1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Expr constant evaluator. 11 // 12 // Constant expression evaluation produces four main results: 13 // 14 // * A success/failure flag indicating whether constant folding was successful. 15 // This is the 'bool' return value used by most of the code in this file. A 16 // 'false' return value indicates that constant folding has failed, and any 17 // appropriate diagnostic has already been produced. 18 // 19 // * An evaluated result, valid only if constant folding has not failed. 20 // 21 // * A flag indicating if evaluation encountered (unevaluated) side-effects. 22 // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1), 23 // where it is possible to determine the evaluated result regardless. 24 // 25 // * A set of notes indicating why the evaluation was not a constant expression 26 // (under the C++11 / C++1y rules only, at the moment), or, if folding failed 27 // too, why the expression could not be folded. 28 // 29 // If we are checking for a potential constant expression, failure to constant 30 // fold a potential constant sub-expression will be indicated by a 'false' 31 // return value (the expression could not be folded) and no diagnostic (the 32 // expression is not necessarily non-constant). 33 // 34 //===----------------------------------------------------------------------===// 35 36 #include "clang/AST/APValue.h" 37 #include "clang/AST/ASTContext.h" 38 #include "clang/AST/ASTDiagnostic.h" 39 #include "clang/AST/CharUnits.h" 40 #include "clang/AST/Expr.h" 41 #include "clang/AST/RecordLayout.h" 42 #include "clang/AST/StmtVisitor.h" 43 #include "clang/AST/TypeLoc.h" 44 #include "clang/Basic/Builtins.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "llvm/ADT/SmallString.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <cstring> 49 #include <functional> 50 51 using namespace clang; 52 using llvm::APSInt; 53 using llvm::APFloat; 54 55 static bool IsGlobalLValue(APValue::LValueBase B); 56 57 namespace { 58 struct LValue; 59 struct CallStackFrame; 60 struct EvalInfo; 61 62 static QualType getType(APValue::LValueBase B) { 63 if (!B) return QualType(); 64 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) 65 return D->getType(); 66 67 const Expr *Base = B.get<const Expr*>(); 68 69 // For a materialized temporary, the type of the temporary we materialized 70 // may not be the type of the expression. 71 if (const MaterializeTemporaryExpr *MTE = 72 dyn_cast<MaterializeTemporaryExpr>(Base)) { 73 SmallVector<const Expr *, 2> CommaLHSs; 74 SmallVector<SubobjectAdjustment, 2> Adjustments; 75 const Expr *Temp = MTE->GetTemporaryExpr(); 76 const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs, 77 Adjustments); 78 // Keep any cv-qualifiers from the reference if we generated a temporary 79 // for it. 80 if (Inner != Temp) 81 return Inner->getType(); 82 } 83 84 return Base->getType(); 85 } 86 87 /// Get an LValue path entry, which is known to not be an array index, as a 88 /// field or base class. 89 static 90 APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) { 91 APValue::BaseOrMemberType Value; 92 Value.setFromOpaqueValue(E.BaseOrMember); 93 return Value; 94 } 95 96 /// Get an LValue path entry, which is known to not be an array index, as a 97 /// field declaration. 98 static const FieldDecl *getAsField(APValue::LValuePathEntry E) { 99 return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer()); 100 } 101 /// Get an LValue path entry, which is known to not be an array index, as a 102 /// base class declaration. 103 static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) { 104 return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer()); 105 } 106 /// Determine whether this LValue path entry for a base class names a virtual 107 /// base class. 108 static bool isVirtualBaseClass(APValue::LValuePathEntry E) { 109 return getAsBaseOrMember(E).getInt(); 110 } 111 112 /// Find the path length and type of the most-derived subobject in the given 113 /// path, and find the size of the containing array, if any. 114 static 115 unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base, 116 ArrayRef<APValue::LValuePathEntry> Path, 117 uint64_t &ArraySize, QualType &Type, 118 bool &IsArray) { 119 unsigned MostDerivedLength = 0; 120 Type = Base; 121 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 122 if (Type->isArrayType()) { 123 const ConstantArrayType *CAT = 124 cast<ConstantArrayType>(Ctx.getAsArrayType(Type)); 125 Type = CAT->getElementType(); 126 ArraySize = CAT->getSize().getZExtValue(); 127 MostDerivedLength = I + 1; 128 IsArray = true; 129 } else if (Type->isAnyComplexType()) { 130 const ComplexType *CT = Type->castAs<ComplexType>(); 131 Type = CT->getElementType(); 132 ArraySize = 2; 133 MostDerivedLength = I + 1; 134 IsArray = true; 135 } else if (const FieldDecl *FD = getAsField(Path[I])) { 136 Type = FD->getType(); 137 ArraySize = 0; 138 MostDerivedLength = I + 1; 139 IsArray = false; 140 } else { 141 // Path[I] describes a base class. 142 ArraySize = 0; 143 IsArray = false; 144 } 145 } 146 return MostDerivedLength; 147 } 148 149 // The order of this enum is important for diagnostics. 150 enum CheckSubobjectKind { 151 CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex, 152 CSK_This, CSK_Real, CSK_Imag 153 }; 154 155 /// A path from a glvalue to a subobject of that glvalue. 156 struct SubobjectDesignator { 157 /// True if the subobject was named in a manner not supported by C++11. Such 158 /// lvalues can still be folded, but they are not core constant expressions 159 /// and we cannot perform lvalue-to-rvalue conversions on them. 160 bool Invalid : 1; 161 162 /// Is this a pointer one past the end of an object? 163 bool IsOnePastTheEnd : 1; 164 165 /// Indicator of whether the most-derived object is an array element. 166 bool MostDerivedIsArrayElement : 1; 167 168 /// The length of the path to the most-derived object of which this is a 169 /// subobject. 170 unsigned MostDerivedPathLength : 29; 171 172 /// The size of the array of which the most-derived object is an element. 173 /// This will always be 0 if the most-derived object is not an array 174 /// element. 0 is not an indicator of whether or not the most-derived object 175 /// is an array, however, because 0-length arrays are allowed. 176 uint64_t MostDerivedArraySize; 177 178 /// The type of the most derived object referred to by this address. 179 QualType MostDerivedType; 180 181 typedef APValue::LValuePathEntry PathEntry; 182 183 /// The entries on the path from the glvalue to the designated subobject. 184 SmallVector<PathEntry, 8> Entries; 185 186 SubobjectDesignator() : Invalid(true) {} 187 188 explicit SubobjectDesignator(QualType T) 189 : Invalid(false), IsOnePastTheEnd(false), 190 MostDerivedIsArrayElement(false), MostDerivedPathLength(0), 191 MostDerivedArraySize(0), MostDerivedType(T) {} 192 193 SubobjectDesignator(ASTContext &Ctx, const APValue &V) 194 : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false), 195 MostDerivedIsArrayElement(false), MostDerivedPathLength(0), 196 MostDerivedArraySize(0) { 197 if (!Invalid) { 198 IsOnePastTheEnd = V.isLValueOnePastTheEnd(); 199 ArrayRef<PathEntry> VEntries = V.getLValuePath(); 200 Entries.insert(Entries.end(), VEntries.begin(), VEntries.end()); 201 if (V.getLValueBase()) { 202 bool IsArray = false; 203 MostDerivedPathLength = 204 findMostDerivedSubobject(Ctx, getType(V.getLValueBase()), 205 V.getLValuePath(), MostDerivedArraySize, 206 MostDerivedType, IsArray); 207 MostDerivedIsArrayElement = IsArray; 208 } 209 } 210 } 211 212 void setInvalid() { 213 Invalid = true; 214 Entries.clear(); 215 } 216 217 /// Determine whether this is a one-past-the-end pointer. 218 bool isOnePastTheEnd() const { 219 assert(!Invalid); 220 if (IsOnePastTheEnd) 221 return true; 222 if (MostDerivedIsArrayElement && 223 Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize) 224 return true; 225 return false; 226 } 227 228 /// Check that this refers to a valid subobject. 229 bool isValidSubobject() const { 230 if (Invalid) 231 return false; 232 return !isOnePastTheEnd(); 233 } 234 /// Check that this refers to a valid subobject, and if not, produce a 235 /// relevant diagnostic and set the designator as invalid. 236 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK); 237 238 /// Update this designator to refer to the first element within this array. 239 void addArrayUnchecked(const ConstantArrayType *CAT) { 240 PathEntry Entry; 241 Entry.ArrayIndex = 0; 242 Entries.push_back(Entry); 243 244 // This is a most-derived object. 245 MostDerivedType = CAT->getElementType(); 246 MostDerivedIsArrayElement = true; 247 MostDerivedArraySize = CAT->getSize().getZExtValue(); 248 MostDerivedPathLength = Entries.size(); 249 } 250 /// Update this designator to refer to the given base or member of this 251 /// object. 252 void addDeclUnchecked(const Decl *D, bool Virtual = false) { 253 PathEntry Entry; 254 APValue::BaseOrMemberType Value(D, Virtual); 255 Entry.BaseOrMember = Value.getOpaqueValue(); 256 Entries.push_back(Entry); 257 258 // If this isn't a base class, it's a new most-derived object. 259 if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) { 260 MostDerivedType = FD->getType(); 261 MostDerivedIsArrayElement = false; 262 MostDerivedArraySize = 0; 263 MostDerivedPathLength = Entries.size(); 264 } 265 } 266 /// Update this designator to refer to the given complex component. 267 void addComplexUnchecked(QualType EltTy, bool Imag) { 268 PathEntry Entry; 269 Entry.ArrayIndex = Imag; 270 Entries.push_back(Entry); 271 272 // This is technically a most-derived object, though in practice this 273 // is unlikely to matter. 274 MostDerivedType = EltTy; 275 MostDerivedIsArrayElement = true; 276 MostDerivedArraySize = 2; 277 MostDerivedPathLength = Entries.size(); 278 } 279 void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N); 280 /// Add N to the address of this subobject. 281 void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) { 282 if (Invalid) return; 283 if (MostDerivedPathLength == Entries.size() && 284 MostDerivedIsArrayElement) { 285 Entries.back().ArrayIndex += N; 286 if (Entries.back().ArrayIndex > MostDerivedArraySize) { 287 diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex); 288 setInvalid(); 289 } 290 return; 291 } 292 // [expr.add]p4: For the purposes of these operators, a pointer to a 293 // nonarray object behaves the same as a pointer to the first element of 294 // an array of length one with the type of the object as its element type. 295 if (IsOnePastTheEnd && N == (uint64_t)-1) 296 IsOnePastTheEnd = false; 297 else if (!IsOnePastTheEnd && N == 1) 298 IsOnePastTheEnd = true; 299 else if (N != 0) { 300 diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N); 301 setInvalid(); 302 } 303 } 304 }; 305 306 /// A stack frame in the constexpr call stack. 307 struct CallStackFrame { 308 EvalInfo &Info; 309 310 /// Parent - The caller of this stack frame. 311 CallStackFrame *Caller; 312 313 /// CallLoc - The location of the call expression for this call. 314 SourceLocation CallLoc; 315 316 /// Callee - The function which was called. 317 const FunctionDecl *Callee; 318 319 /// Index - The call index of this call. 320 unsigned Index; 321 322 /// This - The binding for the this pointer in this call, if any. 323 const LValue *This; 324 325 /// Arguments - Parameter bindings for this function call, indexed by 326 /// parameters' function scope indices. 327 APValue *Arguments; 328 329 // Note that we intentionally use std::map here so that references to 330 // values are stable. 331 typedef std::map<const void*, APValue> MapTy; 332 typedef MapTy::const_iterator temp_iterator; 333 /// Temporaries - Temporary lvalues materialized within this stack frame. 334 MapTy Temporaries; 335 336 CallStackFrame(EvalInfo &Info, SourceLocation CallLoc, 337 const FunctionDecl *Callee, const LValue *This, 338 APValue *Arguments); 339 ~CallStackFrame(); 340 341 APValue *getTemporary(const void *Key) { 342 MapTy::iterator I = Temporaries.find(Key); 343 return I == Temporaries.end() ? nullptr : &I->second; 344 } 345 APValue &createTemporary(const void *Key, bool IsLifetimeExtended); 346 }; 347 348 /// Temporarily override 'this'. 349 class ThisOverrideRAII { 350 public: 351 ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable) 352 : Frame(Frame), OldThis(Frame.This) { 353 if (Enable) 354 Frame.This = NewThis; 355 } 356 ~ThisOverrideRAII() { 357 Frame.This = OldThis; 358 } 359 private: 360 CallStackFrame &Frame; 361 const LValue *OldThis; 362 }; 363 364 /// A partial diagnostic which we might know in advance that we are not going 365 /// to emit. 366 class OptionalDiagnostic { 367 PartialDiagnostic *Diag; 368 369 public: 370 explicit OptionalDiagnostic(PartialDiagnostic *Diag = nullptr) 371 : Diag(Diag) {} 372 373 template<typename T> 374 OptionalDiagnostic &operator<<(const T &v) { 375 if (Diag) 376 *Diag << v; 377 return *this; 378 } 379 380 OptionalDiagnostic &operator<<(const APSInt &I) { 381 if (Diag) { 382 SmallVector<char, 32> Buffer; 383 I.toString(Buffer); 384 *Diag << StringRef(Buffer.data(), Buffer.size()); 385 } 386 return *this; 387 } 388 389 OptionalDiagnostic &operator<<(const APFloat &F) { 390 if (Diag) { 391 // FIXME: Force the precision of the source value down so we don't 392 // print digits which are usually useless (we don't really care here if 393 // we truncate a digit by accident in edge cases). Ideally, 394 // APFloat::toString would automatically print the shortest 395 // representation which rounds to the correct value, but it's a bit 396 // tricky to implement. 397 unsigned precision = 398 llvm::APFloat::semanticsPrecision(F.getSemantics()); 399 precision = (precision * 59 + 195) / 196; 400 SmallVector<char, 32> Buffer; 401 F.toString(Buffer, precision); 402 *Diag << StringRef(Buffer.data(), Buffer.size()); 403 } 404 return *this; 405 } 406 }; 407 408 /// A cleanup, and a flag indicating whether it is lifetime-extended. 409 class Cleanup { 410 llvm::PointerIntPair<APValue*, 1, bool> Value; 411 412 public: 413 Cleanup(APValue *Val, bool IsLifetimeExtended) 414 : Value(Val, IsLifetimeExtended) {} 415 416 bool isLifetimeExtended() const { return Value.getInt(); } 417 void endLifetime() { 418 *Value.getPointer() = APValue(); 419 } 420 }; 421 422 /// EvalInfo - This is a private struct used by the evaluator to capture 423 /// information about a subexpression as it is folded. It retains information 424 /// about the AST context, but also maintains information about the folded 425 /// expression. 426 /// 427 /// If an expression could be evaluated, it is still possible it is not a C 428 /// "integer constant expression" or constant expression. If not, this struct 429 /// captures information about how and why not. 430 /// 431 /// One bit of information passed *into* the request for constant folding 432 /// indicates whether the subexpression is "evaluated" or not according to C 433 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can 434 /// evaluate the expression regardless of what the RHS is, but C only allows 435 /// certain things in certain situations. 436 struct EvalInfo { 437 ASTContext &Ctx; 438 439 /// EvalStatus - Contains information about the evaluation. 440 Expr::EvalStatus &EvalStatus; 441 442 /// CurrentCall - The top of the constexpr call stack. 443 CallStackFrame *CurrentCall; 444 445 /// CallStackDepth - The number of calls in the call stack right now. 446 unsigned CallStackDepth; 447 448 /// NextCallIndex - The next call index to assign. 449 unsigned NextCallIndex; 450 451 /// StepsLeft - The remaining number of evaluation steps we're permitted 452 /// to perform. This is essentially a limit for the number of statements 453 /// we will evaluate. 454 unsigned StepsLeft; 455 456 /// BottomFrame - The frame in which evaluation started. This must be 457 /// initialized after CurrentCall and CallStackDepth. 458 CallStackFrame BottomFrame; 459 460 /// A stack of values whose lifetimes end at the end of some surrounding 461 /// evaluation frame. 462 llvm::SmallVector<Cleanup, 16> CleanupStack; 463 464 /// EvaluatingDecl - This is the declaration whose initializer is being 465 /// evaluated, if any. 466 APValue::LValueBase EvaluatingDecl; 467 468 /// EvaluatingDeclValue - This is the value being constructed for the 469 /// declaration whose initializer is being evaluated, if any. 470 APValue *EvaluatingDeclValue; 471 472 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further 473 /// notes attached to it will also be stored, otherwise they will not be. 474 bool HasActiveDiagnostic; 475 476 /// \brief Have we emitted a diagnostic explaining why we couldn't constant 477 /// fold (not just why it's not strictly a constant expression)? 478 bool HasFoldFailureDiagnostic; 479 480 enum EvaluationMode { 481 /// Evaluate as a constant expression. Stop if we find that the expression 482 /// is not a constant expression. 483 EM_ConstantExpression, 484 485 /// Evaluate as a potential constant expression. Keep going if we hit a 486 /// construct that we can't evaluate yet (because we don't yet know the 487 /// value of something) but stop if we hit something that could never be 488 /// a constant expression. 489 EM_PotentialConstantExpression, 490 491 /// Fold the expression to a constant. Stop if we hit a side-effect that 492 /// we can't model. 493 EM_ConstantFold, 494 495 /// Evaluate the expression looking for integer overflow and similar 496 /// issues. Don't worry about side-effects, and try to visit all 497 /// subexpressions. 498 EM_EvaluateForOverflow, 499 500 /// Evaluate in any way we know how. Don't worry about side-effects that 501 /// can't be modeled. 502 EM_IgnoreSideEffects, 503 504 /// Evaluate as a constant expression. Stop if we find that the expression 505 /// is not a constant expression. Some expressions can be retried in the 506 /// optimizer if we don't constant fold them here, but in an unevaluated 507 /// context we try to fold them immediately since the optimizer never 508 /// gets a chance to look at it. 509 EM_ConstantExpressionUnevaluated, 510 511 /// Evaluate as a potential constant expression. Keep going if we hit a 512 /// construct that we can't evaluate yet (because we don't yet know the 513 /// value of something) but stop if we hit something that could never be 514 /// a constant expression. Some expressions can be retried in the 515 /// optimizer if we don't constant fold them here, but in an unevaluated 516 /// context we try to fold them immediately since the optimizer never 517 /// gets a chance to look at it. 518 EM_PotentialConstantExpressionUnevaluated, 519 520 /// Evaluate as a constant expression. Continue evaluating if we find a 521 /// MemberExpr with a base that can't be evaluated. 522 EM_DesignatorFold, 523 } EvalMode; 524 525 /// Are we checking whether the expression is a potential constant 526 /// expression? 527 bool checkingPotentialConstantExpression() const { 528 return EvalMode == EM_PotentialConstantExpression || 529 EvalMode == EM_PotentialConstantExpressionUnevaluated; 530 } 531 532 /// Are we checking an expression for overflow? 533 // FIXME: We should check for any kind of undefined or suspicious behavior 534 // in such constructs, not just overflow. 535 bool checkingForOverflow() { return EvalMode == EM_EvaluateForOverflow; } 536 537 EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode) 538 : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr), 539 CallStackDepth(0), NextCallIndex(1), 540 StepsLeft(getLangOpts().ConstexprStepLimit), 541 BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr), 542 EvaluatingDecl((const ValueDecl *)nullptr), 543 EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false), 544 HasFoldFailureDiagnostic(false), EvalMode(Mode) {} 545 546 void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) { 547 EvaluatingDecl = Base; 548 EvaluatingDeclValue = &Value; 549 } 550 551 const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); } 552 553 bool CheckCallLimit(SourceLocation Loc) { 554 // Don't perform any constexpr calls (other than the call we're checking) 555 // when checking a potential constant expression. 556 if (checkingPotentialConstantExpression() && CallStackDepth > 1) 557 return false; 558 if (NextCallIndex == 0) { 559 // NextCallIndex has wrapped around. 560 Diag(Loc, diag::note_constexpr_call_limit_exceeded); 561 return false; 562 } 563 if (CallStackDepth <= getLangOpts().ConstexprCallDepth) 564 return true; 565 Diag(Loc, diag::note_constexpr_depth_limit_exceeded) 566 << getLangOpts().ConstexprCallDepth; 567 return false; 568 } 569 570 CallStackFrame *getCallFrame(unsigned CallIndex) { 571 assert(CallIndex && "no call index in getCallFrame"); 572 // We will eventually hit BottomFrame, which has Index 1, so Frame can't 573 // be null in this loop. 574 CallStackFrame *Frame = CurrentCall; 575 while (Frame->Index > CallIndex) 576 Frame = Frame->Caller; 577 return (Frame->Index == CallIndex) ? Frame : nullptr; 578 } 579 580 bool nextStep(const Stmt *S) { 581 if (!StepsLeft) { 582 Diag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded); 583 return false; 584 } 585 --StepsLeft; 586 return true; 587 } 588 589 private: 590 /// Add a diagnostic to the diagnostics list. 591 PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) { 592 PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator()); 593 EvalStatus.Diag->push_back(std::make_pair(Loc, PD)); 594 return EvalStatus.Diag->back().second; 595 } 596 597 /// Add notes containing a call stack to the current point of evaluation. 598 void addCallStack(unsigned Limit); 599 600 public: 601 /// Diagnose that the evaluation cannot be folded. 602 OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId 603 = diag::note_invalid_subexpr_in_const_expr, 604 unsigned ExtraNotes = 0, bool IsCCEDiag = false) { 605 if (EvalStatus.Diag) { 606 // If we have a prior diagnostic, it will be noting that the expression 607 // isn't a constant expression. This diagnostic is more important, 608 // unless we require this evaluation to produce a constant expression. 609 // 610 // FIXME: We might want to show both diagnostics to the user in 611 // EM_ConstantFold mode. 612 if (!EvalStatus.Diag->empty()) { 613 switch (EvalMode) { 614 case EM_ConstantFold: 615 case EM_IgnoreSideEffects: 616 case EM_EvaluateForOverflow: 617 if (!HasFoldFailureDiagnostic) 618 break; 619 // We've already failed to fold something. Keep that diagnostic. 620 case EM_ConstantExpression: 621 case EM_PotentialConstantExpression: 622 case EM_ConstantExpressionUnevaluated: 623 case EM_PotentialConstantExpressionUnevaluated: 624 case EM_DesignatorFold: 625 HasActiveDiagnostic = false; 626 return OptionalDiagnostic(); 627 } 628 } 629 630 unsigned CallStackNotes = CallStackDepth - 1; 631 unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit(); 632 if (Limit) 633 CallStackNotes = std::min(CallStackNotes, Limit + 1); 634 if (checkingPotentialConstantExpression()) 635 CallStackNotes = 0; 636 637 HasActiveDiagnostic = true; 638 HasFoldFailureDiagnostic = !IsCCEDiag; 639 EvalStatus.Diag->clear(); 640 EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes); 641 addDiag(Loc, DiagId); 642 if (!checkingPotentialConstantExpression()) 643 addCallStack(Limit); 644 return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second); 645 } 646 HasActiveDiagnostic = false; 647 return OptionalDiagnostic(); 648 } 649 650 OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId 651 = diag::note_invalid_subexpr_in_const_expr, 652 unsigned ExtraNotes = 0, bool IsCCEDiag = false) { 653 if (EvalStatus.Diag) 654 return Diag(E->getExprLoc(), DiagId, ExtraNotes, IsCCEDiag); 655 HasActiveDiagnostic = false; 656 return OptionalDiagnostic(); 657 } 658 659 /// Diagnose that the evaluation does not produce a C++11 core constant 660 /// expression. 661 /// 662 /// FIXME: Stop evaluating if we're in EM_ConstantExpression or 663 /// EM_PotentialConstantExpression mode and we produce one of these. 664 template<typename LocArg> 665 OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId 666 = diag::note_invalid_subexpr_in_const_expr, 667 unsigned ExtraNotes = 0) { 668 // Don't override a previous diagnostic. Don't bother collecting 669 // diagnostics if we're evaluating for overflow. 670 if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) { 671 HasActiveDiagnostic = false; 672 return OptionalDiagnostic(); 673 } 674 return Diag(Loc, DiagId, ExtraNotes, true); 675 } 676 677 /// Add a note to a prior diagnostic. 678 OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) { 679 if (!HasActiveDiagnostic) 680 return OptionalDiagnostic(); 681 return OptionalDiagnostic(&addDiag(Loc, DiagId)); 682 } 683 684 /// Add a stack of notes to a prior diagnostic. 685 void addNotes(ArrayRef<PartialDiagnosticAt> Diags) { 686 if (HasActiveDiagnostic) { 687 EvalStatus.Diag->insert(EvalStatus.Diag->end(), 688 Diags.begin(), Diags.end()); 689 } 690 } 691 692 /// Should we continue evaluation after encountering a side-effect that we 693 /// couldn't model? 694 bool keepEvaluatingAfterSideEffect() { 695 switch (EvalMode) { 696 case EM_PotentialConstantExpression: 697 case EM_PotentialConstantExpressionUnevaluated: 698 case EM_EvaluateForOverflow: 699 case EM_IgnoreSideEffects: 700 return true; 701 702 case EM_ConstantExpression: 703 case EM_ConstantExpressionUnevaluated: 704 case EM_ConstantFold: 705 case EM_DesignatorFold: 706 return false; 707 } 708 llvm_unreachable("Missed EvalMode case"); 709 } 710 711 /// Note that we have had a side-effect, and determine whether we should 712 /// keep evaluating. 713 bool noteSideEffect() { 714 EvalStatus.HasSideEffects = true; 715 return keepEvaluatingAfterSideEffect(); 716 } 717 718 /// Should we continue evaluation after encountering undefined behavior? 719 bool keepEvaluatingAfterUndefinedBehavior() { 720 switch (EvalMode) { 721 case EM_EvaluateForOverflow: 722 case EM_IgnoreSideEffects: 723 case EM_ConstantFold: 724 case EM_DesignatorFold: 725 return true; 726 727 case EM_PotentialConstantExpression: 728 case EM_PotentialConstantExpressionUnevaluated: 729 case EM_ConstantExpression: 730 case EM_ConstantExpressionUnevaluated: 731 return false; 732 } 733 llvm_unreachable("Missed EvalMode case"); 734 } 735 736 /// Note that we hit something that was technically undefined behavior, but 737 /// that we can evaluate past it (such as signed overflow or floating-point 738 /// division by zero.) 739 bool noteUndefinedBehavior() { 740 EvalStatus.HasUndefinedBehavior = true; 741 return keepEvaluatingAfterUndefinedBehavior(); 742 } 743 744 /// Should we continue evaluation as much as possible after encountering a 745 /// construct which can't be reduced to a value? 746 bool keepEvaluatingAfterFailure() { 747 if (!StepsLeft) 748 return false; 749 750 switch (EvalMode) { 751 case EM_PotentialConstantExpression: 752 case EM_PotentialConstantExpressionUnevaluated: 753 case EM_EvaluateForOverflow: 754 return true; 755 756 case EM_ConstantExpression: 757 case EM_ConstantExpressionUnevaluated: 758 case EM_ConstantFold: 759 case EM_IgnoreSideEffects: 760 case EM_DesignatorFold: 761 return false; 762 } 763 llvm_unreachable("Missed EvalMode case"); 764 } 765 766 bool allowInvalidBaseExpr() const { 767 return EvalMode == EM_DesignatorFold; 768 } 769 }; 770 771 /// Object used to treat all foldable expressions as constant expressions. 772 struct FoldConstant { 773 EvalInfo &Info; 774 bool Enabled; 775 bool HadNoPriorDiags; 776 EvalInfo::EvaluationMode OldMode; 777 778 explicit FoldConstant(EvalInfo &Info, bool Enabled) 779 : Info(Info), 780 Enabled(Enabled), 781 HadNoPriorDiags(Info.EvalStatus.Diag && 782 Info.EvalStatus.Diag->empty() && 783 !Info.EvalStatus.HasSideEffects), 784 OldMode(Info.EvalMode) { 785 if (Enabled && 786 (Info.EvalMode == EvalInfo::EM_ConstantExpression || 787 Info.EvalMode == EvalInfo::EM_ConstantExpressionUnevaluated)) 788 Info.EvalMode = EvalInfo::EM_ConstantFold; 789 } 790 void keepDiagnostics() { Enabled = false; } 791 ~FoldConstant() { 792 if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() && 793 !Info.EvalStatus.HasSideEffects) 794 Info.EvalStatus.Diag->clear(); 795 Info.EvalMode = OldMode; 796 } 797 }; 798 799 /// RAII object used to treat the current evaluation as the correct pointer 800 /// offset fold for the current EvalMode 801 struct FoldOffsetRAII { 802 EvalInfo &Info; 803 EvalInfo::EvaluationMode OldMode; 804 explicit FoldOffsetRAII(EvalInfo &Info, bool Subobject) 805 : Info(Info), OldMode(Info.EvalMode) { 806 if (!Info.checkingPotentialConstantExpression()) 807 Info.EvalMode = Subobject ? EvalInfo::EM_DesignatorFold 808 : EvalInfo::EM_ConstantFold; 809 } 810 811 ~FoldOffsetRAII() { Info.EvalMode = OldMode; } 812 }; 813 814 /// RAII object used to suppress diagnostics and side-effects from a 815 /// speculative evaluation. 816 class SpeculativeEvaluationRAII { 817 EvalInfo &Info; 818 Expr::EvalStatus Old; 819 820 public: 821 SpeculativeEvaluationRAII(EvalInfo &Info, 822 SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr) 823 : Info(Info), Old(Info.EvalStatus) { 824 Info.EvalStatus.Diag = NewDiag; 825 // If we're speculatively evaluating, we may have skipped over some 826 // evaluations and missed out a side effect. 827 Info.EvalStatus.HasSideEffects = true; 828 } 829 ~SpeculativeEvaluationRAII() { 830 Info.EvalStatus = Old; 831 } 832 }; 833 834 /// RAII object wrapping a full-expression or block scope, and handling 835 /// the ending of the lifetime of temporaries created within it. 836 template<bool IsFullExpression> 837 class ScopeRAII { 838 EvalInfo &Info; 839 unsigned OldStackSize; 840 public: 841 ScopeRAII(EvalInfo &Info) 842 : Info(Info), OldStackSize(Info.CleanupStack.size()) {} 843 ~ScopeRAII() { 844 // Body moved to a static method to encourage the compiler to inline away 845 // instances of this class. 846 cleanup(Info, OldStackSize); 847 } 848 private: 849 static void cleanup(EvalInfo &Info, unsigned OldStackSize) { 850 unsigned NewEnd = OldStackSize; 851 for (unsigned I = OldStackSize, N = Info.CleanupStack.size(); 852 I != N; ++I) { 853 if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) { 854 // Full-expression cleanup of a lifetime-extended temporary: nothing 855 // to do, just move this cleanup to the right place in the stack. 856 std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]); 857 ++NewEnd; 858 } else { 859 // End the lifetime of the object. 860 Info.CleanupStack[I].endLifetime(); 861 } 862 } 863 Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd, 864 Info.CleanupStack.end()); 865 } 866 }; 867 typedef ScopeRAII<false> BlockScopeRAII; 868 typedef ScopeRAII<true> FullExpressionRAII; 869 } 870 871 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E, 872 CheckSubobjectKind CSK) { 873 if (Invalid) 874 return false; 875 if (isOnePastTheEnd()) { 876 Info.CCEDiag(E, diag::note_constexpr_past_end_subobject) 877 << CSK; 878 setInvalid(); 879 return false; 880 } 881 return true; 882 } 883 884 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info, 885 const Expr *E, uint64_t N) { 886 if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement) 887 Info.CCEDiag(E, diag::note_constexpr_array_index) 888 << static_cast<int>(N) << /*array*/ 0 889 << static_cast<unsigned>(MostDerivedArraySize); 890 else 891 Info.CCEDiag(E, diag::note_constexpr_array_index) 892 << static_cast<int>(N) << /*non-array*/ 1; 893 setInvalid(); 894 } 895 896 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc, 897 const FunctionDecl *Callee, const LValue *This, 898 APValue *Arguments) 899 : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee), 900 Index(Info.NextCallIndex++), This(This), Arguments(Arguments) { 901 Info.CurrentCall = this; 902 ++Info.CallStackDepth; 903 } 904 905 CallStackFrame::~CallStackFrame() { 906 assert(Info.CurrentCall == this && "calls retired out of order"); 907 --Info.CallStackDepth; 908 Info.CurrentCall = Caller; 909 } 910 911 APValue &CallStackFrame::createTemporary(const void *Key, 912 bool IsLifetimeExtended) { 913 APValue &Result = Temporaries[Key]; 914 assert(Result.isUninit() && "temporary created multiple times"); 915 Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended)); 916 return Result; 917 } 918 919 static void describeCall(CallStackFrame *Frame, raw_ostream &Out); 920 921 void EvalInfo::addCallStack(unsigned Limit) { 922 // Determine which calls to skip, if any. 923 unsigned ActiveCalls = CallStackDepth - 1; 924 unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart; 925 if (Limit && Limit < ActiveCalls) { 926 SkipStart = Limit / 2 + Limit % 2; 927 SkipEnd = ActiveCalls - Limit / 2; 928 } 929 930 // Walk the call stack and add the diagnostics. 931 unsigned CallIdx = 0; 932 for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame; 933 Frame = Frame->Caller, ++CallIdx) { 934 // Skip this call? 935 if (CallIdx >= SkipStart && CallIdx < SkipEnd) { 936 if (CallIdx == SkipStart) { 937 // Note that we're skipping calls. 938 addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed) 939 << unsigned(ActiveCalls - Limit); 940 } 941 continue; 942 } 943 944 SmallVector<char, 128> Buffer; 945 llvm::raw_svector_ostream Out(Buffer); 946 describeCall(Frame, Out); 947 addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str(); 948 } 949 } 950 951 namespace { 952 struct ComplexValue { 953 private: 954 bool IsInt; 955 956 public: 957 APSInt IntReal, IntImag; 958 APFloat FloatReal, FloatImag; 959 960 ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {} 961 962 void makeComplexFloat() { IsInt = false; } 963 bool isComplexFloat() const { return !IsInt; } 964 APFloat &getComplexFloatReal() { return FloatReal; } 965 APFloat &getComplexFloatImag() { return FloatImag; } 966 967 void makeComplexInt() { IsInt = true; } 968 bool isComplexInt() const { return IsInt; } 969 APSInt &getComplexIntReal() { return IntReal; } 970 APSInt &getComplexIntImag() { return IntImag; } 971 972 void moveInto(APValue &v) const { 973 if (isComplexFloat()) 974 v = APValue(FloatReal, FloatImag); 975 else 976 v = APValue(IntReal, IntImag); 977 } 978 void setFrom(const APValue &v) { 979 assert(v.isComplexFloat() || v.isComplexInt()); 980 if (v.isComplexFloat()) { 981 makeComplexFloat(); 982 FloatReal = v.getComplexFloatReal(); 983 FloatImag = v.getComplexFloatImag(); 984 } else { 985 makeComplexInt(); 986 IntReal = v.getComplexIntReal(); 987 IntImag = v.getComplexIntImag(); 988 } 989 } 990 }; 991 992 struct LValue { 993 APValue::LValueBase Base; 994 CharUnits Offset; 995 bool InvalidBase : 1; 996 unsigned CallIndex : 31; 997 SubobjectDesignator Designator; 998 999 const APValue::LValueBase getLValueBase() const { return Base; } 1000 CharUnits &getLValueOffset() { return Offset; } 1001 const CharUnits &getLValueOffset() const { return Offset; } 1002 unsigned getLValueCallIndex() const { return CallIndex; } 1003 SubobjectDesignator &getLValueDesignator() { return Designator; } 1004 const SubobjectDesignator &getLValueDesignator() const { return Designator;} 1005 1006 void moveInto(APValue &V) const { 1007 if (Designator.Invalid) 1008 V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex); 1009 else 1010 V = APValue(Base, Offset, Designator.Entries, 1011 Designator.IsOnePastTheEnd, CallIndex); 1012 } 1013 void setFrom(ASTContext &Ctx, const APValue &V) { 1014 assert(V.isLValue()); 1015 Base = V.getLValueBase(); 1016 Offset = V.getLValueOffset(); 1017 InvalidBase = false; 1018 CallIndex = V.getLValueCallIndex(); 1019 Designator = SubobjectDesignator(Ctx, V); 1020 } 1021 1022 void set(APValue::LValueBase B, unsigned I = 0, bool BInvalid = false) { 1023 Base = B; 1024 Offset = CharUnits::Zero(); 1025 InvalidBase = BInvalid; 1026 CallIndex = I; 1027 Designator = SubobjectDesignator(getType(B)); 1028 } 1029 1030 void setInvalid(APValue::LValueBase B, unsigned I = 0) { 1031 set(B, I, true); 1032 } 1033 1034 // Check that this LValue is not based on a null pointer. If it is, produce 1035 // a diagnostic and mark the designator as invalid. 1036 bool checkNullPointer(EvalInfo &Info, const Expr *E, 1037 CheckSubobjectKind CSK) { 1038 if (Designator.Invalid) 1039 return false; 1040 if (!Base) { 1041 Info.CCEDiag(E, diag::note_constexpr_null_subobject) 1042 << CSK; 1043 Designator.setInvalid(); 1044 return false; 1045 } 1046 return true; 1047 } 1048 1049 // Check this LValue refers to an object. If not, set the designator to be 1050 // invalid and emit a diagnostic. 