Home | History | Annotate | Download | only in AST
      1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Expr constant evaluator.
     11 //
     12 // Constant expression evaluation produces four main results:
     13 //
     14 //  * A success/failure flag indicating whether constant folding was successful.
     15 //    This is the 'bool' return value used by most of the code in this file. A
     16 //    'false' return value indicates that constant folding has failed, and any
     17 //    appropriate diagnostic has already been produced.
     18 //
     19 //  * An evaluated result, valid only if constant folding has not failed.
     20 //
     21 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
     22 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
     23 //    where it is possible to determine the evaluated result regardless.
     24 //
     25 //  * A set of notes indicating why the evaluation was not a constant expression
     26 //    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
     27 //    too, why the expression could not be folded.
     28 //
     29 // If we are checking for a potential constant expression, failure to constant
     30 // fold a potential constant sub-expression will be indicated by a 'false'
     31 // return value (the expression could not be folded) and no diagnostic (the
     32 // expression is not necessarily non-constant).
     33 //
     34 //===----------------------------------------------------------------------===//
     35 
     36 #include "clang/AST/APValue.h"
     37 #include "clang/AST/ASTContext.h"
     38 #include "clang/AST/ASTDiagnostic.h"
     39 #include "clang/AST/CharUnits.h"
     40 #include "clang/AST/Expr.h"
     41 #include "clang/AST/RecordLayout.h"
     42 #include "clang/AST/StmtVisitor.h"
     43 #include "clang/AST/TypeLoc.h"
     44 #include "clang/Basic/Builtins.h"
     45 #include "clang/Basic/TargetInfo.h"
     46 #include "llvm/ADT/SmallString.h"
     47 #include "llvm/Support/raw_ostream.h"
     48 #include <cstring>
     49 #include <functional>
     50 
     51 using namespace clang;
     52 using llvm::APSInt;
     53 using llvm::APFloat;
     54 
     55 static bool IsGlobalLValue(APValue::LValueBase B);
     56 
     57 namespace {
     58   struct LValue;
     59   struct CallStackFrame;
     60   struct EvalInfo;
     61 
     62   static QualType getType(APValue::LValueBase B) {
     63     if (!B) return QualType();
     64     if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
     65       return D->getType();
     66 
     67     const Expr *Base = B.get<const Expr*>();
     68 
     69     // For a materialized temporary, the type of the temporary we materialized
     70     // may not be the type of the expression.
     71     if (const MaterializeTemporaryExpr *MTE =
     72             dyn_cast<MaterializeTemporaryExpr>(Base)) {
     73       SmallVector<const Expr *, 2> CommaLHSs;
     74       SmallVector<SubobjectAdjustment, 2> Adjustments;
     75       const Expr *Temp = MTE->GetTemporaryExpr();
     76       const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
     77                                                                Adjustments);
     78       // Keep any cv-qualifiers from the reference if we generated a temporary
     79       // for it.
     80       if (Inner != Temp)
     81         return Inner->getType();
     82     }
     83 
     84     return Base->getType();
     85   }
     86 
     87   /// Get an LValue path entry, which is known to not be an array index, as a
     88   /// field or base class.
     89   static
     90   APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
     91     APValue::BaseOrMemberType Value;
     92     Value.setFromOpaqueValue(E.BaseOrMember);
     93     return Value;
     94   }
     95 
     96   /// Get an LValue path entry, which is known to not be an array index, as a
     97   /// field declaration.
     98   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
     99     return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
    100   }
    101   /// Get an LValue path entry, which is known to not be an array index, as a
    102   /// base class declaration.
    103   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
    104     return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
    105   }
    106   /// Determine whether this LValue path entry for a base class names a virtual
    107   /// base class.
    108   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
    109     return getAsBaseOrMember(E).getInt();
    110   }
    111 
    112   /// Find the path length and type of the most-derived subobject in the given
    113   /// path, and find the size of the containing array, if any.
    114   static
    115   unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
    116                                     ArrayRef<APValue::LValuePathEntry> Path,
    117                                     uint64_t &ArraySize, QualType &Type,
    118                                     bool &IsArray) {
    119     unsigned MostDerivedLength = 0;
    120     Type = Base;
    121     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
    122       if (Type->isArrayType()) {
    123         const ConstantArrayType *CAT =
    124           cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
    125         Type = CAT->getElementType();
    126         ArraySize = CAT->getSize().getZExtValue();
    127         MostDerivedLength = I + 1;
    128         IsArray = true;
    129       } else if (Type->isAnyComplexType()) {
    130         const ComplexType *CT = Type->castAs<ComplexType>();
    131         Type = CT->getElementType();
    132         ArraySize = 2;
    133         MostDerivedLength = I + 1;
    134         IsArray = true;
    135       } else if (const FieldDecl *FD = getAsField(Path[I])) {
    136         Type = FD->getType();
    137         ArraySize = 0;
    138         MostDerivedLength = I + 1;
    139         IsArray = false;
    140       } else {
    141         // Path[I] describes a base class.
    142         ArraySize = 0;
    143         IsArray = false;
    144       }
    145     }
    146     return MostDerivedLength;
    147   }
    148 
    149   // The order of this enum is important for diagnostics.
    150   enum CheckSubobjectKind {
    151     CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
    152     CSK_This, CSK_Real, CSK_Imag
    153   };
    154 
    155   /// A path from a glvalue to a subobject of that glvalue.
    156   struct SubobjectDesignator {
    157     /// True if the subobject was named in a manner not supported by C++11. Such
    158     /// lvalues can still be folded, but they are not core constant expressions
    159     /// and we cannot perform lvalue-to-rvalue conversions on them.
    160     bool Invalid : 1;
    161 
    162     /// Is this a pointer one past the end of an object?
    163     bool IsOnePastTheEnd : 1;
    164 
    165     /// Indicator of whether the most-derived object is an array element.
    166     bool MostDerivedIsArrayElement : 1;
    167 
    168     /// The length of the path to the most-derived object of which this is a
    169     /// subobject.
    170     unsigned MostDerivedPathLength : 29;
    171 
    172     /// The size of the array of which the most-derived object is an element.
    173     /// This will always be 0 if the most-derived object is not an array
    174     /// element. 0 is not an indicator of whether or not the most-derived object
    175     /// is an array, however, because 0-length arrays are allowed.
    176     uint64_t MostDerivedArraySize;
    177 
    178     /// The type of the most derived object referred to by this address.
    179     QualType MostDerivedType;
    180 
    181     typedef APValue::LValuePathEntry PathEntry;
    182 
    183     /// The entries on the path from the glvalue to the designated subobject.
    184     SmallVector<PathEntry, 8> Entries;
    185 
    186     SubobjectDesignator() : Invalid(true) {}
    187 
    188     explicit SubobjectDesignator(QualType T)
    189         : Invalid(false), IsOnePastTheEnd(false),
    190           MostDerivedIsArrayElement(false), MostDerivedPathLength(0),
    191           MostDerivedArraySize(0), MostDerivedType(T) {}
    192 
    193     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
    194         : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
    195           MostDerivedIsArrayElement(false), MostDerivedPathLength(0),
    196           MostDerivedArraySize(0) {
    197       if (!Invalid) {
    198         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
    199         ArrayRef<PathEntry> VEntries = V.getLValuePath();
    200         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
    201         if (V.getLValueBase()) {
    202           bool IsArray = false;
    203           MostDerivedPathLength =
    204               findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
    205                                        V.getLValuePath(), MostDerivedArraySize,
    206                                        MostDerivedType, IsArray);
    207           MostDerivedIsArrayElement = IsArray;
    208         }
    209       }
    210     }
    211 
    212     void setInvalid() {
    213       Invalid = true;
    214       Entries.clear();
    215     }
    216 
    217     /// Determine whether this is a one-past-the-end pointer.
    218     bool isOnePastTheEnd() const {
    219       assert(!Invalid);
    220       if (IsOnePastTheEnd)
    221         return true;
    222       if (MostDerivedIsArrayElement &&
    223           Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
    224         return true;
    225       return false;
    226     }
    227 
    228     /// Check that this refers to a valid subobject.
    229     bool isValidSubobject() const {
    230       if (Invalid)
    231         return false;
    232       return !isOnePastTheEnd();
    233     }
    234     /// Check that this refers to a valid subobject, and if not, produce a
    235     /// relevant diagnostic and set the designator as invalid.
    236     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
    237 
    238     /// Update this designator to refer to the first element within this array.
    239     void addArrayUnchecked(const ConstantArrayType *CAT) {
    240       PathEntry Entry;
    241       Entry.ArrayIndex = 0;
    242       Entries.push_back(Entry);
    243 
    244       // This is a most-derived object.
    245       MostDerivedType = CAT->getElementType();
    246       MostDerivedIsArrayElement = true;
    247       MostDerivedArraySize = CAT->getSize().getZExtValue();
    248       MostDerivedPathLength = Entries.size();
    249     }
    250     /// Update this designator to refer to the given base or member of this
    251     /// object.
    252     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
    253       PathEntry Entry;
    254       APValue::BaseOrMemberType Value(D, Virtual);
    255       Entry.BaseOrMember = Value.getOpaqueValue();
    256       Entries.push_back(Entry);
    257 
    258       // If this isn't a base class, it's a new most-derived object.
    259       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
    260         MostDerivedType = FD->getType();
    261         MostDerivedIsArrayElement = false;
    262         MostDerivedArraySize = 0;
    263         MostDerivedPathLength = Entries.size();
    264       }
    265     }
    266     /// Update this designator to refer to the given complex component.
    267     void addComplexUnchecked(QualType EltTy, bool Imag) {
    268       PathEntry Entry;
    269       Entry.ArrayIndex = Imag;
    270       Entries.push_back(Entry);
    271 
    272       // This is technically a most-derived object, though in practice this
    273       // is unlikely to matter.
    274       MostDerivedType = EltTy;
    275       MostDerivedIsArrayElement = true;
    276       MostDerivedArraySize = 2;
    277       MostDerivedPathLength = Entries.size();
    278     }
    279     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
    280     /// Add N to the address of this subobject.
    281     void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
    282       if (Invalid) return;
    283       if (MostDerivedPathLength == Entries.size() &&
    284           MostDerivedIsArrayElement) {
    285         Entries.back().ArrayIndex += N;
    286         if (Entries.back().ArrayIndex > MostDerivedArraySize) {
    287           diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
    288           setInvalid();
    289         }
    290         return;
    291       }
    292       // [expr.add]p4: For the purposes of these operators, a pointer to a
    293       // nonarray object behaves the same as a pointer to the first element of
    294       // an array of length one with the type of the object as its element type.
    295       if (IsOnePastTheEnd && N == (uint64_t)-1)
    296         IsOnePastTheEnd = false;
    297       else if (!IsOnePastTheEnd && N == 1)
    298         IsOnePastTheEnd = true;
    299       else if (N != 0) {
    300         diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
    301         setInvalid();
    302       }
    303     }
    304   };
    305 
    306   /// A stack frame in the constexpr call stack.
    307   struct CallStackFrame {
    308     EvalInfo &Info;
    309 
    310     /// Parent - The caller of this stack frame.
    311     CallStackFrame *Caller;
    312 
    313     /// CallLoc - The location of the call expression for this call.
    314     SourceLocation CallLoc;
    315 
    316     /// Callee - The function which was called.
    317     const FunctionDecl *Callee;
    318 
    319     /// Index - The call index of this call.
    320     unsigned Index;
    321 
    322     /// This - The binding for the this pointer in this call, if any.
    323     const LValue *This;
    324 
    325     /// Arguments - Parameter bindings for this function call, indexed by
    326     /// parameters' function scope indices.
    327     APValue *Arguments;
    328 
    329     // Note that we intentionally use std::map here so that references to
    330     // values are stable.
    331     typedef std::map<const void*, APValue> MapTy;
    332     typedef MapTy::const_iterator temp_iterator;
    333     /// Temporaries - Temporary lvalues materialized within this stack frame.
    334     MapTy Temporaries;
    335 
    336     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
    337                    const FunctionDecl *Callee, const LValue *This,
    338                    APValue *Arguments);
    339     ~CallStackFrame();
    340 
    341     APValue *getTemporary(const void *Key) {
    342       MapTy::iterator I = Temporaries.find(Key);
    343       return I == Temporaries.end() ? nullptr : &I->second;
    344     }
    345     APValue &createTemporary(const void *Key, bool IsLifetimeExtended);
    346   };
    347 
    348   /// Temporarily override 'this'.
    349   class ThisOverrideRAII {
    350   public:
    351     ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
    352         : Frame(Frame), OldThis(Frame.This) {
    353       if (Enable)
    354         Frame.This = NewThis;
    355     }
    356     ~ThisOverrideRAII() {
    357       Frame.This = OldThis;
    358     }
    359   private:
    360     CallStackFrame &Frame;
    361     const LValue *OldThis;
    362   };
    363 
    364   /// A partial diagnostic which we might know in advance that we are not going
    365   /// to emit.
    366   class OptionalDiagnostic {
    367     PartialDiagnostic *Diag;
    368 
    369   public:
    370     explicit OptionalDiagnostic(PartialDiagnostic *Diag = nullptr)
    371       : Diag(Diag) {}
    372 
    373     template<typename T>
    374     OptionalDiagnostic &operator<<(const T &v) {
    375       if (Diag)
    376         *Diag << v;
    377       return *this;
    378     }
    379 
    380     OptionalDiagnostic &operator<<(const APSInt &I) {
    381       if (Diag) {
    382         SmallVector<char, 32> Buffer;
    383         I.toString(Buffer);
    384         *Diag << StringRef(Buffer.data(), Buffer.size());
    385       }
    386       return *this;
    387     }
    388 
    389     OptionalDiagnostic &operator<<(const APFloat &F) {
    390       if (Diag) {
    391         // FIXME: Force the precision of the source value down so we don't
    392         // print digits which are usually useless (we don't really care here if
    393         // we truncate a digit by accident in edge cases).  Ideally,
    394         // APFloat::toString would automatically print the shortest
    395         // representation which rounds to the correct value, but it's a bit
    396         // tricky to implement.
    397         unsigned precision =
    398             llvm::APFloat::semanticsPrecision(F.getSemantics());
    399         precision = (precision * 59 + 195) / 196;
    400         SmallVector<char, 32> Buffer;
    401         F.toString(Buffer, precision);
    402         *Diag << StringRef(Buffer.data(), Buffer.size());
    403       }
    404       return *this;
    405     }
    406   };
    407 
    408   /// A cleanup, and a flag indicating whether it is lifetime-extended.
    409   class Cleanup {
    410     llvm::PointerIntPair<APValue*, 1, bool> Value;
    411 
    412   public:
    413     Cleanup(APValue *Val, bool IsLifetimeExtended)
    414         : Value(Val, IsLifetimeExtended) {}
    415 
    416     bool isLifetimeExtended() const { return Value.getInt(); }
    417     void endLifetime() {
    418       *Value.getPointer() = APValue();
    419     }
    420   };
    421 
    422   /// EvalInfo - This is a private struct used by the evaluator to capture
    423   /// information about a subexpression as it is folded.  It retains information
    424   /// about the AST context, but also maintains information about the folded
    425   /// expression.
    426   ///
    427   /// If an expression could be evaluated, it is still possible it is not a C
    428   /// "integer constant expression" or constant expression.  If not, this struct
    429   /// captures information about how and why not.
    430   ///
    431   /// One bit of information passed *into* the request for constant folding
    432   /// indicates whether the subexpression is "evaluated" or not according to C
    433   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
    434   /// evaluate the expression regardless of what the RHS is, but C only allows
    435   /// certain things in certain situations.
    436   struct EvalInfo {
    437     ASTContext &Ctx;
    438 
    439     /// EvalStatus - Contains information about the evaluation.
    440     Expr::EvalStatus &EvalStatus;
    441 
    442     /// CurrentCall - The top of the constexpr call stack.
    443     CallStackFrame *CurrentCall;
    444 
    445     /// CallStackDepth - The number of calls in the call stack right now.
    446     unsigned CallStackDepth;
    447 
    448     /// NextCallIndex - The next call index to assign.
    449     unsigned NextCallIndex;
    450 
    451     /// StepsLeft - The remaining number of evaluation steps we're permitted
    452     /// to perform. This is essentially a limit for the number of statements
    453     /// we will evaluate.
    454     unsigned StepsLeft;
    455 
    456     /// BottomFrame - The frame in which evaluation started. This must be
    457     /// initialized after CurrentCall and CallStackDepth.
    458     CallStackFrame BottomFrame;
    459 
    460     /// A stack of values whose lifetimes end at the end of some surrounding
    461     /// evaluation frame.
    462     llvm::SmallVector<Cleanup, 16> CleanupStack;
    463 
    464     /// EvaluatingDecl - This is the declaration whose initializer is being
    465     /// evaluated, if any.
    466     APValue::LValueBase EvaluatingDecl;
    467 
    468     /// EvaluatingDeclValue - This is the value being constructed for the
    469     /// declaration whose initializer is being evaluated, if any.
    470     APValue *EvaluatingDeclValue;
    471 
    472     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
    473     /// notes attached to it will also be stored, otherwise they will not be.
    474     bool HasActiveDiagnostic;
    475 
    476     /// \brief Have we emitted a diagnostic explaining why we couldn't constant
    477     /// fold (not just why it's not strictly a constant expression)?
    478     bool HasFoldFailureDiagnostic;
    479 
    480     enum EvaluationMode {
    481       /// Evaluate as a constant expression. Stop if we find that the expression
    482       /// is not a constant expression.
    483       EM_ConstantExpression,
    484 
    485       /// Evaluate as a potential constant expression. Keep going if we hit a
    486       /// construct that we can't evaluate yet (because we don't yet know the
    487       /// value of something) but stop if we hit something that could never be
    488       /// a constant expression.
    489       EM_PotentialConstantExpression,
    490 
    491       /// Fold the expression to a constant. Stop if we hit a side-effect that
    492       /// we can't model.
    493       EM_ConstantFold,
    494 
    495       /// Evaluate the expression looking for integer overflow and similar
    496       /// issues. Don't worry about side-effects, and try to visit all
    497       /// subexpressions.
    498       EM_EvaluateForOverflow,
    499 
    500       /// Evaluate in any way we know how. Don't worry about side-effects that
    501       /// can't be modeled.
    502       EM_IgnoreSideEffects,
    503 
    504       /// Evaluate as a constant expression. Stop if we find that the expression
    505       /// is not a constant expression. Some expressions can be retried in the
    506       /// optimizer if we don't constant fold them here, but in an unevaluated
    507       /// context we try to fold them immediately since the optimizer never
    508       /// gets a chance to look at it.
    509       EM_ConstantExpressionUnevaluated,
    510 
    511       /// Evaluate as a potential constant expression. Keep going if we hit a
    512       /// construct that we can't evaluate yet (because we don't yet know the
    513       /// value of something) but stop if we hit something that could never be
    514       /// a constant expression. Some expressions can be retried in the
    515       /// optimizer if we don't constant fold them here, but in an unevaluated
    516       /// context we try to fold them immediately since the optimizer never
    517       /// gets a chance to look at it.
    518       EM_PotentialConstantExpressionUnevaluated,
    519 
    520       /// Evaluate as a constant expression. Continue evaluating if we find a
    521       /// MemberExpr with a base that can't be evaluated.
    522       EM_DesignatorFold,
    523     } EvalMode;
    524 
    525     /// Are we checking whether the expression is a potential constant
    526     /// expression?
    527     bool checkingPotentialConstantExpression() const {
    528       return EvalMode == EM_PotentialConstantExpression ||
    529              EvalMode == EM_PotentialConstantExpressionUnevaluated;
    530     }
    531 
    532     /// Are we checking an expression for overflow?
    533     // FIXME: We should check for any kind of undefined or suspicious behavior
    534     // in such constructs, not just overflow.
    535     bool checkingForOverflow() { return EvalMode == EM_EvaluateForOverflow; }
    536 
    537     EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
    538       : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
    539         CallStackDepth(0), NextCallIndex(1),
    540         StepsLeft(getLangOpts().ConstexprStepLimit),
    541         BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
    542         EvaluatingDecl((const ValueDecl *)nullptr),
    543         EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
    544         HasFoldFailureDiagnostic(false), EvalMode(Mode) {}
    545 
    546     void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
    547       EvaluatingDecl = Base;
    548       EvaluatingDeclValue = &Value;
    549     }
    550 
    551     const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
    552 
    553     bool CheckCallLimit(SourceLocation Loc) {
    554       // Don't perform any constexpr calls (other than the call we're checking)
    555       // when checking a potential constant expression.
    556       if (checkingPotentialConstantExpression() && CallStackDepth > 1)
    557         return false;
    558       if (NextCallIndex == 0) {
    559         // NextCallIndex has wrapped around.
    560         Diag(Loc, diag::note_constexpr_call_limit_exceeded);
    561         return false;
    562       }
    563       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
    564         return true;
    565       Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
    566         << getLangOpts().ConstexprCallDepth;
    567       return false;
    568     }
    569 
    570     CallStackFrame *getCallFrame(unsigned CallIndex) {
    571       assert(CallIndex && "no call index in getCallFrame");
    572       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
    573       // be null in this loop.
    574       CallStackFrame *Frame = CurrentCall;
    575       while (Frame->Index > CallIndex)
    576         Frame = Frame->Caller;
    577       return (Frame->Index == CallIndex) ? Frame : nullptr;
    578     }
    579 
    580     bool nextStep(const Stmt *S) {
    581       if (!StepsLeft) {
    582         Diag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded);
    583         return false;
    584       }
    585       --StepsLeft;
    586       return true;
    587     }
    588 
    589   private:
    590     /// Add a diagnostic to the diagnostics list.
    591     PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
    592       PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
    593       EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
    594       return EvalStatus.Diag->back().second;
    595     }
    596 
    597     /// Add notes containing a call stack to the current point of evaluation.
    598     void addCallStack(unsigned Limit);
    599 
    600   public:
    601     /// Diagnose that the evaluation cannot be folded.
    602     OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
    603                               = diag::note_invalid_subexpr_in_const_expr,
    604                             unsigned ExtraNotes = 0, bool IsCCEDiag = false) {
    605       if (EvalStatus.Diag) {
    606         // If we have a prior diagnostic, it will be noting that the expression
    607         // isn't a constant expression. This diagnostic is more important,
    608         // unless we require this evaluation to produce a constant expression.
    609         //
    610         // FIXME: We might want to show both diagnostics to the user in
    611         // EM_ConstantFold mode.
    612         if (!EvalStatus.Diag->empty()) {
    613           switch (EvalMode) {
    614           case EM_ConstantFold:
    615           case EM_IgnoreSideEffects:
    616           case EM_EvaluateForOverflow:
    617             if (!HasFoldFailureDiagnostic)
    618               break;
    619             // We've already failed to fold something. Keep that diagnostic.
    620           case EM_ConstantExpression:
    621           case EM_PotentialConstantExpression:
    622           case EM_ConstantExpressionUnevaluated:
    623           case EM_PotentialConstantExpressionUnevaluated:
    624           case EM_DesignatorFold:
    625             HasActiveDiagnostic = false;
    626             return OptionalDiagnostic();
    627           }
    628         }
    629 
    630         unsigned CallStackNotes = CallStackDepth - 1;
    631         unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
    632         if (Limit)
    633           CallStackNotes = std::min(CallStackNotes, Limit + 1);
    634         if (checkingPotentialConstantExpression())
    635           CallStackNotes = 0;
    636 
    637         HasActiveDiagnostic = true;
    638         HasFoldFailureDiagnostic = !IsCCEDiag;
    639         EvalStatus.Diag->clear();
    640         EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
    641         addDiag(Loc, DiagId);
    642         if (!checkingPotentialConstantExpression())
    643           addCallStack(Limit);
    644         return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
    645       }
    646       HasActiveDiagnostic = false;
    647       return OptionalDiagnostic();
    648     }
    649 
    650     OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
    651                               = diag::note_invalid_subexpr_in_const_expr,
    652                             unsigned ExtraNotes = 0, bool IsCCEDiag = false) {
    653       if (EvalStatus.Diag)
    654         return Diag(E->getExprLoc(), DiagId, ExtraNotes, IsCCEDiag);
    655       HasActiveDiagnostic = false;
    656       return OptionalDiagnostic();
    657     }
    658 
    659     /// Diagnose that the evaluation does not produce a C++11 core constant
    660     /// expression.
    661     ///
    662     /// FIXME: Stop evaluating if we're in EM_ConstantExpression or
    663     /// EM_PotentialConstantExpression mode and we produce one of these.
    664     template<typename LocArg>
    665     OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
    666                                  = diag::note_invalid_subexpr_in_const_expr,
    667                                unsigned ExtraNotes = 0) {
    668       // Don't override a previous diagnostic. Don't bother collecting
    669       // diagnostics if we're evaluating for overflow.
    670       if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
    671         HasActiveDiagnostic = false;
    672         return OptionalDiagnostic();
    673       }
    674       return Diag(Loc, DiagId, ExtraNotes, true);
    675     }
    676 
    677     /// Add a note to a prior diagnostic.
    678     OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
    679       if (!HasActiveDiagnostic)
    680         return OptionalDiagnostic();
    681       return OptionalDiagnostic(&addDiag(Loc, DiagId));
    682     }
    683 
    684     /// Add a stack of notes to a prior diagnostic.
    685     void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
    686       if (HasActiveDiagnostic) {
    687         EvalStatus.Diag->insert(EvalStatus.Diag->end(),
    688                                 Diags.begin(), Diags.end());
    689       }
    690     }
    691 
    692     /// Should we continue evaluation after encountering a side-effect that we
    693     /// couldn't model?
    694     bool keepEvaluatingAfterSideEffect() {
    695       switch (EvalMode) {
    696       case EM_PotentialConstantExpression:
    697       case EM_PotentialConstantExpressionUnevaluated:
    698       case EM_EvaluateForOverflow:
    699       case EM_IgnoreSideEffects:
    700         return true;
    701 
    702       case EM_ConstantExpression:
    703       case EM_ConstantExpressionUnevaluated:
    704       case EM_ConstantFold:
    705       case EM_DesignatorFold:
    706         return false;
    707       }
    708       llvm_unreachable("Missed EvalMode case");
    709     }
    710 
    711     /// Note that we have had a side-effect, and determine whether we should
    712     /// keep evaluating.
    713     bool noteSideEffect() {
    714       EvalStatus.HasSideEffects = true;
    715       return keepEvaluatingAfterSideEffect();
    716     }
    717 
    718     /// Should we continue evaluation after encountering undefined behavior?
    719     bool keepEvaluatingAfterUndefinedBehavior() {
    720       switch (EvalMode) {
    721       case EM_EvaluateForOverflow:
    722       case EM_IgnoreSideEffects:
    723       case EM_ConstantFold:
    724       case EM_DesignatorFold:
    725         return true;
    726 
    727       case EM_PotentialConstantExpression:
    728       case EM_PotentialConstantExpressionUnevaluated:
    729       case EM_ConstantExpression:
    730       case EM_ConstantExpressionUnevaluated:
    731         return false;
    732       }
    733       llvm_unreachable("Missed EvalMode case");
    734     }
    735 
    736     /// Note that we hit something that was technically undefined behavior, but
    737     /// that we can evaluate past it (such as signed overflow or floating-point
    738     /// division by zero.)
    739     bool noteUndefinedBehavior() {
    740       EvalStatus.HasUndefinedBehavior = true;
    741       return keepEvaluatingAfterUndefinedBehavior();
    742     }
    743 
    744     /// Should we continue evaluation as much as possible after encountering a
    745     /// construct which can't be reduced to a value?
    746     bool keepEvaluatingAfterFailure() {
    747       if (!StepsLeft)
    748         return false;
    749 
    750       switch (EvalMode) {
    751       case EM_PotentialConstantExpression:
    752       case EM_PotentialConstantExpressionUnevaluated:
    753       case EM_EvaluateForOverflow:
    754         return true;
    755 
    756       case EM_ConstantExpression:
    757       case EM_ConstantExpressionUnevaluated:
    758       case EM_ConstantFold:
    759       case EM_IgnoreSideEffects:
    760       case EM_DesignatorFold:
    761         return false;
    762       }
    763       llvm_unreachable("Missed EvalMode case");
    764     }
    765 
    766     bool allowInvalidBaseExpr() const {
    767       return EvalMode == EM_DesignatorFold;
    768     }
    769   };
    770 
    771   /// Object used to treat all foldable expressions as constant expressions.
    772   struct FoldConstant {
    773     EvalInfo &Info;
    774     bool Enabled;
    775     bool HadNoPriorDiags;
    776     EvalInfo::EvaluationMode OldMode;
    777 
    778     explicit FoldConstant(EvalInfo &Info, bool Enabled)
    779       : Info(Info),
    780         Enabled(Enabled),
    781         HadNoPriorDiags(Info.EvalStatus.Diag &&
    782                         Info.EvalStatus.Diag->empty() &&
    783                         !Info.EvalStatus.HasSideEffects),
    784         OldMode(Info.EvalMode) {
    785       if (Enabled &&
    786           (Info.EvalMode == EvalInfo::EM_ConstantExpression ||
    787            Info.EvalMode == EvalInfo::EM_ConstantExpressionUnevaluated))
    788         Info.EvalMode = EvalInfo::EM_ConstantFold;
    789     }
    790     void keepDiagnostics() { Enabled = false; }
    791     ~FoldConstant() {
    792       if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
    793           !Info.EvalStatus.HasSideEffects)
    794         Info.EvalStatus.Diag->clear();
    795       Info.EvalMode = OldMode;
    796     }
    797   };
    798 
    799   /// RAII object used to treat the current evaluation as the correct pointer
    800   /// offset fold for the current EvalMode
    801   struct FoldOffsetRAII {
    802     EvalInfo &Info;
    803     EvalInfo::EvaluationMode OldMode;
    804     explicit FoldOffsetRAII(EvalInfo &Info, bool Subobject)
    805         : Info(Info), OldMode(Info.EvalMode) {
    806       if (!Info.checkingPotentialConstantExpression())
    807         Info.EvalMode = Subobject ? EvalInfo::EM_DesignatorFold
    808                                   : EvalInfo::EM_ConstantFold;
    809     }
    810 
    811     ~FoldOffsetRAII() { Info.EvalMode = OldMode; }
    812   };
    813 
    814   /// RAII object used to suppress diagnostics and side-effects from a
    815   /// speculative evaluation.
    816   class SpeculativeEvaluationRAII {
    817     EvalInfo &Info;
    818     Expr::EvalStatus Old;
    819 
    820   public:
    821     SpeculativeEvaluationRAII(EvalInfo &Info,
    822                         SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
    823       : Info(Info), Old(Info.EvalStatus) {
    824       Info.EvalStatus.Diag = NewDiag;
    825       // If we're speculatively evaluating, we may have skipped over some
    826       // evaluations and missed out a side effect.
    827       Info.EvalStatus.HasSideEffects = true;
    828     }
    829     ~SpeculativeEvaluationRAII() {
    830       Info.EvalStatus = Old;
    831     }
    832   };
    833 
    834   /// RAII object wrapping a full-expression or block scope, and handling
    835   /// the ending of the lifetime of temporaries created within it.
    836   template<bool IsFullExpression>
    837   class ScopeRAII {
    838     EvalInfo &Info;
    839     unsigned OldStackSize;
    840   public:
    841     ScopeRAII(EvalInfo &Info)
    842         : Info(Info), OldStackSize(Info.CleanupStack.size()) {}
    843     ~ScopeRAII() {
    844       // Body moved to a static method to encourage the compiler to inline away
    845       // instances of this class.
    846       cleanup(Info, OldStackSize);
    847     }
    848   private:
    849     static void cleanup(EvalInfo &Info, unsigned OldStackSize) {
    850       unsigned NewEnd = OldStackSize;
    851       for (unsigned I = OldStackSize, N = Info.CleanupStack.size();
    852            I != N; ++I) {
    853         if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) {
    854           // Full-expression cleanup of a lifetime-extended temporary: nothing
    855           // to do, just move this cleanup to the right place in the stack.
    856           std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]);
    857           ++NewEnd;
    858         } else {
    859           // End the lifetime of the object.
    860           Info.CleanupStack[I].endLifetime();
    861         }
    862       }
    863       Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd,
    864                               Info.CleanupStack.end());
    865     }
    866   };
    867   typedef ScopeRAII<false> BlockScopeRAII;
    868   typedef ScopeRAII<true> FullExpressionRAII;
    869 }
    870 
    871 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
    872                                          CheckSubobjectKind CSK) {
    873   if (Invalid)
    874     return false;
    875   if (isOnePastTheEnd()) {
    876     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
    877       << CSK;
    878     setInvalid();
    879     return false;
    880   }
    881   return true;
    882 }
    883 
    884 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
    885                                                     const Expr *E, uint64_t N) {
    886   if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
    887     Info.CCEDiag(E, diag::note_constexpr_array_index)
    888       << static_cast<int>(N) << /*array*/ 0
    889       << static_cast<unsigned>(MostDerivedArraySize);
    890   else
    891     Info.CCEDiag(E, diag::note_constexpr_array_index)
    892       << static_cast<int>(N) << /*non-array*/ 1;
    893   setInvalid();
    894 }
    895 
    896 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
    897                                const FunctionDecl *Callee, const LValue *This,
    898                                APValue *Arguments)
    899     : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
    900       Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
    901   Info.CurrentCall = this;
    902   ++Info.CallStackDepth;
    903 }
    904 
    905 CallStackFrame::~CallStackFrame() {
    906   assert(Info.CurrentCall == this && "calls retired out of order");
    907   --Info.CallStackDepth;
    908   Info.CurrentCall = Caller;
    909 }
    910 
    911 APValue &CallStackFrame::createTemporary(const void *Key,
    912                                          bool IsLifetimeExtended) {
    913   APValue &Result = Temporaries[Key];
    914   assert(Result.isUninit() && "temporary created multiple times");
    915   Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended));
    916   return Result;
    917 }
    918 
    919 static void describeCall(CallStackFrame *Frame, raw_ostream &Out);
    920 
    921 void EvalInfo::addCallStack(unsigned Limit) {
    922   // Determine which calls to skip, if any.
    923   unsigned ActiveCalls = CallStackDepth - 1;
    924   unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
    925   if (Limit && Limit < ActiveCalls) {
    926     SkipStart = Limit / 2 + Limit % 2;
    927     SkipEnd = ActiveCalls - Limit / 2;
    928   }
    929 
    930   // Walk the call stack and add the diagnostics.
    931   unsigned CallIdx = 0;
    932   for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
    933        Frame = Frame->Caller, ++CallIdx) {
    934     // Skip this call?
    935     if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
    936       if (CallIdx == SkipStart) {
    937         // Note that we're skipping calls.
    938         addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
    939           << unsigned(ActiveCalls - Limit);
    940       }
    941       continue;
    942     }
    943 
    944     SmallVector<char, 128> Buffer;
    945     llvm::raw_svector_ostream Out(Buffer);
    946     describeCall(Frame, Out);
    947     addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
    948   }
    949 }
    950 
    951 namespace {
    952   struct ComplexValue {
    953   private:
    954     bool IsInt;
    955 
    956   public:
    957     APSInt IntReal, IntImag;
    958     APFloat FloatReal, FloatImag;
    959 
    960     ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
    961 
    962     void makeComplexFloat() { IsInt = false; }
    963     bool isComplexFloat() const { return !IsInt; }
    964     APFloat &getComplexFloatReal() { return FloatReal; }
    965     APFloat &getComplexFloatImag() { return FloatImag; }
    966 
    967     void makeComplexInt() { IsInt = true; }
    968     bool isComplexInt() const { return IsInt; }
    969     APSInt &getComplexIntReal() { return IntReal; }
    970     APSInt &getComplexIntImag() { return IntImag; }
    971 
    972     void moveInto(APValue &v) const {
    973       if (isComplexFloat())
    974         v = APValue(FloatReal, FloatImag);
    975       else
    976         v = APValue(IntReal, IntImag);
    977     }
    978     void setFrom(const APValue &v) {
    979       assert(v.isComplexFloat() || v.isComplexInt());
    980       if (v.isComplexFloat()) {
    981         makeComplexFloat();
    982         FloatReal = v.getComplexFloatReal();
    983         FloatImag = v.getComplexFloatImag();
    984       } else {
    985         makeComplexInt();
    986         IntReal = v.getComplexIntReal();
    987         IntImag = v.getComplexIntImag();
    988       }
    989     }
    990   };
    991 
    992   struct LValue {
    993     APValue::LValueBase Base;
    994     CharUnits Offset;
    995     bool InvalidBase : 1;
    996     unsigned CallIndex : 31;
    997     SubobjectDesignator Designator;
    998 
    999     const APValue::LValueBase getLValueBase() const { return Base; }
   1000     CharUnits &getLValueOffset() { return Offset; }
   1001     const CharUnits &getLValueOffset() const { return Offset; }
   1002     unsigned getLValueCallIndex() const { return CallIndex; }
   1003     SubobjectDesignator &getLValueDesignator() { return Designator; }
   1004     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
   1005 
   1006     void moveInto(APValue &V) const {
   1007       if (Designator.Invalid)
   1008         V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
   1009       else
   1010         V = APValue(Base, Offset, Designator.Entries,
   1011                     Designator.IsOnePastTheEnd, CallIndex);
   1012     }
   1013     void setFrom(ASTContext &Ctx, const APValue &V) {
   1014       assert(V.isLValue());
   1015       Base = V.getLValueBase();
   1016       Offset = V.getLValueOffset();
   1017       InvalidBase = false;
   1018       CallIndex = V.getLValueCallIndex();
   1019       Designator = SubobjectDesignator(Ctx, V);
   1020     }
   1021 
   1022     void set(APValue::LValueBase B, unsigned I = 0, bool BInvalid = false) {
   1023       Base = B;
   1024       Offset = CharUnits::Zero();
   1025       InvalidBase = BInvalid;
   1026       CallIndex = I;
   1027       Designator = SubobjectDesignator(getType(B));
   1028     }
   1029 
   1030     void setInvalid(APValue::LValueBase B, unsigned I = 0) {
   1031       set(B, I, true);
   1032     }
   1033 
   1034     // Check that this LValue is not based on a null pointer. If it is, produce
   1035     // a diagnostic and mark the designator as invalid.
   1036     bool checkNullPointer(EvalInfo &Info, const Expr *E,
   1037                           CheckSubobjectKind CSK) {
   1038       if (Designator.Invalid)
   1039         return false;
   1040       if (!Base) {
   1041         Info.CCEDiag(E, diag::note_constexpr_null_subobject)
   1042           << CSK;
   1043         Designator.setInvalid();
   1044         return false;
   1045       }
   1046       return true;
   1047     }
   1048 
   1049     // Check this LValue refers to an object. If not, set the designator to be
   1050     // invalid and emit a diagnostic.
   1051     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
   1052       return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
   1053              Designator.checkSubobject(Info, E, CSK);
   1054     }
   1055 
   1056     void addDecl(EvalInfo &Info, const Expr *E,
   1057                  const Decl *D, bool Virtual = false) {
   1058       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
   1059         Designator.addDeclUnchecked(D, Virtual);
   1060     }
   1061     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
   1062       if (checkSubobject(Info, E, CSK_ArrayToPointer))
   1063         Designator.addArrayUnchecked(CAT);
   1064     }
   1065     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
   1066       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
   1067         Designator.addComplexUnchecked(EltTy, Imag);
   1068     }
   1069     void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
   1070       if (N && checkNullPointer(Info, E, CSK_ArrayIndex))
   1071         Designator.adjustIndex(Info, E, N);
   1072     }
   1073   };
   1074 
   1075   struct MemberPtr {
   1076     MemberPtr() {}
   1077     explicit MemberPtr(const ValueDecl *Decl) :
   1078       DeclAndIsDerivedMember(Decl, false), Path() {}
   1079 
   1080     /// The member or (direct or indirect) field referred to by this member
   1081     /// pointer, or 0 if this is a null member pointer.
   1082     const ValueDecl *getDecl() const {
   1083       return DeclAndIsDerivedMember.getPointer();
   1084     }
   1085     /// Is this actually a member of some type derived from the relevant class?
   1086     bool isDerivedMember() const {
   1087       return DeclAndIsDerivedMember.getInt();
   1088     }
   1089     /// Get the class which the declaration actually lives in.
   1090     const CXXRecordDecl *getContainingRecord() const {
   1091       return cast<CXXRecordDecl>(
   1092           DeclAndIsDerivedMember.getPointer()->getDeclContext());
   1093     }
   1094 
   1095     void moveInto(APValue &V) const {
   1096       V = APValue(getDecl(), isDerivedMember(), Path);
   1097     }
   1098     void setFrom(const APValue &V) {
   1099       assert(V.isMemberPointer());
   1100       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
   1101       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
   1102       Path.clear();
   1103       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
   1104       Path.insert(Path.end(), P.begin(), P.end());
   1105     }
   1106 
   1107     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
   1108     /// whether the member is a member of some class derived from the class type
   1109     /// of the member pointer.
   1110     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
   1111     /// Path - The path of base/derived classes from the member declaration's
   1112     /// class (exclusive) to the class type of the member pointer (inclusive).
   1113     SmallVector<const CXXRecordDecl*, 4> Path;
   1114 
   1115     /// Perform a cast towards the class of the Decl (either up or down the
   1116     /// hierarchy).
   1117     bool castBack(const CXXRecordDecl *Class) {
   1118       assert(!Path.empty());
   1119       const CXXRecordDecl *Expected;
   1120       if (Path.size() >= 2)
   1121         Expected = Path[Path.size() - 2];
   1122       else
   1123         Expected = getContainingRecord();
   1124       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
   1125         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
   1126         // if B does not contain the original member and is not a base or
   1127         // derived class of the class containing the original member, the result
   1128         // of the cast is undefined.
   1129         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
   1130         // (D::*). We consider that to be a language defect.
   1131         return false;
   1132       }
   1133       Path.pop_back();
   1134       return true;
   1135     }
   1136     /// Perform a base-to-derived member pointer cast.
   1137     bool castToDerived(const CXXRecordDecl *Derived) {
   1138       if (!getDecl())
   1139         return true;
   1140       if (!isDerivedMember()) {
   1141         Path.push_back(Derived);
   1142         return true;
   1143       }
   1144       if (!castBack(Derived))
   1145         return false;
   1146       if (Path.empty())
   1147         DeclAndIsDerivedMember.setInt(false);
   1148       return true;
   1149     }
   1150     /// Perform a derived-to-base member pointer cast.
   1151     bool castToBase(const CXXRecordDecl *Base) {
   1152       if (!getDecl())
   1153         return true;
   1154       if (Path.empty())
   1155         DeclAndIsDerivedMember.setInt(true);
   1156       if (isDerivedMember()) {
   1157         Path.push_back(Base);
   1158         return true;
   1159       }
   1160       return castBack(Base);
   1161     }
   1162   };
   1163 
   1164   /// Compare two member pointers, which are assumed to be of the same type.
