fImpl->setMultiplier(newValue);
   2446 }
   2447 
   2448 /**
   2449  * Get the rounding increment.
   2450  * @return A positive rounding increment, or 0.0 if rounding
   2451  * is not in effect.
   2452  * @see #setRoundingIncrement
   2453  * @see #getRoundingMode
   2454  * @see #setRoundingMode
   2455  */
   2456 double DecimalFormat::getRoundingIncrement() const {
   2457     return fImpl->getRoundingIncrement();
   2458 }
   2459 
   2460 /**
   2461  * Set the rounding increment.  This method also controls whether
   2462  * rounding is enabled.
   2463  * @param newValue A positive rounding increment, or 0.0 to disable rounding.
   2464  * Negative increments are equivalent to 0.0.
   2465  * @see #getRoundingIncrement
   2466  * @see #getRoundingMode
   2467  * @see #setRoundingMode
   2468  */
   2469 void DecimalFormat::setRoundingIncrement(double newValue) {
   2470     fImpl->setRoundingIncrement(newValue);
   2471 }
   2472 
   2473 /**
   2474  * Get the rounding mode.
   2475  * @return A rounding mode
   2476  * @see #setRoundingIncrement
   2477  * @see #getRoundingIncrement
   2478  * @see #setRoundingMode
   2479  */
   2480 DecimalFormat::ERoundingMode DecimalFormat::getRoundingMode() const {
   2481     return fImpl->getRoundingMode();
   2482 }
   2483 
   2484 /**
   2485  * Set the rounding mode.  This has no effect unless the rounding
   2486  * increment is greater than zero.
   2487  * @param roundingMode A rounding mode
   2488  * @see #setRoundingIncrement
   2489  * @see #getRoundingIncrement
   2490  * @see #getRoundingMode
   2491  */
   2492 void DecimalFormat::setRoundingMode(ERoundingMode roundingMode) {
   2493     fImpl->setRoundingMode(roundingMode);
   2494 }
   2495 
   2496 /**
   2497  * Get the width to which the output of <code>format()</code> is padded.
   2498  * @return the format width, or zero if no padding is in effect
   2499  * @see #setFormatWidth
   2500  * @see #getPadCharacter
   2501  * @see #setPadCharacter
   2502  * @see #getPadPosition
   2503  * @see #setPadPosition
   2504  */
   2505 int32_t DecimalFormat::getFormatWidth() const {
   2506     return fImpl->getFormatWidth();
   2507 }
   2508 
   2509 /**
   2510  * Set the width to which the output of <code>format()</code> is padded.
   2511  * This method also controls whether padding is enabled.
   2512  * @param width the width to which to pad the result of
   2513  * <code>format()</code>, or zero to disable padding.  A negative
   2514  * width is equivalent to 0.
   2515  * @see #getFormatWidth
   2516  * @see #getPadCharacter
   2517  * @see #setPadCharacter
   2518  * @see #getPadPosition
   2519  * @see #setPadPosition
   2520  */
   2521 void DecimalFormat::setFormatWidth(int32_t width) {
   2522     int32_t formatWidth = (width > 0) ? width : 0;
   2523     fImpl->setFormatWidth(formatWidth);
   2524 }
   2525 
   2526 UnicodeString DecimalFormat::getPadCharacterString() const {
   2527     return UnicodeString(fImpl->getPadCharacter());
   2528 }
   2529 
   2530 void DecimalFormat::setPadCharacter(const UnicodeString &padChar) {
   2531     UChar pad;
   2532     if (padChar.length() > 0) {
   2533         pad = padChar.char32At(0);
   2534     }
   2535     else {
   2536         pad = kDefaultPad;
   2537     }
   2538     fImpl->setPadCharacter(pad);
   2539 }
   2540 
   2541 static DecimalFormat::EPadPosition fromPadPosition(DigitAffixesAndPadding::EPadPosition padPos) {
   2542     switch (padPos) {
   2543     case DigitAffixesAndPadding::kPadBeforePrefix:
   2544         return DecimalFormat::kPadBeforePrefix;
   2545     case DigitAffixesAndPadding::kPadAfterPrefix:
   2546         return DecimalFormat::kPadAfterPrefix;
   2547     case DigitAffixesAndPadding::kPadBeforeSuffix:
   2548         return DecimalFormat::kPadBeforeSuffix;
   2549     case DigitAffixesAndPadding::kPadAfterSuffix:
   2550         return DecimalFormat::kPadAfterSuffix;
   2551     default:
   2552         U_ASSERT(FALSE);
   2553         break;
   2554     }
   2555     return DecimalFormat::kPadBeforePrefix;
   2556 }
   2557 
   2558 /**
   2559  * Get the position at which padding will take place.  This is the location
   2560  * at which padding will be inserted if the result of <code>format()</code>
   2561  * is shorter than the format width.