1051 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) { 1052 return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) && 1053 Designator.checkSubobject(Info, E, CSK); 1054 } 1055 1056 void addDecl(EvalInfo &Info, const Expr *E, 1057 const Decl *D, bool Virtual = false) { 1058 if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base)) 1059 Designator.addDeclUnchecked(D, Virtual); 1060 } 1061 void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) { 1062 if (checkSubobject(Info, E, CSK_ArrayToPointer)) 1063 Designator.addArrayUnchecked(CAT); 1064 } 1065 void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) { 1066 if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real)) 1067 Designator.addComplexUnchecked(EltTy, Imag); 1068 } 1069 void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) { 1070 if (N && checkNullPointer(Info, E, CSK_ArrayIndex)) 1071 Designator.adjustIndex(Info, E, N); 1072 } 1073 }; 1074 1075 struct MemberPtr { 1076 MemberPtr() {} 1077 explicit MemberPtr(const ValueDecl *Decl) : 1078 DeclAndIsDerivedMember(Decl, false), Path() {} 1079 1080 /// The member or (direct or indirect) field referred to by this member 1081 /// pointer, or 0 if this is a null member pointer. 1082 const ValueDecl *getDecl() const { 1083 return DeclAndIsDerivedMember.getPointer(); 1084 } 1085 /// Is this actually a member of some type derived from the relevant class? 1086 bool isDerivedMember() const { 1087 return DeclAndIsDerivedMember.getInt(); 1088 } 1089 /// Get the class which the declaration actually lives in. 1090 const CXXRecordDecl *getContainingRecord() const { 1091 return cast<CXXRecordDecl>( 1092 DeclAndIsDerivedMember.getPointer()->getDeclContext()); 1093 } 1094 1095 void moveInto(APValue &V) const { 1096 V = APValue(getDecl(), isDerivedMember(), Path); 1097 } 1098 void setFrom(const APValue &V) { 1099 assert(V.isMemberPointer()); 1100 DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl()); 1101 DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember()); 1102 Path.clear(); 1103 ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath(); 1104 Path.insert(Path.end(), P.begin(), P.end()); 1105 } 1106 1107 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating 1108 /// whether the member is a member of some class derived from the class type 1109 /// of the member pointer. 1110 llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember; 1111 /// Path - The path of base/derived classes from the member declaration's 1112 /// class (exclusive) to the class type of the member pointer (inclusive). 1113 SmallVector<const CXXRecordDecl*, 4> Path; 1114 1115 /// Perform a cast towards the class of the Decl (either up or down the 1116 /// hierarchy). 1117 bool castBack(const CXXRecordDecl *Class) { 1118 assert(!Path.empty()); 1119 const CXXRecordDecl *Expected; 1120 if (Path.size() >= 2) 1121 Expected = Path[Path.size() - 2]; 1122 else 1123 Expected = getContainingRecord(); 1124 if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) { 1125 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*), 1126 // if B does not contain the original member and is not a base or 1127 // derived class of the class containing the original member, the result 1128 // of the cast is undefined. 1129 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to 1130 // (D::*). We consider that to be a language defect. 1131 return false; 1132 } 1133 Path.pop_back(); 1134 return true; 1135 } 1136 /// Perform a base-to-derived member pointer cast. 1137 bool castToDerived(const CXXRecordDecl *Derived) { 1138 if (!getDecl()) 1139 return true; 1140 if (!isDerivedMember()) { 1141 Path.push_back(Derived); 1142 return true; 1143 } 1144 if (!castBack(Derived)) 1145 return false; 1146 if (Path.empty()) 1147 DeclAndIsDerivedMember.setInt(false); 1148 return true; 1149 } 1150 /// Perform a derived-to-base member pointer cast. 1151 bool castToBase(const CXXRecordDecl *Base) { 1152 if (!getDecl()) 1153 return true; 1154 if (Path.empty()) 1155 DeclAndIsDerivedMember.setInt(true); 1156 if (isDerivedMember()) { 1157 Path.push_back(Base); 1158 return true; 1159 } 1160 return castBack(Base); 1161 } 1162 }; 1163 1164 /// Compare two member pointers, which are assumed to be of the same type. 1165 static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) { 1166 if (!LHS.getDecl() || !RHS.getDecl()) 1167 return !LHS.getDecl() && !RHS.getDecl(); 1168 if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl()) 1169 return false; 1170 return LHS.Path == RHS.Path; 1171 } 1172 } 1173 1174 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E); 1175 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, 1176 const LValue &This, const Expr *E, 1177 bool AllowNonLiteralTypes = false); 1178 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info); 1179 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info); 1180 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, 1181 EvalInfo &Info); 1182 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info); 1183 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info); 1184 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, 1185 EvalInfo &Info); 1186 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info); 1187 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info); 1188 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info); 1189 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result); 1190 1191 //===----------------------------------------------------------------------===// 1192 // Misc utilities 1193 //===----------------------------------------------------------------------===// 1194 1195 /// Produce a string describing the given constexpr call. 1196 static void describeCall(CallStackFrame *Frame, raw_ostream &Out) { 1197 unsigned ArgIndex = 0; 1198 bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) && 1199 !isa<CXXConstructorDecl>(Frame->Callee) && 1200 cast<CXXMethodDecl>(Frame->Callee)->isInstance(); 1201 1202 if (!IsMemberCall) 1203 Out << *Frame->Callee << '('; 1204 1205 if (Frame->This && IsMemberCall) { 1206 APValue Val; 1207 Frame->This->moveInto(Val); 1208 Val.printPretty(Out, Frame->Info.Ctx, 1209 Frame->This->Designator.MostDerivedType); 1210 // FIXME: Add parens around Val if needed. 1211 Out << "->" << *Frame->Callee << '('; 1212 IsMemberCall = false; 1213 } 1214 1215 for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(), 1216 E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) { 1217 if (ArgIndex > (unsigned)IsMemberCall) 1218 Out << ", "; 1219 1220 const ParmVarDecl *Param = *I; 1221 const APValue &Arg = Frame->Arguments[ArgIndex]; 1222 Arg.printPretty(Out, Frame->Info.Ctx, Param->getType()); 1223 1224 if (ArgIndex == 0 && IsMemberCall) 1225 Out << "->" << *Frame->Callee << '('; 1226 } 1227 1228 Out << ')'; 1229 } 1230 1231 /// Evaluate an expression to see if it had side-effects, and discard its 1232 /// result. 1233 /// \return \c true if the caller should keep evaluating. 1234 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) { 1235 APValue Scratch; 1236 if (!Evaluate(Scratch, Info, E)) 1237 // We don't need the value, but we might have skipped a side effect here. 1238 return Info.noteSideEffect(); 1239 return true; 1240 } 1241 1242 /// Sign- or zero-extend a value to 64 bits. If it's already 64 bits, just 1243 /// return its existing value. 1244 static int64_t getExtValue(const APSInt &Value) { 1245 return Value.isSigned() ? Value.getSExtValue() 1246 : static_cast<int64_t>(Value.getZExtValue()); 1247 } 1248 1249 /// Should this call expression be treated as a string literal? 1250 static bool IsStringLiteralCall(const CallExpr *E) { 1251 unsigned Builtin = E->getBuiltinCallee(); 1252 return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString || 1253 Builtin == Builtin::BI__builtin___NSStringMakeConstantString); 1254 } 1255 1256 static bool IsGlobalLValue(APValue::LValueBase B) { 1257 // C++11 [expr.const]p3 An address constant expression is a prvalue core 1258 // constant expression of pointer type that evaluates to... 1259 1260 // ... a null pointer value, or a prvalue core constant expression of type 1261 // std::nullptr_t. 1262 if (!B) return true; 1263 1264 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { 1265 // ... the address of an object with static storage duration, 1266 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1267 return VD->hasGlobalStorage(); 1268 // ... the address of a function, 1269 return isa<FunctionDecl>(D); 1270 } 1271 1272 const Expr *E = B.get<const Expr*>(); 1273 switch (E->getStmtClass()) { 1274 default: 1275 return false; 1276 case Expr::CompoundLiteralExprClass: { 1277 const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E); 1278 return CLE->isFileScope() && CLE->isLValue(); 1279 } 1280 case Expr::MaterializeTemporaryExprClass: 1281 // A materialized temporary might have been lifetime-extended to static 1282 // storage duration. 1283 return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static; 1284 // A string literal has static storage duration. 1285 case Expr::StringLiteralClass: 1286 case Expr::PredefinedExprClass: 1287 case Expr::ObjCStringLiteralClass: 1288 case Expr::ObjCEncodeExprClass: 1289 case Expr::CXXTypeidExprClass: 1290 case Expr::CXXUuidofExprClass: 1291 return true; 1292 case Expr::CallExprClass: 1293 return IsStringLiteralCall(cast<CallExpr>(E)); 1294 // For GCC compatibility, &&label has static storage duration. 1295 case Expr::AddrLabelExprClass: 1296 return true; 1297 // A Block literal expression may be used as the initialization value for 1298 // Block variables at global or local static scope. 1299 case Expr::BlockExprClass: 1300 return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures(); 1301 case Expr::ImplicitValueInitExprClass: 1302 // FIXME: 1303 // We can never form an lvalue with an implicit value initialization as its 1304 // base through expression evaluation, so these only appear in one case: the 1305 // implicit variable declaration we invent when checking whether a constexpr 1306 // constructor can produce a constant expression. We must assume that such 1307 // an expression might be a global lvalue. 1308 return true; 1309 } 1310 } 1311 1312 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) { 1313 assert(Base && "no location for a null lvalue"); 1314 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); 1315 if (VD) 1316 Info.Note(VD->getLocation(), diag::note_declared_at); 1317 else 1318 Info.Note(Base.get<const Expr*>()->getExprLoc(), 1319 diag::note_constexpr_temporary_here); 1320 } 1321 1322 /// Check that this reference or pointer core constant expression is a valid 1323 /// value for an address or reference constant expression. Return true if we 1324 /// can fold this expression, whether or not it's a constant expression. 1325 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc, 1326 QualType Type, const LValue &LVal) { 1327 bool IsReferenceType = Type->isReferenceType(); 1328 1329 APValue::LValueBase Base = LVal.getLValueBase(); 1330 const SubobjectDesignator &Designator = LVal.getLValueDesignator(); 1331 1332 // Check that the object is a global. Note that the fake 'this' object we 1333 // manufacture when checking potential constant expressions is conservatively 1334 // assumed to be global here. 1335 if (!IsGlobalLValue(Base)) { 1336 if (Info.getLangOpts().CPlusPlus11) { 1337 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); 1338 Info.Diag(Loc, diag::note_constexpr_non_global, 1) 1339 << IsReferenceType << !Designator.Entries.empty() 1340 << !!VD << VD; 1341 NoteLValueLocation(Info, Base); 1342 } else { 1343 Info.Diag(Loc); 1344 } 1345 // Don't allow references to temporaries to escape. 1346 return false; 1347 } 1348 assert((Info.checkingPotentialConstantExpression() || 1349 LVal.getLValueCallIndex() == 0) && 1350 "have call index for global lvalue"); 1351 1352 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) { 1353 if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) { 1354 // Check if this is a thread-local variable. 1355 if (Var->getTLSKind()) 1356 return false; 1357 1358 // A dllimport variable never acts like a constant. 1359 if (Var->hasAttr<DLLImportAttr>()) 1360 return false; 1361 } 1362 if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) { 1363 // __declspec(dllimport) must be handled very carefully: 1364 // We must never initialize an expression with the thunk in C++. 1365 // Doing otherwise would allow the same id-expression to yield 1366 // different addresses for the same function in different translation 1367 // units. However, this means that we must dynamically initialize the 1368 // expression with the contents of the import address table at runtime. 1369 // 1370 // The C language has no notion of ODR; furthermore, it has no notion of 1371 // dynamic initialization. This means that we are permitted to 1372 // perform initialization with the address of the thunk. 1373 if (Info.getLangOpts().CPlusPlus && FD->hasAttr<DLLImportAttr>()) 1374 return false; 1375 } 1376 } 1377 1378 // Allow address constant expressions to be past-the-end pointers. This is 1379 // an extension: the standard requires them to point to an object. 1380 if (!IsReferenceType) 1381 return true; 1382 1383 // A reference constant expression must refer to an object. 1384 if (!Base) { 1385 // FIXME: diagnostic 1386 Info.CCEDiag(Loc); 1387 return true; 1388 } 1389 1390 // Does this refer one past the end of some object? 1391 if (!Designator.Invalid && Designator.isOnePastTheEnd()) { 1392 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); 1393 Info.Diag(Loc, diag::note_constexpr_past_end, 1) 1394 << !Designator.Entries.empty() << !!VD << VD; 1395 NoteLValueLocation(Info, Base); 1396 } 1397 1398 return true; 1399 } 1400 1401 /// Check that this core constant expression is of literal type, and if not, 1402 /// produce an appropriate diagnostic. 1403 static bool CheckLiteralType(EvalInfo &Info, const Expr *E, 1404 const LValue *This = nullptr) { 1405 if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx)) 1406 return true; 1407 1408 // C++1y: A constant initializer for an object o [...] may also invoke 1409 // constexpr constructors for o and its subobjects even if those objects 1410 // are of non-literal class types. 1411 if (Info.getLangOpts().CPlusPlus14 && This && 1412 Info.EvaluatingDecl == This->getLValueBase()) 1413 return true; 1414 1415 // Prvalue constant expressions must be of literal types. 1416 if (Info.getLangOpts().CPlusPlus11) 1417 Info.Diag(E, diag::note_constexpr_nonliteral) 1418 << E->getType(); 1419 else 1420 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr); 1421 return false; 1422 } 1423 1424 /// Check that this core constant expression value is a valid value for a 1425 /// constant expression. If not, report an appropriate diagnostic. Does not 1426 /// check that the expression is of literal type. 1427 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, 1428 QualType Type, const APValue &Value) { 1429 if (Value.isUninit()) { 1430 Info.Diag(DiagLoc, diag::note_constexpr_uninitialized) 1431 << true << Type; 1432 return false; 1433 } 1434 1435 // We allow _Atomic(T) to be initialized from anything that T can be 1436 // initialized from. 1437 if (const AtomicType *AT = Type->getAs<AtomicType>()) 1438 Type = AT->getValueType(); 1439 1440 // Core issue 1454: For a literal constant expression of array or class type, 1441 // each subobject of its value shall have been initialized by a constant 1442 // expression. 1443 if (Value.isArray()) { 1444 QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType(); 1445 for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) { 1446 if (!CheckConstantExpression(Info, DiagLoc, EltTy, 1447 Value.getArrayInitializedElt(I))) 1448 return false; 1449 } 1450 if (!Value.hasArrayFiller()) 1451 return true; 1452 return CheckConstantExpression(Info, DiagLoc, EltTy, 1453 Value.getArrayFiller()); 1454 } 1455 if (Value.isUnion() && Value.getUnionField()) { 1456 return CheckConstantExpression(Info, DiagLoc, 1457 Value.getUnionField()->getType(), 1458 Value.getUnionValue()); 1459 } 1460 if (Value.isStruct()) { 1461 RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); 1462 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 1463 unsigned BaseIndex = 0; 1464 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(), 1465 End = CD->bases_end(); I != End; ++I, ++BaseIndex) { 1466 if (!CheckConstantExpression(Info, DiagLoc, I->getType(), 1467 Value.getStructBase(BaseIndex))) 1468 return false; 1469 } 1470 } 1471 for (const auto *I : RD->fields()) { 1472 if (!CheckConstantExpression(Info, DiagLoc, I->getType(), 1473 Value.getStructField(I->getFieldIndex()))) 1474 return false; 1475 } 1476 } 1477 1478 if (Value.isLValue()) { 1479 LValue LVal; 1480 LVal.setFrom(Info.Ctx, Value); 1481 return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal); 1482 } 1483 1484 // Everything else is fine. 1485 return true; 1486 } 1487 1488 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) { 1489 return LVal.Base.dyn_cast<const ValueDecl*>(); 1490 } 1491 1492 static bool IsLiteralLValue(const LValue &Value) { 1493 if (Value.CallIndex) 1494 return false; 1495 const Expr *E = Value.Base.dyn_cast<const Expr*>(); 1496 return E && !isa<MaterializeTemporaryExpr>(E); 1497 } 1498 1499 static bool IsWeakLValue(const LValue &Value) { 1500 const ValueDecl *Decl = GetLValueBaseDecl(Value); 1501 return Decl && Decl->isWeak(); 1502 } 1503 1504 static bool isZeroSized(const LValue &Value) { 1505 const ValueDecl *Decl = GetLValueBaseDecl(Value); 1506 if (Decl && isa<VarDecl>(Decl)) { 1507 QualType Ty = Decl->getType(); 1508 if (Ty->isArrayType()) 1509 return Ty->isIncompleteType() || 1510 Decl->getASTContext().getTypeSize(Ty) == 0; 1511 } 1512 return false; 1513 } 1514 1515 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) { 1516 // A null base expression indicates a null pointer. These are always 1517 // evaluatable, and they are false unless the offset is zero. 1518 if (!Value.getLValueBase()) { 1519 Result = !Value.getLValueOffset().isZero(); 1520 return true; 1521 } 1522 1523 // We have a non-null base. These are generally known to be true, but if it's 1524 // a weak declaration it can be null at runtime. 1525 Result = true; 1526 const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>(); 1527 return !Decl || !Decl->isWeak(); 1528 } 1529 1530 static bool HandleConversionToBool(const APValue &Val, bool &Result) { 1531 switch (Val.getKind()) { 1532 case APValue::Uninitialized: 1533 return false; 1534 case APValue::Int: 1535 Result = Val.getInt().getBoolValue(); 1536 return true; 1537 case APValue::Float: 1538 Result = !Val.getFloat().isZero(); 1539 return true; 1540 case APValue::ComplexInt: 1541 Result = Val.getComplexIntReal().getBoolValue() || 1542 Val.getComplexIntImag().getBoolValue(); 1543 return true; 1544 case APValue::ComplexFloat: 1545 Result = !Val.getComplexFloatReal().isZero() || 1546 !Val.getComplexFloatImag().isZero(); 1547 return true; 1548 case APValue::LValue: 1549 return EvalPointerValueAsBool(Val, Result); 1550 case APValue::MemberPointer: 1551 Result = Val.getMemberPointerDecl(); 1552 return true; 1553 case APValue::Vector: 1554 case APValue::Array: 1555 case APValue::Struct: 1556 case APValue::Union: 1557 case APValue::AddrLabelDiff: 1558 return false; 1559 } 1560 1561 llvm_unreachable("unknown APValue kind"); 1562 } 1563 1564 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result, 1565 EvalInfo &Info) { 1566 assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition"); 1567 APValue Val; 1568 if (!Evaluate(Val, Info, E)) 1569 return false; 1570 return HandleConversionToBool(Val, Result); 1571 } 1572 1573 template<typename T> 1574 static bool HandleOverflow(EvalInfo &Info, const Expr *E, 1575 const T &SrcValue, QualType DestType) { 1576 Info.CCEDiag(E, diag::note_constexpr_overflow) 1577 << SrcValue << DestType; 1578 return Info.noteUndefinedBehavior(); 1579 } 1580 1581 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E, 1582 QualType SrcType, const APFloat &Value, 1583 QualType DestType, APSInt &Result) { 1584 unsigned DestWidth = Info.Ctx.getIntWidth(DestType); 1585 // Determine whether we are converting to unsigned or signed. 1586 bool DestSigned = DestType->isSignedIntegerOrEnumerationType(); 1587 1588 Result = APSInt(DestWidth, !DestSigned); 1589 bool ignored; 1590 if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored) 1591 & APFloat::opInvalidOp) 1592 return HandleOverflow(Info, E, Value, DestType); 1593 return true; 1594 } 1595 1596 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E, 1597 QualType SrcType, QualType DestType, 1598 APFloat &Result) { 1599 APFloat Value = Result; 1600 bool ignored; 1601 if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), 1602 APFloat::rmNearestTiesToEven, &ignored) 1603 & APFloat::opOverflow) 1604 return HandleOverflow(Info, E, Value, DestType); 1605 return true; 1606 } 1607 1608 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E, 1609 QualType DestType, QualType SrcType, 1610 const APSInt &Value) { 1611 unsigned DestWidth = Info.Ctx.getIntWidth(DestType); 1612 APSInt Result = Value; 1613 // Figure out if this is a truncate, extend or noop cast. 1614 // If the input is signed, do a sign extend, noop, or truncate. 1615 Result = Result.extOrTrunc(DestWidth); 1616 Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType()); 1617 return Result; 1618 } 1619 1620 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E, 1621 QualType SrcType, const APSInt &Value, 1622 QualType DestType, APFloat &Result) { 1623 Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1); 1624 if (Result.convertFromAPInt(Value, Value.isSigned(), 1625 APFloat::rmNearestTiesToEven) 1626 & APFloat::opOverflow) 1627 return HandleOverflow(Info, E, Value, DestType); 1628 return true; 1629 } 1630 1631 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E, 1632 APValue &Value, const FieldDecl *FD) { 1633 assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield"); 1634 1635 if (!Value.isInt()) { 1636 // Trying to store a pointer-cast-to-integer into a bitfield. 1637 // FIXME: In this case, we should provide the diagnostic for casting 1638 // a pointer to an integer. 1639 assert(Value.isLValue() && "integral value neither int nor lvalue?"); 1640 Info.Diag(E); 1641 return false; 1642 } 1643 1644 APSInt &Int = Value.getInt(); 1645 unsigned OldBitWidth = Int.getBitWidth(); 1646 unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx); 1647 if (NewBitWidth < OldBitWidth) 1648 Int = Int.trunc(NewBitWidth).extend(OldBitWidth); 1649 return true; 1650 } 1651 1652 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E, 1653 llvm::APInt &Res) { 1654 APValue SVal; 1655 if (!Evaluate(SVal, Info, E)) 1656 return false; 1657 if (SVal.isInt()) { 1658 Res = SVal.getInt(); 1659 return true; 1660 } 1661 if (SVal.isFloat()) { 1662 Res = SVal.getFloat().bitcastToAPInt(); 1663 return true; 1664 } 1665 if (SVal.isVector()) { 1666 QualType VecTy = E->getType(); 1667 unsigned VecSize = Info.Ctx.getTypeSize(VecTy); 1668 QualType EltTy = VecTy->castAs<VectorType>()->getElementType(); 1669 unsigned EltSize = Info.Ctx.getTypeSize(EltTy); 1670 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); 1671 Res = llvm::APInt::getNullValue(VecSize); 1672 for (unsigned i = 0; i < SVal.getVectorLength(); i++) { 1673 APValue &Elt = SVal.getVectorElt(i); 1674 llvm::APInt EltAsInt; 1675 if (Elt.isInt()) { 1676 EltAsInt = Elt.getInt(); 1677 } else if (Elt.isFloat()) { 1678 EltAsInt = Elt.getFloat().bitcastToAPInt(); 1679 } else { 1680 // Don't try to handle vectors of anything other than int or float 1681 // (not sure if it's possible to hit this case). 1682 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr); 1683 return false; 1684 } 1685 unsigned BaseEltSize = EltAsInt.getBitWidth(); 1686 if (BigEndian) 1687 Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize); 1688 else 1689 Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize); 1690 } 1691 return true; 1692 } 1693 // Give up if the input isn't an int, float, or vector. For example, we 1694 // reject "(v4i16)(intptr_t)&a". 1695 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr); 1696 return false; 1697 } 1698 1699 /// Perform the given integer operation, which is known to need at most BitWidth 1700 /// bits, and check for overflow in the original type (if that type was not an 1701 /// unsigned type). 1702 template<typename Operation> 1703 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E, 1704 const APSInt &LHS, const APSInt &RHS, 1705 unsigned BitWidth, Operation Op, 1706 APSInt &Result) { 1707 if (LHS.isUnsigned()) { 1708 Result = Op(LHS, RHS); 1709 return true; 1710 } 1711 1712 APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false); 1713 Result = Value.trunc(LHS.getBitWidth()); 1714 if (Result.extend(BitWidth) != Value) { 1715 if (Info.checkingForOverflow()) 1716 Info.Ctx.getDiagnostics().Report(E->getExprLoc(), 1717 diag::warn_integer_constant_overflow) 1718 << Result.toString(10) << E->getType(); 1719 else 1720 return HandleOverflow(Info, E, Value, E->getType()); 1721 } 1722 return true; 1723 } 1724 1725 /// Perform the given binary integer operation. 1726 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS, 1727 BinaryOperatorKind Opcode, APSInt RHS, 1728 APSInt &Result) { 1729 switch (Opcode) { 1730 default: 1731 Info.Diag(E); 1732 return false; 1733 case BO_Mul: 1734 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2, 1735 std::multiplies<APSInt>(), Result); 1736 case BO_Add: 1737 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, 1738 std::plus<APSInt>(), Result); 1739 case BO_Sub: 1740 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, 1741 std::minus<APSInt>(), Result); 1742 case BO_And: Result = LHS & RHS; return true; 1743 case BO_Xor: Result = LHS ^ RHS; return true; 1744 case BO_Or: Result = LHS | RHS; return true; 1745 case BO_Div: 1746 case BO_Rem: 1747 if (RHS == 0) { 1748 Info.Diag(E, diag::note_expr_divide_by_zero); 1749 return false; 1750 } 1751 Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS); 1752 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports 1753 // this operation and gives the two's complement result. 1754 if (RHS.isNegative() && RHS.isAllOnesValue() && 1755 LHS.isSigned() && LHS.isMinSignedValue()) 1756 return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), 1757 E->getType()); 1758 return true; 1759 case BO_Shl: { 1760 if (Info.getLangOpts().OpenCL) 1761 // OpenCL 6.3j: shift values are effectively % word size of LHS. 1762 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), 1763 static_cast<uint64_t>(LHS.getBitWidth() - 1)), 1764 RHS.isUnsigned()); 1765 else if (RHS.isSigned() && RHS.isNegative()) { 1766 // During constant-folding, a negative shift is an opposite shift. Such 1767 // a shift is not a constant expression. 1768 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; 1769 RHS = -RHS; 1770 goto shift_right; 1771 } 1772 shift_left: 1773 // C++11 [expr.shift]p1: Shift width must be less than the bit width of 1774 // the shifted type. 1775 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); 1776 if (SA != RHS) { 1777 Info.CCEDiag(E, diag::note_constexpr_large_shift) 1778 << RHS << E->getType() << LHS.getBitWidth(); 1779 } else if (LHS.isSigned()) { 1780 // C++11 [expr.shift]p2: A signed left shift must have a non-negative 1781 // operand, and must not overflow the corresponding unsigned type. 1782 if (LHS.isNegative()) 1783 Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS; 1784 else if (LHS.countLeadingZeros() < SA) 1785 Info.CCEDiag(E, diag::note_constexpr_lshift_discards); 1786 } 1787 Result = LHS << SA; 1788 return true; 1789 } 1790 case BO_Shr: { 1791 if (Info.getLangOpts().OpenCL) 1792 // OpenCL 6.3j: shift values are effectively % word size of LHS. 1793 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), 1794 static_cast<uint64_t>(LHS.getBitWidth() - 1)), 1795 RHS.isUnsigned()); 1796 else if (RHS.isSigned() && RHS.isNegative()) { 1797 // During constant-folding, a negative shift is an opposite shift. Such a 1798 // shift is not a constant expression. 1799 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; 1800 RHS = -RHS; 1801 goto shift_left; 1802 } 1803 shift_right: 1804 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the 1805 // shifted type. 1806 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); 1807 if (SA != RHS) 1808 Info.CCEDiag(E, diag::note_constexpr_large_shift) 1809 << RHS << E->getType() << LHS.getBitWidth(); 1810 Result = LHS >> SA; 1811 return true; 1812 } 1813 1814 case BO_LT: Result = LHS < RHS; return true; 1815 case BO_GT: Result = LHS > RHS; return true; 1816 case BO_LE: Result = LHS <= RHS; return true; 1817 case BO_GE: Result = LHS >= RHS; return true; 1818 case BO_EQ: Result = LHS == RHS; return true; 1819 case BO_NE: Result = LHS != RHS; return true; 1820 } 1821 } 1822 1823 /// Perform the given binary floating-point operation, in-place, on LHS. 1824 static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E, 1825 APFloat &LHS, BinaryOperatorKind Opcode, 1826 const APFloat &RHS) { 1827 switch (Opcode) { 1828 default: 1829 Info.Diag(E); 1830 return false; 1831 case BO_Mul: 1832 LHS.multiply(RHS, APFloat::rmNearestTiesToEven); 1833 break; 1834 case BO_Add: 1835 LHS.add(RHS, APFloat::rmNearestTiesToEven); 1836 break; 1837 case BO_Sub: 1838 LHS.subtract(RHS, APFloat::rmNearestTiesToEven); 1839 break; 1840 case BO_Div: 1841 LHS.divide(RHS, APFloat::rmNearestTiesToEven); 1842 break; 1843 } 1844 1845 if (LHS.isInfinity() || LHS.isNaN()) { 1846 Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN(); 1847 return Info.noteUndefinedBehavior(); 1848 } 1849 return true; 1850 } 1851 1852 /// Cast an lvalue referring to a base subobject to a derived class, by 1853 /// truncating the lvalue's path to the given length. 1854 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result, 1855 const RecordDecl *TruncatedType, 1856 unsigned TruncatedElements) { 1857 SubobjectDesignator &D = Result.Designator; 1858 1859 // Check we actually point to a derived class object. 1860 if (TruncatedElements == D.Entries.size()) 1861 return true; 1862 assert(TruncatedElements >= D.MostDerivedPathLength && 1863 "not casting to a derived class"); 1864 if (!Result.checkSubobject(Info, E, CSK_Derived)) 1865 return false; 1866 1867 // Truncate the path to the subobject, and remove any derived-to-base offsets. 1868 const RecordDecl *RD = TruncatedType; 1869 for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) { 1870 if (RD->isInvalidDecl()) return false; 1871 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 1872 const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]); 1873 if (isVirtualBaseClass(D.Entries[I])) 1874 Result.Offset -= Layout.getVBaseClassOffset(Base); 1875 else 1876 Result.Offset -= Layout.getBaseClassOffset(Base); 1877 RD = Base; 1878 } 1879 D.Entries.resize(TruncatedElements); 1880 return true; 1881 } 1882 1883 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj, 1884 const CXXRecordDecl *Derived, 1885 const CXXRecordDecl *Base, 1886 const ASTRecordLayout *RL = nullptr) { 1887 if (!RL) { 1888 if (Derived->isInvalidDecl()) return false; 1889 RL = &Info.Ctx.getASTRecordLayout(Derived); 1890 } 1891 1892 Obj.getLValueOffset() += RL->getBaseClassOffset(Base); 1893 Obj.addDecl(Info, E, Base, /*Virtual*/ false); 1894 return true; 1895 } 1896 1897 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj, 1898 const CXXRecordDecl *DerivedDecl, 1899 const CXXBaseSpecifier *Base) { 1900 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); 1901 1902 if (!Base->isVirtual()) 1903 return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl); 1904 1905 SubobjectDesignator &D = Obj.Designator; 1906 if (D.Invalid) 1907 return false; 1908 1909 // Extract most-derived object and corresponding type. 1910 DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl(); 1911 if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength)) 1912 return false; 1913 1914 // Find the virtual base class. 1915 if (DerivedDecl->isInvalidDecl()) return false; 1916 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl); 1917 Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl); 1918 Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true); 1919 return true; 1920 } 1921 1922 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E, 1923 QualType Type, LValue &Result) { 1924 for (CastExpr::path_const_iterator PathI = E->path_begin(), 1925 PathE = E->path_end(); 1926 PathI != PathE; ++PathI) { 1927 if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(), 1928 *PathI)) 1929 return false; 1930 Type = (*PathI)->getType(); 1931 } 1932 return true; 1933 } 1934 1935 /// Update LVal to refer to the given field, which must be a member of the type 1936 /// currently described by LVal. 1937 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal, 1938 const FieldDecl *FD, 1939 const ASTRecordLayout *RL = nullptr) { 1940 if (!RL) { 1941 if (FD->getParent()->isInvalidDecl()) return false; 1942 RL = &Info.Ctx.getASTRecordLayout(FD->getParent()); 1943 } 1944 1945 unsigned I = FD->getFieldIndex(); 1946 LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)); 1947 LVal.addDecl(Info, E, FD); 1948 return true; 1949 } 1950 1951 /// Update LVal to refer to the given indirect field. 1952 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E, 1953 LValue &LVal, 1954 const IndirectFieldDecl *IFD) { 1955 for (const auto *C : IFD->chain()) 1956 if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C))) 1957 return false; 1958 return true; 1959 } 1960 1961 /// Get the size of the given type in char units. 1962 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc, 1963 QualType Type, CharUnits &Size) { 1964 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc 1965 // extension. 1966 if (Type->isVoidType() || Type->isFunctionType()) { 1967 Size = CharUnits::One(); 1968 return true; 1969 } 1970 1971 if (!Type->isConstantSizeType()) { 1972 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. 1973 // FIXME: Better diagnostic. 1974 Info.Diag(Loc); 1975 return false; 1976 } 1977 1978 Size = Info.Ctx.getTypeSizeInChars(Type); 1979 return true; 1980 } 1981 1982 /// Update a pointer value to model pointer arithmetic. 1983 /// \param Info - Information about the ongoing evaluation. 1984 /// \param E - The expression being evaluated, for diagnostic purposes. 1985 /// \param LVal - The pointer value to be updated. 1986 /// \param EltTy - The pointee type represented by LVal. 1987 /// \param Adjustment - The adjustment, in objects of type EltTy, to add. 1988 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, 1989 LValue &LVal, QualType EltTy, 1990 int64_t Adjustment) { 1991 CharUnits SizeOfPointee; 1992 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee)) 1993 return false; 1994 1995 // Compute the new offset in the appropriate width. 1996 LVal.Offset += Adjustment * SizeOfPointee; 1997 LVal.adjustIndex(Info, E, Adjustment); 1998 return true; 1999 } 2000 2001 /// Update an lvalue to refer to a component of a complex number. 2002 /// \param Info - Information about the ongoing evaluation. 2003 /// \param LVal - The lvalue to be updated. 2004 /// \param EltTy - The complex number's component type. 2005 /// \param Imag - False for the real component, true for the imaginary. 2006 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E, 2007 LValue &LVal, QualType EltTy, 2008 bool Imag) { 2009 if (Imag) { 2010 CharUnits SizeOfComponent; 2011 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent)) 2012 return false; 2013 LVal.Offset += SizeOfComponent; 2014 } 2015 LVal.addComplex(Info, E, EltTy, Imag); 2016 return true; 2017 } 2018 2019 /// Try to evaluate the initializer for a variable declaration. 2020 /// 2021 /// \param Info Information about the ongoing evaluation. 2022 /// \param E An expression to be used when printing diagnostics. 2023 /// \param VD The variable whose initializer should be obtained. 2024 /// \param Frame The frame in which the variable was created. Must be null 2025 /// if this variable is not local to the evaluation. 2026 /// \param Result Filled in with a pointer to the value of the variable. 2027 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E, 2028 const VarDecl *VD, CallStackFrame *Frame, 2029 APValue *&Result) { 2030 // If this is a parameter to an active constexpr function call, perform 2031 // argument substitution. 2032 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) { 2033 // Assume arguments of a potential constant expression are unknown 2034 // constant expressions. 