   1165   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
   1166     if (!LHS.getDecl() || !RHS.getDecl())
   1167       return !LHS.getDecl() && !RHS.getDecl();
   1168     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
   1169       return false;
   1170     return LHS.Path == RHS.Path;
   1171   }
   1172 }
   1173 
   1174 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
   1175 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
   1176                             const LValue &This, const Expr *E,
   1177                             bool AllowNonLiteralTypes = false);
   1178 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
   1179 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
   1180 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
   1181                                   EvalInfo &Info);
   1182 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
   1183 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
   1184 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
   1185                                     EvalInfo &Info);
   1186 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
   1187 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
   1188 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info);
   1189 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
   1190 
   1191 //===----------------------------------------------------------------------===//
   1192 // Misc utilities
   1193 //===----------------------------------------------------------------------===//
   1194 
   1195 /// Produce a string describing the given constexpr call.
   1196 static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
   1197   unsigned ArgIndex = 0;
   1198   bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
   1199                       !isa<CXXConstructorDecl>(Frame->Callee) &&
   1200                       cast<CXXMethodDecl>(Frame->Callee)->isInstance();
   1201 
   1202   if (!IsMemberCall)
   1203     Out << *Frame->Callee << '(';
   1204 
   1205   if (Frame->This && IsMemberCall) {
   1206     APValue Val;
   1207     Frame->This->moveInto(Val);
   1208     Val.printPretty(Out, Frame->Info.Ctx,
   1209                     Frame->This->Designator.MostDerivedType);
   1210     // FIXME: Add parens around Val if needed.
   1211     Out << "->" << *Frame->Callee << '(';
   1212     IsMemberCall = false;
   1213   }
   1214 
   1215   for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
   1216        E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
   1217     if (ArgIndex > (unsigned)IsMemberCall)
   1218       Out << ", ";
   1219 
   1220     const ParmVarDecl *Param = *I;
   1221     const APValue &Arg = Frame->Arguments[ArgIndex];
   1222     Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
   1223 
   1224     if (ArgIndex == 0 && IsMemberCall)
   1225       Out << "->" << *Frame->Callee << '(';
   1226   }
   1227 
   1228   Out << ')';
   1229 }
   1230 
   1231 /// Evaluate an expression to see if it had side-effects, and discard its
   1232 /// result.
   1233 /// \return \c true if the caller should keep evaluating.
   1234 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
   1235   APValue Scratch;
   1236   if (!Evaluate(Scratch, Info, E))
   1237     // We don't need the value, but we might have skipped a side effect here.
   1238     return Info.noteSideEffect();
   1239   return true;
   1240 }
   1241 
   1242 /// Sign- or zero-extend a value to 64 bits. If it's already 64 bits, just
   1243 /// return its existing value.
   1244 static int64_t getExtValue(const APSInt &Value) {
   1245   return Value.isSigned() ? Value.getSExtValue()
   1246                           : static_cast<int64_t>(Value.getZExtValue());
   1247 }
   1248 
   1249 /// Should this call expression be treated as a string literal?
   1250 static bool IsStringLiteralCall(const CallExpr *E) {
   1251   unsigned Builtin = E->getBuiltinCallee();
   1252   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
   1253           Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
   1254 }
   1255 
   1256 static bool IsGlobalLValue(APValue::LValueBase B) {
   1257   // C++11 [expr.const]p3 An address constant expression is a prvalue core
   1258   // constant expression of pointer type that evaluates to...
   1259 
   1260   // ... a null pointer value, or a prvalue core constant expression of type
   1261   // std::nullptr_t.
   1262   if (!B) return true;
   1263 
   1264   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
   1265     // ... the address of an object with static storage duration,
   1266     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
   1267       return VD->hasGlobalStorage();
   1268     // ... the address of a function,
   1269     return isa<FunctionDecl>(D);
   1270   }
   1271 
   1272   const Expr *E = B.get<const Expr*>();
   1273   switch (E->getStmtClass()) {
   1274   default:
   1275     return false;
   1276   case Expr::CompoundLiteralExprClass: {
   1277     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
   1278     return CLE->isFileScope() && CLE->isLValue();
   1279   }
   1280   case Expr::MaterializeTemporaryExprClass:
   1281     // A materialized temporary might have been lifetime-extended to static
   1282     // storage duration.
   1283     return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
   1284   // A string literal has static storage duration.
   1285   case Expr::StringLiteralClass:
   1286   case Expr::PredefinedExprClass:
   1287   case Expr::ObjCStringLiteralClass:
   1288   case Expr::ObjCEncodeExprClass:
   1289   case Expr::CXXTypeidExprClass:
   1290   case Expr::CXXUuidofExprClass:
   1291     return true;
   1292   case Expr::CallExprClass:
   1293     return IsStringLiteralCall(cast<CallExpr>(E));
   1294   // For GCC compatibility, &&label has static storage duration.
   1295   case Expr::AddrLabelExprClass:
   1296     return true;
   1297   // A Block literal expression may be used as the initialization value for
   1298   // Block variables at global or local static scope.
   1299   case Expr::BlockExprClass:
   1300     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
   1301   case Expr::ImplicitValueInitExprClass:
   1302     // FIXME:
   1303     // We can never form an lvalue with an implicit value initialization as its
   1304     // base through expression evaluation, so these only appear in one case: the
   1305     // implicit variable declaration we invent when checking whether a constexpr
   1306     // constructor can produce a constant expression. We must assume that such
   1307     // an expression might be a global lvalue.
   1308     return true;
   1309   }
   1310 }
   1311 
   1312 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
   1313   assert(Base && "no location for a null lvalue");
   1314   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
   1315   if (VD)
   1316     Info.Note(VD->getLocation(), diag::note_declared_at);
   1317   else
   1318     Info.Note(Base.get<const Expr*>()->getExprLoc(),
   1319               diag::note_constexpr_temporary_here);
   1320 }
   1321 
   1322 /// Check that this reference or pointer core constant expression is a valid
   1323 /// value for an address or reference constant expression. Return true if we
   1324 /// can fold this expression, whether or not it's a constant expression.
   1325 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
   1326                                           QualType Type, const LValue &LVal) {
   1327   bool IsReferenceType = Type->isReferenceType();
   1328 
   1329   APValue::LValueBase Base = LVal.getLValueBase();
   1330   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
   1331 
   1332   // Check that the object is a global. Note that the fake 'this' object we
   1333   // manufacture when checking potential constant expressions is conservatively
   1334   // assumed to be global here.
   1335   if (!IsGlobalLValue(Base)) {
   1336     if (Info.getLangOpts().CPlusPlus11) {
   1337       const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
   1338       Info.Diag(Loc, diag::note_constexpr_non_global, 1)
   1339         << IsReferenceType << !Designator.Entries.empty()
   1340         << !!VD << VD;
   1341       NoteLValueLocation(Info, Base);
   1342     } else {
   1343       Info.Diag(Loc);
   1344     }
   1345     // Don't allow references to temporaries to escape.
   1346     return false;
   1347   }
   1348   assert((Info.checkingPotentialConstantExpression() ||
   1349           LVal.getLValueCallIndex() == 0) &&
   1350          "have call index for global lvalue");
   1351 
   1352   if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
   1353     if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
   1354       // Check if this is a thread-local variable.
   1355       if (Var->getTLSKind())
   1356         return false;
   1357 
   1358       // A dllimport variable never acts like a constant.
   1359       if (Var->hasAttr<DLLImportAttr>())
   1360         return false;
   1361     }
   1362     if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
   1363       // __declspec(dllimport) must be handled very carefully:
   1364       // We must never initialize an expression with the thunk in C++.
   1365       // Doing otherwise would allow the same id-expression to yield
   1366       // different addresses for the same function in different translation
   1367       // units.  However, this means that we must dynamically initialize the
   1368       // expression with the contents of the import address table at runtime.
   1369       //
   1370       // The C language has no notion of ODR; furthermore, it has no notion of
   1371       // dynamic initialization.  This means that we are permitted to
   1372       // perform initialization with the address of the thunk.
   1373       if (Info.getLangOpts().CPlusPlus && FD->hasAttr<DLLImportAttr>())
   1374         return false;
   1375     }
   1376   }
   1377 
   1378   // Allow address constant expressions to be past-the-end pointers. This is
   1379   // an extension: the standard requires them to point to an object.
   1380   if (!IsReferenceType)
   1381     return true;
   1382 
   1383   // A reference constant expression must refer to an object.
   1384   if (!Base) {
   1385     // FIXME: diagnostic
   1386     Info.CCEDiag(Loc);
   1387     return true;
   1388   }
   1389 
   1390   // Does this refer one past the end of some object?
   1391   if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
   1392     const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
   1393     Info.Diag(Loc, diag::note_constexpr_past_end, 1)
   1394       << !Designator.Entries.empty() << !!VD << VD;
   1395     NoteLValueLocation(Info, Base);
   1396   }
   1397 
   1398   return true;
   1399 }
   1400 
   1401 /// Check that this core constant expression is of literal type, and if not,
   1402 /// produce an appropriate diagnostic.
   1403 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
   1404                              const LValue *This = nullptr) {
   1405   if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
   1406     return true;
   1407 
   1408   // C++1y: A constant initializer for an object o [...] may also invoke
   1409   // constexpr constructors for o and its subobjects even if those objects
   1410   // are of non-literal class types.
   1411   if (Info.getLangOpts().CPlusPlus14 && This &&
   1412       Info.EvaluatingDecl == This->getLValueBase())
   1413     return true;
   1414 
   1415   // Prvalue constant expressions must be of literal types.
   1416   if (Info.getLangOpts().CPlusPlus11)
   1417     Info.Diag(E, diag::note_constexpr_nonliteral)
   1418       << E->getType();
   1419   else
   1420     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1421   return false;
   1422 }
   1423 
   1424 /// Check that this core constant expression value is a valid value for a
   1425 /// constant expression. If not, report an appropriate diagnostic. Does not
   1426 /// check that the expression is of literal type.
   1427 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
   1428                                     QualType Type, const APValue &Value) {
   1429   if (Value.isUninit()) {
   1430     Info.Diag(DiagLoc, diag::note_constexpr_uninitialized)
   1431       << true << Type;
   1432     return false;
   1433   }
   1434 
   1435   // We allow _Atomic(T) to be initialized from anything that T can be
   1436   // initialized from.
   1437   if (const AtomicType *AT = Type->getAs<AtomicType>())
   1438     Type = AT->getValueType();
   1439 
   1440   // Core issue 1454: For a literal constant expression of array or class type,
   1441   // each subobject of its value shall have been initialized by a constant
   1442   // expression.
   1443   if (Value.isArray()) {
   1444     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
   1445     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
   1446       if (!CheckConstantExpression(Info, DiagLoc, EltTy,
   1447                                    Value.getArrayInitializedElt(I)))
   1448         return false;
   1449     }
   1450     if (!Value.hasArrayFiller())
   1451       return true;
   1452     return CheckConstantExpression(Info, DiagLoc, EltTy,
   1453                                    Value.getArrayFiller());
   1454   }
   1455   if (Value.isUnion() && Value.getUnionField()) {
   1456     return CheckConstantExpression(Info, DiagLoc,
   1457                                    Value.getUnionField()->getType(),
   1458                                    Value.getUnionValue());
   1459   }
   1460   if (Value.isStruct()) {
   1461     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
   1462     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
   1463       unsigned BaseIndex = 0;
   1464       for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
   1465              End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
   1466         if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
   1467                                      Value.getStructBase(BaseIndex)))
   1468           return false;
   1469       }
   1470     }
   1471     for (const auto *I : RD->fields()) {
   1472       if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
   1473                                    Value.getStructField(I->getFieldIndex())))
   1474         return false;
   1475     }
   1476   }
   1477 
   1478   if (Value.isLValue()) {
   1479     LValue LVal;
   1480     LVal.setFrom(Info.Ctx, Value);
   1481     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
   1482   }
   1483 
   1484   // Everything else is fine.
   1485   return true;
   1486 }
   1487 
   1488 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
   1489   return LVal.Base.dyn_cast<const ValueDecl*>();
   1490 }
   1491 
   1492 static bool IsLiteralLValue(const LValue &Value) {
   1493   if (Value.CallIndex)
   1494     return false;
   1495   const Expr *E = Value.Base.dyn_cast<const Expr*>();
   1496   return E && !isa<MaterializeTemporaryExpr>(E);
   1497 }
   1498 
   1499 static bool IsWeakLValue(const LValue &Value) {
   1500   const ValueDecl *Decl = GetLValueBaseDecl(Value);
   1501   return Decl && Decl->isWeak();
   1502 }
   1503 
   1504 static bool isZeroSized(const LValue &Value) {
   1505   const ValueDecl *Decl = GetLValueBaseDecl(Value);
   1506   if (Decl && isa<VarDecl>(Decl)) {
   1507     QualType Ty = Decl->getType();
   1508     if (Ty->isArrayType())
   1509       return Ty->isIncompleteType() ||
   1510              Decl->getASTContext().getTypeSize(Ty) == 0;
   1511   }
   1512   return false;
   1513 }
   1514 
   1515 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
   1516   // A null base expression indicates a null pointer.  These are always
   1517   // evaluatable, and they are false unless the offset is zero.
   1518   if (!Value.getLValueBase()) {
   1519     Result = !Value.getLValueOffset().isZero();
   1520     return true;
   1521   }
   1522 
   1523   // We have a non-null base.  These are generally known to be true, but if it's
   1524   // a weak declaration it can be null at runtime.
   1525   Result = true;
   1526   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
   1527   return !Decl || !Decl->isWeak();
   1528 }
   1529 
   1530 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
   1531   switch (Val.getKind()) {
   1532   case APValue::Uninitialized:
   1533     return false;
   1534   case APValue::Int:
   1535     Result = Val.getInt().getBoolValue();
   1536     return true;
   1537   case APValue::Float:
   1538     Result = !Val.getFloat().isZero();
   1539     return true;
   1540   case APValue::ComplexInt:
   1541     Result = Val.getComplexIntReal().getBoolValue() ||
   1542              Val.getComplexIntImag().getBoolValue();
   1543     return true;
   1544   case APValue::ComplexFloat:
   1545     Result = !Val.getComplexFloatReal().isZero() ||
   1546              !Val.getComplexFloatImag().isZero();
   1547     return true;
   1548   case APValue::LValue:
   1549     return EvalPointerValueAsBool(Val, Result);
   1550   case APValue::MemberPointer:
   1551     Result = Val.getMemberPointerDecl();
   1552     return true;
   1553   case APValue::Vector:
   1554   case APValue::Array:
   1555   case APValue::Struct:
   1556   case APValue::Union:
   1557   case APValue::AddrLabelDiff:
   1558     return false;
   1559   }
   1560 
   1561   llvm_unreachable("unknown APValue kind");
   1562 }
   1563 
   1564 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
   1565                                        EvalInfo &Info) {
   1566   assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
   1567   APValue Val;
   1568   if (!Evaluate(Val, Info, E))
   1569     return false;
   1570   return HandleConversionToBool(Val, Result);
   1571 }
   1572 
   1573 template<typename T>
   1574 static bool HandleOverflow(EvalInfo &Info, const Expr *E,
   1575                            const T &SrcValue, QualType DestType) {
   1576   Info.CCEDiag(E, diag::note_constexpr_overflow)
   1577     << SrcValue << DestType;
   1578   return Info.noteUndefinedBehavior();
   1579 }
   1580 
   1581 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
   1582                                  QualType SrcType, const APFloat &Value,
   1583                                  QualType DestType, APSInt &Result) {
   1584   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
   1585   // Determine whether we are converting to unsigned or signed.
   1586   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
   1587 
   1588   Result = APSInt(DestWidth, !DestSigned);
   1589   bool ignored;
   1590   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
   1591       & APFloat::opInvalidOp)
   1592     return HandleOverflow(Info, E, Value, DestType);
   1593   return true;
   1594 }
   1595 
   1596 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
   1597                                    QualType SrcType, QualType DestType,
   1598                                    APFloat &Result) {
   1599   APFloat Value = Result;
   1600   bool ignored;
   1601   if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
   1602                      APFloat::rmNearestTiesToEven, &ignored)
   1603       & APFloat::opOverflow)
   1604     return HandleOverflow(Info, E, Value, DestType);
   1605   return true;
   1606 }
   1607 
   1608 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
   1609                                  QualType DestType, QualType SrcType,
   1610                                  const APSInt &Value) {
   1611   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
   1612   APSInt Result = Value;
   1613   // Figure out if this is a truncate, extend or noop cast.
   1614   // If the input is signed, do a sign extend, noop, or truncate.
   1615   Result = Result.extOrTrunc(DestWidth);
   1616   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
   1617   return Result;
   1618 }
   1619 
   1620 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
   1621                                  QualType SrcType, const APSInt &Value,
   1622                                  QualType DestType, APFloat &Result) {
   1623   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
   1624   if (Result.convertFromAPInt(Value, Value.isSigned(),
   1625                               APFloat::rmNearestTiesToEven)
   1626       & APFloat::opOverflow)
   1627     return HandleOverflow(Info, E, Value, DestType);
   1628   return true;
   1629 }
   1630 
   1631 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
   1632                                   APValue &Value, const FieldDecl *FD) {
   1633   assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
   1634 
   1635   if (!Value.isInt()) {
   1636     // Trying to store a pointer-cast-to-integer into a bitfield.
   1637     // FIXME: In this case, we should provide the diagnostic for casting
   1638     // a pointer to an integer.
   1639     assert(Value.isLValue() && "integral value neither int nor lvalue?");
   1640     Info.Diag(E);
   1641     return false;
   1642   }
   1643 
   1644   APSInt &Int = Value.getInt();
   1645   unsigned OldBitWidth = Int.getBitWidth();
   1646   unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
   1647   if (NewBitWidth < OldBitWidth)
   1648     Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
   1649   return true;
   1650 }
   1651 
   1652 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
   1653                                   llvm::APInt &Res) {
   1654   APValue SVal;
   1655   if (!Evaluate(SVal, Info, E))
   1656     return false;
   1657   if (SVal.isInt()) {
   1658     Res = SVal.getInt();
   1659     return true;
   1660   }
   1661   if (SVal.isFloat()) {
   1662     Res = SVal.getFloat().bitcastToAPInt();
   1663     return true;
   1664   }
   1665   if (SVal.isVector()) {
   1666     QualType VecTy = E->getType();
   1667     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
   1668     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
   1669     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
   1670     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
   1671     Res = llvm::APInt::getNullValue(VecSize);
   1672     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
   1673       APValue &Elt = SVal.getVectorElt(i);
   1674       llvm::APInt EltAsInt;
   1675       if (Elt.isInt()) {
   1676         EltAsInt = Elt.getInt();
   1677       } else if (Elt.isFloat()) {
   1678         EltAsInt = Elt.getFloat().bitcastToAPInt();
   1679       } else {
   1680         // Don't try to handle vectors of anything other than int or float
   1681         // (not sure if it's possible to hit this case).
   1682         Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1683         return false;
   1684       }
   1685       unsigned BaseEltSize = EltAsInt.getBitWidth();
   1686       if (BigEndian)
   1687         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
   1688       else
   1689         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
   1690     }
   1691     return true;
   1692   }
   1693   // Give up if the input isn't an int, float, or vector.  For example, we
   1694   // reject "(v4i16)(intptr_t)&a".
   1695   Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1696   return false;
   1697 }
   1698 
   1699 /// Perform the given integer operation, which is known to need at most BitWidth
   1700 /// bits, and check for overflow in the original type (if that type was not an
   1701 /// unsigned type).
   1702 template<typename Operation>
   1703 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
   1704                                  const APSInt &LHS, const APSInt &RHS,
   1705                                  unsigned BitWidth, Operation Op,
   1706                                  APSInt &Result) {
   1707   if (LHS.isUnsigned()) {
   1708     Result = Op(LHS, RHS);
   1709     return true;
   1710   }
   1711 
   1712   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
   1713   Result = Value.trunc(LHS.getBitWidth());
   1714   if (Result.extend(BitWidth) != Value) {
   1715     if (Info.checkingForOverflow())
   1716       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
   1717                                        diag::warn_integer_constant_overflow)
   1718           << Result.toString(10) << E->getType();
   1719     else
   1720       return HandleOverflow(Info, E, Value, E->getType());
   1721   }
   1722   return true;
   1723 }
   1724 
   1725 /// Perform the given binary integer operation.
   1726 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
   1727                               BinaryOperatorKind Opcode, APSInt RHS,
   1728                               APSInt &Result) {
   1729   switch (Opcode) {
   1730   default:
   1731     Info.Diag(E);
   1732     return false;
   1733   case BO_Mul:
   1734     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
   1735                                 std::multiplies<APSInt>(), Result);
   1736   case BO_Add:
   1737     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
   1738                                 std::plus<APSInt>(), Result);
   1739   case BO_Sub:
   1740     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
   1741                                 std::minus<APSInt>(), Result);
   1742   case BO_And: Result = LHS & RHS; return true;
   1743   case BO_Xor: Result = LHS ^ RHS; return true;
   1744   case BO_Or:  Result = LHS | RHS; return true;
   1745   case BO_Div:
   1746   case BO_Rem:
   1747     if (RHS == 0) {
   1748       Info.Diag(E, diag::note_expr_divide_by_zero);
   1749       return false;
   1750     }
   1751     Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
   1752     // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
   1753     // this operation and gives the two's complement result.
   1754     if (RHS.isNegative() && RHS.isAllOnesValue() &&
   1755         LHS.isSigned() && LHS.isMinSignedValue())
   1756       return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
   1757                             E->getType());
   1758     return true;
   1759   case BO_Shl: {
   1760     if (Info.getLangOpts().OpenCL)
   1761       // OpenCL 6.3j: shift values are effectively % word size of LHS.
   1762       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
   1763                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
   1764                     RHS.isUnsigned());
   1765     else if (RHS.isSigned() && RHS.isNegative()) {
   1766       // During constant-folding, a negative shift is an opposite shift. Such
   1767       // a shift is not a constant expression.
   1768       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
   1769       RHS = -RHS;
   1770       goto shift_right;
   1771     }
   1772   shift_left:
   1773     // C++11 [expr.shift]p1: Shift width must be less than the bit width of
   1774     // the shifted type.
   1775     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
   1776     if (SA != RHS) {
   1777       Info.CCEDiag(E, diag::note_constexpr_large_shift)
   1778         << RHS << E->getType() << LHS.getBitWidth();
   1779     } else if (LHS.isSigned()) {
   1780       // C++11 [expr.shift]p2: A signed left shift must have a non-negative
   1781       // operand, and must not overflow the corresponding unsigned type.
   1782       if (LHS.isNegative())
   1783         Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
   1784       else if (LHS.countLeadingZeros() < SA)
   1785         Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
   1786     }
   1787     Result = LHS << SA;
   1788     return true;
   1789   }
   1790   case BO_Shr: {
   1791     if (Info.getLangOpts().OpenCL)
   1792       // OpenCL 6.3j: shift values are effectively % word size of LHS.
   1793       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
   1794                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
   1795                     RHS.isUnsigned());
   1796     else if (RHS.isSigned() && RHS.isNegative()) {
   1797       // During constant-folding, a negative shift is an opposite shift. Such a
   1798       // shift is not a constant expression.
   1799       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
   1800       RHS = -RHS;
   1801       goto shift_left;
   1802     }
   1803   shift_right:
   1804     // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
   1805     // shifted type.
   1806     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
   1807     if (SA != RHS)
   1808       Info.CCEDiag(E, diag::note_constexpr_large_shift)
   1809         << RHS << E->getType() << LHS.getBitWidth();
   1810     Result = LHS >> SA;
   1811     return true;
   1812   }
   1813 
   1814   case BO_LT: Result = LHS < RHS; return true;
   1815   case BO_GT: Result = LHS > RHS; return true;
   1816   case BO_LE: Result = LHS <= RHS; return true;
   1817   case BO_GE: Result = LHS >= RHS; return true;
   1818   case BO_EQ: Result = LHS == RHS; return true;
   1819   case BO_NE: Result = LHS != RHS; return true;
   1820   }
   1821 }
   1822 
   1823 /// Perform the given binary floating-point operation, in-place, on LHS.
   1824 static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
   1825                                   APFloat &LHS, BinaryOperatorKind Opcode,
   1826                                   const APFloat &RHS) {
   1827   switch (Opcode) {
   1828   default:
   1829     Info.Diag(E);
   1830     return false;
   1831   case BO_Mul:
   1832     LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
   1833     break;
   1834   case BO_Add:
   1835     LHS.add(RHS, APFloat::rmNearestTiesToEven);
   1836     break;
   1837   case BO_Sub:
   1838     LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
   1839     break;
   1840   case BO_Div:
   1841     LHS.divide(RHS, APFloat::rmNearestTiesToEven);
   1842     break;
   1843   }
   1844 
   1845   if (LHS.isInfinity() || LHS.isNaN()) {
   1846     Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
   1847     return Info.noteUndefinedBehavior();
   1848   }
   1849   return true;
   1850 }
   1851 
   1852 /// Cast an lvalue referring to a base subobject to a derived class, by
   1853 /// truncating the lvalue's path to the given length.
   1854 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
   1855                                const RecordDecl *TruncatedType,
   1856                                unsigned TruncatedElements) {
   1857   SubobjectDesignator &D = Result.Designator;
   1858 
   1859   // Check we actually point to a derived class object.
   1860   if (TruncatedElements == D.Entries.size())
   1861     return true;
   1862   assert(TruncatedElements >= D.MostDerivedPathLength &&
   1863          "not casting to a derived class");
   1864   if (!Result.checkSubobject(Info, E, CSK_Derived))
   1865     return false;
   1866 
   1867   // Truncate the path to the subobject, and remove any derived-to-base offsets.
   1868   const RecordDecl *RD = TruncatedType;
   1869   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
   1870     if (RD->isInvalidDecl()) return false;
   1871     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
   1872     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
   1873     if (isVirtualBaseClass(D.Entries[I]))
   1874       Result.Offset -= Layout.getVBaseClassOffset(Base);
   1875     else
   1876       Result.Offset -= Layout.getBaseClassOffset(Base);
   1877     RD = Base;
   1878   }
   1879   D.Entries.resize(TruncatedElements);
   1880   return true;
   1881 }
   1882 
   1883 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
   1884                                    const CXXRecordDecl *Derived,
   1885                                    const CXXRecordDecl *Base,
   1886                                    const ASTRecordLayout *RL = nullptr) {
   1887   if (!RL) {
   1888     if (Derived->isInvalidDecl()) return false;
   1889     RL = &Info.Ctx.getASTRecordLayout(Derived);
   1890   }
   1891 
   1892   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
   1893   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
   1894   return true;
   1895 }
   1896 
   1897 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
   1898                              const CXXRecordDecl *DerivedDecl,
   1899                              const CXXBaseSpecifier *Base) {
   1900   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
   1901 
   1902   if (!Base->isVirtual())
   1903     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
   1904 
   1905   SubobjectDesignator &D = Obj.Designator;
   1906   if (D.Invalid)
   1907     return false;
   1908 
   1909   // Extract most-derived object and corresponding type.
   1910   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
   1911   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
   1912     return false;
   1913 
   1914   // Find the virtual base class.
   1915   if (DerivedDecl->isInvalidDecl()) return false;
   1916   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
   1917   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
   1918   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
   1919   return true;
   1920 }
   1921 
   1922 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
   1923                                  QualType Type, LValue &Result) {
   1924   for (CastExpr::path_const_iterator PathI = E->path_begin(),
   1925                                      PathE = E->path_end();
   1926        PathI != PathE; ++PathI) {
   1927     if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
   1928                           *PathI))
   1929       return false;
   1930     Type = (*PathI)->getType();
   1931   }
   1932   return true;
   1933 }
   1934 
   1935 /// Update LVal to refer to the given field, which must be a member of the type
   1936 /// currently described by LVal.
   1937 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
   1938                                const FieldDecl *FD,
   1939                                const ASTRecordLayout *RL = nullptr) {
   1940   if (!RL) {
   1941     if (FD->getParent()->isInvalidDecl()) return false;
   1942     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
   1943   }
   1944 
   1945   unsigned I = FD->getFieldIndex();
   1946   LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
   1947   LVal.addDecl(Info, E, FD);
   1948   return true;
   1949 }
   1950 
   1951 /// Update LVal to refer to the given indirect field.
   1952 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
   1953                                        LValue &LVal,
   1954                                        const IndirectFieldDecl *IFD) {
   1955   for (const auto *C : IFD->chain())
   1956     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
   1957       return false;
   1958   return true;
   1959 }
   1960 
   1961 /// Get the size of the given type in char units.
   1962 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
   1963                          QualType Type, CharUnits &Size) {
   1964   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
   1965   // extension.
   1966   if (Type->isVoidType() || Type->isFunctionType()) {
   1967     Size = CharUnits::One();
   1968     return true;
   1969   }
   1970 
   1971   if (!Type->isConstantSizeType()) {
   1972     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
   1973     // FIXME: Better diagnostic.
   1974     Info.Diag(Loc);
   1975     return false;
   1976   }
   1977 
   1978   Size = Info.Ctx.getTypeSizeInChars(Type);
   1979   return true;
   1980 }
   1981 
   1982 /// Update a pointer value to model pointer arithmetic.
   1983 /// \param Info - Information about the ongoing evaluation.
   1984 /// \param E - The expression being evaluated, for diagnostic purposes.
   1985 /// \param LVal - The pointer value to be updated.
   1986 /// \param EltTy - The pointee type represented by LVal.
   1987 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
   1988 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
   1989                                         LValue &LVal, QualType EltTy,
   1990                                         int64_t Adjustment) {
   1991   CharUnits SizeOfPointee;
   1992   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
   1993     return false;
   1994 
   1995   // Compute the new offset in the appropriate width.
   1996   LVal.Offset += Adjustment * SizeOfPointee;
   1997   LVal.adjustIndex(Info, E, Adjustment);
   1998   return true;
   1999 }
   2000 
   2001 /// Update an lvalue to refer to a component of a complex number.
   2002 /// \param Info - Information about the ongoing evaluation.
   2003 /// \param LVal - The lvalue to be updated.
   2004 /// \param EltTy - The complex number's component type.
   2005 /// \param Imag - False for the real component, true for the imaginary.
   2006 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
   2007                                        LValue &LVal, QualType EltTy,
   2008                                        bool Imag) {
   2009   if (Imag) {
   2010     CharUnits SizeOfComponent;
   2011     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
   2012       return false;
   2013     LVal.Offset += SizeOfComponent;
   2014   }
   2015   LVal.addComplex(Info, E, EltTy, Imag);
   2016   return true;
   2017 }
   2018 
   2019 /// Try to evaluate the initializer for a variable declaration.
   2020 ///
   2021 /// \param Info   Information about the ongoing evaluation.
   2022 /// \param E      An expression to be used when printing diagnostics.
   2023 /// \param VD     The variable whose initializer should be obtained.
   2024 /// \param Frame  The frame in which the variable was created. Must be null
   2025 ///               if this variable is not local to the evaluation.
   2026 /// \param Result Filled in with a pointer to the value of the variable.
   2027 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
   2028                                 const VarDecl *VD, CallStackFrame *Frame,
   2029                                 APValue *&Result) {
   2030   // If this is a parameter to an active constexpr function call, perform
   2031   // argument substitution.
   2032   if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
   2033     // Assume arguments of a potential constant expression are unknown
   2034     // constant expressions.
   2035     if (Info.checkingPotentialConstantExpression())
   2036       return false;
   2037     if (!Frame || !Frame->Arguments) {
   2038       Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   2039       return false;
   2040     }
   2041     Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
   2042     return true;
   2043   }
   2044 
   2045   // If this is a local variable, dig out its value.
   2046   if (Frame) {
   2047     Result = Frame->getTemporary(VD);
   2048     assert(Result && "missing value for local variable");
   2049     return true;
   2050   }
   2051 
   2052   // Dig out the initializer, and use the declaration which it's attached to.
   2053   const Expr *Init = VD->getAnyInitializer(VD);
   2054   if (!Init || Init->isValueDependent()) {
   2055     // If we're checking a potential constant expression, the variable could be
   2056     // initialized later.
   2057     if (!Info.checkingPotentialConstantExpression())
   2058       Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   2059     return false;
   2060   }
   2061 
   2062   // If we're currently evaluating the initializer of this declaration, use that
   2063   // in-flight value.
   2064   if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
   2065     Result = Info.EvaluatingDeclValue;
   2066     return true;
   2067   }
   2068 
   2069   // Never evaluate the initializer of a weak variable. We can't be sure that
   2070   // this is the definition which will be used.
   2071   if (VD->isWeak()) {
   2072     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   2073     return false;
   2074   }
   2075 
   2076   // Check that we can fold the initializer. In C++, we will have already done
   2077   // this in the cases where it matters for conformance.
   2078   SmallVector<PartialDiagnosticAt, 8> Notes;
   2079   if (!VD->evaluateValue(Notes)) {
   2080     Info.Diag(E, diag::note_constexpr_var_init_non_constant,
   2081               Notes.size() + 1) << VD;
   2082     Info.Note(VD->getLocation(), diag::note_declared_at);
   2083     Info.addNotes(Notes);
   2084     return false;
   2085   } else if (!VD->checkInitIsICE()) {
   2086     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
   2087                  Notes.size() + 1) << VD;
   2088     Info.Note(VD->getLocation(), diag::note_declared_at);
   2089     Info.addNotes(Notes);
   2090   }
   2091 
   2092   Result = VD->getEvaluatedValue();
   2093   return true;
   2094 }
   2095 
   2096 static bool IsConstNonVolatile(QualType T) {
   2097   Qualifiers Quals = T.getQualifiers();
   2098   return Quals.hasConst() && !Quals.hasVolatile();
   2099 }
   2100 
   2101 /// Get the base index of the given base class within an APValue representing
   2102 /// the given derived class.
   2103 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
   2104                              const CXXRecordDecl *Base) {
   2105   Base = Base->getCanonicalDecl();
   2106   unsigned Index = 0;
   2107   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
   2108          E = Derived->bases_end(); I != E; ++I, ++Index) {
   2109     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
   2110       return Index;
   2111   }
   2112 
   2113   llvm_unreachable("base class missing from derived class's bases list");
   2114 }
   2115 
   2116 /// Extract the value of a character from a string literal.
   2117 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
   2118                                             uint64_t Index) {
   2119   // FIXME: Support ObjCEncodeExpr, MakeStringConstant
   2120   if (auto PE = dyn_cast<PredefinedExpr>(Lit))
   2121     Lit = PE->getFunctionName();
   2122   const StringLiteral *S = cast<StringLiteral>(Lit);
   2123   const ConstantArrayType *CAT =
   2124       Info.Ctx.getAsConstantArrayType(S->getType());
   2125   assert(CAT && "string literal isn't an array");
   2126   QualType CharType = CAT->getElementType();
   2127   assert(CharType->isIntegerType() && "unexpected character type");
   2128 
   2129   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
   2130                CharType->isUnsignedIntegerType());
   2131   if (Index < S->getLength())
   2132     Value = S->getCodeUnit(Index);
   2133   return Value;
   2134 }
   2135 
   2136 // Expand a string literal into an array of characters.
   2137 static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
   2138                                 APValue &Result) {
   2139   const StringLiteral *S = cast<StringLiteral>(Lit);
   2140   const ConstantArrayType *CAT =
   2141       Info.Ctx.getAsConstantArrayType(S->getType());
   2142   assert(CAT && "string literal isn't an array");
   2143   QualType CharType = CAT->getElementType();
   2144   assert(CharType->isIntegerType() && "unexpected character type");
   2145 
   2146   unsigned Elts = CAT->getSize().getZExtValue();
   2147   Result = APValue(APValue::UninitArray(),
   2148                    std::min(S->getLength(), Elts), Elts);
   2149   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
   2150                CharType->isUnsignedIntegerType());
   2151   if (Result.hasArrayFiller())
   2152     Result.getArrayFiller() = APValue(Value);
   2153   for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
   2154     Value = S->getCodeUnit(I);
   2155     Result.getArrayInitializedElt(I) = APValue(Value);
   2156   }
   2157 }
   2158 
   2159 // Expand an array so that it has more than Index filled elements.
   2160 static void expandArray(APValue &Array, unsigned Index) {
   2161   unsigned Size = Array.getArraySize();
   2162   assert(Index < Size);
   2163 
   2164   // Always at least double the number of elements for which we store a value.
   2165   unsigned OldElts = Array.getArrayInitializedElts();
   2166   unsigned NewElts = std::max(Index+1, OldElts * 2);
   2167   NewElts = std::min(Size, std::max(NewElts, 8u));
   2168 
   2169   // Copy the data across.
   2170   APValue NewValue(APValue::UninitArray(), NewElts, Size);
   2171   for (unsigned I = 0; I != OldElts; ++I)
   2172     NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
   2173   for (unsigned I = OldElts; I != NewElts; ++I)
   2174     NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
   2175   if (NewValue.hasArrayFiller())
   2176     NewValue.getArrayFiller() = Array.getArrayFiller();
   2177   Array.swap(NewValue);
   2178 }
   2179 
   2180 /// Determine whether a type would actually be read by an lvalue-to-rvalue
   2181 /// conversion. If it's of class type, we may assume that the copy operation
   2182 /// is trivial. Note that this is never true for a union type with fields
   2183 /// (because the copy always "reads" the active member) and always true for
   2184 /// a non-class type.
   2185 static bool isReadByLvalueToRvalueConversion(QualType T) {
   2186   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
   2187   if (!RD || (RD->isUnion() && !RD->field_empty()))
   2188     return true;
   2189   if (RD->isEmpty())
   2190     return false;
   2191 
   2192   for (auto *Field : RD->fields())
   2193     if (isReadByLvalueToRvalueConversion(Field->getType()))
   2194       return true;
   2195 
   2196   for (auto &BaseSpec : RD->bases())
   2197     if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
   2198       return true;
   2199 
   2200   return false;
   2201 }
   2202 
   2203 /// Diagnose an attempt to read from any unreadable field within the specified
   2204 /// type, which might be a class type.
   2205 static bool diagnoseUnreadableFields(EvalInfo &Info, const Expr *E,
   2206                                      QualType T) {
   2207   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
   2208   if (!RD)
   2209     return false;
   2210 
   2211   if (!RD->hasMutableFields())
   2212     return false;
   2213 
   2214   for (auto *Field : RD->fields()) {
   2215     // If we're actually going to read this field in some way, then it can't
   2216     // be mutable. If we're in a union, then assigning to a mutable field
   2217     // (even an empty one) can change the active member, so that's not OK.
   2218     // FIXME: Add core issue number for the union case.
   2219     if (Field->isMutable() &&
   2220         (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
   2221       Info.Diag(E, diag::note_constexpr_ltor_mutable, 1) << Field;
   2222       Info.Note(Field->getLocation(), diag::note_declared_at);
   2223       return true;
   2224     }
   2225 
   2226     if (diagnoseUnreadableFields(Info, E, Field->getType()))
   2227       return true;
   2228   }
   2229 
   2230   for (auto &BaseSpec : RD->bases())
   2231     if (diagnoseUnreadableFields(Info, E, BaseSpec.getType()))
   2232       return true;
   2233 
   2234   // All mutable fields were empty, and thus not actually read.
   2235   return false;
   2236 }
   2237 
   2238 /// Kinds of access we can perform on an object, for diagnostics.
   2239 enum AccessKinds {
   2240   AK_Read,
   2241   AK_Assign,
   2242   AK_Increment,
   2243   AK_Decrement
   2244 };
   2245 
   2246 namespace {
   2247 /// A handle to a complete object (an object that is not a subobject of
   2248 /// another object).
   2249 struct CompleteObject {
   2250   /// The value of the complete object.
   2251   APValue *Value;
   2252   /// The type of the complete object.
   2253   QualType Type;
   2254 
   2255   CompleteObject() : Value(nullptr) {}
   2256   CompleteObject(APValue *Value, QualType Type)
   2257       : Value(Value), Type(Type) {
   2258     assert(Value && "missing value for complete object");
   2259   }
   2260 
   2261   explicit operator bool() const { return Value; }
   2262 };
   2263 } // end anonymous namespace
   2264 
   2265 /// Find the designated sub-object of an rvalue.
   2266 template<typename SubobjectHandler>
   2267 typename SubobjectHandler::result_type
   2268 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
   2269               const SubobjectDesignator &Sub, SubobjectHandler &handler) {
   2270   if (Sub.Invalid)
   2271     // A diagnostic will have already been produced.
   2272     return handler.failed();
   2273   if (Sub.isOnePastTheEnd()) {
   2274     if (Info.getLangOpts().CPlusPlus11)
   2275       Info.Diag(E, diag::note_constexpr_access_past_end)
   2276         << handler.AccessKind;
   2277     else
   2278       Info.Diag(E);
   2279     return handler.failed();
   2280   }
   2281 
   2282   APValue *O = Obj.Value;
   2283   QualType ObjType = Obj.Type;
   2284   const FieldDecl *LastField = nullptr;
   2285 
   2286   // Walk the designator's path to find the subobject.
   2287   for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
   2288     if (O->isUninit()) {
   2289       if (!Info.checkingPotentialConstantExpression())
   2290         Info.Diag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
   2291       return handler.failed();
   2292     }
   2293 
   2294     if (I == N) {
   2295       // If we are reading an object of class type, there may still be more
   2296       // things we need to check: if there are any mutable subobjects, we
   2297       // cannot perform this read. (This only happens when performing a trivial
   2298       // copy or assignment.)
   2299       if (ObjType->isRecordType() && handler.AccessKind == AK_Read &&
   2300           diagnoseUnreadableFields(Info, E, ObjType))
   2301         return handler.failed();
   2302 
   2303       if (!handler.found(*O, ObjType))
   2304         return false;
   2305 
   2306       // If we modified a bit-field, truncate it to the right width.
   2307       if (handler.AccessKind != AK_Read &&
   2308           LastField && LastField->isBitField() &&
   2309           !truncateBitfieldValue(Info, E, *O, LastField))
   2310         return false;
   2311 
   2312       return true;
   2313     }
   2314 
   2315     LastField = nullptr;
   2316     if (ObjType->isArrayType()) {
   2317       // Next subobject is an array element.
   2318       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
   2319       assert(CAT && "vla in literal type?");
   2320       uint64_t Index = Sub.Entries[I].ArrayIndex;
   2321       if (CAT->getSize().ule(Index)) {
   2322         // Note, it should not be possible to form a pointer with a valid
   2323         // designator which points more than one past the end of the array.
   2324         if (Info.getLangOpts().CPlusPlus11)
   2325           Info.Diag(E, diag::note_constexpr_access_past_end)
   2326             << handler.AccessKind;
   2327         else
   2328           Info.Diag(E);
   2329         return handler.failed();
   2330       }
   2331 
   2332       ObjType = CAT->getElementType();
   2333 
   2334       // An array object is represented as either an Array APValue or as an
   2335       // LValue which refers to a string literal.
   2336       if (O->isLValue()) {
   2337         assert(I == N - 1 && "extracting subobject of character?");
   2338         assert(!O->hasLValuePath() || O->getLValuePath().empty());
   2339         if (handler.AccessKind != AK_Read)
   2340           expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
   2341                               *O);
   2342         else
   2343           return handler.foundString(*O, ObjType, Index);
   2344       }
   2345 
   2346       if (O->getArrayInitializedElts() > Index)
   2347         O = &O->getArrayInitializedElt(Index);
   2348       else if (handler.AccessKind != AK_Read) {
   2349         expandArray(*O, Index);
   2350         O = &O->getArrayInitializedElt(Index);
   2351       } else
   2352         O = &O->getArrayFiller();
   2353     } else if (ObjType->isAnyComplexType()) {
   2354       // Next subobject is a complex number.