   2562  * @return the pad position, one of <code>kPadBeforePrefix</code>,
   2563  * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
   2564  * <code>kPadAfterSuffix</code>.
   2565  * @see #setFormatWidth
   2566  * @see #getFormatWidth
   2567  * @see #setPadCharacter
   2568  * @see #getPadCharacter
   2569  * @see #setPadPosition
   2570  * @see #kPadBeforePrefix
   2571  * @see #kPadAfterPrefix
   2572  * @see #kPadBeforeSuffix
   2573  * @see #kPadAfterSuffix
   2574  */
   2575 DecimalFormat::EPadPosition DecimalFormat::getPadPosition() const {
   2576     return fromPadPosition(fImpl->getPadPosition());
   2577 }
   2578 
   2579 static DigitAffixesAndPadding::EPadPosition toPadPosition(DecimalFormat::EPadPosition padPos) {
   2580     switch (padPos) {
   2581     case DecimalFormat::kPadBeforePrefix:
   2582         return DigitAffixesAndPadding::kPadBeforePrefix;
   2583     case DecimalFormat::kPadAfterPrefix:
   2584         return DigitAffixesAndPadding::kPadAfterPrefix;
   2585     case DecimalFormat::kPadBeforeSuffix:
   2586         return DigitAffixesAndPadding::kPadBeforeSuffix;
   2587     case DecimalFormat::kPadAfterSuffix:
   2588         return DigitAffixesAndPadding::kPadAfterSuffix;
   2589     default:
   2590         U_ASSERT(FALSE);
   2591         break;
   2592     }
   2593     return DigitAffixesAndPadding::kPadBeforePrefix;
   2594 }
   2595 
   2596 /**
   2597  * <strong><font face=helvetica color=red>NEW</font></strong>
   2598  * Set the position at which padding will take place.  This is the location
   2599  * at which padding will be inserted if the result of <code>format()</code>
   2600  * is shorter than the format width.  This has no effect unless padding is
   2601  * enabled.
   2602  * @param padPos the pad position, one of <code>kPadBeforePrefix</code>,
   2603  * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
   2604  * <code>kPadAfterSuffix</code>.
   2605  * @see #setFormatWidth
   2606  * @see #getFormatWidth
   2607  * @see #setPadCharacter
   2608  * @see #getPadCharacter
   2609  * @see #getPadPosition
   2610  * @see #kPadBeforePrefix
   2611  * @see #kPadAfterPrefix
   2612  * @see #kPadBeforeSuffix
   2613  * @see #kPadAfterSuffix
   2614  */
   2615 void DecimalFormat::setPadPosition(EPadPosition padPos) {
   2616     fImpl->setPadPosition(toPadPosition(padPos));
   2617 }
   2618 
   2619 /**
   2620  * Return whether or not scientific notation is used.
   2621  * @return TRUE if this object formats and parses scientific notation
   2622  * @see #setScientificNotation
   2623  * @see #getMinimumExponentDigits
   2624  * @see #setMinimumExponentDigits
   2625  * @see #isExponentSignAlwaysShown
   2626  * @see #setExponentSignAlwaysShown
   2627  */
   2628 UBool DecimalFormat::isScientificNotation() const {
   2629     return fImpl->isScientificNotation();
   2630 }
   2631 
   2632 /**
   2633  * Set whether or not scientific notation is used.