2035 if (Info.checkingPotentialConstantExpression()) 2036 return false; 2037 if (!Frame || !Frame->Arguments) { 2038 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr); 2039 return false; 2040 } 2041 Result = &Frame->Arguments[PVD->getFunctionScopeIndex()]; 2042 return true; 2043 } 2044 2045 // If this is a local variable, dig out its value. 2046 if (Frame) { 2047 Result = Frame->getTemporary(VD); 2048 assert(Result && "missing value for local variable"); 2049 return true; 2050 } 2051 2052 // Dig out the initializer, and use the declaration which it's attached to. 2053 const Expr *Init = VD->getAnyInitializer(VD); 2054 if (!Init || Init->isValueDependent()) { 2055 // If we're checking a potential constant expression, the variable could be 2056 // initialized later. 2057 if (!Info.checkingPotentialConstantExpression()) 2058 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr); 2059 return false; 2060 } 2061 2062 // If we're currently evaluating the initializer of this declaration, use that 2063 // in-flight value. 2064 if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) { 2065 Result = Info.EvaluatingDeclValue; 2066 return true; 2067 } 2068 2069 // Never evaluate the initializer of a weak variable. We can't be sure that 2070 // this is the definition which will be used. 2071 if (VD->isWeak()) { 2072 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr); 2073 return false; 2074 } 2075 2076 // Check that we can fold the initializer. In C++, we will have already done 2077 // this in the cases where it matters for conformance. 2078 SmallVector<PartialDiagnosticAt, 8> Notes; 2079 if (!VD->evaluateValue(Notes)) { 2080 Info.Diag(E, diag::note_constexpr_var_init_non_constant, 2081 Notes.size() + 1) << VD; 2082 Info.Note(VD->getLocation(), diag::note_declared_at); 2083 Info.addNotes(Notes); 2084 return false; 2085 } else if (!VD->checkInitIsICE()) { 2086 Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 2087 Notes.size() + 1) << VD; 2088 Info.Note(VD->getLocation(), diag::note_declared_at); 2089 Info.addNotes(Notes); 2090 } 2091 2092 Result = VD->getEvaluatedValue(); 2093 return true; 2094 } 2095 2096 static bool IsConstNonVolatile(QualType T) { 2097 Qualifiers Quals = T.getQualifiers(); 2098 return Quals.hasConst() && !Quals.hasVolatile(); 2099 } 2100 2101 /// Get the base index of the given base class within an APValue representing 2102 /// the given derived class. 2103 static unsigned getBaseIndex(const CXXRecordDecl *Derived, 2104 const CXXRecordDecl *Base) { 2105 Base = Base->getCanonicalDecl(); 2106 unsigned Index = 0; 2107 for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(), 2108 E = Derived->bases_end(); I != E; ++I, ++Index) { 2109 if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base) 2110 return Index; 2111 } 2112 2113 llvm_unreachable("base class missing from derived class's bases list"); 2114 } 2115 2116 /// Extract the value of a character from a string literal. 2117 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit, 2118 uint64_t Index) { 2119 // FIXME: Support ObjCEncodeExpr, MakeStringConstant 2120 if (auto PE = dyn_cast<PredefinedExpr>(Lit)) 2121 Lit = PE->getFunctionName(); 2122 const StringLiteral *S = cast<StringLiteral>(Lit); 2123 const ConstantArrayType *CAT = 2124 Info.Ctx.getAsConstantArrayType(S->getType()); 2125 assert(CAT && "string literal isn't an array"); 2126 QualType CharType = CAT->getElementType(); 2127 assert(CharType->isIntegerType() && "unexpected character type"); 2128 2129 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(), 2130 CharType->isUnsignedIntegerType()); 2131 if (Index < S->getLength()) 2132 Value = S->getCodeUnit(Index); 2133 return Value; 2134 } 2135 2136 // Expand a string literal into an array of characters. 2137 static void expandStringLiteral(EvalInfo &Info, const Expr *Lit, 2138 APValue &Result) { 2139 const StringLiteral *S = cast<StringLiteral>(Lit); 2140 const ConstantArrayType *CAT = 2141 Info.Ctx.getAsConstantArrayType(S->getType()); 2142 assert(CAT && "string literal isn't an array"); 2143 QualType CharType = CAT->getElementType(); 2144 assert(CharType->isIntegerType() && "unexpected character type"); 2145 2146 unsigned Elts = CAT->getSize().getZExtValue(); 2147 Result = APValue(APValue::UninitArray(), 2148 std::min(S->getLength(), Elts), Elts); 2149 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(), 2150 CharType->isUnsignedIntegerType()); 2151 if (Result.hasArrayFiller()) 2152 Result.getArrayFiller() = APValue(Value); 2153 for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) { 2154 Value = S->getCodeUnit(I); 2155 Result.getArrayInitializedElt(I) = APValue(Value); 2156 } 2157 } 2158 2159 // Expand an array so that it has more than Index filled elements. 2160 static void expandArray(APValue &Array, unsigned Index) { 2161 unsigned Size = Array.getArraySize(); 2162 assert(Index < Size); 2163 2164 // Always at least double the number of elements for which we store a value. 2165 unsigned OldElts = Array.getArrayInitializedElts(); 2166 unsigned NewElts = std::max(Index+1, OldElts * 2); 2167 NewElts = std::min(Size, std::max(NewElts, 8u)); 2168 2169 // Copy the data across. 2170 APValue NewValue(APValue::UninitArray(), NewElts, Size); 2171 for (unsigned I = 0; I != OldElts; ++I) 2172 NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I)); 2173 for (unsigned I = OldElts; I != NewElts; ++I) 2174 NewValue.getArrayInitializedElt(I) = Array.getArrayFiller(); 2175 if (NewValue.hasArrayFiller()) 2176 NewValue.getArrayFiller() = Array.getArrayFiller(); 2177 Array.swap(NewValue); 2178 } 2179 2180 /// Determine whether a type would actually be read by an lvalue-to-rvalue 2181 /// conversion. If it's of class type, we may assume that the copy operation 2182 /// is trivial. Note that this is never true for a union type with fields 2183 /// (because the copy always "reads" the active member) and always true for 2184 /// a non-class type. 2185 static bool isReadByLvalueToRvalueConversion(QualType T) { 2186 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2187 if (!RD || (RD->isUnion() && !RD->field_empty())) 2188 return true; 2189 if (RD->isEmpty()) 2190 return false; 2191 2192 for (auto *Field : RD->fields()) 2193 if (isReadByLvalueToRvalueConversion(Field->getType())) 2194 return true; 2195 2196 for (auto &BaseSpec : RD->bases()) 2197 if (isReadByLvalueToRvalueConversion(BaseSpec.getType())) 2198 return true; 2199 2200 return false; 2201 } 2202 2203 /// Diagnose an attempt to read from any unreadable field within the specified 2204 /// type, which might be a class type. 2205 static bool diagnoseUnreadableFields(EvalInfo &Info, const Expr *E, 2206 QualType T) { 2207 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2208 if (!RD) 2209 return false; 2210 2211 if (!RD->hasMutableFields()) 2212 return false; 2213 2214 for (auto *Field : RD->fields()) { 2215 // If we're actually going to read this field in some way, then it can't 2216 // be mutable. If we're in a union, then assigning to a mutable field 2217 // (even an empty one) can change the active member, so that's not OK. 2218 // FIXME: Add core issue number for the union case. 2219 if (Field->isMutable() && 2220 (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) { 2221 Info.Diag(E, diag::note_constexpr_ltor_mutable, 1) << Field; 2222 Info.Note(Field->getLocation(), diag::note_declared_at); 2223 return true; 2224 } 2225 2226 if (diagnoseUnreadableFields(Info, E, Field->getType())) 2227 return true; 2228 } 2229 2230 for (auto &BaseSpec : RD->bases()) 2231 if (diagnoseUnreadableFields(Info, E, BaseSpec.getType())) 2232 return true; 2233 2234 // All mutable fields were empty, and thus not actually read. 2235 return false; 2236 } 2237 2238 /// Kinds of access we can perform on an object, for diagnostics. 2239 enum AccessKinds { 2240 AK_Read, 2241 AK_Assign, 2242 AK_Increment, 2243 AK_Decrement 2244 }; 2245 2246 namespace { 2247 /// A handle to a complete object (an object that is not a subobject of 2248 /// another object). 2249 struct CompleteObject { 2250 /// The value of the complete object. 2251 APValue *Value; 2252 /// The type of the complete object. 2253 QualType Type; 2254 2255 CompleteObject() : Value(nullptr) {} 2256 CompleteObject(APValue *Value, QualType Type) 2257 : Value(Value), Type(Type) { 2258 assert(Value && "missing value for complete object"); 2259 } 2260 2261 explicit operator bool() const { return Value; } 2262 }; 2263 } // end anonymous namespace 2264 2265 /// Find the designated sub-object of an rvalue. 2266 template<typename SubobjectHandler> 2267 typename SubobjectHandler::result_type 2268 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj, 2269 const SubobjectDesignator &Sub, SubobjectHandler &handler) { 2270 if (Sub.Invalid) 2271 // A diagnostic will have already been produced. 2272 return handler.failed(); 2273 if (Sub.isOnePastTheEnd()) { 2274 if (Info.getLangOpts().CPlusPlus11) 2275 Info.Diag(E, diag::note_constexpr_access_past_end) 2276 << handler.AccessKind; 2277 else 2278 Info.Diag(E); 2279 return handler.failed(); 2280 } 2281 2282 APValue *O = Obj.Value; 2283 QualType ObjType = Obj.Type; 2284 const FieldDecl *LastField = nullptr; 2285 2286 // Walk the designator's path to find the subobject. 2287 for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) { 2288 if (O->isUninit()) { 2289 if (!Info.checkingPotentialConstantExpression()) 2290 Info.Diag(E, diag::note_constexpr_access_uninit) << handler.AccessKind; 2291 return handler.failed(); 2292 } 2293 2294 if (I == N) { 2295 // If we are reading an object of class type, there may still be more 2296 // things we need to check: if there are any mutable subobjects, we 2297 // cannot perform this read. (This only happens when performing a trivial 2298 // copy or assignment.) 2299 if (ObjType->isRecordType() && handler.AccessKind == AK_Read && 2300 diagnoseUnreadableFields(Info, E, ObjType)) 2301 return handler.failed(); 2302 2303 if (!handler.found(*O, ObjType)) 2304 return false; 2305 2306 // If we modified a bit-field, truncate it to the right width. 2307 if (handler.AccessKind != AK_Read && 2308 LastField && LastField->isBitField() && 2309 !truncateBitfieldValue(Info, E, *O, LastField)) 2310 return false; 2311 2312 return true; 2313 } 2314 2315 LastField = nullptr; 2316 if (ObjType->isArrayType()) { 2317 // Next subobject is an array element. 2318 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType); 2319 assert(CAT && "vla in literal type?"); 2320 uint64_t Index = Sub.Entries[I].ArrayIndex; 2321 if (CAT->getSize().ule(Index)) { 2322 // Note, it should not be possible to form a pointer with a valid 2323 // designator which points more than one past the end of the array. 2324 if (Info.getLangOpts().CPlusPlus11) 2325 Info.Diag(E, diag::note_constexpr_access_past_end) 2326 << handler.AccessKind; 2327 else 2328 Info.Diag(E); 2329 return handler.failed(); 2330 } 2331 2332 ObjType = CAT->getElementType(); 2333 2334 // An array object is represented as either an Array APValue or as an 2335 // LValue which refers to a string literal. 2336 if (O->isLValue()) { 2337 assert(I == N - 1 && "extracting subobject of character?"); 2338 assert(!O->hasLValuePath() || O->getLValuePath().empty()); 2339 if (handler.AccessKind != AK_Read) 2340 expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(), 2341 *O); 2342 else 2343 return handler.foundString(*O, ObjType, Index); 2344 } 2345 2346 if (O->getArrayInitializedElts() > Index) 2347 O = &O->getArrayInitializedElt(Index); 2348 else if (handler.AccessKind != AK_Read) { 2349 expandArray(*O, Index); 2350 O = &O->getArrayInitializedElt(Index); 2351 } else 2352 O = &O->getArrayFiller(); 2353 } else if (ObjType->isAnyComplexType()) { 2354 // Next subobject is a complex number. 2355 uint64_t Index = Sub.Entries[I].ArrayIndex; 2356 if (Index > 1) { 2357 if (Info.getLangOpts().CPlusPlus11) 2358 Info.Diag(E, diag::note_constexpr_access_past_end) 2359 << handler.AccessKind; 2360 else 2361 Info.Diag(E); 2362 return handler.failed(); 2363 } 2364 2365 bool WasConstQualified = ObjType.isConstQualified(); 2366 ObjType = ObjType->castAs<ComplexType>()->getElementType(); 2367 if (WasConstQualified) 2368 ObjType.addConst(); 2369 2370 assert(I == N - 1 && "extracting subobject of scalar?"); 2371 if (O->isComplexInt()) { 2372 return handler.found(Index ? O->getComplexIntImag() 2373 : O->getComplexIntReal(), ObjType); 2374 } else { 2375 assert(O->isComplexFloat()); 2376 return handler.found(Index ? O->getComplexFloatImag() 2377 : O->getComplexFloatReal(), ObjType); 2378 } 2379 } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) { 2380 if (Field->isMutable() && handler.AccessKind == AK_Read) { 2381 Info.Diag(E, diag::note_constexpr_ltor_mutable, 1) 2382 << Field; 2383 Info.Note(Field->getLocation(), diag::note_declared_at); 2384 return handler.failed(); 2385 } 2386 2387 // Next subobject is a class, struct or union field. 2388 RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl(); 2389 if (RD->isUnion()) { 2390 const FieldDecl *UnionField = O->getUnionField(); 2391 if (!UnionField || 2392 UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) { 2393 Info.Diag(E, diag::note_constexpr_access_inactive_union_member) 2394 << handler.AccessKind << Field << !UnionField << UnionField; 2395 return handler.failed(); 2396 } 2397 O = &O->getUnionValue(); 2398 } else 2399 O = &O->getStructField(Field->getFieldIndex()); 2400 2401 bool WasConstQualified = ObjType.isConstQualified(); 2402 ObjType = Field->getType(); 2403 if (WasConstQualified && !Field->isMutable()) 2404 ObjType.addConst(); 2405 2406 if (ObjType.isVolatileQualified()) { 2407 if (Info.getLangOpts().CPlusPlus) { 2408 // FIXME: Include a description of the path to the volatile subobject. 2409 Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1) 2410 << handler.AccessKind << 2 << Field; 2411 Info.Note(Field->getLocation(), diag::note_declared_at); 2412 } else { 2413 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr); 2414 } 2415 return handler.failed(); 2416 } 2417 2418 LastField = Field; 2419 } else { 2420 // Next subobject is a base class. 2421 const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl(); 2422 const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]); 2423 O = &O->getStructBase(getBaseIndex(Derived, Base)); 2424 2425 bool WasConstQualified = ObjType.isConstQualified(); 2426 ObjType = Info.Ctx.getRecordType(Base); 2427 if (WasConstQualified) 2428 ObjType.addConst(); 2429 } 2430 } 2431 } 2432 2433 namespace { 2434 struct ExtractSubobjectHandler { 2435 EvalInfo &Info; 2436 APValue &Result; 2437 2438 static const AccessKinds AccessKind = AK_Read; 2439 2440 typedef bool result_type; 2441 bool failed() { return false; } 2442 bool found(APValue &Subobj, QualType SubobjType) { 2443 Result = Subobj; 2444 return true; 2445 } 2446 bool found(APSInt &Value, QualType SubobjType) { 2447 Result = APValue(Value); 2448 return true; 2449 } 2450 bool found(APFloat &Value, QualType SubobjType) { 2451 Result = APValue(Value); 2452 return true; 2453 } 2454 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) { 2455 Result = APValue(extractStringLiteralCharacter( 2456 Info, Subobj.getLValueBase().get<const Expr *>(), Character)); 2457 return true; 2458 } 2459 }; 2460 } // end anonymous namespace 2461 2462 const AccessKinds ExtractSubobjectHandler::AccessKind; 2463 2464 /// Extract the designated sub-object of an rvalue. 2465 static bool extractSubobject(EvalInfo &Info, const Expr *E, 2466 const CompleteObject &Obj, 2467 const SubobjectDesignator &Sub, 2468 APValue &Result) { 2469 ExtractSubobjectHandler Handler = { Info, Result }; 2470 return findSubobject(Info, E, Obj, Sub, Handler); 2471 } 2472 2473 namespace { 2474 struct ModifySubobjectHandler { 2475 EvalInfo &Info; 2476 APValue &NewVal; 2477 const Expr *E; 2478 2479 typedef bool result_type; 2480 static const AccessKinds AccessKind = AK_Assign; 2481 2482 bool checkConst(QualType QT) { 2483 // Assigning to a const object has undefined behavior. 2484 if (QT.isConstQualified()) { 2485 Info.Diag(E, diag::note_constexpr_modify_const_type) << QT; 2486 return false; 2487 } 2488 return true; 2489 } 2490 2491 bool failed() { return false; } 2492 bool found(APValue &Subobj, QualType SubobjType) { 2493 if (!checkConst(SubobjType)) 2494 return false; 2495 // We've been given ownership of NewVal, so just swap it in. 2496 Subobj.swap(NewVal); 2497 return true; 2498 } 2499 bool found(APSInt &Value, QualType SubobjType) { 2500 if (!checkConst(SubobjType)) 2501 return false; 2502 if (!NewVal.isInt()) { 2503 // Maybe trying to write a cast pointer value into a complex? 2504 Info.Diag(E); 2505 return false; 2506 } 2507 Value = NewVal.getInt(); 2508 return true; 2509 } 2510 bool found(APFloat &Value, QualType SubobjType) { 2511 if (!checkConst(SubobjType)) 2512 return false; 2513 Value = NewVal.getFloat(); 2514 return true; 2515 } 2516 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) { 2517 llvm_unreachable("shouldn't encounter string elements with ExpandArrays"); 2518 } 2519 }; 2520 } // end anonymous namespace 2521 2522 const AccessKinds ModifySubobjectHandler::AccessKind; 2523 2524 /// Update the designated sub-object of an rvalue to the given value. 2525 static bool modifySubobject(EvalInfo &Info, const Expr *E, 2526 const CompleteObject &Obj, 2527 const SubobjectDesignator &Sub, 2528 APValue &NewVal) { 2529 ModifySubobjectHandler Handler = { Info, NewVal, E }; 2530 return findSubobject(Info, E, Obj, Sub, Handler); 2531 } 2532 2533 /// Find the position where two subobject designators diverge, or equivalently 2534 /// the length of the common initial subsequence. 2535 static unsigned FindDesignatorMismatch(QualType ObjType, 2536 const SubobjectDesignator &A, 2537 const SubobjectDesignator &B, 2538 bool &WasArrayIndex) { 2539 unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size()); 2540 for (/**/; I != N; ++I) { 2541 if (!ObjType.isNull() && 2542 (ObjType->isArrayType() || ObjType->isAnyComplexType())) { 2543 // Next subobject is an array element. 2544 if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) { 2545 WasArrayIndex = true; 2546 return I; 2547 } 2548 if (ObjType->isAnyComplexType()) 2549 ObjType = ObjType->castAs<ComplexType>()->getElementType(); 2550 else 2551 ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType(); 2552 } else { 2553 if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) { 2554 WasArrayIndex = false; 2555 return I; 2556 } 2557 if (const FieldDecl *FD = getAsField(A.Entries[I])) 2558 // Next subobject is a field. 2559 ObjType = FD->getType(); 2560 else 2561 // Next subobject is a base class. 2562 ObjType = QualType(); 2563 } 2564 } 2565 WasArrayIndex = false; 2566 return I; 2567 } 2568 2569 /// Determine whether the given subobject designators refer to elements of the 2570 /// same array object. 2571 static bool AreElementsOfSameArray(QualType ObjType, 2572 const SubobjectDesignator &A, 2573 const SubobjectDesignator &B) { 2574 if (A.Entries.size() != B.Entries.size()) 2575 return false; 2576 2577 bool IsArray = A.MostDerivedIsArrayElement; 2578 if (IsArray && A.MostDerivedPathLength != A.Entries.size()) 2579 // A is a subobject of the array element. 2580 return false; 2581 2582 // If A (and B) designates an array element, the last entry will be the array 2583 // index. That doesn't have to match. Otherwise, we're in the 'implicit array 2584 // of length 1' case, and the entire path must match. 2585 bool WasArrayIndex; 2586 unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex); 2587 return CommonLength >= A.Entries.size() - IsArray; 2588 } 2589 2590 /// Find the complete object to which an LValue refers. 2591 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, 2592 AccessKinds AK, const LValue &LVal, 2593 QualType LValType) { 2594 if (!LVal.Base) { 2595 Info.Diag(E, diag::note_constexpr_access_null) << AK; 2596 return CompleteObject(); 2597 } 2598 2599 CallStackFrame *Frame = nullptr; 2600 if (LVal.CallIndex) { 2601 Frame = Info.getCallFrame(LVal.CallIndex); 2602 if (!Frame) { 2603 Info.Diag(E, diag::note_constexpr_lifetime_ended, 1) 2604 << AK << LVal.Base.is<const ValueDecl*>(); 2605 NoteLValueLocation(Info, LVal.Base); 2606 return CompleteObject(); 2607 } 2608 } 2609 2610 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type 2611 // is not a constant expression (even if the object is non-volatile). We also 2612 // apply this rule to C++98, in order to conform to the expected 'volatile' 2613 // semantics. 2614 if (LValType.isVolatileQualified()) { 2615 if (Info.getLangOpts().CPlusPlus) 2616 Info.Diag(E, diag::note_constexpr_access_volatile_type) 2617 << AK << LValType; 2618 else 2619 Info.Diag(E); 2620 return CompleteObject(); 2621 } 2622 2623 // Compute value storage location and type of base object. 2624 APValue *BaseVal = nullptr; 2625 QualType BaseType = getType(LVal.Base); 2626 2627 if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) { 2628 // In C++98, const, non-volatile integers initialized with ICEs are ICEs. 2629 // In C++11, constexpr, non-volatile variables initialized with constant 2630 // expressions are constant expressions too. Inside constexpr functions, 2631 // parameters are constant expressions even if they're non-const. 2632 // In C++1y, objects local to a constant expression (those with a Frame) are 2633 // both readable and writable inside constant expressions. 2634 // In C, such things can also be folded, although they are not ICEs. 2635 const VarDecl *VD = dyn_cast<VarDecl>(D); 2636 if (VD) { 2637 if (const VarDecl *VDef = VD->getDefinition(Info.Ctx)) 2638 VD = VDef; 2639 } 2640 if (!VD || VD->isInvalidDecl()) { 2641 Info.Diag(E); 2642 return CompleteObject(); 2643 } 2644 2645 // Accesses of volatile-qualified objects are not allowed. 2646 if (BaseType.isVolatileQualified()) { 2647 if (Info.getLangOpts().CPlusPlus) { 2648 Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1) 2649 << AK << 1 << VD; 2650 Info.Note(VD->getLocation(), diag::note_declared_at); 2651 } else { 2652 Info.Diag(E); 2653 } 2654 return CompleteObject(); 2655 } 2656 2657 // Unless we're looking at a local variable or argument in a constexpr call, 2658 // the variable we're reading must be const. 2659 if (!Frame) { 2660 if (Info.getLangOpts().CPlusPlus14 && 2661 VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) { 2662 // OK, we can read and modify an object if we're in the process of 2663 // evaluating its initializer, because its lifetime began in this 2664 // evaluation. 2665 } else if (AK != AK_Read) { 2666 // All the remaining cases only permit reading. 2667 Info.Diag(E, diag::note_constexpr_modify_global); 2668 return CompleteObject(); 2669 } else if (VD->isConstexpr()) { 2670 // OK, we can read this variable. 2671 } else if (BaseType->isIntegralOrEnumerationType()) { 2672 if (!BaseType.isConstQualified()) { 2673 if (Info.getLangOpts().CPlusPlus) { 2674 Info.Diag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD; 2675 Info.Note(VD->getLocation(), diag::note_declared_at); 2676 } else { 2677 Info.Diag(E); 2678 } 2679 return CompleteObject(); 2680 } 2681 } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) { 2682 // We support folding of const floating-point types, in order to make 2683 // static const data members of such types (supported as an extension) 2684 // more useful. 2685 if (Info.getLangOpts().CPlusPlus11) { 2686 Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD; 2687 Info.Note(VD->getLocation(), diag::note_declared_at); 2688 } else { 2689 Info.CCEDiag(E); 2690 } 2691 } else { 2692 // FIXME: Allow folding of values of any literal type in all languages. 2693 if (Info.getLangOpts().CPlusPlus11) { 2694 Info.Diag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD; 2695 Info.Note(VD->getLocation(), diag::note_declared_at); 2696 } else { 2697 Info.Diag(E); 2698 } 2699 return CompleteObject(); 2700 } 2701 } 2702 2703 if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal)) 2704 return CompleteObject(); 2705 } else { 2706 const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); 2707 2708 if (!Frame) { 2709 if (const MaterializeTemporaryExpr *MTE = 2710 dyn_cast<MaterializeTemporaryExpr>(Base)) { 2711 assert(MTE->getStorageDuration() == SD_Static && 2712 "should have a frame for a non-global materialized temporary"); 2713 2714 // Per C++1y [expr.const]p2: 2715 // an lvalue-to-rvalue conversion [is not allowed unless it applies to] 2716 // - a [...] glvalue of integral or enumeration type that refers to 2717 // a non-volatile const object [...] 2718 // [...] 2719 // - a [...] glvalue of literal type that refers to a non-volatile 2720 // object whose lifetime began within the evaluation of e. 2721 // 2722 // C++11 misses the 'began within the evaluation of e' check and 2723 // instead allows all temporaries, including things like: 2724 // int &&r = 1; 2725 // int x = ++r; 2726 // constexpr int k = r; 2727 // Therefore we use the C++1y rules in C++11 too. 2728 const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>(); 2729 const ValueDecl *ED = MTE->getExtendingDecl(); 2730 if (!(BaseType.isConstQualified() && 2731 BaseType->isIntegralOrEnumerationType()) && 2732 !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) { 2733 Info.Diag(E, diag::note_constexpr_access_static_temporary, 1) << AK; 2734 Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here); 2735 return CompleteObject(); 2736 } 2737 2738 BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false); 2739 assert(BaseVal && "got reference to unevaluated temporary"); 2740 } else { 2741 Info.Diag(E); 2742 return CompleteObject(); 2743 } 2744 } else { 2745 BaseVal = Frame->getTemporary(Base); 2746 assert(BaseVal && "missing value for temporary"); 2747 } 2748 2749 // Volatile temporary objects cannot be accessed in constant expressions. 2750 if (BaseType.isVolatileQualified()) { 2751 if (Info.getLangOpts().CPlusPlus) { 2752 Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1) 2753 << AK << 0; 2754 Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here); 2755 } else { 2756 Info.Diag(E); 2757 } 2758 return CompleteObject(); 2759 } 2760 } 2761 2762 // During the construction of an object, it is not yet 'const'. 2763 // FIXME: We don't set up EvaluatingDecl for local variables or temporaries, 2764 // and this doesn't do quite the right thing for const subobjects of the 2765 // object under construction. 2766 if (LVal.getLValueBase() == Info.EvaluatingDecl) { 2767 BaseType = Info.Ctx.getCanonicalType(BaseType); 2768 BaseType.removeLocalConst(); 2769 } 2770 2771 // In C++1y, we can't safely access any mutable state when we might be 2772 // evaluating after an unmodeled side effect or an evaluation failure. 2773 // 2774 // FIXME: Not all local state is mutable. Allow local constant subobjects 2775 // to be read here (but take care with 'mutable' fields). 2776 if (Frame && Info.getLangOpts().CPlusPlus14 && 2777 (Info.EvalStatus.HasSideEffects || Info.keepEvaluatingAfterFailure())) 2778 return CompleteObject(); 2779 2780 return CompleteObject(BaseVal, BaseType); 2781 } 2782 2783 /// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This 2784 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the 2785 /// glvalue referred to by an entity of reference type. 2786 /// 2787 /// \param Info - Information about the ongoing evaluation. 2788 /// \param Conv - The expression for which we are performing the conversion. 2789 /// Used for diagnostics. 2790 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the 2791 /// case of a non-class type). 2792 /// \param LVal - The glvalue on which we are attempting to perform this action. 2793 /// \param RVal - The produced value will be placed here. 2794 static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, 2795 QualType Type, 2796 const LValue &LVal, APValue &RVal) { 2797 if (LVal.Designator.Invalid) 2798 return false; 2799 2800 // Check for special cases where there is no existing APValue to look at. 2801 const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); 2802 if (Base && !LVal.CallIndex && !Type.isVolatileQualified()) { 2803 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) { 2804 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the 2805 // initializer until now for such expressions. Such an expression can't be 2806 // an ICE in C, so this only matters for fold. 2807 assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?"); 2808 if (Type.isVolatileQualified()) { 2809 Info.Diag(Conv); 2810 return false; 2811 } 2812 APValue Lit; 2813 if (!Evaluate(Lit, Info, CLE->getInitializer())) 2814 return false; 2815 CompleteObject LitObj(&Lit, Base->getType()); 2816 return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal); 2817 } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) { 2818 // We represent a string literal array as an lvalue pointing at the 2819 // corresponding expression, rather than building an array of chars. 2820 // FIXME: Support ObjCEncodeExpr, MakeStringConstant 2821 APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0); 2822 CompleteObject StrObj(&Str, Base->getType()); 2823 return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal); 2824 } 2825 } 2826 2827 CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type); 2828 return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal); 2829 } 2830 2831 /// Perform an assignment of Val to LVal. Takes ownership of Val. 2832 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal, 2833 QualType LValType, APValue &Val) { 2834 if (LVal.Designator.Invalid) 2835 return false; 2836 2837 if (!Info.getLangOpts().CPlusPlus14) { 2838 Info.Diag(E); 2839 return false; 2840 } 2841 2842 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); 2843 return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val); 2844 } 2845 2846 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) { 2847 return T->isSignedIntegerType() && 2848 Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy); 2849 } 2850 2851 namespace { 2852 struct CompoundAssignSubobjectHandler { 2853 EvalInfo &Info; 2854 const Expr *E; 2855 QualType PromotedLHSType; 2856 BinaryOperatorKind Opcode; 2857 const APValue &RHS; 2858 2859 static const AccessKinds AccessKind = AK_Assign; 2860 2861 typedef bool result_type; 2862 2863 bool checkConst(QualType QT) { 2864 // Assigning to a const object has undefined behavior. 2865 if (QT.isConstQualified()) { 2866 Info.Diag(E, diag::note_constexpr_modify_const_type) << QT; 2867 return false; 2868 } 2869 return true; 2870 } 2871 2872 bool failed() { return false; } 2873 bool found(APValue &Subobj, QualType SubobjType) { 2874 switch (Subobj.getKind()) { 2875 case APValue::Int: 2876 return found(Subobj.getInt(), SubobjType); 2877 case APValue::Float: 2878 return found(Subobj.getFloat(), SubobjType); 2879 case APValue::ComplexInt: 2880 case APValue::ComplexFloat: 2881 // FIXME: Implement complex compound assignment. 2882 Info.Diag(E); 2883 return false; 2884 case APValue::LValue: 2885 return foundPointer(Subobj, SubobjType); 2886 default: 2887 // FIXME: can this happen? 2888 Info.Diag(E); 2889 return false; 2890 } 2891 } 2892 bool found(APSInt &Value, QualType SubobjType) { 2893 if (!checkConst(SubobjType)) 2894 return false; 2895 2896 if (!SubobjType->isIntegerType() || !RHS.isInt()) { 2897 // We don't support compound assignment on integer-cast-to-pointer 2898 // values. 2899 Info.Diag(E); 2900 return false; 2901 } 2902 2903 APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType, 2904 SubobjType, Value); 2905 if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS)) 2906 return false; 2907 Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS); 2908 return true; 2909 } 2910 bool found(APFloat &Value, QualType SubobjType) { 2911 return checkConst(SubobjType) && 2912 HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType, 2913 Value) && 2914 handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) && 2915 HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value); 2916 } 2917 bool foundPointer(APValue &Subobj, QualType SubobjType) { 2918 if (!checkConst(SubobjType)) 2919 return false; 2920 2921 QualType PointeeType; 2922 if (const PointerType *PT = SubobjType->getAs<PointerType>()) 2923 PointeeType = PT->getPointeeType(); 2924 2925 if (PointeeType.isNull() || !RHS.isInt() || 2926 (Opcode != BO_Add && Opcode != BO_Sub)) { 2927 Info.Diag(E); 2928 return false; 2929 } 2930 2931 int64_t Offset = getExtValue(RHS.getInt()); 2932 if (Opcode == BO_Sub) 2933 Offset = -Offset; 2934 2935 LValue LVal; 2936 LVal.setFrom(Info.Ctx, Subobj); 2937 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset)) 2938 return false; 2939 LVal.moveInto(Subobj); 2940 return true; 2941 } 2942 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) { 2943 llvm_unreachable("shouldn't encounter string elements here"); 2944 } 2945 }; 2946 } // end anonymous namespace 2947 2948 const AccessKinds CompoundAssignSubobjectHandler::AccessKind; 2949 2950 /// Perform a compound assignment of LVal <op>= RVal. 2951 static bool handleCompoundAssignment( 2952 EvalInfo &Info, const Expr *E, 2953 const LValue &LVal, QualType LValType, QualType PromotedLValType, 2954 BinaryOperatorKind Opcode, const APValue &RVal) { 2955 if (LVal.Designator.Invalid) 2956 return false; 2957 2958 if (!Info.getLangOpts().CPlusPlus14) { 2959 Info.Diag(E); 2960 return false; 2961 } 2962 2963 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); 2964 CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode, 2965 RVal }; 2966 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); 2967 } 2968 2969 namespace { 2970 struct IncDecSubobjectHandler { 2971 EvalInfo &Info; 2972 const Expr *E; 2973 AccessKinds AccessKind; 2974 APValue *Old; 2975 2976 typedef bool result_type; 2977 2978 bool checkConst(QualType QT) { 2979 // Assigning to a const object has undefined behavior. 2980 if (QT.isConstQualified()) { 2981 Info.Diag(E, diag::note_constexpr_modify_const_type) << QT; 2982 return false; 2983 } 2984 return true; 2985 } 2986 2987 bool failed() { return false; } 2988 bool found(APValue &Subobj, QualType SubobjType) { 2989 // Stash the old value. Also clear Old, so we don't clobber it later 2990 // if we're post-incrementing a complex. 2991 if (Old) { 2992 *Old = Subobj; 2993 Old = nullptr; 2994 } 2995 2996 switch (Subobj.getKind()) { 2997 case APValue::Int: 2998 return found(Subobj.getInt(), SubobjType); 2999 case APValue::Float: 3000 return found(Subobj.getFloat(), SubobjType); 3001 case APValue::ComplexInt: 3002 return found(Subobj.getComplexIntReal(), 3003 SubobjType->castAs<ComplexType>()->getElementType() 3004 .withCVRQualifiers(SubobjType.getCVRQualifiers())); 3005 case APValue::ComplexFloat: 3006 return found(Subobj.getComplexFloatReal(), 3007 SubobjType->castAs<ComplexType>()->getElementType() 3008 .withCVRQualifiers(SubobjType.getCVRQualifiers())); 3009 case APValue::LValue: 3010 return foundPointer(Subobj, SubobjType); 3011 default: 3012 // FIXME: can this happen? 3013 Info.Diag(E); 3014 return false; 3015 } 3016 } 3017 bool found(APSInt &Value, QualType SubobjType) { 3018 if (!checkConst(SubobjType)) 3019 return false; 3020 3021 if (!SubobjType->isIntegerType()) { 3022 // We don't support increment / decrement on integer-cast-to-pointer 3023 // values. 3024 Info.Diag(E); 3025 return false; 3026 } 3027 3028 if (Old) *Old = APValue(Value); 3029 3030 // bool arithmetic promotes to int, and the conversion back to bool 3031 // doesn't reduce mod 2^n, so special-case it. 3032 if (SubobjType->isBooleanType()) { 3033 if (AccessKind == AK_Increment) 3034 Value = 1; 3035 else 3036 Value = !Value; 3037 return true; 3038 } 3039 3040 bool WasNegative = Value.isNegative(); 3041 if (AccessKind == AK_Increment) { 3042 ++Value; 3043 3044 if (!WasNegative && Value.isNegative() && 3045 isOverflowingIntegerType(Info.Ctx, SubobjType)) { 3046 APSInt ActualValue(Value, /*IsUnsigned*/true); 3047 return HandleOverflow(Info, E, ActualValue, SubobjType); 3048 } 3049 } else { 3050 --Value; 3051 3052 if (WasNegative && !Value.isNegative() && 3053 isOverflowingIntegerType(Info.Ctx, SubobjType)) { 3054 unsigned BitWidth = Value.getBitWidth(); 3055 APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false); 3056 ActualValue.setBit(BitWidth); 3057 return HandleOverflow(Info, E, ActualValue, SubobjType); 3058 } 3059 } 3060 return true; 3061 } 3062 bool found(APFloat &Value, QualType SubobjType) { 3063 if (!checkConst(SubobjType)) 3064 return false; 3065 3066 if (Old) *Old = APValue(Value); 3067 3068 APFloat One(Value.getSemantics(), 1); 3069 if (AccessKind == AK_Increment) 3070 Value.add(One, APFloat::rmNearestTiesToEven); 3071 else 3072 Value.subtract(One, APFloat::rmNearestTiesToEven); 3073 return true; 3074 } 3075 bool foundPointer(APValue &Subobj, QualType SubobjType) { 3076 if (!checkConst(SubobjType)) 3077 return false; 3078 3079 QualType PointeeType; 3080 if (const PointerType *PT = SubobjType->getAs<PointerType>()) 3081 PointeeType = PT->getPointeeType(); 3082 else { 3083 Info.Diag(E); 3084 return false; 3085 } 3086 3087 LValue LVal; 3088 LVal.setFrom(Info.Ctx, Subobj); 3089 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, 3090 AccessKind == AK_Increment ? 