   2355       uint64_t Index = Sub.Entries[I].ArrayIndex;
   2356       if (Index > 1) {
   2357         if (Info.getLangOpts().CPlusPlus11)
   2358           Info.Diag(E, diag::note_constexpr_access_past_end)
   2359             << handler.AccessKind;
   2360         else
   2361           Info.Diag(E);
   2362         return handler.failed();
   2363       }
   2364 
   2365       bool WasConstQualified = ObjType.isConstQualified();
   2366       ObjType = ObjType->castAs<ComplexType>()->getElementType();
   2367       if (WasConstQualified)
   2368         ObjType.addConst();
   2369 
   2370       assert(I == N - 1 && "extracting subobject of scalar?");
   2371       if (O->isComplexInt()) {
   2372         return handler.found(Index ? O->getComplexIntImag()
   2373                                    : O->getComplexIntReal(), ObjType);
   2374       } else {
   2375         assert(O->isComplexFloat());
   2376         return handler.found(Index ? O->getComplexFloatImag()
   2377                                    : O->getComplexFloatReal(), ObjType);
   2378       }
   2379     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
   2380       if (Field->isMutable() && handler.AccessKind == AK_Read) {
   2381         Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
   2382           << Field;
   2383         Info.Note(Field->getLocation(), diag::note_declared_at);
   2384         return handler.failed();
   2385       }
   2386 
   2387       // Next subobject is a class, struct or union field.
   2388       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
   2389       if (RD->isUnion()) {
   2390         const FieldDecl *UnionField = O->getUnionField();
   2391         if (!UnionField ||
   2392             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
   2393           Info.Diag(E, diag::note_constexpr_access_inactive_union_member)
   2394             << handler.AccessKind << Field << !UnionField << UnionField;
   2395           return handler.failed();
   2396         }
   2397         O = &O->getUnionValue();
   2398       } else
   2399         O = &O->getStructField(Field->getFieldIndex());
   2400 
   2401       bool WasConstQualified = ObjType.isConstQualified();
   2402       ObjType = Field->getType();
   2403       if (WasConstQualified && !Field->isMutable())
   2404         ObjType.addConst();
   2405 
   2406       if (ObjType.isVolatileQualified()) {
   2407         if (Info.getLangOpts().CPlusPlus) {
   2408           // FIXME: Include a description of the path to the volatile subobject.
   2409           Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
   2410             << handler.AccessKind << 2 << Field;
   2411           Info.Note(Field->getLocation(), diag::note_declared_at);
   2412         } else {
   2413           Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   2414         }
   2415         return handler.failed();
   2416       }
   2417 
   2418       LastField = Field;
   2419     } else {
   2420       // Next subobject is a base class.
   2421       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
   2422       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
   2423       O = &O->getStructBase(getBaseIndex(Derived, Base));
   2424 
   2425       bool WasConstQualified = ObjType.isConstQualified();
   2426       ObjType = Info.Ctx.getRecordType(Base);
   2427       if (WasConstQualified)
   2428         ObjType.addConst();
   2429     }
   2430   }
   2431 }
   2432 
   2433 namespace {
   2434 struct ExtractSubobjectHandler {
   2435   EvalInfo &Info;
   2436   APValue &Result;
   2437 
   2438   static const AccessKinds AccessKind = AK_Read;
   2439 
   2440   typedef bool result_type;
   2441   bool failed() { return false; }
   2442   bool found(APValue &Subobj, QualType SubobjType) {
   2443     Result = Subobj;
   2444     return true;
   2445   }
   2446   bool found(APSInt &Value, QualType SubobjType) {
   2447     Result = APValue(Value);
   2448     return true;
   2449   }
   2450   bool found(APFloat &Value, QualType SubobjType) {
   2451     Result = APValue(Value);
   2452     return true;
   2453   }
   2454   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
   2455     Result = APValue(extractStringLiteralCharacter(
   2456         Info, Subobj.getLValueBase().get<const Expr *>(), Character));
   2457     return true;
   2458   }
   2459 };
   2460 } // end anonymous namespace
   2461 
   2462 const AccessKinds ExtractSubobjectHandler::AccessKind;
   2463 
   2464 /// Extract the designated sub-object of an rvalue.
   2465 static bool extractSubobject(EvalInfo &Info, const Expr *E,
   2466                              const CompleteObject &Obj,
   2467                              const SubobjectDesignator &Sub,
   2468                              APValue &Result) {
   2469   ExtractSubobjectHandler Handler = { Info, Result };
   2470   return findSubobject(Info, E, Obj, Sub, Handler);
   2471 }
   2472 
   2473 namespace {
   2474 struct ModifySubobjectHandler {
   2475   EvalInfo &Info;
   2476   APValue &NewVal;
   2477   const Expr *E;
   2478 
   2479   typedef bool result_type;
   2480   static const AccessKinds AccessKind = AK_Assign;
   2481 
   2482   bool checkConst(QualType QT) {
   2483     // Assigning to a const object has undefined behavior.
   2484     if (QT.isConstQualified()) {
   2485       Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
   2486       return false;
   2487     }
   2488     return true;
   2489   }
   2490 
   2491   bool failed() { return false; }
   2492   bool found(APValue &Subobj, QualType SubobjType) {
   2493     if (!checkConst(SubobjType))
   2494       return false;
   2495     // We've been given ownership of NewVal, so just swap it in.
   2496     Subobj.swap(NewVal);
   2497     return true;
   2498   }
   2499   bool found(APSInt &Value, QualType SubobjType) {
   2500     if (!checkConst(SubobjType))
   2501       return false;
   2502     if (!NewVal.isInt()) {
   2503       // Maybe trying to write a cast pointer value into a complex?
   2504       Info.Diag(E);
   2505       return false;
   2506     }
   2507     Value = NewVal.getInt();
   2508     return true;
   2509   }
   2510   bool found(APFloat &Value, QualType SubobjType) {
   2511     if (!checkConst(SubobjType))
   2512       return false;
   2513     Value = NewVal.getFloat();
   2514     return true;
   2515   }
   2516   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
   2517     llvm_unreachable("shouldn't encounter string elements with ExpandArrays");
   2518   }
   2519 };
   2520 } // end anonymous namespace
   2521 
   2522 const AccessKinds ModifySubobjectHandler::AccessKind;
   2523 
   2524 /// Update the designated sub-object of an rvalue to the given value.
   2525 static bool modifySubobject(EvalInfo &Info, const Expr *E,
   2526                             const CompleteObject &Obj,
   2527                             const SubobjectDesignator &Sub,
   2528                             APValue &NewVal) {
   2529   ModifySubobjectHandler Handler = { Info, NewVal, E };
   2530   return findSubobject(Info, E, Obj, Sub, Handler);
   2531 }
   2532 
   2533 /// Find the position where two subobject designators diverge, or equivalently
   2534 /// the length of the common initial subsequence.
   2535 static unsigned FindDesignatorMismatch(QualType ObjType,
   2536                                        const SubobjectDesignator &A,
   2537                                        const SubobjectDesignator &B,
   2538                                        bool &WasArrayIndex) {
   2539   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
   2540   for (/**/; I != N; ++I) {
   2541     if (!ObjType.isNull() &&
   2542         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
   2543       // Next subobject is an array element.
   2544       if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
   2545         WasArrayIndex = true;
   2546         return I;
   2547       }
   2548       if (ObjType->isAnyComplexType())
   2549         ObjType = ObjType->castAs<ComplexType>()->getElementType();
   2550       else
   2551         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
   2552     } else {
   2553       if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
   2554         WasArrayIndex = false;
   2555         return I;
   2556       }
   2557       if (const FieldDecl *FD = getAsField(A.Entries[I]))
   2558         // Next subobject is a field.
   2559         ObjType = FD->getType();
   2560       else
   2561         // Next subobject is a base class.
   2562         ObjType = QualType();
   2563     }
   2564   }
   2565   WasArrayIndex = false;
   2566   return I;
   2567 }
   2568 
   2569 /// Determine whether the given subobject designators refer to elements of the
   2570 /// same array object.
   2571 static bool AreElementsOfSameArray(QualType ObjType,
   2572                                    const SubobjectDesignator &A,
   2573                                    const SubobjectDesignator &B) {
   2574   if (A.Entries.size() != B.Entries.size())
   2575     return false;
   2576 
   2577   bool IsArray = A.MostDerivedIsArrayElement;
   2578   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
   2579     // A is a subobject of the array element.
   2580     return false;
   2581 
   2582   // If A (and B) designates an array element, the last entry will be the array
   2583   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
   2584   // of length 1' case, and the entire path must match.
   2585   bool WasArrayIndex;
   2586   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
   2587   return CommonLength >= A.Entries.size() - IsArray;
   2588 }
   2589 
   2590 /// Find the complete object to which an LValue refers.
   2591 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
   2592                                          AccessKinds AK, const LValue &LVal,
   2593                                          QualType LValType) {
   2594   if (!LVal.Base) {
   2595     Info.Diag(E, diag::note_constexpr_access_null) << AK;
   2596     return CompleteObject();
   2597   }
   2598 
   2599   CallStackFrame *Frame = nullptr;
   2600   if (LVal.CallIndex) {
   2601     Frame = Info.getCallFrame(LVal.CallIndex);
   2602     if (!Frame) {
   2603       Info.Diag(E, diag::note_constexpr_lifetime_ended, 1)
   2604         << AK << LVal.Base.is<const ValueDecl*>();
   2605       NoteLValueLocation(Info, LVal.Base);
   2606       return CompleteObject();
   2607     }
   2608   }
   2609 
   2610   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
   2611   // is not a constant expression (even if the object is non-volatile). We also
   2612   // apply this rule to C++98, in order to conform to the expected 'volatile'
   2613   // semantics.
   2614   if (LValType.isVolatileQualified()) {
   2615     if (Info.getLangOpts().CPlusPlus)
   2616       Info.Diag(E, diag::note_constexpr_access_volatile_type)
   2617         << AK << LValType;
   2618     else
   2619       Info.Diag(E);
   2620     return CompleteObject();
   2621   }
   2622 
   2623   // Compute value storage location and type of base object.
   2624   APValue *BaseVal = nullptr;
   2625   QualType BaseType = getType(LVal.Base);
   2626 
   2627   if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
   2628     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
   2629     // In C++11, constexpr, non-volatile variables initialized with constant
   2630     // expressions are constant expressions too. Inside constexpr functions,
   2631     // parameters are constant expressions even if they're non-const.
   2632     // In C++1y, objects local to a constant expression (those with a Frame) are
   2633     // both readable and writable inside constant expressions.
   2634     // In C, such things can also be folded, although they are not ICEs.
   2635     const VarDecl *VD = dyn_cast<VarDecl>(D);
   2636     if (VD) {
   2637       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
   2638         VD = VDef;
   2639     }
   2640     if (!VD || VD->isInvalidDecl()) {
   2641       Info.Diag(E);
   2642       return CompleteObject();
   2643     }
   2644 
   2645     // Accesses of volatile-qualified objects are not allowed.
   2646     if (BaseType.isVolatileQualified()) {
   2647       if (Info.getLangOpts().CPlusPlus) {
   2648         Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
   2649           << AK << 1 << VD;
   2650         Info.Note(VD->getLocation(), diag::note_declared_at);
   2651       } else {
   2652         Info.Diag(E);
   2653       }
   2654       return CompleteObject();
   2655     }
   2656 
   2657     // Unless we're looking at a local variable or argument in a constexpr call,
   2658     // the variable we're reading must be const.
   2659     if (!Frame) {
   2660       if (Info.getLangOpts().CPlusPlus14 &&
   2661           VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) {
   2662         // OK, we can read and modify an object if we're in the process of
   2663         // evaluating its initializer, because its lifetime began in this
   2664         // evaluation.
   2665       } else if (AK != AK_Read) {
   2666         // All the remaining cases only permit reading.
   2667         Info.Diag(E, diag::note_constexpr_modify_global);
   2668         return CompleteObject();
   2669       } else if (VD->isConstexpr()) {
   2670         // OK, we can read this variable.
   2671       } else if (BaseType->isIntegralOrEnumerationType()) {
   2672         if (!BaseType.isConstQualified()) {
   2673           if (Info.getLangOpts().CPlusPlus) {
   2674             Info.Diag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
   2675             Info.Note(VD->getLocation(), diag::note_declared_at);
   2676           } else {
   2677             Info.Diag(E);
   2678           }
   2679           return CompleteObject();
   2680         }
   2681       } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
   2682         // We support folding of const floating-point types, in order to make
   2683         // static const data members of such types (supported as an extension)
   2684         // more useful.
   2685         if (Info.getLangOpts().CPlusPlus11) {
   2686           Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
   2687           Info.Note(VD->getLocation(), diag::note_declared_at);
   2688         } else {
   2689           Info.CCEDiag(E);
   2690         }
   2691       } else {
   2692         // FIXME: Allow folding of values of any literal type in all languages.
   2693         if (Info.getLangOpts().CPlusPlus11) {
   2694           Info.Diag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
   2695           Info.Note(VD->getLocation(), diag::note_declared_at);
   2696         } else {
   2697           Info.Diag(E);
   2698         }
   2699         return CompleteObject();
   2700       }
   2701     }
   2702 
   2703     if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal))
   2704       return CompleteObject();
   2705   } else {
   2706     const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
   2707 
   2708     if (!Frame) {
   2709       if (const MaterializeTemporaryExpr *MTE =
   2710               dyn_cast<MaterializeTemporaryExpr>(Base)) {
   2711         assert(MTE->getStorageDuration() == SD_Static &&
   2712                "should have a frame for a non-global materialized temporary");
   2713 
   2714         // Per C++1y [expr.const]p2:
   2715         //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
   2716         //   - a [...] glvalue of integral or enumeration type that refers to
   2717         //     a non-volatile const object [...]
   2718         //   [...]
   2719         //   - a [...] glvalue of literal type that refers to a non-volatile
   2720         //     object whose lifetime began within the evaluation of e.
   2721         //
   2722         // C++11 misses the 'began within the evaluation of e' check and
   2723         // instead allows all temporaries, including things like:
   2724         //   int &&r = 1;
   2725         //   int x = ++r;
   2726         //   constexpr int k = r;
   2727         // Therefore we use the C++1y rules in C++11 too.
   2728         const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
   2729         const ValueDecl *ED = MTE->getExtendingDecl();
   2730         if (!(BaseType.isConstQualified() &&
   2731               BaseType->isIntegralOrEnumerationType()) &&
   2732             !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
   2733           Info.Diag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
   2734           Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
   2735           return CompleteObject();
   2736         }
   2737 
   2738         BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
   2739         assert(BaseVal && "got reference to unevaluated temporary");
   2740       } else {
   2741         Info.Diag(E);
   2742         return CompleteObject();
   2743       }
   2744     } else {
   2745       BaseVal = Frame->getTemporary(Base);
   2746       assert(BaseVal && "missing value for temporary");
   2747     }
   2748 
   2749     // Volatile temporary objects cannot be accessed in constant expressions.
   2750     if (BaseType.isVolatileQualified()) {
   2751       if (Info.getLangOpts().CPlusPlus) {
   2752         Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
   2753           << AK << 0;
   2754         Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
   2755       } else {
   2756         Info.Diag(E);
   2757       }
   2758       return CompleteObject();
   2759     }
   2760   }
   2761 
   2762   // During the construction of an object, it is not yet 'const'.
   2763   // FIXME: We don't set up EvaluatingDecl for local variables or temporaries,
   2764   // and this doesn't do quite the right thing for const subobjects of the
   2765   // object under construction.
   2766   if (LVal.getLValueBase() == Info.EvaluatingDecl) {
   2767     BaseType = Info.Ctx.getCanonicalType(BaseType);
   2768     BaseType.removeLocalConst();
   2769   }
   2770 
   2771   // In C++1y, we can't safely access any mutable state when we might be
   2772   // evaluating after an unmodeled side effect or an evaluation failure.
   2773   //
   2774   // FIXME: Not all local state is mutable. Allow local constant subobjects
   2775   // to be read here (but take care with 'mutable' fields).
   2776   if (Frame && Info.getLangOpts().CPlusPlus14 &&
   2777       (Info.EvalStatus.HasSideEffects || Info.keepEvaluatingAfterFailure()))
   2778     return CompleteObject();
   2779 
   2780   return CompleteObject(BaseVal, BaseType);
   2781 }
   2782 
   2783 /// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This
   2784 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
   2785 /// glvalue referred to by an entity of reference type.
   2786 ///
   2787 /// \param Info - Information about the ongoing evaluation.
   2788 /// \param Conv - The expression for which we are performing the conversion.
   2789 ///               Used for diagnostics.
   2790 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
   2791 ///               case of a non-class type).
   2792 /// \param LVal - The glvalue on which we are attempting to perform this action.
   2793 /// \param RVal - The produced value will be placed here.
   2794 static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
   2795                                            QualType Type,
   2796                                            const LValue &LVal, APValue &RVal) {
   2797   if (LVal.Designator.Invalid)
   2798     return false;
   2799 
   2800   // Check for special cases where there is no existing APValue to look at.
   2801   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
   2802   if (Base && !LVal.CallIndex && !Type.isVolatileQualified()) {
   2803     if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
   2804       // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
   2805       // initializer until now for such expressions. Such an expression can't be
   2806       // an ICE in C, so this only matters for fold.
   2807       assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
   2808       if (Type.isVolatileQualified()) {
   2809         Info.Diag(Conv);
   2810         return false;
   2811       }
   2812       APValue Lit;
   2813       if (!Evaluate(Lit, Info, CLE->getInitializer()))
   2814         return false;
   2815       CompleteObject LitObj(&Lit, Base->getType());
   2816       return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
   2817     } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
   2818       // We represent a string literal array as an lvalue pointing at the
   2819       // corresponding expression, rather than building an array of chars.
   2820       // FIXME: Support ObjCEncodeExpr, MakeStringConstant
   2821       APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
   2822       CompleteObject StrObj(&Str, Base->getType());
   2823       return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
   2824     }
   2825   }
   2826 
   2827   CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
   2828   return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
   2829 }
   2830 
   2831 /// Perform an assignment of Val to LVal. Takes ownership of Val.
   2832 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
   2833                              QualType LValType, APValue &Val) {
   2834   if (LVal.Designator.Invalid)
   2835     return false;
   2836 
   2837   if (!Info.getLangOpts().CPlusPlus14) {
   2838     Info.Diag(E);
   2839     return false;
   2840   }
   2841 
   2842   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
   2843   return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
   2844 }
   2845 
   2846 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
   2847   return T->isSignedIntegerType() &&
   2848          Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
   2849 }
   2850 
   2851 namespace {
   2852 struct CompoundAssignSubobjectHandler {
   2853   EvalInfo &Info;
   2854   const Expr *E;
   2855   QualType PromotedLHSType;
   2856   BinaryOperatorKind Opcode;
   2857   const APValue &RHS;
   2858 
   2859   static const AccessKinds AccessKind = AK_Assign;
   2860 
   2861   typedef bool result_type;
   2862 
   2863   bool checkConst(QualType QT) {
   2864     // Assigning to a const object has undefined behavior.
   2865     if (QT.isConstQualified()) {
   2866       Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
   2867       return false;
   2868     }
   2869     return true;
   2870   }
   2871 
   2872   bool failed() { return false; }
   2873   bool found(APValue &Subobj, QualType SubobjType) {
   2874     switch (Subobj.getKind()) {
   2875     case APValue::Int:
   2876       return found(Subobj.getInt(), SubobjType);
   2877     case APValue::Float:
   2878       return found(Subobj.getFloat(), SubobjType);
   2879     case APValue::ComplexInt:
   2880     case APValue::ComplexFloat:
   2881       // FIXME: Implement complex compound assignment.
   2882       Info.Diag(E);
   2883       return false;
   2884     case APValue::LValue:
   2885       return foundPointer(Subobj, SubobjType);
   2886     default:
   2887       // FIXME: can this happen?
   2888       Info.Diag(E);
   2889       return false;
   2890     }
   2891   }
   2892   bool found(APSInt &Value, QualType SubobjType) {
   2893     if (!checkConst(SubobjType))
   2894       return false;
   2895 
   2896     if (!SubobjType->isIntegerType() || !RHS.isInt()) {
   2897       // We don't support compound assignment on integer-cast-to-pointer
   2898       // values.
   2899       Info.Diag(E);
   2900       return false;
   2901     }
   2902 
   2903     APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType,
   2904                                     SubobjType, Value);
   2905     if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
   2906       return false;
   2907     Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
   2908     return true;
   2909   }
   2910   bool found(APFloat &Value, QualType SubobjType) {
   2911     return checkConst(SubobjType) &&
   2912            HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
   2913                                   Value) &&
   2914            handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
   2915            HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
   2916   }
   2917   bool foundPointer(APValue &Subobj, QualType SubobjType) {
   2918     if (!checkConst(SubobjType))
   2919       return false;
   2920 
   2921     QualType PointeeType;
   2922     if (const PointerType *PT = SubobjType->getAs<PointerType>())
   2923       PointeeType = PT->getPointeeType();
   2924 
   2925     if (PointeeType.isNull() || !RHS.isInt() ||
   2926         (Opcode != BO_Add && Opcode != BO_Sub)) {
   2927       Info.Diag(E);
   2928       return false;
   2929     }
   2930 
   2931     int64_t Offset = getExtValue(RHS.getInt());
   2932     if (Opcode == BO_Sub)
   2933       Offset = -Offset;
   2934 
   2935     LValue LVal;
   2936     LVal.setFrom(Info.Ctx, Subobj);
   2937     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
   2938       return false;
   2939     LVal.moveInto(Subobj);
   2940     return true;
   2941   }
   2942   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
   2943     llvm_unreachable("shouldn't encounter string elements here");
   2944   }
   2945 };
   2946 } // end anonymous namespace
   2947 
   2948 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
   2949 
   2950 /// Perform a compound assignment of LVal <op>= RVal.
   2951 static bool handleCompoundAssignment(
   2952     EvalInfo &Info, const Expr *E,
   2953     const LValue &LVal, QualType LValType, QualType PromotedLValType,
   2954     BinaryOperatorKind Opcode, const APValue &RVal) {
   2955   if (LVal.Designator.Invalid)
   2956     return false;
   2957 
   2958   if (!Info.getLangOpts().CPlusPlus14) {
   2959     Info.Diag(E);
   2960     return false;
   2961   }
   2962 
   2963   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
   2964   CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
   2965                                              RVal };
   2966   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
   2967 }
   2968 
   2969 namespace {
   2970 struct IncDecSubobjectHandler {
   2971   EvalInfo &Info;
   2972   const Expr *E;
   2973   AccessKinds AccessKind;
   2974   APValue *Old;
   2975 
   2976   typedef bool result_type;
   2977 
   2978   bool checkConst(QualType QT) {
   2979     // Assigning to a const object has undefined behavior.
   2980     if (QT.isConstQualified()) {
   2981       Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
   2982       return false;
   2983     }
   2984     return true;
   2985   }
   2986 
   2987   bool failed() { return false; }
   2988   bool found(APValue &Subobj, QualType SubobjType) {
   2989     // Stash the old value. Also clear Old, so we don't clobber it later
   2990     // if we're post-incrementing a complex.
   2991     if (Old) {
   2992       *Old = Subobj;
   2993       Old = nullptr;
   2994     }
   2995 
   2996     switch (Subobj.getKind()) {
   2997     case APValue::Int:
   2998       return found(Subobj.getInt(), SubobjType);
   2999     case APValue::Float:
   3000       return found(Subobj.getFloat(), SubobjType);
   3001     case APValue::ComplexInt:
   3002       return found(Subobj.getComplexIntReal(),
   3003                    SubobjType->castAs<ComplexType>()->getElementType()
   3004                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
   3005     case APValue::ComplexFloat:
   3006       return found(Subobj.getComplexFloatReal(),
   3007                    SubobjType->castAs<ComplexType>()->getElementType()
   3008                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
   3009     case APValue::LValue:
   3010       return foundPointer(Subobj, SubobjType);
   3011     default:
   3012       // FIXME: can this happen?
   3013       Info.Diag(E);
   3014       return false;
   3015     }
   3016   }
   3017   bool found(APSInt &Value, QualType SubobjType) {
   3018     if (!checkConst(SubobjType))
   3019       return false;
   3020 
   3021     if (!SubobjType->isIntegerType()) {
   3022       // We don't support increment / decrement on integer-cast-to-pointer
   3023       // values.
   3024       Info.Diag(E);
   3025       return false;
   3026     }
   3027 
   3028     if (Old) *Old = APValue(Value);
   3029 
   3030     // bool arithmetic promotes to int, and the conversion back to bool
   3031     // doesn't reduce mod 2^n, so special-case it.
   3032     if (SubobjType->isBooleanType()) {
   3033       if (AccessKind == AK_Increment)
   3034         Value = 1;
   3035       else
   3036         Value = !Value;
   3037       return true;
   3038     }
   3039 
   3040     bool WasNegative = Value.isNegative();
   3041     if (AccessKind == AK_Increment) {
   3042       ++Value;
   3043 
   3044       if (!WasNegative && Value.isNegative() &&
   3045           isOverflowingIntegerType(Info.Ctx, SubobjType)) {
   3046         APSInt ActualValue(Value, /*IsUnsigned*/true);
   3047         return HandleOverflow(Info, E, ActualValue, SubobjType);
   3048       }
   3049     } else {
   3050       --Value;
   3051 
   3052       if (WasNegative && !Value.isNegative() &&
   3053           isOverflowingIntegerType(Info.Ctx, SubobjType)) {
   3054         unsigned BitWidth = Value.getBitWidth();
   3055         APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
   3056         ActualValue.setBit(BitWidth);
   3057         return HandleOverflow(Info, E, ActualValue, SubobjType);
   3058       }
   3059     }
   3060     return true;
   3061   }
   3062   bool found(APFloat &Value, QualType SubobjType) {
   3063     if (!checkConst(SubobjType))
   3064       return false;
   3065 
   3066     if (Old) *Old = APValue(Value);
   3067 
   3068     APFloat One(Value.getSemantics(), 1);
   3069     if (AccessKind == AK_Increment)
   3070       Value.add(One, APFloat::rmNearestTiesToEven);
   3071     else
   3072       Value.subtract(One, APFloat::rmNearestTiesToEven);
   3073     return true;
   3074   }
   3075   bool foundPointer(APValue &Subobj, QualType SubobjType) {
   3076     if (!checkConst(SubobjType))
   3077       return false;
   3078 
   3079     QualType PointeeType;
   3080     if (const PointerType *PT = SubobjType->getAs<PointerType>())
   3081       PointeeType = PT->getPointeeType();
   3082     else {
   3083       Info.Diag(E);
   3084       return false;
   3085     }
   3086 
   3087     LValue LVal;
   3088     LVal.setFrom(Info.Ctx, Subobj);
   3089     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
   3090                                      AccessKind == AK_Increment ? 1 : -1))
   3091       return false;
   3092     LVal.moveInto(Subobj);
   3093     return true;
   3094   }
   3095   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
   3096     llvm_unreachable("shouldn't encounter string elements here");
   3097   }
   3098 };
   3099 } // end anonymous namespace
   3100 
   3101 /// Perform an increment or decrement on LVal.
   3102 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
   3103                          QualType LValType, bool IsIncrement, APValue *Old) {
   3104   if (LVal.Designator.Invalid)
   3105     return false;
   3106 
   3107   if (!Info.getLangOpts().CPlusPlus14) {
   3108     Info.Diag(E);
   3109     return false;
   3110   }
   3111 
   3112   AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
   3113   CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
   3114   IncDecSubobjectHandler Handler = { Info, E, AK, Old };
   3115   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
   3116 }
   3117 
   3118 /// Build an lvalue for the object argument of a member function call.
   3119 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
   3120                                    LValue &This) {
   3121   if (Object->getType()->isPointerType())
   3122     return EvaluatePointer(Object, This, Info);
   3123 
   3124   if (Object->isGLValue())
   3125     return EvaluateLValue(Object, This, Info);
   3126 
   3127   if (Object->getType()->isLiteralType(Info.Ctx))
   3128     return EvaluateTemporary(Object, This, Info);
   3129 
   3130   Info.Diag(Object, diag::note_constexpr_nonliteral) << Object->getType();
   3131   return false;
   3132 }
   3133 
   3134 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
   3135 /// lvalue referring to the result.
   3136 ///
   3137 /// \param Info - Information about the ongoing evaluation.
   3138 /// \param LV - An lvalue referring to the base of the member pointer.
   3139 /// \param RHS - The member pointer expression.
   3140 /// \param IncludeMember - Specifies whether the member itself is included in
   3141 ///        the resulting LValue subobject designator. This is not possible when
   3142 ///        creating a bound member function.
   3143 /// \return The field or method declaration to which the member pointer refers,
   3144 ///         or 0 if evaluation fails.
   3145 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
   3146                                                   QualType LVType,
   3147                                                   LValue &LV,
   3148                                                   const Expr *RHS,
   3149                                                   bool IncludeMember = true) {
   3150   MemberPtr MemPtr;
   3151   if (!EvaluateMemberPointer(RHS, MemPtr, Info))
   3152     return nullptr;
   3153 
   3154   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
   3155   // member value, the behavior is undefined.
   3156   if (!MemPtr.getDecl()) {
   3157     // FIXME: Specific diagnostic.
   3158     Info.Diag(RHS);
   3159     return nullptr;
   3160   }
   3161 
   3162   if (MemPtr.isDerivedMember()) {
   3163     // This is a member of some derived class. Truncate LV appropriately.
   3164     // The end of the derived-to-base path for the base object must match the
   3165     // derived-to-base path for the member pointer.
   3166     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
   3167         LV.Designator.Entries.size()) {
   3168       Info.Diag(RHS);
   3169       return nullptr;
   3170     }
   3171     unsigned PathLengthToMember =
   3172         LV.Designator.Entries.size() - MemPtr.Path.size();
   3173     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
   3174       const CXXRecordDecl *LVDecl = getAsBaseClass(
   3175           LV.Designator.Entries[PathLengthToMember + I]);
   3176       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
   3177       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
   3178         Info.Diag(RHS);
   3179         return nullptr;
   3180       }
   3181     }
   3182 
   3183     // Truncate the lvalue to the appropriate derived class.
   3184     if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
   3185                             PathLengthToMember))
   3186       return nullptr;
   3187   } else if (!MemPtr.Path.empty()) {
   3188     // Extend the LValue path with the member pointer's path.
   3189     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
   3190                                   MemPtr.Path.size() + IncludeMember);
   3191 
   3192     // Walk down to the appropriate base class.
   3193     if (const PointerType *PT = LVType->getAs<PointerType>())
   3194       LVType = PT->getPointeeType();
   3195     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
   3196     assert(RD && "member pointer access on non-class-type expression");
   3197     // The first class in the path is that of the lvalue.
   3198     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
   3199       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
   3200       if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
   3201         return nullptr;
   3202       RD = Base;
   3203     }
   3204     // Finally cast to the class containing the member.
   3205     if (!HandleLValueDirectBase(Info, RHS, LV, RD,
   3206                                 MemPtr.getContainingRecord()))
   3207       return nullptr;
   3208   }
   3209 
   3210   // Add the member. Note that we cannot build bound member functions here.
   3211   if (IncludeMember) {
   3212     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
   3213       if (!HandleLValueMember(Info, RHS, LV, FD))
   3214         return nullptr;
   3215     } else if (const IndirectFieldDecl *IFD =
   3216                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
   3217       if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
   3218         return nullptr;
   3219     } else {
   3220       llvm_unreachable("can't construct reference to bound member function");
   3221     }
   3222   }
   3223 
   3224   return MemPtr.getDecl();
   3225 }
   3226 
   3227 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
   3228                                                   const BinaryOperator *BO,
   3229                                                   LValue &LV,
   3230                                                   bool IncludeMember = true) {
   3231   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
   3232 
   3233   if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
   3234     if (Info.keepEvaluatingAfterFailure()) {
   3235       MemberPtr MemPtr;
   3236       EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
   3237     }
   3238     return nullptr;
   3239   }
   3240 
   3241   return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
   3242                                    BO->getRHS(), IncludeMember);
   3243 }
   3244 
   3245 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
   3246 /// the provided lvalue, which currently refers to the base object.
   3247 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
   3248                                     LValue &Result) {
   3249   SubobjectDesignator &D = Result.Designator;
   3250   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
   3251     return false;
   3252 
   3253   QualType TargetQT = E->getType();
   3254   if (const PointerType *PT = TargetQT->getAs<PointerType>())
   3255     TargetQT = PT->getPointeeType();
   3256 
   3257   // Check this cast lands within the final derived-to-base subobject path.
   3258   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
   3259     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
   3260       << D.MostDerivedType << TargetQT;
   3261     return false;
   3262   }
   3263 
   3264   // Check the type of the final cast. We don't need to check the path,
   3265   // since a cast can only be formed if the path is unique.
   3266   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
   3267   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
   3268   const CXXRecordDecl *FinalType;
   3269   if (NewEntriesSize == D.MostDerivedPathLength)
   3270     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
   3271   else
   3272     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
   3273   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
   3274     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
   3275       << D.MostDerivedType << TargetQT;
   3276     return false;
   3277   }
   3278 
   3279   // Truncate the lvalue to the appropriate derived class.
   3280   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
   3281 }
   3282 
   3283 namespace {
   3284 enum EvalStmtResult {
   3285   /// Evaluation failed.
   3286   ESR_Failed,
   3287   /// Hit a 'return' statement.
   3288   ESR_Returned,
   3289   /// Evaluation succeeded.
   3290   ESR_Succeeded,
   3291   /// Hit a 'continue' statement.
   3292   ESR_Continue,
   3293   /// Hit a 'break' statement.
   3294   ESR_Break,
   3295   /// Still scanning for 'case' or 'default' statement.
   3296   ESR_CaseNotFound
   3297 };
   3298 }
   3299 
   3300 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
   3301   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   3302     // We don't need to evaluate the initializer for a static local.
   3303     if (!VD->hasLocalStorage())
   3304       return true;
   3305 
   3306     LValue Result;
   3307     Result.set(VD, Info.CurrentCall->Index);
   3308     APValue &Val = Info.CurrentCall->createTemporary(VD, true);
   3309 
   3310     const Expr *InitE = VD->getInit();
   3311     if (!InitE) {
   3312       Info.Diag(D->getLocStart(), diag::note_constexpr_uninitialized)
   3313         << false << VD->getType();
   3314       Val = APValue();
   3315       return false;
   3316     }
   3317 
   3318     if (InitE->isValueDependent())
   3319       return false;
   3320 
   3321     if (!EvaluateInPlace(Val, Info, Result, InitE)) {
   3322       // Wipe out any partially-computed value, to allow tracking that this
   3323       // evaluation failed.
   3324       Val = APValue();
   3325       return false;
   3326     }
   3327   }
   3328 
   3329   return true;
   3330 }
   3331 
   3332 /// Evaluate a condition (either a variable declaration or an expression).
   3333 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
   3334                          const Expr *Cond, bool &Result) {
   3335   FullExpressionRAII Scope(Info);
   3336   if (CondDecl && !EvaluateDecl(Info, CondDecl))
   3337     return false;
   3338   return EvaluateAsBooleanCondition(Cond, Result, Info);
   3339 }
   3340 
   3341 /// \brief A location where the result (returned value) of evaluating a
   3342 /// statement should be stored.
   3343 struct StmtResult {
   3344   /// The APValue that should be filled in with the returned value.
   3345   APValue &Value;
   3346   /// The location containing the result, if any (used to support RVO).
   3347   const LValue *Slot;
   3348 };
   3349 
   3350 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
   3351                                    const Stmt *S,
   3352                                    const SwitchCase *SC = nullptr);
   3353 
   3354 /// Evaluate the body of a loop, and translate the result as appropriate.
   3355 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
   3356                                        const Stmt *Body,
   3357                                        const SwitchCase *Case = nullptr) {
   3358   BlockScopeRAII Scope(Info);
   3359   switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
   3360   case ESR_Break:
   3361     return ESR_Succeeded;
   3362   case ESR_Succeeded:
   3363   case ESR_Continue:
   3364     return ESR_Continue;
   3365   case ESR_Failed:
   3366   case ESR_Returned:
   3367   case ESR_CaseNotFound:
   3368     return ESR;
   3369   }
   3370   llvm_unreachable("Invalid EvalStmtResult!");
   3371 }
   3372 
   3373 /// Evaluate a switch statement.
   3374 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
   3375                                      const SwitchStmt *SS) {
   3376   BlockScopeRAII Scope(Info);
   3377 
   3378   // Evaluate the switch condition.
   3379   APSInt Value;
   3380   {
   3381     FullExpressionRAII Scope(Info);
   3382     if (SS->getConditionVariable() &&
   3383         !EvaluateDecl(Info, SS->getConditionVariable()))
   3384       return ESR_Failed;
   3385     if (!EvaluateInteger(SS->getCond(), Value, Info))
   3386       return ESR_Failed;
   3387   }
   3388 
   3389   // Find the switch case corresponding to the value of the condition.
   3390   // FIXME: Cache this lookup.
   3391   const SwitchCase *Found = nullptr;
   3392   for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
   3393        SC = SC->getNextSwitchCase()) {
   3394     if (isa<DefaultStmt>(SC)) {
   3395       Found = SC;
   3396       continue;
   3397     }
   3398 
   3399     const CaseStmt *CS = cast<CaseStmt>(SC);
   3400     APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
   3401     APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
   3402                               : LHS;
   3403     if (LHS <= Value && Value <= RHS) {
   3404       Found = SC;
   3405       break;
   3406     }
   3407   }
   3408 
   3409   if (!Found)
   3410     return ESR_Succeeded;
   3411 
   3412   // Search the switch body for the switch case and evaluate it from there.
   3413   switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
   3414   case ESR_Break:
   3415     return ESR_Succeeded;
   3416   case ESR_Succeeded:
   3417   case ESR_Continue:
   3418   case ESR_Failed:
   3419   case ESR_Returned:
   3420     return ESR;
   3421   case ESR_CaseNotFound:
   3422     // This can only happen if the switch case is nested within a statement
   3423     // expression. We have no intention of supporting that.
   3424     Info.Diag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported);
   3425     return ESR_Failed;
   3426   }
   3427   llvm_unreachable("Invalid EvalStmtResult!");
   3428 }
   3429 
   3430 // Evaluate a statement.
   3431 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
   3432                                    const Stmt *S, const SwitchCase *Case) {
   3433   if (!Info.nextStep(S))
   3434     return ESR_Failed;
   3435 
   3436   // If we're hunting down a 'case' or 'default' label, recurse through
   3437   // substatements until we hit the label.
   3438   if (Case) {
   3439     // FIXME: We don't start the lifetime of objects whose initialization we
   3440     // jump over. However, such objects must be of class type with a trivial
   3441     // default constructor that initialize all subobjects, so must be empty,
   3442     // so this almost never matters.
   3443     switch (S->getStmtClass()) {
   3444     case Stmt::CompoundStmtClass:
   3445       // FIXME: Precompute which substatement of a compound statement we
   3446       // would jump to, and go straight there rather than performing a
   3447       // linear scan each time.
   3448     case Stmt::LabelStmtClass:
   3449     case Stmt::AttributedStmtClass:
   3450     case Stmt::DoStmtClass:
   3451       break;
   3452 
   3453     case Stmt::CaseStmtClass:
   3454     case Stmt::DefaultStmtClass:
   3455       if (Case == S)
   3456         Case = nullptr;
   3457       break;
   3458 
   3459     case Stmt::IfStmtClass: {
   3460       // FIXME: Precompute which side of an 'if' we would jump to, and go
   3461       // straight there rather than scanning both sides.
   3462       const IfStmt *IS = cast<IfStmt>(S);
   3463 
   3464       // Wrap the evaluation in a block scope, in case it's a DeclStmt
   3465       // preceded by our switch label.
   3466       BlockScopeRAII Scope(Info);
   3467 
   3468       EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
   3469       if (ESR != ESR_CaseNotFound || !IS->getElse())
   3470         return ESR;
   3471       return EvaluateStmt(Result, Info, IS->getElse(), Case);
   3472     }
   3473 
   3474     case Stmt::WhileStmtClass: {
   3475       EvalStmtResult ESR =
   3476           EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
   3477       if (ESR != ESR_Continue)
   3478         return ESR;
   3479       break;
   3480     }
   3481 
   3482     case Stmt::ForStmtClass: {
   3483       const ForStmt *FS = cast<ForStmt>(S);
   3484       EvalStmtResult ESR =
   3485           EvaluateLoopBody(Result, Info, FS->getBody(), Case);
   3486       if (ESR != ESR_Continue)
   3487         return ESR;
   3488       if (FS->getInc()) {
   3489         FullExpressionRAII IncScope(Info);
   3490         if (!EvaluateIgnoredValue(Info, FS->getInc()))
   3491           return ESR_Failed;
   3492       }
   3493       break;
   3494     }
   3495 
   3496     case Stmt::DeclStmtClass:
   3497       // FIXME: If the variable has initialization that can't be jumped over,
   3498       // bail out of any immediately-surrounding compound-statement too.
   3499     default:
   3500       return ESR_CaseNotFound;
   3501     }
   3502   }
   3503 
   3504   switch (S->getStmtClass()) {
   3505   default:
   3506     if (const Expr *E = dyn_cast<Expr>(S)) {
   3507       // Don't bother evaluating beyond an expression-statement which couldn't
   3508       // be evaluated.
   3509       FullExpressionRAII Scope(Info);
   3510       if (!EvaluateIgnoredValue(Info, E))
   3511         return ESR_Failed;
   3512       return ESR_Succeeded;
   3513     }
   3514 
   3515     Info.Diag(S->getLocStart());
   3516     return ESR_Failed;
   3517 
   3518   case Stmt::NullStmtClass:
   3519     return ESR_Succeeded;
   3520 
   3521   case Stmt::DeclStmtClass: {
   3522     const DeclStmt *DS = cast<DeclStmt>(S);
   3523     for (const auto *DclIt : DS->decls()) {
   3524       // Each declaration initialization is its own full-expression.
   3525       // FIXME: This isn't quite right; if we're performing aggregate
   3526       // initialization, each braced subexpression is its own full-expression.
   3527       FullExpressionRAII Scope(Info);
   3528       if (!EvaluateDecl(Info, DclIt) && !Info.keepEvaluatingAfterFailure())
   3529         return ESR_Failed;
   3530     }
   3531     return ESR_Succeeded;
   3532   }
   3533 
   3534   case Stmt::ReturnStmtClass: {
   3535     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
   3536     FullExpressionRAII Scope(Info);
   3537     if (RetExpr &&
   3538         !(Result.Slot
   3539               ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
   3540               : Evaluate(Result.Value, Info, RetExpr)))
   3541       return ESR_Failed;
   3542     return ESR_Returned;
   3543   }
   3544 
   3545   case Stmt::CompoundStmtClass: {
   3546     BlockScopeRAII Scope(Info);
   3547 
   3548     const CompoundStmt *CS = cast<CompoundStmt>(S);
   3549     for (const auto *BI : CS->body()) {
   3550       EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
   3551       if (ESR == ESR_Succeeded)
   3552         Case = nullptr;
   3553       else if (ESR != ESR_CaseNotFound)
   3554         return ESR;
   3555     }
   3556     return Case ? ESR_CaseNotFound : ESR_Succeeded;
   3557   }
   3558 
   3559   case Stmt::IfStmtClass: {
   3560     const IfStmt *IS = cast<IfStmt>(S);
   3561 
   3562     // Evaluate the condition, as either a var decl or as an expression.
