1 /************************************************************************** 2 * 3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas. 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 /** 29 * \brief Primitive rasterization/rendering (points, lines, triangles) 30 * 31 * \author Keith Whitwell <keith (at) tungstengraphics.com> 32 * \author Brian Paul 33 */ 34 35 #include "sp_context.h" 36 #include "sp_quad.h" 37 #include "sp_quad_pipe.h" 38 #include "sp_setup.h" 39 #include "sp_state.h" 40 #include "draw/draw_context.h" 41 #include "draw/draw_vertex.h" 42 #include "pipe/p_shader_tokens.h" 43 #include "util/u_math.h" 44 #include "util/u_memory.h" 45 46 47 #define DEBUG_VERTS 0 48 #define DEBUG_FRAGS 0 49 50 51 /** 52 * Triangle edge info 53 */ 54 struct edge { 55 float dx; /**< X(v1) - X(v0), used only during setup */ 56 float dy; /**< Y(v1) - Y(v0), used only during setup */ 57 float dxdy; /**< dx/dy */ 58 float sx, sy; /**< first sample point coord */ 59 int lines; /**< number of lines on this edge */ 60 }; 61 62 63 /** 64 * Max number of quads (2x2 pixel blocks) to process per batch. 65 * This can't be arbitrarily increased since we depend on some 32-bit 66 * bitmasks (two bits per quad). 67 */ 68 #define MAX_QUADS 16 69 70 71 /** 72 * Triangle setup info. 73 * Also used for line drawing (taking some liberties). 74 */ 75 struct setup_context { 76 struct softpipe_context *softpipe; 77 78 /* Vertices are just an array of floats making up each attribute in 79 * turn. Currently fixed at 4 floats, but should change in time. 80 * Codegen will help cope with this. 81 */ 82 const float (*vmax)[4]; 83 const float (*vmid)[4]; 84 const float (*vmin)[4]; 85 const float (*vprovoke)[4]; 86 87 struct edge ebot; 88 struct edge etop; 89 struct edge emaj; 90 91 float oneoverarea; 92 int facing; 93 94 float pixel_offset; 95 96 struct quad_header quad[MAX_QUADS]; 97 struct quad_header *quad_ptrs[MAX_QUADS]; 98 unsigned count; 99 100 struct tgsi_interp_coef coef[PIPE_MAX_SHADER_INPUTS]; 101 struct tgsi_interp_coef posCoef; /* For Z, W */ 102 103 struct { 104 int left[2]; /**< [0] = row0, [1] = row1 */ 105 int right[2]; 106 int y; 107 } span; 108 109 #if DEBUG_FRAGS 110 uint numFragsEmitted; /**< per primitive */ 111 uint numFragsWritten; /**< per primitive */ 112 #endif 113 114 unsigned cull_face; /* which faces cull */ 115 unsigned nr_vertex_attrs; 116 }; 117 118 119 120 121 122 123 124 /** 125 * Clip setup->quad against the scissor/surface bounds. 126 */ 127 static INLINE void 128 quad_clip(struct setup_context *setup, struct quad_header *quad) 129 { 130 const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect; 131 const int minx = (int) cliprect->minx; 132 const int maxx = (int) cliprect->maxx; 133 const int miny = (int) cliprect->miny; 134 const int maxy = (int) cliprect->maxy; 135 136 if (quad->input.x0 >= maxx || 137 quad->input.y0 >= maxy || 138 quad->input.x0 + 1 < minx || 139 quad->input.y0 + 1 < miny) { 140 /* totally clipped */ 141 quad->inout.mask = 0x0; 142 return; 143 } 144 if (quad->input.x0 < minx) 145 quad->inout.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT); 146 if (quad->input.y0 < miny) 147 quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT); 148 if (quad->input.x0 == maxx - 1) 149 quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT); 150 if (quad->input.y0 == maxy - 1) 151 quad->inout.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT); 152 } 153 154 155 /** 156 * Emit a quad (pass to next stage) with clipping. 157 */ 158 static INLINE void 159 clip_emit_quad(struct setup_context *setup, struct quad_header *quad) 160 { 161 quad_clip( setup, quad ); 162 163 if (quad->inout.mask) { 164 struct softpipe_context *sp = setup->softpipe; 165 166 #if DEBUG_FRAGS 167 setup->numFragsEmitted += util_bitcount(quad->inout.mask); 168 #endif 169 170 sp->quad.first->run( sp->quad.first, &quad, 1 ); 171 } 172 } 173 174 175 176 /** 177 * Given an X or Y coordinate, return the block/quad coordinate that it 178 * belongs to. 179 */ 180 static INLINE int 181 block(int x) 182 { 183 return x & ~(2-1); 184 } 185 186 187 static INLINE int 188 block_x(int x) 189 { 190 return x & ~(16-1); 191 } 192 193 194 /** 195 * Render a horizontal span of quads 196 */ 197 static void 198 flush_spans(struct setup_context *setup) 199 { 200 const int step = MAX_QUADS; 201 const int xleft0 = setup->span.left[0]; 202 const int xleft1 = setup->span.left[1]; 203 const int xright0 = setup->span.right[0]; 204 const int xright1 = setup->span.right[1]; 205 struct quad_stage *pipe = setup->softpipe->quad.first; 206 207 const int minleft = block_x(MIN2(xleft0, xleft1)); 208 const int maxright = MAX2(xright0, xright1); 209 int x; 210 211 /* process quads in horizontal chunks of 16 */ 212 for (x = minleft; x < maxright; x += step) { 213 unsigned skip_left0 = CLAMP(xleft0 - x, 0, step); 214 unsigned skip_left1 = CLAMP(xleft1 - x, 0, step); 215 unsigned skip_right0 = CLAMP(x + step - xright0, 0, step); 216 unsigned skip_right1 = CLAMP(x + step - xright1, 0, step); 217 unsigned lx = x; 218 unsigned q = 0; 219 220 unsigned skipmask_left0 = (1U << skip_left0) - 1U; 221 unsigned skipmask_left1 = (1U << skip_left1) - 1U; 222 223 /* These calculations fail when step == 32 and skip_right == 0. 