1 : -1)) 3091 return false; 3092 LVal.moveInto(Subobj); 3093 return true; 3094 } 3095 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) { 3096 llvm_unreachable("shouldn't encounter string elements here"); 3097 } 3098 }; 3099 } // end anonymous namespace 3100 3101 /// Perform an increment or decrement on LVal. 3102 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal, 3103 QualType LValType, bool IsIncrement, APValue *Old) { 3104 if (LVal.Designator.Invalid) 3105 return false; 3106 3107 if (!Info.getLangOpts().CPlusPlus14) { 3108 Info.Diag(E); 3109 return false; 3110 } 3111 3112 AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement; 3113 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType); 3114 IncDecSubobjectHandler Handler = { Info, E, AK, Old }; 3115 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); 3116 } 3117 3118 /// Build an lvalue for the object argument of a member function call. 3119 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object, 3120 LValue &This) { 3121 if (Object->getType()->isPointerType()) 3122 return EvaluatePointer(Object, This, Info); 3123 3124 if (Object->isGLValue()) 3125 return EvaluateLValue(Object, This, Info); 3126 3127 if (Object->getType()->isLiteralType(Info.Ctx)) 3128 return EvaluateTemporary(Object, This, Info); 3129 3130 Info.Diag(Object, diag::note_constexpr_nonliteral) << Object->getType(); 3131 return false; 3132 } 3133 3134 /// HandleMemberPointerAccess - Evaluate a member access operation and build an 3135 /// lvalue referring to the result. 3136 /// 3137 /// \param Info - Information about the ongoing evaluation. 3138 /// \param LV - An lvalue referring to the base of the member pointer. 3139 /// \param RHS - The member pointer expression. 3140 /// \param IncludeMember - Specifies whether the member itself is included in 3141 /// the resulting LValue subobject designator. This is not possible when 3142 /// creating a bound member function. 3143 /// \return The field or method declaration to which the member pointer refers, 3144 /// or 0 if evaluation fails. 3145 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, 3146 QualType LVType, 3147 LValue &LV, 3148 const Expr *RHS, 3149 bool IncludeMember = true) { 3150 MemberPtr MemPtr; 3151 if (!EvaluateMemberPointer(RHS, MemPtr, Info)) 3152 return nullptr; 3153 3154 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to 3155 // member value, the behavior is undefined. 3156 if (!MemPtr.getDecl()) { 3157 // FIXME: Specific diagnostic. 3158 Info.Diag(RHS); 3159 return nullptr; 3160 } 3161 3162 if (MemPtr.isDerivedMember()) { 3163 // This is a member of some derived class. Truncate LV appropriately. 3164 // The end of the derived-to-base path for the base object must match the 3165 // derived-to-base path for the member pointer. 3166 if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() > 3167 LV.Designator.Entries.size()) { 3168 Info.Diag(RHS); 3169 return nullptr; 3170 } 3171 unsigned PathLengthToMember = 3172 LV.Designator.Entries.size() - MemPtr.Path.size(); 3173 for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) { 3174 const CXXRecordDecl *LVDecl = getAsBaseClass( 3175 LV.Designator.Entries[PathLengthToMember + I]); 3176 const CXXRecordDecl *MPDecl = MemPtr.Path[I]; 3177 if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) { 3178 Info.Diag(RHS); 3179 return nullptr; 3180 } 3181 } 3182 3183 // Truncate the lvalue to the appropriate derived class. 3184 if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(), 3185 PathLengthToMember)) 3186 return nullptr; 3187 } else if (!MemPtr.Path.empty()) { 3188 // Extend the LValue path with the member pointer's path. 3189 LV.Designator.Entries.reserve(LV.Designator.Entries.size() + 3190 MemPtr.Path.size() + IncludeMember); 3191 3192 // Walk down to the appropriate base class. 3193 if (const PointerType *PT = LVType->getAs<PointerType>()) 3194 LVType = PT->getPointeeType(); 3195 const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl(); 3196 assert(RD && "member pointer access on non-class-type expression"); 3197 // The first class in the path is that of the lvalue. 3198 for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) { 3199 const CXXRecordDecl *Base = MemPtr.Path[N - I - 1]; 3200 if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base)) 3201 return nullptr; 3202 RD = Base; 3203 } 3204 // Finally cast to the class containing the member. 3205 if (!HandleLValueDirectBase(Info, RHS, LV, RD, 3206 MemPtr.getContainingRecord())) 3207 return nullptr; 3208 } 3209 3210 // Add the member. Note that we cannot build bound member functions here. 3211 if (IncludeMember) { 3212 if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) { 3213 if (!HandleLValueMember(Info, RHS, LV, FD)) 3214 return nullptr; 3215 } else if (const IndirectFieldDecl *IFD = 3216 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) { 3217 if (!HandleLValueIndirectMember(Info, RHS, LV, IFD)) 3218 return nullptr; 3219 } else { 3220 llvm_unreachable("can't construct reference to bound member function"); 3221 } 3222 } 3223 3224 return MemPtr.getDecl(); 3225 } 3226 3227 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, 3228 const BinaryOperator *BO, 3229 LValue &LV, 3230 bool IncludeMember = true) { 3231 assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI); 3232 3233 if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) { 3234 if (Info.keepEvaluatingAfterFailure()) { 3235 MemberPtr MemPtr; 3236 EvaluateMemberPointer(BO->getRHS(), MemPtr, Info); 3237 } 3238 return nullptr; 3239 } 3240 3241 return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV, 3242 BO->getRHS(), IncludeMember); 3243 } 3244 3245 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on 3246 /// the provided lvalue, which currently refers to the base object. 3247 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E, 3248 LValue &Result) { 3249 SubobjectDesignator &D = Result.Designator; 3250 if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived)) 3251 return false; 3252 3253 QualType TargetQT = E->getType(); 3254 if (const PointerType *PT = TargetQT->getAs<PointerType>()) 3255 TargetQT = PT->getPointeeType(); 3256 3257 // Check this cast lands within the final derived-to-base subobject path. 3258 if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) { 3259 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) 3260 << D.MostDerivedType << TargetQT; 3261 return false; 3262 } 3263 3264 // Check the type of the final cast. We don't need to check the path, 3265 // since a cast can only be formed if the path is unique. 3266 unsigned NewEntriesSize = D.Entries.size() - E->path_size(); 3267 const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl(); 3268 const CXXRecordDecl *FinalType; 3269 if (NewEntriesSize == D.MostDerivedPathLength) 3270 FinalType = D.MostDerivedType->getAsCXXRecordDecl(); 3271 else 3272 FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]); 3273 if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) { 3274 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) 3275 << D.MostDerivedType << TargetQT; 3276 return false; 3277 } 3278 3279 // Truncate the lvalue to the appropriate derived class. 3280 return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize); 3281 } 3282 3283 namespace { 3284 enum EvalStmtResult { 3285 /// Evaluation failed. 3286 ESR_Failed, 3287 /// Hit a 'return' statement. 3288 ESR_Returned, 3289 /// Evaluation succeeded. 3290 ESR_Succeeded, 3291 /// Hit a 'continue' statement. 3292 ESR_Continue, 3293 /// Hit a 'break' statement. 3294 ESR_Break, 3295 /// Still scanning for 'case' or 'default' statement. 3296 ESR_CaseNotFound 3297 }; 3298 } 3299 3300 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) { 3301 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 3302 // We don't need to evaluate the initializer for a static local. 3303 if (!VD->hasLocalStorage()) 3304 return true; 3305 3306 LValue Result; 3307 Result.set(VD, Info.CurrentCall->Index); 3308 APValue &Val = Info.CurrentCall->createTemporary(VD, true); 3309 3310 const Expr *InitE = VD->getInit(); 3311 if (!InitE) { 3312 Info.Diag(D->getLocStart(), diag::note_constexpr_uninitialized) 3313 << false << VD->getType(); 3314 Val = APValue(); 3315 return false; 3316 } 3317 3318 if (InitE->isValueDependent()) 3319 return false; 3320 3321 if (!EvaluateInPlace(Val, Info, Result, InitE)) { 3322 // Wipe out any partially-computed value, to allow tracking that this 3323 // evaluation failed. 3324 Val = APValue(); 3325 return false; 3326 } 3327 } 3328 3329 return true; 3330 } 3331 3332 /// Evaluate a condition (either a variable declaration or an expression). 3333 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl, 3334 const Expr *Cond, bool &Result) { 3335 FullExpressionRAII Scope(Info); 3336 if (CondDecl && !EvaluateDecl(Info, CondDecl)) 3337 return false; 3338 return EvaluateAsBooleanCondition(Cond, Result, Info); 3339 } 3340 3341 /// \brief A location where the result (returned value) of evaluating a 3342 /// statement should be stored. 3343 struct StmtResult { 3344 /// The APValue that should be filled in with the returned value. 3345 APValue &Value; 3346 /// The location containing the result, if any (used to support RVO). 3347 const LValue *Slot; 3348 }; 3349 3350 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, 3351 const Stmt *S, 3352 const SwitchCase *SC = nullptr); 3353 3354 /// Evaluate the body of a loop, and translate the result as appropriate. 3355 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info, 3356 const Stmt *Body, 3357 const SwitchCase *Case = nullptr) { 3358 BlockScopeRAII Scope(Info); 3359 switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) { 3360 case ESR_Break: 3361 return ESR_Succeeded; 3362 case ESR_Succeeded: 3363 case ESR_Continue: 3364 return ESR_Continue; 3365 case ESR_Failed: 3366 case ESR_Returned: 3367 case ESR_CaseNotFound: 3368 return ESR; 3369 } 3370 llvm_unreachable("Invalid EvalStmtResult!"); 3371 } 3372 3373 /// Evaluate a switch statement. 3374 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info, 3375 const SwitchStmt *SS) { 3376 BlockScopeRAII Scope(Info); 3377 3378 // Evaluate the switch condition. 3379 APSInt Value; 3380 { 3381 FullExpressionRAII Scope(Info); 3382 if (SS->getConditionVariable() && 3383 !EvaluateDecl(Info, SS->getConditionVariable())) 3384 return ESR_Failed; 3385 if (!EvaluateInteger(SS->getCond(), Value, Info)) 3386 return ESR_Failed; 3387 } 3388 3389 // Find the switch case corresponding to the value of the condition. 3390 // FIXME: Cache this lookup. 3391 const SwitchCase *Found = nullptr; 3392 for (const SwitchCase *SC = SS->getSwitchCaseList(); SC; 3393 SC = SC->getNextSwitchCase()) { 3394 if (isa<DefaultStmt>(SC)) { 3395 Found = SC; 3396 continue; 3397 } 3398 3399 const CaseStmt *CS = cast<CaseStmt>(SC); 3400 APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx); 3401 APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx) 3402 : LHS; 3403 if (LHS <= Value && Value <= RHS) { 3404 Found = SC; 3405 break; 3406 } 3407 } 3408 3409 if (!Found) 3410 return ESR_Succeeded; 3411 3412 // Search the switch body for the switch case and evaluate it from there. 3413 switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) { 3414 case ESR_Break: 3415 return ESR_Succeeded; 3416 case ESR_Succeeded: 3417 case ESR_Continue: 3418 case ESR_Failed: 3419 case ESR_Returned: 3420 return ESR; 3421 case ESR_CaseNotFound: 3422 // This can only happen if the switch case is nested within a statement 3423 // expression. We have no intention of supporting that. 3424 Info.Diag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported); 3425 return ESR_Failed; 3426 } 3427 llvm_unreachable("Invalid EvalStmtResult!"); 3428 } 3429 3430 // Evaluate a statement. 3431 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, 3432 const Stmt *S, const SwitchCase *Case) { 3433 if (!Info.nextStep(S)) 3434 return ESR_Failed; 3435 3436 // If we're hunting down a 'case' or 'default' label, recurse through 3437 // substatements until we hit the label. 3438 if (Case) { 3439 // FIXME: We don't start the lifetime of objects whose initialization we 3440 // jump over. However, such objects must be of class type with a trivial 3441 // default constructor that initialize all subobjects, so must be empty, 3442 // so this almost never matters. 3443 switch (S->getStmtClass()) { 3444 case Stmt::CompoundStmtClass: 3445 // FIXME: Precompute which substatement of a compound statement we 3446 // would jump to, and go straight there rather than performing a 3447 // linear scan each time. 3448 case Stmt::LabelStmtClass: 3449 case Stmt::AttributedStmtClass: 3450 case Stmt::DoStmtClass: 3451 break; 3452 3453 case Stmt::CaseStmtClass: 3454 case Stmt::DefaultStmtClass: 3455 if (Case == S) 3456 Case = nullptr; 3457 break; 3458 3459 case Stmt::IfStmtClass: { 3460 // FIXME: Precompute which side of an 'if' we would jump to, and go 3461 // straight there rather than scanning both sides. 3462 const IfStmt *IS = cast<IfStmt>(S); 3463 3464 // Wrap the evaluation in a block scope, in case it's a DeclStmt 3465 // preceded by our switch label. 3466 BlockScopeRAII Scope(Info); 3467 3468 EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case); 3469 if (ESR != ESR_CaseNotFound || !IS->getElse()) 3470 return ESR; 3471 return EvaluateStmt(Result, Info, IS->getElse(), Case); 3472 } 3473 3474 case Stmt::WhileStmtClass: { 3475 EvalStmtResult ESR = 3476 EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case); 3477 if (ESR != ESR_Continue) 3478 return ESR; 3479 break; 3480 } 3481 3482 case Stmt::ForStmtClass: { 3483 const ForStmt *FS = cast<ForStmt>(S); 3484 EvalStmtResult ESR = 3485 EvaluateLoopBody(Result, Info, FS->getBody(), Case); 3486 if (ESR != ESR_Continue) 3487 return ESR; 3488 if (FS->getInc()) { 3489 FullExpressionRAII IncScope(Info); 3490 if (!EvaluateIgnoredValue(Info, FS->getInc())) 3491 return ESR_Failed; 3492 } 3493 break; 3494 } 3495 3496 case Stmt::DeclStmtClass: 3497 // FIXME: If the variable has initialization that can't be jumped over, 3498 // bail out of any immediately-surrounding compound-statement too. 3499 default: 3500 return ESR_CaseNotFound; 3501 } 3502 } 3503 3504 switch (S->getStmtClass()) { 3505 default: 3506 if (const Expr *E = dyn_cast<Expr>(S)) { 3507 // Don't bother evaluating beyond an expression-statement which couldn't 3508 // be evaluated. 3509 FullExpressionRAII Scope(Info); 3510 if (!EvaluateIgnoredValue(Info, E)) 3511 return ESR_Failed; 3512 return ESR_Succeeded; 3513 } 3514 3515 Info.Diag(S->getLocStart()); 3516 return ESR_Failed; 3517 3518 case Stmt::NullStmtClass: 3519 return ESR_Succeeded; 3520 3521 case Stmt::DeclStmtClass: { 3522 const DeclStmt *DS = cast<DeclStmt>(S); 3523 for (const auto *DclIt : DS->decls()) { 3524 // Each declaration initialization is its own full-expression. 3525 // FIXME: This isn't quite right; if we're performing aggregate 3526 // initialization, each braced subexpression is its own full-expression. 3527 FullExpressionRAII Scope(Info); 3528 if (!EvaluateDecl(Info, DclIt) && !Info.keepEvaluatingAfterFailure()) 3529 return ESR_Failed; 3530 } 3531 return ESR_Succeeded; 3532 } 3533 3534 case Stmt::ReturnStmtClass: { 3535 const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue(); 3536 FullExpressionRAII Scope(Info); 3537 if (RetExpr && 3538 !(Result.Slot 3539 ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr) 3540 : Evaluate(Result.Value, Info, RetExpr))) 3541 return ESR_Failed; 3542 return ESR_Returned; 3543 } 3544 3545 case Stmt::CompoundStmtClass: { 3546 BlockScopeRAII Scope(Info); 3547 3548 const CompoundStmt *CS = cast<CompoundStmt>(S); 3549 for (const auto *BI : CS->body()) { 3550 EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case); 3551 if (ESR == ESR_Succeeded) 3552 Case = nullptr; 3553 else if (ESR != ESR_CaseNotFound) 3554 return ESR; 3555 } 3556 return Case ? ESR_CaseNotFound : ESR_Succeeded; 3557 } 3558 3559 case Stmt::IfStmtClass: { 3560 const IfStmt *IS = cast<IfStmt>(S); 3561 3562 // Evaluate the condition, as either a var decl or as an expression. 3563 BlockScopeRAII Scope(Info); 3564 bool Cond; 3565 if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond)) 3566 return ESR_Failed; 3567 3568 if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) { 3569 EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt); 3570 if (ESR != ESR_Succeeded) 3571 return ESR; 3572 } 3573 return ESR_Succeeded; 3574 } 3575 3576 case Stmt::WhileStmtClass: { 3577 const WhileStmt *WS = cast<WhileStmt>(S); 3578 while (true) { 3579 BlockScopeRAII Scope(Info); 3580 bool Continue; 3581 if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(), 3582 Continue)) 3583 return ESR_Failed; 3584 if (!Continue) 3585 break; 3586 3587 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody()); 3588 if (ESR != ESR_Continue) 3589 return ESR; 3590 } 3591 return ESR_Succeeded; 3592 } 3593 3594 case Stmt::DoStmtClass: { 3595 const DoStmt *DS = cast<DoStmt>(S); 3596 bool Continue; 3597 do { 3598 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case); 3599 if (ESR != ESR_Continue) 3600 return ESR; 3601 Case = nullptr; 3602 3603 FullExpressionRAII CondScope(Info); 3604 if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info)) 3605 return ESR_Failed; 3606 } while (Continue); 3607 return ESR_Succeeded; 3608 } 3609 3610 case Stmt::ForStmtClass: { 3611 const ForStmt *FS = cast<ForStmt>(S); 3612 BlockScopeRAII Scope(Info); 3613 if (FS->getInit()) { 3614 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit()); 3615 if (ESR != ESR_Succeeded) 3616 return ESR; 3617 } 3618 while (true) { 3619 BlockScopeRAII Scope(Info); 3620 bool Continue = true; 3621 if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(), 3622 FS->getCond(), Continue)) 3623 return ESR_Failed; 3624 if (!Continue) 3625 break; 3626 3627 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody()); 3628 if (ESR != ESR_Continue) 3629 return ESR; 3630 3631 if (FS->getInc()) { 3632 FullExpressionRAII IncScope(Info); 3633 if (!EvaluateIgnoredValue(Info, FS->getInc())) 3634 return ESR_Failed; 3635 } 3636 } 3637 return ESR_Succeeded; 3638 } 3639 3640 case Stmt::CXXForRangeStmtClass: { 3641 const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S); 3642 BlockScopeRAII Scope(Info); 3643 3644 // Initialize the __range variable. 3645 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt()); 3646 if (ESR != ESR_Succeeded) 3647 return ESR; 3648 3649 // Create the __begin and __end iterators. 3650 ESR = EvaluateStmt(Result, Info, FS->getBeginEndStmt()); 3651 if (ESR != ESR_Succeeded) 3652 return ESR; 3653 3654 while (true) { 3655 // Condition: __begin != __end. 3656 { 3657 bool Continue = true; 3658 FullExpressionRAII CondExpr(Info); 3659 if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info)) 3660 return ESR_Failed; 3661 if (!Continue) 3662 break; 3663 } 3664 3665 // User's variable declaration, initialized by *__begin. 3666 BlockScopeRAII InnerScope(Info); 3667 ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt()); 3668 if (ESR != ESR_Succeeded) 3669 return ESR; 3670 3671 // Loop body. 3672 ESR = EvaluateLoopBody(Result, Info, FS->getBody()); 3673 if (ESR != ESR_Continue) 3674 return ESR; 3675 3676 // Increment: ++__begin 3677 if (!EvaluateIgnoredValue(Info, FS->getInc())) 3678 return ESR_Failed; 3679 } 3680 3681 return ESR_Succeeded; 3682 } 3683 3684 case Stmt::SwitchStmtClass: 3685 return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S)); 3686 3687 case Stmt::ContinueStmtClass: 3688 return ESR_Continue; 3689 3690 case Stmt::BreakStmtClass: 3691 return ESR_Break; 3692 3693 case Stmt::LabelStmtClass: 3694 return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case); 3695 3696 case Stmt::AttributedStmtClass: 3697 // As a general principle, C++11 attributes can be ignored without 3698 // any semantic impact. 3699 return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(), 3700 Case); 3701 3702 case Stmt::CaseStmtClass: 3703 case Stmt::DefaultStmtClass: 3704 return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case); 3705 } 3706 } 3707 3708 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial 3709 /// default constructor. If so, we'll fold it whether or not it's marked as 3710 /// constexpr. If it is marked as constexpr, we will never implicitly define it, 3711 /// so we need special handling. 3712 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc, 3713 const CXXConstructorDecl *CD, 3714 bool IsValueInitialization) { 3715 if (!CD->isTrivial() || !CD->isDefaultConstructor()) 3716 return false; 3717 3718 // Value-initialization does not call a trivial default constructor, so such a 3719 // call is a core constant expression whether or not the constructor is 3720 // constexpr. 3721 if (!CD->isConstexpr() && !IsValueInitialization) { 3722 if (Info.getLangOpts().CPlusPlus11) { 3723 // FIXME: If DiagDecl is an implicitly-declared special member function, 3724 // we should be much more explicit about why it's not constexpr. 3725 Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1) 3726 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD; 3727 Info.Note(CD->getLocation(), diag::note_declared_at); 3728 } else { 3729 Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr); 3730 } 3731 } 3732 return true; 3733 } 3734 3735 /// CheckConstexprFunction - Check that a function can be called in a constant 3736 /// expression. 3737 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc, 3738 const FunctionDecl *Declaration, 3739 const FunctionDecl *Definition) { 3740 // Potential constant expressions can contain calls to declared, but not yet 3741 // defined, constexpr functions. 3742 if (Info.checkingPotentialConstantExpression() && !Definition && 3743 Declaration->isConstexpr()) 3744 return false; 3745 3746 // Bail out with no diagnostic if the function declaration itself is invalid. 3747 // We will have produced a relevant diagnostic while parsing it. 3748 if (Declaration->isInvalidDecl()) 3749 return false; 3750 3751 // Can we evaluate this function call? 3752 if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl()) 3753 return true; 3754 3755 if (Info.getLangOpts().CPlusPlus11) { 3756 const FunctionDecl *DiagDecl = Definition ? Definition : Declaration; 3757 // FIXME: If DiagDecl is an implicitly-declared special member function, we 3758 // should be much more explicit about why it's not constexpr. 3759 Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1) 3760 << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl) 3761 << DiagDecl; 3762 Info.Note(DiagDecl->getLocation(), diag::note_declared_at); 3763 } else { 3764 Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr); 3765 } 3766 return false; 3767 } 3768 3769 /// Determine if a class has any fields that might need to be copied by a 3770 /// trivial copy or move operation. 3771 static bool hasFields(const CXXRecordDecl *RD) { 3772 if (!RD || RD->isEmpty()) 3773 return false; 3774 for (auto *FD : RD->fields()) { 3775 if (FD->isUnnamedBitfield()) 3776 continue; 3777 return true; 3778 } 3779 for (auto &Base : RD->bases()) 3780 if (hasFields(Base.getType()->getAsCXXRecordDecl())) 3781 return true; 3782 return false; 3783 } 3784 3785 namespace { 3786 typedef SmallVector<APValue, 8> ArgVector; 3787 } 3788 3789 /// EvaluateArgs - Evaluate the arguments to a function call. 3790 static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues, 3791 EvalInfo &Info) { 3792 bool Success = true; 3793 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end(); 3794 I != E; ++I) { 3795 if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) { 3796 // If we're checking for a potential constant expression, evaluate all 3797 // initializers even if some of them fail. 3798 if (!Info.keepEvaluatingAfterFailure()) 3799 return false; 3800 Success = false; 3801 } 3802 } 3803 return Success; 3804 } 3805 3806 /// Evaluate a function call. 3807 static bool HandleFunctionCall(SourceLocation CallLoc, 3808 const FunctionDecl *Callee, const LValue *This, 3809 ArrayRef<const Expr*> Args, const Stmt *Body, 3810 EvalInfo &Info, APValue &Result, 3811 const LValue *ResultSlot) { 3812 ArgVector ArgValues(Args.size()); 3813 if (!EvaluateArgs(Args, ArgValues, Info)) 3814 return false; 3815 3816 if (!Info.CheckCallLimit(CallLoc)) 3817 return false; 3818 3819 CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data()); 3820 3821 // For a trivial copy or move assignment, perform an APValue copy. This is 3822 // essential for unions, where the operations performed by the assignment 3823 // operator cannot be represented as statements. 3824 // 3825 // Skip this for non-union classes with no fields; in that case, the defaulted 3826 // copy/move does not actually read the object. 3827 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee); 3828 if (MD && MD->isDefaulted() && 3829 (MD->getParent()->isUnion() || 3830 (MD->isTrivial() && hasFields(MD->getParent())))) { 3831 assert(This && 3832 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())); 3833 LValue RHS; 3834 RHS.setFrom(Info.Ctx, ArgValues[0]); 3835 APValue RHSValue; 3836 if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(), 3837 RHS, RHSValue)) 3838 return false; 3839 if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx), 3840 RHSValue)) 3841 return false; 3842 This->moveInto(Result); 3843 return true; 3844 } 3845 3846 StmtResult Ret = {Result, ResultSlot}; 3847 EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body); 3848 if (ESR == ESR_Succeeded) { 3849 if (Callee->getReturnType()->isVoidType()) 3850 return true; 3851 Info.Diag(Callee->getLocEnd(), diag::note_constexpr_no_return); 3852 } 3853 return ESR == ESR_Returned; 3854 } 3855 3856 /// Evaluate a constructor call. 3857 static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This, 3858 ArrayRef<const Expr*> Args, 3859 const CXXConstructorDecl *Definition, 3860 EvalInfo &Info, APValue &Result) { 3861 ArgVector ArgValues(Args.size()); 3862 if (!EvaluateArgs(Args, ArgValues, Info)) 3863 return false; 3864 3865 if (!Info.CheckCallLimit(CallLoc)) 3866 return false; 3867 3868 const CXXRecordDecl *RD = Definition->getParent(); 3869 if (RD->getNumVBases()) { 3870 Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD; 3871 return false; 3872 } 3873 3874 CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data()); 3875 3876 // FIXME: Creating an APValue just to hold a nonexistent return value is 3877 // wasteful. 3878 APValue RetVal; 3879 StmtResult Ret = {RetVal, nullptr}; 3880 3881 // If it's a delegating constructor, just delegate. 3882 if (Definition->isDelegatingConstructor()) { 3883 CXXConstructorDecl::init_const_iterator I = Definition->init_begin(); 3884 { 3885 FullExpressionRAII InitScope(Info); 3886 if (!EvaluateInPlace(Result, Info, This, (*I)->getInit())) 3887 return false; 3888 } 3889 return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed; 3890 } 3891 3892 // For a trivial copy or move constructor, perform an APValue copy. This is 3893 // essential for unions (or classes with anonymous union members), where the 3894 // operations performed by the constructor cannot be represented by 3895 // ctor-initializers. 3896 // 3897 // Skip this for empty non-union classes; we should not perform an 3898 // lvalue-to-rvalue conversion on them because their copy constructor does not 3899 // actually read them. 3900 if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() && 3901 (Definition->getParent()->isUnion() || 3902 (Definition->isTrivial() && hasFields(Definition->getParent())))) { 3903 LValue RHS; 3904 RHS.setFrom(Info.Ctx, ArgValues[0]); 3905 return handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(), 3906 RHS, Result); 3907 } 3908 3909 // Reserve space for the struct members. 3910 if (!RD->isUnion() && Result.isUninit()) 3911 Result = APValue(APValue::UninitStruct(), RD->getNumBases(), 3912 std::distance(RD->field_begin(), RD->field_end())); 3913 3914 if (RD->isInvalidDecl()) return false; 3915 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 3916 3917 // A scope for temporaries lifetime-extended by reference members. 3918 BlockScopeRAII LifetimeExtendedScope(Info); 3919 3920 bool Success = true; 3921 unsigned BasesSeen = 0; 3922 #ifndef NDEBUG 3923 CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin(); 3924 #endif 3925 for (const auto *I : Definition->inits()) { 3926 LValue Subobject = This; 3927 APValue *Value = &Result; 3928 3929 // Determine the subobject to initialize. 3930 FieldDecl *FD = nullptr; 3931 if (I->isBaseInitializer()) { 3932 QualType BaseType(I->getBaseClass(), 0); 3933 #ifndef NDEBUG 3934 // Non-virtual base classes are initialized in the order in the class 3935 // definition. We have already checked for virtual base classes. 3936 assert(!BaseIt->isVirtual() && "virtual base for literal type"); 3937 assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) && 3938 "base class initializers not in expected order"); 3939 ++BaseIt; 3940 #endif 3941 if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD, 3942 BaseType->getAsCXXRecordDecl(), &Layout)) 3943 return false; 3944 Value = &Result.getStructBase(BasesSeen++); 3945 } else if ((FD = I->getMember())) { 3946 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout)) 3947 return false; 3948 if (RD->isUnion()) { 3949 Result = APValue(FD); 3950 Value = &Result.getUnionValue(); 3951 } else { 3952 Value = &Result.getStructField(FD->getFieldIndex()); 3953 } 3954 } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) { 3955 // Walk the indirect field decl's chain to find the object to initialize, 3956 // and make sure we've initialized every step along it. 3957 for (auto *C : IFD->chain()) { 3958 FD = cast<FieldDecl>(C); 3959 CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent()); 3960 // Switch the union field if it differs. This happens if we had 3961 // preceding zero-initialization, and we're now initializing a union 3962 // subobject other than the first. 3963 // FIXME: In this case, the values of the other subobjects are 3964 // specified, since zero-initialization sets all padding bits to zero. 3965 if (Value->isUninit() || 3966 (Value->isUnion() && Value->getUnionField() != FD)) { 3967 if (CD->isUnion()) 3968 *Value = APValue(FD); 3969 else 3970 *Value = APValue(APValue::UninitStruct(), CD->getNumBases(), 3971 std::distance(CD->field_begin(), CD->field_end())); 3972 } 3973 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD)) 3974 return false; 3975 if (CD->isUnion()) 3976 Value = &Value->getUnionValue(); 3977 else 3978 Value = &Value->getStructField(FD->getFieldIndex()); 3979 } 3980 } else { 3981 llvm_unreachable("unknown base initializer kind"); 3982 } 3983 3984 FullExpressionRAII InitScope(Info); 3985 if (!EvaluateInPlace(*Value, Info, Subobject, I->getInit()) || 3986 (FD && FD->isBitField() && !truncateBitfieldValue(Info, I->getInit(), 3987 *Value, FD))) { 3988 // If we're checking for a potential constant expression, evaluate all 3989 // initializers even if some of them fail. 3990 if (!Info.keepEvaluatingAfterFailure()) 3991 return false; 3992 Success = false; 3993 } 3994 } 3995 3996 return Success && 3997 EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed; 3998 } 3999 4000 //===----------------------------------------------------------------------===// 4001 // Generic Evaluation 4002 //===----------------------------------------------------------------------===// 4003 namespace { 4004 4005 template <class Derived> 4006 class ExprEvaluatorBase 4007 : public ConstStmtVisitor<Derived, bool> { 4008 private: 4009 Derived &getDerived() { return static_cast<Derived&>(*this); } 4010 bool DerivedSuccess(const APValue &V, const Expr *E) { 4011 return getDerived().Success(V, E); 4012 } 4013 bool DerivedZeroInitialization(const Expr *E) { 4014 return getDerived().ZeroInitialization(E); 4015 } 4016 4017 // Check whether a conditional operator with a non-constant condition is a 4018 // potential constant expression. If neither arm is a potential constant 4019 // expression, then the conditional operator is not either. 4020 template<typename ConditionalOperator> 4021 void CheckPotentialConstantConditional(const ConditionalOperator *E) { 4022 assert(Info.checkingPotentialConstantExpression()); 4023 4024 // Speculatively evaluate both arms. 4025 { 4026 SmallVector<PartialDiagnosticAt, 8> Diag; 4027 SpeculativeEvaluationRAII Speculate(Info, &Diag); 4028 4029 StmtVisitorTy::Visit(E->getFalseExpr()); 4030 if (Diag.empty()) 4031 return; 4032 4033 Diag.clear(); 4034 StmtVisitorTy::Visit(E->getTrueExpr()); 4035 if (Diag.empty()) 4036 return; 4037 } 4038 4039 Error(E, diag::note_constexpr_conditional_never_const); 4040 } 4041 4042 4043 template<typename ConditionalOperator> 4044 bool HandleConditionalOperator(const ConditionalOperator *E) { 4045 bool BoolResult; 4046 if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) { 4047 if (Info.checkingPotentialConstantExpression()) 4048 CheckPotentialConstantConditional(E); 4049 return false; 4050 } 4051 4052 Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr(); 4053 return StmtVisitorTy::Visit(EvalExpr); 4054 } 4055 4056 protected: 4057 EvalInfo &Info; 4058 typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy; 4059 typedef ExprEvaluatorBase ExprEvaluatorBaseTy; 4060 4061 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { 4062 return Info.CCEDiag(E, D); 4063 } 4064 4065 bool ZeroInitialization(const Expr *E) { return Error(E); } 4066 4067 public: 4068 ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {} 4069 4070 EvalInfo &getEvalInfo() { return Info; } 4071 4072 /// Report an evaluation error. This should only be called when an error is 4073 /// first discovered. When propagating an error, just return false. 4074 bool Error(const Expr *E, diag::kind D) { 4075 Info.Diag(E, D); 4076 return false; 4077 } 4078 bool Error(const Expr *E) { 4079 return Error(E, diag::note_invalid_subexpr_in_const_expr); 4080 } 4081 4082 bool VisitStmt(const Stmt *) { 4083 llvm_unreachable("Expression evaluator should not be called on stmts"); 4084 } 4085 bool VisitExpr(const Expr *E) { 4086 return Error(E); 4087 } 4088 4089 bool VisitParenExpr(const ParenExpr *E) 4090 { return StmtVisitorTy::Visit(E->getSubExpr()); } 4091 bool VisitUnaryExtension(const UnaryOperator *E) 4092 { return StmtVisitorTy::Visit(E->getSubExpr()); } 4093 bool VisitUnaryPlus(const UnaryOperator *E) 4094 { return StmtVisitorTy::Visit(E->getSubExpr()); } 4095 bool VisitChooseExpr(const ChooseExpr *E) 4096 { return StmtVisitorTy::Visit(E->getChosenSubExpr()); } 4097 bool VisitGenericSelectionExpr(const GenericSelectionExpr *E) 4098 { return StmtVisitorTy::Visit(E->getResultExpr()); } 4099 bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E) 4100 { return StmtVisitorTy::Visit(E->getReplacement()); } 4101 bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) 4102 { return StmtVisitorTy::Visit(E->getExpr()); } 4103 bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { 4104 // The initializer may not have been parsed yet, or might be erroneous. 4105 if (!E->getExpr()) 4106 return Error(E); 4107 return StmtVisitorTy::Visit(E->getExpr()); 4108 } 4109 // We cannot create any objects for which cleanups are required, so there is 4110 // nothing to do here; all cleanups must come from unevaluated subexpressions. 4111 bool VisitExprWithCleanups(const ExprWithCleanups *E) 4112 { return StmtVisitorTy::Visit(E->getSubExpr()); } 4113 4114 bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) { 4115 CCEDiag(E, diag::note_constexpr_invalid_cast) << 0; 4116 return static_cast<Derived*>(this)->VisitCastExpr(E); 4117 } 4118 bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) { 4119 CCEDiag(E, diag::note_constexpr_invalid_cast) << 1; 4120 return static_cast<Derived*>(this)->VisitCastExpr(E); 4121 } 4122 4123 bool VisitBinaryOperator(const BinaryOperator *E) { 4124 switch (E->getOpcode()) { 4125 default: 4126 return Error(E); 4127 4128 case BO_Comma: 4129 VisitIgnoredValue(E->getLHS()); 4130 return StmtVisitorTy::Visit(E->getRHS()); 4131 4132 case BO_PtrMemD: 4133 case BO_PtrMemI: { 4134 LValue Obj; 4135 if (!HandleMemberPointerAccess(Info, E, Obj)) 4136 return false; 4137 APValue Result; 4138 if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result)) 4139 return false; 4140 return DerivedSuccess(Result, E); 4141 } 4142 } 4143 } 4144 4145 bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) { 4146 // Evaluate and cache the common expression. We treat it as a temporary, 4147 // even though it's not quite the same thing. 