   3563     BlockScopeRAII Scope(Info);
   3564     bool Cond;
   3565     if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
   3566       return ESR_Failed;
   3567 
   3568     if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
   3569       EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
   3570       if (ESR != ESR_Succeeded)
   3571         return ESR;
   3572     }
   3573     return ESR_Succeeded;
   3574   }
   3575 
   3576   case Stmt::WhileStmtClass: {
   3577     const WhileStmt *WS = cast<WhileStmt>(S);
   3578     while (true) {
   3579       BlockScopeRAII Scope(Info);
   3580       bool Continue;
   3581       if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
   3582                         Continue))
   3583         return ESR_Failed;
   3584       if (!Continue)
   3585         break;
   3586 
   3587       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
   3588       if (ESR != ESR_Continue)
   3589         return ESR;
   3590     }
   3591     return ESR_Succeeded;
   3592   }
   3593 
   3594   case Stmt::DoStmtClass: {
   3595     const DoStmt *DS = cast<DoStmt>(S);
   3596     bool Continue;
   3597     do {
   3598       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
   3599       if (ESR != ESR_Continue)
   3600         return ESR;
   3601       Case = nullptr;
   3602 
   3603       FullExpressionRAII CondScope(Info);
   3604       if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
   3605         return ESR_Failed;
   3606     } while (Continue);
   3607     return ESR_Succeeded;
   3608   }
   3609 
   3610   case Stmt::ForStmtClass: {
   3611     const ForStmt *FS = cast<ForStmt>(S);
   3612     BlockScopeRAII Scope(Info);
   3613     if (FS->getInit()) {
   3614       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
   3615       if (ESR != ESR_Succeeded)
   3616         return ESR;
   3617     }
   3618     while (true) {
   3619       BlockScopeRAII Scope(Info);
   3620       bool Continue = true;
   3621       if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
   3622                                          FS->getCond(), Continue))
   3623         return ESR_Failed;
   3624       if (!Continue)
   3625         break;
   3626 
   3627       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
   3628       if (ESR != ESR_Continue)
   3629         return ESR;
   3630 
   3631       if (FS->getInc()) {
   3632         FullExpressionRAII IncScope(Info);
   3633         if (!EvaluateIgnoredValue(Info, FS->getInc()))
   3634           return ESR_Failed;
   3635       }
   3636     }
   3637     return ESR_Succeeded;
   3638   }
   3639 
   3640   case Stmt::CXXForRangeStmtClass: {
   3641     const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
   3642     BlockScopeRAII Scope(Info);
   3643 
   3644     // Initialize the __range variable.
   3645     EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
   3646     if (ESR != ESR_Succeeded)
   3647       return ESR;
   3648 
   3649     // Create the __begin and __end iterators.
   3650     ESR = EvaluateStmt(Result, Info, FS->getBeginEndStmt());
   3651     if (ESR != ESR_Succeeded)
   3652       return ESR;
   3653 
   3654     while (true) {
   3655       // Condition: __begin != __end.
   3656       {
   3657         bool Continue = true;
   3658         FullExpressionRAII CondExpr(Info);
   3659         if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
   3660           return ESR_Failed;
   3661         if (!Continue)
   3662           break;
   3663       }
   3664 
   3665       // User's variable declaration, initialized by *__begin.
   3666       BlockScopeRAII InnerScope(Info);
   3667       ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
   3668       if (ESR != ESR_Succeeded)
   3669         return ESR;
   3670 
   3671       // Loop body.
   3672       ESR = EvaluateLoopBody(Result, Info, FS->getBody());
   3673       if (ESR != ESR_Continue)
   3674         return ESR;
   3675 
   3676       // Increment: ++__begin
   3677       if (!EvaluateIgnoredValue(Info, FS->getInc()))
   3678         return ESR_Failed;
   3679     }
   3680 
   3681     return ESR_Succeeded;
   3682   }
   3683 
   3684   case Stmt::SwitchStmtClass:
   3685     return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
   3686 
   3687   case Stmt::ContinueStmtClass:
   3688     return ESR_Continue;
   3689 
   3690   case Stmt::BreakStmtClass:
   3691     return ESR_Break;
   3692 
   3693   case Stmt::LabelStmtClass:
   3694     return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
   3695 
   3696   case Stmt::AttributedStmtClass:
   3697     // As a general principle, C++11 attributes can be ignored without
   3698     // any semantic impact.
   3699     return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
   3700                         Case);
   3701 
   3702   case Stmt::CaseStmtClass:
   3703   case Stmt::DefaultStmtClass:
   3704     return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
   3705   }
   3706 }
   3707 
   3708 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
   3709 /// default constructor. If so, we'll fold it whether or not it's marked as
   3710 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
   3711 /// so we need special handling.
   3712 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
   3713                                            const CXXConstructorDecl *CD,
   3714                                            bool IsValueInitialization) {
   3715   if (!CD->isTrivial() || !CD->isDefaultConstructor())
   3716     return false;
   3717 
   3718   // Value-initialization does not call a trivial default constructor, so such a
   3719   // call is a core constant expression whether or not the constructor is
   3720   // constexpr.
   3721   if (!CD->isConstexpr() && !IsValueInitialization) {
   3722     if (Info.getLangOpts().CPlusPlus11) {
   3723       // FIXME: If DiagDecl is an implicitly-declared special member function,
   3724       // we should be much more explicit about why it's not constexpr.
   3725       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
   3726         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
   3727       Info.Note(CD->getLocation(), diag::note_declared_at);
   3728     } else {
   3729       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
   3730     }
   3731   }
   3732   return true;
   3733 }
   3734 
   3735 /// CheckConstexprFunction - Check that a function can be called in a constant
   3736 /// expression.
   3737 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
   3738                                    const FunctionDecl *Declaration,
   3739                                    const FunctionDecl *Definition) {
   3740   // Potential constant expressions can contain calls to declared, but not yet
   3741   // defined, constexpr functions.
   3742   if (Info.checkingPotentialConstantExpression() && !Definition &&
   3743       Declaration->isConstexpr())
   3744     return false;
   3745 
   3746   // Bail out with no diagnostic if the function declaration itself is invalid.
   3747   // We will have produced a relevant diagnostic while parsing it.
   3748   if (Declaration->isInvalidDecl())
   3749     return false;
   3750 
   3751   // Can we evaluate this function call?
   3752   if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
   3753     return true;
   3754 
   3755   if (Info.getLangOpts().CPlusPlus11) {
   3756     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
   3757     // FIXME: If DiagDecl is an implicitly-declared special member function, we
   3758     // should be much more explicit about why it's not constexpr.
   3759     Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
   3760       << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
   3761       << DiagDecl;
   3762     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
   3763   } else {
   3764     Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
   3765   }
   3766   return false;
   3767 }
   3768 
   3769 /// Determine if a class has any fields that might need to be copied by a
   3770 /// trivial copy or move operation.
   3771 static bool hasFields(const CXXRecordDecl *RD) {
   3772   if (!RD || RD->isEmpty())
   3773     return false;
   3774   for (auto *FD : RD->fields()) {
   3775     if (FD->isUnnamedBitfield())
   3776       continue;
   3777     return true;
   3778   }
   3779   for (auto &Base : RD->bases())
   3780     if (hasFields(Base.getType()->getAsCXXRecordDecl()))
   3781       return true;
   3782   return false;
   3783 }
   3784 
   3785 namespace {
   3786 typedef SmallVector<APValue, 8> ArgVector;
   3787 }
   3788 
   3789 /// EvaluateArgs - Evaluate the arguments to a function call.
   3790 static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
   3791                          EvalInfo &Info) {
   3792   bool Success = true;
   3793   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
   3794        I != E; ++I) {
   3795     if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
   3796       // If we're checking for a potential constant expression, evaluate all
   3797       // initializers even if some of them fail.
   3798       if (!Info.keepEvaluatingAfterFailure())
   3799         return false;
   3800       Success = false;
   3801     }
   3802   }
   3803   return Success;
   3804 }
   3805 
   3806 /// Evaluate a function call.
   3807 static bool HandleFunctionCall(SourceLocation CallLoc,
   3808                                const FunctionDecl *Callee, const LValue *This,
   3809                                ArrayRef<const Expr*> Args, const Stmt *Body,
   3810                                EvalInfo &Info, APValue &Result,
   3811                                const LValue *ResultSlot) {
   3812   ArgVector ArgValues(Args.size());
   3813   if (!EvaluateArgs(Args, ArgValues, Info))
   3814     return false;
   3815 
   3816   if (!Info.CheckCallLimit(CallLoc))
   3817     return false;
   3818 
   3819   CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
   3820 
   3821   // For a trivial copy or move assignment, perform an APValue copy. This is
   3822   // essential for unions, where the operations performed by the assignment
   3823   // operator cannot be represented as statements.
   3824   //
   3825   // Skip this for non-union classes with no fields; in that case, the defaulted
   3826   // copy/move does not actually read the object.
   3827   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
   3828   if (MD && MD->isDefaulted() &&
   3829       (MD->getParent()->isUnion() ||
   3830        (MD->isTrivial() && hasFields(MD->getParent())))) {
   3831     assert(This &&
   3832            (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
   3833     LValue RHS;
   3834     RHS.setFrom(Info.Ctx, ArgValues[0]);
   3835     APValue RHSValue;
   3836     if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
   3837                                         RHS, RHSValue))
   3838       return false;
   3839     if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
   3840                           RHSValue))
   3841       return false;
   3842     This->moveInto(Result);
   3843     return true;
   3844   }
   3845 
   3846   StmtResult Ret = {Result, ResultSlot};
   3847   EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
   3848   if (ESR == ESR_Succeeded) {
   3849     if (Callee->getReturnType()->isVoidType())
   3850       return true;
   3851     Info.Diag(Callee->getLocEnd(), diag::note_constexpr_no_return);
   3852   }
   3853   return ESR == ESR_Returned;
   3854 }
   3855 
   3856 /// Evaluate a constructor call.
   3857 static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
   3858                                   ArrayRef<const Expr*> Args,
   3859                                   const CXXConstructorDecl *Definition,
   3860                                   EvalInfo &Info, APValue &Result) {
   3861   ArgVector ArgValues(Args.size());
   3862   if (!EvaluateArgs(Args, ArgValues, Info))
   3863     return false;
   3864 
   3865   if (!Info.CheckCallLimit(CallLoc))
   3866     return false;
   3867 
   3868   const CXXRecordDecl *RD = Definition->getParent();
   3869   if (RD->getNumVBases()) {
   3870     Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
   3871     return false;
   3872   }
   3873 
   3874   CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
   3875 
   3876   // FIXME: Creating an APValue just to hold a nonexistent return value is
   3877   // wasteful.
   3878   APValue RetVal;
   3879   StmtResult Ret = {RetVal, nullptr};
   3880 
   3881   // If it's a delegating constructor, just delegate.
   3882   if (Definition->isDelegatingConstructor()) {
   3883     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
   3884     {
   3885       FullExpressionRAII InitScope(Info);
   3886       if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
   3887         return false;
   3888     }
   3889     return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
   3890   }
   3891 
   3892   // For a trivial copy or move constructor, perform an APValue copy. This is
   3893   // essential for unions (or classes with anonymous union members), where the
   3894   // operations performed by the constructor cannot be represented by
   3895   // ctor-initializers.
   3896   //
   3897   // Skip this for empty non-union classes; we should not perform an
   3898   // lvalue-to-rvalue conversion on them because their copy constructor does not
   3899   // actually read them.
   3900   if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
   3901       (Definition->getParent()->isUnion() ||
   3902        (Definition->isTrivial() && hasFields(Definition->getParent())))) {
   3903     LValue RHS;
   3904     RHS.setFrom(Info.Ctx, ArgValues[0]);
   3905     return handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
   3906                                           RHS, Result);
   3907   }
   3908 
   3909   // Reserve space for the struct members.
   3910   if (!RD->isUnion() && Result.isUninit())
   3911     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
   3912                      std::distance(RD->field_begin(), RD->field_end()));
   3913 
   3914   if (RD->isInvalidDecl()) return false;
   3915   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
   3916 
   3917   // A scope for temporaries lifetime-extended by reference members.
   3918   BlockScopeRAII LifetimeExtendedScope(Info);
   3919 
   3920   bool Success = true;
   3921   unsigned BasesSeen = 0;
   3922 #ifndef NDEBUG
   3923   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
   3924 #endif
   3925   for (const auto *I : Definition->inits()) {
   3926     LValue Subobject = This;
   3927     APValue *Value = &Result;
   3928 
   3929     // Determine the subobject to initialize.
   3930     FieldDecl *FD = nullptr;
   3931     if (I->isBaseInitializer()) {
   3932       QualType BaseType(I->getBaseClass(), 0);
   3933 #ifndef NDEBUG
   3934       // Non-virtual base classes are initialized in the order in the class
   3935       // definition. We have already checked for virtual base classes.
   3936       assert(!BaseIt->isVirtual() && "virtual base for literal type");
   3937       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
   3938              "base class initializers not in expected order");
   3939       ++BaseIt;
   3940 #endif
   3941       if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
   3942                                   BaseType->getAsCXXRecordDecl(), &Layout))
   3943         return false;
   3944       Value = &Result.getStructBase(BasesSeen++);
   3945     } else if ((FD = I->getMember())) {
   3946       if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
   3947         return false;
   3948       if (RD->isUnion()) {
   3949         Result = APValue(FD);
   3950         Value = &Result.getUnionValue();
   3951       } else {
   3952         Value = &Result.getStructField(FD->getFieldIndex());
   3953       }
   3954     } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
   3955       // Walk the indirect field decl's chain to find the object to initialize,
   3956       // and make sure we've initialized every step along it.
   3957       for (auto *C : IFD->chain()) {
   3958         FD = cast<FieldDecl>(C);
   3959         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
   3960         // Switch the union field if it differs. This happens if we had
   3961         // preceding zero-initialization, and we're now initializing a union
   3962         // subobject other than the first.
   3963         // FIXME: In this case, the values of the other subobjects are
   3964         // specified, since zero-initialization sets all padding bits to zero.
   3965         if (Value->isUninit() ||
   3966             (Value->isUnion() && Value->getUnionField() != FD)) {
   3967           if (CD->isUnion())
   3968             *Value = APValue(FD);
   3969           else
   3970             *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
   3971                              std::distance(CD->field_begin(), CD->field_end()));
   3972         }
   3973         if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
   3974           return false;
   3975         if (CD->isUnion())
   3976           Value = &Value->getUnionValue();
   3977         else
   3978           Value = &Value->getStructField(FD->getFieldIndex());
   3979       }
   3980     } else {
   3981       llvm_unreachable("unknown base initializer kind");
   3982     }
   3983 
   3984     FullExpressionRAII InitScope(Info);
   3985     if (!EvaluateInPlace(*Value, Info, Subobject, I->getInit()) ||
   3986         (FD && FD->isBitField() && !truncateBitfieldValue(Info, I->getInit(),
   3987                                                           *Value, FD))) {
   3988       // If we're checking for a potential constant expression, evaluate all
   3989       // initializers even if some of them fail.
   3990       if (!Info.keepEvaluatingAfterFailure())
   3991         return false;
   3992       Success = false;
   3993     }
   3994   }
   3995 
   3996   return Success &&
   3997          EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
   3998 }
   3999 
   4000 //===----------------------------------------------------------------------===//
   4001 // Generic Evaluation
   4002 //===----------------------------------------------------------------------===//
   4003 namespace {
   4004 
   4005 template <class Derived>
   4006 class ExprEvaluatorBase
   4007   : public ConstStmtVisitor<Derived, bool> {
   4008 private:
   4009   Derived &getDerived() { return static_cast<Derived&>(*this); }
   4010   bool DerivedSuccess(const APValue &V, const Expr *E) {
   4011     return getDerived().Success(V, E);
   4012   }
   4013   bool DerivedZeroInitialization(const Expr *E) {
   4014     return getDerived().ZeroInitialization(E);
   4015   }
   4016 
   4017   // Check whether a conditional operator with a non-constant condition is a
   4018   // potential constant expression. If neither arm is a potential constant
   4019   // expression, then the conditional operator is not either.
   4020   template<typename ConditionalOperator>
   4021   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
   4022     assert(Info.checkingPotentialConstantExpression());
   4023 
   4024     // Speculatively evaluate both arms.
   4025     {
   4026       SmallVector<PartialDiagnosticAt, 8> Diag;
   4027       SpeculativeEvaluationRAII Speculate(Info, &Diag);
   4028 
   4029       StmtVisitorTy::Visit(E->getFalseExpr());
   4030       if (Diag.empty())
   4031         return;
   4032 
   4033       Diag.clear();
   4034       StmtVisitorTy::Visit(E->getTrueExpr());
   4035       if (Diag.empty())
   4036         return;
   4037     }
   4038 
   4039     Error(E, diag::note_constexpr_conditional_never_const);
   4040   }
   4041 
   4042 
   4043   template<typename ConditionalOperator>
   4044   bool HandleConditionalOperator(const ConditionalOperator *E) {
   4045     bool BoolResult;
   4046     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
   4047       if (Info.checkingPotentialConstantExpression())
   4048         CheckPotentialConstantConditional(E);
   4049       return false;
   4050     }
   4051 
   4052     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
   4053     return StmtVisitorTy::Visit(EvalExpr);
   4054   }
   4055 
   4056 protected:
   4057   EvalInfo &Info;
   4058   typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
   4059   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
   4060 
   4061   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
   4062     return Info.CCEDiag(E, D);
   4063   }
   4064 
   4065   bool ZeroInitialization(const Expr *E) { return Error(E); }
   4066 
   4067 public:
   4068   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
   4069 
   4070   EvalInfo &getEvalInfo() { return Info; }
   4071 
   4072   /// Report an evaluation error. This should only be called when an error is
   4073   /// first discovered. When propagating an error, just return false.
   4074   bool Error(const Expr *E, diag::kind D) {
   4075     Info.Diag(E, D);
   4076     return false;
   4077   }
   4078   bool Error(const Expr *E) {
   4079     return Error(E, diag::note_invalid_subexpr_in_const_expr);
   4080   }
   4081 
   4082   bool VisitStmt(const Stmt *) {
   4083     llvm_unreachable("Expression evaluator should not be called on stmts");
   4084   }
   4085   bool VisitExpr(const Expr *E) {
   4086     return Error(E);
   4087   }
   4088 
   4089   bool VisitParenExpr(const ParenExpr *E)
   4090     { return StmtVisitorTy::Visit(E->getSubExpr()); }
   4091   bool VisitUnaryExtension(const UnaryOperator *E)
   4092     { return StmtVisitorTy::Visit(E->getSubExpr()); }
   4093   bool VisitUnaryPlus(const UnaryOperator *E)
   4094     { return StmtVisitorTy::Visit(E->getSubExpr()); }
   4095   bool VisitChooseExpr(const ChooseExpr *E)
   4096     { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
   4097   bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
   4098     { return StmtVisitorTy::Visit(E->getResultExpr()); }
   4099   bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
   4100     { return StmtVisitorTy::Visit(E->getReplacement()); }
   4101   bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
   4102     { return StmtVisitorTy::Visit(E->getExpr()); }
   4103   bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
   4104     // The initializer may not have been parsed yet, or might be erroneous.
   4105     if (!E->getExpr())
   4106       return Error(E);
   4107     return StmtVisitorTy::Visit(E->getExpr());
   4108   }
   4109   // We cannot create any objects for which cleanups are required, so there is
   4110   // nothing to do here; all cleanups must come from unevaluated subexpressions.
   4111   bool VisitExprWithCleanups(const ExprWithCleanups *E)
   4112     { return StmtVisitorTy::Visit(E->getSubExpr()); }
   4113 
   4114   bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
   4115     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
   4116     return static_cast<Derived*>(this)->VisitCastExpr(E);
   4117   }
   4118   bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
   4119     CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
   4120     return static_cast<Derived*>(this)->VisitCastExpr(E);
   4121   }
   4122 
   4123   bool VisitBinaryOperator(const BinaryOperator *E) {
   4124     switch (E->getOpcode()) {
   4125     default:
   4126       return Error(E);
   4127 
   4128     case BO_Comma:
   4129       VisitIgnoredValue(E->getLHS());
   4130       return StmtVisitorTy::Visit(E->getRHS());
   4131 
   4132     case BO_PtrMemD:
   4133     case BO_PtrMemI: {
   4134       LValue Obj;
   4135       if (!HandleMemberPointerAccess(Info, E, Obj))
   4136         return false;
   4137       APValue Result;
   4138       if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
   4139         return false;
   4140       return DerivedSuccess(Result, E);
   4141     }
   4142     }
   4143   }
   4144 
   4145   bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
   4146     // Evaluate and cache the common expression. We treat it as a temporary,
   4147     // even though it's not quite the same thing.
   4148     if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false),
   4149                   Info, E->getCommon()))
   4150       return false;
   4151 
   4152     return HandleConditionalOperator(E);
   4153   }
   4154 
   4155   bool VisitConditionalOperator(const ConditionalOperator *E) {
   4156     bool IsBcpCall = false;
   4157     // If the condition (ignoring parens) is a __builtin_constant_p call,
   4158     // the result is a constant expression if it can be folded without
   4159     // side-effects. This is an important GNU extension. See GCC PR38377
   4160     // for discussion.
   4161     if (const CallExpr *CallCE =
   4162           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
   4163       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
   4164         IsBcpCall = true;
   4165 
   4166     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
   4167     // constant expression; we can't check whether it's potentially foldable.
   4168     if (Info.checkingPotentialConstantExpression() && IsBcpCall)
   4169       return false;
   4170 
   4171     FoldConstant Fold(Info, IsBcpCall);
   4172     if (!HandleConditionalOperator(E)) {
   4173       Fold.keepDiagnostics();
   4174       return false;
   4175     }
   4176 
   4177     return true;
   4178   }
   4179 
   4180   bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
   4181     if (APValue *Value = Info.CurrentCall->getTemporary(E))
   4182       return DerivedSuccess(*Value, E);
   4183 
   4184     const Expr *Source = E->getSourceExpr();
   4185     if (!Source)
   4186       return Error(E);
   4187     if (Source == E) { // sanity checking.
   4188       assert(0 && "OpaqueValueExpr recursively refers to itself");
   4189       return Error(E);
   4190     }
   4191     return StmtVisitorTy::Visit(Source);
   4192   }
   4193 
   4194   bool VisitCallExpr(const CallExpr *E) {
   4195     APValue Result;
   4196     if (!handleCallExpr(E, Result, nullptr))
   4197       return false;
   4198     return DerivedSuccess(Result, E);
   4199   }
   4200 
   4201   bool handleCallExpr(const CallExpr *E, APValue &Result,
   4202                      const LValue *ResultSlot) {
   4203     const Expr *Callee = E->getCallee()->IgnoreParens();
   4204     QualType CalleeType = Callee->getType();
   4205 
   4206     const FunctionDecl *FD = nullptr;
   4207     LValue *This = nullptr, ThisVal;
   4208     auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
   4209     bool HasQualifier = false;
   4210 
   4211     // Extract function decl and 'this' pointer from the callee.
   4212     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
   4213       const ValueDecl *Member = nullptr;
   4214       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
   4215         // Explicit bound member calls, such as x.f() or p->g();
   4216         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
   4217           return false;
   4218         Member = ME->getMemberDecl();
   4219         This = &ThisVal;
   4220         HasQualifier = ME->hasQualifier();
   4221       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
   4222         // Indirect bound member calls ('.*' or '->*').
   4223         Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
   4224         if (!Member) return false;
   4225         This = &ThisVal;
   4226       } else
   4227         return Error(Callee);
   4228 
   4229       FD = dyn_cast<FunctionDecl>(Member);
   4230       if (!FD)
   4231         return Error(Callee);
   4232     } else if (CalleeType->isFunctionPointerType()) {
   4233       LValue Call;
   4234       if (!EvaluatePointer(Callee, Call, Info))
   4235         return false;
   4236 
   4237       if (!Call.getLValueOffset().isZero())
   4238         return Error(Callee);
   4239       FD = dyn_cast_or_null<FunctionDecl>(
   4240                              Call.getLValueBase().dyn_cast<const ValueDecl*>());
   4241       if (!FD)
   4242         return Error(Callee);
   4243 
   4244       // Overloaded operator calls to member functions are represented as normal
   4245       // calls with '*this' as the first argument.
   4246       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
   4247       if (MD && !MD->isStatic()) {
   4248         // FIXME: When selecting an implicit conversion for an overloaded
   4249         // operator delete, we sometimes try to evaluate calls to conversion
   4250         // operators without a 'this' parameter!
   4251         if (Args.empty())
   4252           return Error(E);
   4253 
   4254         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
   4255           return false;
   4256         This = &ThisVal;
   4257         Args = Args.slice(1);
   4258       }
   4259 
   4260       // Don't call function pointers which have been cast to some other type.
   4261       if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
   4262         return Error(E);
   4263     } else
   4264       return Error(E);
   4265 
   4266     if (This && !This->checkSubobject(Info, E, CSK_This))
   4267       return false;
   4268 
   4269     // DR1358 allows virtual constexpr functions in some cases. Don't allow
   4270     // calls to such functions in constant expressions.
   4271     if (This && !HasQualifier &&
   4272         isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
   4273       return Error(E, diag::note_constexpr_virtual_call);
   4274 
   4275     const FunctionDecl *Definition = nullptr;
   4276     Stmt *Body = FD->getBody(Definition);
   4277 
   4278     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
   4279         !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body, Info,
   4280                             Result, ResultSlot))
   4281       return false;
   4282 
   4283     return true;
   4284   }
   4285 
   4286   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
   4287     return StmtVisitorTy::Visit(E->getInitializer());
   4288   }
   4289   bool VisitInitListExpr(const InitListExpr *E) {
   4290     if (E->getNumInits() == 0)
   4291       return DerivedZeroInitialization(E);
   4292     if (E->getNumInits() == 1)
   4293       return StmtVisitorTy::Visit(E->getInit(0));
   4294     return Error(E);
   4295   }
   4296   bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
   4297     return DerivedZeroInitialization(E);
   4298   }
   4299   bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
   4300     return DerivedZeroInitialization(E);
   4301   }
   4302   bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
   4303     return DerivedZeroInitialization(E);
   4304   }
   4305 
   4306   /// A member expression where the object is a prvalue is itself a prvalue.
   4307   bool VisitMemberExpr(const MemberExpr *E) {
   4308     assert(!E->isArrow() && "missing call to bound member function?");
   4309 
   4310     APValue Val;
   4311     if (!Evaluate(Val, Info, E->getBase()))
   4312       return false;
   4313 
   4314     QualType BaseTy = E->getBase()->getType();
   4315 
   4316     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
   4317     if (!FD) return Error(E);
   4318     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
   4319     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
   4320            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
   4321 
   4322     CompleteObject Obj(&Val, BaseTy);
   4323     SubobjectDesignator Designator(BaseTy);
   4324     Designator.addDeclUnchecked(FD);
   4325 
   4326     APValue Result;
   4327     return extractSubobject(Info, E, Obj, Designator, Result) &&
   4328            DerivedSuccess(Result, E);
   4329   }
   4330 
   4331   bool VisitCastExpr(const CastExpr *E) {
   4332     switch (E->getCastKind()) {
   4333     default:
   4334       break;
   4335 
   4336     case CK_AtomicToNonAtomic: {
   4337       APValue AtomicVal;
   4338       if (!EvaluateAtomic(E->getSubExpr(), AtomicVal, Info))
   4339         return false;
   4340       return DerivedSuccess(AtomicVal, E);
   4341     }
   4342 
   4343     case CK_NoOp:
   4344     case CK_UserDefinedConversion:
   4345       return StmtVisitorTy::Visit(E->getSubExpr());
   4346 
   4347     case CK_LValueToRValue: {
   4348       LValue LVal;
   4349       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
   4350         return false;
   4351       APValue RVal;
   4352       // Note, we use the subexpression's type in order to retain cv-qualifiers.
   4353       if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
   4354                                           LVal, RVal))
   4355         return false;
   4356       return DerivedSuccess(RVal, E);
   4357     }
   4358     }
   4359 
   4360     return Error(E);
   4361   }
   4362 
   4363   bool VisitUnaryPostInc(const UnaryOperator *UO) {
   4364     return VisitUnaryPostIncDec(UO);
   4365   }
   4366   bool VisitUnaryPostDec(const UnaryOperator *UO) {
   4367     return VisitUnaryPostIncDec(UO);
   4368   }
   4369   bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
   4370     if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
   4371       return Error(UO);
   4372 
   4373     LValue LVal;
   4374     if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
   4375       return false;
   4376     APValue RVal;
   4377     if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
   4378                       UO->isIncrementOp(), &RVal))
   4379       return false;
   4380     return DerivedSuccess(RVal, UO);
   4381   }
   4382 
   4383   bool VisitStmtExpr(const StmtExpr *E) {
   4384     // We will have checked the full-expressions inside the statement expression
   4385     // when they were completed, and don't need to check them again now.
   4386     if (Info.checkingForOverflow())
   4387       return Error(E);
   4388 
   4389     BlockScopeRAII Scope(Info);
   4390     const CompoundStmt *CS = E->getSubStmt();
   4391     if (CS->body_empty())
   4392       return true;
   4393 
   4394     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
   4395                                            BE = CS->body_end();
   4396          /**/; ++BI) {
   4397       if (BI + 1 == BE) {
   4398         const Expr *FinalExpr = dyn_cast<Expr>(*BI);
   4399         if (!FinalExpr) {
   4400           Info.Diag((*BI)->getLocStart(),
   4401                     diag::note_constexpr_stmt_expr_unsupported);
   4402           return false;
   4403         }
   4404         return this->Visit(FinalExpr);
   4405       }
   4406 
   4407       APValue ReturnValue;
   4408       StmtResult Result = { ReturnValue, nullptr };
   4409       EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
   4410       if (ESR != ESR_Succeeded) {
   4411         // FIXME: If the statement-expression terminated due to 'return',
   4412         // 'break', or 'continue', it would be nice to propagate that to
   4413         // the outer statement evaluation rather than bailing out.
   4414         if (ESR != ESR_Failed)
   4415           Info.Diag((*BI)->getLocStart(),
   4416                     diag::note_constexpr_stmt_expr_unsupported);
   4417         return false;
   4418       }
   4419     }
   4420 
   4421     llvm_unreachable("Return from function from the loop above.");
   4422   }
   4423 
   4424   /// Visit a value which is evaluated, but whose value is ignored.
   4425   void VisitIgnoredValue(const Expr *E) {
   4426     EvaluateIgnoredValue(Info, E);
   4427   }
   4428 };
   4429 
   4430 }
   4431 
   4432 //===----------------------------------------------------------------------===//
   4433 // Common base class for lvalue and temporary evaluation.
   4434 //===----------------------------------------------------------------------===//
   4435 namespace {
   4436 template<class Derived>
   4437 class LValueExprEvaluatorBase
   4438   : public ExprEvaluatorBase<Derived> {
   4439 protected:
   4440   LValue &Result;
   4441   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
   4442   typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
   4443 
   4444   bool Success(APValue::LValueBase B) {
   4445     Result.set(B);
   4446     return true;
   4447   }
   4448 
   4449 public:
   4450   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
   4451     ExprEvaluatorBaseTy(Info), Result(Result) {}
   4452 
   4453   bool Success(const APValue &V, const Expr *E) {
   4454     Result.setFrom(this->Info.Ctx, V);
   4455     return true;
   4456   }
   4457 
   4458   bool VisitMemberExpr(const MemberExpr *E) {
   4459     // Handle non-static data members.
   4460     QualType BaseTy;
   4461     bool EvalOK;
   4462     if (E->isArrow()) {
   4463       EvalOK = EvaluatePointer(E->getBase(), Result, this->Info);
   4464       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
   4465     } else if (E->getBase()->isRValue()) {
   4466       assert(E->getBase()->getType()->isRecordType());
   4467       EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
   4468       BaseTy = E->getBase()->getType();
   4469     } else {
   4470       EvalOK = this->Visit(E->getBase());
   4471       BaseTy = E->getBase()->getType();
   4472     }
   4473     if (!EvalOK) {
   4474       if (!this->Info.allowInvalidBaseExpr())
   4475         return false;
   4476       Result.setInvalid(E);
   4477       return true;
   4478     }
   4479 
   4480     const ValueDecl *MD = E->getMemberDecl();
   4481     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
   4482       assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
   4483              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
   4484       (void)BaseTy;
   4485       if (!HandleLValueMember(this->Info, E, Result, FD))
   4486         return false;
   4487     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
   4488       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
   4489         return false;
   4490     } else
   4491       return this->Error(E);
   4492 
   4493     if (MD->getType()->isReferenceType()) {
   4494       APValue RefValue;
   4495       if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
   4496                                           RefValue))
   4497         return false;
   4498       return Success(RefValue, E);
   4499     }
   4500     return true;
   4501   }
   4502 
   4503   bool VisitBinaryOperator(const BinaryOperator *E) {
   4504     switch (E->getOpcode()) {
   4505     default:
   4506       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
   4507 
   4508     case BO_PtrMemD:
   4509     case BO_PtrMemI:
   4510       return HandleMemberPointerAccess(this->Info, E, Result);
   4511     }
   4512   }
   4513 
   4514   bool VisitCastExpr(const CastExpr *E) {
   4515     switch (E->getCastKind()) {
   4516     default:
   4517       return ExprEvaluatorBaseTy::VisitCastExpr(E);
   4518 
   4519     case CK_DerivedToBase:
   4520     case CK_UncheckedDerivedToBase:
   4521       if (!this->Visit(E->getSubExpr()))
   4522         return false;
   4523 
   4524       // Now figure out the necessary offset to add to the base LV to get from
   4525       // the derived class to the base class.
   4526       return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
   4527                                   Result);
   4528     }
   4529   }
   4530 };
   4531 }
   4532 
   4533 //===----------------------------------------------------------------------===//
   4534 // LValue Evaluation
   4535 //
   4536 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
   4537 // function designators (in C), decl references to void objects (in C), and
   4538 // temporaries (if building with -Wno-address-of-temporary).
   4539 //
   4540 // LValue evaluation produces values comprising a base expression of one of the
   4541 // following types:
   4542 // - Declarations
   4543 //  * VarDecl
   4544 //  * FunctionDecl
   4545 // - Literals
   4546 //  * CompoundLiteralExpr in C
   4547 //  * StringLiteral
   4548 //  * CXXTypeidExpr
   4549 //  * PredefinedExpr
   4550 //  * ObjCStringLiteralExpr
   4551 //  * ObjCEncodeExpr
   4552 //  * AddrLabelExpr
   4553 //  * BlockExpr
   4554 //  * CallExpr for a MakeStringConstant builtin
   4555 // - Locals and temporaries
   4556 //  * MaterializeTemporaryExpr
   4557 //  * Any Expr, with a CallIndex indicating the function in which the temporary
   4558 //    was evaluated, for cases where the MaterializeTemporaryExpr is missing
   4559 //    from the AST (FIXME).
   4560 //  * A MaterializeTemporaryExpr that has static storage duration, with no
   4561 //    CallIndex, for a lifetime-extended temporary.
   4562 // plus an offset in bytes.
   4563 //===----------------------------------------------------------------------===//
   4564 namespace {
   4565 class LValueExprEvaluator
   4566   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
   4567 public:
   4568   LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
   4569     LValueExprEvaluatorBaseTy(Info, Result) {}
   4570 
   4571   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
   4572   bool VisitUnaryPreIncDec(const UnaryOperator *UO);
   4573 
   4574   bool VisitDeclRefExpr(const DeclRefExpr *E);
   4575   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
   4576   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
   4577   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
   4578   bool VisitMemberExpr(const MemberExpr *E);
   4579   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
   4580   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
   4581   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
   4582   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
   4583   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
   4584   bool VisitUnaryDeref(const UnaryOperator *E);
   4585   bool VisitUnaryReal(const UnaryOperator *E);
   4586   bool VisitUnaryImag(const UnaryOperator *E);
   4587   bool VisitUnaryPreInc(const UnaryOperator *UO) {
   4588     return VisitUnaryPreIncDec(UO);
   4589   }
   4590   bool VisitUnaryPreDec(const UnaryOperator *UO) {
   4591     return VisitUnaryPreIncDec(UO);
   4592   }
   4593   bool VisitBinAssign(const BinaryOperator *BO);
   4594   bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
   4595 
   4596   bool VisitCastExpr(const CastExpr *E) {
   4597     switch (E->getCastKind()) {
   4598     default:
   4599       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
   4600 
   4601     case CK_LValueBitCast:
   4602       this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
   4603       if (!Visit(E->getSubExpr()))
   4604         return false;
   4605       Result.Designator.setInvalid();
   4606       return true;
   4607 
   4608     case CK_BaseToDerived:
   4609       if (!Visit(E->getSubExpr()))
   4610         return false;
   4611       return HandleBaseToDerivedCast(Info, E, Result);
   4612     }
   4613   }
   4614 };
   4615 } // end anonymous namespace
   4616 
   4617 /// Evaluate an expression as an lvalue. This can be legitimately called on
   4618 /// expressions which are not glvalues, in three cases:
   4619 ///  * function designators in C, and
   4620 ///  * "extern void" objects
   4621 ///  * @selector() expressions in Objective-C
   4622 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info) {
   4623   assert(E->isGLValue() || E->getType()->isFunctionType() ||
   4624          E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E));
   4625   return LValueExprEvaluator(Info, Result).Visit(E);
   4626 }
   4627 
   4628 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
   4629   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
   4630     return Success(FD);
   4631   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
   4632     return VisitVarDecl(E, VD);
   4633   return Error(E);
   4634 }
   4635 
   4636 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
   4637   CallStackFrame *Frame = nullptr;
   4638   if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1)
   4639     Frame = Info.CurrentCall;
   4640 
   4641   if (!VD->getType()->isReferenceType()) {
   4642     if (Frame) {
   4643       Result.set(VD, Frame->Index);
   4644       return true;
   4645     }
   4646     return Success(VD);
   4647   }
   4648 
   4649   APValue *V;
   4650   if (!evaluateVarDeclInit(Info, E, VD, Frame, V))
   4651     return false;
   4652   if (V->isUninit()) {
   4653     if (!Info.checkingPotentialConstantExpression())
   4654       Info.Diag(E, diag::note_constexpr_use_uninit_reference);
   4655     return false;
   4656   }
   4657   return Success(*V, E);
   4658 }
   4659 
   4660 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
   4661     const MaterializeTemporaryExpr *E) {
   4662   // Walk through the expression to find the materialized temporary itself.
   4663   SmallVector<const Expr *, 2> CommaLHSs;
   4664   SmallVector<SubobjectAdjustment, 2> Adjustments;
   4665   const Expr *Inner = E->GetTemporaryExpr()->
   4666       skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
   4667 
   4668   // If we passed any comma operators, evaluate their LHSs.
   4669   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
   4670     if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
   4671       return false;
   4672 
   4673   // A materialized temporary with static storage duration can appear within the
   4674   // result of a constant expression evaluation, so we need to preserve its
   4675   // value for use outside this evaluation.
   4676   APValue *Value;
   4677   if (E->getStorageDuration() == SD_Static) {
   4678     Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
   4679     *Value = APValue();
   4680     Result.set(E);
   4681   } else {
   4682     Value = &Info.CurrentCall->
   4683         createTemporary(E, E->getStorageDuration() == SD_Automatic);
   4684     Result.set(E, Info.CurrentCall->Index);
   4685   }
   4686 
   4687   QualType Type = Inner->getType();
   4688 
   4689   // Materialize the temporary itself.
   4690   if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
   4691       (E->getStorageDuration() == SD_Static &&
   4692        !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
   4693     *Value = APValue();
   4694     return false;
   4695   }
   4696 
   4697   // Adjust our lvalue to refer to the desired subobject.
   4698   for (unsigned I = Adjustments.size(); I != 0; /**/) {
   4699     --I;
   4700     switch (Adjustments[I].Kind) {
   4701     case SubobjectAdjustment::DerivedToBaseAdjustment:
   4702       if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
   4703                                 Type, Result))
   4704         return false;
   4705       Type = Adjustments[I].DerivedToBase.BasePath->getType();
   4706       break;
   4707 
   4708     case SubobjectAdjustment::FieldAdjustment:
   4709       if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
   4710         return false;
   4711       Type = Adjustments[I].Field->getType();
   4712       break;
   4713 
   4714     case SubobjectAdjustment::MemberPointerAdjustment:
   4715       if (!HandleMemberPointerAccess(this->Info, Type, Result,
   4716                                      Adjustments[I].Ptr.RHS))
   4717         return false;
   4718       Type = Adjustments[I].Ptr.MPT->getPointeeType();
   4719       break;
   4720     }
   4721   }
   4722 
   4723   return true;
   4724 }
   4725 
   4726 bool
   4727 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
   4728   assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
   4729   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
   4730   // only see this when folding in C, so there's no standard to follow here.
   4731   return Success(E);
   4732 }
   4733 
   4734 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
   4735   if (!E->isPotentiallyEvaluated())
   4736     return Success(E);
   4737 
   4738   Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
   4739     << E->getExprOperand()->getType()
   4740     << E->getExprOperand()->getSourceRange();
   4741   return false;
   4742 }
   4743 
   4744 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
   4745   return Success(E);
   4746 }
   4747 
   4748 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
   4749   // Handle static data members.
   4750   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
   4751     VisitIgnoredValue(E->getBase());
   4752     return VisitVarDecl(E, VD);
   4753   }
   4754 
   4755   // Handle static member functions.
   4756   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
   4757     if (MD->isStatic()) {
   4758       VisitIgnoredValue(E->getBase());
   4759       return Success(MD);
   4760     }
   4761   }
   4762 
   4763   // Handle non-static data members.
   4764   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
   4765 }
   4766 
   4767 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
   4768   // FIXME: Deal with vectors as array subscript bases.
   4769   if (E->getBase()->getType()->isVectorType())
   4770     return Error(E);
   4771 
   4772   if (!EvaluatePointer(E->getBase(), Result, Info))
   4773     return false;
   4774 
   4775   APSInt Index;
   4776   if (!EvaluateInteger(E->getIdx(), Index, Info))
   4777     return false;
   4778 
   4779   return HandleLValueArrayAdjustment(Info, E, Result, E->getType(),
   4780                                      getExtValue(Index));
   4781 }
   4782 
   4783 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
   4784   return EvaluatePointer(E->getSubExpr(), Result, Info);
   4785 }
   4786 
   4787 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
   4788   if (!Visit(E->getSubExpr()))
   4789     return false;
   4790   // __real is a no-op on scalar lvalues.