   2634  * @param useScientific TRUE if this object formats and parses scientific
   2635  * notation
   2636  * @see #isScientificNotation
   2637  * @see #getMinimumExponentDigits
   2638  * @see #setMinimumExponentDigits
   2639  * @see #isExponentSignAlwaysShown
   2640  * @see #setExponentSignAlwaysShown
   2641  */
   2642 void DecimalFormat::setScientificNotation(UBool useScientific) {
   2643     fImpl->setScientificNotation(useScientific);
   2644 }
   2645 
   2646 /**
   2647  * Return the minimum exponent digits that will be shown.
   2648  * @return the minimum exponent digits that will be shown
   2649  * @see #setScientificNotation
   2650  * @see #isScientificNotation
   2651  * @see #setMinimumExponentDigits
   2652  * @see #isExponentSignAlwaysShown
   2653  * @see #setExponentSignAlwaysShown
   2654  */
   2655 int8_t DecimalFormat::getMinimumExponentDigits() const {
   2656     return fImpl->getMinimumExponentDigits();
   2657 }
   2658 
   2659 /**
   2660  * Set the minimum exponent digits that will be shown.  This has no
   2661  * effect unless scientific notation is in use.
   2662  * @param minExpDig a value >= 1 indicating the fewest exponent digits
   2663  * that will be shown.  Values less than 1 will be treated as 1.
   2664  * @see #setScientificNotation
   2665  * @see #isScientificNotation
   2666  * @see #getMinimumExponentDigits
   2667  * @see #isExponentSignAlwaysShown
   2668  * @see #setExponentSignAlwaysShown
   2669  */
   2670 void DecimalFormat::setMinimumExponentDigits(int8_t minExpDig) {
   2671     int32_t minExponentDigits = (int8_t)((minExpDig > 0) ? minExpDig : 1);
   2672     fImpl->setMinimumExponentDigits(minExponentDigits);
   2673 }
   2674 
   2675 /**
   2676  * Return whether the exponent sign is always shown.
   2677  * @return TRUE if the exponent is always prefixed with either the
   2678  * localized minus sign or the localized plus sign, false if only negative
   2679  * exponents are prefixed with the localized minus sign.
   2680  * @see #setScientificNotation
   2681  * @see #isScientificNotation
   2682  * @see #setMinimumExponentDigits
   2683  * @see #getMinimumExponentDigits
   2684  * @see #setExponentSignAlwaysShown
   2685  */
   2686 UBool DecimalFormat::isExponentSignAlwaysShown() const {
   2687     return fImpl->isExponentSignAlwaysShown();
   2688 }
   2689 
   2690 /**
   2691  * Set whether the exponent sign is always shown.  This has no effect
   2692  * unless scientific notation is in use.
   2693  * @param expSignAlways TRUE if the exponent is always prefixed with either
   2694  * the localized minus sign or the localized plus sign, false if only
   2695  * negative exponents are prefixed with the localized minus sign.
   2696  * @see #setScientificNotation
   2697  * @see #isScientificNotation
   2698  * @see #setMinimumExponentDigits
   2699  * @see #getMinimumExponentDigits
   2700  * @see #isExponentSignAlwaysShown
   2701  */
   2702 void DecimalFormat::setExponentSignAlwaysShown(UBool expSignAlways) {
   2703     fImpl->setExponentSignAlwaysShown(expSignAlways);
   2704 }
   2705 
   2706 //------------------------------------------------------------------------------
   2707 // Gets the grouping size of the number pattern.  For example, thousand or 10
   2708 // thousand groupings.
   2709 
   2710 int32_t
   2711 DecimalFormat::getGroupingSize() const
   2712 {
   2713     return fImpl->getGroupingSize();
   2714 }
   2715 
   2716 //------------------------------------------------------------------------------
   2717 // Gets the grouping size of the number pattern.