4148 if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false), 4149 Info, E->getCommon())) 4150 return false; 4151 4152 return HandleConditionalOperator(E); 4153 } 4154 4155 bool VisitConditionalOperator(const ConditionalOperator *E) { 4156 bool IsBcpCall = false; 4157 // If the condition (ignoring parens) is a __builtin_constant_p call, 4158 // the result is a constant expression if it can be folded without 4159 // side-effects. This is an important GNU extension. See GCC PR38377 4160 // for discussion. 4161 if (const CallExpr *CallCE = 4162 dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts())) 4163 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) 4164 IsBcpCall = true; 4165 4166 // Always assume __builtin_constant_p(...) ? ... : ... is a potential 4167 // constant expression; we can't check whether it's potentially foldable. 4168 if (Info.checkingPotentialConstantExpression() && IsBcpCall) 4169 return false; 4170 4171 FoldConstant Fold(Info, IsBcpCall); 4172 if (!HandleConditionalOperator(E)) { 4173 Fold.keepDiagnostics(); 4174 return false; 4175 } 4176 4177 return true; 4178 } 4179 4180 bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) { 4181 if (APValue *Value = Info.CurrentCall->getTemporary(E)) 4182 return DerivedSuccess(*Value, E); 4183 4184 const Expr *Source = E->getSourceExpr(); 4185 if (!Source) 4186 return Error(E); 4187 if (Source == E) { // sanity checking. 4188 assert(0 && "OpaqueValueExpr recursively refers to itself"); 4189 return Error(E); 4190 } 4191 return StmtVisitorTy::Visit(Source); 4192 } 4193 4194 bool VisitCallExpr(const CallExpr *E) { 4195 APValue Result; 4196 if (!handleCallExpr(E, Result, nullptr)) 4197 return false; 4198 return DerivedSuccess(Result, E); 4199 } 4200 4201 bool handleCallExpr(const CallExpr *E, APValue &Result, 4202 const LValue *ResultSlot) { 4203 const Expr *Callee = E->getCallee()->IgnoreParens(); 4204 QualType CalleeType = Callee->getType(); 4205 4206 const FunctionDecl *FD = nullptr; 4207 LValue *This = nullptr, ThisVal; 4208 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs()); 4209 bool HasQualifier = false; 4210 4211 // Extract function decl and 'this' pointer from the callee. 4212 if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) { 4213 const ValueDecl *Member = nullptr; 4214 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) { 4215 // Explicit bound member calls, such as x.f() or p->g(); 4216 if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal)) 4217 return false; 4218 Member = ME->getMemberDecl(); 4219 This = &ThisVal; 4220 HasQualifier = ME->hasQualifier(); 4221 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) { 4222 // Indirect bound member calls ('.*' or '->*'). 4223 Member = HandleMemberPointerAccess(Info, BE, ThisVal, false); 4224 if (!Member) return false; 4225 This = &ThisVal; 4226 } else 4227 return Error(Callee); 4228 4229 FD = dyn_cast<FunctionDecl>(Member); 4230 if (!FD) 4231 return Error(Callee); 4232 } else if (CalleeType->isFunctionPointerType()) { 4233 LValue Call; 4234 if (!EvaluatePointer(Callee, Call, Info)) 4235 return false; 4236 4237 if (!Call.getLValueOffset().isZero()) 4238 return Error(Callee); 4239 FD = dyn_cast_or_null<FunctionDecl>( 4240 Call.getLValueBase().dyn_cast<const ValueDecl*>()); 4241 if (!FD) 4242 return Error(Callee); 4243 4244 // Overloaded operator calls to member functions are represented as normal 4245 // calls with '*this' as the first argument. 4246 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 4247 if (MD && !MD->isStatic()) { 4248 // FIXME: When selecting an implicit conversion for an overloaded 4249 // operator delete, we sometimes try to evaluate calls to conversion 4250 // operators without a 'this' parameter! 4251 if (Args.empty()) 4252 return Error(E); 4253 4254 if (!EvaluateObjectArgument(Info, Args[0], ThisVal)) 4255 return false; 4256 This = &ThisVal; 4257 Args = Args.slice(1); 4258 } 4259 4260 // Don't call function pointers which have been cast to some other type. 4261 if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType())) 4262 return Error(E); 4263 } else 4264 return Error(E); 4265 4266 if (This && !This->checkSubobject(Info, E, CSK_This)) 4267 return false; 4268 4269 // DR1358 allows virtual constexpr functions in some cases. Don't allow 4270 // calls to such functions in constant expressions. 4271 if (This && !HasQualifier && 4272 isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual()) 4273 return Error(E, diag::note_constexpr_virtual_call); 4274 4275 const FunctionDecl *Definition = nullptr; 4276 Stmt *Body = FD->getBody(Definition); 4277 4278 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) || 4279 !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body, Info, 4280 Result, ResultSlot)) 4281 return false; 4282 4283 return true; 4284 } 4285 4286 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 4287 return StmtVisitorTy::Visit(E->getInitializer()); 4288 } 4289 bool VisitInitListExpr(const InitListExpr *E) { 4290 if (E->getNumInits() == 0) 4291 return DerivedZeroInitialization(E); 4292 if (E->getNumInits() == 1) 4293 return StmtVisitorTy::Visit(E->getInit(0)); 4294 return Error(E); 4295 } 4296 bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 4297 return DerivedZeroInitialization(E); 4298 } 4299 bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 4300 return DerivedZeroInitialization(E); 4301 } 4302 bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 4303 return DerivedZeroInitialization(E); 4304 } 4305 4306 /// A member expression where the object is a prvalue is itself a prvalue. 4307 bool VisitMemberExpr(const MemberExpr *E) { 4308 assert(!E->isArrow() && "missing call to bound member function?"); 4309 4310 APValue Val; 4311 if (!Evaluate(Val, Info, E->getBase())) 4312 return false; 4313 4314 QualType BaseTy = E->getBase()->getType(); 4315 4316 const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl()); 4317 if (!FD) return Error(E); 4318 assert(!FD->getType()->isReferenceType() && "prvalue reference?"); 4319 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == 4320 FD->getParent()->getCanonicalDecl() && "record / field mismatch"); 4321 4322 CompleteObject Obj(&Val, BaseTy); 4323 SubobjectDesignator Designator(BaseTy); 4324 Designator.addDeclUnchecked(FD); 4325 4326 APValue Result; 4327 return extractSubobject(Info, E, Obj, Designator, Result) && 4328 DerivedSuccess(Result, E); 4329 } 4330 4331 bool VisitCastExpr(const CastExpr *E) { 4332 switch (E->getCastKind()) { 4333 default: 4334 break; 4335 4336 case CK_AtomicToNonAtomic: { 4337 APValue AtomicVal; 4338 if (!EvaluateAtomic(E->getSubExpr(), AtomicVal, Info)) 4339 return false; 4340 return DerivedSuccess(AtomicVal, E); 4341 } 4342 4343 case CK_NoOp: 4344 case CK_UserDefinedConversion: 4345 return StmtVisitorTy::Visit(E->getSubExpr()); 4346 4347 case CK_LValueToRValue: { 4348 LValue LVal; 4349 if (!EvaluateLValue(E->getSubExpr(), LVal, Info)) 4350 return false; 4351 APValue RVal; 4352 // Note, we use the subexpression's type in order to retain cv-qualifiers. 4353 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), 4354 LVal, RVal)) 4355 return false; 4356 return DerivedSuccess(RVal, E); 4357 } 4358 } 4359 4360 return Error(E); 4361 } 4362 4363 bool VisitUnaryPostInc(const UnaryOperator *UO) { 4364 return VisitUnaryPostIncDec(UO); 4365 } 4366 bool VisitUnaryPostDec(const UnaryOperator *UO) { 4367 return VisitUnaryPostIncDec(UO); 4368 } 4369 bool VisitUnaryPostIncDec(const UnaryOperator *UO) { 4370 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 4371 return Error(UO); 4372 4373 LValue LVal; 4374 if (!EvaluateLValue(UO->getSubExpr(), LVal, Info)) 4375 return false; 4376 APValue RVal; 4377 if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(), 4378 UO->isIncrementOp(), &RVal)) 4379 return false; 4380 return DerivedSuccess(RVal, UO); 4381 } 4382 4383 bool VisitStmtExpr(const StmtExpr *E) { 4384 // We will have checked the full-expressions inside the statement expression 4385 // when they were completed, and don't need to check them again now. 4386 if (Info.checkingForOverflow()) 4387 return Error(E); 4388 4389 BlockScopeRAII Scope(Info); 4390 const CompoundStmt *CS = E->getSubStmt(); 4391 if (CS->body_empty()) 4392 return true; 4393 4394 for (CompoundStmt::const_body_iterator BI = CS->body_begin(), 4395 BE = CS->body_end(); 4396 /**/; ++BI) { 4397 if (BI + 1 == BE) { 4398 const Expr *FinalExpr = dyn_cast<Expr>(*BI); 4399 if (!FinalExpr) { 4400 Info.Diag((*BI)->getLocStart(), 4401 diag::note_constexpr_stmt_expr_unsupported); 4402 return false; 4403 } 4404 return this->Visit(FinalExpr); 4405 } 4406 4407 APValue ReturnValue; 4408 StmtResult Result = { ReturnValue, nullptr }; 4409 EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI); 4410 if (ESR != ESR_Succeeded) { 4411 // FIXME: If the statement-expression terminated due to 'return', 4412 // 'break', or 'continue', it would be nice to propagate that to 4413 // the outer statement evaluation rather than bailing out. 4414 if (ESR != ESR_Failed) 4415 Info.Diag((*BI)->getLocStart(), 4416 diag::note_constexpr_stmt_expr_unsupported); 4417 return false; 4418 } 4419 } 4420 4421 llvm_unreachable("Return from function from the loop above."); 4422 } 4423 4424 /// Visit a value which is evaluated, but whose value is ignored. 4425 void VisitIgnoredValue(const Expr *E) { 4426 EvaluateIgnoredValue(Info, E); 4427 } 4428 }; 4429 4430 } 4431 4432 //===----------------------------------------------------------------------===// 4433 // Common base class for lvalue and temporary evaluation. 4434 //===----------------------------------------------------------------------===// 4435 namespace { 4436 template<class Derived> 4437 class LValueExprEvaluatorBase 4438 : public ExprEvaluatorBase<Derived> { 4439 protected: 4440 LValue &Result; 4441 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy; 4442 typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy; 4443 4444 bool Success(APValue::LValueBase B) { 4445 Result.set(B); 4446 return true; 4447 } 4448 4449 public: 4450 LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) : 4451 ExprEvaluatorBaseTy(Info), Result(Result) {} 4452 4453 bool Success(const APValue &V, const Expr *E) { 4454 Result.setFrom(this->Info.Ctx, V); 4455 return true; 4456 } 4457 4458 bool VisitMemberExpr(const MemberExpr *E) { 4459 // Handle non-static data members. 4460 QualType BaseTy; 4461 bool EvalOK; 4462 if (E->isArrow()) { 4463 EvalOK = EvaluatePointer(E->getBase(), Result, this->Info); 4464 BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType(); 4465 } else if (E->getBase()->isRValue()) { 4466 assert(E->getBase()->getType()->isRecordType()); 4467 EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info); 4468 BaseTy = E->getBase()->getType(); 4469 } else { 4470 EvalOK = this->Visit(E->getBase()); 4471 BaseTy = E->getBase()->getType(); 4472 } 4473 if (!EvalOK) { 4474 if (!this->Info.allowInvalidBaseExpr()) 4475 return false; 4476 Result.setInvalid(E); 4477 return true; 4478 } 4479 4480 const ValueDecl *MD = E->getMemberDecl(); 4481 if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) { 4482 assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() == 4483 FD->getParent()->getCanonicalDecl() && "record / field mismatch"); 4484 (void)BaseTy; 4485 if (!HandleLValueMember(this->Info, E, Result, FD)) 4486 return false; 4487 } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) { 4488 if (!HandleLValueIndirectMember(this->Info, E, Result, IFD)) 4489 return false; 4490 } else 4491 return this->Error(E); 4492 4493 if (MD->getType()->isReferenceType()) { 4494 APValue RefValue; 4495 if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result, 4496 RefValue)) 4497 return false; 4498 return Success(RefValue, E); 4499 } 4500 return true; 4501 } 4502 4503 bool VisitBinaryOperator(const BinaryOperator *E) { 4504 switch (E->getOpcode()) { 4505 default: 4506 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 4507 4508 case BO_PtrMemD: 4509 case BO_PtrMemI: 4510 return HandleMemberPointerAccess(this->Info, E, Result); 4511 } 4512 } 4513 4514 bool VisitCastExpr(const CastExpr *E) { 4515 switch (E->getCastKind()) { 4516 default: 4517 return ExprEvaluatorBaseTy::VisitCastExpr(E); 4518 4519 case CK_DerivedToBase: 4520 case CK_UncheckedDerivedToBase: 4521 if (!this->Visit(E->getSubExpr())) 4522 return false; 4523 4524 // Now figure out the necessary offset to add to the base LV to get from 4525 // the derived class to the base class. 4526 return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(), 4527 Result); 4528 } 4529 } 4530 }; 4531 } 4532 4533 //===----------------------------------------------------------------------===// 4534 // LValue Evaluation 4535 // 4536 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11), 4537 // function designators (in C), decl references to void objects (in C), and 4538 // temporaries (if building with -Wno-address-of-temporary). 4539 // 4540 // LValue evaluation produces values comprising a base expression of one of the 4541 // following types: 4542 // - Declarations 4543 // * VarDecl 4544 // * FunctionDecl 4545 // - Literals 4546 // * CompoundLiteralExpr in C 4547 // * StringLiteral 4548 // * CXXTypeidExpr 4549 // * PredefinedExpr 4550 // * ObjCStringLiteralExpr 4551 // * ObjCEncodeExpr 4552 // * AddrLabelExpr 4553 // * BlockExpr 4554 // * CallExpr for a MakeStringConstant builtin 4555 // - Locals and temporaries 4556 // * MaterializeTemporaryExpr 4557 // * Any Expr, with a CallIndex indicating the function in which the temporary 4558 // was evaluated, for cases where the MaterializeTemporaryExpr is missing 4559 // from the AST (FIXME). 4560 // * A MaterializeTemporaryExpr that has static storage duration, with no 4561 // CallIndex, for a lifetime-extended temporary. 4562 // plus an offset in bytes. 4563 //===----------------------------------------------------------------------===// 4564 namespace { 4565 class LValueExprEvaluator 4566 : public LValueExprEvaluatorBase<LValueExprEvaluator> { 4567 public: 4568 LValueExprEvaluator(EvalInfo &Info, LValue &Result) : 4569 LValueExprEvaluatorBaseTy(Info, Result) {} 4570 4571 bool VisitVarDecl(const Expr *E, const VarDecl *VD); 4572 bool VisitUnaryPreIncDec(const UnaryOperator *UO); 4573 4574 bool VisitDeclRefExpr(const DeclRefExpr *E); 4575 bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); } 4576 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 4577 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 4578 bool VisitMemberExpr(const MemberExpr *E); 4579 bool VisitStringLiteral(const StringLiteral *E) { return Success(E); } 4580 bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); } 4581 bool VisitCXXTypeidExpr(const CXXTypeidExpr *E); 4582 bool VisitCXXUuidofExpr(const CXXUuidofExpr *E); 4583 bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E); 4584 bool VisitUnaryDeref(const UnaryOperator *E); 4585 bool VisitUnaryReal(const UnaryOperator *E); 4586 bool VisitUnaryImag(const UnaryOperator *E); 4587 bool VisitUnaryPreInc(const UnaryOperator *UO) { 4588 return VisitUnaryPreIncDec(UO); 4589 } 4590 bool VisitUnaryPreDec(const UnaryOperator *UO) { 4591 return VisitUnaryPreIncDec(UO); 4592 } 4593 bool VisitBinAssign(const BinaryOperator *BO); 4594 bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO); 4595 4596 bool VisitCastExpr(const CastExpr *E) { 4597 switch (E->getCastKind()) { 4598 default: 4599 return LValueExprEvaluatorBaseTy::VisitCastExpr(E); 4600 4601 case CK_LValueBitCast: 4602 this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; 4603 if (!Visit(E->getSubExpr())) 4604 return false; 4605 Result.Designator.setInvalid(); 4606 return true; 4607 4608 case CK_BaseToDerived: 4609 if (!Visit(E->getSubExpr())) 4610 return false; 4611 return HandleBaseToDerivedCast(Info, E, Result); 4612 } 4613 } 4614 }; 4615 } // end anonymous namespace 4616 4617 /// Evaluate an expression as an lvalue. This can be legitimately called on 4618 /// expressions which are not glvalues, in three cases: 4619 /// * function designators in C, and 4620 /// * "extern void" objects 4621 /// * @selector() expressions in Objective-C 4622 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info) { 4623 assert(E->isGLValue() || E->getType()->isFunctionType() || 4624 E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E)); 4625 return LValueExprEvaluator(Info, Result).Visit(E); 4626 } 4627 4628 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) { 4629 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl())) 4630 return Success(FD); 4631 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) 4632 return VisitVarDecl(E, VD); 4633 return Error(E); 4634 } 4635 4636 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) { 4637 CallStackFrame *Frame = nullptr; 4638 if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1) 4639 Frame = Info.CurrentCall; 4640 4641 if (!VD->getType()->isReferenceType()) { 4642 if (Frame) { 4643 Result.set(VD, Frame->Index); 4644 return true; 4645 } 4646 return Success(VD); 4647 } 4648 4649 APValue *V; 4650 if (!evaluateVarDeclInit(Info, E, VD, Frame, V)) 4651 return false; 4652 if (V->isUninit()) { 4653 if (!Info.checkingPotentialConstantExpression()) 4654 Info.Diag(E, diag::note_constexpr_use_uninit_reference); 4655 return false; 4656 } 4657 return Success(*V, E); 4658 } 4659 4660 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr( 4661 const MaterializeTemporaryExpr *E) { 4662 // Walk through the expression to find the materialized temporary itself. 4663 SmallVector<const Expr *, 2> CommaLHSs; 4664 SmallVector<SubobjectAdjustment, 2> Adjustments; 4665 const Expr *Inner = E->GetTemporaryExpr()-> 4666 skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 4667 4668 // If we passed any comma operators, evaluate their LHSs. 4669 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I) 4670 if (!EvaluateIgnoredValue(Info, CommaLHSs[I])) 4671 return false; 4672 4673 // A materialized temporary with static storage duration can appear within the 4674 // result of a constant expression evaluation, so we need to preserve its 4675 // value for use outside this evaluation. 4676 APValue *Value; 4677 if (E->getStorageDuration() == SD_Static) { 4678 Value = Info.Ctx.getMaterializedTemporaryValue(E, true); 4679 *Value = APValue(); 4680 Result.set(E); 4681 } else { 4682 Value = &Info.CurrentCall-> 4683 createTemporary(E, E->getStorageDuration() == SD_Automatic); 4684 Result.set(E, Info.CurrentCall->Index); 4685 } 4686 4687 QualType Type = Inner->getType(); 4688 4689 // Materialize the temporary itself. 4690 if (!EvaluateInPlace(*Value, Info, Result, Inner) || 4691 (E->getStorageDuration() == SD_Static && 4692 !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) { 4693 *Value = APValue(); 4694 return false; 4695 } 4696 4697 // Adjust our lvalue to refer to the desired subobject. 4698 for (unsigned I = Adjustments.size(); I != 0; /**/) { 4699 --I; 4700 switch (Adjustments[I].Kind) { 4701 case SubobjectAdjustment::DerivedToBaseAdjustment: 4702 if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath, 4703 Type, Result)) 4704 return false; 4705 Type = Adjustments[I].DerivedToBase.BasePath->getType(); 4706 break; 4707 4708 case SubobjectAdjustment::FieldAdjustment: 4709 if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field)) 4710 return false; 4711 Type = Adjustments[I].Field->getType(); 4712 break; 4713 4714 case SubobjectAdjustment::MemberPointerAdjustment: 4715 if (!HandleMemberPointerAccess(this->Info, Type, Result, 4716 Adjustments[I].Ptr.RHS)) 4717 return false; 4718 Type = Adjustments[I].Ptr.MPT->getPointeeType(); 4719 break; 4720 } 4721 } 4722 4723 return true; 4724 } 4725 4726 bool 4727 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 4728 assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?"); 4729 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can 4730 // only see this when folding in C, so there's no standard to follow here. 4731 return Success(E); 4732 } 4733 4734 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 4735 if (!E->isPotentiallyEvaluated()) 4736 return Success(E); 4737 4738 Info.Diag(E, diag::note_constexpr_typeid_polymorphic) 4739 << E->getExprOperand()->getType() 4740 << E->getExprOperand()->getSourceRange(); 4741 return false; 4742 } 4743 4744 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 4745 return Success(E); 4746 } 4747 4748 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) { 4749 // Handle static data members. 4750 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) { 4751 VisitIgnoredValue(E->getBase()); 4752 return VisitVarDecl(E, VD); 4753 } 4754 4755 // Handle static member functions. 4756 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) { 4757 if (MD->isStatic()) { 4758 VisitIgnoredValue(E->getBase()); 4759 return Success(MD); 4760 } 4761 } 4762 4763 // Handle non-static data members. 4764 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E); 4765 } 4766 4767 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { 4768 // FIXME: Deal with vectors as array subscript bases. 4769 if (E->getBase()->getType()->isVectorType()) 4770 return Error(E); 4771 4772 if (!EvaluatePointer(E->getBase(), Result, Info)) 4773 return false; 4774 4775 APSInt Index; 4776 if (!EvaluateInteger(E->getIdx(), Index, Info)) 4777 return false; 4778 4779 return HandleLValueArrayAdjustment(Info, E, Result, E->getType(), 4780 getExtValue(Index)); 4781 } 4782 4783 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) { 4784 return EvaluatePointer(E->getSubExpr(), Result, Info); 4785 } 4786 4787 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { 4788 if (!Visit(E->getSubExpr())) 4789 return false; 4790 // __real is a no-op on scalar lvalues. 4791 if (E->getSubExpr()->getType()->isAnyComplexType()) 4792 HandleLValueComplexElement(Info, E, Result, E->getType(), false); 4793 return true; 4794 } 4795 4796 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 4797 assert(E->getSubExpr()->getType()->isAnyComplexType() && 4798 "lvalue __imag__ on scalar?"); 4799 if (!Visit(E->getSubExpr())) 4800 return false; 4801 HandleLValueComplexElement(Info, E, Result, E->getType(), true); 4802 return true; 4803 } 4804 4805 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) { 4806 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 4807 return Error(UO); 4808 4809 if (!this->Visit(UO->getSubExpr())) 4810 return false; 4811 4812 return handleIncDec( 4813 this->Info, UO, Result, UO->getSubExpr()->getType(), 4814 UO->isIncrementOp(), nullptr); 4815 } 4816 4817 bool LValueExprEvaluator::VisitCompoundAssignOperator( 4818 const CompoundAssignOperator *CAO) { 4819 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 4820 return Error(CAO); 4821 4822 APValue RHS; 4823 4824 // The overall lvalue result is the result of evaluating the LHS. 4825 if (!this->Visit(CAO->getLHS())) { 4826 if (Info.keepEvaluatingAfterFailure()) 4827 Evaluate(RHS, this->Info, CAO->getRHS()); 4828 return false; 4829 } 4830 4831 if (!Evaluate(RHS, this->Info, CAO->getRHS())) 4832 return false; 4833 4834 return handleCompoundAssignment( 4835 this->Info, CAO, 4836 Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(), 4837 CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS); 4838 } 4839 4840 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) { 4841 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) 4842 return Error(E); 4843 4844 APValue NewVal; 4845 4846 if (!this->Visit(E->getLHS())) { 4847 if (Info.keepEvaluatingAfterFailure()) 4848 Evaluate(NewVal, this->Info, E->getRHS()); 4849 return false; 4850 } 4851 4852 if (!Evaluate(NewVal, this->Info, E->getRHS())) 4853 return false; 4854 4855 return handleAssignment(this->Info, E, Result, E->getLHS()->getType(), 4856 NewVal); 4857 } 4858 4859 //===----------------------------------------------------------------------===// 4860 // Pointer Evaluation 4861 //===----------------------------------------------------------------------===// 4862 4863 namespace { 4864 class PointerExprEvaluator 4865 : public ExprEvaluatorBase<PointerExprEvaluator> { 4866 LValue &Result; 4867 4868 bool Success(const Expr *E) { 4869 Result.set(E); 4870 return true; 4871 } 4872 public: 4873 4874 PointerExprEvaluator(EvalInfo &info, LValue &Result) 4875 : ExprEvaluatorBaseTy(info), Result(Result) {} 4876 4877 bool Success(const APValue &V, const Expr *E) { 4878 Result.setFrom(Info.Ctx, V); 4879 return true; 4880 } 4881 bool ZeroInitialization(const Expr *E) { 4882 return Success((Expr*)nullptr); 4883 } 4884 4885 bool VisitBinaryOperator(const BinaryOperator *E); 4886 bool VisitCastExpr(const CastExpr* E); 4887 bool VisitUnaryAddrOf(const UnaryOperator *E); 4888 bool VisitObjCStringLiteral(const ObjCStringLiteral *E) 4889 { return Success(E); } 4890 bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) 4891 { return Success(E); } 4892 bool VisitAddrLabelExpr(const AddrLabelExpr *E) 4893 { return Success(E); } 4894 bool VisitCallExpr(const CallExpr *E); 4895 bool VisitBlockExpr(const BlockExpr *E) { 4896 if (!E->getBlockDecl()->hasCaptures()) 4897 return Success(E); 4898 return Error(E); 4899 } 4900 bool VisitCXXThisExpr(const CXXThisExpr *E) { 4901 // Can't look at 'this' when checking a potential constant expression. 4902 if (Info.checkingPotentialConstantExpression()) 4903 return false; 4904 if (!Info.CurrentCall->This) { 4905 if (Info.getLangOpts().CPlusPlus11) 4906 Info.Diag(E, diag::note_constexpr_this) << E->isImplicit(); 4907 else 4908 Info.Diag(E); 4909 return false; 4910 } 4911 Result = *Info.CurrentCall->This; 4912 return true; 4913 } 4914 4915 // FIXME: Missing: @protocol, @selector 4916 }; 4917 } // end anonymous namespace 4918 4919 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) { 4920 assert(E->isRValue() && E->getType()->hasPointerRepresentation()); 4921 return PointerExprEvaluator(Info, Result).Visit(E); 4922 } 4923 4924 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 4925 if (E->getOpcode() != BO_Add && 4926 E->getOpcode() != BO_Sub) 4927 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 4928 4929 const Expr *PExp = E->getLHS(); 4930 const Expr *IExp = E->getRHS(); 4931 if (IExp->getType()->isPointerType()) 4932 std::swap(PExp, IExp); 4933 4934 bool EvalPtrOK = EvaluatePointer(PExp, Result, Info); 4935 if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure()) 4936 return false; 4937 4938 llvm::APSInt Offset; 4939 if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK) 4940 return false; 4941 4942 int64_t AdditionalOffset = getExtValue(Offset); 4943 if (E->getOpcode() == BO_Sub) 4944 AdditionalOffset = -AdditionalOffset; 4945 4946 QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType(); 4947 return HandleLValueArrayAdjustment(Info, E, Result, Pointee, 4948 AdditionalOffset); 4949 } 4950 4951 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { 4952 return EvaluateLValue(E->getSubExpr(), Result, Info); 4953 } 4954 4955 bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) { 4956 const Expr* SubExpr = E->getSubExpr(); 4957 4958 switch (E->getCastKind()) { 4959 default: 4960 break; 4961 4962 case CK_BitCast: 4963 case CK_CPointerToObjCPointerCast: 4964 case CK_BlockPointerToObjCPointerCast: 4965 case CK_AnyPointerToBlockPointerCast: 4966 case CK_AddressSpaceConversion: 4967 if (!Visit(SubExpr)) 4968 return false; 4969 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are 4970 // permitted in constant expressions in C++11. Bitcasts from cv void* are 4971 // also static_casts, but we disallow them as a resolution to DR1312. 4972 if (!E->getType()->isVoidPointerType()) { 4973 Result.Designator.setInvalid(); 4974 if (SubExpr->getType()->isVoidPointerType()) 4975 CCEDiag(E, diag::note_constexpr_invalid_cast) 4976 << 3 << SubExpr->getType(); 4977 else 4978 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; 4979 } 4980 return true; 4981 4982 case CK_DerivedToBase: 4983 case CK_UncheckedDerivedToBase: 4984 if (!EvaluatePointer(E->getSubExpr(), Result, Info)) 4985 return false; 4986 if (!Result.Base && Result.Offset.isZero()) 4987 return true; 4988 4989 // Now figure out the necessary offset to add to the base LV to get from 4990 // the derived class to the base class. 4991 return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()-> 4992 castAs<PointerType>()->getPointeeType(), 4993 Result); 4994 4995 case CK_BaseToDerived: 4996 if (!Visit(E->getSubExpr())) 4997 return false; 4998 if (!Result.Base && Result.Offset.isZero()) 4999 return true; 5000 return HandleBaseToDerivedCast(Info, E, Result); 5001 5002 case CK_NullToPointer: 5003 VisitIgnoredValue(E->getSubExpr()); 5004 return ZeroInitialization(E); 5005 5006 case CK_IntegralToPointer: { 5007 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; 5008 5009 APValue Value; 5010 if (!EvaluateIntegerOrLValue(SubExpr, Value, Info)) 5011 break; 5012 5013 if (Value.isInt()) { 5014 unsigned Size = Info.Ctx.getTypeSize(E->getType()); 5015 uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue(); 5016 Result.Base = (Expr*)nullptr; 5017 Result.InvalidBase = false; 5018 Result.Offset = CharUnits::fromQuantity(N); 5019 Result.CallIndex = 0; 5020 Result.Designator.setInvalid(); 5021 return true; 5022 } else { 5023 // Cast is of an lvalue, no need to change value. 5024 Result.setFrom(Info.Ctx, Value); 5025 return true; 5026 } 5027 } 5028 case CK_ArrayToPointerDecay: 5029 if (SubExpr->isGLValue()) { 5030 if (!EvaluateLValue(SubExpr, Result, Info)) 5031 return false; 5032 } else { 5033 Result.set(SubExpr, Info.CurrentCall->Index); 5034 if (!EvaluateInPlace(Info.CurrentCall->createTemporary(SubExpr, false), 5035 Info, Result, SubExpr)) 5036 return false; 5037 } 5038 // The result is a pointer to the first element of the array. 5039 if (const ConstantArrayType *CAT 5040 = Info.Ctx.getAsConstantArrayType(SubExpr->getType())) 5041 Result.addArray(Info, E, CAT); 5042 else 5043 Result.Designator.setInvalid(); 5044 return true; 5045 5046 case CK_FunctionToPointerDecay: 5047 return EvaluateLValue(SubExpr, Result, Info); 5048 } 5049 5050 return ExprEvaluatorBaseTy::VisitCastExpr(E); 5051 } 5052 5053 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T) { 5054 // C++ [expr.alignof]p3: 5055 // When alignof is applied to a reference type, the result is the 5056 // alignment of the referenced type. 5057 if (const ReferenceType *Ref = T->getAs<ReferenceType>()) 5058 T = Ref->getPointeeType(); 5059 5060 // __alignof is defined to return the preferred alignment. 5061 return Info.Ctx.toCharUnitsFromBits( 5062 Info.Ctx.getPreferredTypeAlign(T.getTypePtr())); 5063 } 5064 5065 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E) { 5066 E = E->IgnoreParens(); 5067 5068 // The kinds of expressions that we have special-case logic here for 5069 // should be kept up to date with the special checks for those 5070 // expressions in Sema. 5071 5072 // alignof decl is always accepted, even if it doesn't make sense: we default 5073 // to 1 in those cases. 5074 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 5075 return Info.Ctx.getDeclAlign(DRE->getDecl(), 5076 /*RefAsPointee*/true); 5077 5078 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) 5079 return Info.Ctx.getDeclAlign(ME->getMemberDecl(), 5080 /*RefAsPointee*/true); 5081 5082 return GetAlignOfType(Info, E->getType()); 5083 } 5084 5085 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) { 5086 if (IsStringLiteralCall(E)) 5087 return Success(E); 5088 5089 switch (E->getBuiltinCallee()) { 5090 case Builtin::BI__builtin_addressof: 5091 return EvaluateLValue(E->getArg(0), Result, Info); 5092 case Builtin::BI__builtin_assume_aligned: { 5093 // We need to be very careful here because: if the pointer does not have the 5094 // asserted alignment, then the behavior is undefined, and undefined 5095 // behavior is non-constant. 5096 if (!EvaluatePointer(E->getArg(0), Result, Info)) 5097 return false; 5098 5099 LValue OffsetResult(Result); 5100 APSInt Alignment; 5101 if (!EvaluateInteger(E->getArg(1), Alignment, Info)) 5102 return false; 5103 CharUnits Align = CharUnits::fromQuantity(getExtValue(Alignment)); 5104 5105 if (E->getNumArgs() > 2) { 5106 APSInt Offset; 5107 if (!EvaluateInteger(E->getArg(2), Offset, Info)) 5108 return false; 5109 5110 int64_t AdditionalOffset = -getExtValue(Offset); 5111 OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset); 5112 } 5113 5114 // If there is a base object, then it must have the correct alignment. 5115 if (OffsetResult.Base) { 5116 CharUnits BaseAlignment; 5117 if (const ValueDecl *VD = 5118 OffsetResult.Base.dyn_cast<const ValueDecl*>()) { 5119 BaseAlignment = Info.Ctx.getDeclAlign(VD); 5120 } else { 5121 BaseAlignment = 5122 GetAlignOfExpr(Info, OffsetResult.Base.get<const Expr*>()); 5123 } 5124 5125 if (BaseAlignment < Align) { 5126 Result.Designator.setInvalid(); 5127 // FIXME: Quantities here cast to integers because the plural modifier 5128 // does not work on APSInts yet. 5129 CCEDiag(E->getArg(0), 5130 diag::note_constexpr_baa_insufficient_alignment) << 0 5131 << (int) BaseAlignment.getQuantity() 5132 << (unsigned) getExtValue(Alignment); 5133 return false; 5134 } 5135 } 5136 5137 // The offset must also have the correct alignment. 5138 if (OffsetResult.Offset.RoundUpToAlignment(Align) != OffsetResult.Offset) { 5139 Result.Designator.setInvalid(); 5140 APSInt Offset(64, false); 5141 Offset = OffsetResult.Offset.getQuantity(); 5142 5143 if (OffsetResult.Base) 5144 CCEDiag(E->getArg(0), 5145 diag::note_constexpr_baa_insufficient_alignment) << 1 5146 << (int) getExtValue(Offset) << (unsigned) getExtValue(Alignment); 5147 else 5148 CCEDiag(E->getArg(0), 5149 diag::note_constexpr_baa_value_insufficient_alignment) 5150 << Offset << (unsigned) getExtValue(Alignment); 5151 5152 return false; 5153 } 5154 5155 return true; 5156 } 5157 default: 5158 return ExprEvaluatorBaseTy::VisitCallExpr(E); 5159 } 5160 } 5161 5162 //===----------------------------------------------------------------------===// 5163 // Member Pointer Evaluation 5164 //===----------------------------------------------------------------------===// 5165 5166 namespace { 5167 class MemberPointerExprEvaluator 5168 : public ExprEvaluatorBase<MemberPointerExprEvaluator> { 5169 MemberPtr &Result; 5170 5171 bool Success(const ValueDecl *D) { 5172 Result = MemberPtr(D); 5173 return true; 5174 } 5175 public: 5176 5177 MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result) 5178 : ExprEvaluatorBaseTy(Info), Result(Result) {} 5179 5180 bool Success(const APValue &V, const Expr *E) { 5181 Result.setFrom(V); 5182 return true; 5183 } 5184 bool ZeroInitialization(const Expr *E) { 5185 return Success((const ValueDecl*)nullptr); 5186 } 5187 5188 bool VisitCastExpr(const CastExpr *E); 5189 bool VisitUnaryAddrOf(const UnaryOperator *E); 5190 }; 5191 } // end anonymous namespace 5192 5193 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, 5194 EvalInfo &Info) { 5195 assert(E->isRValue() && E->getType()->isMemberPointerType()); 5196 return MemberPointerExprEvaluator(Info, Result).Visit(E); 5197 } 5198 5199 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) { 5200 switch (E->getCastKind()) { 5201 default: 5202 return ExprEvaluatorBaseTy::VisitCastExpr(E); 5203 5204 case CK_NullToMemberPointer: 5205 VisitIgnoredValue(E->getSubExpr()); 5206 return ZeroInitialization(E); 5207 5208 case CK_BaseToDerivedMemberPointer: { 5209 if (!Visit(E->getSubExpr())) 5210 return false; 5211 if (E->path_empty()) 5212 return true; 5213 // Base-to-derived member pointer casts store the path in derived-to-base 5214 // order, so iterate backwards. The CXXBaseSpecifier also provides us with 5215 // the wrong end of the derived->base arc, so stagger the path by one class. 5216 typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter; 5217 for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin()); 5218 PathI != PathE; ++PathI) { 5219 assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); 5220 const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl(); 5221 if (!Result.castToDerived(Derived)) 5222 return Error(E); 5223 } 5224 const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass(); 5225 if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl())) 5226 return Error(E); 5227 return true; 5228 } 5229 5230 case CK_DerivedToBaseMemberPointer: 5231 if (!Visit(E->getSubExpr())) 5232 return false; 5233 for (CastExpr::path_const_iterator PathI = E->path_begin(), 5234 PathE = E->path_end(); PathI != PathE; ++PathI) { 5235 assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); 5236 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); 5237 if (!Result.castToBase(Base)) 5238 return Error(E); 5239 } 5240 return true; 5241 } 5242 } 5243 5244 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { 5245 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a 5246 // member can be formed. 