   4791   if (E->getSubExpr()->getType()->isAnyComplexType())
   4792     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
   4793   return true;
   4794 }
   4795 
   4796 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
   4797   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
   4798          "lvalue __imag__ on scalar?");
   4799   if (!Visit(E->getSubExpr()))
   4800     return false;
   4801   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
   4802   return true;
   4803 }
   4804 
   4805 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
   4806   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
   4807     return Error(UO);
   4808 
   4809   if (!this->Visit(UO->getSubExpr()))
   4810     return false;
   4811 
   4812   return handleIncDec(
   4813       this->Info, UO, Result, UO->getSubExpr()->getType(),
   4814       UO->isIncrementOp(), nullptr);
   4815 }
   4816 
   4817 bool LValueExprEvaluator::VisitCompoundAssignOperator(
   4818     const CompoundAssignOperator *CAO) {
   4819   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
   4820     return Error(CAO);
   4821 
   4822   APValue RHS;
   4823 
   4824   // The overall lvalue result is the result of evaluating the LHS.
   4825   if (!this->Visit(CAO->getLHS())) {
   4826     if (Info.keepEvaluatingAfterFailure())
   4827       Evaluate(RHS, this->Info, CAO->getRHS());
   4828     return false;
   4829   }
   4830 
   4831   if (!Evaluate(RHS, this->Info, CAO->getRHS()))
   4832     return false;
   4833 
   4834   return handleCompoundAssignment(
   4835       this->Info, CAO,
   4836       Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
   4837       CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
   4838 }
   4839 
   4840 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
   4841   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
   4842     return Error(E);
   4843 
   4844   APValue NewVal;
   4845 
   4846   if (!this->Visit(E->getLHS())) {
   4847     if (Info.keepEvaluatingAfterFailure())
   4848       Evaluate(NewVal, this->Info, E->getRHS());
   4849     return false;
   4850   }
   4851 
   4852   if (!Evaluate(NewVal, this->Info, E->getRHS()))
   4853     return false;
   4854 
   4855   return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
   4856                           NewVal);
   4857 }
   4858 
   4859 //===----------------------------------------------------------------------===//
   4860 // Pointer Evaluation
   4861 //===----------------------------------------------------------------------===//
   4862 
   4863 namespace {
   4864 class PointerExprEvaluator
   4865   : public ExprEvaluatorBase<PointerExprEvaluator> {
   4866   LValue &Result;
   4867 
   4868   bool Success(const Expr *E) {
   4869     Result.set(E);
   4870     return true;
   4871   }
   4872 public:
   4873 
   4874   PointerExprEvaluator(EvalInfo &info, LValue &Result)
   4875     : ExprEvaluatorBaseTy(info), Result(Result) {}
   4876 
   4877   bool Success(const APValue &V, const Expr *E) {
   4878     Result.setFrom(Info.Ctx, V);
   4879     return true;
   4880   }
   4881   bool ZeroInitialization(const Expr *E) {
   4882     return Success((Expr*)nullptr);
   4883   }
   4884 
   4885   bool VisitBinaryOperator(const BinaryOperator *E);
   4886   bool VisitCastExpr(const CastExpr* E);
   4887   bool VisitUnaryAddrOf(const UnaryOperator *E);
   4888   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
   4889       { return Success(E); }
   4890   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
   4891       { return Success(E); }
   4892   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
   4893       { return Success(E); }
   4894   bool VisitCallExpr(const CallExpr *E);
   4895   bool VisitBlockExpr(const BlockExpr *E) {
   4896     if (!E->getBlockDecl()->hasCaptures())
   4897       return Success(E);
   4898     return Error(E);
   4899   }
   4900   bool VisitCXXThisExpr(const CXXThisExpr *E) {
   4901     // Can't look at 'this' when checking a potential constant expression.
   4902     if (Info.checkingPotentialConstantExpression())
   4903       return false;
   4904     if (!Info.CurrentCall->This) {
   4905       if (Info.getLangOpts().CPlusPlus11)
   4906         Info.Diag(E, diag::note_constexpr_this) << E->isImplicit();
   4907       else
   4908         Info.Diag(E);
   4909       return false;
   4910     }
   4911     Result = *Info.CurrentCall->This;
   4912     return true;
   4913   }
   4914 
   4915   // FIXME: Missing: @protocol, @selector
   4916 };
   4917 } // end anonymous namespace
   4918 
   4919 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
   4920   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
   4921   return PointerExprEvaluator(Info, Result).Visit(E);
   4922 }
   4923 
   4924 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
   4925   if (E->getOpcode() != BO_Add &&
   4926       E->getOpcode() != BO_Sub)
   4927     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
   4928 
   4929   const Expr *PExp = E->getLHS();
   4930   const Expr *IExp = E->getRHS();
   4931   if (IExp->getType()->isPointerType())
   4932     std::swap(PExp, IExp);
   4933 
   4934   bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
   4935   if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
   4936     return false;
   4937 
   4938   llvm::APSInt Offset;
   4939   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
   4940     return false;
   4941 
   4942   int64_t AdditionalOffset = getExtValue(Offset);
   4943   if (E->getOpcode() == BO_Sub)
   4944     AdditionalOffset = -AdditionalOffset;
   4945 
   4946   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
   4947   return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
   4948                                      AdditionalOffset);
   4949 }
   4950 
   4951 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
   4952   return EvaluateLValue(E->getSubExpr(), Result, Info);
   4953 }
   4954 
   4955 bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
   4956   const Expr* SubExpr = E->getSubExpr();
   4957 
   4958   switch (E->getCastKind()) {
   4959   default:
   4960     break;
   4961 
   4962   case CK_BitCast:
   4963   case CK_CPointerToObjCPointerCast:
   4964   case CK_BlockPointerToObjCPointerCast:
   4965   case CK_AnyPointerToBlockPointerCast:
   4966   case CK_AddressSpaceConversion:
   4967     if (!Visit(SubExpr))
   4968       return false;
   4969     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
   4970     // permitted in constant expressions in C++11. Bitcasts from cv void* are
   4971     // also static_casts, but we disallow them as a resolution to DR1312.
   4972     if (!E->getType()->isVoidPointerType()) {
   4973       Result.Designator.setInvalid();
   4974       if (SubExpr->getType()->isVoidPointerType())
   4975         CCEDiag(E, diag::note_constexpr_invalid_cast)
   4976           << 3 << SubExpr->getType();
   4977       else
   4978         CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
   4979     }
   4980     return true;
   4981 
   4982   case CK_DerivedToBase:
   4983   case CK_UncheckedDerivedToBase:
   4984     if (!EvaluatePointer(E->getSubExpr(), Result, Info))
   4985       return false;
   4986     if (!Result.Base && Result.Offset.isZero())
   4987       return true;
   4988 
   4989     // Now figure out the necessary offset to add to the base LV to get from
   4990     // the derived class to the base class.
   4991     return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
   4992                                   castAs<PointerType>()->getPointeeType(),
   4993                                 Result);
   4994 
   4995   case CK_BaseToDerived:
   4996     if (!Visit(E->getSubExpr()))
   4997       return false;
   4998     if (!Result.Base && Result.Offset.isZero())
   4999       return true;
   5000     return HandleBaseToDerivedCast(Info, E, Result);
   5001 
   5002   case CK_NullToPointer:
   5003     VisitIgnoredValue(E->getSubExpr());
   5004     return ZeroInitialization(E);
   5005 
   5006   case CK_IntegralToPointer: {
   5007     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
   5008 
   5009     APValue Value;
   5010     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
   5011       break;
   5012 
   5013     if (Value.isInt()) {
   5014       unsigned Size = Info.Ctx.getTypeSize(E->getType());
   5015       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
   5016       Result.Base = (Expr*)nullptr;
   5017       Result.InvalidBase = false;
   5018       Result.Offset = CharUnits::fromQuantity(N);
   5019       Result.CallIndex = 0;
   5020       Result.Designator.setInvalid();
   5021       return true;
   5022     } else {
   5023       // Cast is of an lvalue, no need to change value.
   5024       Result.setFrom(Info.Ctx, Value);
   5025       return true;
   5026     }
   5027   }
   5028   case CK_ArrayToPointerDecay:
   5029     if (SubExpr->isGLValue()) {
   5030       if (!EvaluateLValue(SubExpr, Result, Info))
   5031         return false;
   5032     } else {
   5033       Result.set(SubExpr, Info.CurrentCall->Index);
   5034       if (!EvaluateInPlace(Info.CurrentCall->createTemporary(SubExpr, false),
   5035                            Info, Result, SubExpr))
   5036         return false;
   5037     }
   5038     // The result is a pointer to the first element of the array.
   5039     if (const ConstantArrayType *CAT
   5040           = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
   5041       Result.addArray(Info, E, CAT);
   5042     else
   5043       Result.Designator.setInvalid();
   5044     return true;
   5045 
   5046   case CK_FunctionToPointerDecay:
   5047     return EvaluateLValue(SubExpr, Result, Info);
   5048   }
   5049 
   5050   return ExprEvaluatorBaseTy::VisitCastExpr(E);
   5051 }
   5052 
   5053 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T) {
   5054   // C++ [expr.alignof]p3:
   5055   //     When alignof is applied to a reference type, the result is the
   5056   //     alignment of the referenced type.
   5057   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
   5058     T = Ref->getPointeeType();
   5059 
   5060   // __alignof is defined to return the preferred alignment.
   5061   return Info.Ctx.toCharUnitsFromBits(
   5062     Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
   5063 }
   5064 
   5065 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E) {
   5066   E = E->IgnoreParens();
   5067 
   5068   // The kinds of expressions that we have special-case logic here for
   5069   // should be kept up to date with the special checks for those
   5070   // expressions in Sema.
   5071 
   5072   // alignof decl is always accepted, even if it doesn't make sense: we default
   5073   // to 1 in those cases.
   5074   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
   5075     return Info.Ctx.getDeclAlign(DRE->getDecl(),
   5076                                  /*RefAsPointee*/true);
   5077 
   5078   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
   5079     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
   5080                                  /*RefAsPointee*/true);
   5081 
   5082   return GetAlignOfType(Info, E->getType());
   5083 }
   5084 
   5085 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
   5086   if (IsStringLiteralCall(E))
   5087     return Success(E);
   5088 
   5089   switch (E->getBuiltinCallee()) {
   5090   case Builtin::BI__builtin_addressof:
   5091     return EvaluateLValue(E->getArg(0), Result, Info);
   5092   case Builtin::BI__builtin_assume_aligned: {
   5093     // We need to be very careful here because: if the pointer does not have the
   5094     // asserted alignment, then the behavior is undefined, and undefined
   5095     // behavior is non-constant.
   5096     if (!EvaluatePointer(E->getArg(0), Result, Info))
   5097       return false;
   5098 
   5099     LValue OffsetResult(Result);
   5100     APSInt Alignment;
   5101     if (!EvaluateInteger(E->getArg(1), Alignment, Info))
   5102       return false;
   5103     CharUnits Align = CharUnits::fromQuantity(getExtValue(Alignment));
   5104 
   5105     if (E->getNumArgs() > 2) {
   5106       APSInt Offset;
   5107       if (!EvaluateInteger(E->getArg(2), Offset, Info))
   5108         return false;
   5109 
   5110       int64_t AdditionalOffset = -getExtValue(Offset);
   5111       OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
   5112     }
   5113 
   5114     // If there is a base object, then it must have the correct alignment.
   5115     if (OffsetResult.Base) {
   5116       CharUnits BaseAlignment;
   5117       if (const ValueDecl *VD =
   5118           OffsetResult.Base.dyn_cast<const ValueDecl*>()) {
   5119         BaseAlignment = Info.Ctx.getDeclAlign(VD);
   5120       } else {
   5121         BaseAlignment =
   5122           GetAlignOfExpr(Info, OffsetResult.Base.get<const Expr*>());
   5123       }
   5124 
   5125       if (BaseAlignment < Align) {
   5126         Result.Designator.setInvalid();
   5127 	// FIXME: Quantities here cast to integers because the plural modifier
   5128 	// does not work on APSInts yet.
   5129         CCEDiag(E->getArg(0),
   5130                 diag::note_constexpr_baa_insufficient_alignment) << 0
   5131           << (int) BaseAlignment.getQuantity()
   5132           << (unsigned) getExtValue(Alignment);
   5133         return false;
   5134       }
   5135     }
   5136 
   5137     // The offset must also have the correct alignment.
   5138     if (OffsetResult.Offset.RoundUpToAlignment(Align) != OffsetResult.Offset) {
   5139       Result.Designator.setInvalid();
   5140       APSInt Offset(64, false);
   5141       Offset = OffsetResult.Offset.getQuantity();
   5142 
   5143       if (OffsetResult.Base)
   5144         CCEDiag(E->getArg(0),
   5145                 diag::note_constexpr_baa_insufficient_alignment) << 1
   5146           << (int) getExtValue(Offset) << (unsigned) getExtValue(Alignment);
   5147       else
   5148         CCEDiag(E->getArg(0),
   5149                 diag::note_constexpr_baa_value_insufficient_alignment)
   5150           << Offset << (unsigned) getExtValue(Alignment);
   5151 
   5152       return false;
   5153     }
   5154 
   5155     return true;
   5156   }
   5157   default:
   5158     return ExprEvaluatorBaseTy::VisitCallExpr(E);
   5159   }
   5160 }
   5161 
   5162 //===----------------------------------------------------------------------===//
   5163 // Member Pointer Evaluation
   5164 //===----------------------------------------------------------------------===//
   5165 
   5166 namespace {
   5167 class MemberPointerExprEvaluator
   5168   : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
   5169   MemberPtr &Result;
   5170 
   5171   bool Success(const ValueDecl *D) {
   5172     Result = MemberPtr(D);
   5173     return true;
   5174   }
   5175 public:
   5176 
   5177   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
   5178     : ExprEvaluatorBaseTy(Info), Result(Result) {}
   5179 
   5180   bool Success(const APValue &V, const Expr *E) {
   5181     Result.setFrom(V);
   5182     return true;
   5183   }
   5184   bool ZeroInitialization(const Expr *E) {
   5185     return Success((const ValueDecl*)nullptr);
   5186   }
   5187 
   5188   bool VisitCastExpr(const CastExpr *E);
   5189   bool VisitUnaryAddrOf(const UnaryOperator *E);
   5190 };
   5191 } // end anonymous namespace
   5192 
   5193 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
   5194                                   EvalInfo &Info) {
   5195   assert(E->isRValue() && E->getType()->isMemberPointerType());
   5196   return MemberPointerExprEvaluator(Info, Result).Visit(E);
   5197 }
   5198 
   5199 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
   5200   switch (E->getCastKind()) {
   5201   default:
   5202     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   5203 
   5204   case CK_NullToMemberPointer:
   5205     VisitIgnoredValue(E->getSubExpr());
   5206     return ZeroInitialization(E);
   5207 
   5208   case CK_BaseToDerivedMemberPointer: {
   5209     if (!Visit(E->getSubExpr()))
   5210       return false;
   5211     if (E->path_empty())
   5212       return true;
   5213     // Base-to-derived member pointer casts store the path in derived-to-base
   5214     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
   5215     // the wrong end of the derived->base arc, so stagger the path by one class.
   5216     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
   5217     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
   5218          PathI != PathE; ++PathI) {
   5219       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
   5220       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
   5221       if (!Result.castToDerived(Derived))
   5222         return Error(E);
   5223     }
   5224     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
   5225     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
   5226       return Error(E);
   5227     return true;
   5228   }
   5229 
   5230   case CK_DerivedToBaseMemberPointer:
   5231     if (!Visit(E->getSubExpr()))
   5232       return false;
   5233     for (CastExpr::path_const_iterator PathI = E->path_begin(),
   5234          PathE = E->path_end(); PathI != PathE; ++PathI) {
   5235       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
   5236       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
   5237       if (!Result.castToBase(Base))
   5238         return Error(E);
   5239     }
   5240     return true;
   5241   }
   5242 }
   5243 
   5244 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
   5245   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
   5246   // member can be formed.
   5247   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
   5248 }
   5249 
   5250 //===----------------------------------------------------------------------===//
   5251 // Record Evaluation
   5252 //===----------------------------------------------------------------------===//
   5253 
   5254 namespace {
   5255   class RecordExprEvaluator
   5256   : public ExprEvaluatorBase<RecordExprEvaluator> {
   5257     const LValue &This;
   5258     APValue &Result;
   5259   public:
   5260 
   5261     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
   5262       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
   5263 
   5264     bool Success(const APValue &V, const Expr *E) {
   5265       Result = V;
   5266       return true;
   5267     }
   5268     bool ZeroInitialization(const Expr *E);
   5269 
   5270     bool VisitCallExpr(const CallExpr *E) {
   5271       return handleCallExpr(E, Result, &This);
   5272     }
   5273     bool VisitCastExpr(const CastExpr *E);
   5274     bool VisitInitListExpr(const InitListExpr *E);
   5275     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
   5276     bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
   5277   };
   5278 }
   5279 
   5280 /// Perform zero-initialization on an object of non-union class type.
   5281 /// C++11 [dcl.init]p5:
   5282 ///  To zero-initialize an object or reference of type T means:
   5283 ///    [...]
   5284 ///    -- if T is a (possibly cv-qualified) non-union class type,
   5285 ///       each non-static data member and each base-class subobject is
   5286 ///       zero-initialized
   5287 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
   5288                                           const RecordDecl *RD,
   5289                                           const LValue &This, APValue &Result) {
   5290   assert(!RD->isUnion() && "Expected non-union class type");
   5291   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
   5292   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
   5293                    std::distance(RD->field_begin(), RD->field_end()));
   5294 
   5295   if (RD->isInvalidDecl()) return false;
   5296   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
   5297 
   5298   if (CD) {
   5299     unsigned Index = 0;
   5300     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
   5301            End = CD->bases_end(); I != End; ++I, ++Index) {
   5302       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
   5303       LValue Subobject = This;
   5304       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
   5305         return false;
   5306       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
   5307                                          Result.getStructBase(Index)))
   5308         return false;
   5309     }
   5310   }
   5311 
   5312   for (const auto *I : RD->fields()) {
   5313     // -- if T is a reference type, no initialization is performed.
   5314     if (I->getType()->isReferenceType())
   5315       continue;
   5316 
   5317     LValue Subobject = This;
   5318     if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
   5319       return false;
   5320 
   5321     ImplicitValueInitExpr VIE(I->getType());
   5322     if (!EvaluateInPlace(
   5323           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
   5324       return false;
   5325   }
   5326 
   5327   return true;
   5328 }
   5329 
   5330 bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
   5331   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
   5332   if (RD->isInvalidDecl()) return false;
   5333   if (RD->isUnion()) {
   5334     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
   5335     // object's first non-static named data member is zero-initialized
   5336     RecordDecl::field_iterator I = RD->field_begin();
   5337     if (I == RD->field_end()) {
   5338       Result = APValue((const FieldDecl*)nullptr);
   5339       return true;
   5340     }
   5341 
   5342     LValue Subobject = This;
   5343     if (!HandleLValueMember(Info, E, Subobject, *I))
   5344       return false;
   5345     Result = APValue(*I);
   5346     ImplicitValueInitExpr VIE(I->getType());
   5347     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
   5348   }
   5349 
   5350   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
   5351     Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
   5352     return false;
   5353   }
   5354 
   5355   return HandleClassZeroInitialization(Info, E, RD, This, Result);
   5356 }
   5357 
   5358 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
   5359   switch (E->getCastKind()) {
   5360   default:
   5361     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   5362 
   5363   case CK_ConstructorConversion:
   5364     return Visit(E->getSubExpr());
   5365 
   5366   case CK_DerivedToBase:
   5367   case CK_UncheckedDerivedToBase: {
   5368     APValue DerivedObject;
   5369     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
   5370       return false;
   5371     if (!DerivedObject.isStruct())
   5372       return Error(E->getSubExpr());
   5373 
   5374     // Derived-to-base rvalue conversion: just slice off the derived part.
   5375     APValue *Value = &DerivedObject;
   5376     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
   5377     for (CastExpr::path_const_iterator PathI = E->path_begin(),
   5378          PathE = E->path_end(); PathI != PathE; ++PathI) {
   5379       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
   5380       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
   5381       Value = &Value->getStructBase(getBaseIndex(RD, Base));
   5382       RD = Base;
   5383     }
   5384     Result = *Value;
   5385     return true;
   5386   }
   5387   }
   5388 }
   5389 
   5390 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
   5391   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
   5392   if (RD->isInvalidDecl()) return false;
   5393   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
   5394 
   5395   if (RD->isUnion()) {
   5396     const FieldDecl *Field = E->getInitializedFieldInUnion();
   5397     Result = APValue(Field);
   5398     if (!Field)
   5399       return true;
   5400 
   5401     // If the initializer list for a union does not contain any elements, the
   5402     // first element of the union is value-initialized.
   5403     // FIXME: The element should be initialized from an initializer list.
   5404     //        Is this difference ever observable for initializer lists which
   5405     //        we don't build?
   5406     ImplicitValueInitExpr VIE(Field->getType());
   5407     const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
   5408 
   5409     LValue Subobject = This;
   5410     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
   5411       return false;
   5412 
   5413     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
   5414     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
   5415                                   isa<CXXDefaultInitExpr>(InitExpr));
   5416 
   5417     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
   5418   }
   5419 
   5420   assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
   5421          "initializer list for class with base classes");
   5422   Result = APValue(APValue::UninitStruct(), 0,
   5423                    std::distance(RD->field_begin(), RD->field_end()));
   5424   unsigned ElementNo = 0;
   5425   bool Success = true;
   5426   for (const auto *Field : RD->fields()) {
   5427     // Anonymous bit-fields are not considered members of the class for
   5428     // purposes of aggregate initialization.
   5429     if (Field->isUnnamedBitfield())
   5430       continue;
   5431 
   5432     LValue Subobject = This;
   5433 
   5434     bool HaveInit = ElementNo < E->getNumInits();
   5435 
   5436     // FIXME: Diagnostics here should point to the end of the initializer
   5437     // list, not the start.
   5438     if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
   5439                             Subobject, Field, &Layout))
   5440       return false;
   5441 
   5442     // Perform an implicit value-initialization for members beyond the end of
   5443     // the initializer list.
   5444     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
   5445     const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
   5446 
   5447     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
   5448     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
   5449                                   isa<CXXDefaultInitExpr>(Init));
   5450 
   5451     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
   5452     if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
   5453         (Field->isBitField() && !truncateBitfieldValue(Info, Init,
   5454                                                        FieldVal, Field))) {
   5455       if (!Info.keepEvaluatingAfterFailure())
   5456         return false;
   5457       Success = false;
   5458     }
   5459   }
   5460 
   5461   return Success;
   5462 }
   5463 
   5464 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
   5465   const CXXConstructorDecl *FD = E->getConstructor();
   5466   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
   5467 
   5468   bool ZeroInit = E->requiresZeroInitialization();
   5469   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
   5470     // If we've already performed zero-initialization, we're already done.
   5471     if (!Result.isUninit())
   5472       return true;
   5473 
   5474     // We can get here in two different ways:
   5475     //  1) We're performing value-initialization, and should zero-initialize
   5476     //     the object, or
   5477     //  2) We're performing default-initialization of an object with a trivial
   5478     //     constexpr default constructor, in which case we should start the
   5479     //     lifetimes of all the base subobjects (there can be no data member
   5480     //     subobjects in this case) per [basic.life]p1.
   5481     // Either way, ZeroInitialization is appropriate.
   5482     return ZeroInitialization(E);
   5483   }
   5484 
   5485   const FunctionDecl *Definition = nullptr;
   5486   FD->getBody(Definition);
   5487 
   5488   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
   5489     return false;
   5490 
   5491   // Avoid materializing a temporary for an elidable copy/move constructor.
   5492   if (E->isElidable() && !ZeroInit)
   5493     if (const MaterializeTemporaryExpr *ME
   5494           = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
   5495       return Visit(ME->GetTemporaryExpr());
   5496 
   5497   if (ZeroInit && !ZeroInitialization(E))
   5498     return false;
   5499 
   5500   auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
   5501   return HandleConstructorCall(E->getExprLoc(), This, Args,
   5502                                cast<CXXConstructorDecl>(Definition), Info,
   5503                                Result);
   5504 }
   5505 
   5506 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
   5507     const CXXStdInitializerListExpr *E) {
   5508   const ConstantArrayType *ArrayType =
   5509       Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
   5510 
   5511   LValue Array;
   5512   if (!EvaluateLValue(E->getSubExpr(), Array, Info))
   5513     return false;
   5514 
   5515   // Get a pointer to the first element of the array.
   5516   Array.addArray(Info, E, ArrayType);
   5517 
   5518   // FIXME: Perform the checks on the field types in SemaInit.
   5519   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
   5520   RecordDecl::field_iterator Field = Record->field_begin();
   5521   if (Field == Record->field_end())
   5522     return Error(E);
   5523 
   5524   // Start pointer.
   5525   if (!Field->getType()->isPointerType() ||
   5526       !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
   5527                             ArrayType->getElementType()))
   5528     return Error(E);
   5529 
   5530   // FIXME: What if the initializer_list type has base classes, etc?
   5531   Result = APValue(APValue::UninitStruct(), 0, 2);
   5532   Array.moveInto(Result.getStructField(0));
   5533 
   5534   if (++Field == Record->field_end())
   5535     return Error(E);
   5536 
   5537   if (Field->getType()->isPointerType() &&
   5538       Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
   5539                            ArrayType->getElementType())) {
   5540     // End pointer.
   5541     if (!HandleLValueArrayAdjustment(Info, E, Array,
   5542                                      ArrayType->getElementType(),
   5543                                      ArrayType->getSize().getZExtValue()))
   5544       return false;
   5545     Array.moveInto(Result.getStructField(1));
   5546   } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
   5547     // Length.
   5548     Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
   5549   else
   5550     return Error(E);
   5551 
   5552   if (++Field != Record->field_end())
   5553     return Error(E);
   5554 
   5555   return true;
   5556 }
   5557 
   5558 static bool EvaluateRecord(const Expr *E, const LValue &This,
   5559                            APValue &Result, EvalInfo &Info) {
   5560   assert(E->isRValue() && E->getType()->isRecordType() &&
   5561          "can't evaluate expression as a record rvalue");
   5562   return RecordExprEvaluator(Info, This, Result).Visit(E);
   5563 }
   5564 
   5565 //===----------------------------------------------------------------------===//
   5566 // Temporary Evaluation
   5567 //
   5568 // Temporaries are represented in the AST as rvalues, but generally behave like
   5569 // lvalues. The full-object of which the temporary is a subobject is implicitly
   5570 // materialized so that a reference can bind to it.
   5571 //===----------------------------------------------------------------------===//
   5572 namespace {
   5573 class TemporaryExprEvaluator
   5574   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
   5575 public:
   5576   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
   5577     LValueExprEvaluatorBaseTy(Info, Result) {}
   5578 
   5579   /// Visit an expression which constructs the value of this temporary.
   5580   bool VisitConstructExpr(const Expr *E) {
   5581     Result.set(E, Info.CurrentCall->Index);
   5582     return EvaluateInPlace(Info.CurrentCall->createTemporary(E, false),
   5583                            Info, Result, E);
   5584   }
   5585 
   5586   bool VisitCastExpr(const CastExpr *E) {
   5587     switch (E->getCastKind()) {
   5588     default:
   5589       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
   5590 
   5591     case CK_ConstructorConversion:
   5592       return VisitConstructExpr(E->getSubExpr());
   5593     }
   5594   }
   5595   bool VisitInitListExpr(const InitListExpr *E) {
   5596     return VisitConstructExpr(E);
   5597   }
   5598   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
   5599     return VisitConstructExpr(E);
   5600   }
   5601   bool VisitCallExpr(const CallExpr *E) {
   5602     return VisitConstructExpr(E);
   5603   }
   5604   bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
   5605     return VisitConstructExpr(E);
   5606   }
   5607 };
   5608 } // end anonymous namespace
   5609 
   5610 /// Evaluate an expression of record type as a temporary.
   5611 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
   5612   assert(E->isRValue() && E->getType()->isRecordType());
   5613   return TemporaryExprEvaluator(Info, Result).Visit(E);
   5614 }
   5615 
   5616 //===----------------------------------------------------------------------===//
   5617 // Vector Evaluation
   5618 //===----------------------------------------------------------------------===//
   5619 
   5620 namespace {
   5621   class VectorExprEvaluator
   5622   : public ExprEvaluatorBase<VectorExprEvaluator> {
   5623     APValue &Result;
   5624   public:
   5625 
   5626     VectorExprEvaluator(EvalInfo &info, APValue &Result)
   5627       : ExprEvaluatorBaseTy(info), Result(Result) {}
   5628 
   5629     bool Success(ArrayRef<APValue> V, const Expr *E) {
   5630       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
   5631       // FIXME: remove this APValue copy.
   5632       Result = APValue(V.data(), V.size());
   5633       return true;
   5634     }
   5635     bool Success(const APValue &V, const Expr *E) {
   5636       assert(V.isVector());
   5637       Result = V;
   5638       return true;
   5639     }
   5640     bool ZeroInitialization(const Expr *E);
   5641 
   5642     bool VisitUnaryReal(const UnaryOperator *E)
   5643       { return Visit(E->getSubExpr()); }
   5644     bool VisitCastExpr(const CastExpr* E);
   5645     bool VisitInitListExpr(const InitListExpr *E);
   5646     bool VisitUnaryImag(const UnaryOperator *E);
   5647     // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
   5648     //                 binary comparisons, binary and/or/xor,
   5649     //                 shufflevector, ExtVectorElementExpr
   5650   };
   5651 } // end anonymous namespace
   5652 
   5653 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
   5654   assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
   5655   return VectorExprEvaluator(Info, Result).Visit(E);
   5656 }
   5657 
   5658 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
   5659   const VectorType *VTy = E->getType()->castAs<VectorType>();
   5660   unsigned NElts = VTy->getNumElements();
   5661 
   5662   const Expr *SE = E->getSubExpr();
   5663   QualType SETy = SE->getType();
   5664 
   5665   switch (E->getCastKind()) {
   5666   case CK_VectorSplat: {
   5667     APValue Val = APValue();
   5668     if (SETy->isIntegerType()) {
   5669       APSInt IntResult;
   5670       if (!EvaluateInteger(SE, IntResult, Info))
   5671         return false;
   5672       Val = APValue(std::move(IntResult));
   5673     } else if (SETy->isRealFloatingType()) {
   5674       APFloat FloatResult(0.0);
   5675       if (!EvaluateFloat(SE, FloatResult, Info))
   5676         return false;
   5677       Val = APValue(std::move(FloatResult));
   5678     } else {
   5679       return Error(E);
   5680     }
   5681 
   5682     // Splat and create vector APValue.
   5683     SmallVector<APValue, 4> Elts(NElts, Val);
   5684     return Success(Elts, E);
   5685   }
   5686   case CK_BitCast: {
   5687     // Evaluate the operand into an APInt we can extract from.
   5688     llvm::APInt SValInt;
   5689     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
   5690       return false;
   5691     // Extract the elements
   5692     QualType EltTy = VTy->getElementType();
   5693     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
   5694     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
   5695     SmallVector<APValue, 4> Elts;
   5696     if (EltTy->isRealFloatingType()) {
   5697       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
   5698       unsigned FloatEltSize = EltSize;
   5699       if (&Sem == &APFloat::x87DoubleExtended)
   5700         FloatEltSize = 80;
   5701       for (unsigned i = 0; i < NElts; i++) {
   5702         llvm::APInt Elt;
   5703         if (BigEndian)
   5704           Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
   5705         else
   5706           Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
   5707         Elts.push_back(APValue(APFloat(Sem, Elt)));
   5708       }
   5709     } else if (EltTy->isIntegerType()) {
   5710       for (unsigned i = 0; i < NElts; i++) {
   5711         llvm::APInt Elt;
   5712         if (BigEndian)
   5713           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
   5714         else
   5715           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
   5716         Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
   5717       }
   5718     } else {
   5719       return Error(E);
   5720     }
   5721     return Success(Elts, E);
   5722   }
   5723   default:
   5724     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   5725   }
   5726 }
   5727 
   5728 bool
   5729 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
   5730   const VectorType *VT = E->getType()->castAs<VectorType>();
   5731   unsigned NumInits = E->getNumInits();
   5732   unsigned NumElements = VT->getNumElements();
   5733 
   5734   QualType EltTy = VT->getElementType();
   5735   SmallVector<APValue, 4> Elements;
   5736 
   5737   // The number of initializers can be less than the number of
   5738   // vector elements. For OpenCL, this can be due to nested vector
   5739   // initialization. For GCC compatibility, missing trailing elements
   5740   // should be initialized with zeroes.
   5741   unsigned CountInits = 0, CountElts = 0;
   5742   while (CountElts < NumElements) {
   5743     // Handle nested vector initialization.
   5744     if (CountInits < NumInits
   5745         && E->getInit(CountInits)->getType()->isVectorType()) {
   5746       APValue v;
   5747       if (!EvaluateVector(E->getInit(CountInits), v, Info))
   5748         return Error(E);
   5749       unsigned vlen = v.getVectorLength();
   5750       for (unsigned j = 0; j < vlen; j++)
   5751         Elements.push_back(v.getVectorElt(j));
   5752       CountElts += vlen;
   5753     } else if (EltTy->isIntegerType()) {
   5754       llvm::APSInt sInt(32);
   5755       if (CountInits < NumInits) {
   5756         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
   5757           return false;
   5758       } else // trailing integer zero.
   5759         sInt = Info.Ctx.MakeIntValue(0, EltTy);
   5760       Elements.push_back(APValue(sInt));
   5761       CountElts++;
   5762     } else {
   5763       llvm::APFloat f(0.0);
   5764       if (CountInits < NumInits) {
   5765         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
   5766           return false;
   5767       } else // trailing float zero.
   5768         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
   5769       Elements.push_back(APValue(f));
   5770       CountElts++;
   5771     }
   5772     CountInits++;
   5773   }
   5774   return Success(Elements, E);
   5775 }
   5776 
   5777 bool
   5778 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
   5779   const VectorType *VT = E->getType()->getAs<VectorType>();
   5780   QualType EltTy = VT->getElementType();
   5781   APValue ZeroElement;
   5782   if (EltTy->isIntegerType())
   5783     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
   5784   else
   5785     ZeroElement =
   5786         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
   5787 
   5788   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
   5789   return Success(Elements, E);
   5790 }
   5791 
   5792 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
   5793   VisitIgnoredValue(E->getSubExpr());
   5794   return ZeroInitialization(E);
   5795 }
   5796 
   5797 //===----------------------------------------------------------------------===//
   5798 // Array Evaluation
   5799 //===----------------------------------------------------------------------===//
   5800 
   5801 namespace {
   5802   class ArrayExprEvaluator
   5803   : public ExprEvaluatorBase<ArrayExprEvaluator> {
   5804     const LValue &This;
   5805     APValue &Result;
   5806   public:
   5807 
   5808     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
   5809       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
   5810 
   5811     bool Success(const APValue &V, const Expr *E) {
   5812       assert((V.isArray() || V.isLValue()) &&
   5813              "expected array or string literal");
   5814       Result = V;
   5815       return true;
   5816     }
   5817 
   5818     bool ZeroInitialization(const Expr *E) {
   5819       const ConstantArrayType *CAT =
   5820           Info.Ctx.getAsConstantArrayType(E->getType());
   5821       if (!CAT)
   5822         return Error(E);
   5823 
   5824       Result = APValue(APValue::UninitArray(), 0,
   5825                        CAT->getSize().getZExtValue());
   5826       if (!Result.hasArrayFiller()) return true;
   5827 
   5828       // Zero-initialize all elements.
   5829       LValue Subobject = This;
   5830       Subobject.addArray(Info, E, CAT);
   5831       ImplicitValueInitExpr VIE(CAT->getElementType());
   5832       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
   5833     }
   5834 
   5835     bool VisitCallExpr(const CallExpr *E) {
   5836       return handleCallExpr(E, Result, &This);
   5837     }
   5838     bool VisitInitListExpr(const InitListExpr *E);
   5839     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
   5840     bool VisitCXXConstructExpr(const CXXConstructExpr *E,
   5841                                const LValue &Subobject,
   5842                                APValue *Value, QualType Type);
   5843   };
   5844 } // end anonymous namespace
   5845 
   5846 static bool EvaluateArray(const Expr *E, const LValue &This,
   5847                           APValue &Result, EvalInfo &Info) {
   5848   assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
   5849   return ArrayExprEvaluator(Info, This, Result).Visit(E);
   5850 }
   5851 
   5852 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
   5853   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
   5854   if (!CAT)
   5855     return Error(E);
   5856 
   5857   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
   5858   // an appropriately-typed string literal enclosed in braces.
   5859   if (E->isStringLiteralInit()) {
   5860     LValue LV;
   5861     if (!EvaluateLValue(E->getInit(0), LV, Info))
   5862       return false;
   5863     APValue Val;
   5864     LV.moveInto(Val);
   5865     return Success(Val, E);
   5866   }
   5867 
   5868   bool Success = true;
   5869 
   5870   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
   5871          "zero-initialized array shouldn't have any initialized elts");
   5872   APValue Filler;
   5873   if (Result.isArray() && Result.hasArrayFiller())
   5874     Filler = Result.getArrayFiller();
   5875 
   5876   unsigned NumEltsToInit = E->getNumInits();
   5877   unsigned NumElts = CAT->getSize().getZExtValue();
   5878   const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
   5879 
   5880   // If the initializer might depend on the array index, run it for each
   5881   // array element. For now, just whitelist non-class value-initialization.
   5882   if (NumEltsToInit != NumElts && !isa<ImplicitValueInitExpr>(FillerExpr))
   5883     NumEltsToInit = NumElts;
   5884 
   5885   Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
   5886 
   5887   // If the array was previously zero-initialized, preserve the
   5888   // zero-initialized values.
   5889   if (!Filler.isUninit()) {
   5890     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
   5891       Result.getArrayInitializedElt(I) = Filler;
   5892     if (Result.hasArrayFiller())
   5893       Result.getArrayFiller() = Filler;
   5894   }
   5895 
   5896   LValue Subobject = This;
   5897   Subobject.addArray(Info, E, CAT);
   5898   for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
   5899     const Expr *Init =
   5900         Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
   5901     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
   5902                          Info, Subobject, Init) ||
   5903         !HandleLValueArrayAdjustment(Info, Init, Subobject,
   5904                                      CAT->getElementType(), 1)) {
   5905       if (!Info.keepEvaluatingAfterFailure())
   5906         return false;
   5907       Success = false;
   5908     }
   5909   }
   5910 
   5911   if (!Result.hasArrayFiller())
   5912     return Success;
   5913 
   5914   // If we get here, we have a trivial filler, which we can just evaluate
   5915   // once and splat over the rest of the array elements.
   5916   assert(FillerExpr && "no array filler for incomplete init list");
   5917   return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
   5918                          FillerExpr) && Success;
   5919 }
   5920 
   5921 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
   5922   return VisitCXXConstructExpr(E, This, &Result, E->getType());
   5923 }
   5924 
   5925 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
   5926                                                const LValue &Subobject,
   5927                                                APValue *Value,
   5928                                                QualType Type) {
   5929   bool HadZeroInit = !Value->isUninit();
   5930 
   5931   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
   5932     unsigned N = CAT->getSize().getZExtValue();
   5933 
   5934     // Preserve the array filler if we had prior zero-initialization.
   5935     APValue Filler =
   5936       HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
   5937                                              : APValue();
   5938 
   5939     *Value = APValue(APValue::UninitArray(), N, N);
   5940 
   5941     if (HadZeroInit)
   5942       for (unsigned I = 0; I != N; ++I)
   5943         Value->getArrayInitializedElt(I) = Filler;
   5944 
   5945     // Initialize the elements.
   5946     LValue ArrayElt = Subobject;
   5947     ArrayElt.addArray(Info, E, CAT);
   5948     for (unsigned I = 0; I != N; ++I)
   5949       if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
   5950                                  CAT->getElementType()) ||
   5951           !HandleLValueArrayAdjustment(Info, E, ArrayElt,
   5952                                        CAT->getElementType(), 1))
   5953         return false;
   5954 
   5955     return true;
   5956   }
   5957 
   5958   if (!Type->isRecordType())
   5959     return Error(E);
   5960 
   5961   const CXXConstructorDecl *FD = E->getConstructor();
   5962 
   5963   bool ZeroInit = E->requiresZeroInitialization();
   5964   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
   5965     if (HadZeroInit)
   5966       return true;
   5967 
   5968     // See RecordExprEvaluator::VisitCXXConstructExpr for explanation.
   5969     ImplicitValueInitExpr VIE(Type);
   5970     return EvaluateInPlace(*Value, Info, Subobject, &VIE);
   5971   }
   5972 
   5973   const FunctionDecl *Definition = nullptr;
   5974   FD->getBody(Definition);
   5975 
   5976   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
   5977     return false;
   5978 
   5979   if (ZeroInit && !HadZeroInit) {
   5980     ImplicitValueInitExpr VIE(Type);
   5981     if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
   5982       return false;
   5983   }
   5984 
   5985   auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
   5986   return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
   5987                                cast<CXXConstructorDecl>(Definition),
   5988                                Info, *Value);
   5989 }
   5990 
   5991 //===----------------------------------------------------------------------===//
   5992 // Integer Evaluation
   5993 //
   5994 // As a GNU extension, we support casting pointers to sufficiently-wide integer
   5995 // types and back in constant folding. Integer values are thus represented
   5996 // either as an integer-valued APValue, or as an lvalue-valued APValue.