   2718 
   2719 void
   2720 DecimalFormat::setGroupingSize(int32_t newValue)
   2721 {
   2722     fImpl->setGroupingSize(newValue);
   2723 }
   2724 
   2725 //------------------------------------------------------------------------------
   2726 
   2727 int32_t
   2728 DecimalFormat::getSecondaryGroupingSize() const
   2729 {
   2730     return fImpl->getSecondaryGroupingSize();
   2731 }
   2732 
   2733 //------------------------------------------------------------------------------
   2734 
   2735 void
   2736 DecimalFormat::setSecondaryGroupingSize(int32_t newValue)
   2737 {
   2738     fImpl->setSecondaryGroupingSize(newValue);
   2739 }
   2740 
   2741 //------------------------------------------------------------------------------
   2742 
   2743 int32_t
   2744 DecimalFormat::getMinimumGroupingDigits() const
   2745 {
   2746     return fImpl->getMinimumGroupingDigits();
   2747 }
   2748 
   2749 //------------------------------------------------------------------------------
   2750 
   2751 void
   2752 DecimalFormat::setMinimumGroupingDigits(int32_t newValue)
   2753 {
   2754     fImpl->setMinimumGroupingDigits(newValue);
   2755 }
   2756 
   2757 //------------------------------------------------------------------------------
   2758 // Checks if to show the decimal separator.
   2759 
   2760 UBool
   2761 DecimalFormat::isDecimalSeparatorAlwaysShown() const
   2762 {
   2763     return fImpl->isDecimalSeparatorAlwaysShown();
   2764 }
   2765 
   2766 //------------------------------------------------------------------------------
   2767 // Sets to always show the decimal separator.
   2768 
   2769 void
   2770 DecimalFormat::setDecimalSeparatorAlwaysShown(UBool newValue)
   2771 {
   2772     fImpl->setDecimalSeparatorAlwaysShown(newValue);
   2773 }
   2774 
   2775 //------------------------------------------------------------------------------
   2776 // Checks if decimal point pattern match is required
   2777 UBool
   2778 DecimalFormat::isDecimalPatternMatchRequired(void) const
   2779 {
   2780     return fBoolFlags.contains(UNUM_PARSE_DECIMAL_MARK_REQUIRED);
   2781 }
   2782 
   2783 //------------------------------------------------------------------------------
   2784 // Checks if decimal point pattern match is required
   2785 
   2786 void
   2787 DecimalFormat::setDecimalPatternMatchRequired(UBool newValue)
   2788 {
   2789     fBoolFlags.set(UNUM_PARSE_DECIMAL_MARK_REQUIRED, newValue);
   2790 }
   2791 
   2792 
   2793 //------------------------------------------------------------------------------
   2794 // Emits the pattern of this DecimalFormat instance.
   2795 
   2796 UnicodeString&
   2797 DecimalFormat::toPattern(UnicodeString& result) const
   2798 {
   2799     return fImpl->toPattern(result);
   2800 }
   2801 
   2802 //------------------------------------------------------------------------------
   2803 // Emits the localized pattern this DecimalFormat instance.
   2804 
   2805 UnicodeString&
   2806 DecimalFormat::toLocalizedPattern(UnicodeString& result) const
   2807 {
   2808     // toLocalizedPattern is deprecated, so we just make it the same as
   2809     // toPattern.
   2810     return fImpl->toPattern(result);
   2811 }
   2812 
   2813 //------------------------------------------------------------------------------
   2814 
   2815 void
   2816 DecimalFormat::applyPattern(const UnicodeString& pattern, UErrorCode& status)
   2817 {
   2818     fImpl->applyPattern(pattern, status);
   2819 }
   2820 
   2821 //------------------------------------------------------------------------------
   2822 
   2823 void
   2824 DecimalFormat::applyPattern(const UnicodeString& pattern,
   2825                             UParseError& parseError,
   2826                             UErrorCode& status)
   2827 {
   2828     fImpl->applyPattern(pattern, parseError, status);
   2829 }
   2830 //------------------------------------------------------------------------------
   2831 
   2832 void
   2833 DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern, UErrorCode& status)
   2834 {
   2835     fImpl->applyLocalizedPattern(pattern, status);
   2836 }
   2837 
   2838 //------------------------------------------------------------------------------
   2839 
   2840 void
   2841 DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern,
   2842                                      UParseError& parseError,
   2843                                      UErrorCode& status)
   2844 {
   2845     fImpl->applyLocalizedPattern(pattern, parseError, status);
   2846 }
   2847 
   2848 //------------------------------------------------------------------------------
   2849 
   2850 /**
   2851  * Sets the maximum number of digits allowed in the integer portion of a
   2852  * number.