5247 return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl()); 5248 } 5249 5250 //===----------------------------------------------------------------------===// 5251 // Record Evaluation 5252 //===----------------------------------------------------------------------===// 5253 5254 namespace { 5255 class RecordExprEvaluator 5256 : public ExprEvaluatorBase<RecordExprEvaluator> { 5257 const LValue &This; 5258 APValue &Result; 5259 public: 5260 5261 RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result) 5262 : ExprEvaluatorBaseTy(info), This(This), Result(Result) {} 5263 5264 bool Success(const APValue &V, const Expr *E) { 5265 Result = V; 5266 return true; 5267 } 5268 bool ZeroInitialization(const Expr *E); 5269 5270 bool VisitCallExpr(const CallExpr *E) { 5271 return handleCallExpr(E, Result, &This); 5272 } 5273 bool VisitCastExpr(const CastExpr *E); 5274 bool VisitInitListExpr(const InitListExpr *E); 5275 bool VisitCXXConstructExpr(const CXXConstructExpr *E); 5276 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E); 5277 }; 5278 } 5279 5280 /// Perform zero-initialization on an object of non-union class type. 5281 /// C++11 [dcl.init]p5: 5282 /// To zero-initialize an object or reference of type T means: 5283 /// [...] 5284 /// -- if T is a (possibly cv-qualified) non-union class type, 5285 /// each non-static data member and each base-class subobject is 5286 /// zero-initialized 5287 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E, 5288 const RecordDecl *RD, 5289 const LValue &This, APValue &Result) { 5290 assert(!RD->isUnion() && "Expected non-union class type"); 5291 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 5292 Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0, 5293 std::distance(RD->field_begin(), RD->field_end())); 5294 5295 if (RD->isInvalidDecl()) return false; 5296 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 5297 5298 if (CD) { 5299 unsigned Index = 0; 5300 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(), 5301 End = CD->bases_end(); I != End; ++I, ++Index) { 5302 const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl(); 5303 LValue Subobject = This; 5304 if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout)) 5305 return false; 5306 if (!HandleClassZeroInitialization(Info, E, Base, Subobject, 5307 Result.getStructBase(Index))) 5308 return false; 5309 } 5310 } 5311 5312 for (const auto *I : RD->fields()) { 5313 // -- if T is a reference type, no initialization is performed. 5314 if (I->getType()->isReferenceType()) 5315 continue; 5316 5317 LValue Subobject = This; 5318 if (!HandleLValueMember(Info, E, Subobject, I, &Layout)) 5319 return false; 5320 5321 ImplicitValueInitExpr VIE(I->getType()); 5322 if (!EvaluateInPlace( 5323 Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE)) 5324 return false; 5325 } 5326 5327 return true; 5328 } 5329 5330 bool RecordExprEvaluator::ZeroInitialization(const Expr *E) { 5331 const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl(); 5332 if (RD->isInvalidDecl()) return false; 5333 if (RD->isUnion()) { 5334 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the 5335 // object's first non-static named data member is zero-initialized 5336 RecordDecl::field_iterator I = RD->field_begin(); 5337 if (I == RD->field_end()) { 5338 Result = APValue((const FieldDecl*)nullptr); 5339 return true; 5340 } 5341 5342 LValue Subobject = This; 5343 if (!HandleLValueMember(Info, E, Subobject, *I)) 5344 return false; 5345 Result = APValue(*I); 5346 ImplicitValueInitExpr VIE(I->getType()); 5347 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE); 5348 } 5349 5350 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) { 5351 Info.Diag(E, diag::note_constexpr_virtual_base) << RD; 5352 return false; 5353 } 5354 5355 return HandleClassZeroInitialization(Info, E, RD, This, Result); 5356 } 5357 5358 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) { 5359 switch (E->getCastKind()) { 5360 default: 5361 return ExprEvaluatorBaseTy::VisitCastExpr(E); 5362 5363 case CK_ConstructorConversion: 5364 return Visit(E->getSubExpr()); 5365 5366 case CK_DerivedToBase: 5367 case CK_UncheckedDerivedToBase: { 5368 APValue DerivedObject; 5369 if (!Evaluate(DerivedObject, Info, E->getSubExpr())) 5370 return false; 5371 if (!DerivedObject.isStruct()) 5372 return Error(E->getSubExpr()); 5373 5374 // Derived-to-base rvalue conversion: just slice off the derived part. 5375 APValue *Value = &DerivedObject; 5376 const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl(); 5377 for (CastExpr::path_const_iterator PathI = E->path_begin(), 5378 PathE = E->path_end(); PathI != PathE; ++PathI) { 5379 assert(!(*PathI)->isVirtual() && "record rvalue with virtual base"); 5380 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); 5381 Value = &Value->getStructBase(getBaseIndex(RD, Base)); 5382 RD = Base; 5383 } 5384 Result = *Value; 5385 return true; 5386 } 5387 } 5388 } 5389 5390 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) { 5391 const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl(); 5392 if (RD->isInvalidDecl()) return false; 5393 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); 5394 5395 if (RD->isUnion()) { 5396 const FieldDecl *Field = E->getInitializedFieldInUnion(); 5397 Result = APValue(Field); 5398 if (!Field) 5399 return true; 5400 5401 // If the initializer list for a union does not contain any elements, the 5402 // first element of the union is value-initialized. 5403 // FIXME: The element should be initialized from an initializer list. 5404 // Is this difference ever observable for initializer lists which 5405 // we don't build? 5406 ImplicitValueInitExpr VIE(Field->getType()); 5407 const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE; 5408 5409 LValue Subobject = This; 5410 if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout)) 5411 return false; 5412 5413 // Temporarily override This, in case there's a CXXDefaultInitExpr in here. 5414 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, 5415 isa<CXXDefaultInitExpr>(InitExpr)); 5416 5417 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr); 5418 } 5419 5420 assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) && 5421 "initializer list for class with base classes"); 5422 Result = APValue(APValue::UninitStruct(), 0, 5423 std::distance(RD->field_begin(), RD->field_end())); 5424 unsigned ElementNo = 0; 5425 bool Success = true; 5426 for (const auto *Field : RD->fields()) { 5427 // Anonymous bit-fields are not considered members of the class for 5428 // purposes of aggregate initialization. 5429 if (Field->isUnnamedBitfield()) 5430 continue; 5431 5432 LValue Subobject = This; 5433 5434 bool HaveInit = ElementNo < E->getNumInits(); 5435 5436 // FIXME: Diagnostics here should point to the end of the initializer 5437 // list, not the start. 5438 if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E, 5439 Subobject, Field, &Layout)) 5440 return false; 5441 5442 // Perform an implicit value-initialization for members beyond the end of 5443 // the initializer list. 5444 ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType()); 5445 const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE; 5446 5447 // Temporarily override This, in case there's a CXXDefaultInitExpr in here. 5448 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, 5449 isa<CXXDefaultInitExpr>(Init)); 5450 5451 APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); 5452 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) || 5453 (Field->isBitField() && !truncateBitfieldValue(Info, Init, 5454 FieldVal, Field))) { 5455 if (!Info.keepEvaluatingAfterFailure()) 5456 return false; 5457 Success = false; 5458 } 5459 } 5460 5461 return Success; 5462 } 5463 5464 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) { 5465 const CXXConstructorDecl *FD = E->getConstructor(); 5466 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false; 5467 5468 bool ZeroInit = E->requiresZeroInitialization(); 5469 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) { 5470 // If we've already performed zero-initialization, we're already done. 5471 if (!Result.isUninit()) 5472 return true; 5473 5474 // We can get here in two different ways: 5475 // 1) We're performing value-initialization, and should zero-initialize 5476 // the object, or 5477 // 2) We're performing default-initialization of an object with a trivial 5478 // constexpr default constructor, in which case we should start the 5479 // lifetimes of all the base subobjects (there can be no data member 5480 // subobjects in this case) per [basic.life]p1. 5481 // Either way, ZeroInitialization is appropriate. 5482 return ZeroInitialization(E); 5483 } 5484 5485 const FunctionDecl *Definition = nullptr; 5486 FD->getBody(Definition); 5487 5488 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition)) 5489 return false; 5490 5491 // Avoid materializing a temporary for an elidable copy/move constructor. 5492 if (E->isElidable() && !ZeroInit) 5493 if (const MaterializeTemporaryExpr *ME 5494 = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0))) 5495 return Visit(ME->GetTemporaryExpr()); 5496 5497 if (ZeroInit && !ZeroInitialization(E)) 5498 return false; 5499 5500 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs()); 5501 return HandleConstructorCall(E->getExprLoc(), This, Args, 5502 cast<CXXConstructorDecl>(Definition), Info, 5503 Result); 5504 } 5505 5506 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr( 5507 const CXXStdInitializerListExpr *E) { 5508 const ConstantArrayType *ArrayType = 5509 Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 5510 5511 LValue Array; 5512 if (!EvaluateLValue(E->getSubExpr(), Array, Info)) 5513 return false; 5514 5515 // Get a pointer to the first element of the array. 5516 Array.addArray(Info, E, ArrayType); 5517 5518 // FIXME: Perform the checks on the field types in SemaInit. 5519 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 5520 RecordDecl::field_iterator Field = Record->field_begin(); 5521 if (Field == Record->field_end()) 5522 return Error(E); 5523 5524 // Start pointer. 5525 if (!Field->getType()->isPointerType() || 5526 !Info.Ctx.hasSameType(Field->getType()->getPointeeType(), 5527 ArrayType->getElementType())) 5528 return Error(E); 5529 5530 // FIXME: What if the initializer_list type has base classes, etc? 5531 Result = APValue(APValue::UninitStruct(), 0, 2); 5532 Array.moveInto(Result.getStructField(0)); 5533 5534 if (++Field == Record->field_end()) 5535 return Error(E); 5536 5537 if (Field->getType()->isPointerType() && 5538 Info.Ctx.hasSameType(Field->getType()->getPointeeType(), 5539 ArrayType->getElementType())) { 5540 // End pointer. 5541 if (!HandleLValueArrayAdjustment(Info, E, Array, 5542 ArrayType->getElementType(), 5543 ArrayType->getSize().getZExtValue())) 5544 return false; 5545 Array.moveInto(Result.getStructField(1)); 5546 } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType())) 5547 // Length. 5548 Result.getStructField(1) = APValue(APSInt(ArrayType->getSize())); 5549 else 5550 return Error(E); 5551 5552 if (++Field != Record->field_end()) 5553 return Error(E); 5554 5555 return true; 5556 } 5557 5558 static bool EvaluateRecord(const Expr *E, const LValue &This, 5559 APValue &Result, EvalInfo &Info) { 5560 assert(E->isRValue() && E->getType()->isRecordType() && 5561 "can't evaluate expression as a record rvalue"); 5562 return RecordExprEvaluator(Info, This, Result).Visit(E); 5563 } 5564 5565 //===----------------------------------------------------------------------===// 5566 // Temporary Evaluation 5567 // 5568 // Temporaries are represented in the AST as rvalues, but generally behave like 5569 // lvalues. The full-object of which the temporary is a subobject is implicitly 5570 // materialized so that a reference can bind to it. 5571 //===----------------------------------------------------------------------===// 5572 namespace { 5573 class TemporaryExprEvaluator 5574 : public LValueExprEvaluatorBase<TemporaryExprEvaluator> { 5575 public: 5576 TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) : 5577 LValueExprEvaluatorBaseTy(Info, Result) {} 5578 5579 /// Visit an expression which constructs the value of this temporary. 5580 bool VisitConstructExpr(const Expr *E) { 5581 Result.set(E, Info.CurrentCall->Index); 5582 return EvaluateInPlace(Info.CurrentCall->createTemporary(E, false), 5583 Info, Result, E); 5584 } 5585 5586 bool VisitCastExpr(const CastExpr *E) { 5587 switch (E->getCastKind()) { 5588 default: 5589 return LValueExprEvaluatorBaseTy::VisitCastExpr(E); 5590 5591 case CK_ConstructorConversion: 5592 return VisitConstructExpr(E->getSubExpr()); 5593 } 5594 } 5595 bool VisitInitListExpr(const InitListExpr *E) { 5596 return VisitConstructExpr(E); 5597 } 5598 bool VisitCXXConstructExpr(const CXXConstructExpr *E) { 5599 return VisitConstructExpr(E); 5600 } 5601 bool VisitCallExpr(const CallExpr *E) { 5602 return VisitConstructExpr(E); 5603 } 5604 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) { 5605 return VisitConstructExpr(E); 5606 } 5607 }; 5608 } // end anonymous namespace 5609 5610 /// Evaluate an expression of record type as a temporary. 5611 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) { 5612 assert(E->isRValue() && E->getType()->isRecordType()); 5613 return TemporaryExprEvaluator(Info, Result).Visit(E); 5614 } 5615 5616 //===----------------------------------------------------------------------===// 5617 // Vector Evaluation 5618 //===----------------------------------------------------------------------===// 5619 5620 namespace { 5621 class VectorExprEvaluator 5622 : public ExprEvaluatorBase<VectorExprEvaluator> { 5623 APValue &Result; 5624 public: 5625 5626 VectorExprEvaluator(EvalInfo &info, APValue &Result) 5627 : ExprEvaluatorBaseTy(info), Result(Result) {} 5628 5629 bool Success(ArrayRef<APValue> V, const Expr *E) { 5630 assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements()); 5631 // FIXME: remove this APValue copy. 5632 Result = APValue(V.data(), V.size()); 5633 return true; 5634 } 5635 bool Success(const APValue &V, const Expr *E) { 5636 assert(V.isVector()); 5637 Result = V; 5638 return true; 5639 } 5640 bool ZeroInitialization(const Expr *E); 5641 5642 bool VisitUnaryReal(const UnaryOperator *E) 5643 { return Visit(E->getSubExpr()); } 5644 bool VisitCastExpr(const CastExpr* E); 5645 bool VisitInitListExpr(const InitListExpr *E); 5646 bool VisitUnaryImag(const UnaryOperator *E); 5647 // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div, 5648 // binary comparisons, binary and/or/xor, 5649 // shufflevector, ExtVectorElementExpr 5650 }; 5651 } // end anonymous namespace 5652 5653 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) { 5654 assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue"); 5655 return VectorExprEvaluator(Info, Result).Visit(E); 5656 } 5657 5658 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) { 5659 const VectorType *VTy = E->getType()->castAs<VectorType>(); 5660 unsigned NElts = VTy->getNumElements(); 5661 5662 const Expr *SE = E->getSubExpr(); 5663 QualType SETy = SE->getType(); 5664 5665 switch (E->getCastKind()) { 5666 case CK_VectorSplat: { 5667 APValue Val = APValue(); 5668 if (SETy->isIntegerType()) { 5669 APSInt IntResult; 5670 if (!EvaluateInteger(SE, IntResult, Info)) 5671 return false; 5672 Val = APValue(std::move(IntResult)); 5673 } else if (SETy->isRealFloatingType()) { 5674 APFloat FloatResult(0.0); 5675 if (!EvaluateFloat(SE, FloatResult, Info)) 5676 return false; 5677 Val = APValue(std::move(FloatResult)); 5678 } else { 5679 return Error(E); 5680 } 5681 5682 // Splat and create vector APValue. 5683 SmallVector<APValue, 4> Elts(NElts, Val); 5684 return Success(Elts, E); 5685 } 5686 case CK_BitCast: { 5687 // Evaluate the operand into an APInt we can extract from. 5688 llvm::APInt SValInt; 5689 if (!EvalAndBitcastToAPInt(Info, SE, SValInt)) 5690 return false; 5691 // Extract the elements 5692 QualType EltTy = VTy->getElementType(); 5693 unsigned EltSize = Info.Ctx.getTypeSize(EltTy); 5694 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); 5695 SmallVector<APValue, 4> Elts; 5696 if (EltTy->isRealFloatingType()) { 5697 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy); 5698 unsigned FloatEltSize = EltSize; 5699 if (&Sem == &APFloat::x87DoubleExtended) 5700 FloatEltSize = 80; 5701 for (unsigned i = 0; i < NElts; i++) { 5702 llvm::APInt Elt; 5703 if (BigEndian) 5704 Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize); 5705 else 5706 Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize); 5707 Elts.push_back(APValue(APFloat(Sem, Elt))); 5708 } 5709 } else if (EltTy->isIntegerType()) { 5710 for (unsigned i = 0; i < NElts; i++) { 5711 llvm::APInt Elt; 5712 if (BigEndian) 5713 Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize); 5714 else 5715 Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize); 5716 Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType()))); 5717 } 5718 } else { 5719 return Error(E); 5720 } 5721 return Success(Elts, E); 5722 } 5723 default: 5724 return ExprEvaluatorBaseTy::VisitCastExpr(E); 5725 } 5726 } 5727 5728 bool 5729 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) { 5730 const VectorType *VT = E->getType()->castAs<VectorType>(); 5731 unsigned NumInits = E->getNumInits(); 5732 unsigned NumElements = VT->getNumElements(); 5733 5734 QualType EltTy = VT->getElementType(); 5735 SmallVector<APValue, 4> Elements; 5736 5737 // The number of initializers can be less than the number of 5738 // vector elements. For OpenCL, this can be due to nested vector 5739 // initialization. For GCC compatibility, missing trailing elements 5740 // should be initialized with zeroes. 5741 unsigned CountInits = 0, CountElts = 0; 5742 while (CountElts < NumElements) { 5743 // Handle nested vector initialization. 5744 if (CountInits < NumInits 5745 && E->getInit(CountInits)->getType()->isVectorType()) { 5746 APValue v; 5747 if (!EvaluateVector(E->getInit(CountInits), v, Info)) 5748 return Error(E); 5749 unsigned vlen = v.getVectorLength(); 5750 for (unsigned j = 0; j < vlen; j++) 5751 Elements.push_back(v.getVectorElt(j)); 5752 CountElts += vlen; 5753 } else if (EltTy->isIntegerType()) { 5754 llvm::APSInt sInt(32); 5755 if (CountInits < NumInits) { 5756 if (!EvaluateInteger(E->getInit(CountInits), sInt, Info)) 5757 return false; 5758 } else // trailing integer zero. 5759 sInt = Info.Ctx.MakeIntValue(0, EltTy); 5760 Elements.push_back(APValue(sInt)); 5761 CountElts++; 5762 } else { 5763 llvm::APFloat f(0.0); 5764 if (CountInits < NumInits) { 5765 if (!EvaluateFloat(E->getInit(CountInits), f, Info)) 5766 return false; 5767 } else // trailing float zero. 5768 f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)); 5769 Elements.push_back(APValue(f)); 5770 CountElts++; 5771 } 5772 CountInits++; 5773 } 5774 return Success(Elements, E); 5775 } 5776 5777 bool 5778 VectorExprEvaluator::ZeroInitialization(const Expr *E) { 5779 const VectorType *VT = E->getType()->getAs<VectorType>(); 5780 QualType EltTy = VT->getElementType(); 5781 APValue ZeroElement; 5782 if (EltTy->isIntegerType()) 5783 ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy)); 5784 else 5785 ZeroElement = 5786 APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy))); 5787 5788 SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement); 5789 return Success(Elements, E); 5790 } 5791 5792 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 5793 VisitIgnoredValue(E->getSubExpr()); 5794 return ZeroInitialization(E); 5795 } 5796 5797 //===----------------------------------------------------------------------===// 5798 // Array Evaluation 5799 //===----------------------------------------------------------------------===// 5800 5801 namespace { 5802 class ArrayExprEvaluator 5803 : public ExprEvaluatorBase<ArrayExprEvaluator> { 5804 const LValue &This; 5805 APValue &Result; 5806 public: 5807 5808 ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result) 5809 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} 5810 5811 bool Success(const APValue &V, const Expr *E) { 5812 assert((V.isArray() || V.isLValue()) && 5813 "expected array or string literal"); 5814 Result = V; 5815 return true; 5816 } 5817 5818 bool ZeroInitialization(const Expr *E) { 5819 const ConstantArrayType *CAT = 5820 Info.Ctx.getAsConstantArrayType(E->getType()); 5821 if (!CAT) 5822 return Error(E); 5823 5824 Result = APValue(APValue::UninitArray(), 0, 5825 CAT->getSize().getZExtValue()); 5826 if (!Result.hasArrayFiller()) return true; 5827 5828 // Zero-initialize all elements. 5829 LValue Subobject = This; 5830 Subobject.addArray(Info, E, CAT); 5831 ImplicitValueInitExpr VIE(CAT->getElementType()); 5832 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE); 5833 } 5834 5835 bool VisitCallExpr(const CallExpr *E) { 5836 return handleCallExpr(E, Result, &This); 5837 } 5838 bool VisitInitListExpr(const InitListExpr *E); 5839 bool VisitCXXConstructExpr(const CXXConstructExpr *E); 5840 bool VisitCXXConstructExpr(const CXXConstructExpr *E, 5841 const LValue &Subobject, 5842 APValue *Value, QualType Type); 5843 }; 5844 } // end anonymous namespace 5845 5846 static bool EvaluateArray(const Expr *E, const LValue &This, 5847 APValue &Result, EvalInfo &Info) { 5848 assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue"); 5849 return ArrayExprEvaluator(Info, This, Result).Visit(E); 5850 } 5851 5852 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) { 5853 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType()); 5854 if (!CAT) 5855 return Error(E); 5856 5857 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...] 5858 // an appropriately-typed string literal enclosed in braces. 5859 if (E->isStringLiteralInit()) { 5860 LValue LV; 5861 if (!EvaluateLValue(E->getInit(0), LV, Info)) 5862 return false; 5863 APValue Val; 5864 LV.moveInto(Val); 5865 return Success(Val, E); 5866 } 5867 5868 bool Success = true; 5869 5870 assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) && 5871 "zero-initialized array shouldn't have any initialized elts"); 5872 APValue Filler; 5873 if (Result.isArray() && Result.hasArrayFiller()) 5874 Filler = Result.getArrayFiller(); 5875 5876 unsigned NumEltsToInit = E->getNumInits(); 5877 unsigned NumElts = CAT->getSize().getZExtValue(); 5878 const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr; 5879 5880 // If the initializer might depend on the array index, run it for each 5881 // array element. For now, just whitelist non-class value-initialization. 5882 if (NumEltsToInit != NumElts && !isa<ImplicitValueInitExpr>(FillerExpr)) 5883 NumEltsToInit = NumElts; 5884 5885 Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts); 5886 5887 // If the array was previously zero-initialized, preserve the 5888 // zero-initialized values. 5889 if (!Filler.isUninit()) { 5890 for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I) 5891 Result.getArrayInitializedElt(I) = Filler; 5892 if (Result.hasArrayFiller()) 5893 Result.getArrayFiller() = Filler; 5894 } 5895 5896 LValue Subobject = This; 5897 Subobject.addArray(Info, E, CAT); 5898 for (unsigned Index = 0; Index != NumEltsToInit; ++Index) { 5899 const Expr *Init = 5900 Index < E->getNumInits() ? E->getInit(Index) : FillerExpr; 5901 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index), 5902 Info, Subobject, Init) || 5903 !HandleLValueArrayAdjustment(Info, Init, Subobject, 5904 CAT->getElementType(), 1)) { 5905 if (!Info.keepEvaluatingAfterFailure()) 5906 return false; 5907 Success = false; 5908 } 5909 } 5910 5911 if (!Result.hasArrayFiller()) 5912 return Success; 5913 5914 // If we get here, we have a trivial filler, which we can just evaluate 5915 // once and splat over the rest of the array elements. 5916 assert(FillerExpr && "no array filler for incomplete init list"); 5917 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, 5918 FillerExpr) && Success; 5919 } 5920 5921 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) { 5922 return VisitCXXConstructExpr(E, This, &Result, E->getType()); 5923 } 5924 5925 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, 5926 const LValue &Subobject, 5927 APValue *Value, 5928 QualType Type) { 5929 bool HadZeroInit = !Value->isUninit(); 5930 5931 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) { 5932 unsigned N = CAT->getSize().getZExtValue(); 5933 5934 // Preserve the array filler if we had prior zero-initialization. 5935 APValue Filler = 5936 HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller() 5937 : APValue(); 5938 5939 *Value = APValue(APValue::UninitArray(), N, N); 5940 5941 if (HadZeroInit) 5942 for (unsigned I = 0; I != N; ++I) 5943 Value->getArrayInitializedElt(I) = Filler; 5944 5945 // Initialize the elements. 5946 LValue ArrayElt = Subobject; 5947 ArrayElt.addArray(Info, E, CAT); 5948 for (unsigned I = 0; I != N; ++I) 5949 if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I), 5950 CAT->getElementType()) || 5951 !HandleLValueArrayAdjustment(Info, E, ArrayElt, 5952 CAT->getElementType(), 1)) 5953 return false; 5954 5955 return true; 5956 } 5957 5958 if (!Type->isRecordType()) 5959 return Error(E); 5960 5961 const CXXConstructorDecl *FD = E->getConstructor(); 5962 5963 bool ZeroInit = E->requiresZeroInitialization(); 5964 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) { 5965 if (HadZeroInit) 5966 return true; 5967 5968 // See RecordExprEvaluator::VisitCXXConstructExpr for explanation. 5969 ImplicitValueInitExpr VIE(Type); 5970 return EvaluateInPlace(*Value, Info, Subobject, &VIE); 5971 } 5972 5973 const FunctionDecl *Definition = nullptr; 5974 FD->getBody(Definition); 5975 5976 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition)) 5977 return false; 5978 5979 if (ZeroInit && !HadZeroInit) { 5980 ImplicitValueInitExpr VIE(Type); 5981 if (!EvaluateInPlace(*Value, Info, Subobject, &VIE)) 5982 return false; 5983 } 5984 5985 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs()); 5986 return HandleConstructorCall(E->getExprLoc(), Subobject, Args, 5987 cast<CXXConstructorDecl>(Definition), 5988 Info, *Value); 5989 } 5990 5991 //===----------------------------------------------------------------------===// 5992 // Integer Evaluation 5993 // 5994 // As a GNU extension, we support casting pointers to sufficiently-wide integer 5995 // types and back in constant folding. Integer values are thus represented 5996 // either as an integer-valued APValue, or as an lvalue-valued APValue. 5997 //===----------------------------------------------------------------------===// 5998 5999 namespace { 6000 class IntExprEvaluator 6001 : public ExprEvaluatorBase<IntExprEvaluator> { 6002 APValue &Result; 6003 public: 6004 IntExprEvaluator(EvalInfo &info, APValue &result) 6005 : ExprEvaluatorBaseTy(info), Result(result) {} 6006 6007 bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) { 6008 assert(E->getType()->isIntegralOrEnumerationType() && 6009 "Invalid evaluation result."); 6010 assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() && 6011 "Invalid evaluation result."); 6012 assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && 6013 "Invalid evaluation result."); 6014 Result = APValue(SI); 6015 return true; 6016 } 6017 bool Success(const llvm::APSInt &SI, const Expr *E) { 6018 return Success(SI, E, Result); 6019 } 6020 6021 bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) { 6022 assert(E->getType()->isIntegralOrEnumerationType() && 6023 "Invalid evaluation result."); 6024 assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && 6025 "Invalid evaluation result."); 6026 Result = APValue(APSInt(I)); 6027 Result.getInt().setIsUnsigned( 6028 E->getType()->isUnsignedIntegerOrEnumerationType()); 6029 return true; 6030 } 6031 bool Success(const llvm::APInt &I, const Expr *E) { 6032 return Success(I, E, Result); 6033 } 6034 6035 bool Success(uint64_t Value, const Expr *E, APValue &Result) { 6036 assert(E->getType()->isIntegralOrEnumerationType() && 6037 "Invalid evaluation result."); 6038 Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType())); 6039 return true; 6040 } 6041 bool Success(uint64_t Value, const Expr *E) { 6042 return Success(Value, E, Result); 6043 } 6044 6045 bool Success(CharUnits Size, const Expr *E) { 6046 return Success(Size.getQuantity(), E); 6047 } 6048 6049 bool Success(const APValue &V, const Expr *E) { 6050 if (V.isLValue() || V.isAddrLabelDiff()) { 6051 Result = V; 6052 return true; 6053 } 6054 return Success(V.getInt(), E); 6055 } 6056 6057 bool ZeroInitialization(const Expr *E) { return Success(0, E); } 6058 6059 //===--------------------------------------------------------------------===// 6060 // Visitor Methods 6061 //===--------------------------------------------------------------------===// 6062 6063 bool VisitIntegerLiteral(const IntegerLiteral *E) { 6064 return Success(E->getValue(), E); 6065 } 6066 bool VisitCharacterLiteral(const CharacterLiteral *E) { 6067 return Success(E->getValue(), E); 6068 } 6069 6070 bool CheckReferencedDecl(const Expr *E, const Decl *D); 6071 bool VisitDeclRefExpr(const DeclRefExpr *E) { 6072 if (CheckReferencedDecl(E, E->getDecl())) 6073 return true; 6074 6075 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E); 6076 } 6077 bool VisitMemberExpr(const MemberExpr *E) { 6078 if (CheckReferencedDecl(E, E->getMemberDecl())) { 6079 VisitIgnoredValue(E->getBase()); 6080 return true; 6081 } 6082 6083 return ExprEvaluatorBaseTy::VisitMemberExpr(E); 6084 } 6085 6086 bool VisitCallExpr(const CallExpr *E); 6087 bool VisitBinaryOperator(const BinaryOperator *E); 6088 bool VisitOffsetOfExpr(const OffsetOfExpr *E); 6089 bool VisitUnaryOperator(const UnaryOperator *E); 6090 6091 bool VisitCastExpr(const CastExpr* E); 6092 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 6093 6094 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 6095 return Success(E->getValue(), E); 6096 } 6097 6098 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 6099 return Success(E->getValue(), E); 6100 } 6101 6102 // Note, GNU defines __null as an integer, not a pointer. 6103 bool VisitGNUNullExpr(const GNUNullExpr *E) { 6104 return ZeroInitialization(E); 6105 } 6106 6107 bool VisitTypeTraitExpr(const TypeTraitExpr *E) { 6108 return Success(E->getValue(), E); 6109 } 6110 6111 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 6112 return Success(E->getValue(), E); 6113 } 6114 6115 bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 6116 return Success(E->getValue(), E); 6117 } 6118 6119 bool VisitUnaryReal(const UnaryOperator *E); 6120 bool VisitUnaryImag(const UnaryOperator *E); 6121 6122 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E); 6123 bool VisitSizeOfPackExpr(const SizeOfPackExpr *E); 6124 6125 private: 6126 bool TryEvaluateBuiltinObjectSize(const CallExpr *E, unsigned Type); 6127 // FIXME: Missing: array subscript of vector, member of vector 6128 }; 6129 } // end anonymous namespace 6130 6131 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and 6132 /// produce either the integer value or a pointer. 6133 /// 6134 /// GCC has a heinous extension which folds casts between pointer types and 6135 /// pointer-sized integral types. We support this by allowing the evaluation of 6136 /// an integer rvalue to produce a pointer (represented as an lvalue) instead. 6137 /// Some simple arithmetic on such values is supported (they are treated much 6138 /// like char*). 6139 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, 6140 EvalInfo &Info) { 6141 assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType()); 6142 return IntExprEvaluator(Info, Result).Visit(E); 6143 } 6144 6145 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) { 6146 APValue Val; 6147 if (!EvaluateIntegerOrLValue(E, Val, Info)) 6148 return false; 6149 if (!Val.isInt()) { 6150 // FIXME: It would be better to produce the diagnostic for casting 6151 // a pointer to an integer. 6152 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr); 6153 return false; 6154 } 6155 Result = Val.getInt(); 6156 return true; 6157 } 6158 6159 /// Check whether the given declaration can be directly converted to an integral 6160 /// rvalue. If not, no diagnostic is produced; there are other things we can 6161 /// try. 6162 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) { 6163 // Enums are integer constant exprs. 6164 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) { 6165 // Check for signedness/width mismatches between E type and ECD value. 6166 bool SameSign = (ECD->getInitVal().isSigned() 6167 == E->getType()->isSignedIntegerOrEnumerationType()); 6168 bool SameWidth = (ECD->getInitVal().getBitWidth() 6169 == Info.Ctx.getIntWidth(E->getType())); 6170 if (SameSign && SameWidth) 6171 return Success(ECD->getInitVal(), E); 6172 else { 6173 // Get rid of mismatch (otherwise Success assertions will fail) 6174 // by computing a new value matching the type of E. 6175 llvm::APSInt Val = ECD->getInitVal(); 6176 if (!SameSign) 6177 Val.setIsSigned(!ECD->getInitVal().isSigned()); 6178 if (!SameWidth) 6179 Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType())); 6180 return Success(Val, E); 6181 } 6182 } 6183 return false; 6184 } 6185 6186 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way 6187 /// as GCC. 6188 static int EvaluateBuiltinClassifyType(const CallExpr *E) { 6189 // The following enum mimics the values returned by GCC. 6190 // FIXME: Does GCC differ between lvalue and rvalue references here? 6191 enum gcc_type_class { 6192 no_type_class = -1, 6193 void_type_class, integer_type_class, char_type_class, 6194 enumeral_type_class, boolean_type_class, 6195 pointer_type_class, reference_type_class, offset_type_class, 6196 real_type_class, complex_type_class, 6197 function_type_class, method_type_class, 6198 record_type_class, union_type_class, 6199 array_type_class, string_type_class, 6200 lang_type_class 6201 }; 6202 6203 // If no argument was supplied, default to "no_type_class". This isn't 6204 // ideal, however it is what gcc does. 6205 if (E->getNumArgs() == 0) 6206 return no_type_class; 6207 6208 QualType ArgTy = E->getArg(0)->getType(); 6209 if (ArgTy->isVoidType()) 6210 return void_type_class; 6211 else if (ArgTy->isEnumeralType()) 6212 return enumeral_type_class; 6213 else if (ArgTy->isBooleanType()) 6214 return boolean_type_class; 6215 else if (ArgTy->isCharType()) 6216 return string_type_class; // gcc doesn't appear to use char_type_class 6217 else if (ArgTy->isIntegerType()) 6218 return integer_type_class; 6219 else if (ArgTy->isPointerType()) 6220 return pointer_type_class; 6221 else if (ArgTy->isReferenceType()) 6222 return reference_type_class; 6223 else if (ArgTy->isRealType()) 6224 return real_type_class; 6225 else if (ArgTy->isComplexType()) 6226 return complex_type_class; 6227 else if (ArgTy->isFunctionType()) 6228 return function_type_class; 6229 else if (ArgTy->isStructureOrClassType()) 6230 return record_type_class; 6231 else if (ArgTy->isUnionType()) 6232 return union_type_class; 6233 else if (ArgTy->isArrayType()) 6234 return array_type_class; 6235 else if (ArgTy->isUnionType()) 6236 return union_type_class; 6237 else // FIXME: offset_type_class, method_type_class, & lang_type_class? 6238 llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type"); 6239 } 6240 6241 /// EvaluateBuiltinConstantPForLValue - Determine the result of 6242 /// __builtin_constant_p when applied to the given lvalue. 6243 /// 6244 /// An lvalue is only "constant" if it is a pointer or reference to the first 6245 /// character of a string literal. 6246 template<typename LValue> 6247 static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) { 6248 const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>(); 6249 return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero(); 6250 } 6251 6252 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to 6253 /// GCC as we can manage. 6254 static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) { 6255 QualType ArgType = Arg->getType(); 6256 6257 // __builtin_constant_p always has one operand. The rules which gcc follows 6258 // are not precisely documented, but are as follows: 6259 // 6260 // - If the operand is of integral, floating, complex or enumeration type, 6261 // and can be folded to a known value of that type, it returns 1. 