224 */ 225 unsigned skipmask_right0 = ~0U << (unsigned)(step - skip_right0); 226 unsigned skipmask_right1 = ~0U << (unsigned)(step - skip_right1); 227 228 unsigned mask0 = ~skipmask_left0 & ~skipmask_right0; 229 unsigned mask1 = ~skipmask_left1 & ~skipmask_right1; 230 231 if (mask0 | mask1) { 232 do { 233 unsigned quadmask = (mask0 & 3) | ((mask1 & 3) << 2); 234 if (quadmask) { 235 setup->quad[q].input.x0 = lx; 236 setup->quad[q].input.y0 = setup->span.y; 237 setup->quad[q].input.facing = setup->facing; 238 setup->quad[q].inout.mask = quadmask; 239 setup->quad_ptrs[q] = &setup->quad[q]; 240 q++; 241 #if DEBUG_FRAGS 242 setup->numFragsEmitted += util_bitcount(quadmask); 243 #endif 244 } 245 mask0 >>= 2; 246 mask1 >>= 2; 247 lx += 2; 248 } while (mask0 | mask1); 249 250 pipe->run( pipe, setup->quad_ptrs, q ); 251 } 252 } 253 254 255 setup->span.y = 0; 256 setup->span.right[0] = 0; 257 setup->span.right[1] = 0; 258 setup->span.left[0] = 1000000; /* greater than right[0] */ 259 setup->span.left[1] = 1000000; /* greater than right[1] */ 260 } 261 262 263 #if DEBUG_VERTS 264 static void 265 print_vertex(const struct setup_context *setup, 266 const float (*v)[4]) 267 { 268 int i; 269 debug_printf(" Vertex: (%p)\n", (void *) v); 270 for (i = 0; i < setup->nr_vertex_attrs; i++) { 271 debug_printf(" %d: %f %f %f %f\n", i, 272 v[i][0], v[i][1], v[i][2], v[i][3]); 273 if (util_is_inf_or_nan(v[i][0])) { 274 debug_printf(" NaN!\n"); 275 } 276 } 277 } 278 #endif 279 280 281 /** 282 * Sort the vertices from top to bottom order, setting up the triangle 283 * edge fields (ebot, emaj, etop). 284 * \return FALSE if coords are inf/nan (cull the tri), TRUE otherwise 285 */ 286 static boolean 287 setup_sort_vertices(struct setup_context *setup, 288 float det, 289 const float (*v0)[4], 290 const float (*v1)[4], 291 const float (*v2)[4]) 292 { 293 if (setup->softpipe->rasterizer->flatshade_first) 294 setup->vprovoke = v0; 295 else 296 setup->vprovoke = v2; 297 298 /* determine bottom to top order of vertices */ 299 { 300 float y0 = v0[0][1]; 301 float y1 = v1[0][1]; 302 float y2 = v2[0][1]; 303 if (y0 <= y1) { 304 if (y1 <= y2) { 305 /* y0<=y1<=y2 */ 306 setup->vmin = v0; 307 setup->vmid = v1; 308 setup->vmax = v2; 309 } 310 else if (y2 <= y0) { 311 /* y2<=y0<=y1 */ 312 setup->vmin = v2; 313 setup->vmid = v0; 314 setup->vmax = v1; 315 } 316 else { 317 /* y0<=y2<=y1 */ 318 setup->vmin = v0; 319 setup->vmid = v2; 320 setup->vmax = v1; 321 } 322 } 323 else { 324 if (y0 <= y2) { 325 /* y1<=y0<=y2 */ 326 setup->vmin = v1; 327 setup->vmid = v0; 328 setup->vmax = v2; 329 } 330 else if (y2 <= y1) { 331 /* y2<=y1<=y0 */ 332 setup->vmin = v2; 333 setup->vmid = v1; 334 setup->vmax = v0; 335 } 336 else { 337 /* y1<=y2<=y0 */ 338 setup->vmin = v1; 339 setup->vmid = v2; 340 setup->vmax = v0; 341 } 342 } 343 } 344 345 setup->ebot.dx = setup->vmid[0][0] - setup->vmin[0][0]; 346 setup->ebot.dy = setup->vmid[0][1] - setup->vmin[0][1]; 347 setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0]; 348 setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1]; 349 setup->etop.dx = setup->vmax[0][0] - setup->vmid[0][0]; 350 setup->etop.dy = setup->vmax[0][1] - setup->vmid[0][1]; 351 352 /* 353 * Compute triangle's area. Use 1/area to compute partial 354 * derivatives of attributes later. 355 * 356 * The area will be the same as prim->det, but the sign may be 357 * different depending on how the vertices get sorted above. 358 * 359 * To determine whether the primitive is front or back facing we 360 * use the prim->det value because its sign is correct. 361 */ 362 { 363 const float area = (setup->emaj.dx * setup->ebot.dy - 364 setup->ebot.dx * setup->emaj.dy); 365 366 setup->oneoverarea = 1.0f / area; 367 368 /* 369 debug_printf("%s one-over-area %f area %f det %f\n", 370 __FUNCTION__, setup->oneoverarea, area, det ); 371 */ 372 if (util_is_inf_or_nan(setup->oneoverarea)) 373 return FALSE; 374 } 375 376 /* We need to know if this is a front or back-facing triangle for: 377 * - the GLSL gl_FrontFacing fragment attribute (bool) 378 * - two-sided stencil test 379 * 0 = front-facing, 1 = back-facing 380 */ 381 setup->facing = 382 ((det < 0.0) ^ 383 (setup->softpipe->rasterizer->front_ccw)); 384 385 { 386 unsigned face = setup->facing == 0 ? PIPE_FACE_FRONT : PIPE_FACE_BACK; 387 388 if (face & setup->cull_face) 389 return FALSE; 390 } 391 392 393 /* Prepare pixel offset for rasterisation: 394 * - pixel center (0.5, 0.5) for GL, or 395 * - assume (0.0, 0.0) for other APIs. 396 */ 397 if (setup->softpipe->rasterizer->gl_rasterization_rules) { 398 setup->pixel_offset = 0.5f; 399 } else { 400 setup->pixel_offset = 0.0f; 401 } 402 403 return TRUE; 404 } 405 406 407 /* Apply cylindrical wrapping to v0, v1, v2 coordinates, if enabled. 408 * Input coordinates must be in [0, 1] range, otherwise results are undefined. 