   2853  * @see NumberFormat#setMaximumIntegerDigits
   2854  */
   2855 void DecimalFormat::setMaximumIntegerDigits(int32_t newValue) {
   2856     newValue = _min(newValue, gDefaultMaxIntegerDigits);
   2857     NumberFormat::setMaximumIntegerDigits(newValue);
   2858     fImpl->updatePrecision();
   2859 }
   2860 
   2861 /**
   2862  * Sets the minimum number of digits allowed in the integer portion of a
   2863  * number. This override limits the integer digit count to 309.
   2864  * @see NumberFormat#setMinimumIntegerDigits
   2865  */
   2866 void DecimalFormat::setMinimumIntegerDigits(int32_t newValue) {
   2867     newValue = _min(newValue, kDoubleIntegerDigits);
   2868     NumberFormat::setMinimumIntegerDigits(newValue);
   2869     fImpl->updatePrecision();
   2870 }
   2871 
   2872 /**
   2873  * Sets the maximum number of digits allowed in the fraction portion of a
   2874  * number. This override limits the fraction digit count to 340.
   2875  * @see NumberFormat#setMaximumFractionDigits
   2876  */
   2877 void DecimalFormat::setMaximumFractionDigits(int32_t newValue) {
   2878     newValue = _min(newValue, kDoubleFractionDigits);
   2879     NumberFormat::setMaximumFractionDigits(newValue);
   2880     fImpl->updatePrecision();
   2881 }
   2882 
   2883 /**
   2884  * Sets the minimum number of digits allowed in the fraction portion of a
   2885  * number. This override limits the fraction digit count to 340.
   2886  * @see NumberFormat#setMinimumFractionDigits
   2887  */
   2888 void DecimalFormat::setMinimumFractionDigits(int32_t newValue) {
   2889     newValue = _min(newValue, kDoubleFractionDigits);
   2890     NumberFormat::setMinimumFractionDigits(newValue);
   2891     fImpl->updatePrecision();
   2892 }
   2893 
   2894 int32_t DecimalFormat::getMinimumSignificantDigits() const {
   2895     return fImpl->getMinimumSignificantDigits();
   2896 }
   2897 
   2898 int32_t DecimalFormat::getMaximumSignificantDigits() const {
   2899     return fImpl->getMaximumSignificantDigits();
   2900 }
   2901 
   2902 void DecimalFormat::setMinimumSignificantDigits(int32_t min) {
   2903     if (min < 1) {
   2904         min = 1;
   2905     }
   2906     // pin max sig dig to >= min
   2907     int32_t max = _max(fImpl->fMaxSigDigits, min);
   2908     fImpl->setMinMaxSignificantDigits(min, max);
   2909 }
   2910 
   2911 void DecimalFormat::setMaximumSignificantDigits(int32_t max) {
   2912     if (max < 1) {
   2913         max = 1;
   2914     }
   2915     // pin min sig dig to 1..max
   2916     U_ASSERT(fImpl->fMinSigDigits >= 1);
   2917     int32_t min = _min(fImpl->fMinSigDigits, max);
   2918     fImpl->setMinMaxSignificantDigits(min, max);
   2919 }
   2920 
   2921 UBool DecimalFormat::areSignificantDigitsUsed() const {
   2922     return fImpl->areSignificantDigitsUsed();
   2923 }
   2924 
   2925 void DecimalFormat::setSignificantDigitsUsed(UBool useSignificantDigits) {
   2926     fImpl->setSignificantDigitsUsed(useSignificantDigits);
   2927 }
   2928 
   2929 void DecimalFormat::setCurrency(const UChar* theCurrency, UErrorCode& ec) {
   2930     // set the currency before compute affixes to get the right currency names
   2931     NumberFormat::setCurrency(theCurrency, ec);
   2932     fImpl->updateCurrency(ec);
   2933 }
   2934 
   2935 void DecimalFormat::setCurrencyUsage(UCurrencyUsage newContext, UErrorCode* ec){
   2936     fImpl->setCurrencyUsage(newContext, *ec);
   2937 }
   2938 
   2939 UCurrencyUsage DecimalFormat::getCurrencyUsage() const {
   2940     return fImpl->getCurrencyUsage();
   2941 }
   2942 
   2943 // Deprecated variant with no UErrorCode parameter