6262 // - If the operand and can be folded to a pointer to the first character 6263 // of a string literal (or such a pointer cast to an integral type), it 6264 // returns 1. 6265 // 6266 // Otherwise, it returns 0. 6267 // 6268 // FIXME: GCC also intends to return 1 for literals of aggregate types, but 6269 // its support for this does not currently work. 6270 if (ArgType->isIntegralOrEnumerationType()) { 6271 Expr::EvalResult Result; 6272 if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects) 6273 return false; 6274 6275 APValue &V = Result.Val; 6276 if (V.getKind() == APValue::Int) 6277 return true; 6278 if (V.getKind() == APValue::LValue) 6279 return EvaluateBuiltinConstantPForLValue(V); 6280 } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) { 6281 return Arg->isEvaluatable(Ctx); 6282 } else if (ArgType->isPointerType() || Arg->isGLValue()) { 6283 LValue LV; 6284 Expr::EvalStatus Status; 6285 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); 6286 if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info) 6287 : EvaluatePointer(Arg, LV, Info)) && 6288 !Status.HasSideEffects) 6289 return EvaluateBuiltinConstantPForLValue(LV); 6290 } 6291 6292 // Anything else isn't considered to be sufficiently constant. 6293 return false; 6294 } 6295 6296 /// Retrieves the "underlying object type" of the given expression, 6297 /// as used by __builtin_object_size. 6298 static QualType getObjectType(APValue::LValueBase B) { 6299 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { 6300 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 6301 return VD->getType(); 6302 } else if (const Expr *E = B.get<const Expr*>()) { 6303 if (isa<CompoundLiteralExpr>(E)) 6304 return E->getType(); 6305 } 6306 6307 return QualType(); 6308 } 6309 6310 /// A more selective version of E->IgnoreParenCasts for 6311 /// TryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only 6312 /// to change the type of E. 6313 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo` 6314 /// 6315 /// Always returns an RValue with a pointer representation. 6316 static const Expr *ignorePointerCastsAndParens(const Expr *E) { 6317 assert(E->isRValue() && E->getType()->hasPointerRepresentation()); 6318 6319 auto *NoParens = E->IgnoreParens(); 6320 auto *Cast = dyn_cast<CastExpr>(NoParens); 6321 if (Cast == nullptr) 6322 return NoParens; 6323 6324 // We only conservatively allow a few kinds of casts, because this code is 6325 // inherently a simple solution that seeks to support the common case. 6326 auto CastKind = Cast->getCastKind(); 6327 if (CastKind != CK_NoOp && CastKind != CK_BitCast && 6328 CastKind != CK_AddressSpaceConversion) 6329 return NoParens; 6330 6331 auto *SubExpr = Cast->getSubExpr(); 6332 if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue()) 6333 return NoParens; 6334 return ignorePointerCastsAndParens(SubExpr); 6335 } 6336 6337 /// Checks to see if the given LValue's Designator is at the end of the LValue's 6338 /// record layout. e.g. 6339 /// struct { struct { int a, b; } fst, snd; } obj; 6340 /// obj.fst // no 6341 /// obj.snd // yes 6342 /// obj.fst.a // no 6343 /// obj.fst.b // no 6344 /// obj.snd.a // no 6345 /// obj.snd.b // yes 6346 /// 6347 /// Please note: this function is specialized for how __builtin_object_size 6348 /// views "objects". 6349 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) { 6350 assert(!LVal.Designator.Invalid); 6351 6352 auto IsLastFieldDecl = [&Ctx](const FieldDecl *FD) { 6353 if (FD->getParent()->isUnion()) 6354 return true; 6355 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent()); 6356 return FD->getFieldIndex() + 1 == Layout.getFieldCount(); 6357 }; 6358 6359 auto &Base = LVal.getLValueBase(); 6360 if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) { 6361 if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 6362 if (!IsLastFieldDecl(FD)) 6363 return false; 6364 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) { 6365 for (auto *FD : IFD->chain()) 6366 if (!IsLastFieldDecl(cast<FieldDecl>(FD))) 6367 return false; 6368 } 6369 } 6370 6371 QualType BaseType = getType(Base); 6372 for (int I = 0, E = LVal.Designator.Entries.size(); I != E; ++I) { 6373 if (BaseType->isArrayType()) { 6374 // Because __builtin_object_size treats arrays as objects, we can ignore 6375 // the index iff this is the last array in the Designator. 6376 if (I + 1 == E) 6377 return true; 6378 auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType)); 6379 uint64_t Index = LVal.Designator.Entries[I].ArrayIndex; 6380 if (Index + 1 != CAT->getSize()) 6381 return false; 6382 BaseType = CAT->getElementType(); 6383 } else if (BaseType->isAnyComplexType()) { 6384 auto *CT = BaseType->castAs<ComplexType>(); 6385 uint64_t Index = LVal.Designator.Entries[I].ArrayIndex; 6386 if (Index != 1) 6387 return false; 6388 BaseType = CT->getElementType(); 6389 } else if (auto *FD = getAsField(LVal.Designator.Entries[I])) { 6390 if (!IsLastFieldDecl(FD)) 6391 return false; 6392 BaseType = FD->getType(); 6393 } else { 6394 assert(getAsBaseClass(LVal.Designator.Entries[I]) != nullptr && 6395 "Expecting cast to a base class"); 6396 return false; 6397 } 6398 } 6399 return true; 6400 } 6401 6402 /// Tests to see if the LValue has a designator (that isn't necessarily valid). 6403 static bool refersToCompleteObject(const LValue &LVal) { 6404 if (LVal.Designator.Invalid || !LVal.Designator.Entries.empty()) 6405 return false; 6406 6407 if (!LVal.InvalidBase) 6408 return true; 6409 6410 auto *E = LVal.Base.dyn_cast<const Expr *>(); 6411 (void)E; 6412 assert(E != nullptr && isa<MemberExpr>(E)); 6413 return false; 6414 } 6415 6416 /// Tries to evaluate the __builtin_object_size for @p E. If successful, returns 6417 /// true and stores the result in @p Size. 6418 /// 6419 /// If @p WasError is non-null, this will report whether the failure to evaluate 6420 /// is to be treated as an Error in IntExprEvaluator. 6421 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type, 6422 EvalInfo &Info, uint64_t &Size, 6423 bool *WasError = nullptr) { 6424 if (WasError != nullptr) 6425 *WasError = false; 6426 6427 auto Error = [&](const Expr *E) { 6428 if (WasError != nullptr) 6429 *WasError = true; 6430 return false; 6431 }; 6432 6433 auto Success = [&](uint64_t S, const Expr *E) { 6434 Size = S; 6435 return true; 6436 }; 6437 6438 // Determine the denoted object. 6439 LValue Base; 6440 { 6441 // The operand of __builtin_object_size is never evaluated for side-effects. 6442 // If there are any, but we can determine the pointed-to object anyway, then 6443 // ignore the side-effects. 6444 SpeculativeEvaluationRAII SpeculativeEval(Info); 6445 FoldOffsetRAII Fold(Info, Type & 1); 6446 6447 if (E->isGLValue()) { 6448 // It's possible for us to be given GLValues if we're called via 6449 // Expr::tryEvaluateObjectSize. 6450 APValue RVal; 6451 if (!EvaluateAsRValue(Info, E, RVal)) 6452 return false; 6453 Base.setFrom(Info.Ctx, RVal); 6454 } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), Base, Info)) 6455 return false; 6456 } 6457 6458 CharUnits BaseOffset = Base.getLValueOffset(); 6459 // If we point to before the start of the object, there are no accessible 6460 // bytes. 6461 if (BaseOffset.isNegative()) 6462 return Success(0, E); 6463 6464 // In the case where we're not dealing with a subobject, we discard the 6465 // subobject bit. 6466 bool SubobjectOnly = (Type & 1) != 0 && !refersToCompleteObject(Base); 6467 6468 // If Type & 1 is 0, we need to be able to statically guarantee that the bytes 6469 // exist. If we can't verify the base, then we can't do that. 6470 // 6471 // As a special case, we produce a valid object size for an unknown object 6472 // with a known designator if Type & 1 is 1. For instance: 6473 // 6474 // extern struct X { char buff[32]; int a, b, c; } *p; 6475 // int a = __builtin_object_size(p->buff + 4, 3); // returns 28 6476 // int b = __builtin_object_size(p->buff + 4, 2); // returns 0, not 40 6477 // 6478 // This matches GCC's behavior. 6479 if (Base.InvalidBase && !SubobjectOnly) 6480 return Error(E); 6481 6482 // If we're not examining only the subobject, then we reset to a complete 6483 // object designator 6484 // 6485 // If Type is 1 and we've lost track of the subobject, just find the complete 6486 // object instead. (If Type is 3, that's not correct behavior and we should 6487 // return 0 instead.) 6488 LValue End = Base; 6489 if (!SubobjectOnly || (End.Designator.Invalid && Type == 1)) { 6490 QualType T = getObjectType(End.getLValueBase()); 6491 if (T.isNull()) 6492 End.Designator.setInvalid(); 6493 else { 6494 End.Designator = SubobjectDesignator(T); 6495 End.Offset = CharUnits::Zero(); 6496 } 6497 } 6498 6499 // If it is not possible to determine which objects ptr points to at compile 6500 // time, __builtin_object_size should return (size_t) -1 for type 0 or 1 6501 // and (size_t) 0 for type 2 or 3. 6502 if (End.Designator.Invalid) 6503 return false; 6504 6505 // According to the GCC documentation, we want the size of the subobject 6506 // denoted by the pointer. But that's not quite right -- what we actually 6507 // want is the size of the immediately-enclosing array, if there is one. 6508 int64_t AmountToAdd = 1; 6509 if (End.Designator.MostDerivedIsArrayElement && 6510 End.Designator.Entries.size() == End.Designator.MostDerivedPathLength) { 6511 // We got a pointer to an array. Step to its end. 6512 AmountToAdd = End.Designator.MostDerivedArraySize - 6513 End.Designator.Entries.back().ArrayIndex; 6514 } else if (End.Designator.isOnePastTheEnd()) { 6515 // We're already pointing at the end of the object. 6516 AmountToAdd = 0; 6517 } 6518 6519 QualType PointeeType = End.Designator.MostDerivedType; 6520 assert(!PointeeType.isNull()); 6521 if (PointeeType->isIncompleteType() || PointeeType->isFunctionType()) 6522 return Error(E); 6523 6524 if (!HandleLValueArrayAdjustment(Info, E, End, End.Designator.MostDerivedType, 6525 AmountToAdd)) 6526 return false; 6527 6528 auto EndOffset = End.getLValueOffset(); 6529 6530 // The following is a moderately common idiom in C: 6531 // 6532 // struct Foo { int a; char c[1]; }; 6533 // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar)); 6534 // strcpy(&F->c[0], Bar); 6535 // 6536 // So, if we see that we're examining a 1-length (or 0-length) array at the 6537 // end of a struct with an unknown base, we give up instead of breaking code 6538 // that behaves this way. Note that we only do this when Type=1, because 6539 // Type=3 is a lower bound, so answering conservatively is fine. 6540 if (End.InvalidBase && SubobjectOnly && Type == 1 && 6541 End.Designator.Entries.size() == End.Designator.MostDerivedPathLength && 6542 End.Designator.MostDerivedIsArrayElement && 6543 End.Designator.MostDerivedArraySize < 2 && 6544 isDesignatorAtObjectEnd(Info.Ctx, End)) 6545 return false; 6546 6547 if (BaseOffset > EndOffset) 6548 return Success(0, E); 6549 6550 return Success((EndOffset - BaseOffset).getQuantity(), E); 6551 } 6552 6553 bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E, 6554 unsigned Type) { 6555 uint64_t Size; 6556 bool WasError; 6557 if (::tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size, &WasError)) 6558 return Success(Size, E); 6559 if (WasError) 6560 return Error(E); 6561 return false; 6562 } 6563 6564 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) { 6565 switch (unsigned BuiltinOp = E->getBuiltinCallee()) { 6566 default: 6567 return ExprEvaluatorBaseTy::VisitCallExpr(E); 6568 6569 case Builtin::BI__builtin_object_size: { 6570 // The type was checked when we built the expression. 6571 unsigned Type = 6572 E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); 6573 assert(Type <= 3 && "unexpected type"); 6574 6575 if (TryEvaluateBuiltinObjectSize(E, Type)) 6576 return true; 6577 6578 if (E->getArg(0)->HasSideEffects(Info.Ctx)) 6579 return Success((Type & 2) ? 0 : -1, E); 6580 6581 // Expression had no side effects, but we couldn't statically determine the 6582 // size of the referenced object. 6583 switch (Info.EvalMode) { 6584 case EvalInfo::EM_ConstantExpression: 6585 case EvalInfo::EM_PotentialConstantExpression: 6586 case EvalInfo::EM_ConstantFold: 6587 case EvalInfo::EM_EvaluateForOverflow: 6588 case EvalInfo::EM_IgnoreSideEffects: 6589 case EvalInfo::EM_DesignatorFold: 6590 // Leave it to IR generation. 6591 return Error(E); 6592 case EvalInfo::EM_ConstantExpressionUnevaluated: 6593 case EvalInfo::EM_PotentialConstantExpressionUnevaluated: 6594 // Reduce it to a constant now. 6595 return Success((Type & 2) ? 0 : -1, E); 6596 } 6597 } 6598 6599 case Builtin::BI__builtin_bswap16: 6600 case Builtin::BI__builtin_bswap32: 6601 case Builtin::BI__builtin_bswap64: { 6602 APSInt Val; 6603 if (!EvaluateInteger(E->getArg(0), Val, Info)) 6604 return false; 6605 6606 return Success(Val.byteSwap(), E); 6607 } 6608 6609 case Builtin::BI__builtin_classify_type: 6610 return Success(EvaluateBuiltinClassifyType(E), E); 6611 6612 // FIXME: BI__builtin_clrsb 6613 // FIXME: BI__builtin_clrsbl 6614 // FIXME: BI__builtin_clrsbll 6615 6616 case Builtin::BI__builtin_clz: 6617 case Builtin::BI__builtin_clzl: 6618 case Builtin::BI__builtin_clzll: 6619 case Builtin::BI__builtin_clzs: { 6620 APSInt Val; 6621 if (!EvaluateInteger(E->getArg(0), Val, Info)) 6622 return false; 6623 if (!Val) 6624 return Error(E); 6625 6626 return Success(Val.countLeadingZeros(), E); 6627 } 6628 6629 case Builtin::BI__builtin_constant_p: 6630 return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E); 6631 6632 case Builtin::BI__builtin_ctz: 6633 case Builtin::BI__builtin_ctzl: 6634 case Builtin::BI__builtin_ctzll: 6635 case Builtin::BI__builtin_ctzs: { 6636 APSInt Val; 6637 if (!EvaluateInteger(E->getArg(0), Val, Info)) 6638 return false; 6639 if (!Val) 6640 return Error(E); 6641 6642 return Success(Val.countTrailingZeros(), E); 6643 } 6644 6645 case Builtin::BI__builtin_eh_return_data_regno: { 6646 int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); 6647 Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand); 6648 return Success(Operand, E); 6649 } 6650 6651 case Builtin::BI__builtin_expect: 6652 return Visit(E->getArg(0)); 6653 6654 case Builtin::BI__builtin_ffs: 6655 case Builtin::BI__builtin_ffsl: 6656 case Builtin::BI__builtin_ffsll: { 6657 APSInt Val; 6658 if (!EvaluateInteger(E->getArg(0), Val, Info)) 6659 return false; 6660 6661 unsigned N = Val.countTrailingZeros(); 6662 return Success(N == Val.getBitWidth() ? 0 : N + 1, E); 6663 } 6664 6665 case Builtin::BI__builtin_fpclassify: { 6666 APFloat Val(0.0); 6667 if (!EvaluateFloat(E->getArg(5), Val, Info)) 6668 return false; 6669 unsigned Arg; 6670 switch (Val.getCategory()) { 6671 case APFloat::fcNaN: Arg = 0; break; 6672 case APFloat::fcInfinity: Arg = 1; break; 6673 case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break; 6674 case APFloat::fcZero: Arg = 4; break; 6675 } 6676 return Visit(E->getArg(Arg)); 6677 } 6678 6679 case Builtin::BI__builtin_isinf_sign: { 6680 APFloat Val(0.0); 6681 return EvaluateFloat(E->getArg(0), Val, Info) && 6682 Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E); 6683 } 6684 6685 case Builtin::BI__builtin_isinf: { 6686 APFloat Val(0.0); 6687 return EvaluateFloat(E->getArg(0), Val, Info) && 6688 Success(Val.isInfinity() ? 1 : 0, E); 6689 } 6690 6691 case Builtin::BI__builtin_isfinite: { 6692 APFloat Val(0.0); 6693 return EvaluateFloat(E->getArg(0), Val, Info) && 6694 Success(Val.isFinite() ? 1 : 0, E); 6695 } 6696 6697 case Builtin::BI__builtin_isnan: { 6698 APFloat Val(0.0); 6699 return EvaluateFloat(E->getArg(0), Val, Info) && 6700 Success(Val.isNaN() ? 1 : 0, E); 6701 } 6702 6703 case Builtin::BI__builtin_isnormal: { 6704 APFloat Val(0.0); 6705 return EvaluateFloat(E->getArg(0), Val, Info) && 6706 Success(Val.isNormal() ? 1 : 0, E); 6707 } 6708 6709 case Builtin::BI__builtin_parity: 6710 case Builtin::BI__builtin_parityl: 6711 case Builtin::BI__builtin_parityll: { 6712 APSInt Val; 6713 if (!EvaluateInteger(E->getArg(0), Val, Info)) 6714 return false; 6715 6716 return Success(Val.countPopulation() % 2, E); 6717 } 6718 6719 case Builtin::BI__builtin_popcount: 6720 case Builtin::BI__builtin_popcountl: 6721 case Builtin::BI__builtin_popcountll: { 6722 APSInt Val; 6723 if (!EvaluateInteger(E->getArg(0), Val, Info)) 6724 return false; 6725 6726 return Success(Val.countPopulation(), E); 6727 } 6728 6729 case Builtin::BIstrlen: 6730 // A call to strlen is not a constant expression. 6731 if (Info.getLangOpts().CPlusPlus11) 6732 Info.CCEDiag(E, diag::note_constexpr_invalid_function) 6733 << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'"; 6734 else 6735 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); 6736 // Fall through. 6737 case Builtin::BI__builtin_strlen: { 6738 // As an extension, we support __builtin_strlen() as a constant expression, 6739 // and support folding strlen() to a constant. 6740 LValue String; 6741 if (!EvaluatePointer(E->getArg(0), String, Info)) 6742 return false; 6743 6744 // Fast path: if it's a string literal, search the string value. 6745 if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>( 6746 String.getLValueBase().dyn_cast<const Expr *>())) { 6747 // The string literal may have embedded null characters. Find the first 6748 // one and truncate there. 6749 StringRef Str = S->getBytes(); 6750 int64_t Off = String.Offset.getQuantity(); 6751 if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() && 6752 S->getCharByteWidth() == 1) { 6753 Str = Str.substr(Off); 6754 6755 StringRef::size_type Pos = Str.find(0); 6756 if (Pos != StringRef::npos) 6757 Str = Str.substr(0, Pos); 6758 6759 return Success(Str.size(), E); 6760 } 6761 6762 // Fall through to slow path to issue appropriate diagnostic. 6763 } 6764 6765 // Slow path: scan the bytes of the string looking for the terminating 0. 6766 QualType CharTy = E->getArg(0)->getType()->getPointeeType(); 6767 for (uint64_t Strlen = 0; /**/; ++Strlen) { 6768 APValue Char; 6769 if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) || 6770 !Char.isInt()) 6771 return false; 6772 if (!Char.getInt()) 6773 return Success(Strlen, E); 6774 if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1)) 6775 return false; 6776 } 6777 } 6778 6779 case Builtin::BI__atomic_always_lock_free: 6780 case Builtin::BI__atomic_is_lock_free: 6781 case Builtin::BI__c11_atomic_is_lock_free: { 6782 APSInt SizeVal; 6783 if (!EvaluateInteger(E->getArg(0), SizeVal, Info)) 6784 return false; 6785 6786 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power 6787 // of two less than the maximum inline atomic width, we know it is 6788 // lock-free. If the size isn't a power of two, or greater than the 6789 // maximum alignment where we promote atomics, we know it is not lock-free 6790 // (at least not in the sense of atomic_is_lock_free). Otherwise, 6791 // the answer can only be determined at runtime; for example, 16-byte 6792 // atomics have lock-free implementations on some, but not all, 6793 // x86-64 processors. 6794 6795 // Check power-of-two. 6796 CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue()); 6797 if (Size.isPowerOfTwo()) { 6798 // Check against inlining width. 6799 unsigned InlineWidthBits = 6800 Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth(); 6801 if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) { 6802 if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free || 6803 Size == CharUnits::One() || 6804 E->getArg(1)->isNullPointerConstant(Info.Ctx, 6805 Expr::NPC_NeverValueDependent)) 6806 // OK, we will inline appropriately-aligned operations of this size, 6807 // and _Atomic(T) is appropriately-aligned. 6808 return Success(1, E); 6809 6810 QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()-> 6811 castAs<PointerType>()->getPointeeType(); 6812 if (!PointeeType->isIncompleteType() && 6813 Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) { 6814 // OK, we will inline operations on this object. 6815 return Success(1, E); 6816 } 6817 } 6818 } 6819 6820 return BuiltinOp == Builtin::BI__atomic_always_lock_free ? 6821 Success(0, E) : Error(E); 6822 } 6823 } 6824 } 6825 6826 static bool HasSameBase(const LValue &A, const LValue &B) { 6827 if (!A.getLValueBase()) 6828 return !B.getLValueBase(); 6829 if (!B.getLValueBase()) 6830 return false; 6831 6832 if (A.getLValueBase().getOpaqueValue() != 6833 B.getLValueBase().getOpaqueValue()) { 6834 const Decl *ADecl = GetLValueBaseDecl(A); 6835 if (!ADecl) 6836 return false; 6837 const Decl *BDecl = GetLValueBaseDecl(B); 6838 if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl()) 6839 return false; 6840 } 6841 6842 return IsGlobalLValue(A.getLValueBase()) || 6843 A.getLValueCallIndex() == B.getLValueCallIndex(); 6844 } 6845 6846 /// \brief Determine whether this is a pointer past the end of the complete 6847 /// object referred to by the lvalue. 6848 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx, 6849 const LValue &LV) { 6850 // A null pointer can be viewed as being "past the end" but we don't 6851 // choose to look at it that way here. 6852 if (!LV.getLValueBase()) 6853 return false; 6854 6855 // If the designator is valid and refers to a subobject, we're not pointing 6856 // past the end. 6857 if (!LV.getLValueDesignator().Invalid && 6858 !LV.getLValueDesignator().isOnePastTheEnd()) 6859 return false; 6860 6861 // A pointer to an incomplete type might be past-the-end if the type's size is 6862 // zero. We cannot tell because the type is incomplete. 6863 QualType Ty = getType(LV.getLValueBase()); 6864 if (Ty->isIncompleteType()) 6865 return true; 6866 6867 // We're a past-the-end pointer if we point to the byte after the object, 6868 // no matter what our type or path is. 6869 auto Size = Ctx.getTypeSizeInChars(Ty); 6870 return LV.getLValueOffset() == Size; 6871 } 6872 6873 namespace { 6874 6875 /// \brief Data recursive integer evaluator of certain binary operators. 6876 /// 6877 /// We use a data recursive algorithm for binary operators so that we are able 6878 /// to handle extreme cases of chained binary operators without causing stack 6879 /// overflow. 6880 class DataRecursiveIntBinOpEvaluator { 6881 struct EvalResult { 6882 APValue Val; 6883 bool Failed; 6884 6885 EvalResult() : Failed(false) { } 6886 6887 void swap(EvalResult &RHS) { 6888 Val.swap(RHS.Val); 6889 Failed = RHS.Failed; 6890 RHS.Failed = false; 6891 } 6892 }; 6893 6894 struct Job { 6895 const Expr *E; 6896 EvalResult LHSResult; // meaningful only for binary operator expression. 6897 enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind; 6898 6899 Job() = default; 6900 Job(Job &&J) 6901 : E(J.E), LHSResult(J.LHSResult), Kind(J.Kind), 6902 StoredInfo(J.StoredInfo), OldEvalStatus(J.OldEvalStatus) { 6903 J.StoredInfo = nullptr; 6904 } 6905 6906 void startSpeculativeEval(EvalInfo &Info) { 6907 OldEvalStatus = Info.EvalStatus; 6908 Info.EvalStatus.Diag = nullptr; 6909 StoredInfo = &Info; 6910 } 6911 ~Job() { 6912 if (StoredInfo) { 6913 StoredInfo->EvalStatus = OldEvalStatus; 6914 } 6915 } 6916 private: 6917 EvalInfo *StoredInfo = nullptr; // non-null if status changed. 6918 Expr::EvalStatus OldEvalStatus; 6919 }; 6920 6921 SmallVector<Job, 16> Queue; 6922 6923 IntExprEvaluator &IntEval; 6924 EvalInfo &Info; 6925 APValue &FinalResult; 6926 6927 public: 6928 DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result) 6929 : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { } 6930 6931 /// \brief True if \param E is a binary operator that we are going to handle 6932 /// data recursively. 6933 /// We handle binary operators that are comma, logical, or that have operands 6934 /// with integral or enumeration type. 6935 static bool shouldEnqueue(const BinaryOperator *E) { 6936 return E->getOpcode() == BO_Comma || 6937 E->isLogicalOp() || 6938 (E->getLHS()->getType()->isIntegralOrEnumerationType() && 6939 E->getRHS()->getType()->isIntegralOrEnumerationType()); 6940 } 6941 6942 bool Traverse(const BinaryOperator *E) { 6943 enqueue(E); 6944 EvalResult PrevResult; 6945 while (!Queue.empty()) 6946 process(PrevResult); 6947 6948 if (PrevResult.Failed) return false; 6949 6950 FinalResult.swap(PrevResult.Val); 6951 return true; 6952 } 6953 6954 private: 6955 bool Success(uint64_t Value, const Expr *E, APValue &Result) { 6956 return IntEval.Success(Value, E, Result); 6957 } 6958 bool Success(const APSInt &Value, const Expr *E, APValue &Result) { 6959 return IntEval.Success(Value, E, Result); 6960 } 6961 bool Error(const Expr *E) { 6962 return IntEval.Error(E); 6963 } 6964 bool Error(const Expr *E, diag::kind D) { 6965 return IntEval.Error(E, D); 6966 } 6967 6968 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { 6969 return Info.CCEDiag(E, D); 6970 } 6971 6972 // \brief Returns true if visiting the RHS is necessary, false otherwise. 6973 bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, 6974 bool &SuppressRHSDiags); 6975 6976 bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, 6977 const BinaryOperator *E, APValue &Result); 6978 6979 void EvaluateExpr(const Expr *E, EvalResult &Result) { 6980 Result.Failed = !Evaluate(Result.Val, Info, E); 6981 if (Result.Failed) 6982 Result.Val = APValue(); 6983 } 6984 6985 void process(EvalResult &Result); 6986 6987 void enqueue(const Expr *E) { 6988 E = E->IgnoreParens(); 6989 Queue.resize(Queue.size()+1); 6990 Queue.back().E = E; 6991 Queue.back().Kind = Job::AnyExprKind; 6992 } 6993 }; 6994 6995 } 6996 6997 bool DataRecursiveIntBinOpEvaluator:: 6998 VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, 6999 bool &SuppressRHSDiags) { 7000 if (E->getOpcode() == BO_Comma) { 7001 // Ignore LHS but note if we could not evaluate it. 7002 if (LHSResult.Failed) 7003 return Info.noteSideEffect(); 7004 return true; 7005 } 7006 7007 if (E->isLogicalOp()) { 7008 bool LHSAsBool; 7009 if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) { 7010 // We were able to evaluate the LHS, see if we can get away with not 7011 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 7012 if (LHSAsBool == (E->getOpcode() == BO_LOr)) { 7013 Success(LHSAsBool, E, LHSResult.Val); 7014 return false; // Ignore RHS 7015 } 7016 } else { 7017 LHSResult.Failed = true; 7018 7019 // Since we weren't able to evaluate the left hand side, it 7020 // must have had side effects. 7021 if (!Info.noteSideEffect()) 7022 return false; 7023 7024 // We can't evaluate the LHS; however, sometimes the result 7025 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. 7026 // Don't ignore RHS and suppress diagnostics from this arm. 7027 SuppressRHSDiags = true; 7028 } 7029 7030 return true; 7031 } 7032 7033 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && 7034 E->getRHS()->getType()->isIntegralOrEnumerationType()); 7035 7036 if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure()) 7037 return false; // Ignore RHS; 7038 7039 return true; 7040 } 7041 7042 bool DataRecursiveIntBinOpEvaluator:: 7043 VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, 7044 const BinaryOperator *E, APValue &Result) { 7045 if (E->getOpcode() == BO_Comma) { 7046 if (RHSResult.Failed) 7047 return false; 7048 Result = RHSResult.Val; 7049 return true; 7050 } 7051 7052 if (E->isLogicalOp()) { 7053 bool lhsResult, rhsResult; 7054 bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult); 7055 bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult); 7056 7057 if (LHSIsOK) { 7058 if (RHSIsOK) { 7059 if (E->getOpcode() == BO_LOr) 7060 return Success(lhsResult || rhsResult, E, Result); 7061 else 7062 return Success(lhsResult && rhsResult, E, Result); 7063 } 7064 } else { 7065 if (RHSIsOK) { 7066 // We can't evaluate the LHS; however, sometimes the result 7067 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. 7068 if (rhsResult == (E->getOpcode() == BO_LOr)) 7069 return Success(rhsResult, E, Result); 7070 } 7071 } 7072 7073 return false; 7074 } 7075 7076 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && 7077 E->getRHS()->getType()->isIntegralOrEnumerationType()); 7078 7079 if (LHSResult.Failed || RHSResult.Failed) 7080 return false; 7081 7082 const APValue &LHSVal = LHSResult.Val; 7083 const APValue &RHSVal = RHSResult.Val; 7084 7085 // Handle cases like (unsigned long)&a + 4. 7086 if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) { 7087 Result = LHSVal; 7088 CharUnits AdditionalOffset = 7089 CharUnits::fromQuantity(RHSVal.getInt().getZExtValue()); 7090 if (E->getOpcode() == BO_Add) 7091 Result.getLValueOffset() += AdditionalOffset; 7092 else 7093 Result.getLValueOffset() -= AdditionalOffset; 7094 return true; 7095 } 7096 7097 // Handle cases like 4 + (unsigned long)&a 7098 if (E->getOpcode() == BO_Add && 7099 RHSVal.isLValue() && LHSVal.isInt()) { 7100 Result = RHSVal; 7101 Result.getLValueOffset() += 7102 CharUnits::fromQuantity(LHSVal.getInt().getZExtValue()); 7103 return true; 7104 } 7105 7106 if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) { 7107 // Handle (intptr_t)&&A - (intptr_t)&&B. 7108 if (!LHSVal.getLValueOffset().isZero() || 7109 !RHSVal.getLValueOffset().isZero()) 7110 return false; 7111 const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>(); 7112 const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>(); 7113 if (!LHSExpr || !RHSExpr) 7114 return false; 7115 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); 7116 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); 7117 if (!LHSAddrExpr || !RHSAddrExpr) 7118 return false; 7119 // Make sure both labels come from the same function. 7120 if (LHSAddrExpr->getLabel()->getDeclContext() != 7121 RHSAddrExpr->getLabel()->getDeclContext()) 7122 return false; 7123 Result = APValue(LHSAddrExpr, RHSAddrExpr); 7124 return true; 7125 } 7126 7127 // All the remaining cases expect both operands to be an integer 7128 if (!LHSVal.isInt() || !RHSVal.isInt()) 7129 return Error(E); 7130 7131 // Set up the width and signedness manually, in case it can't be deduced 7132 // from the operation we're performing. 7133 // FIXME: Don't do this in the cases where we can deduce it. 7134 APSInt Value(Info.Ctx.getIntWidth(E->getType()), 7135 E->getType()->isUnsignedIntegerOrEnumerationType()); 7136 if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(), 7137 RHSVal.getInt(), Value)) 7138 return false; 7139 return Success(Value, E, Result); 7140 } 7141 7142 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) { 7143 Job &job = Queue.back(); 7144 7145 switch (job.Kind) { 7146 case Job::AnyExprKind: { 7147 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) { 7148 if (shouldEnqueue(Bop)) { 7149 job.Kind = Job::BinOpKind; 7150 enqueue(Bop->getLHS()); 7151 return; 7152 } 7153 } 7154 7155 EvaluateExpr(job.E, Result); 7156 Queue.pop_back(); 7157 return; 7158 } 7159 7160 case Job::BinOpKind: { 7161 const BinaryOperator *Bop = cast<BinaryOperator>(job.E); 7162 bool SuppressRHSDiags = false; 7163 if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) { 7164 Queue.pop_back(); 7165 return; 7166 } 7167 if (SuppressRHSDiags) 7168 job.startSpeculativeEval(Info); 7169 job.LHSResult.swap(Result); 7170 job.Kind = Job::BinOpVisitedLHSKind; 7171 enqueue(Bop->getRHS()); 7172 return; 7173 } 7174 7175 case Job::BinOpVisitedLHSKind: { 7176 const BinaryOperator *Bop = cast<BinaryOperator>(job.E); 7177 EvalResult RHS; 7178 RHS.swap(Result); 7179 Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val); 7180 Queue.pop_back(); 7181 return; 7182 } 7183 } 7184 7185 llvm_unreachable("Invalid Job::Kind!"); 7186 } 7187 7188 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 7189 if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp()) 7190 return Error(E); 7191 7192 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E)) 7193 return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E); 7194 7195 QualType LHSTy = E->getLHS()->getType(); 7196 QualType RHSTy = E->getRHS()->getType(); 7197 7198 if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) { 7199 ComplexValue LHS, RHS; 7200 bool LHSOK; 7201 if (E->isAssignmentOp()) { 7202 LValue LV; 7203 EvaluateLValue(E->getLHS(), LV, Info); 7204 LHSOK = false; 7205 } else if (LHSTy->isRealFloatingType()) { 7206 LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info); 7207 if (LHSOK) { 7208 LHS.makeComplexFloat(); 7209 LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics()); 7210 } 7211 } else { 7212 LHSOK = EvaluateComplex(E->getLHS(), LHS, Info); 7213 } 7214 if (!LHSOK && !Info.keepEvaluatingAfterFailure()) 7215 return false; 7216 7217 if (E->getRHS()->getType()->isRealFloatingType()) { 7218 if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK) 7219 return false; 7220 RHS.makeComplexFloat(); 7221 RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics()); 7222 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) 7223 return false; 7224 7225 if (LHS.isComplexFloat()) { 7226 APFloat::cmpResult CR_r = 7227 LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal()); 7228 APFloat::cmpResult CR_i = 7229 LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag()); 7230 7231 if (E->getOpcode() == BO_EQ) 7232 return Success((CR_r == APFloat::cmpEqual && 7233 CR_i == APFloat::cmpEqual), E); 7234 else { 7235 assert(E->getOpcode() == BO_NE && 7236 "Invalid complex comparison."); 7237 return Success(((CR_r == APFloat::cmpGreaterThan || 7238 CR_r == APFloat::cmpLessThan || 7239 CR_r == APFloat::cmpUnordered) || 7240 (CR_i == APFloat::cmpGreaterThan || 7241 CR_i == APFloat::cmpLessThan || 7242 CR_i == APFloat::cmpUnordered)), E); 7243 } 7244 } else { 7245 if (E->getOpcode() == BO_EQ) 7246 return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() && 7247 LHS.getComplexIntImag() == RHS.getComplexIntImag()), E); 7248 else { 7249 assert(E->getOpcode() == BO_NE && 7250 "Invalid compex comparison."); 7251 return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() || 7252 LHS.getComplexIntImag() != RHS.getComplexIntImag()), E); 7253 } 7254 } 7255 } 7256 7257 if (LHSTy->isRealFloatingType() && 7258 RHSTy->isRealFloatingType()) { 7259 APFloat RHS(0.0), LHS(0.0); 7260 7261 bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info); 7262 if (!LHSOK && !Info.keepEvaluatingAfterFailure()) 7263 return false; 7264 7265 if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK) 7266 return false; 7267 7268 APFloat::cmpResult CR = LHS.compare(RHS); 7269 7270 switch (E->getOpcode()) { 7271 default: 7272 llvm_unreachable("Invalid binary operator!"); 7273 case BO_LT: 7274 return Success(CR == APFloat::cmpLessThan, E); 7275 case BO_GT: 7276 return Success(CR == APFloat::cmpGreaterThan, E); 7277 case BO_LE: 7278 return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E); 7279 case BO_GE: 7280 return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual, 7281 E); 7282 case BO_EQ: 7283 return Success(CR == APFloat::cmpEqual, E); 7284 case BO_NE: 7285 return Success(CR == APFloat::cmpGreaterThan 7286 || CR == APFloat::cmpLessThan 7287 || CR == APFloat::cmpUnordered, E); 7288 } 7289 } 7290 7291 if (LHSTy->isPointerType() && RHSTy->isPointerType()) { 7292 if (E->getOpcode() == BO_Sub || E->isComparisonOp()) { 7293 LValue LHSValue, RHSValue; 7294 7295 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); 7296 if (!LHSOK && !Info.keepEvaluatingAfterFailure()) 7297 return false; 7298 7299 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) 7300 return false; 7301 7302 // Reject differing bases from the normal codepath; we special-case 7303 // comparisons to null. 7304 if (!HasSameBase(LHSValue, RHSValue)) { 7305 if (E->getOpcode() == BO_Sub) { 7306 // Handle &&A - &&B. 7307 if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero()) 7308 return Error(E); 7309 const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>(); 7310 const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>(); 7311 if (!LHSExpr || !RHSExpr) 7312 return Error(E); 7313 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); 7314 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); 7315 if (!LHSAddrExpr || !RHSAddrExpr) 7316 return Error(E); 7317 // Make sure both labels come from the same function. 7318 if (LHSAddrExpr->getLabel()->getDeclContext() != 7319 RHSAddrExpr->getLabel()->getDeclContext()) 7320 return Error(E); 7321 return Success(APValue(LHSAddrExpr, RHSAddrExpr), E); 7322 } 7323 // Inequalities and subtractions between unrelated pointers have 7324 // unspecified or undefined behavior. 7325 if (!E->isEqualityOp()) 7326 return Error(E); 7327 // A constant address may compare equal to the address of a symbol. 7328 // The one exception is that address of an object cannot compare equal 7329 // to a null pointer constant. 