409 * Some combinations of coordinates produce invalid results, 410 * but this behaviour is acceptable. 411 */ 412 static void 413 tri_apply_cylindrical_wrap(float v0, 414 float v1, 415 float v2, 416 uint cylindrical_wrap, 417 float output[3]) 418 { 419 if (cylindrical_wrap) { 420 float delta; 421 422 delta = v1 - v0; 423 if (delta > 0.5f) { 424 v0 += 1.0f; 425 } 426 else if (delta < -0.5f) { 427 v1 += 1.0f; 428 } 429 430 delta = v2 - v1; 431 if (delta > 0.5f) { 432 v1 += 1.0f; 433 } 434 else if (delta < -0.5f) { 435 v2 += 1.0f; 436 } 437 438 delta = v0 - v2; 439 if (delta > 0.5f) { 440 v2 += 1.0f; 441 } 442 else if (delta < -0.5f) { 443 v0 += 1.0f; 444 } 445 } 446 447 output[0] = v0; 448 output[1] = v1; 449 output[2] = v2; 450 } 451 452 453 /** 454 * Compute a0 for a constant-valued coefficient (GL_FLAT shading). 455 * The value value comes from vertex[slot][i]. 456 * The result will be put into setup->coef[slot].a0[i]. 457 * \param slot which attribute slot 458 * \param i which component of the slot (0..3) 459 */ 460 static void 461 const_coeff(struct setup_context *setup, 462 struct tgsi_interp_coef *coef, 463 uint vertSlot, uint i) 464 { 465 assert(i <= 3); 466 467 coef->dadx[i] = 0; 468 coef->dady[i] = 0; 469 470 /* need provoking vertex info! 471 */ 472 coef->a0[i] = setup->vprovoke[vertSlot][i]; 473 } 474 475 476 /** 477 * Compute a0, dadx and dady for a linearly interpolated coefficient, 478 * for a triangle. 479 * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively. 480 */ 481 static void 482 tri_linear_coeff(struct setup_context *setup, 483 struct tgsi_interp_coef *coef, 484 uint i, 485 const float v[3]) 486 { 487 float botda = v[1] - v[0]; 488 float majda = v[2] - v[0]; 489 float a = setup->ebot.dy * majda - botda * setup->emaj.dy; 490 float b = setup->emaj.dx * botda - majda * setup->ebot.dx; 491 float dadx = a * setup->oneoverarea; 492 float dady = b * setup->oneoverarea; 493 494 assert(i <= 3); 495 496 coef->dadx[i] = dadx; 497 coef->dady[i] = dady; 498 499 /* calculate a0 as the value which would be sampled for the 500 * fragment at (0,0), taking into account that we want to sample at 501 * pixel centers, in other words (pixel_offset, pixel_offset). 502 * 503 * this is neat but unfortunately not a good way to do things for 504 * triangles with very large values of dadx or dady as it will 505 * result in the subtraction and re-addition from a0 of a very 506 * large number, which means we'll end up loosing a lot of the 507 * fractional bits and precision from a0. the way to fix this is 508 * to define a0 as the sample at a pixel center somewhere near vmin 509 * instead - i'll switch to this later. 510 */ 511 coef->a0[i] = (v[0] - 512 (dadx * (setup->vmin[0][0] - setup->pixel_offset) + 513 dady * (setup->vmin[0][1] - setup->pixel_offset))); 514 515 /* 516 debug_printf("attr[%d].%c: %f dx:%f dy:%f\n", 517 slot, "xyzw"[i], 518 setup->coef[slot].a0[i], 519 setup->coef[slot].dadx[i], 520 setup->coef[slot].dady[i]); 521 */ 522 } 523 524 525 /** 526 * Compute a0, dadx and dady for a perspective-corrected interpolant, 527 * for a triangle. 528 * We basically multiply the vertex value by 1/w before computing 529 * the plane coefficients (a0, dadx, dady). 530 * Later, when we compute the value at a particular fragment position we'll 531 * divide the interpolated value by the interpolated W at that fragment. 532 * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively. 533 */ 534 static void 535 tri_persp_coeff(struct setup_context *setup, 536 struct tgsi_interp_coef *coef, 537 uint i, 538 const float v[3]) 539 { 540 /* premultiply by 1/w (v[0][3] is always W): 541 */ 542 float mina = v[0] * setup->vmin[0][3]; 543 float mida = v[1] * setup->vmid[0][3]; 544 float maxa = v[2] * setup->vmax[0][3]; 545 float botda = mida - mina; 546 float majda = maxa - mina; 547 float a = setup->ebot.dy * majda - botda * setup->emaj.dy; 548 float b = setup->emaj.dx * botda - majda * setup->ebot.dx; 549 float dadx = a * setup->oneoverarea; 550 float dady = b * setup->oneoverarea; 551 552 /* 553 debug_printf("tri persp %d,%d: %f %f %f\n", vertSlot, i, 554 setup->vmin[vertSlot][i], 555 setup->vmid[vertSlot][i], 556 setup->vmax[vertSlot][i] 557 ); 558 */ 559 assert(i <= 3); 560 561 coef->dadx[i] = dadx; 562 coef->dady[i] = dady; 563 coef->a0[i] = (mina - 564 (dadx * (setup->vmin[0][0] - setup->pixel_offset) + 565 dady * (setup->vmin[0][1] - setup->pixel_offset))); 566 } 567 568 569 /** 570 * Special coefficient setup for gl_FragCoord. 571 * X and Y are trivial, though Y may have to be inverted for OpenGL. 572 * Z and W are copied from posCoef which should have already been computed. 573 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask. 574 */ 575 static void 576 setup_fragcoord_coeff(struct setup_context *setup, uint slot) 577 { 578 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info; 579 580 /*X*/ 581 setup->coef[slot].a0[0] = fsInfo->pixel_center_integer ? 