   5997 //===----------------------------------------------------------------------===//
   5998 
   5999 namespace {
   6000 class IntExprEvaluator
   6001   : public ExprEvaluatorBase<IntExprEvaluator> {
   6002   APValue &Result;
   6003 public:
   6004   IntExprEvaluator(EvalInfo &info, APValue &result)
   6005     : ExprEvaluatorBaseTy(info), Result(result) {}
   6006 
   6007   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
   6008     assert(E->getType()->isIntegralOrEnumerationType() &&
   6009            "Invalid evaluation result.");
   6010     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
   6011            "Invalid evaluation result.");
   6012     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
   6013            "Invalid evaluation result.");
   6014     Result = APValue(SI);
   6015     return true;
   6016   }
   6017   bool Success(const llvm::APSInt &SI, const Expr *E) {
   6018     return Success(SI, E, Result);
   6019   }
   6020 
   6021   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
   6022     assert(E->getType()->isIntegralOrEnumerationType() &&
   6023            "Invalid evaluation result.");
   6024     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
   6025            "Invalid evaluation result.");
   6026     Result = APValue(APSInt(I));
   6027     Result.getInt().setIsUnsigned(
   6028                             E->getType()->isUnsignedIntegerOrEnumerationType());
   6029     return true;
   6030   }
   6031   bool Success(const llvm::APInt &I, const Expr *E) {
   6032     return Success(I, E, Result);
   6033   }
   6034 
   6035   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
   6036     assert(E->getType()->isIntegralOrEnumerationType() &&
   6037            "Invalid evaluation result.");
   6038     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
   6039     return true;
   6040   }
   6041   bool Success(uint64_t Value, const Expr *E) {
   6042     return Success(Value, E, Result);
   6043   }
   6044 
   6045   bool Success(CharUnits Size, const Expr *E) {
   6046     return Success(Size.getQuantity(), E);
   6047   }
   6048 
   6049   bool Success(const APValue &V, const Expr *E) {
   6050     if (V.isLValue() || V.isAddrLabelDiff()) {
   6051       Result = V;
   6052       return true;
   6053     }
   6054     return Success(V.getInt(), E);
   6055   }
   6056 
   6057   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
   6058 
   6059   //===--------------------------------------------------------------------===//
   6060   //                            Visitor Methods
   6061   //===--------------------------------------------------------------------===//
   6062 
   6063   bool VisitIntegerLiteral(const IntegerLiteral *E) {
   6064     return Success(E->getValue(), E);
   6065   }
   6066   bool VisitCharacterLiteral(const CharacterLiteral *E) {
   6067     return Success(E->getValue(), E);
   6068   }
   6069 
   6070   bool CheckReferencedDecl(const Expr *E, const Decl *D);
   6071   bool VisitDeclRefExpr(const DeclRefExpr *E) {
   6072     if (CheckReferencedDecl(E, E->getDecl()))
   6073       return true;
   6074 
   6075     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
   6076   }
   6077   bool VisitMemberExpr(const MemberExpr *E) {
   6078     if (CheckReferencedDecl(E, E->getMemberDecl())) {
   6079       VisitIgnoredValue(E->getBase());
   6080       return true;
   6081     }
   6082 
   6083     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
   6084   }
   6085 
   6086   bool VisitCallExpr(const CallExpr *E);
   6087   bool VisitBinaryOperator(const BinaryOperator *E);
   6088   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
   6089   bool VisitUnaryOperator(const UnaryOperator *E);
   6090 
   6091   bool VisitCastExpr(const CastExpr* E);
   6092   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
   6093 
   6094   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
   6095     return Success(E->getValue(), E);
   6096   }
   6097 
   6098   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
   6099     return Success(E->getValue(), E);
   6100   }
   6101 
   6102   // Note, GNU defines __null as an integer, not a pointer.
   6103   bool VisitGNUNullExpr(const GNUNullExpr *E) {
   6104     return ZeroInitialization(E);
   6105   }
   6106 
   6107   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
   6108     return Success(E->getValue(), E);
   6109   }
   6110 
   6111   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
   6112     return Success(E->getValue(), E);
   6113   }
   6114 
   6115   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
   6116     return Success(E->getValue(), E);
   6117   }
   6118 
   6119   bool VisitUnaryReal(const UnaryOperator *E);
   6120   bool VisitUnaryImag(const UnaryOperator *E);
   6121 
   6122   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
   6123   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
   6124 
   6125 private:
   6126   bool TryEvaluateBuiltinObjectSize(const CallExpr *E, unsigned Type);
   6127   // FIXME: Missing: array subscript of vector, member of vector
   6128 };
   6129 } // end anonymous namespace
   6130 
   6131 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
   6132 /// produce either the integer value or a pointer.
   6133 ///
   6134 /// GCC has a heinous extension which folds casts between pointer types and
   6135 /// pointer-sized integral types. We support this by allowing the evaluation of
   6136 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
   6137 /// Some simple arithmetic on such values is supported (they are treated much
   6138 /// like char*).
   6139 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
   6140                                     EvalInfo &Info) {
   6141   assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
   6142   return IntExprEvaluator(Info, Result).Visit(E);
   6143 }
   6144 
   6145 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
   6146   APValue Val;
   6147   if (!EvaluateIntegerOrLValue(E, Val, Info))
   6148     return false;
   6149   if (!Val.isInt()) {
   6150     // FIXME: It would be better to produce the diagnostic for casting
   6151     //        a pointer to an integer.
   6152     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   6153     return false;
   6154   }
   6155   Result = Val.getInt();
   6156   return true;
   6157 }
   6158 
   6159 /// Check whether the given declaration can be directly converted to an integral
   6160 /// rvalue. If not, no diagnostic is produced; there are other things we can
   6161 /// try.
   6162 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
   6163   // Enums are integer constant exprs.
   6164   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
   6165     // Check for signedness/width mismatches between E type and ECD value.
   6166     bool SameSign = (ECD->getInitVal().isSigned()
   6167                      == E->getType()->isSignedIntegerOrEnumerationType());
   6168     bool SameWidth = (ECD->getInitVal().getBitWidth()
   6169                       == Info.Ctx.getIntWidth(E->getType()));
   6170     if (SameSign && SameWidth)
   6171       return Success(ECD->getInitVal(), E);
   6172     else {
   6173       // Get rid of mismatch (otherwise Success assertions will fail)
   6174       // by computing a new value matching the type of E.
   6175       llvm::APSInt Val = ECD->getInitVal();
   6176       if (!SameSign)
   6177         Val.setIsSigned(!ECD->getInitVal().isSigned());
   6178       if (!SameWidth)
   6179         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
   6180       return Success(Val, E);
   6181     }
   6182   }
   6183   return false;
   6184 }
   6185 
   6186 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
   6187 /// as GCC.
   6188 static int EvaluateBuiltinClassifyType(const CallExpr *E) {
   6189   // The following enum mimics the values returned by GCC.
   6190   // FIXME: Does GCC differ between lvalue and rvalue references here?
   6191   enum gcc_type_class {
   6192     no_type_class = -1,
   6193     void_type_class, integer_type_class, char_type_class,
   6194     enumeral_type_class, boolean_type_class,
   6195     pointer_type_class, reference_type_class, offset_type_class,
   6196     real_type_class, complex_type_class,
   6197     function_type_class, method_type_class,
   6198     record_type_class, union_type_class,
   6199     array_type_class, string_type_class,
   6200     lang_type_class
   6201   };
   6202 
   6203   // If no argument was supplied, default to "no_type_class". This isn't
   6204   // ideal, however it is what gcc does.
   6205   if (E->getNumArgs() == 0)
   6206     return no_type_class;
   6207 
   6208   QualType ArgTy = E->getArg(0)->getType();
   6209   if (ArgTy->isVoidType())
   6210     return void_type_class;
   6211   else if (ArgTy->isEnumeralType())
   6212     return enumeral_type_class;
   6213   else if (ArgTy->isBooleanType())
   6214     return boolean_type_class;
   6215   else if (ArgTy->isCharType())
   6216     return string_type_class; // gcc doesn't appear to use char_type_class
   6217   else if (ArgTy->isIntegerType())
   6218     return integer_type_class;
   6219   else if (ArgTy->isPointerType())
   6220     return pointer_type_class;
   6221   else if (ArgTy->isReferenceType())
   6222     return reference_type_class;
   6223   else if (ArgTy->isRealType())
   6224     return real_type_class;
   6225   else if (ArgTy->isComplexType())
   6226     return complex_type_class;
   6227   else if (ArgTy->isFunctionType())
   6228     return function_type_class;
   6229   else if (ArgTy->isStructureOrClassType())
   6230     return record_type_class;
   6231   else if (ArgTy->isUnionType())
   6232     return union_type_class;
   6233   else if (ArgTy->isArrayType())
   6234     return array_type_class;
   6235   else if (ArgTy->isUnionType())
   6236     return union_type_class;
   6237   else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
   6238     llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
   6239 }
   6240 
   6241 /// EvaluateBuiltinConstantPForLValue - Determine the result of
   6242 /// __builtin_constant_p when applied to the given lvalue.
   6243 ///
   6244 /// An lvalue is only "constant" if it is a pointer or reference to the first
   6245 /// character of a string literal.
   6246 template<typename LValue>
   6247 static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
   6248   const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
   6249   return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
   6250 }
   6251 
   6252 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
   6253 /// GCC as we can manage.
   6254 static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
   6255   QualType ArgType = Arg->getType();
   6256 
   6257   // __builtin_constant_p always has one operand. The rules which gcc follows
   6258   // are not precisely documented, but are as follows:
   6259   //
   6260   //  - If the operand is of integral, floating, complex or enumeration type,
   6261   //    and can be folded to a known value of that type, it returns 1.
   6262   //  - If the operand and can be folded to a pointer to the first character
   6263   //    of a string literal (or such a pointer cast to an integral type), it
   6264   //    returns 1.
   6265   //
   6266   // Otherwise, it returns 0.
   6267   //
   6268   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
   6269   // its support for this does not currently work.
   6270   if (ArgType->isIntegralOrEnumerationType()) {
   6271     Expr::EvalResult Result;
   6272     if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
   6273       return false;
   6274 
   6275     APValue &V = Result.Val;
   6276     if (V.getKind() == APValue::Int)
   6277       return true;
   6278     if (V.getKind() == APValue::LValue)
   6279       return EvaluateBuiltinConstantPForLValue(V);
   6280   } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
   6281     return Arg->isEvaluatable(Ctx);
   6282   } else if (ArgType->isPointerType() || Arg->isGLValue()) {
   6283     LValue LV;
   6284     Expr::EvalStatus Status;
   6285     EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
   6286     if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
   6287                           : EvaluatePointer(Arg, LV, Info)) &&
   6288         !Status.HasSideEffects)
   6289       return EvaluateBuiltinConstantPForLValue(LV);
   6290   }
   6291 
   6292   // Anything else isn't considered to be sufficiently constant.
   6293   return false;
   6294 }
   6295 
   6296 /// Retrieves the "underlying object type" of the given expression,
   6297 /// as used by __builtin_object_size.
   6298 static QualType getObjectType(APValue::LValueBase B) {
   6299   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
   6300     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
   6301       return VD->getType();
   6302   } else if (const Expr *E = B.get<const Expr*>()) {
   6303     if (isa<CompoundLiteralExpr>(E))
   6304       return E->getType();
   6305   }
   6306 
   6307   return QualType();
   6308 }
   6309 
   6310 /// A more selective version of E->IgnoreParenCasts for
   6311 /// TryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
   6312 /// to change the type of E.
   6313 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
   6314 ///
   6315 /// Always returns an RValue with a pointer representation.
   6316 static const Expr *ignorePointerCastsAndParens(const Expr *E) {
   6317   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
   6318 
   6319   auto *NoParens = E->IgnoreParens();
   6320   auto *Cast = dyn_cast<CastExpr>(NoParens);
   6321   if (Cast == nullptr)
   6322     return NoParens;
   6323 
   6324   // We only conservatively allow a few kinds of casts, because this code is
   6325   // inherently a simple solution that seeks to support the common case.
   6326   auto CastKind = Cast->getCastKind();
   6327   if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
   6328       CastKind != CK_AddressSpaceConversion)
   6329     return NoParens;
   6330 
   6331   auto *SubExpr = Cast->getSubExpr();
   6332   if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue())
   6333     return NoParens;
   6334   return ignorePointerCastsAndParens(SubExpr);
   6335 }
   6336 
   6337 /// Checks to see if the given LValue's Designator is at the end of the LValue's
   6338 /// record layout. e.g.
   6339 ///   struct { struct { int a, b; } fst, snd; } obj;
   6340 ///   obj.fst   // no
   6341 ///   obj.snd   // yes
   6342 ///   obj.fst.a // no
   6343 ///   obj.fst.b // no
   6344 ///   obj.snd.a // no
   6345 ///   obj.snd.b // yes
   6346 ///
   6347 /// Please note: this function is specialized for how __builtin_object_size
   6348 /// views "objects".
   6349 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
   6350   assert(!LVal.Designator.Invalid);
   6351 
   6352   auto IsLastFieldDecl = [&Ctx](const FieldDecl *FD) {
   6353     if (FD->getParent()->isUnion())
   6354       return true;
   6355     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
   6356     return FD->getFieldIndex() + 1 == Layout.getFieldCount();
   6357   };
   6358 
   6359   auto &Base = LVal.getLValueBase();
   6360   if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
   6361     if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
   6362       if (!IsLastFieldDecl(FD))
   6363         return false;
   6364     } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
   6365       for (auto *FD : IFD->chain())
   6366         if (!IsLastFieldDecl(cast<FieldDecl>(FD)))
   6367           return false;
   6368     }
   6369   }
   6370 
   6371   QualType BaseType = getType(Base);
   6372   for (int I = 0, E = LVal.Designator.Entries.size(); I != E; ++I) {
   6373     if (BaseType->isArrayType()) {
   6374       // Because __builtin_object_size treats arrays as objects, we can ignore
   6375       // the index iff this is the last array in the Designator.
   6376       if (I + 1 == E)
   6377         return true;
   6378       auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
   6379       uint64_t Index = LVal.Designator.Entries[I].ArrayIndex;
   6380       if (Index + 1 != CAT->getSize())
   6381         return false;
   6382       BaseType = CAT->getElementType();
   6383     } else if (BaseType->isAnyComplexType()) {
   6384       auto *CT = BaseType->castAs<ComplexType>();
   6385       uint64_t Index = LVal.Designator.Entries[I].ArrayIndex;
   6386       if (Index != 1)
   6387         return false;
   6388       BaseType = CT->getElementType();
   6389     } else if (auto *FD = getAsField(LVal.Designator.Entries[I])) {
   6390       if (!IsLastFieldDecl(FD))
   6391         return false;
   6392       BaseType = FD->getType();
   6393     } else {
   6394       assert(getAsBaseClass(LVal.Designator.Entries[I]) != nullptr &&
   6395              "Expecting cast to a base class");
   6396       return false;
   6397     }
   6398   }
   6399   return true;
   6400 }
   6401 
   6402 /// Tests to see if the LValue has a designator (that isn't necessarily valid).
   6403 static bool refersToCompleteObject(const LValue &LVal) {
   6404   if (LVal.Designator.Invalid || !LVal.Designator.Entries.empty())
   6405     return false;
   6406 
   6407   if (!LVal.InvalidBase)
   6408     return true;
   6409 
   6410   auto *E = LVal.Base.dyn_cast<const Expr *>();
   6411   (void)E;
   6412   assert(E != nullptr && isa<MemberExpr>(E));
   6413   return false;
   6414 }
   6415 
   6416 /// Tries to evaluate the __builtin_object_size for @p E. If successful, returns
   6417 /// true and stores the result in @p Size.
   6418 ///
   6419 /// If @p WasError is non-null, this will report whether the failure to evaluate
   6420 /// is to be treated as an Error in IntExprEvaluator.
   6421 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
   6422                                          EvalInfo &Info, uint64_t &Size,
   6423                                          bool *WasError = nullptr) {
   6424   if (WasError != nullptr)
   6425     *WasError = false;
   6426 
   6427   auto Error = [&](const Expr *E) {
   6428     if (WasError != nullptr)
   6429       *WasError = true;
   6430     return false;
   6431   };
   6432 
   6433   auto Success = [&](uint64_t S, const Expr *E) {
   6434     Size = S;
   6435     return true;
   6436   };
   6437 
   6438   // Determine the denoted object.
   6439   LValue Base;
   6440   {
   6441     // The operand of __builtin_object_size is never evaluated for side-effects.
   6442     // If there are any, but we can determine the pointed-to object anyway, then
   6443     // ignore the side-effects.
   6444     SpeculativeEvaluationRAII SpeculativeEval(Info);
   6445     FoldOffsetRAII Fold(Info, Type & 1);
   6446 
   6447     if (E->isGLValue()) {
   6448       // It's possible for us to be given GLValues if we're called via
   6449       // Expr::tryEvaluateObjectSize.
   6450       APValue RVal;
   6451       if (!EvaluateAsRValue(Info, E, RVal))
   6452         return false;
   6453       Base.setFrom(Info.Ctx, RVal);
   6454     } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), Base, Info))
   6455       return false;
   6456   }
   6457 
   6458   CharUnits BaseOffset = Base.getLValueOffset();
   6459   // If we point to before the start of the object, there are no accessible
   6460   // bytes.
   6461   if (BaseOffset.isNegative())
   6462     return Success(0, E);
   6463 
   6464   // In the case where we're not dealing with a subobject, we discard the
   6465   // subobject bit.
   6466   bool SubobjectOnly = (Type & 1) != 0 && !refersToCompleteObject(Base);
   6467 
   6468   // If Type & 1 is 0, we need to be able to statically guarantee that the bytes
   6469   // exist. If we can't verify the base, then we can't do that.
   6470   //
   6471   // As a special case, we produce a valid object size for an unknown object
   6472   // with a known designator if Type & 1 is 1. For instance:
   6473   //
   6474   //   extern struct X { char buff[32]; int a, b, c; } *p;
   6475   //   int a = __builtin_object_size(p->buff + 4, 3); // returns 28
   6476   //   int b = __builtin_object_size(p->buff + 4, 2); // returns 0, not 40
   6477   //
   6478   // This matches GCC's behavior.
   6479   if (Base.InvalidBase && !SubobjectOnly)
   6480     return Error(E);
   6481 
   6482   // If we're not examining only the subobject, then we reset to a complete
   6483   // object designator
   6484   //
   6485   // If Type is 1 and we've lost track of the subobject, just find the complete
   6486   // object instead. (If Type is 3, that's not correct behavior and we should
   6487   // return 0 instead.)
   6488   LValue End = Base;
   6489   if (!SubobjectOnly || (End.Designator.Invalid && Type == 1)) {
   6490     QualType T = getObjectType(End.getLValueBase());
   6491     if (T.isNull())
   6492       End.Designator.setInvalid();
   6493     else {
   6494       End.Designator = SubobjectDesignator(T);
   6495       End.Offset = CharUnits::Zero();
   6496     }
   6497   }
   6498 
   6499   // If it is not possible to determine which objects ptr points to at compile
   6500   // time, __builtin_object_size should return (size_t) -1 for type 0 or 1
   6501   // and (size_t) 0 for type 2 or 3.
   6502   if (End.Designator.Invalid)
   6503     return false;
   6504 
   6505   // According to the GCC documentation, we want the size of the subobject
   6506   // denoted by the pointer. But that's not quite right -- what we actually
   6507   // want is the size of the immediately-enclosing array, if there is one.
   6508   int64_t AmountToAdd = 1;
   6509   if (End.Designator.MostDerivedIsArrayElement &&
   6510       End.Designator.Entries.size() == End.Designator.MostDerivedPathLength) {
   6511     // We got a pointer to an array. Step to its end.
   6512     AmountToAdd = End.Designator.MostDerivedArraySize -
   6513                   End.Designator.Entries.back().ArrayIndex;
   6514   } else if (End.Designator.isOnePastTheEnd()) {
   6515     // We're already pointing at the end of the object.
   6516     AmountToAdd = 0;
   6517   }
   6518 
   6519   QualType PointeeType = End.Designator.MostDerivedType;
   6520   assert(!PointeeType.isNull());
   6521   if (PointeeType->isIncompleteType() || PointeeType->isFunctionType())
   6522     return Error(E);
   6523 
   6524   if (!HandleLValueArrayAdjustment(Info, E, End, End.Designator.MostDerivedType,
   6525                                    AmountToAdd))
   6526     return false;
   6527 
   6528   auto EndOffset = End.getLValueOffset();
   6529 
   6530   // The following is a moderately common idiom in C:
   6531   //
   6532   // struct Foo { int a; char c[1]; };
   6533   // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
   6534   // strcpy(&F->c[0], Bar);
   6535   //
   6536   // So, if we see that we're examining a 1-length (or 0-length) array at the
   6537   // end of a struct with an unknown base, we give up instead of breaking code
   6538   // that behaves this way. Note that we only do this when Type=1, because
   6539   // Type=3 is a lower bound, so answering conservatively is fine.
   6540   if (End.InvalidBase && SubobjectOnly && Type == 1 &&
   6541       End.Designator.Entries.size() == End.Designator.MostDerivedPathLength &&
   6542       End.Designator.MostDerivedIsArrayElement &&
   6543       End.Designator.MostDerivedArraySize < 2 &&
   6544       isDesignatorAtObjectEnd(Info.Ctx, End))
   6545     return false;
   6546 
   6547   if (BaseOffset > EndOffset)
   6548     return Success(0, E);
   6549 
   6550   return Success((EndOffset - BaseOffset).getQuantity(), E);
   6551 }
   6552 
   6553 bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E,
   6554                                                     unsigned Type) {
   6555   uint64_t Size;
   6556   bool WasError;
   6557   if (::tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size, &WasError))
   6558     return Success(Size, E);
   6559   if (WasError)
   6560     return Error(E);
   6561   return false;
   6562 }
   6563 
   6564 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
   6565   switch (unsigned BuiltinOp = E->getBuiltinCallee()) {
   6566   default:
   6567     return ExprEvaluatorBaseTy::VisitCallExpr(E);
   6568 
   6569   case Builtin::BI__builtin_object_size: {
   6570     // The type was checked when we built the expression.
   6571     unsigned Type =
   6572         E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
   6573     assert(Type <= 3 && "unexpected type");
   6574 
   6575     if (TryEvaluateBuiltinObjectSize(E, Type))
   6576       return true;
   6577 
   6578     if (E->getArg(0)->HasSideEffects(Info.Ctx))
   6579       return Success((Type & 2) ? 0 : -1, E);
   6580 
   6581     // Expression had no side effects, but we couldn't statically determine the
   6582     // size of the referenced object.
   6583     switch (Info.EvalMode) {
   6584     case EvalInfo::EM_ConstantExpression:
   6585     case EvalInfo::EM_PotentialConstantExpression:
   6586     case EvalInfo::EM_ConstantFold:
   6587     case EvalInfo::EM_EvaluateForOverflow:
   6588     case EvalInfo::EM_IgnoreSideEffects:
   6589     case EvalInfo::EM_DesignatorFold:
   6590       // Leave it to IR generation.
   6591       return Error(E);
   6592     case EvalInfo::EM_ConstantExpressionUnevaluated:
   6593     case EvalInfo::EM_PotentialConstantExpressionUnevaluated:
   6594       // Reduce it to a constant now.
   6595       return Success((Type & 2) ? 0 : -1, E);
   6596     }
   6597   }
   6598 
   6599   case Builtin::BI__builtin_bswap16:
   6600   case Builtin::BI__builtin_bswap32:
   6601   case Builtin::BI__builtin_bswap64: {
   6602     APSInt Val;
   6603     if (!EvaluateInteger(E->getArg(0), Val, Info))
   6604       return false;
   6605 
   6606     return Success(Val.byteSwap(), E);
   6607   }
   6608 
   6609   case Builtin::BI__builtin_classify_type:
   6610     return Success(EvaluateBuiltinClassifyType(E), E);
   6611 
   6612   // FIXME: BI__builtin_clrsb
   6613   // FIXME: BI__builtin_clrsbl
   6614   // FIXME: BI__builtin_clrsbll
   6615 
   6616   case Builtin::BI__builtin_clz:
   6617   case Builtin::BI__builtin_clzl:
   6618   case Builtin::BI__builtin_clzll:
   6619   case Builtin::BI__builtin_clzs: {
   6620     APSInt Val;
   6621     if (!EvaluateInteger(E->getArg(0), Val, Info))
   6622       return false;
   6623     if (!Val)
   6624       return Error(E);
   6625 
   6626     return Success(Val.countLeadingZeros(), E);
   6627   }
   6628 
   6629   case Builtin::BI__builtin_constant_p:
   6630     return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
   6631 
   6632   case Builtin::BI__builtin_ctz:
   6633   case Builtin::BI__builtin_ctzl:
   6634   case Builtin::BI__builtin_ctzll:
   6635   case Builtin::BI__builtin_ctzs: {
   6636     APSInt Val;
   6637     if (!EvaluateInteger(E->getArg(0), Val, Info))
   6638       return false;
   6639     if (!Val)
   6640       return Error(E);
   6641 
   6642     return Success(Val.countTrailingZeros(), E);
   6643   }
   6644 
   6645   case Builtin::BI__builtin_eh_return_data_regno: {
   6646     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
   6647     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
   6648     return Success(Operand, E);
   6649   }
   6650 
   6651   case Builtin::BI__builtin_expect:
   6652     return Visit(E->getArg(0));
   6653 
   6654   case Builtin::BI__builtin_ffs:
   6655   case Builtin::BI__builtin_ffsl:
   6656   case Builtin::BI__builtin_ffsll: {
   6657     APSInt Val;
   6658     if (!EvaluateInteger(E->getArg(0), Val, Info))
   6659       return false;
   6660 
   6661     unsigned N = Val.countTrailingZeros();
   6662     return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
   6663   }
   6664 
   6665   case Builtin::BI__builtin_fpclassify: {
   6666     APFloat Val(0.0);
   6667     if (!EvaluateFloat(E->getArg(5), Val, Info))
   6668       return false;
   6669     unsigned Arg;
   6670     switch (Val.getCategory()) {
   6671     case APFloat::fcNaN: Arg = 0; break;
   6672     case APFloat::fcInfinity: Arg = 1; break;
   6673     case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
   6674     case APFloat::fcZero: Arg = 4; break;
   6675     }
   6676     return Visit(E->getArg(Arg));
   6677   }
   6678 
   6679   case Builtin::BI__builtin_isinf_sign: {
   6680     APFloat Val(0.0);
   6681     return EvaluateFloat(E->getArg(0), Val, Info) &&
   6682            Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
   6683   }
   6684 
   6685   case Builtin::BI__builtin_isinf: {
   6686     APFloat Val(0.0);
   6687     return EvaluateFloat(E->getArg(0), Val, Info) &&
   6688            Success(Val.isInfinity() ? 1 : 0, E);
   6689   }
   6690 
   6691   case Builtin::BI__builtin_isfinite: {
   6692     APFloat Val(0.0);
   6693     return EvaluateFloat(E->getArg(0), Val, Info) &&
   6694            Success(Val.isFinite() ? 1 : 0, E);
   6695   }
   6696 
   6697   case Builtin::BI__builtin_isnan: {
   6698     APFloat Val(0.0);
   6699     return EvaluateFloat(E->getArg(0), Val, Info) &&
   6700            Success(Val.isNaN() ? 1 : 0, E);
   6701   }
   6702 
   6703   case Builtin::BI__builtin_isnormal: {
   6704     APFloat Val(0.0);
   6705     return EvaluateFloat(E->getArg(0), Val, Info) &&
   6706            Success(Val.isNormal() ? 1 : 0, E);
   6707   }
   6708 
   6709   case Builtin::BI__builtin_parity:
   6710   case Builtin::BI__builtin_parityl:
   6711   case Builtin::BI__builtin_parityll: {
   6712     APSInt Val;
   6713     if (!EvaluateInteger(E->getArg(0), Val, Info))
   6714       return false;
   6715 
   6716     return Success(Val.countPopulation() % 2, E);
   6717   }
   6718 
   6719   case Builtin::BI__builtin_popcount:
   6720   case Builtin::BI__builtin_popcountl:
   6721   case Builtin::BI__builtin_popcountll: {
   6722     APSInt Val;
   6723     if (!EvaluateInteger(E->getArg(0), Val, Info))
   6724       return false;
   6725 
   6726     return Success(Val.countPopulation(), E);
   6727   }
   6728 
   6729   case Builtin::BIstrlen:
   6730     // A call to strlen is not a constant expression.
   6731     if (Info.getLangOpts().CPlusPlus11)
   6732       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
   6733         << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
   6734     else
   6735       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
   6736     // Fall through.
   6737   case Builtin::BI__builtin_strlen: {
   6738     // As an extension, we support __builtin_strlen() as a constant expression,
   6739     // and support folding strlen() to a constant.
   6740     LValue String;
   6741     if (!EvaluatePointer(E->getArg(0), String, Info))
   6742       return false;
   6743 
   6744     // Fast path: if it's a string literal, search the string value.
   6745     if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
   6746             String.getLValueBase().dyn_cast<const Expr *>())) {
   6747       // The string literal may have embedded null characters. Find the first
   6748       // one and truncate there.
   6749       StringRef Str = S->getBytes();
   6750       int64_t Off = String.Offset.getQuantity();
   6751       if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
   6752           S->getCharByteWidth() == 1) {
   6753         Str = Str.substr(Off);
   6754 
   6755         StringRef::size_type Pos = Str.find(0);
   6756         if (Pos != StringRef::npos)
   6757           Str = Str.substr(0, Pos);
   6758 
   6759         return Success(Str.size(), E);
   6760       }
   6761 
   6762       // Fall through to slow path to issue appropriate diagnostic.
   6763     }
   6764 
   6765     // Slow path: scan the bytes of the string looking for the terminating 0.
   6766     QualType CharTy = E->getArg(0)->getType()->getPointeeType();
   6767     for (uint64_t Strlen = 0; /**/; ++Strlen) {
   6768       APValue Char;
   6769       if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
   6770           !Char.isInt())
   6771         return false;
   6772       if (!Char.getInt())
   6773         return Success(Strlen, E);
   6774       if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
   6775         return false;
   6776     }
   6777   }
   6778 
   6779   case Builtin::BI__atomic_always_lock_free:
   6780   case Builtin::BI__atomic_is_lock_free:
   6781   case Builtin::BI__c11_atomic_is_lock_free: {
   6782     APSInt SizeVal;
   6783     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
   6784       return false;
   6785 
   6786     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
   6787     // of two less than the maximum inline atomic width, we know it is
   6788     // lock-free.  If the size isn't a power of two, or greater than the
   6789     // maximum alignment where we promote atomics, we know it is not lock-free
   6790     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
   6791     // the answer can only be determined at runtime; for example, 16-byte
   6792     // atomics have lock-free implementations on some, but not all,
   6793     // x86-64 processors.
   6794 
   6795     // Check power-of-two.
   6796     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
   6797     if (Size.isPowerOfTwo()) {
   6798       // Check against inlining width.
   6799       unsigned InlineWidthBits =
   6800           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
   6801       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
   6802         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
   6803             Size == CharUnits::One() ||
   6804             E->getArg(1)->isNullPointerConstant(Info.Ctx,
   6805                                                 Expr::NPC_NeverValueDependent))
   6806           // OK, we will inline appropriately-aligned operations of this size,
   6807           // and _Atomic(T) is appropriately-aligned.
   6808           return Success(1, E);
   6809 
   6810         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
   6811           castAs<PointerType>()->getPointeeType();
   6812         if (!PointeeType->isIncompleteType() &&
   6813             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
   6814           // OK, we will inline operations on this object.
   6815           return Success(1, E);
   6816         }
   6817       }
   6818     }
   6819 
   6820     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
   6821         Success(0, E) : Error(E);
   6822   }
   6823   }
   6824 }
   6825 
   6826 static bool HasSameBase(const LValue &A, const LValue &B) {
   6827   if (!A.getLValueBase())
   6828     return !B.getLValueBase();
   6829   if (!B.getLValueBase())
   6830     return false;
   6831 
   6832   if (A.getLValueBase().getOpaqueValue() !=
   6833       B.getLValueBase().getOpaqueValue()) {
   6834     const Decl *ADecl = GetLValueBaseDecl(A);
   6835     if (!ADecl)
   6836       return false;
   6837     const Decl *BDecl = GetLValueBaseDecl(B);
   6838     if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
   6839       return false;
   6840   }
   6841 
   6842   return IsGlobalLValue(A.getLValueBase()) ||
   6843          A.getLValueCallIndex() == B.getLValueCallIndex();
   6844 }
   6845 
   6846 /// \brief Determine whether this is a pointer past the end of the complete
   6847 /// object referred to by the lvalue.
   6848 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
   6849                                             const LValue &LV) {
   6850   // A null pointer can be viewed as being "past the end" but we don't
   6851   // choose to look at it that way here.
   6852   if (!LV.getLValueBase())
   6853     return false;
   6854 
   6855   // If the designator is valid and refers to a subobject, we're not pointing
   6856   // past the end.
   6857   if (!LV.getLValueDesignator().Invalid &&
   6858       !LV.getLValueDesignator().isOnePastTheEnd())
   6859     return false;
   6860 
   6861   // A pointer to an incomplete type might be past-the-end if the type's size is
   6862   // zero.  We cannot tell because the type is incomplete.
   6863   QualType Ty = getType(LV.getLValueBase());
   6864   if (Ty->isIncompleteType())
   6865     return true;
   6866 
   6867   // We're a past-the-end pointer if we point to the byte after the object,
   6868   // no matter what our type or path is.
   6869   auto Size = Ctx.getTypeSizeInChars(Ty);
   6870   return LV.getLValueOffset() == Size;
   6871 }
   6872 
   6873 namespace {
   6874 
   6875 /// \brief Data recursive integer evaluator of certain binary operators.
   6876 ///
   6877 /// We use a data recursive algorithm for binary operators so that we are able
   6878 /// to handle extreme cases of chained binary operators without causing stack
   6879 /// overflow.
   6880 class DataRecursiveIntBinOpEvaluator {
   6881   struct EvalResult {
   6882     APValue Val;
   6883     bool Failed;
   6884 
   6885     EvalResult() : Failed(false) { }
   6886 
   6887     void swap(EvalResult &RHS) {
   6888       Val.swap(RHS.Val);
   6889       Failed = RHS.Failed;
   6890       RHS.Failed = false;
   6891     }
   6892   };
   6893 
   6894   struct Job {
   6895     const Expr *E;
   6896     EvalResult LHSResult; // meaningful only for binary operator expression.
   6897     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
   6898 
   6899     Job() = default;
   6900     Job(Job &&J)
   6901         : E(J.E), LHSResult(J.LHSResult), Kind(J.Kind),
   6902           StoredInfo(J.StoredInfo), OldEvalStatus(J.OldEvalStatus) {
   6903       J.StoredInfo = nullptr;
   6904     }
   6905 
   6906     void startSpeculativeEval(EvalInfo &Info) {
   6907       OldEvalStatus = Info.EvalStatus;
   6908       Info.EvalStatus.Diag = nullptr;
   6909       StoredInfo = &Info;
   6910     }
   6911     ~Job() {
   6912       if (StoredInfo) {
   6913         StoredInfo->EvalStatus = OldEvalStatus;
   6914       }
   6915     }
   6916   private:
   6917     EvalInfo *StoredInfo = nullptr; // non-null if status changed.
   6918     Expr::EvalStatus OldEvalStatus;
   6919   };
   6920 
   6921   SmallVector<Job, 16> Queue;
   6922 
   6923   IntExprEvaluator &IntEval;
   6924   EvalInfo &Info;
   6925   APValue &FinalResult;
   6926 
   6927 public:
   6928   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
   6929     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
   6930 
   6931   /// \brief True if \param E is a binary operator that we are going to handle
   6932   /// data recursively.
   6933   /// We handle binary operators that are comma, logical, or that have operands
   6934   /// with integral or enumeration type.
   6935   static bool shouldEnqueue(const BinaryOperator *E) {
   6936     return E->getOpcode() == BO_Comma ||
   6937            E->isLogicalOp() ||
   6938            (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
   6939             E->getRHS()->getType()->isIntegralOrEnumerationType());
   6940   }
   6941 
   6942   bool Traverse(const BinaryOperator *E) {
   6943     enqueue(E);
   6944     EvalResult PrevResult;
   6945     while (!Queue.empty())
   6946       process(PrevResult);
   6947 
   6948     if (PrevResult.Failed) return false;
   6949 
   6950     FinalResult.swap(PrevResult.Val);
   6951     return true;
   6952   }
   6953 
   6954 private:
   6955   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
   6956     return IntEval.Success(Value, E, Result);
   6957   }
   6958   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
   6959     return IntEval.Success(Value, E, Result);
   6960   }
   6961   bool Error(const Expr *E) {
   6962     return IntEval.Error(E);
   6963   }
   6964   bool Error(const Expr *E, diag::kind D) {
   6965     return IntEval.Error(E, D);
   6966   }
   6967 
   6968   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
   6969     return Info.CCEDiag(E, D);
   6970   }
   6971 
   6972   // \brief Returns true if visiting the RHS is necessary, false otherwise.
   6973   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
   6974                          bool &SuppressRHSDiags);
   6975 
   6976   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
   6977                   const BinaryOperator *E, APValue &Result);
   6978 
   6979   void EvaluateExpr(const Expr *E, EvalResult &Result) {
   6980     Result.Failed = !Evaluate(Result.Val, Info, E);
   6981     if (Result.Failed)
   6982       Result.Val = APValue();
   6983   }
   6984 
   6985   void process(EvalResult &Result);
   6986 
   6987   void enqueue(const Expr *E) {
   6988     E = E->IgnoreParens();
   6989     Queue.resize(Queue.size()+1);
   6990     Queue.back().E = E;
   6991     Queue.back().Kind = Job::AnyExprKind;
   6992   }
   6993 };
   6994 
   6995 }
   6996 
   6997 bool DataRecursiveIntBinOpEvaluator::
   6998        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
   6999                          bool &SuppressRHSDiags) {
   7000   if (E->getOpcode() == BO_Comma) {
   7001     // Ignore LHS but note if we could not evaluate it.
   7002     if (LHSResult.Failed)
   7003       return Info.noteSideEffect();
   7004     return true;
   7005   }
   7006 
   7007   if (E->isLogicalOp()) {
   7008     bool LHSAsBool;
   7009     if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
   7010       // We were able to evaluate the LHS, see if we can get away with not
   7011       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
   7012       if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
   7013         Success(LHSAsBool, E, LHSResult.Val);
   7014         return false; // Ignore RHS
   7015       }
   7016     } else {
   7017       LHSResult.Failed = true;
   7018 
   7019       // Since we weren't able to evaluate the left hand side, it
   7020       // must have had side effects.
   7021       if (!Info.noteSideEffect())
   7022         return false;
   7023 
   7024       // We can't evaluate the LHS; however, sometimes the result
   7025       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
   7026       // Don't ignore RHS and suppress diagnostics from this arm.
   7027       SuppressRHSDiags = true;
   7028     }
   7029 
   7030     return true;
   7031   }
   7032 
   7033   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
   7034          E->getRHS()->getType()->isIntegralOrEnumerationType());
   7035 
   7036   if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
   7037     return false; // Ignore RHS;
   7038 
   7039   return true;
   7040 }
   7041 
   7042 bool DataRecursiveIntBinOpEvaluator::
   7043        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
   7044                   const BinaryOperator *E, APValue &Result) {
   7045   if (E->getOpcode() == BO_Comma) {
   7046     if (RHSResult.Failed)
   7047       return false;
   7048     Result = RHSResult.Val;
   7049     return true;
   7050   }
   7051 
   7052   if (E->isLogicalOp()) {
   7053     bool lhsResult, rhsResult;
   7054     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
   7055     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
   7056 
   7057     if (LHSIsOK) {
   7058       if (RHSIsOK) {
   7059         if (E->getOpcode() == BO_LOr)
   7060           return Success(lhsResult || rhsResult, E, Result);
   7061         else
   7062           return Success(lhsResult && rhsResult, E, Result);
   7063       }
   7064     } else {
   7065       if (RHSIsOK) {
   7066         // We can't evaluate the LHS; however, sometimes the result
   7067         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
   7068         if (rhsResult == (E->getOpcode() == BO_LOr))
   7069           return Success(rhsResult, E, Result);
   7070       }
   7071     }
   7072 
   7073     return false;
   7074   }
   7075 
   7076   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
   7077          E->getRHS()->getType()->isIntegralOrEnumerationType());
   7078 
   7079   if (LHSResult.Failed || RHSResult.Failed)
   7080     return false;
   7081 
   7082   const APValue &LHSVal = LHSResult.Val;
   7083   const APValue &RHSVal = RHSResult.Val;
   7084 
   7085   // Handle cases like (unsigned long)&a + 4.
   7086   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
   7087     Result = LHSVal;
   7088     CharUnits AdditionalOffset =
   7089         CharUnits::fromQuantity(RHSVal.getInt().getZExtValue());
   7090     if (E->getOpcode() == BO_Add)
   7091       Result.getLValueOffset() += AdditionalOffset;
   7092     else
   7093       Result.getLValueOffset() -= AdditionalOffset;
   7094     return true;
   7095   }
   7096 
   7097   // Handle cases like 4 + (unsigned long)&a
   7098   if (E->getOpcode() == BO_Add &&
   7099       RHSVal.isLValue() && LHSVal.isInt()) {
   7100     Result = RHSVal;
   7101     Result.getLValueOffset() +=
   7102         CharUnits::fromQuantity(LHSVal.getInt().getZExtValue());
   7103     return true;
   7104   }
   7105 
   7106   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
   7107     // Handle (intptr_t)&&A - (intptr_t)&&B.
   7108     if (!LHSVal.getLValueOffset().isZero() ||
   7109         !RHSVal.getLValueOffset().isZero())
   7110       return false;
   7111     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
   7112     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
   7113     if (!LHSExpr || !RHSExpr)
   7114       return false;
   7115     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
   7116     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
   7117     if (!LHSAddrExpr || !RHSAddrExpr)
   7118       return false;
   7119     // Make sure both labels come from the same function.
   7120     if (LHSAddrExpr->getLabel()->getDeclContext() !=
   7121         RHSAddrExpr->getLabel()->getDeclContext())
   7122       return false;
   7123     Result = APValue(LHSAddrExpr, RHSAddrExpr);
   7124     return true;
   7125   }
   7126 
   7127   // All the remaining cases expect both operands to be an integer
   7128   if (!LHSVal.isInt() || !RHSVal.isInt())
   7129     return Error(E);
   7130 
   7131   // Set up the width and signedness manually, in case it can't be deduced
   7132   // from the operation we're performing.
   7133   // FIXME: Don't do this in the cases where we can deduce it.