   2944 void DecimalFormat::setCurrency(const UChar* theCurrency) {
   2945     UErrorCode ec = U_ZERO_ERROR;
   2946     setCurrency(theCurrency, ec);
   2947 }
   2948 
   2949 void DecimalFormat::getEffectiveCurrency(UChar* result, UErrorCode& ec) const {
   2950     if (fImpl->fSymbols == NULL) {
   2951         ec = U_MEMORY_ALLOCATION_ERROR;
   2952         return;
   2953     }
   2954     ec = U_ZERO_ERROR;
   2955     const UChar* c = getCurrency();
   2956     if (*c == 0) {
   2957         const UnicodeString &intl =
   2958             fImpl->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
   2959         c = intl.getBuffer(); // ok for intl to go out of scope
   2960     }
   2961     u_strncpy(result, c, 3);
   2962     result[3] = 0;
   2963 }
   2964 
   2965 Hashtable*
   2966 DecimalFormat::initHashForAffixPattern(UErrorCode& status) {
   2967     if ( U_FAILURE(status) ) {
   2968         return NULL;
   2969     }
   2970     Hashtable* hTable;
   2971     if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
   2972         status = U_MEMORY_ALLOCATION_ERROR;
   2973         return NULL;
   2974     }
   2975     if ( U_FAILURE(status) ) {
   2976         delete hTable;
   2977         return NULL;
   2978     }
   2979     hTable->setValueComparator(decimfmtAffixPatternValueComparator);
   2980     return hTable;
   2981 }
   2982 
   2983 void
   2984 DecimalFormat::deleteHashForAffixPattern()
   2985 {
   2986     if ( fAffixPatternsForCurrency == NULL ) {
   2987         return;
   2988     }
   2989     int32_t pos = UHASH_FIRST;
   2990     const UHashElement* element = NULL;
   2991     while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
   2992         const UHashTok valueTok = element->value;
   2993         const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
   2994         delete value;
   2995     }
   2996     delete fAffixPatternsForCurrency;
   2997     fAffixPatternsForCurrency = NULL;
   2998 }
   2999 
   3000 
   3001 void
   3002 DecimalFormat::copyHashForAffixPattern(const Hashtable* source,
   3003                                        Hashtable* target,
   3004                                        UErrorCode& status) {
   3005     if ( U_FAILURE(status) ) {
   3006         return;
   3007     }
   3008     int32_t pos = UHASH_FIRST;
   3009     const UHashElement* element = NULL;
   3010     if ( source ) {
   3011         while ( (element = source->nextElement(pos)) != NULL ) {
   3012             const UHashTok keyTok = element->key;
   3013             const UnicodeString* key = (UnicodeString*)keyTok.pointer;
   3014             const UHashTok valueTok = element->value;
   3015             const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
   3016             AffixPatternsForCurrency* copy = new AffixPatternsForCurrency(
   3017                 value->negPrefixPatternForCurrency,
   3018                 value->negSuffixPatternForCurrency,
   3019                 value->posPrefixPatternForCurrency,
   3020                 value->posSuffixPatternForCurrency,
   3021                 value->patternType);
   3022             target->put(UnicodeString(*key), copy, status);
   3023             if ( U_FAILURE(status) ) {
   3024                 return;
   3025             }
   3026         }
   3027     }
   3028 }
   3029 
   3030 void
   3031 DecimalFormat::setGroupingUsed(UBool newValue) {
   3032   NumberFormat::setGroupingUsed(newValue);
   3033   fImpl->updateGrouping();
   3034 }
   3035 
   3036 void
   3037 DecimalFormat::setParseIntegerOnly(UBool newValue) {
   3038   NumberFormat::setParseIntegerOnly(newValue);
   3039 }
   3040 
   3041 void