0.0 : 0.5; 582 setup->coef[slot].dadx[0] = 1.0; 583 setup->coef[slot].dady[0] = 0.0; 584 /*Y*/ 585 setup->coef[slot].a0[1] = 586 (fsInfo->origin_lower_left ? setup->softpipe->framebuffer.height-1 : 0) 587 + (fsInfo->pixel_center_integer ? 0.0 : 0.5); 588 setup->coef[slot].dadx[1] = 0.0; 589 setup->coef[slot].dady[1] = fsInfo->origin_lower_left ? -1.0 : 1.0; 590 /*Z*/ 591 setup->coef[slot].a0[2] = setup->posCoef.a0[2]; 592 setup->coef[slot].dadx[2] = setup->posCoef.dadx[2]; 593 setup->coef[slot].dady[2] = setup->posCoef.dady[2]; 594 /*W*/ 595 setup->coef[slot].a0[3] = setup->posCoef.a0[3]; 596 setup->coef[slot].dadx[3] = setup->posCoef.dadx[3]; 597 setup->coef[slot].dady[3] = setup->posCoef.dady[3]; 598 } 599 600 601 602 /** 603 * Compute the setup->coef[] array dadx, dady, a0 values. 604 * Must be called after setup->vmin,vmid,vmax,vprovoke are initialized. 605 */ 606 static void 607 setup_tri_coefficients(struct setup_context *setup) 608 { 609 struct softpipe_context *softpipe = setup->softpipe; 610 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info; 611 const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe); 612 uint fragSlot; 613 float v[3]; 614 615 /* z and w are done by linear interpolation: 616 */ 617 v[0] = setup->vmin[0][2]; 618 v[1] = setup->vmid[0][2]; 619 v[2] = setup->vmax[0][2]; 620 tri_linear_coeff(setup, &setup->posCoef, 2, v); 621 622 v[0] = setup->vmin[0][3]; 623 v[1] = setup->vmid[0][3]; 624 v[2] = setup->vmax[0][3]; 625 tri_linear_coeff(setup, &setup->posCoef, 3, v); 626 627 /* setup interpolation for all the remaining attributes: 628 */ 629 for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) { 630 const uint vertSlot = vinfo->attrib[fragSlot].src_index; 631 uint j; 632 633 switch (vinfo->attrib[fragSlot].interp_mode) { 634 case INTERP_CONSTANT: 635 for (j = 0; j < TGSI_NUM_CHANNELS; j++) 636 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j); 637 break; 638 case INTERP_LINEAR: 639 for (j = 0; j < TGSI_NUM_CHANNELS; j++) { 640 tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j], 641 setup->vmid[vertSlot][j], 642 setup->vmax[vertSlot][j], 643 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j), 644 v); 645 tri_linear_coeff(setup, &setup->coef[fragSlot], j, v); 646 } 647 break; 648 case INTERP_PERSPECTIVE: 649 for (j = 0; j < TGSI_NUM_CHANNELS; j++) { 650 tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j], 651 setup->vmid[vertSlot][j], 652 setup->vmax[vertSlot][j], 653 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j), 654 v); 655 tri_persp_coeff(setup, &setup->coef[fragSlot], j, v); 656 } 657 break; 658 case INTERP_POS: 659 setup_fragcoord_coeff(setup, fragSlot); 660 break; 661 default: 662 assert(0); 663 } 664 665 if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) { 666 /* convert 0 to 1.0 and 1 to -1.0 */ 667 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f; 668 setup->coef[fragSlot].dadx[0] = 0.0; 669 setup->coef[fragSlot].dady[0] = 0.0; 670 } 671 } 672 } 673 674 675 static void 676 setup_tri_edges(struct setup_context *setup) 677 { 678 float vmin_x = setup->vmin[0][0] + setup->pixel_offset; 679 float vmid_x = setup->vmid[0][0] + setup->pixel_offset; 680 681 float vmin_y = setup->vmin[0][1] - setup->pixel_offset; 682 float vmid_y = setup->vmid[0][1] - setup->pixel_offset; 683 float vmax_y = setup->vmax[0][1] - setup->pixel_offset; 684 685 setup->emaj.sy = ceilf(vmin_y); 686 setup->emaj.lines = (int) ceilf(vmax_y - setup->emaj.sy); 687 setup->emaj.dxdy = setup->emaj.dy ? setup->emaj.dx / setup->emaj.dy : .0f; 688 setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy; 689 690 setup->etop.sy = ceilf(vmid_y); 691 setup->etop.lines = (int) ceilf(vmax_y - setup->etop.sy); 692 setup->etop.dxdy = setup->etop.dy ? setup->etop.dx / setup->etop.dy : .0f; 693 setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy; 694 695 setup->ebot.sy = ceilf(vmin_y); 696 setup->ebot.lines = (int) ceilf(vmid_y - setup->ebot.sy); 697 setup->ebot.dxdy = setup->ebot.dy ? setup->ebot.dx / setup->ebot.dy : .0f; 698 setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy; 699 } 700 701 702 /** 703 * Render the upper or lower half of a triangle. 704 * Scissoring/cliprect is applied here too. 705 */ 706 static void 707 subtriangle(struct setup_context *setup, 708 struct edge *eleft, 709 struct edge *eright, 710 int lines) 711 { 712 const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect; 713 const int minx = (int) cliprect->minx; 714 const int maxx = (int) cliprect->maxx; 715 const int miny = (int) cliprect->miny; 716 const int maxy = (int) cliprect->maxy; 717 int y, start_y, finish_y; 718 int sy = (int)eleft->sy; 719 720 assert((int)eleft->sy == (int) eright->sy); 721 assert(lines >= 0); 722 723 /* clip top/bottom */ 724 start_y = sy; 725 if (start_y < miny) 726 start_y = miny; 727 728 finish_y = sy + lines; 729 if (finish_y > maxy) 730 finish_y = maxy; 731 732 start_y -= sy; 733 finish_y -= sy; 734 735 /* 736 debug_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y); 737 */ 738 739 for (y = start_y; y < finish_y; y++) { 740 741 /* avoid accumulating adds as floats don't have the precision to 742 * accurately iterate large triangle edges that way. luckily we 743 * can just multiply these days. 744 * 745 * this is all drowned out by the attribute interpolation anyway. 