   7134   APSInt Value(Info.Ctx.getIntWidth(E->getType()),
   7135                E->getType()->isUnsignedIntegerOrEnumerationType());
   7136   if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
   7137                          RHSVal.getInt(), Value))
   7138     return false;
   7139   return Success(Value, E, Result);
   7140 }
   7141 
   7142 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
   7143   Job &job = Queue.back();
   7144 
   7145   switch (job.Kind) {
   7146     case Job::AnyExprKind: {
   7147       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
   7148         if (shouldEnqueue(Bop)) {
   7149           job.Kind = Job::BinOpKind;
   7150           enqueue(Bop->getLHS());
   7151           return;
   7152         }
   7153       }
   7154 
   7155       EvaluateExpr(job.E, Result);
   7156       Queue.pop_back();
   7157       return;
   7158     }
   7159 
   7160     case Job::BinOpKind: {
   7161       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
   7162       bool SuppressRHSDiags = false;
   7163       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
   7164         Queue.pop_back();
   7165         return;
   7166       }
   7167       if (SuppressRHSDiags)
   7168         job.startSpeculativeEval(Info);
   7169       job.LHSResult.swap(Result);
   7170       job.Kind = Job::BinOpVisitedLHSKind;
   7171       enqueue(Bop->getRHS());
   7172       return;
   7173     }
   7174 
   7175     case Job::BinOpVisitedLHSKind: {
   7176       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
   7177       EvalResult RHS;
   7178       RHS.swap(Result);
   7179       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
   7180       Queue.pop_back();
   7181       return;
   7182     }
   7183   }
   7184 
   7185   llvm_unreachable("Invalid Job::Kind!");
   7186 }
   7187 
   7188 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
   7189   if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp())
   7190     return Error(E);
   7191 
   7192   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
   7193     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
   7194 
   7195   QualType LHSTy = E->getLHS()->getType();
   7196   QualType RHSTy = E->getRHS()->getType();
   7197 
   7198   if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
   7199     ComplexValue LHS, RHS;
   7200     bool LHSOK;
   7201     if (E->isAssignmentOp()) {
   7202       LValue LV;
   7203       EvaluateLValue(E->getLHS(), LV, Info);
   7204       LHSOK = false;
   7205     } else if (LHSTy->isRealFloatingType()) {
   7206       LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
   7207       if (LHSOK) {
   7208         LHS.makeComplexFloat();
   7209         LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
   7210       }
   7211     } else {
   7212       LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
   7213     }
   7214     if (!LHSOK && !Info.keepEvaluatingAfterFailure())
   7215       return false;
   7216 
   7217     if (E->getRHS()->getType()->isRealFloatingType()) {
   7218       if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
   7219         return false;
   7220       RHS.makeComplexFloat();
   7221       RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
   7222     } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
   7223       return false;
   7224 
   7225     if (LHS.isComplexFloat()) {
   7226       APFloat::cmpResult CR_r =
   7227         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
   7228       APFloat::cmpResult CR_i =
   7229         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
   7230 
   7231       if (E->getOpcode() == BO_EQ)
   7232         return Success((CR_r == APFloat::cmpEqual &&
   7233                         CR_i == APFloat::cmpEqual), E);
   7234       else {
   7235         assert(E->getOpcode() == BO_NE &&
   7236                "Invalid complex comparison.");
   7237         return Success(((CR_r == APFloat::cmpGreaterThan ||
   7238                          CR_r == APFloat::cmpLessThan ||
   7239                          CR_r == APFloat::cmpUnordered) ||
   7240                         (CR_i == APFloat::cmpGreaterThan ||
   7241                          CR_i == APFloat::cmpLessThan ||
   7242                          CR_i == APFloat::cmpUnordered)), E);
   7243       }
   7244     } else {
   7245       if (E->getOpcode() == BO_EQ)
   7246         return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
   7247                         LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
   7248       else {
   7249         assert(E->getOpcode() == BO_NE &&
   7250                "Invalid compex comparison.");
   7251         return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
   7252                         LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
   7253       }
   7254     }
   7255   }
   7256 
   7257   if (LHSTy->isRealFloatingType() &&
   7258       RHSTy->isRealFloatingType()) {
   7259     APFloat RHS(0.0), LHS(0.0);
   7260 
   7261     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
   7262     if (!LHSOK && !Info.keepEvaluatingAfterFailure())
   7263       return false;
   7264 
   7265     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
   7266       return false;
   7267 
   7268     APFloat::cmpResult CR = LHS.compare(RHS);
   7269 
   7270     switch (E->getOpcode()) {
   7271     default:
   7272       llvm_unreachable("Invalid binary operator!");
   7273     case BO_LT:
   7274       return Success(CR == APFloat::cmpLessThan, E);
   7275     case BO_GT:
   7276       return Success(CR == APFloat::cmpGreaterThan, E);
   7277     case BO_LE:
   7278       return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
   7279     case BO_GE:
   7280       return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
   7281                      E);
   7282     case BO_EQ:
   7283       return Success(CR == APFloat::cmpEqual, E);
   7284     case BO_NE:
   7285       return Success(CR == APFloat::cmpGreaterThan
   7286                      || CR == APFloat::cmpLessThan
   7287                      || CR == APFloat::cmpUnordered, E);
   7288     }
   7289   }
   7290 
   7291   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
   7292     if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
   7293       LValue LHSValue, RHSValue;
   7294 
   7295       bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
   7296       if (!LHSOK && !Info.keepEvaluatingAfterFailure())
   7297         return false;
   7298 
   7299       if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
   7300         return false;
   7301 
   7302       // Reject differing bases from the normal codepath; we special-case
   7303       // comparisons to null.
   7304       if (!HasSameBase(LHSValue, RHSValue)) {
   7305         if (E->getOpcode() == BO_Sub) {
   7306           // Handle &&A - &&B.
   7307           if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
   7308             return Error(E);
   7309           const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
   7310           const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
   7311           if (!LHSExpr || !RHSExpr)
   7312             return Error(E);
   7313           const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
   7314           const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
   7315           if (!LHSAddrExpr || !RHSAddrExpr)
   7316             return Error(E);
   7317           // Make sure both labels come from the same function.
   7318           if (LHSAddrExpr->getLabel()->getDeclContext() !=
   7319               RHSAddrExpr->getLabel()->getDeclContext())
   7320             return Error(E);
   7321           return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
   7322         }
   7323         // Inequalities and subtractions between unrelated pointers have
   7324         // unspecified or undefined behavior.
   7325         if (!E->isEqualityOp())
   7326           return Error(E);
   7327         // A constant address may compare equal to the address of a symbol.
   7328         // The one exception is that address of an object cannot compare equal
   7329         // to a null pointer constant.
   7330         if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
   7331             (!RHSValue.Base && !RHSValue.Offset.isZero()))
   7332           return Error(E);
   7333         // It's implementation-defined whether distinct literals will have
   7334         // distinct addresses. In clang, the result of such a comparison is
   7335         // unspecified, so it is not a constant expression. However, we do know
   7336         // that the address of a literal will be non-null.
   7337         if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
   7338             LHSValue.Base && RHSValue.Base)
   7339           return Error(E);
   7340         // We can't tell whether weak symbols will end up pointing to the same
   7341         // object.
   7342         if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
   7343           return Error(E);
   7344         // We can't compare the address of the start of one object with the
   7345         // past-the-end address of another object, per C++ DR1652.
   7346         if ((LHSValue.Base && LHSValue.Offset.isZero() &&
   7347              isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
   7348             (RHSValue.Base && RHSValue.Offset.isZero() &&
   7349              isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
   7350           return Error(E);
   7351         // We can't tell whether an object is at the same address as another
   7352         // zero sized object.
   7353         if ((RHSValue.Base && isZeroSized(LHSValue)) ||
   7354             (LHSValue.Base && isZeroSized(RHSValue)))
   7355           return Error(E);
   7356         // Pointers with different bases cannot represent the same object.
   7357         // (Note that clang defaults to -fmerge-all-constants, which can
   7358         // lead to inconsistent results for comparisons involving the address
   7359         // of a constant; this generally doesn't matter in practice.)
   7360         return Success(E->getOpcode() == BO_NE, E);
   7361       }
   7362 
   7363       const CharUnits &LHSOffset = LHSValue.getLValueOffset();
   7364       const CharUnits &RHSOffset = RHSValue.getLValueOffset();
   7365 
   7366       SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
   7367       SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
   7368 
   7369       if (E->getOpcode() == BO_Sub) {
   7370         // C++11 [expr.add]p6:
   7371         //   Unless both pointers point to elements of the same array object, or
   7372         //   one past the last element of the array object, the behavior is
   7373         //   undefined.
   7374         if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
   7375             !AreElementsOfSameArray(getType(LHSValue.Base),
   7376                                     LHSDesignator, RHSDesignator))
   7377           CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
   7378 
   7379         QualType Type = E->getLHS()->getType();
   7380         QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
   7381 
   7382         CharUnits ElementSize;
   7383         if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
   7384           return false;
   7385 
   7386         // As an extension, a type may have zero size (empty struct or union in
   7387         // C, array of zero length). Pointer subtraction in such cases has
   7388         // undefined behavior, so is not constant.
   7389         if (ElementSize.isZero()) {
   7390           Info.Diag(E, diag::note_constexpr_pointer_subtraction_zero_size)
   7391             << ElementType;
   7392           return false;
   7393         }
   7394 
   7395         // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
   7396         // and produce incorrect results when it overflows. Such behavior
   7397         // appears to be non-conforming, but is common, so perhaps we should
   7398         // assume the standard intended for such cases to be undefined behavior
   7399         // and check for them.
   7400 
   7401         // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
   7402         // overflow in the final conversion to ptrdiff_t.
   7403         APSInt LHS(
   7404           llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
   7405         APSInt RHS(
   7406           llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
   7407         APSInt ElemSize(
   7408           llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
   7409         APSInt TrueResult = (LHS - RHS) / ElemSize;
   7410         APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
   7411 
   7412         if (Result.extend(65) != TrueResult &&
   7413             !HandleOverflow(Info, E, TrueResult, E->getType()))
   7414           return false;
   7415         return Success(Result, E);
   7416       }
   7417 
   7418       // C++11 [expr.rel]p3:
   7419       //   Pointers to void (after pointer conversions) can be compared, with a
   7420       //   result defined as follows: If both pointers represent the same
   7421       //   address or are both the null pointer value, the result is true if the
   7422       //   operator is <= or >= and false otherwise; otherwise the result is
   7423       //   unspecified.
   7424       // We interpret this as applying to pointers to *cv* void.
   7425       if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
   7426           E->isRelationalOp())
   7427         CCEDiag(E, diag::note_constexpr_void_comparison);
   7428 
   7429       // C++11 [expr.rel]p2:
   7430       // - If two pointers point to non-static data members of the same object,
   7431       //   or to subobjects or array elements fo such members, recursively, the
   7432       //   pointer to the later declared member compares greater provided the
   7433       //   two members have the same access control and provided their class is
   7434       //   not a union.
   7435       //   [...]
   7436       // - Otherwise pointer comparisons are unspecified.
   7437       if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
   7438           E->isRelationalOp()) {
   7439         bool WasArrayIndex;
   7440         unsigned Mismatch =
   7441           FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
   7442                                  RHSDesignator, WasArrayIndex);
   7443         // At the point where the designators diverge, the comparison has a
   7444         // specified value if:
   7445         //  - we are comparing array indices
   7446         //  - we are comparing fields of a union, or fields with the same access
   7447         // Otherwise, the result is unspecified and thus the comparison is not a
   7448         // constant expression.
   7449         if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
   7450             Mismatch < RHSDesignator.Entries.size()) {
   7451           const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
   7452           const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
   7453           if (!LF && !RF)
   7454             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
   7455           else if (!LF)
   7456             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
   7457               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
   7458               << RF->getParent() << RF;
   7459           else if (!RF)
   7460             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
   7461               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
   7462               << LF->getParent() << LF;
   7463           else if (!LF->getParent()->isUnion() &&
   7464                    LF->getAccess() != RF->getAccess())
   7465             CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
   7466               << LF << LF->getAccess() << RF << RF->getAccess()
   7467               << LF->getParent();
   7468         }
   7469       }
   7470 
   7471       // The comparison here must be unsigned, and performed with the same
   7472       // width as the pointer.
   7473       unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
   7474       uint64_t CompareLHS = LHSOffset.getQuantity();
   7475       uint64_t CompareRHS = RHSOffset.getQuantity();
   7476       assert(PtrSize <= 64 && "Unexpected pointer width");
   7477       uint64_t Mask = ~0ULL >> (64 - PtrSize);
   7478       CompareLHS &= Mask;
   7479       CompareRHS &= Mask;
   7480 
   7481       // If there is a base and this is a relational operator, we can only
   7482       // compare pointers within the object in question; otherwise, the result
   7483       // depends on where the object is located in memory.
   7484       if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
   7485         QualType BaseTy = getType(LHSValue.Base);
   7486         if (BaseTy->isIncompleteType())
   7487           return Error(E);
   7488         CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
   7489         uint64_t OffsetLimit = Size.getQuantity();
   7490         if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
   7491           return Error(E);
   7492       }
   7493 
   7494       switch (E->getOpcode()) {
   7495       default: llvm_unreachable("missing comparison operator");
   7496       case BO_LT: return Success(CompareLHS < CompareRHS, E);
   7497       case BO_GT: return Success(CompareLHS > CompareRHS, E);
   7498       case BO_LE: return Success(CompareLHS <= CompareRHS, E);
   7499       case BO_GE: return Success(CompareLHS >= CompareRHS, E);
   7500       case BO_EQ: return Success(CompareLHS == CompareRHS, E);
   7501       case BO_NE: return Success(CompareLHS != CompareRHS, E);
   7502       }
   7503     }
   7504   }
   7505 
   7506   if (LHSTy->isMemberPointerType()) {
   7507     assert(E->isEqualityOp() && "unexpected member pointer operation");
   7508     assert(RHSTy->isMemberPointerType() && "invalid comparison");
   7509 
   7510     MemberPtr LHSValue, RHSValue;
   7511 
   7512     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
   7513     if (!LHSOK && Info.keepEvaluatingAfterFailure())
   7514       return false;
   7515 
   7516     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
   7517       return false;
   7518 
   7519     // C++11 [expr.eq]p2:
   7520     //   If both operands are null, they compare equal. Otherwise if only one is
   7521     //   null, they compare unequal.
   7522     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
   7523       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
   7524       return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
   7525     }
   7526 
   7527     //   Otherwise if either is a pointer to a virtual member function, the
   7528     //   result is unspecified.
   7529     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
   7530       if (MD->isVirtual())
   7531         CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
   7532     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
   7533       if (MD->isVirtual())
   7534         CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
   7535 
   7536     //   Otherwise they compare equal if and only if they would refer to the
   7537     //   same member of the same most derived object or the same subobject if
   7538     //   they were dereferenced with a hypothetical object of the associated
   7539     //   class type.
   7540     bool Equal = LHSValue == RHSValue;
   7541     return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
   7542   }
   7543 
   7544   if (LHSTy->isNullPtrType()) {
   7545     assert(E->isComparisonOp() && "unexpected nullptr operation");
   7546     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
   7547     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
   7548     // are compared, the result is true of the operator is <=, >= or ==, and
   7549     // false otherwise.
   7550     BinaryOperator::Opcode Opcode = E->getOpcode();
   7551     return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
   7552   }
   7553 
   7554   assert((!LHSTy->isIntegralOrEnumerationType() ||
   7555           !RHSTy->isIntegralOrEnumerationType()) &&
   7556          "DataRecursiveIntBinOpEvaluator should have handled integral types");
   7557   // We can't continue from here for non-integral types.
   7558   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
   7559 }
   7560 
   7561 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
   7562 /// a result as the expression's type.
   7563 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
   7564                                     const UnaryExprOrTypeTraitExpr *E) {
   7565   switch(E->getKind()) {
   7566   case UETT_AlignOf: {
   7567     if (E->isArgumentType())
   7568       return Success(GetAlignOfType(Info, E->getArgumentType()), E);
   7569     else
   7570       return Success(GetAlignOfExpr(Info, E->getArgumentExpr()), E);
   7571   }
   7572 
   7573   case UETT_VecStep: {
   7574     QualType Ty = E->getTypeOfArgument();
   7575 
   7576     if (Ty->isVectorType()) {
   7577       unsigned n = Ty->castAs<VectorType>()->getNumElements();
   7578 
   7579       // The vec_step built-in functions that take a 3-component
   7580       // vector return 4. (OpenCL 1.1 spec 6.11.12)
   7581       if (n == 3)
   7582         n = 4;
   7583 
   7584       return Success(n, E);
   7585     } else
   7586       return Success(1, E);
   7587   }
   7588 
   7589   case UETT_SizeOf: {
   7590     QualType SrcTy = E->getTypeOfArgument();
   7591     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
   7592     //   the result is the size of the referenced type."
   7593     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
   7594       SrcTy = Ref->getPointeeType();
   7595 
   7596     CharUnits Sizeof;
   7597     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
   7598       return false;
   7599     return Success(Sizeof, E);
   7600   }
   7601   case UETT_OpenMPRequiredSimdAlign:
   7602     assert(E->isArgumentType());
   7603     return Success(
   7604         Info.Ctx.toCharUnitsFromBits(
   7605                     Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
   7606             .getQuantity(),
   7607         E);
   7608   }
   7609 
   7610   llvm_unreachable("unknown expr/type trait");
   7611 }
   7612 
   7613 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
   7614   CharUnits Result;
   7615   unsigned n = OOE->getNumComponents();
   7616   if (n == 0)
   7617     return Error(OOE);
   7618   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
   7619   for (unsigned i = 0; i != n; ++i) {
   7620     OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
   7621     switch (ON.getKind()) {
   7622     case OffsetOfExpr::OffsetOfNode::Array: {
   7623       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
   7624       APSInt IdxResult;
   7625       if (!EvaluateInteger(Idx, IdxResult, Info))
   7626         return false;
   7627       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
   7628       if (!AT)
   7629         return Error(OOE);
   7630       CurrentType = AT->getElementType();
   7631       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
   7632       Result += IdxResult.getSExtValue() * ElementSize;
   7633       break;
   7634     }
   7635 
   7636     case OffsetOfExpr::OffsetOfNode::Field: {
   7637       FieldDecl *MemberDecl = ON.getField();
   7638       const RecordType *RT = CurrentType->getAs<RecordType>();
   7639       if (!RT)
   7640         return Error(OOE);
   7641       RecordDecl *RD = RT->getDecl();
   7642       if (RD->isInvalidDecl()) return false;
   7643       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
   7644       unsigned i = MemberDecl->getFieldIndex();
   7645       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
   7646       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
   7647       CurrentType = MemberDecl->getType().getNonReferenceType();
   7648       break;
   7649     }
   7650 
   7651     case OffsetOfExpr::OffsetOfNode::Identifier:
   7652       llvm_unreachable("dependent __builtin_offsetof");
   7653 
   7654     case OffsetOfExpr::OffsetOfNode::Base: {
   7655       CXXBaseSpecifier *BaseSpec = ON.getBase();
   7656       if (BaseSpec->isVirtual())
   7657         return Error(OOE);
   7658 
   7659       // Find the layout of the class whose base we are looking into.
   7660       const RecordType *RT = CurrentType->getAs<RecordType>();
   7661       if (!RT)
   7662         return Error(OOE);
   7663       RecordDecl *RD = RT->getDecl();
   7664       if (RD->isInvalidDecl()) return false;
   7665       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
   7666 
   7667       // Find the base class itself.
   7668       CurrentType = BaseSpec->getType();
   7669       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
   7670       if (!BaseRT)
   7671         return Error(OOE);
   7672 
   7673       // Add the offset to the base.
   7674       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
   7675       break;
   7676     }
   7677     }
   7678   }
   7679   return Success(Result, OOE);
   7680 }
   7681 
   7682 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
   7683   switch (E->getOpcode()) {
   7684   default:
   7685     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
   7686     // See C99 6.6p3.
   7687     return Error(E);
   7688   case UO_Extension:
   7689     // FIXME: Should extension allow i-c-e extension expressions in its scope?
   7690     // If so, we could clear the diagnostic ID.
   7691     return Visit(E->getSubExpr());
   7692   case UO_Plus:
   7693     // The result is just the value.
   7694     return Visit(E->getSubExpr());
   7695   case UO_Minus: {
   7696     if (!Visit(E->getSubExpr()))
   7697       return false;
   7698     if (!Result.isInt()) return Error(E);
   7699     const APSInt &Value = Result.getInt();
   7700     if (Value.isSigned() && Value.isMinSignedValue() &&
   7701         !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
   7702                         E->getType()))
   7703       return false;
   7704     return Success(-Value, E);
   7705   }
   7706   case UO_Not: {
   7707     if (!Visit(E->getSubExpr()))
   7708       return false;
   7709     if (!Result.isInt()) return Error(E);
   7710     return Success(~Result.getInt(), E);
   7711   }
   7712   case UO_LNot: {
   7713     bool bres;
   7714     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
   7715       return false;
   7716     return Success(!bres, E);
   7717   }
   7718   }
   7719 }
   7720 
   7721 /// HandleCast - This is used to evaluate implicit or explicit casts where the
   7722 /// result type is integer.
   7723 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
   7724   const Expr *SubExpr = E->getSubExpr();
   7725   QualType DestType = E->getType();
   7726   QualType SrcType = SubExpr->getType();
   7727 
   7728   switch (E->getCastKind()) {
   7729   case CK_BaseToDerived:
   7730   case CK_DerivedToBase:
   7731   case CK_UncheckedDerivedToBase:
   7732   case CK_Dynamic:
   7733   case CK_ToUnion:
   7734   case CK_ArrayToPointerDecay:
   7735   case CK_FunctionToPointerDecay:
   7736   case CK_NullToPointer:
   7737   case CK_NullToMemberPointer:
   7738   case CK_BaseToDerivedMemberPointer:
   7739   case CK_DerivedToBaseMemberPointer:
   7740   case CK_ReinterpretMemberPointer:
   7741   case CK_ConstructorConversion:
   7742   case CK_IntegralToPointer:
   7743   case CK_ToVoid:
   7744   case CK_VectorSplat:
   7745   case CK_IntegralToFloating:
   7746   case CK_FloatingCast:
   7747   case CK_CPointerToObjCPointerCast:
   7748   case CK_BlockPointerToObjCPointerCast:
   7749   case CK_AnyPointerToBlockPointerCast:
   7750   case CK_ObjCObjectLValueCast:
   7751   case CK_FloatingRealToComplex:
   7752   case CK_FloatingComplexToReal:
   7753   case CK_FloatingComplexCast:
   7754   case CK_FloatingComplexToIntegralComplex:
   7755   case CK_IntegralRealToComplex:
   7756   case CK_IntegralComplexCast:
   7757   case CK_IntegralComplexToFloatingComplex:
   7758   case CK_BuiltinFnToFnPtr:
   7759   case CK_ZeroToOCLEvent:
   7760   case CK_NonAtomicToAtomic:
   7761   case CK_AddressSpaceConversion:
   7762     llvm_unreachable("invalid cast kind for integral value");
   7763 
   7764   case CK_BitCast:
   7765   case CK_Dependent:
   7766   case CK_LValueBitCast:
   7767   case CK_ARCProduceObject:
   7768   case CK_ARCConsumeObject:
   7769   case CK_ARCReclaimReturnedObject:
   7770   case CK_ARCExtendBlockObject:
   7771   case CK_CopyAndAutoreleaseBlockObject:
   7772     return Error(E);
   7773 
   7774   case CK_UserDefinedConversion:
   7775   case CK_LValueToRValue:
   7776   case CK_AtomicToNonAtomic:
   7777   case CK_NoOp:
   7778     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   7779 
   7780   case CK_MemberPointerToBoolean:
   7781   case CK_PointerToBoolean:
   7782   case CK_IntegralToBoolean:
   7783   case CK_FloatingToBoolean:
   7784   case CK_FloatingComplexToBoolean:
   7785   case CK_IntegralComplexToBoolean: {
   7786     bool BoolResult;
   7787     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
   7788       return false;
   7789     return Success(BoolResult, E);
   7790   }
   7791 
   7792   case CK_IntegralCast: {
   7793     if (!Visit(SubExpr))
   7794       return false;
   7795 
   7796     if (!Result.isInt()) {
   7797       // Allow casts of address-of-label differences if they are no-ops
   7798       // or narrowing.  (The narrowing case isn't actually guaranteed to
   7799       // be constant-evaluatable except in some narrow cases which are hard
   7800       // to detect here.  We let it through on the assumption the user knows
   7801       // what they are doing.)
   7802       if (Result.isAddrLabelDiff())
   7803         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
   7804       // Only allow casts of lvalues if they are lossless.
   7805       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
   7806     }
   7807 
   7808     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
   7809                                       Result.getInt()), E);
   7810   }
   7811 
   7812   case CK_PointerToIntegral: {
   7813     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
   7814 
   7815     LValue LV;
   7816     if (!EvaluatePointer(SubExpr, LV, Info))
   7817       return false;
   7818 
   7819     if (LV.getLValueBase()) {
   7820       // Only allow based lvalue casts if they are lossless.
   7821       // FIXME: Allow a larger integer size than the pointer size, and allow
   7822       // narrowing back down to pointer width in subsequent integral casts.
   7823       // FIXME: Check integer type's active bits, not its type size.
   7824       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
   7825         return Error(E);
   7826 
   7827       LV.Designator.setInvalid();
   7828       LV.moveInto(Result);
   7829       return true;
   7830     }
   7831 
   7832     APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
   7833                                          SrcType);
   7834     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
   7835   }
   7836 
   7837   case CK_IntegralComplexToReal: {
   7838     ComplexValue C;
   7839     if (!EvaluateComplex(SubExpr, C, Info))
   7840       return false;
   7841     return Success(C.getComplexIntReal(), E);
   7842   }
   7843 
   7844   case CK_FloatingToIntegral: {
   7845     APFloat F(0.0);
   7846     if (!EvaluateFloat(SubExpr, F, Info))
   7847       return false;
   7848 
   7849     APSInt Value;
   7850     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
   7851       return false;
   7852     return Success(Value, E);
   7853   }
   7854   }
   7855 
   7856   llvm_unreachable("unknown cast resulting in integral value");
   7857 }
   7858 
   7859 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
   7860   if (E->getSubExpr()->getType()->isAnyComplexType()) {
   7861     ComplexValue LV;
   7862     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
   7863       return false;
   7864     if (!LV.isComplexInt())
   7865       return Error(E);
   7866     return Success(LV.getComplexIntReal(), E);
   7867   }
   7868 
   7869   return Visit(E->getSubExpr());
   7870 }
   7871 
   7872 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
   7873   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
   7874     ComplexValue LV;
   7875     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
   7876       return false;
   7877     if (!LV.isComplexInt())
   7878       return Error(E);
   7879     return Success(LV.getComplexIntImag(), E);
   7880   }
   7881 
   7882   VisitIgnoredValue(E->getSubExpr());
   7883   return Success(0, E);
   7884 }
   7885 
   7886 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
   7887   return Success(E->getPackLength(), E);
   7888 }
   7889 
   7890 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
   7891   return Success(E->getValue(), E);
   7892 }
   7893 
   7894 //===----------------------------------------------------------------------===//
   7895 // Float Evaluation
   7896 //===----------------------------------------------------------------------===//
   7897 
   7898 namespace {
   7899 class FloatExprEvaluator
   7900   : public ExprEvaluatorBase<FloatExprEvaluator> {
   7901   APFloat &Result;
   7902 public:
   7903   FloatExprEvaluator(EvalInfo &info, APFloat &result)
   7904     : ExprEvaluatorBaseTy(info), Result(result) {}
   7905 
   7906   bool Success(const APValue &V, const Expr *e) {
   7907     Result = V.getFloat();
   7908     return true;
   7909   }
   7910 
   7911   bool ZeroInitialization(const Expr *E) {
   7912     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
   7913     return true;
   7914   }
   7915 
   7916   bool VisitCallExpr(const CallExpr *E);
   7917 
   7918   bool VisitUnaryOperator(const UnaryOperator *E);
   7919   bool VisitBinaryOperator(const BinaryOperator *E);
   7920   bool VisitFloatingLiteral(const FloatingLiteral *E);
   7921   bool VisitCastExpr(const CastExpr *E);
   7922 
   7923   bool VisitUnaryReal(const UnaryOperator *E);
   7924   bool VisitUnaryImag(const UnaryOperator *E);
   7925 
   7926   // FIXME: Missing: array subscript of vector, member of vector
   7927 };
   7928 } // end anonymous namespace
   7929 
   7930 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
   7931   assert(E->isRValue() && E->getType()->isRealFloatingType());
   7932   return FloatExprEvaluator(Info, Result).Visit(E);
   7933 }
   7934 
   7935 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
   7936                                   QualType ResultTy,
   7937                                   const Expr *Arg,
   7938                                   bool SNaN,
   7939                                   llvm::APFloat &Result) {
   7940   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
   7941   if (!S) return false;
   7942 
   7943   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
   7944 
   7945   llvm::APInt fill;
   7946 
   7947   // Treat empty strings as if they were zero.
   7948   if (S->getString().empty())
   7949     fill = llvm::APInt(32, 0);
   7950   else if (S->getString().getAsInteger(0, fill))
   7951     return false;
   7952 
   7953   if (Context.getTargetInfo().isNan2008()) {
   7954     if (SNaN)
   7955       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
   7956     else
   7957       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
   7958   } else {
   7959     // Prior to IEEE 754-2008, architectures were allowed to choose whether
   7960     // the first bit of their significand was set for qNaN or sNaN. MIPS chose
   7961     // a different encoding to what became a standard in 2008, and for pre-
   7962     // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
   7963     // sNaN. This is now known as "legacy NaN" encoding.
   7964     if (SNaN)
   7965       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
   7966     else
   7967       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
   7968   }
   7969 
   7970   return true;
   7971 }
   7972 
   7973 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
   7974   switch (E->getBuiltinCallee()) {
   7975   default:
   7976     return ExprEvaluatorBaseTy::VisitCallExpr(E);
   7977 
   7978   case Builtin::BI__builtin_huge_val:
   7979   case Builtin::BI__builtin_huge_valf:
   7980   case Builtin::BI__builtin_huge_vall:
   7981   case Builtin::BI__builtin_inf:
   7982   case Builtin::BI__builtin_inff:
   7983   case Builtin::BI__builtin_infl: {
   7984     const llvm::fltSemantics &Sem =
   7985       Info.Ctx.getFloatTypeSemantics(E->getType());
   7986     Result = llvm::APFloat::getInf(Sem);
   7987     return true;
   7988   }
   7989 
   7990   case Builtin::BI__builtin_nans:
   7991   case Builtin::BI__builtin_nansf:
   7992   case Builtin::BI__builtin_nansl:
   7993     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
   7994                                true, Result))
   7995       return Error(E);
   7996     return true;
   7997 
   7998   case Builtin::BI__builtin_nan:
   7999   case Builtin::BI__builtin_nanf:
   8000   case Builtin::BI__builtin_nanl:
   8001     // If this is __builtin_nan() turn this into a nan, otherwise we
   8002     // can't constant fold it.
   8003     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
   8004                                false, Result))
   8005       return Error(E);
   8006     return true;
   8007 
   8008   case Builtin::BI__builtin_fabs:
   8009   case Builtin::BI__builtin_fabsf:
   8010   case Builtin::BI__builtin_fabsl:
   8011     if (!EvaluateFloat(E->getArg(0), Result, Info))
   8012       return false;
   8013 
   8014     if (Result.isNegative())
   8015       Result.changeSign();
   8016     return true;
   8017 
   8018   // FIXME: Builtin::BI__builtin_powi
   8019   // FIXME: Builtin::BI__builtin_powif
   8020   // FIXME: Builtin::BI__builtin_powil
   8021 
   8022   case Builtin::BI__builtin_copysign:
   8023   case Builtin::BI__builtin_copysignf:
   8024   case Builtin::BI__builtin_copysignl: {
   8025     APFloat RHS(0.);
   8026     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
   8027         !EvaluateFloat(E->getArg(1), RHS, Info))
   8028       return false;
   8029     Result.copySign(RHS);
   8030     return true;
   8031   }
   8032   }
   8033 }
   8034 
   8035 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
   8036   if (E->getSubExpr()->getType()->isAnyComplexType()) {
   8037     ComplexValue CV;
   8038     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
   8039       return false;
   8040     Result = CV.FloatReal;
   8041     return true;
   8042   }
   8043 
   8044   return Visit(E->getSubExpr());
   8045 }
   8046 
   8047 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
   8048   if (E->getSubExpr()->getType()->isAnyComplexType()) {
   8049     ComplexValue CV;
   8050     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
   8051       return false;
   8052     Result = CV.FloatImag;
   8053     return true;
   8054   }
   8055 
   8056   VisitIgnoredValue(E->getSubExpr());
   8057   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
   8058   Result = llvm::APFloat::getZero(Sem);
   8059   return true;
   8060 }
   8061 
   8062 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
   8063   switch (E->getOpcode()) {
   8064   default: return Error(E);
   8065   case UO_Plus:
   8066     return EvaluateFloat(E->getSubExpr(), Result, Info);
   8067   case UO_Minus:
   8068     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
   8069       return false;
   8070     Result.changeSign();
   8071     return true;
   8072   }
   8073 }
   8074 
   8075 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
   8076   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
   8077     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
   8078 
   8079   APFloat RHS(0.0);
   8080   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
   8081   if (!LHSOK && !Info.keepEvaluatingAfterFailure())
   8082     return false;
   8083   return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
   8084          handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
   8085 }
   8086 
   8087 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
   8088   Result = E->getValue();
   8089   return true;
   8090 }
   8091 
   8092 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
   8093   const Expr* SubExpr = E->getSubExpr();
   8094 
   8095   switch (E->getCastKind()) {
   8096   default:
   8097     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   8098 
   8099   case CK_IntegralToFloating: {
   8100     APSInt IntResult;
   8101     return EvaluateInteger(SubExpr, IntResult, Info) &&
   8102            HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
   8103                                 E->getType(), Result);
   8104   }
   8105 
   8106   case CK_FloatingCast: {
   8107     if (!Visit(SubExpr))
   8108       return false;
   8109     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
   8110                                   Result);
   8111   }
   8112 
   8113   case CK_FloatingComplexToReal: {
   8114     ComplexValue V;
   8115     if (!EvaluateComplex(SubExpr, V, Info))
   8116       return false;
   8117     Result = V.getComplexFloatReal();
   8118     return true;
   8119   }
   8120   }
   8121 }
   8122 
   8123 //===----------------------------------------------------------------------===//
   8124 // Complex Evaluation (for float and integer)
   8125 //===----------------------------------------------------------------------===//
   8126 
   8127 namespace {
   8128 class ComplexExprEvaluator
   8129   : public ExprEvaluatorBase<ComplexExprEvaluator> {
   8130   ComplexValue &Result;
   8131 
   8132 public:
   8133   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
   8134     : ExprEvaluatorBaseTy(info), Result(Result) {}
   8135 
   8136   bool Success(const APValue &V, const Expr *e) {
   8137     Result.setFrom(V);
   8138     return true;
   8139   }
   8140 
   8141   bool ZeroInitialization(const Expr *E);
   8142 
   8143   //===--------------------------------------------------------------------===//
   8144   //                            Visitor Methods
   8145   //===--------------------------------------------------------------------===//
   8146 
   8147   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
   8148   bool VisitCastExpr(const CastExpr *E);
   8149   bool VisitBinaryOperator(const BinaryOperator *E);
   8150   bool VisitUnaryOperator(const UnaryOperator *E);
   8151   bool VisitInitListExpr(const InitListExpr *E);
   8152 };
   8153 } // end anonymous namespace
   8154 
   8155 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
   8156                             EvalInfo &Info) {
   8157   assert(E->isRValue() && E->getType()->isAnyComplexType());
   8158   return ComplexExprEvaluator(Info, Result).Visit(E);
   8159 }
   8160 
   8161 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
   8162   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
   8163   if (ElemTy->isRealFloatingType()) {
   8164     Result.makeComplexFloat();
   8165     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
   8166     Result.FloatReal = Zero;
   8167     Result.FloatImag = Zero;
   8168   } else {
   8169     Result.makeComplexInt();
   8170     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
   8171     Result.IntReal = Zero;
   8172     Result.IntImag = Zero;
   8173   }
   8174   return true;
   8175 }
   8176 
   8177 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
   8178   const Expr* SubExpr = E->getSubExpr();
   8179 
   8180   if (SubExpr->getType()->isRealFloatingType()) {
   8181     Result.makeComplexFloat();
   8182     APFloat &Imag = Result.FloatImag;
   8183     if (!EvaluateFloat(SubExpr, Imag, Info))
   8184       return false;
   8185 
   8186     Result.FloatReal = APFloat(Imag.getSemantics());
   8187     return true;
   8188   } else {
   8189     assert(SubExpr->getType()->isIntegerType() &&
   8190            "Unexpected imaginary literal.");
   8191 
   8192     Result.makeComplexInt();
   8193     APSInt &Imag = Result.IntImag;
   8194     if (!EvaluateInteger(SubExpr, Imag, Info))
   8195       return false;
   8196 
   8197     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
   8198     return true;
   8199   }
   8200 }
   8201 
   8202 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
   8203 
   8204   switch (E->getCastKind()) {
   8205   case CK_BitCast:
   8206   case CK_BaseToDerived:
   8207   case CK_DerivedToBase:
   8208   case CK_UncheckedDerivedToBase:
   8209   case CK_Dynamic:
   8210   case CK_ToUnion:
   8211   case CK_ArrayToPointerDecay:
   8212   case CK_FunctionToPointerDecay:
   8213   case CK_NullToPointer:
   8214   case CK_NullToMemberPointer:
   8215   case CK_BaseToDerivedMemberPointer:
   8216   case CK_DerivedToBaseMemberPointer:
   8217   case CK_MemberPointerToBoolean:
   8218   case CK_ReinterpretMemberPointer:
   8219   case CK_ConstructorConversion:
   8220   case CK_IntegralToPointer:
   8221   case CK_PointerToIntegral:
   8222   case CK_PointerToBoolean:
   8223   case CK_ToVoid:
   8224   case CK_VectorSplat:
   8225   case CK_IntegralCast:
   8226   case CK_IntegralToBoolean:
   8227   case CK_IntegralToFloating:
   8228   case CK_FloatingToIntegral:
   8229   case CK_FloatingToBoolean:
   8230   case CK_FloatingCast:
   8231   case CK_CPointerToObjCPointerCast:
   8232   case CK_BlockPointerToObjCPointerCast:
   8233   case CK_AnyPointerToBlockPointerCast:
   8234   case CK_ObjCObjectLValueCast:
   8235   case CK_FloatingComplexToReal:
   8236   case CK_FloatingComplexToBoolean:
   8237   case CK_IntegralComplexToReal:
   8238   case CK_IntegralComplexToBoolean:
   8239   case CK_ARCProduceObject:
   8240   case CK_ARCConsumeObject:
   8241   case CK_ARCReclaimReturnedObject:
   8242   case CK_ARCExtendBlockObject:
   8243   case CK_CopyAndAutoreleaseBlockObject:
   8244   case CK_BuiltinFnToFnPtr:
   8245   case CK_ZeroToOCLEvent:
   8246   case CK_NonAtomicToAtomic:
   8247   case CK_AddressSpaceConversion:
   8248     llvm_unreachable("invalid cast kind for complex value");
   8249 
   8250   case CK_LValueToRValue:
   8251   case CK_AtomicToNonAtomic:
   8252   case CK_NoOp:
   8253     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   8254 
   8255   case CK_Dependent:
   8256   case CK_LValueBitCast:
   8257   case CK_UserDefinedConversion:
   8258     return Error(E);
   8259 
   8260   case CK_FloatingRealToComplex: {
   8261     APFloat &Real = Result.FloatReal;
   8262     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
   8263       return false;
   8264 
   8265     Result.makeComplexFloat();
   8266     Result.FloatImag = APFloat(Real.getSemantics());
   8267     return true;
   8268   }
   8269 
   8270   case CK_FloatingComplexCast: {
   8271     if (!Visit(E->getSubExpr()))
   8272       return false;
   8273 
   8274     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
   8275     QualType From
   8276       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
   8277 
   8278     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
   8279            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
   8280   }
   8281 
   8282   case CK_FloatingComplexToIntegralComplex: {
   8283     if (!Visit(E->getSubExpr()))
   8284       return false;
   8285 
   8286     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
   8287     QualType From
   8288       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
   8289     Result.makeComplexInt();
   8290     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
   8291                                 To, Result.IntReal) &&
   8292            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
   8293                                 To, Result.IntImag);
   8294   }
   8295 
   8296   case CK_IntegralRealToComplex: {
   8297     APSInt &Real = Result.IntReal;
   8298     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
   8299       return false;
   8300 
   8301     Result.makeComplexInt();
   8302     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
   8303     return true;
   8304   }
   8305 
   8306   case CK_IntegralComplexCast: {
   8307     if (!Visit(E->getSubExpr()))
   8308       return false;
   8309 
   8310     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
   8311     QualType From
   8312       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
   8313 
   8314     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
   8315     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
   8316     return true;
   8317   }
   8318 
   8319   case CK_IntegralComplexToFloatingComplex: {
   8320     if (!Visit(E->getSubExpr()))
   8321       return false;
   8322 
   8323     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
   8324     QualType From
   8325       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
   8326     Result.makeComplexFloat();
   8327     return HandleIntToFloatCast(Info, E, From, Result.IntReal,
   8328                                 To, Result.FloatReal) &&
   8329            HandleIntToFloatCast(Info, E, From, Result.IntImag,
   8330                                 To, Result.FloatImag);
   8331   }
   8332   }
   8333 
   8334   llvm_unreachable("unknown cast resulting in complex value");
   8335 }
   8336 
   8337 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
   8338   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
   8339     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
   8340 
   8341   // Track whether the LHS or RHS is real at the type system level. When this is
   8342   // the case we can simplify our evaluation strategy.
   8343   bool LHSReal = false, RHSReal = false;
   8344 
   8345   bool LHSOK;
   8346   if (E->getLHS()->getType()->isRealFloatingType()) {
   8347     LHSReal = true;
   8348     APFloat &Real = Result.FloatReal;
   8349     LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
   8350     if (LHSOK) {
   8351       Result.makeComplexFloat();
   8352       Result.FloatImag = APFloat(Real.getSemantics());
   8353     }
   8354   } else {
   8355     LHSOK = Visit(E->getLHS());
   8356   }
   8357   if (!LHSOK && !Info.keepEvaluatingAfterFailure())
   8358     return false;
   8359 
   8360   ComplexValue RHS;
   8361   if (E->getRHS()->getType()->isRealFloatingType()) {
   8362     RHSReal = true;
   8363     APFloat &Real = RHS.FloatReal;
   8364     if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
   8365       return false;
   8366     RHS.makeComplexFloat();
   8367     RHS.FloatImag = APFloat(Real.getSemantics());
   8368   } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
   8369     return false;
   8370 
   8371   assert(!(LHSReal && RHSReal) &&
   8372          "Cannot have both operands of a complex operation be real.");
   8373   switch (E->getOpcode()) {
   8374   default: return Error(E);
   8375   case BO_Add:
   8376     if (Result.isComplexFloat()) {
   8377       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
   8378                                        APFloat::rmNearestTiesToEven);
   8379       if (LHSReal)
   8380         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
   8381       else if (!RHSReal)
   8382         Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
   8383                                          APFloat::rmNearestTiesToEven);
   8384     } else {
   8385       Result.getComplexIntReal() += RHS.getComplexIntReal();
   8386       Result.getComplexIntImag() += RHS.getComplexIntImag();
   8387     }
   8388     break;
   8389   case BO_Sub:
   8390     if (Result.isComplexFloat()) {
   8391       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
   8392                                             APFloat::rmNearestTiesToEven);
   8393       if (LHSReal) {
   8394         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
   8395         Result.getComplexFloatImag().changeSign();
   8396       } else if (!RHSReal) {
   8397         Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
   8398                                               APFloat::rmNearestTiesToEven);
   8399       }
   8400     } else {
   8401       Result.getComplexIntReal() -= RHS.getComplexIntReal();
   8402       Result.getComplexIntImag() -= RHS.getComplexIntImag();
   8403     }
   8404     break;
   8405   case BO_Mul:
   8406     if (Result.isComplexFloat()) {
   8407       // This is an implementation of complex multiplication according to the
   8408       // constraints laid out in C11 Annex G. The implemantion uses the
   8409       // following naming scheme:
   8410       //   (a + ib) * (c + id)
   8411       ComplexValue LHS = Result;
   8412       APFloat &A = LHS.getComplexFloatReal();
   8413       APFloat &B = LHS.getComplexFloatImag();
   8414       APFloat &C = RHS.getComplexFloatReal();
   8415       APFloat &D = RHS.getComplexFloatImag();
   8416       APFloat &ResR = Result.getComplexFloatReal();
   8417       APFloat &ResI = Result.getComplexFloatImag();
   8418       if (LHSReal) {
   8419         assert(!RHSReal && "Cannot have two real operands for a complex op!");
   8420         ResR = A * C;
   8421         ResI = A * D;
   8422       } else if (RHSReal) {
   8423         ResR = C * A;
   8424         ResI = C * B;
   8425       } else {
   8426         // In the fully general case, we need to handle NaNs and infinities
   8427         // robustly.