   3042 DecimalFormat::setContext(UDisplayContext value, UErrorCode& status) {
   3043   NumberFormat::setContext(value, status);
   3044 }
   3045 
   3046 DecimalFormat& DecimalFormat::setAttribute( UNumberFormatAttribute attr,
   3047                                             int32_t newValue,
   3048                                             UErrorCode &status) {
   3049   if(U_FAILURE(status)) return *this;
   3050 
   3051   switch(attr) {
   3052   case UNUM_LENIENT_PARSE:
   3053     setLenient(newValue!=0);
   3054     break;
   3055 
   3056     case UNUM_PARSE_INT_ONLY:
   3057       setParseIntegerOnly(newValue!=0);
   3058       break;
   3059 
   3060     case UNUM_GROUPING_USED:
   3061       setGroupingUsed(newValue!=0);
   3062       break;
   3063 
   3064     case UNUM_DECIMAL_ALWAYS_SHOWN:
   3065       setDecimalSeparatorAlwaysShown(newValue!=0);
   3066         break;
   3067 
   3068     case UNUM_MAX_INTEGER_DIGITS:
   3069       setMaximumIntegerDigits(newValue);
   3070         break;
   3071 
   3072     case UNUM_MIN_INTEGER_DIGITS:
   3073       setMinimumIntegerDigits(newValue);
   3074         break;
   3075 
   3076     case UNUM_INTEGER_DIGITS:
   3077       setMinimumIntegerDigits(newValue);
   3078       setMaximumIntegerDigits(newValue);
   3079         break;
   3080 
   3081     case UNUM_MAX_FRACTION_DIGITS:
   3082       setMaximumFractionDigits(newValue);
   3083         break;
   3084 
   3085     case UNUM_MIN_FRACTION_DIGITS:
   3086       setMinimumFractionDigits(newValue);
   3087         break;
   3088 
   3089     case UNUM_FRACTION_DIGITS:
   3090       setMinimumFractionDigits(newValue);
   3091       setMaximumFractionDigits(newValue);
   3092       break;
   3093 
   3094     case UNUM_SIGNIFICANT_DIGITS_USED:
   3095       setSignificantDigitsUsed(newValue!=0);
   3096         break;
   3097 
   3098     case UNUM_MAX_SIGNIFICANT_DIGITS:
   3099       setMaximumSignificantDigits(newValue);
   3100         break;
   3101 
   3102     case UNUM_MIN_SIGNIFICANT_DIGITS:
   3103       setMinimumSignificantDigits(newValue);
   3104         break;
   3105 
   3106     case UNUM_MULTIPLIER:
   3107       setMultiplier(newValue);
   3108        break;
   3109 
   3110     case UNUM_GROUPING_SIZE:
   3111       setGroupingSize(newValue);
   3112         break;
   3113 
   3114     case UNUM_ROUNDING_MODE:
   3115       setRoundingMode((DecimalFormat::ERoundingMode)newValue);
   3116         break;
   3117 
   3118     case UNUM_FORMAT_WIDTH:
   3119       setFormatWidth(newValue);
   3120         break;
   3121 
   3122     case UNUM_PADDING_POSITION:
   3123         /** The position at which padding will take place. */
   3124       setPadPosition((DecimalFormat::EPadPosition)newValue);
   3125         break;
   3126 
   3127     case UNUM_SECONDARY_GROUPING_SIZE:
   3128       setSecondaryGroupingSize(newValue);
   3129         break;
   3130 
   3131 #if UCONFIG_HAVE_PARSEALLINPUT
   3132     case UNUM_PARSE_ALL_INPUT:
   3133       setParseAllInput((UNumberFormatAttributeValue)newValue);
   3134         break;
   3135 #endif
   3136 
   3137     /* These are stored in fBoolFlags */
   3138     case UNUM_PARSE_NO_EXPONENT:
   3139     case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS:
   3140     case UNUM_PARSE_DECIMAL_MARK_REQUIRED:
   3141       if(!fBoolFlags.isValidValue(newValue)) {
   3142           status = U_ILLEGAL_ARGUMENT_ERROR;
   3143       } else {
   3144           if (attr == UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS) {
   3145               fImpl->setFailIfMoreThanMaxDigits((UBool) newValue);
   3146           }
   3147           fBoolFlags.set(attr, newValue);
   3148       }