746 */ 747 int left = (int)(eleft->sx + y * eleft->dxdy); 748 int right = (int)(eright->sx + y * eright->dxdy); 749 750 /* clip left/right */ 751 if (left < minx) 752 left = minx; 753 if (right > maxx) 754 right = maxx; 755 756 if (left < right) { 757 int _y = sy + y; 758 if (block(_y) != setup->span.y) { 759 flush_spans(setup); 760 setup->span.y = block(_y); 761 } 762 763 setup->span.left[_y&1] = left; 764 setup->span.right[_y&1] = right; 765 } 766 } 767 768 769 /* save the values so that emaj can be restarted: 770 */ 771 eleft->sx += lines * eleft->dxdy; 772 eright->sx += lines * eright->dxdy; 773 eleft->sy += lines; 774 eright->sy += lines; 775 } 776 777 778 /** 779 * Recalculate prim's determinant. This is needed as we don't have 780 * get this information through the vbuf_render interface & we must 781 * calculate it here. 782 */ 783 static float 784 calc_det(const float (*v0)[4], 785 const float (*v1)[4], 786 const float (*v2)[4]) 787 { 788 /* edge vectors e = v0 - v2, f = v1 - v2 */ 789 const float ex = v0[0][0] - v2[0][0]; 790 const float ey = v0[0][1] - v2[0][1]; 791 const float fx = v1[0][0] - v2[0][0]; 792 const float fy = v1[0][1] - v2[0][1]; 793 794 /* det = cross(e,f).z */ 795 return ex * fy - ey * fx; 796 } 797 798 799 /** 800 * Do setup for triangle rasterization, then render the triangle. 801 */ 802 void 803 sp_setup_tri(struct setup_context *setup, 804 const float (*v0)[4], 805 const float (*v1)[4], 806 const float (*v2)[4]) 807 { 808 float det; 809 810 #if DEBUG_VERTS 811 debug_printf("Setup triangle:\n"); 812 print_vertex(setup, v0); 813 print_vertex(setup, v1); 814 print_vertex(setup, v2); 815 #endif 816 817 if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard) 818 return; 819 820 det = calc_det(v0, v1, v2); 821 /* 822 debug_printf("%s\n", __FUNCTION__ ); 823 */ 824 825 #if DEBUG_FRAGS 826 setup->numFragsEmitted = 0; 827 setup->numFragsWritten = 0; 828 #endif 829 830 if (!setup_sort_vertices( setup, det, v0, v1, v2 )) 831 return; 832 833 setup_tri_coefficients( setup ); 834 setup_tri_edges( setup ); 835 836 assert(setup->softpipe->reduced_prim == PIPE_PRIM_TRIANGLES); 837 838 setup->span.y = 0; 839 setup->span.right[0] = 0; 840 setup->span.right[1] = 0; 841 /* setup->span.z_mode = tri_z_mode( setup->ctx ); */ 842 843 /* init_constant_attribs( setup ); */ 844 845 if (setup->oneoverarea < 0.0) { 846 /* emaj on left: 847 */ 848 subtriangle( setup, &setup->emaj, &setup->ebot, setup->ebot.lines ); 849 subtriangle( setup, &setup->emaj, &setup->etop, setup->etop.lines ); 850 } 851 else { 852 /* emaj on right: 853 */ 854 subtriangle( setup, &setup->ebot, &setup->emaj, setup->ebot.lines ); 855 subtriangle( setup, &setup->etop, &setup->emaj, setup->etop.lines ); 856 } 857 858 flush_spans( setup ); 859 860 #if DEBUG_FRAGS 861 printf("Tri: %u frags emitted, %u written\n", 862 setup->numFragsEmitted, 863 setup->numFragsWritten); 864 #endif 865 } 866 867 868 /* Apply cylindrical wrapping to v0, v1 coordinates, if enabled. 869 * Input coordinates must be in [0, 1] range, otherwise results are undefined. 870 */ 871 static void 872 line_apply_cylindrical_wrap(float v0, 873 float v1, 874 uint cylindrical_wrap, 875 float output[2]) 876 { 877 if (cylindrical_wrap) { 878 float delta; 879 880 delta = v1 - v0; 881 if (delta > 0.5f) { 882 v0 += 1.0f; 883 } 884 else if (delta < -0.5f) { 885 v1 += 1.0f; 886 } 887 } 888 889 output[0] = v0; 890 output[1] = v1; 891 } 892 893 894 /** 895 * Compute a0, dadx and dady for a linearly interpolated coefficient, 896 * for a line. 897 * v[0] and v[1] are vmin and vmax, respectively. 898 */ 899 static void 900 line_linear_coeff(const struct setup_context *setup, 901 struct tgsi_interp_coef *coef, 902 uint i, 903 const float v[2]) 904 { 905 const float da = v[1] - v[0]; 906 const float dadx = da * setup->emaj.dx * setup->oneoverarea; 907 const float dady = da * setup->emaj.dy * setup->oneoverarea; 908 coef->dadx[i] = dadx; 909 coef->dady[i] = dady; 910 coef->a0[i] = (v[0] - 911 (dadx * (setup->vmin[0][0] - setup->pixel_offset) + 912 dady * (setup->vmin[0][1] - setup->pixel_offset))); 913 } 914 915 916 /** 917 * Compute a0, dadx and dady for a perspective-corrected interpolant, 918 * for a line. 919 * v[0] and v[1] are vmin and vmax, respectively. 920 */ 921 static void 922 line_persp_coeff(const struct setup_context *setup, 923 struct tgsi_interp_coef *coef, 924 uint i, 925 const float v[2]) 926 { 927 const float a0 = v[0] * setup->vmin[0][3]; 928 const float a1 = v[1] * setup->vmax[0][3]; 929 const float da = a1 - a0; 930 const float dadx = da * setup->emaj.dx * setup->oneoverarea; 931 const float dady = da * setup->emaj.dy * setup->oneoverarea; 932 coef->dadx[i] = dadx; 933 coef->dady[i] = dady; 934 coef->a0[i] = (a0 - 935 (dadx * (setup->vmin[0][0] - setup->pixel_offset) + 936 dady * (setup->vmin[0][1] - setup->pixel_offset))); 937 } 938 939 940 /** 941 * Compute the setup->coef[] array dadx, dady, a0 values. 