   8428         APFloat AC = A * C;
   8429         APFloat BD = B * D;
   8430         APFloat AD = A * D;
   8431         APFloat BC = B * C;
   8432         ResR = AC - BD;
   8433         ResI = AD + BC;
   8434         if (ResR.isNaN() && ResI.isNaN()) {
   8435           bool Recalc = false;
   8436           if (A.isInfinity() || B.isInfinity()) {
   8437             A = APFloat::copySign(
   8438                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
   8439             B = APFloat::copySign(
   8440                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
   8441             if (C.isNaN())
   8442               C = APFloat::copySign(APFloat(C.getSemantics()), C);
   8443             if (D.isNaN())
   8444               D = APFloat::copySign(APFloat(D.getSemantics()), D);
   8445             Recalc = true;
   8446           }
   8447           if (C.isInfinity() || D.isInfinity()) {
   8448             C = APFloat::copySign(
   8449                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
   8450             D = APFloat::copySign(
   8451                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
   8452             if (A.isNaN())
   8453               A = APFloat::copySign(APFloat(A.getSemantics()), A);
   8454             if (B.isNaN())
   8455               B = APFloat::copySign(APFloat(B.getSemantics()), B);
   8456             Recalc = true;
   8457           }
   8458           if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
   8459                           AD.isInfinity() || BC.isInfinity())) {
   8460             if (A.isNaN())
   8461               A = APFloat::copySign(APFloat(A.getSemantics()), A);
   8462             if (B.isNaN())
   8463               B = APFloat::copySign(APFloat(B.getSemantics()), B);
   8464             if (C.isNaN())
   8465               C = APFloat::copySign(APFloat(C.getSemantics()), C);
   8466             if (D.isNaN())
   8467               D = APFloat::copySign(APFloat(D.getSemantics()), D);
   8468             Recalc = true;
   8469           }
   8470           if (Recalc) {
   8471             ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
   8472             ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
   8473           }
   8474         }
   8475       }
   8476     } else {
   8477       ComplexValue LHS = Result;
   8478       Result.getComplexIntReal() =
   8479         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
   8480          LHS.getComplexIntImag() * RHS.getComplexIntImag());
   8481       Result.getComplexIntImag() =
   8482         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
   8483          LHS.getComplexIntImag() * RHS.getComplexIntReal());
   8484     }
   8485     break;
   8486   case BO_Div:
   8487     if (Result.isComplexFloat()) {
   8488       // This is an implementation of complex division according to the
   8489       // constraints laid out in C11 Annex G. The implemantion uses the
   8490       // following naming scheme:
   8491       //   (a + ib) / (c + id)
   8492       ComplexValue LHS = Result;
   8493       APFloat &A = LHS.getComplexFloatReal();
   8494       APFloat &B = LHS.getComplexFloatImag();
   8495       APFloat &C = RHS.getComplexFloatReal();
   8496       APFloat &D = RHS.getComplexFloatImag();
   8497       APFloat &ResR = Result.getComplexFloatReal();
   8498       APFloat &ResI = Result.getComplexFloatImag();
   8499       if (RHSReal) {
   8500         ResR = A / C;
   8501         ResI = B / C;
   8502       } else {
   8503         if (LHSReal) {
   8504           // No real optimizations we can do here, stub out with zero.
   8505           B = APFloat::getZero(A.getSemantics());
   8506         }
   8507         int DenomLogB = 0;
   8508         APFloat MaxCD = maxnum(abs(C), abs(D));
   8509         if (MaxCD.isFinite()) {
   8510           DenomLogB = ilogb(MaxCD);
   8511           C = scalbn(C, -DenomLogB);
   8512           D = scalbn(D, -DenomLogB);
   8513         }
   8514         APFloat Denom = C * C + D * D;
   8515         ResR = scalbn((A * C + B * D) / Denom, -DenomLogB);
   8516         ResI = scalbn((B * C - A * D) / Denom, -DenomLogB);
   8517         if (ResR.isNaN() && ResI.isNaN()) {
   8518           if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
   8519             ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
   8520             ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
   8521           } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
   8522                      D.isFinite()) {
   8523             A = APFloat::copySign(
   8524                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
   8525             B = APFloat::copySign(
   8526                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
   8527             ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
   8528             ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
   8529           } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
   8530             C = APFloat::copySign(
   8531                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
   8532             D = APFloat::copySign(
   8533                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
   8534             ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
   8535             ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
   8536           }
   8537         }
   8538       }
   8539     } else {
   8540       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
   8541         return Error(E, diag::note_expr_divide_by_zero);
   8542 
   8543       ComplexValue LHS = Result;
   8544       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
   8545         RHS.getComplexIntImag() * RHS.getComplexIntImag();
   8546       Result.getComplexIntReal() =
   8547         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
   8548          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
   8549       Result.getComplexIntImag() =
   8550         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
   8551          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
   8552     }
   8553     break;
   8554   }
   8555 
   8556   return true;
   8557 }
   8558 
   8559 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
   8560   // Get the operand value into 'Result'.
   8561   if (!Visit(E->getSubExpr()))
   8562     return false;
   8563 
   8564   switch (E->getOpcode()) {
   8565   default:
   8566     return Error(E);
   8567   case UO_Extension:
   8568     return true;
   8569   case UO_Plus:
   8570     // The result is always just the subexpr.
   8571     return true;
   8572   case UO_Minus:
   8573     if (Result.isComplexFloat()) {
   8574       Result.getComplexFloatReal().changeSign();
   8575       Result.getComplexFloatImag().changeSign();
   8576     }
   8577     else {
   8578       Result.getComplexIntReal() = -Result.getComplexIntReal();
   8579       Result.getComplexIntImag() = -Result.getComplexIntImag();
   8580     }
   8581     return true;
   8582   case UO_Not:
   8583     if (Result.isComplexFloat())
   8584       Result.getComplexFloatImag().changeSign();
   8585     else
   8586       Result.getComplexIntImag() = -Result.getComplexIntImag();
   8587     return true;
   8588   }
   8589 }
   8590 
   8591 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
   8592   if (E->getNumInits() == 2) {
   8593     if (E->getType()->isComplexType()) {
   8594       Result.makeComplexFloat();
   8595       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
   8596         return false;
   8597       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
   8598         return false;
   8599     } else {
   8600       Result.makeComplexInt();
   8601       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
   8602         return false;
   8603       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
   8604         return false;
   8605     }
   8606     return true;
   8607   }
   8608   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
   8609 }
   8610 
   8611 //===----------------------------------------------------------------------===//
   8612 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
   8613 // implicit conversion.
   8614 //===----------------------------------------------------------------------===//
   8615 
   8616 namespace {
   8617 class AtomicExprEvaluator :
   8618     public ExprEvaluatorBase<AtomicExprEvaluator> {
   8619   APValue &Result;
   8620 public:
   8621   AtomicExprEvaluator(EvalInfo &Info, APValue &Result)
   8622       : ExprEvaluatorBaseTy(Info), Result(Result) {}
   8623 
   8624   bool Success(const APValue &V, const Expr *E) {
   8625     Result = V;
   8626     return true;
   8627   }
   8628 
   8629   bool ZeroInitialization(const Expr *E) {
   8630     ImplicitValueInitExpr VIE(
   8631         E->getType()->castAs<AtomicType>()->getValueType());
   8632     return Evaluate(Result, Info, &VIE);
   8633   }
   8634 
   8635   bool VisitCastExpr(const CastExpr *E) {
   8636     switch (E->getCastKind()) {
   8637     default:
   8638       return ExprEvaluatorBaseTy::VisitCastExpr(E);
   8639     case CK_NonAtomicToAtomic:
   8640       return Evaluate(Result, Info, E->getSubExpr());
   8641     }
   8642   }
   8643 };
   8644 } // end anonymous namespace
   8645 
   8646 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info) {
   8647   assert(E->isRValue() && E->getType()->isAtomicType());
   8648   return AtomicExprEvaluator(Info, Result).Visit(E);
   8649 }
   8650 
   8651 //===----------------------------------------------------------------------===//
   8652 // Void expression evaluation, primarily for a cast to void on the LHS of a
   8653 // comma operator
   8654 //===----------------------------------------------------------------------===//
   8655 
   8656 namespace {
   8657 class VoidExprEvaluator
   8658   : public ExprEvaluatorBase<VoidExprEvaluator> {
   8659 public:
   8660   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
   8661 
   8662   bool Success(const APValue &V, const Expr *e) { return true; }
   8663 
   8664   bool VisitCastExpr(const CastExpr *E) {
   8665     switch (E->getCastKind()) {
   8666     default:
   8667       return ExprEvaluatorBaseTy::VisitCastExpr(E);
   8668     case CK_ToVoid:
   8669       VisitIgnoredValue(E->getSubExpr());
   8670       return true;
   8671     }
   8672   }
   8673 
   8674   bool VisitCallExpr(const CallExpr *E) {
   8675     switch (E->getBuiltinCallee()) {
   8676     default:
   8677       return ExprEvaluatorBaseTy::VisitCallExpr(E);
   8678     case Builtin::BI__assume:
   8679     case Builtin::BI__builtin_assume:
   8680       // The argument is not evaluated!
   8681       return true;
   8682     }
   8683   }
   8684 };
   8685 } // end anonymous namespace
   8686 
   8687 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
   8688   assert(E->isRValue() && E->getType()->isVoidType());
   8689   return VoidExprEvaluator(Info).Visit(E);
   8690 }
   8691 
   8692 //===----------------------------------------------------------------------===//
   8693 // Top level Expr::EvaluateAsRValue method.
   8694 //===----------------------------------------------------------------------===//
   8695 
   8696 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
   8697   // In C, function designators are not lvalues, but we evaluate them as if they
   8698   // are.
   8699   QualType T = E->getType();
   8700   if (E->isGLValue() || T->isFunctionType()) {
   8701     LValue LV;
   8702     if (!EvaluateLValue(E, LV, Info))
   8703       return false;
   8704     LV.moveInto(Result);
   8705   } else if (T->isVectorType()) {
   8706     if (!EvaluateVector(E, Result, Info))
   8707       return false;
   8708   } else if (T->isIntegralOrEnumerationType()) {
   8709     if (!IntExprEvaluator(Info, Result).Visit(E))
   8710       return false;
   8711   } else if (T->hasPointerRepresentation()) {
   8712     LValue LV;
   8713     if (!EvaluatePointer(E, LV, Info))
   8714       return false;
   8715     LV.moveInto(Result);
   8716   } else if (T->isRealFloatingType()) {
   8717     llvm::APFloat F(0.0);
   8718     if (!EvaluateFloat(E, F, Info))
   8719       return false;
   8720     Result = APValue(F);
   8721   } else if (T->isAnyComplexType()) {
   8722     ComplexValue C;
   8723     if (!EvaluateComplex(E, C, Info))
   8724       return false;
   8725     C.moveInto(Result);
   8726   } else if (T->isMemberPointerType()) {
   8727     MemberPtr P;
   8728     if (!EvaluateMemberPointer(E, P, Info))
   8729       return false;
   8730     P.moveInto(Result);
   8731     return true;
   8732   } else if (T->isArrayType()) {
   8733     LValue LV;
   8734     LV.set(E, Info.CurrentCall->Index);
   8735     APValue &Value = Info.CurrentCall->createTemporary(E, false);
   8736     if (!EvaluateArray(E, LV, Value, Info))
   8737       return false;
   8738     Result = Value;
   8739   } else if (T->isRecordType()) {
   8740     LValue LV;
   8741     LV.set(E, Info.CurrentCall->Index);
   8742     APValue &Value = Info.CurrentCall->createTemporary(E, false);
   8743     if (!EvaluateRecord(E, LV, Value, Info))
   8744       return false;
   8745     Result = Value;
   8746   } else if (T->isVoidType()) {
   8747     if (!Info.getLangOpts().CPlusPlus11)
   8748       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
   8749         << E->getType();
   8750     if (!EvaluateVoid(E, Info))
   8751       return false;
   8752   } else if (T->isAtomicType()) {
   8753     if (!EvaluateAtomic(E, Result, Info))
   8754       return false;
   8755   } else if (Info.getLangOpts().CPlusPlus11) {
   8756     Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
   8757     return false;
   8758   } else {
   8759     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   8760     return false;
   8761   }
   8762 
   8763   return true;
   8764 }
   8765 
   8766 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
   8767 /// cases, the in-place evaluation is essential, since later initializers for
   8768 /// an object can indirectly refer to subobjects which were initialized earlier.
   8769 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
   8770                             const Expr *E, bool AllowNonLiteralTypes) {
   8771   assert(!E->isValueDependent());
   8772 
   8773   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
   8774     return false;
   8775 
   8776   if (E->isRValue()) {
   8777     // Evaluate arrays and record types in-place, so that later initializers can
   8778     // refer to earlier-initialized members of the object.
   8779     if (E->getType()->isArrayType())
   8780       return EvaluateArray(E, This, Result, Info);
   8781     else if (E->getType()->isRecordType())
   8782       return EvaluateRecord(E, This, Result, Info);
   8783   }
   8784 
   8785   // For any other type, in-place evaluation is unimportant.
   8786   return Evaluate(Result, Info, E);
   8787 }
   8788 
   8789 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
   8790 /// lvalue-to-rvalue cast if it is an lvalue.
   8791 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
   8792   if (E->getType().isNull())
   8793     return false;
   8794 
   8795   if (!CheckLiteralType(Info, E))
   8796     return false;
   8797 
   8798   if (!::Evaluate(Result, Info, E))
   8799     return false;
   8800 
   8801   if (E->isGLValue()) {
   8802     LValue LV;
   8803     LV.setFrom(Info.Ctx, Result);
   8804     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
   8805       return false;
   8806   }
   8807 
   8808   // Check this core constant expression is a constant expression.
   8809   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
   8810 }
   8811 
   8812 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
   8813                                  const ASTContext &Ctx, bool &IsConst) {
   8814   // Fast-path evaluations of integer literals, since we sometimes see files
   8815   // containing vast quantities of these.
   8816   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
   8817     Result.Val = APValue(APSInt(L->getValue(),
   8818                                 L->getType()->isUnsignedIntegerType()));
   8819     IsConst = true;
   8820     return true;
   8821   }
   8822 
   8823   // This case should be rare, but we need to check it before we check on
   8824   // the type below.
   8825   if (Exp->getType().isNull()) {
   8826     IsConst = false;
   8827     return true;
   8828   }
   8829 
   8830   // FIXME: Evaluating values of large array and record types can cause
   8831   // performance problems. Only do so in C++11 for now.
   8832   if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
   8833                           Exp->getType()->isRecordType()) &&
   8834       !Ctx.getLangOpts().CPlusPlus11) {
   8835     IsConst = false;
   8836     return true;
   8837   }
   8838   return false;
   8839 }
   8840 
   8841 
   8842 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
   8843 /// any crazy technique (that has nothing to do with language standards) that
   8844 /// we want to.  If this function returns true, it returns the folded constant
   8845 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
   8846 /// will be applied to the result.
   8847 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
   8848   bool IsConst;
   8849   if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
   8850     return IsConst;
   8851 
   8852   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
   8853   return ::EvaluateAsRValue(Info, this, Result.Val);
   8854 }
   8855 
   8856 bool Expr::EvaluateAsBooleanCondition(bool &Result,
   8857                                       const ASTContext &Ctx) const {
   8858   EvalResult Scratch;
   8859   return EvaluateAsRValue(Scratch, Ctx) &&
   8860          HandleConversionToBool(Scratch.Val, Result);
   8861 }
   8862 
   8863 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
   8864                                       Expr::SideEffectsKind SEK) {
   8865   return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
   8866          (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
   8867 }
   8868 
   8869 bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
   8870                          SideEffectsKind AllowSideEffects) const {
   8871   if (!getType()->isIntegralOrEnumerationType())
   8872     return false;
   8873 
   8874   EvalResult ExprResult;
   8875   if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
   8876       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
   8877     return false;
   8878 
   8879   Result = ExprResult.Val.getInt();
   8880   return true;
   8881 }
   8882 
   8883 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
   8884   EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
   8885 
   8886   LValue LV;
   8887   if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
   8888       !CheckLValueConstantExpression(Info, getExprLoc(),
   8889                                      Ctx.getLValueReferenceType(getType()), LV))
   8890     return false;
   8891 
   8892   LV.moveInto(Result.Val);
   8893   return true;
   8894 }
   8895 
   8896 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
   8897                                  const VarDecl *VD,
   8898                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
   8899   // FIXME: Evaluating initializers for large array and record types can cause
   8900   // performance problems. Only do so in C++11 for now.
   8901   if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
   8902       !Ctx.getLangOpts().CPlusPlus11)
   8903     return false;
   8904 
   8905   Expr::EvalStatus EStatus;
   8906   EStatus.Diag = &Notes;
   8907 
   8908   EvalInfo InitInfo(Ctx, EStatus, VD->isConstexpr()
   8909                                       ? EvalInfo::EM_ConstantExpression
   8910                                       : EvalInfo::EM_ConstantFold);
   8911   InitInfo.setEvaluatingDecl(VD, Value);
   8912 
   8913   LValue LVal;
   8914   LVal.set(VD);
   8915 
   8916   // C++11 [basic.start.init]p2:
   8917   //  Variables with static storage duration or thread storage duration shall be
   8918   //  zero-initialized before any other initialization takes place.
   8919   // This behavior is not present in C.
   8920   if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
   8921       !VD->getType()->isReferenceType()) {
   8922     ImplicitValueInitExpr VIE(VD->getType());
   8923     if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE,
   8924                          /*AllowNonLiteralTypes=*/true))
   8925       return false;
   8926   }
   8927 
   8928   if (!EvaluateInPlace(Value, InitInfo, LVal, this,
   8929                        /*AllowNonLiteralTypes=*/true) ||
   8930       EStatus.HasSideEffects)
   8931     return false;
   8932 
   8933   return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
   8934                                  Value);
   8935 }
   8936 
   8937 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
   8938 /// constant folded, but discard the result.
   8939 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
   8940   EvalResult Result;
   8941   return EvaluateAsRValue(Result, Ctx) &&
   8942          !hasUnacceptableSideEffect(Result, SEK);
   8943 }
   8944 
   8945 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
   8946                     SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
   8947   EvalResult EvalResult;
   8948   EvalResult.Diag = Diag;
   8949   bool Result = EvaluateAsRValue(EvalResult, Ctx);
   8950   (void)Result;
   8951   assert(Result && "Could not evaluate expression");
   8952   assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
   8953 
   8954   return EvalResult.Val.getInt();
   8955 }
   8956 
   8957 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
   8958   bool IsConst;
   8959   EvalResult EvalResult;
   8960   if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
   8961     EvalInfo Info(Ctx, EvalResult, EvalInfo::EM_EvaluateForOverflow);
   8962     (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
   8963   }
   8964 }
   8965 
   8966 bool Expr::EvalResult::isGlobalLValue() const {
   8967   assert(Val.isLValue());
   8968   return IsGlobalLValue(Val.getLValueBase());
   8969 }
   8970 
   8971 
   8972 /// isIntegerConstantExpr - this recursive routine will test if an expression is
   8973 /// an integer constant expression.
   8974 
   8975 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
   8976 /// comma, etc
   8977 
   8978 // CheckICE - This function does the fundamental ICE checking: the returned
   8979 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
   8980 // and a (possibly null) SourceLocation indicating the location of the problem.
   8981 //
   8982 // Note that to reduce code duplication, this helper does no evaluation
   8983 // itself; the caller checks whether the expression is evaluatable, and
   8984 // in the rare cases where CheckICE actually cares about the evaluated
   8985 // value, it calls into Evalute.
   8986 
   8987 namespace {
   8988 
   8989 enum ICEKind {
   8990   /// This expression is an ICE.
   8991   IK_ICE,
   8992   /// This expression is not an ICE, but if it isn't evaluated, it's
   8993   /// a legal subexpression for an ICE. This return value is used to handle
   8994   /// the comma operator in C99 mode, and non-constant subexpressions.
   8995   IK_ICEIfUnevaluated,
   8996   /// This expression is not an ICE, and is not a legal subexpression for one.
   8997   IK_NotICE
   8998 };
   8999 
   9000 struct ICEDiag {
   9001   ICEKind Kind;
   9002   SourceLocation Loc;
   9003 
   9004   ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
   9005 };
   9006 
   9007 }
   9008 
   9009 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
   9010 
   9011 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
   9012 
   9013 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
   9014   Expr::EvalResult EVResult;
   9015   if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
   9016       !EVResult.Val.isInt())
   9017     return ICEDiag(IK_NotICE, E->getLocStart());
   9018 
   9019   return NoDiag();
   9020 }
   9021 
   9022 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
   9023   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
   9024   if (!E->getType()->isIntegralOrEnumerationType())
   9025     return ICEDiag(IK_NotICE, E->getLocStart());
   9026 
   9027   switch (E->getStmtClass()) {
   9028 #define ABSTRACT_STMT(Node)
   9029 #define STMT(Node, Base) case Expr::Node##Class:
   9030 #define EXPR(Node, Base)
   9031 #include "clang/AST/StmtNodes.inc"
   9032   case Expr::PredefinedExprClass:
   9033   case Expr::FloatingLiteralClass:
   9034   case Expr::ImaginaryLiteralClass:
   9035   case Expr::StringLiteralClass:
   9036   case Expr::ArraySubscriptExprClass:
   9037   case Expr::OMPArraySectionExprClass:
   9038   case Expr::MemberExprClass:
   9039   case Expr::CompoundAssignOperatorClass:
   9040   case Expr::CompoundLiteralExprClass:
   9041   case Expr::ExtVectorElementExprClass:
   9042   case Expr::DesignatedInitExprClass:
   9043   case Expr::NoInitExprClass:
   9044   case Expr::DesignatedInitUpdateExprClass:
   9045   case Expr::ImplicitValueInitExprClass:
   9046   case Expr::ParenListExprClass:
   9047   case Expr::VAArgExprClass:
   9048   case Expr::AddrLabelExprClass:
   9049   case Expr::StmtExprClass:
   9050   case Expr::CXXMemberCallExprClass:
   9051   case Expr::CUDAKernelCallExprClass:
   9052   case Expr::CXXDynamicCastExprClass:
   9053   case Expr::CXXTypeidExprClass:
   9054   case Expr::CXXUuidofExprClass:
   9055   case Expr::MSPropertyRefExprClass:
   9056   case Expr::MSPropertySubscriptExprClass:
   9057   case Expr::CXXNullPtrLiteralExprClass:
   9058   case Expr::UserDefinedLiteralClass:
   9059   case Expr::CXXThisExprClass:
   9060   case Expr::CXXThrowExprClass:
   9061   case Expr::CXXNewExprClass:
   9062   case Expr::CXXDeleteExprClass:
   9063   case Expr::CXXPseudoDestructorExprClass:
   9064   case Expr::UnresolvedLookupExprClass:
   9065   case Expr::TypoExprClass:
   9066   case Expr::DependentScopeDeclRefExprClass:
   9067   case Expr::CXXConstructExprClass:
   9068   case Expr::CXXStdInitializerListExprClass:
   9069   case Expr::CXXBindTemporaryExprClass:
   9070   case Expr::ExprWithCleanupsClass:
   9071   case Expr::CXXTemporaryObjectExprClass:
   9072   case Expr::CXXUnresolvedConstructExprClass:
   9073   case Expr::CXXDependentScopeMemberExprClass:
   9074   case Expr::UnresolvedMemberExprClass:
   9075   case Expr::ObjCStringLiteralClass:
   9076   case Expr::ObjCBoxedExprClass:
   9077   case Expr::ObjCArrayLiteralClass:
   9078   case Expr::ObjCDictionaryLiteralClass:
   9079   case Expr::ObjCEncodeExprClass:
   9080   case Expr::ObjCMessageExprClass:
   9081   case Expr::ObjCSelectorExprClass:
   9082   case Expr::ObjCProtocolExprClass:
   9083   case Expr::ObjCIvarRefExprClass:
   9084   case Expr::ObjCPropertyRefExprClass:
   9085   case Expr::ObjCSubscriptRefExprClass:
   9086   case Expr::ObjCIsaExprClass:
   9087   case Expr::ShuffleVectorExprClass:
   9088   case Expr::ConvertVectorExprClass:
   9089   case Expr::BlockExprClass:
   9090   case Expr::NoStmtClass:
   9091   case Expr::OpaqueValueExprClass:
   9092   case Expr::PackExpansionExprClass:
   9093   case Expr::SubstNonTypeTemplateParmPackExprClass:
   9094   case Expr::FunctionParmPackExprClass:
   9095   case Expr::AsTypeExprClass:
   9096   case Expr::ObjCIndirectCopyRestoreExprClass:
   9097   case Expr::MaterializeTemporaryExprClass:
   9098   case Expr::PseudoObjectExprClass:
   9099   case Expr::AtomicExprClass:
   9100   case Expr::LambdaExprClass:
   9101   case Expr::CXXFoldExprClass:
   9102   case Expr::CoawaitExprClass:
   9103   case Expr::CoyieldExprClass:
   9104     return ICEDiag(IK_NotICE, E->getLocStart());
   9105 
   9106   case Expr::InitListExprClass: {
   9107     // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
   9108     // form "T x = { a };" is equivalent to "T x = a;".
   9109     // Unless we're initializing a reference, T is a scalar as it is known to be
   9110     // of integral or enumeration type.
   9111     if (E->isRValue())
   9112       if (cast<InitListExpr>(E)->getNumInits() == 1)
   9113         return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
   9114     return ICEDiag(IK_NotICE, E->getLocStart());
   9115   }
   9116 
   9117   case Expr::SizeOfPackExprClass:
   9118   case Expr::GNUNullExprClass:
   9119     // GCC considers the GNU __null value to be an integral constant expression.
   9120     return NoDiag();
   9121 
   9122   case Expr::SubstNonTypeTemplateParmExprClass:
   9123     return
   9124       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
   9125 
   9126   case Expr::ParenExprClass:
   9127     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
   9128   case Expr::GenericSelectionExprClass:
   9129     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
   9130   case Expr::IntegerLiteralClass:
   9131   case Expr::CharacterLiteralClass:
   9132   case Expr::ObjCBoolLiteralExprClass:
   9133   case Expr::CXXBoolLiteralExprClass:
   9134   case Expr::CXXScalarValueInitExprClass:
   9135   case Expr::TypeTraitExprClass:
   9136   case Expr::ArrayTypeTraitExprClass:
   9137   case Expr::ExpressionTraitExprClass:
   9138   case Expr::CXXNoexceptExprClass:
   9139     return NoDiag();
   9140   case Expr::CallExprClass:
   9141   case Expr::CXXOperatorCallExprClass: {
   9142     // C99 6.6/3 allows function calls within unevaluated subexpressions of
   9143     // constant expressions, but they can never be ICEs because an ICE cannot
   9144     // contain an operand of (pointer to) function type.
   9145     const CallExpr *CE = cast<CallExpr>(E);
   9146     if (CE->getBuiltinCallee())
   9147       return CheckEvalInICE(E, Ctx);
   9148     return ICEDiag(IK_NotICE, E->getLocStart());
   9149   }
   9150   case Expr::DeclRefExprClass: {
   9151     if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
   9152       return NoDiag();
   9153     const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
   9154     if (Ctx.getLangOpts().CPlusPlus &&
   9155         D && IsConstNonVolatile(D->getType())) {
   9156       // Parameter variables are never constants.  Without this check,
   9157       // getAnyInitializer() can find a default argument, which leads
   9158       // to chaos.
   9159       if (isa<ParmVarDecl>(D))
   9160         return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
   9161 
   9162       // C++ 7.1.5.1p2
   9163       //   A variable of non-volatile const-qualified integral or enumeration
   9164       //   type initialized by an ICE can be used in ICEs.
   9165       if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
   9166         if (!Dcl->getType()->isIntegralOrEnumerationType())
   9167           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
   9168 
   9169         const VarDecl *VD;
   9170         // Look for a declaration of this variable that has an initializer, and
   9171         // check whether it is an ICE.
   9172         if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
   9173           return NoDiag();
   9174         else
   9175           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
   9176       }
   9177     }
   9178     return ICEDiag(IK_NotICE, E->getLocStart());
   9179   }
   9180   case Expr::UnaryOperatorClass: {
   9181     const UnaryOperator *Exp = cast<UnaryOperator>(E);
   9182     switch (Exp->getOpcode()) {
   9183     case UO_PostInc:
   9184     case UO_PostDec:
   9185     case UO_PreInc:
   9186     case UO_PreDec:
   9187     case UO_AddrOf:
   9188     case UO_Deref:
   9189     case UO_Coawait:
   9190       // C99 6.6/3 allows increment and decrement within unevaluated
   9191       // subexpressions of constant expressions, but they can never be ICEs
   9192       // because an ICE cannot contain an lvalue operand.
   9193       return ICEDiag(IK_NotICE, E->getLocStart());
   9194     case UO_Extension:
   9195     case UO_LNot:
   9196     case UO_Plus:
   9197     case UO_Minus:
   9198     case UO_Not:
   9199     case UO_Real:
   9200     case UO_Imag:
   9201       return CheckICE(Exp->getSubExpr(), Ctx);
   9202     }
   9203 
   9204     // OffsetOf falls through here.
   9205   }
   9206   case Expr::OffsetOfExprClass: {
   9207     // Note that per C99, offsetof must be an ICE. And AFAIK, using
   9208     // EvaluateAsRValue matches the proposed gcc behavior for cases like
   9209     // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
   9210     // compliance: we should warn earlier for offsetof expressions with
   9211     // array subscripts that aren't ICEs, and if the array subscripts
   9212     // are ICEs, the value of the offsetof must be an integer constant.
   9213     return CheckEvalInICE(E, Ctx);
   9214   }
   9215   case Expr::UnaryExprOrTypeTraitExprClass: {
   9216     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
   9217     if ((Exp->getKind() ==  UETT_SizeOf) &&
   9218         Exp->getTypeOfArgument()->isVariableArrayType())
   9219       return ICEDiag(IK_NotICE, E->getLocStart());
   9220     return NoDiag();
   9221   }
   9222   case Expr::BinaryOperatorClass: {
   9223     const BinaryOperator *Exp = cast<BinaryOperator>(E);
   9224     switch (Exp->getOpcode()) {
   9225     case BO_PtrMemD:
   9226     case BO_PtrMemI:
   9227     case BO_Assign:
   9228     case BO_MulAssign:
   9229     case BO_DivAssign:
   9230     case BO_RemAssign:
   9231     case BO_AddAssign:
   9232     case BO_SubAssign:
   9233     case BO_ShlAssign:
   9234     case BO_ShrAssign:
   9235     case BO_AndAssign:
   9236     case BO_XorAssign:
   9237     case BO_OrAssign:
   9238       // C99 6.6/3 allows assignments within unevaluated subexpressions of
   9239       // constant expressions, but they can never be ICEs because an ICE cannot
   9240       // contain an lvalue operand.
   9241       return ICEDiag(IK_NotICE, E->getLocStart());
   9242 
   9243     case BO_Mul:
   9244     case BO_Div:
   9245     case BO_Rem:
   9246     case BO_Add:
   9247     case BO_Sub:
   9248     case BO_Shl:
   9249     case BO_Shr:
   9250     case BO_LT:
   9251     case BO_GT:
   9252     case BO_LE:
   9253     case BO_GE:
   9254     case BO_EQ:
   9255     case BO_NE:
   9256     case BO_And:
   9257     case BO_Xor:
   9258     case BO_Or:
   9259     case BO_Comma: {
   9260       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
   9261       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
   9262       if (Exp->getOpcode() == BO_Div ||
   9263           Exp->getOpcode() == BO_Rem) {
   9264         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
   9265         // we don't evaluate one.
   9266         if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
   9267           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
   9268           if (REval == 0)
   9269             return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
   9270           if (REval.isSigned() && REval.isAllOnesValue()) {
   9271             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
   9272             if (LEval.isMinSignedValue())
   9273               return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
   9274           }
   9275         }
   9276       }
   9277       if (Exp->getOpcode() == BO_Comma) {
   9278         if (Ctx.getLangOpts().C99) {
   9279           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
   9280           // if it isn't evaluated.
   9281           if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
   9282             return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
   9283         } else {
   9284           // In both C89 and C++, commas in ICEs are illegal.
   9285           return ICEDiag(IK_NotICE, E->getLocStart());
   9286         }
   9287       }
   9288       return Worst(LHSResult, RHSResult);
   9289     }
   9290     case BO_LAnd:
   9291     case BO_LOr: {
   9292       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
   9293       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
   9294       if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
   9295         // Rare case where the RHS has a comma "side-effect"; we need
   9296         // to actually check the condition to see whether the side
   9297         // with the comma is evaluated.
   9298         if ((Exp->getOpcode() == BO_LAnd) !=
   9299             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
   9300           return RHSResult;
   9301         return NoDiag();
   9302       }
   9303 
   9304       return Worst(LHSResult, RHSResult);
   9305     }
   9306     }
   9307   }
   9308   case Expr::ImplicitCastExprClass:
   9309   case Expr::CStyleCastExprClass:
   9310   case Expr::CXXFunctionalCastExprClass:
   9311   case Expr::CXXStaticCastExprClass:
   9312   case Expr::CXXReinterpretCastExprClass:
   9313   case Expr::CXXConstCastExprClass:
   9314   case Expr::ObjCBridgedCastExprClass: {
   9315     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
   9316     if (isa<ExplicitCastExpr>(E)) {
   9317       if (const FloatingLiteral *FL
   9318             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
   9319         unsigned DestWidth = Ctx.getIntWidth(E->getType());
   9320         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
   9321         APSInt IgnoredVal(DestWidth, !DestSigned);
   9322         bool Ignored;
   9323         // If the value does not fit in the destination type, the behavior is
   9324         // undefined, so we are not required to treat it as a constant
   9325         // expression.
   9326         if (FL->getValue().convertToInteger(IgnoredVal,
   9327                                             llvm::APFloat::rmTowardZero,
   9328                                             &Ignored) & APFloat::opInvalidOp)
   9329           return ICEDiag(IK_NotICE, E->getLocStart());
   9330         return NoDiag();
   9331       }
   9332     }
   9333     switch (cast<CastExpr>(E)->getCastKind()) {
   9334     case CK_LValueToRValue:
   9335     case CK_AtomicToNonAtomic:
   9336     case CK_NonAtomicToAtomic:
   9337     case CK_NoOp:
   9338     case CK_IntegralToBoolean:
   9339     case CK_IntegralCast:
   9340       return CheckICE(SubExpr, Ctx);
   9341     default:
   9342       return ICEDiag(IK_NotICE, E->getLocStart());
   9343     }
   9344   }
   9345   case Expr::BinaryConditionalOperatorClass: {
   9346     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
   9347     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
   9348     if (CommonResult.Kind == IK_NotICE) return CommonResult;
   9349     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
   9350     if (FalseResult.Kind == IK_NotICE) return FalseResult;
   9351     if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
   9352     if (FalseResult.Kind == IK_ICEIfUnevaluated &&
   9353         Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
   9354     return FalseResult;
   9355   }
   9356   case Expr::ConditionalOperatorClass: {
   9357     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
   9358     // If the condition (ignoring parens) is a __builtin_constant_p call,
   9359     // then only the true side is actually considered in an integer constant
   9360     // expression, and it is fully evaluated.  This is an important GNU
   9361     // extension.  See GCC PR38377 for discussion.
   9362     if (const CallExpr *CallCE
   9363         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
   9364       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
   9365         return CheckEvalInICE(E, Ctx);
   9366     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
   9367     if (CondResult.Kind == IK_NotICE)
   9368       return CondResult;
   9369 
   9370     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
   9371     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
   9372 
   9373     if (TrueResult.Kind == IK_NotICE)
   9374       return TrueResult;
   9375     if (FalseResult.Kind == IK_NotICE)
   9376       return FalseResult;
   9377     if (CondResult.Kind == IK_ICEIfUnevaluated)
   9378       return CondResult;
   9379     if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
   9380       return NoDiag();
   9381     // Rare case where the diagnostics depend on which side is evaluated
   9382     // Note that if we get here, CondResult is 0, and at least one of
   9383     // TrueResult and FalseResult is non-zero.
   9384     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
   9385       return FalseResult;
   9386     return TrueResult;
   9387   }
   9388   case Expr::CXXDefaultArgExprClass:
   9389     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
   9390   case Expr::CXXDefaultInitExprClass:
   9391     return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
   9392   case Expr::ChooseExprClass: {
   9393     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
   9394   }
   9395   }
   9396 
   9397   llvm_unreachable("Invalid StmtClass!");
   9398 }
   9399 
   9400 /// Evaluate an expression as a C++11 integral constant expression.
   9401 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
   9402                                                     const Expr *E,
   9403                                                     llvm::APSInt *Value,
   9404                                                     SourceLocation *Loc) {
   9405   if (!E->getType()->isIntegralOrEnumerationType()) {
   9406     if (Loc) *Loc = E->getExprLoc();
   9407     return false;
   9408   }
   9409 
   9410   APValue Result;
   9411   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
   9412     return false;
   9413 
   9414   if (!Result.isInt()) {
   9415     if (Loc) *Loc = E->getExprLoc();
   9416     return false;
   9417   }
   9418 
   9419   if (Value) *Value = Result.getInt();
   9420   return true;
   9421 }
   9422 
   9423 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
   9424                                  SourceLocation *Loc) const {
   9425   if (Ctx.getLangOpts().CPlusPlus11)
   9426     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
   9427 
   9428   ICEDiag D = CheckICE(this, Ctx);
   9429   if (D.Kind != IK_ICE) {
   9430     if (Loc) *Loc = D.Loc;
   9431     return false;
   9432   }
   9433   return true;
   9434 }
   9435 
   9436 bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
   9437                                  SourceLocation *Loc, bool isEvaluated) const {
   9438   if (Ctx.getLangOpts().CPlusPlus11)
   9439     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
   9440 
   9441   if (!isIntegerConstantExpr(Ctx, Loc))
   9442     return false;
   9443   // The only possible side-effects here are due to UB discovered in the
   9444   // evaluation (for instance, INT_MAX + 1). In such a case, we are still
   9445   // required to treat the expression as an ICE, so we produce the folded
   9446   // value.
   9447   if (!EvaluateAsInt(Value, Ctx, SE_AllowSideEffects))
   9448     llvm_unreachable("ICE cannot be evaluated!");
   9449   return true;
   9450 }
   9451 
   9452 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
   9453   return CheckICE(this, Ctx).Kind == IK_ICE;
   9454 }
   9455 
   9456 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
   9457                                SourceLocation *Loc) const {
   9458   // We support this checking in C++98 mode in order to diagnose compatibility
   9459   // issues.
   9460   assert(Ctx.getLangOpts().CPlusPlus);
   9461 
   9462   // Build evaluation settings.
   9463   Expr::EvalStatus Status;
   9464   SmallVector<PartialDiagnosticAt, 8> Diags;
   9465   Status.Diag = &Diags;
   9466   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
   9467 
   9468   APValue Scratch;
   9469   bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
   9470 
   9471   if (!Diags.empty()) {
   9472     IsConstExpr = false;
   9473     if (Loc) *Loc = Diags[0].first;
   9474   } else if (!IsConstExpr) {
   9475     // FIXME: This shouldn't happen.
   9476     if (Loc) *Loc = getExprLoc();
   9477   }
   9478 
   9479   return IsConstExpr;
   9480 }
   9481 
   9482 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
   9483                                     const FunctionDecl *Callee,
   9484                                     ArrayRef<const Expr*> Args) const {
   9485   Expr::EvalStatus Status;
   9486   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
   9487 
   9488   ArgVector ArgValues(Args.size());
   9489   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
   9490        I != E; ++I) {
   9491     if ((*I)->isValueDependent() ||
   9492         !Evaluate(ArgValues[I - Args.begin()], Info, *I))
   9493       // If evaluation fails, throw away the argument entirely.
   9494       ArgValues[I - Args.begin()] = APValue();
   9495     if (Info.EvalStatus.HasSideEffects)
   9496       return false;
   9497   }
   9498 
   9499   // Build fake call to Callee.
   9500   CallStackFrame Frame(Info, Callee->getLocation(), Callee, /*This*/nullptr,
   9501                        ArgValues.data());
   9502   return Evaluate(Value, Info, this) && !Info.EvalStatus.HasSideEffects;
   9503 }
   9504 
   9505 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
   9506                                    SmallVectorImpl<
   9507                                      PartialDiagnosticAt> &Diags) {
   9508   // FIXME: It would be useful to check constexpr function templates, but at the
   9509   // moment the constant expression evaluator cannot cope with the non-rigorous
   9510   // ASTs which we build for dependent expressions.
   9511   if (FD->isDependentContext())
   9512     return true;
   9513 
   9514   Expr::EvalStatus Status;
   9515   Status.Diag = &Diags;
   9516 
   9517   EvalInfo Info(FD->getASTContext(), Status,
   9518                 EvalInfo::EM_PotentialConstantExpression);
   9519 
   9520   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
   9521   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
   9522 
   9523   // Fabricate an arbitrary expression on the stack and pretend that it
   9524   // is a temporary being used as the 'this' pointer.
   9525   LValue This;
   9526   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
   9527   This.set(&VIE, Info.CurrentCall->Index);
   9528 
   9529   ArrayRef<const Expr*> Args;
   9530 
   9531   SourceLocation Loc = FD->getLocation();
   9532 
   9533   APValue Scratch;
   9534   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
   9535     // Evaluate the call as a constant initializer, to allow the construction
   9536     // of objects of non-literal types.
   9537     Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
   9538     HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
   9539   } else
   9540     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
   9541                        Args, FD->getBody(), Info, Scratch, nullptr);
   9542 
   9543   return Diags.empty();
   9544 }
   9545 
   9546 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
   9547                                               const FunctionDecl *FD,
   9548                                               SmallVectorImpl<
   9549                                                 PartialDiagnosticAt> &Diags) {
   9550   Expr::EvalStatus Status;
   9551   Status.Diag = &Diags;
   9552 
   9553   EvalInfo Info(FD->getASTContext(), Status,
   9554                 EvalInfo::EM_PotentialConstantExpressionUnevaluated);
   9555 
   9556   // Fabricate a call stack frame to give the arguments a plausible cover story.
   9557   ArrayRef<const Expr*> Args;
   9558   ArgVector ArgValues(0);
   9559   bool Success = EvaluateArgs(Args, ArgValues, Info);
   9560   (void)Success;
   9561   assert(Success &&
   9562          "Failed to set up arguments for potential constant evaluation");
   9563   CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
   9564 
   9565   APValue ResultScratch;
   9566   Evaluate(ResultScratch, Info, E);
   9567   return Diags.empty();
   9568 }
   9569 
   9570 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
   9571                                  unsigned Type) const {
   9572   if (!getType()->isPointerType())
   9573     return false;
   9574 
   9575   Expr::EvalStatus Status;
   9576   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
   9577   return ::tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
   9578 }
   9579