   3149       break;
   3150 
   3151     case UNUM_SCALE:
   3152         fImpl->setScale(newValue);
   3153         break;
   3154 
   3155     case UNUM_CURRENCY_USAGE:
   3156         setCurrencyUsage((UCurrencyUsage)newValue, &status);
   3157         break;
   3158 
   3159     case UNUM_MINIMUM_GROUPING_DIGITS:
   3160         setMinimumGroupingDigits(newValue);
   3161         break;
   3162 
   3163     default:
   3164       status = U_UNSUPPORTED_ERROR;
   3165       break;
   3166   }
   3167   return *this;
   3168 }
   3169 
   3170 int32_t DecimalFormat::getAttribute( UNumberFormatAttribute attr,
   3171                                      UErrorCode &status ) const {
   3172   if(U_FAILURE(status)) return -1;
   3173   switch(attr) {
   3174     case UNUM_LENIENT_PARSE:
   3175         return isLenient();
   3176 
   3177     case UNUM_PARSE_INT_ONLY:
   3178         return isParseIntegerOnly();
   3179 
   3180     case UNUM_GROUPING_USED:
   3181         return isGroupingUsed();
   3182 
   3183     case UNUM_DECIMAL_ALWAYS_SHOWN:
   3184         return isDecimalSeparatorAlwaysShown();
   3185 
   3186     case UNUM_MAX_INTEGER_DIGITS:
   3187         return getMaximumIntegerDigits();
   3188 
   3189     case UNUM_MIN_INTEGER_DIGITS:
   3190         return getMinimumIntegerDigits();
   3191 
   3192     case UNUM_INTEGER_DIGITS:
   3193         // TBD: what should this return?
   3194         return getMinimumIntegerDigits();
   3195 
   3196     case UNUM_MAX_FRACTION_DIGITS:
   3197         return getMaximumFractionDigits();
   3198 
   3199     case UNUM_MIN_FRACTION_DIGITS:
   3200         return getMinimumFractionDigits();
   3201 
   3202     case UNUM_FRACTION_DIGITS:
   3203         // TBD: what should this return?
   3204         return getMinimumFractionDigits();
   3205 
   3206     case UNUM_SIGNIFICANT_DIGITS_USED:
   3207         return areSignificantDigitsUsed();
   3208 
   3209     case UNUM_MAX_SIGNIFICANT_DIGITS:
   3210         return getMaximumSignificantDigits();
   3211 
   3212     case UNUM_MIN_SIGNIFICANT_DIGITS:
   3213         return getMinimumSignificantDigits();
   3214 
   3215     case UNUM_MULTIPLIER:
   3216         return getMultiplier();
   3217 
   3218     case UNUM_GROUPING_SIZE:
   3219         return getGroupingSize();
   3220 
   3221     case UNUM_ROUNDING_MODE:
   3222         return getRoundingMode();
   3223 
   3224     case UNUM_FORMAT_WIDTH:
   3225         return getFormatWidth();
   3226 
   3227     case UNUM_PADDING_POSITION:
   3228         return getPadPosition();
   3229 
   3230     case UNUM_SECONDARY_GROUPING_SIZE:
   3231         return getSecondaryGroupingSize();
   3232 
   3233     /* These are stored in fBoolFlags */
   3234     case UNUM_PARSE_NO_EXPONENT:
   3235     case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS:
   3236     case UNUM_PARSE_DECIMAL_MARK_REQUIRED:
   3237       return fBoolFlags.get(attr);
   3238 
   3239     case UNUM_SCALE:
   3240         return fImpl->fScale;
   3241 
   3242     case UNUM_CURRENCY_USAGE:
   3243         return fImpl->getCurrencyUsage();
   3244 
   3245     case UNUM_MINIMUM_GROUPING_DIGITS:
   3246         return getMinimumGroupingDigits();
   3247 
   3248     default:
   3249         status = U_UNSUPPORTED_ERROR;
   3250         break;
   3251   }
   3252 
   3253   return -1; /* undefined */
   3254 }
   3255 
   3256 #if UCONFIG_HAVE_PARSEALLINPUT
   3257 void DecimalFormat::setParseAllInput(UNumberFormatAttributeValue value) {
   3258   fParseAllInput = value;
   3259 }
   3260 #endif
   3261 
   3262 U_NAMESPACE_END
   3263 
   3264 #endif /* #if !UCONFIG_NO_FORMATTING */
   3265 
   3266 //eof
   3267