942 * Must be called after setup->vmin,vmax are initialized. 943 */ 944 static boolean 945 setup_line_coefficients(struct setup_context *setup, 946 const float (*v0)[4], 947 const float (*v1)[4]) 948 { 949 struct softpipe_context *softpipe = setup->softpipe; 950 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info; 951 const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe); 952 uint fragSlot; 953 float area; 954 float v[2]; 955 956 /* use setup->vmin, vmax to point to vertices */ 957 if (softpipe->rasterizer->flatshade_first) 958 setup->vprovoke = v0; 959 else 960 setup->vprovoke = v1; 961 setup->vmin = v0; 962 setup->vmax = v1; 963 964 setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0]; 965 setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1]; 966 967 /* NOTE: this is not really area but something proportional to it */ 968 area = setup->emaj.dx * setup->emaj.dx + setup->emaj.dy * setup->emaj.dy; 969 if (area == 0.0f || util_is_inf_or_nan(area)) 970 return FALSE; 971 setup->oneoverarea = 1.0f / area; 972 973 /* z and w are done by linear interpolation: 974 */ 975 v[0] = setup->vmin[0][2]; 976 v[1] = setup->vmax[0][2]; 977 line_linear_coeff(setup, &setup->posCoef, 2, v); 978 979 v[0] = setup->vmin[0][3]; 980 v[1] = setup->vmax[0][3]; 981 line_linear_coeff(setup, &setup->posCoef, 3, v); 982 983 /* setup interpolation for all the remaining attributes: 984 */ 985 for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) { 986 const uint vertSlot = vinfo->attrib[fragSlot].src_index; 987 uint j; 988 989 switch (vinfo->attrib[fragSlot].interp_mode) { 990 case INTERP_CONSTANT: 991 for (j = 0; j < TGSI_NUM_CHANNELS; j++) 992 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j); 993 break; 994 case INTERP_LINEAR: 995 for (j = 0; j < TGSI_NUM_CHANNELS; j++) { 996 line_apply_cylindrical_wrap(setup->vmin[vertSlot][j], 997 setup->vmax[vertSlot][j], 998 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j), 999 v); 1000 line_linear_coeff(setup, &setup->coef[fragSlot], j, v); 1001 } 1002 break; 1003 case INTERP_PERSPECTIVE: 1004 for (j = 0; j < TGSI_NUM_CHANNELS; j++) { 1005 line_apply_cylindrical_wrap(setup->vmin[vertSlot][j], 1006 setup->vmax[vertSlot][j], 1007 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j), 1008 v); 1009 line_persp_coeff(setup, &setup->coef[fragSlot], j, v); 1010 } 1011 break; 1012 case INTERP_POS: 1013 setup_fragcoord_coeff(setup, fragSlot); 1014 break; 1015 default: 1016 assert(0); 1017 } 1018 1019 if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) { 1020 /* convert 0 to 1.0 and 1 to -1.0 */ 1021 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f; 1022 setup->coef[fragSlot].dadx[0] = 0.0; 1023 setup->coef[fragSlot].dady[0] = 0.0; 1024 } 1025 } 1026 return TRUE; 1027 } 1028 1029 1030 /** 1031 * Plot a pixel in a line segment. 1032 */ 1033 static INLINE void 1034 plot(struct setup_context *setup, int x, int y) 1035 { 1036 const int iy = y & 1; 1037 const int ix = x & 1; 1038 const int quadX = x - ix; 1039 const int quadY = y - iy; 1040 const int mask = (1 << ix) << (2 * iy); 1041 1042 if (quadX != setup->quad[0].input.x0 || 1043 quadY != setup->quad[0].input.y0) 1044 { 1045 /* flush prev quad, start new quad */ 1046 1047 if (setup->quad[0].input.x0 != -1) 1048 clip_emit_quad( setup, &setup->quad[0] ); 1049 1050 setup->quad[0].input.x0 = quadX; 1051 setup->quad[0].input.y0 = quadY; 1052 setup->quad[0].inout.mask = 0x0; 1053 } 1054 1055 setup->quad[0].inout.mask |= mask; 1056 } 1057 1058 1059 /** 1060 * Do setup for line rasterization, then render the line. 1061 * Single-pixel width, no stipple, etc. We rely on the 'draw' module 1062 * to handle stippling and wide lines. 1063 */ 1064 void 1065 sp_setup_line(struct setup_context *setup, 1066 const float (*v0)[4], 1067 const float (*v1)[4]) 1068 { 1069 int x0 = (int) v0[0][0]; 1070 int x1 = (int) v1[0][0]; 1071 int y0 = (int) v0[0][1]; 1072 int y1 = (int) v1[0][1]; 1073 int dx = x1 - x0; 1074 int dy = y1 - y0; 1075 int xstep, ystep; 1076 1077 #if DEBUG_VERTS 1078 debug_printf("Setup line:\n"); 1079 print_vertex(setup, v0); 1080 print_vertex(setup, v1); 1081 #endif 1082 1083 if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard) 1084 return; 1085 1086 if (dx == 0 && dy == 0) 1087 return; 1088 1089 if (!setup_line_coefficients(setup, v0, v1)) 1090 return; 1091 1092 assert(v0[0][0] < 1.0e9); 1093 assert(v0[0][1] < 1.0e9); 1094 assert(v1[0][0] < 1.0e9); 1095 assert(v1[0][1] < 1.0e9); 1096 1097 if (dx < 0) { 1098 dx = -dx; /* make positive */ 1099 xstep = -1; 1100 } 1101 else { 1102 xstep = 1; 1103 } 1104 1105 if (dy < 0) { 1106 dy = -dy; /* make positive */ 1107 ystep = -1; 1108 } 1109 else { 1110 ystep = 1; 1111 } 1112 1113 assert(dx >= 0); 1114 assert(dy >= 0); 1115 assert(setup->softpipe->reduced_prim == PIPE_PRIM_LINES); 1116 1117 setup->quad[0].input.x0 = setup->quad[0].input.y0 = -1; 1118 setup->quad[0].inout.mask = 0x0; 1119 1120 /* XXX temporary: set coverage to 1.0 so the line appears 1121 * if AA mode happens to be enabled. 1122 */ 1123 setup->quad[0].input.coverage[0] = 1124 setup->quad[0].input.coverage[1] = 1125 setup->quad[0].input.coverage[2] = 1126 setup->quad[0].input.coverage[3] = 1.0; 1127 1128 if (dx > dy) { 1129 /*** X-major line ***/ 1130 int i; 1131 const int errorInc = dy + dy; 1132 int error = errorInc - dx; 1133 const int errorDec = error - dx; 1134 1135 for (i = 0; i < dx; i++) { 1136 plot(setup, x0, y0); 1137 1138 x0 += xstep; 1139 if (error < 0) { 1140 error += errorInc; 1141 } 1142 else { 1143 error += errorDec; 1144 y0 += ystep; 1145 } 1146 } 1147 } 1148 else { 1149 /*** Y-major line ***/ 1150 int i; 1151 const int errorInc = dx + dx; 1152 int error = errorInc - dy; 1153 const int errorDec = error - dy; 1154 1155 for (i = 0; i < dy; i++) { 1156 plot(setup, x0, y0); 1157 1158 y0 += ystep; 1159 if (error < 0) { 1160 error += errorInc; 1161 } 1162 else { 1163 error += errorDec; 1164 x0 += xstep; 1165 } 1166 } 1167 } 1168 1169 /* draw final quad */ 1170 if (setup->quad[0].inout.mask) { 1171 clip_emit_quad( setup, &setup->quad[0] ); 1172 } 1173 } 1174 1175 1176 static void 1177 point_persp_coeff(const struct setup_context *setup, 1178 const float (*vert)[4], 1179 struct tgsi_interp_coef *coef, 1180 uint vertSlot, uint i) 1181 { 1182 assert(i <= 3); 1183 coef->dadx[i] = 0.0F; 1184 coef->dady[i] = 0.0F; 1185 coef->a0[i] = vert[vertSlot][i] * vert[0][3]; 1186 } 1187 1188 1189 /** 1190 * Do setup for point rasterization, then render the point. 1191 * Round or square points... 1192 * XXX could optimize a lot for 1-pixel points. 1193 */ 1194 void 1195 sp_setup_point(struct setup_context *setup, 1196 const float (*v0)[4]) 1197 { 1198 struct softpipe_context *softpipe = setup->softpipe; 1199 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info; 1200 const int sizeAttr = setup->softpipe->psize_slot; 1201 const float size 1202 = sizeAttr > 0 ? v0[sizeAttr][0] 1203 : setup->softpipe->rasterizer->point_size; 1204 const float halfSize = 0.5F * size; 1205 const boolean round = (boolean) setup->softpipe->rasterizer->point_smooth; 1206 const float x = v0[0][0]; /* Note: data[0] is always position */ 1207 const float y = v0[0][1]; 1208 const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe); 1209 uint fragSlot; 1210 1211 #if DEBUG_VERTS 1212 debug_printf("Setup point:\n"); 1213 print_vertex(setup, v0); 1214 #endif 1215 1216 if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard) 1217 return; 1218 1219 assert(setup->softpipe->reduced_prim == PIPE_PRIM_POINTS); 1220 1221 /* For points, all interpolants are constant-valued. 1222 * However, for point sprites, we'll need to setup texcoords appropriately. 1223 * XXX: which coefficients are the texcoords??? 1224 * We may do point sprites as textured quads... 1225 * 1226 * KW: We don't know which coefficients are texcoords - ultimately 1227 * the choice of what interpolation mode to use for each attribute 1228 * should be determined by the fragment program, using 1229 * per-attribute declaration statements that include interpolation 1230 * mode as a parameter. So either the fragment program will have 1231 * to be adjusted for pointsprite vs normal point behaviour, or 1232 * otherwise a special interpolation mode will have to be defined 1233 * which matches the required behaviour for point sprites. But - 1234 * the latter is not a feature of normal hardware, and as such 1235 * probably should be ruled out on that basis. 1236 */ 1237 setup->vprovoke = v0; 1238 1239 /* setup Z, W */ 1240 const_coeff(setup, &setup->posCoef, 0, 2); 1241 const_coeff(setup, &setup->posCoef, 0, 3); 1242 1243 for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) { 1244 const uint vertSlot = vinfo->attrib[fragSlot].src_index; 1245 uint j; 1246 1247 switch (vinfo->attrib[fragSlot].interp_mode) { 1248 case INTERP_CONSTANT: 1249 /* fall-through */ 1250 case INTERP_LINEAR: 1251 for (j = 0; j < TGSI_NUM_CHANNELS; j++) 1252 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j); 1253 break; 1254 case INTERP_PERSPECTIVE: 1255 for (j = 0; j < TGSI_NUM_CHANNELS; j++) 1256 point_persp_coeff(setup, setup->vprovoke, 1257 &setup->coef[fragSlot], vertSlot, j); 1258 break; 1259 case INTERP_POS: 1260 setup_fragcoord_coeff(setup, fragSlot); 1261 break; 1262 default: 1263 assert(0); 1264 } 1265 1266 if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) { 1267 /* convert 0 to 1.0 and 1 to -1.0 */ 1268 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f; 1269 setup->coef[fragSlot].dadx[0] = 0.0; 1270 setup->coef[fragSlot].dady[0] = 0.0; 1271 } 1272 } 1273 1274 1275 if (halfSize <= 0.5 && !round) { 1276 /* special case for 1-pixel points */ 1277 const int ix = ((int) x) & 1; 1278 const int iy = ((int) y) & 1; 1279 setup->quad[0].input.x0 = (int) x - ix; 1280 setup->quad[0].input.y0 = (int) y - iy; 1281 setup->quad[0].inout.mask = (1 << ix) << (2 * iy); 1282 clip_emit_quad( setup, &setup->quad[0] ); 1283 } 1284 else { 1285 if (round) { 1286 /* rounded points */ 1287 const int ixmin = block((int) (x - halfSize)); 1288 const int ixmax = block((int) (x + halfSize)); 1289 const int iymin = block((int) (y - halfSize)); 1290 const int iymax = block((int) (y + halfSize)); 1291 const float rmin = halfSize - 0.7071F; /* 0.7071 = sqrt(2)/2 */ 1292 const float rmax = halfSize + 0.7071F; 1293 const float rmin2 = MAX2(0.0F, rmin * rmin); 1294 const float rmax2 = rmax * rmax; 1295 const float cscale = 1.0F / (rmax2 - rmin2); 1296 int ix, iy; 1297 1298 for (iy = iymin; iy <= iymax; iy += 2) { 1299 for (ix = ixmin; ix <= ixmax; ix += 2) { 1300 float dx, dy, dist2, cover; 1301 1302 setup->quad[0].inout.mask = 0x0; 1303 1304 dx = (ix + 0.5f) - x; 1305 dy = (iy + 0.5f) - y; 1306 dist2 = dx * dx + dy * dy; 1307 if (dist2 <= rmax2) { 1308 cover = 1.0F - (dist2 - rmin2) * cscale; 1309 setup->quad[0].input.coverage[QUAD_TOP_LEFT] = MIN2(cover, 1.0f); 1310 setup->quad[0].inout.mask |= MASK_TOP_LEFT; 1311 } 1312 1313 dx = (ix + 1.5f) - x; 1314 dy = (iy + 0.5f) - y; 1315 dist2 = dx * dx + dy * dy; 1316 if (dist2 <= rmax2) { 1317 cover = 1.0F - (dist2 - rmin2) * cscale; 1318 setup->quad[0].input.coverage[QUAD_TOP_RIGHT] = MIN2(cover, 1.0f); 1319 setup->quad[0].inout.mask |= MASK_TOP_RIGHT; 1320 } 1321 1322 dx = (ix + 0.5f) - x; 1323 dy = (iy + 1.5f) - y; 1324 dist2 = dx * dx + dy * dy; 1325 if (dist2 <= rmax2) { 1326 cover = 1.0F - (dist2 - rmin2) * cscale; 1327 setup->quad[0].input.coverage[QUAD_BOTTOM_LEFT] = MIN2(cover, 1.0f); 1328 setup->quad[0].inout.mask |= MASK_BOTTOM_LEFT; 1329 } 1330 1331 dx = (ix + 1.5f) - x; 1332 dy = (iy + 1.5f) - y; 1333 dist2 = dx * dx + dy * dy; 1334 if (dist2 <= rmax2) { 1335 cover = 1.0F - (dist2 - rmin2) * cscale; 1336 setup->quad[0].input.coverage[QUAD_BOTTOM_RIGHT] = MIN2(cover, 1.0f); 1337 setup->quad[0].inout.mask |= MASK_BOTTOM_RIGHT; 1338 } 1339 1340 if (setup->quad[0].inout.mask) { 1341 setup->quad[0].input.x0 = ix; 1342 setup->quad[0].input.y0 = iy; 1343 clip_emit_quad( setup, &setup->quad[0] ); 1344 } 1345 } 1346 } 1347 } 1348 else { 1349 /* square points */ 1350 const int xmin = (int) (x + 0.75 - halfSize); 1351 const int ymin = (int) (y + 0.25 - halfSize); 1352 const int xmax = xmin + (int) size; 1353 const int ymax = ymin + (int) size; 1354 /* XXX could apply scissor to xmin,ymin,xmax,ymax now */ 1355 const int ixmin = block(xmin); 1356 const int ixmax = block(xmax - 1); 1357 const int iymin = block(ymin); 1358 const int iymax = block(ymax - 1); 1359 int ix, iy; 1360 1361 /* 1362 debug_printf("(%f, %f) -> X:%d..%d Y:%d..%d\n", x, y, xmin, xmax,ymin,ymax); 1363 */ 1364 for (iy = iymin; iy <= iymax; iy += 2) { 1365 uint rowMask = 0xf; 1366 if (iy < ymin) { 1367 /* above the top edge */ 1368 rowMask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT); 1369 } 1370 if (iy + 1 >= ymax) { 1371 /* below the bottom edge */ 1372 rowMask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT); 1373 } 1374 1375 for (ix = ixmin; ix <= ixmax; ix += 2) { 1376 uint mask = rowMask; 1377 1378 if (ix < xmin) { 1379 /* fragment is past left edge of point, turn off left bits */ 1380 mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT); 1381 } 1382 if (ix + 1 >= xmax) { 1383 /* past the right edge */ 1384 mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT); 1385 } 1386 1387 setup->quad[0].inout.mask = mask; 1388 setup->quad[0].input.x0 = ix; 1389 setup->quad[0].input.y0 = iy; 1390 clip_emit_quad( setup, &setup->quad[0] ); 1391 } 1392 } 1393 } 1394 } 1395 } 1396 1397 1398 /** 1399 * Called by vbuf code just before we start buffering primitives. 1400 */ 1401 void 1402 sp_setup_prepare(struct setup_context *setup) 1403 { 1404 struct softpipe_context *sp = setup->softpipe; 1405 1406 if (sp->dirty) { 1407 softpipe_update_derived(sp, sp->reduced_api_prim); 1408 } 1409 1410 /* Note: nr_attrs is only used for debugging (vertex printing) */ 1411 setup->nr_vertex_attrs = draw_num_shader_outputs(sp->draw); 1412 1413 sp->quad.first->begin( sp->quad.first ); 1414 1415 if (sp->reduced_api_prim == PIPE_PRIM_TRIANGLES && 1416 sp->rasterizer->fill_front == PIPE_POLYGON_MODE_FILL && 1417 sp->rasterizer->fill_back == PIPE_POLYGON_MODE_FILL) { 1418 /* we'll do culling */ 1419 setup->cull_face = sp->rasterizer->cull_face; 1420 } 1421 else { 1422 /* 'draw' will do culling */ 1423 setup->cull_face = PIPE_FACE_NONE; 1424 } 1425 } 1426 1427 1428 void 1429 sp_setup_destroy_context(struct setup_context *setup) 1430 { 1431 FREE( setup ); 1432 } 1433 1434 1435 /** 1436 * Create a new primitive setup/render stage. 1437 */ 1438 struct setup_context * 1439 sp_setup_create_context(struct softpipe_context *softpipe) 1440 { 1441 struct setup_context *setup = CALLOC_STRUCT(setup_context); 1442 unsigned i; 1443 1444 setup->softpipe = softpipe; 1445 1446 for (i = 0; i < MAX_QUADS; i++) { 1447 setup->quad[i].coef = setup->coef; 1448 setup->quad[i].posCoef = &setup->posCoef; 1449 } 1450 1451 setup->span.left[0] = 1000000; /* greater than right[0] */ 1452 setup->span.left[1] = 1000000; /* greater than right[1] */ 1453 1454 return setup; 1455 } 1456