7330 if ((!LHSValue.Base && !LHSValue.Offset.isZero()) || 7331 (!RHSValue.Base && !RHSValue.Offset.isZero())) 7332 return Error(E); 7333 // It's implementation-defined whether distinct literals will have 7334 // distinct addresses. In clang, the result of such a comparison is 7335 // unspecified, so it is not a constant expression. However, we do know 7336 // that the address of a literal will be non-null. 7337 if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) && 7338 LHSValue.Base && RHSValue.Base) 7339 return Error(E); 7340 // We can't tell whether weak symbols will end up pointing to the same 7341 // object. 7342 if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue)) 7343 return Error(E); 7344 // We can't compare the address of the start of one object with the 7345 // past-the-end address of another object, per C++ DR1652. 7346 if ((LHSValue.Base && LHSValue.Offset.isZero() && 7347 isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) || 7348 (RHSValue.Base && RHSValue.Offset.isZero() && 7349 isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue))) 7350 return Error(E); 7351 // We can't tell whether an object is at the same address as another 7352 // zero sized object. 7353 if ((RHSValue.Base && isZeroSized(LHSValue)) || 7354 (LHSValue.Base && isZeroSized(RHSValue))) 7355 return Error(E); 7356 // Pointers with different bases cannot represent the same object. 7357 // (Note that clang defaults to -fmerge-all-constants, which can 7358 // lead to inconsistent results for comparisons involving the address 7359 // of a constant; this generally doesn't matter in practice.) 7360 return Success(E->getOpcode() == BO_NE, E); 7361 } 7362 7363 const CharUnits &LHSOffset = LHSValue.getLValueOffset(); 7364 const CharUnits &RHSOffset = RHSValue.getLValueOffset(); 7365 7366 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); 7367 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); 7368 7369 if (E->getOpcode() == BO_Sub) { 7370 // C++11 [expr.add]p6: 7371 // Unless both pointers point to elements of the same array object, or 7372 // one past the last element of the array object, the behavior is 7373 // undefined. 7374 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && 7375 !AreElementsOfSameArray(getType(LHSValue.Base), 7376 LHSDesignator, RHSDesignator)) 7377 CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array); 7378 7379 QualType Type = E->getLHS()->getType(); 7380 QualType ElementType = Type->getAs<PointerType>()->getPointeeType(); 7381 7382 CharUnits ElementSize; 7383 if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize)) 7384 return false; 7385 7386 // As an extension, a type may have zero size (empty struct or union in 7387 // C, array of zero length). Pointer subtraction in such cases has 7388 // undefined behavior, so is not constant. 7389 if (ElementSize.isZero()) { 7390 Info.Diag(E, diag::note_constexpr_pointer_subtraction_zero_size) 7391 << ElementType; 7392 return false; 7393 } 7394 7395 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime, 7396 // and produce incorrect results when it overflows. Such behavior 7397 // appears to be non-conforming, but is common, so perhaps we should 7398 // assume the standard intended for such cases to be undefined behavior 7399 // and check for them. 7400 7401 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for 7402 // overflow in the final conversion to ptrdiff_t. 7403 APSInt LHS( 7404 llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false); 7405 APSInt RHS( 7406 llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false); 7407 APSInt ElemSize( 7408 llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false); 7409 APSInt TrueResult = (LHS - RHS) / ElemSize; 7410 APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType())); 7411 7412 if (Result.extend(65) != TrueResult && 7413 !HandleOverflow(Info, E, TrueResult, E->getType())) 7414 return false; 7415 return Success(Result, E); 7416 } 7417 7418 // C++11 [expr.rel]p3: 7419 // Pointers to void (after pointer conversions) can be compared, with a 7420 // result defined as follows: If both pointers represent the same 7421 // address or are both the null pointer value, the result is true if the 7422 // operator is <= or >= and false otherwise; otherwise the result is 7423 // unspecified. 7424 // We interpret this as applying to pointers to *cv* void. 7425 if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && 7426 E->isRelationalOp()) 7427 CCEDiag(E, diag::note_constexpr_void_comparison); 7428 7429 // C++11 [expr.rel]p2: 7430 // - If two pointers point to non-static data members of the same object, 7431 // or to subobjects or array elements fo such members, recursively, the 7432 // pointer to the later declared member compares greater provided the 7433 // two members have the same access control and provided their class is 7434 // not a union. 7435 // [...] 7436 // - Otherwise pointer comparisons are unspecified. 7437 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && 7438 E->isRelationalOp()) { 7439 bool WasArrayIndex; 7440 unsigned Mismatch = 7441 FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator, 7442 RHSDesignator, WasArrayIndex); 7443 // At the point where the designators diverge, the comparison has a 7444 // specified value if: 7445 // - we are comparing array indices 7446 // - we are comparing fields of a union, or fields with the same access 7447 // Otherwise, the result is unspecified and thus the comparison is not a 7448 // constant expression. 7449 if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() && 7450 Mismatch < RHSDesignator.Entries.size()) { 7451 const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]); 7452 const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]); 7453 if (!LF && !RF) 7454 CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes); 7455 else if (!LF) 7456 CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) 7457 << getAsBaseClass(LHSDesignator.Entries[Mismatch]) 7458 << RF->getParent() << RF; 7459 else if (!RF) 7460 CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) 7461 << getAsBaseClass(RHSDesignator.Entries[Mismatch]) 7462 << LF->getParent() << LF; 7463 else if (!LF->getParent()->isUnion() && 7464 LF->getAccess() != RF->getAccess()) 7465 CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access) 7466 << LF << LF->getAccess() << RF << RF->getAccess() 7467 << LF->getParent(); 7468 } 7469 } 7470 7471 // The comparison here must be unsigned, and performed with the same 7472 // width as the pointer. 7473 unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy); 7474 uint64_t CompareLHS = LHSOffset.getQuantity(); 7475 uint64_t CompareRHS = RHSOffset.getQuantity(); 7476 assert(PtrSize <= 64 && "Unexpected pointer width"); 7477 uint64_t Mask = ~0ULL >> (64 - PtrSize); 7478 CompareLHS &= Mask; 7479 CompareRHS &= Mask; 7480 7481 // If there is a base and this is a relational operator, we can only 7482 // compare pointers within the object in question; otherwise, the result 7483 // depends on where the object is located in memory. 7484 if (!LHSValue.Base.isNull() && E->isRelationalOp()) { 7485 QualType BaseTy = getType(LHSValue.Base); 7486 if (BaseTy->isIncompleteType()) 7487 return Error(E); 7488 CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy); 7489 uint64_t OffsetLimit = Size.getQuantity(); 7490 if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit) 7491 return Error(E); 7492 } 7493 7494 switch (E->getOpcode()) { 7495 default: llvm_unreachable("missing comparison operator"); 7496 case BO_LT: return Success(CompareLHS < CompareRHS, E); 7497 case BO_GT: return Success(CompareLHS > CompareRHS, E); 7498 case BO_LE: return Success(CompareLHS <= CompareRHS, E); 7499 case BO_GE: return Success(CompareLHS >= CompareRHS, E); 7500 case BO_EQ: return Success(CompareLHS == CompareRHS, E); 7501 case BO_NE: return Success(CompareLHS != CompareRHS, E); 7502 } 7503 } 7504 } 7505 7506 if (LHSTy->isMemberPointerType()) { 7507 assert(E->isEqualityOp() && "unexpected member pointer operation"); 7508 assert(RHSTy->isMemberPointerType() && "invalid comparison"); 7509 7510 MemberPtr LHSValue, RHSValue; 7511 7512 bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info); 7513 if (!LHSOK && Info.keepEvaluatingAfterFailure()) 7514 return false; 7515 7516 if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK) 7517 return false; 7518 7519 // C++11 [expr.eq]p2: 7520 // If both operands are null, they compare equal. Otherwise if only one is 7521 // null, they compare unequal. 7522 if (!LHSValue.getDecl() || !RHSValue.getDecl()) { 7523 bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl(); 7524 return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E); 7525 } 7526 7527 // Otherwise if either is a pointer to a virtual member function, the 7528 // result is unspecified. 7529 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl())) 7530 if (MD->isVirtual()) 7531 CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; 7532 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl())) 7533 if (MD->isVirtual()) 7534 CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; 7535 7536 // Otherwise they compare equal if and only if they would refer to the 7537 // same member of the same most derived object or the same subobject if 7538 // they were dereferenced with a hypothetical object of the associated 7539 // class type. 7540 bool Equal = LHSValue == RHSValue; 7541 return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E); 7542 } 7543 7544 if (LHSTy->isNullPtrType()) { 7545 assert(E->isComparisonOp() && "unexpected nullptr operation"); 7546 assert(RHSTy->isNullPtrType() && "missing pointer conversion"); 7547 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t 7548 // are compared, the result is true of the operator is <=, >= or ==, and 7549 // false otherwise. 7550 BinaryOperator::Opcode Opcode = E->getOpcode(); 7551 return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E); 7552 } 7553 7554 assert((!LHSTy->isIntegralOrEnumerationType() || 7555 !RHSTy->isIntegralOrEnumerationType()) && 7556 "DataRecursiveIntBinOpEvaluator should have handled integral types"); 7557 // We can't continue from here for non-integral types. 7558 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 7559 } 7560 7561 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with 7562 /// a result as the expression's type. 7563 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr( 7564 const UnaryExprOrTypeTraitExpr *E) { 7565 switch(E->getKind()) { 7566 case UETT_AlignOf: { 7567 if (E->isArgumentType()) 7568 return Success(GetAlignOfType(Info, E->getArgumentType()), E); 7569 else 7570 return Success(GetAlignOfExpr(Info, E->getArgumentExpr()), E); 7571 } 7572 7573 case UETT_VecStep: { 7574 QualType Ty = E->getTypeOfArgument(); 7575 7576 if (Ty->isVectorType()) { 7577 unsigned n = Ty->castAs<VectorType>()->getNumElements(); 7578 7579 // The vec_step built-in functions that take a 3-component 7580 // vector return 4. (OpenCL 1.1 spec 6.11.12) 7581 if (n == 3) 7582 n = 4; 7583 7584 return Success(n, E); 7585 } else 7586 return Success(1, E); 7587 } 7588 7589 case UETT_SizeOf: { 7590 QualType SrcTy = E->getTypeOfArgument(); 7591 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, 7592 // the result is the size of the referenced type." 7593 if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>()) 7594 SrcTy = Ref->getPointeeType(); 7595 7596 CharUnits Sizeof; 7597 if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof)) 7598 return false; 7599 return Success(Sizeof, E); 7600 } 7601 case UETT_OpenMPRequiredSimdAlign: 7602 assert(E->isArgumentType()); 7603 return Success( 7604 Info.Ctx.toCharUnitsFromBits( 7605 Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType())) 7606 .getQuantity(), 7607 E); 7608 } 7609 7610 llvm_unreachable("unknown expr/type trait"); 7611 } 7612 7613 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) { 7614 CharUnits Result; 7615 unsigned n = OOE->getNumComponents(); 7616 if (n == 0) 7617 return Error(OOE); 7618 QualType CurrentType = OOE->getTypeSourceInfo()->getType(); 7619 for (unsigned i = 0; i != n; ++i) { 7620 OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i); 7621 switch (ON.getKind()) { 7622 case OffsetOfExpr::OffsetOfNode::Array: { 7623 const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex()); 7624 APSInt IdxResult; 7625 if (!EvaluateInteger(Idx, IdxResult, Info)) 7626 return false; 7627 const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType); 7628 if (!AT) 7629 return Error(OOE); 7630 CurrentType = AT->getElementType(); 7631 CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType); 7632 Result += IdxResult.getSExtValue() * ElementSize; 7633 break; 7634 } 7635 7636 case OffsetOfExpr::OffsetOfNode::Field: { 7637 FieldDecl *MemberDecl = ON.getField(); 7638 const RecordType *RT = CurrentType->getAs<RecordType>(); 7639 if (!RT) 7640 return Error(OOE); 7641 RecordDecl *RD = RT->getDecl(); 7642 if (RD->isInvalidDecl()) return false; 7643 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); 7644 unsigned i = MemberDecl->getFieldIndex(); 7645 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 7646 Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i)); 7647 CurrentType = MemberDecl->getType().getNonReferenceType(); 7648 break; 7649 } 7650 7651 case OffsetOfExpr::OffsetOfNode::Identifier: 7652 llvm_unreachable("dependent __builtin_offsetof"); 7653 7654 case OffsetOfExpr::OffsetOfNode::Base: { 7655 CXXBaseSpecifier *BaseSpec = ON.getBase(); 7656 if (BaseSpec->isVirtual()) 7657 return Error(OOE); 7658 7659 // Find the layout of the class whose base we are looking into. 7660 const RecordType *RT = CurrentType->getAs<RecordType>(); 7661 if (!RT) 7662 return Error(OOE); 7663 RecordDecl *RD = RT->getDecl(); 7664 if (RD->isInvalidDecl()) return false; 7665 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); 7666 7667 // Find the base class itself. 7668 CurrentType = BaseSpec->getType(); 7669 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 7670 if (!BaseRT) 7671 return Error(OOE); 7672 7673 // Add the offset to the base. 7674 Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl())); 7675 break; 7676 } 7677 } 7678 } 7679 return Success(Result, OOE); 7680 } 7681 7682 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 7683 switch (E->getOpcode()) { 7684 default: 7685 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. 7686 // See C99 6.6p3. 7687 return Error(E); 7688 case UO_Extension: 7689 // FIXME: Should extension allow i-c-e extension expressions in its scope? 7690 // If so, we could clear the diagnostic ID. 7691 return Visit(E->getSubExpr()); 7692 case UO_Plus: 7693 // The result is just the value. 7694 return Visit(E->getSubExpr()); 7695 case UO_Minus: { 7696 if (!Visit(E->getSubExpr())) 7697 return false; 7698 if (!Result.isInt()) return Error(E); 7699 const APSInt &Value = Result.getInt(); 7700 if (Value.isSigned() && Value.isMinSignedValue() && 7701 !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1), 7702 E->getType())) 7703 return false; 7704 return Success(-Value, E); 7705 } 7706 case UO_Not: { 7707 if (!Visit(E->getSubExpr())) 7708 return false; 7709 if (!Result.isInt()) return Error(E); 7710 return Success(~Result.getInt(), E); 7711 } 7712 case UO_LNot: { 7713 bool bres; 7714 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) 7715 return false; 7716 return Success(!bres, E); 7717 } 7718 } 7719 } 7720 7721 /// HandleCast - This is used to evaluate implicit or explicit casts where the 7722 /// result type is integer. 7723 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) { 7724 const Expr *SubExpr = E->getSubExpr(); 7725 QualType DestType = E->getType(); 7726 QualType SrcType = SubExpr->getType(); 7727 7728 switch (E->getCastKind()) { 7729 case CK_BaseToDerived: 7730 case CK_DerivedToBase: 7731 case CK_UncheckedDerivedToBase: 7732 case CK_Dynamic: 7733 case CK_ToUnion: 7734 case CK_ArrayToPointerDecay: 7735 case CK_FunctionToPointerDecay: 7736 case CK_NullToPointer: 7737 case CK_NullToMemberPointer: 7738 case CK_BaseToDerivedMemberPointer: 7739 case CK_DerivedToBaseMemberPointer: 7740 case CK_ReinterpretMemberPointer: 7741 case CK_ConstructorConversion: 7742 case CK_IntegralToPointer: 7743 case CK_ToVoid: 7744 case CK_VectorSplat: 7745 case CK_IntegralToFloating: 7746 case CK_FloatingCast: 7747 case CK_CPointerToObjCPointerCast: 7748 case CK_BlockPointerToObjCPointerCast: 7749 case CK_AnyPointerToBlockPointerCast: 7750 case CK_ObjCObjectLValueCast: 7751 case CK_FloatingRealToComplex: 7752 case CK_FloatingComplexToReal: 7753 case CK_FloatingComplexCast: 7754 case CK_FloatingComplexToIntegralComplex: 7755 case CK_IntegralRealToComplex: 7756 case CK_IntegralComplexCast: 7757 case CK_IntegralComplexToFloatingComplex: 7758 case CK_BuiltinFnToFnPtr: 7759 case CK_ZeroToOCLEvent: 7760 case CK_NonAtomicToAtomic: 7761 case CK_AddressSpaceConversion: 7762 llvm_unreachable("invalid cast kind for integral value"); 7763 7764 case CK_BitCast: 7765 case CK_Dependent: 7766 case CK_LValueBitCast: 7767 case CK_ARCProduceObject: 7768 case CK_ARCConsumeObject: 7769 case CK_ARCReclaimReturnedObject: 7770 case CK_ARCExtendBlockObject: 7771 case CK_CopyAndAutoreleaseBlockObject: 7772 return Error(E); 7773 7774 case CK_UserDefinedConversion: 7775 case CK_LValueToRValue: 7776 case CK_AtomicToNonAtomic: 7777 case CK_NoOp: 7778 return ExprEvaluatorBaseTy::VisitCastExpr(E); 7779 7780 case CK_MemberPointerToBoolean: 7781 case CK_PointerToBoolean: 7782 case CK_IntegralToBoolean: 7783 case CK_FloatingToBoolean: 7784 case CK_FloatingComplexToBoolean: 7785 case CK_IntegralComplexToBoolean: { 7786 bool BoolResult; 7787 if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info)) 7788 return false; 7789 return Success(BoolResult, E); 7790 } 7791 7792 case CK_IntegralCast: { 7793 if (!Visit(SubExpr)) 7794 return false; 7795 7796 if (!Result.isInt()) { 7797 // Allow casts of address-of-label differences if they are no-ops 7798 // or narrowing. (The narrowing case isn't actually guaranteed to 7799 // be constant-evaluatable except in some narrow cases which are hard 7800 // to detect here. We let it through on the assumption the user knows 7801 // what they are doing.) 7802 if (Result.isAddrLabelDiff()) 7803 return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType); 7804 // Only allow casts of lvalues if they are lossless. 7805 return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType); 7806 } 7807 7808 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, 7809 Result.getInt()), E); 7810 } 7811 7812 case CK_PointerToIntegral: { 7813 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2; 7814 7815 LValue LV; 7816 if (!EvaluatePointer(SubExpr, LV, Info)) 7817 return false; 7818 7819 if (LV.getLValueBase()) { 7820 // Only allow based lvalue casts if they are lossless. 7821 // FIXME: Allow a larger integer size than the pointer size, and allow 7822 // narrowing back down to pointer width in subsequent integral casts. 7823 // FIXME: Check integer type's active bits, not its type size. 7824 if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType)) 7825 return Error(E); 7826 7827 LV.Designator.setInvalid(); 7828 LV.moveInto(Result); 7829 return true; 7830 } 7831 7832 APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(), 7833 SrcType); 7834 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E); 7835 } 7836 7837 case CK_IntegralComplexToReal: { 7838 ComplexValue C; 7839 if (!EvaluateComplex(SubExpr, C, Info)) 7840 return false; 7841 return Success(C.getComplexIntReal(), E); 7842 } 7843 7844 case CK_FloatingToIntegral: { 7845 APFloat F(0.0); 7846 if (!EvaluateFloat(SubExpr, F, Info)) 7847 return false; 7848 7849 APSInt Value; 7850 if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value)) 7851 return false; 7852 return Success(Value, E); 7853 } 7854 } 7855 7856 llvm_unreachable("unknown cast resulting in integral value"); 7857 } 7858 7859 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { 7860 if (E->getSubExpr()->getType()->isAnyComplexType()) { 7861 ComplexValue LV; 7862 if (!EvaluateComplex(E->getSubExpr(), LV, Info)) 7863 return false; 7864 if (!LV.isComplexInt()) 7865 return Error(E); 7866 return Success(LV.getComplexIntReal(), E); 7867 } 7868 7869 return Visit(E->getSubExpr()); 7870 } 7871 7872 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 7873 if (E->getSubExpr()->getType()->isComplexIntegerType()) { 7874 ComplexValue LV; 7875 if (!EvaluateComplex(E->getSubExpr(), LV, Info)) 7876 return false; 7877 if (!LV.isComplexInt()) 7878 return Error(E); 7879 return Success(LV.getComplexIntImag(), E); 7880 } 7881 7882 VisitIgnoredValue(E->getSubExpr()); 7883 return Success(0, E); 7884 } 7885 7886 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { 7887 return Success(E->getPackLength(), E); 7888 } 7889 7890 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 7891 return Success(E->getValue(), E); 7892 } 7893 7894 //===----------------------------------------------------------------------===// 7895 // Float Evaluation 7896 //===----------------------------------------------------------------------===// 7897 7898 namespace { 7899 class FloatExprEvaluator 7900 : public ExprEvaluatorBase<FloatExprEvaluator> { 7901 APFloat &Result; 7902 public: 7903 FloatExprEvaluator(EvalInfo &info, APFloat &result) 7904 : ExprEvaluatorBaseTy(info), Result(result) {} 7905 7906 bool Success(const APValue &V, const Expr *e) { 7907 Result = V.getFloat(); 7908 return true; 7909 } 7910 7911 bool ZeroInitialization(const Expr *E) { 7912 Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType())); 7913 return true; 7914 } 7915 7916 bool VisitCallExpr(const CallExpr *E); 7917 7918 bool VisitUnaryOperator(const UnaryOperator *E); 7919 bool VisitBinaryOperator(const BinaryOperator *E); 7920 bool VisitFloatingLiteral(const FloatingLiteral *E); 7921 bool VisitCastExpr(const CastExpr *E); 7922 7923 bool VisitUnaryReal(const UnaryOperator *E); 7924 bool VisitUnaryImag(const UnaryOperator *E); 7925 7926 // FIXME: Missing: array subscript of vector, member of vector 7927 }; 7928 } // end anonymous namespace 7929 7930 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) { 7931 assert(E->isRValue() && E->getType()->isRealFloatingType()); 7932 return FloatExprEvaluator(Info, Result).Visit(E); 7933 } 7934 7935 static bool TryEvaluateBuiltinNaN(const ASTContext &Context, 7936 QualType ResultTy, 7937 const Expr *Arg, 7938 bool SNaN, 7939 llvm::APFloat &Result) { 7940 const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); 7941 if (!S) return false; 7942 7943 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy); 7944 7945 llvm::APInt fill; 7946 7947 // Treat empty strings as if they were zero. 7948 if (S->getString().empty()) 7949 fill = llvm::APInt(32, 0); 7950 else if (S->getString().getAsInteger(0, fill)) 7951 return false; 7952 7953 if (Context.getTargetInfo().isNan2008()) { 7954 if (SNaN) 7955 Result = llvm::APFloat::getSNaN(Sem, false, &fill); 7956 else 7957 Result = llvm::APFloat::getQNaN(Sem, false, &fill); 7958 } else { 7959 // Prior to IEEE 754-2008, architectures were allowed to choose whether 7960 // the first bit of their significand was set for qNaN or sNaN. MIPS chose 7961 // a different encoding to what became a standard in 2008, and for pre- 7962 // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as 7963 // sNaN. This is now known as "legacy NaN" encoding. 7964 if (SNaN) 7965 Result = llvm::APFloat::getQNaN(Sem, false, &fill); 7966 else 7967 Result = llvm::APFloat::getSNaN(Sem, false, &fill); 7968 } 7969 7970 return true; 7971 } 7972 7973 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) { 7974 switch (E->getBuiltinCallee()) { 7975 default: 7976 return ExprEvaluatorBaseTy::VisitCallExpr(E); 7977 7978 case Builtin::BI__builtin_huge_val: 7979 case Builtin::BI__builtin_huge_valf: 7980 case Builtin::BI__builtin_huge_vall: 7981 case Builtin::BI__builtin_inf: 7982 case Builtin::BI__builtin_inff: 7983 case Builtin::BI__builtin_infl: { 7984 const llvm::fltSemantics &Sem = 7985 Info.Ctx.getFloatTypeSemantics(E->getType()); 7986 Result = llvm::APFloat::getInf(Sem); 7987 return true; 7988 } 7989 7990 case Builtin::BI__builtin_nans: 7991 case Builtin::BI__builtin_nansf: 7992 case Builtin::BI__builtin_nansl: 7993 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), 7994 true, Result)) 7995 return Error(E); 7996 return true; 7997 7998 case Builtin::BI__builtin_nan: 7999 case Builtin::BI__builtin_nanf: 8000 case Builtin::BI__builtin_nanl: 8001 // If this is __builtin_nan() turn this into a nan, otherwise we 8002 // can't constant fold it. 8003 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), 8004 false, Result)) 8005 return Error(E); 8006 return true; 8007 8008 case Builtin::BI__builtin_fabs: 8009 case Builtin::BI__builtin_fabsf: 8010 case Builtin::BI__builtin_fabsl: 8011 if (!EvaluateFloat(E->getArg(0), Result, Info)) 8012 return false; 8013 8014 if (Result.isNegative()) 8015 Result.changeSign(); 8016 return true; 8017 8018 // FIXME: Builtin::BI__builtin_powi 8019 // FIXME: Builtin::BI__builtin_powif 8020 // FIXME: Builtin::BI__builtin_powil 8021 8022 case Builtin::BI__builtin_copysign: 8023 case Builtin::BI__builtin_copysignf: 8024 case Builtin::BI__builtin_copysignl: { 8025 APFloat RHS(0.); 8026 if (!EvaluateFloat(E->getArg(0), Result, Info) || 8027 !EvaluateFloat(E->getArg(1), RHS, Info)) 8028 return false; 8029 Result.copySign(RHS); 8030 return true; 8031 } 8032 } 8033 } 8034 8035 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { 8036 if (E->getSubExpr()->getType()->isAnyComplexType()) { 8037 ComplexValue CV; 8038 if (!EvaluateComplex(E->getSubExpr(), CV, Info)) 8039 return false; 8040 Result = CV.FloatReal; 8041 return true; 8042 } 8043 8044 return Visit(E->getSubExpr()); 8045 } 8046 8047 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { 8048 if (E->getSubExpr()->getType()->isAnyComplexType()) { 8049 ComplexValue CV; 8050 if (!EvaluateComplex(E->getSubExpr(), CV, Info)) 8051 return false; 8052 Result = CV.FloatImag; 8053 return true; 8054 } 8055 8056 VisitIgnoredValue(E->getSubExpr()); 8057 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType()); 8058 Result = llvm::APFloat::getZero(Sem); 8059 return true; 8060 } 8061 8062 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 8063 switch (E->getOpcode()) { 8064 default: return Error(E); 8065 case UO_Plus: 8066 return EvaluateFloat(E->getSubExpr(), Result, Info); 8067 case UO_Minus: 8068 if (!EvaluateFloat(E->getSubExpr(), Result, Info)) 8069 return false; 8070 Result.changeSign(); 8071 return true; 8072 } 8073 } 8074 8075 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 8076 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) 8077 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 8078 8079 APFloat RHS(0.0); 8080 bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info); 8081 if (!LHSOK && !Info.keepEvaluatingAfterFailure()) 8082 return false; 8083 return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK && 8084 handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS); 8085 } 8086 8087 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) { 8088 Result = E->getValue(); 8089 return true; 8090 } 8091 8092 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) { 8093 const Expr* SubExpr = E->getSubExpr(); 8094 8095 switch (E->getCastKind()) { 8096 default: 8097 return ExprEvaluatorBaseTy::VisitCastExpr(E); 8098 8099 case CK_IntegralToFloating: { 8100 APSInt IntResult; 8101 return EvaluateInteger(SubExpr, IntResult, Info) && 8102 HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult, 8103 E->getType(), Result); 8104 } 8105 8106 case CK_FloatingCast: { 8107 if (!Visit(SubExpr)) 8108 return false; 8109 return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(), 8110 Result); 8111 } 8112 8113 case CK_FloatingComplexToReal: { 8114 ComplexValue V; 8115 if (!EvaluateComplex(SubExpr, V, Info)) 8116 return false; 8117 Result = V.getComplexFloatReal(); 8118 return true; 8119 } 8120 } 8121 } 8122 8123 //===----------------------------------------------------------------------===// 8124 // Complex Evaluation (for float and integer) 8125 //===----------------------------------------------------------------------===// 8126 8127 namespace { 8128 class ComplexExprEvaluator 8129 : public ExprEvaluatorBase<ComplexExprEvaluator> { 8130 ComplexValue &Result; 8131 8132 public: 8133 ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result) 8134 : ExprEvaluatorBaseTy(info), Result(Result) {} 8135 8136 bool Success(const APValue &V, const Expr *e) { 8137 Result.setFrom(V); 8138 return true; 8139 } 8140 8141 bool ZeroInitialization(const Expr *E); 8142 8143 //===--------------------------------------------------------------------===// 8144 // Visitor Methods 8145 //===--------------------------------------------------------------------===// 8146 8147 bool VisitImaginaryLiteral(const ImaginaryLiteral *E); 8148 bool VisitCastExpr(const CastExpr *E); 8149 bool VisitBinaryOperator(const BinaryOperator *E); 8150 bool VisitUnaryOperator(const UnaryOperator *E); 8151 bool VisitInitListExpr(const InitListExpr *E); 8152 }; 8153 } // end anonymous namespace 8154 8155 static bool EvaluateComplex(const Expr *E, ComplexValue &Result, 8156 EvalInfo &Info) { 8157 assert(E->isRValue() && E->getType()->isAnyComplexType()); 8158 return ComplexExprEvaluator(Info, Result).Visit(E); 8159 } 8160 8161 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) { 8162 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 8163 if (ElemTy->isRealFloatingType()) { 8164 Result.makeComplexFloat(); 8165 APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy)); 8166 Result.FloatReal = Zero; 8167 Result.FloatImag = Zero; 8168 } else { 8169 Result.makeComplexInt(); 8170 APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy); 8171 Result.IntReal = Zero; 8172 Result.IntImag = Zero; 8173 } 8174 return true; 8175 } 8176 8177 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) { 8178 const Expr* SubExpr = E->getSubExpr(); 8179 8180 if (SubExpr->getType()->isRealFloatingType()) { 8181 Result.makeComplexFloat(); 8182 APFloat &Imag = Result.FloatImag; 8183 if (!EvaluateFloat(SubExpr, Imag, Info)) 8184 return false; 8185 8186 Result.FloatReal = APFloat(Imag.getSemantics()); 8187 return true; 8188 } else { 8189 assert(SubExpr->getType()->isIntegerType() && 8190 "Unexpected imaginary literal."); 8191 8192 Result.makeComplexInt(); 8193 APSInt &Imag = Result.IntImag; 8194 if (!EvaluateInteger(SubExpr, Imag, Info)) 8195 return false; 8196 8197 Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned()); 8198 return true; 8199 } 8200 } 8201 8202 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) { 8203 8204 switch (E->getCastKind()) { 8205 case CK_BitCast: 8206 case CK_BaseToDerived: 8207 case CK_DerivedToBase: 8208 case CK_UncheckedDerivedToBase: 8209 case CK_Dynamic: 8210 case CK_ToUnion: 8211 case CK_ArrayToPointerDecay: 8212 case CK_FunctionToPointerDecay: 8213 case CK_NullToPointer: 8214 case CK_NullToMemberPointer: 8215 case CK_BaseToDerivedMemberPointer: 8216 case CK_DerivedToBaseMemberPointer: 8217 case CK_MemberPointerToBoolean: 8218 case CK_ReinterpretMemberPointer: 8219 case CK_ConstructorConversion: 8220 case CK_IntegralToPointer: 8221 case CK_PointerToIntegral: 8222 case CK_PointerToBoolean: 8223 case CK_ToVoid: 8224 case CK_VectorSplat: 8225 case CK_IntegralCast: 8226 case CK_IntegralToBoolean: 8227 case CK_IntegralToFloating: 8228 case CK_FloatingToIntegral: 8229 case CK_FloatingToBoolean: 8230 case CK_FloatingCast: 8231 case CK_CPointerToObjCPointerCast: 8232 case CK_BlockPointerToObjCPointerCast: 8233 case CK_AnyPointerToBlockPointerCast: 8234 case CK_ObjCObjectLValueCast: 8235 case CK_FloatingComplexToReal: 8236 case CK_FloatingComplexToBoolean: 8237 case CK_IntegralComplexToReal: 8238 case CK_IntegralComplexToBoolean: 8239 case CK_ARCProduceObject: 8240 case CK_ARCConsumeObject: 8241 case CK_ARCReclaimReturnedObject: 8242 case CK_ARCExtendBlockObject: 8243 case CK_CopyAndAutoreleaseBlockObject: 8244 case CK_BuiltinFnToFnPtr: 8245 case CK_ZeroToOCLEvent: 8246 case CK_NonAtomicToAtomic: 8247 case CK_AddressSpaceConversion: 8248 llvm_unreachable("invalid cast kind for complex value"); 8249 8250 case CK_LValueToRValue: 8251 case CK_AtomicToNonAtomic: 8252 case CK_NoOp: 8253 return ExprEvaluatorBaseTy::VisitCastExpr(E); 8254 8255 case CK_Dependent: 8256 case CK_LValueBitCast: 8257 case CK_UserDefinedConversion: 8258 return Error(E); 8259 8260 case CK_FloatingRealToComplex: { 8261 APFloat &Real = Result.FloatReal; 8262 if (!EvaluateFloat(E->getSubExpr(), Real, Info)) 8263 return false; 8264 8265 Result.makeComplexFloat(); 8266 Result.FloatImag = APFloat(Real.getSemantics()); 8267 return true; 8268 } 8269 8270 case CK_FloatingComplexCast: { 8271 if (!Visit(E->getSubExpr())) 8272 return false; 8273 8274 QualType To = E->getType()->getAs<ComplexType>()->getElementType(); 8275 QualType From 8276 = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType(); 8277 8278 return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) && 8279 HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag); 8280 } 8281 8282 case CK_FloatingComplexToIntegralComplex: { 8283 if (!Visit(E->getSubExpr())) 8284 return false; 8285 8286 QualType To = E->getType()->getAs<ComplexType>()->getElementType(); 8287 QualType From 8288 = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType(); 8289 Result.makeComplexInt(); 8290 return HandleFloatToIntCast(Info, E, From, Result.FloatReal, 8291 To, Result.IntReal) && 8292 HandleFloatToIntCast(Info, E, From, Result.FloatImag, 8293 To, Result.IntImag); 8294 } 8295 8296 case CK_IntegralRealToComplex: { 8297 APSInt &Real = Result.IntReal; 8298 if (!EvaluateInteger(E->getSubExpr(), Real, Info)) 8299 return false; 8300 8301 Result.makeComplexInt(); 8302 Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned()); 8303 return true; 8304 } 8305 8306 case CK_IntegralComplexCast: { 8307 if (!Visit(E->getSubExpr())) 8308 return false; 8309 8310 QualType To = E->getType()->getAs<ComplexType>()->getElementType(); 8311 QualType From 8312 = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType(); 8313 8314 Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal); 8315 Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag); 8316 return true; 8317 } 8318 8319 case CK_IntegralComplexToFloatingComplex: { 8320 if (!Visit(E->getSubExpr())) 8321 return false; 8322 8323 QualType To = E->getType()->castAs<ComplexType>()->getElementType(); 8324 QualType From 8325 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); 8326 Result.makeComplexFloat(); 8327 return HandleIntToFloatCast(Info, E, From, Result.IntReal, 8328 To, Result.FloatReal) && 8329 HandleIntToFloatCast(Info, E, From, Result.IntImag, 8330 To, Result.FloatImag); 8331 } 8332 } 8333 8334 llvm_unreachable("unknown cast resulting in complex value"); 8335 } 8336 8337 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { 8338 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) 8339 return ExprEvaluatorBaseTy::VisitBinaryOperator(E); 8340 8341 // Track whether the LHS or RHS is real at the type system level. When this is 8342 // the case we can simplify our evaluation strategy. 8343 bool LHSReal = false, RHSReal = false; 8344 8345 bool LHSOK; 8346 if (E->getLHS()->getType()->isRealFloatingType()) { 8347 LHSReal = true; 8348 APFloat &Real = Result.FloatReal; 8349 LHSOK = EvaluateFloat(E->getLHS(), Real, Info); 8350 if (LHSOK) { 8351 Result.makeComplexFloat(); 8352 Result.FloatImag = APFloat(Real.getSemantics()); 8353 } 8354 } else { 8355 LHSOK = Visit(E->getLHS()); 8356 } 8357 if (!LHSOK && !Info.keepEvaluatingAfterFailure()) 8358 return false; 8359 8360 ComplexValue RHS; 8361 if (E->getRHS()->getType()->isRealFloatingType()) { 8362 RHSReal = true; 8363 APFloat &Real = RHS.FloatReal; 8364 if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK) 8365 return false; 8366 RHS.makeComplexFloat(); 8367 RHS.FloatImag = APFloat(Real.getSemantics()); 8368 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) 8369 return false; 8370 8371 assert(!(LHSReal && RHSReal) && 8372 "Cannot have both operands of a complex operation be real."); 8373 switch (E->getOpcode()) { 8374 default: return Error(E); 8375 case BO_Add: 8376 if (Result.isComplexFloat()) { 8377 Result.getComplexFloatReal().add(RHS.getComplexFloatReal(), 8378 APFloat::rmNearestTiesToEven); 8379 if (LHSReal) 8380 Result.getComplexFloatImag() = RHS.getComplexFloatImag(); 8381 else if (!RHSReal) 8382 Result.getComplexFloatImag().add(RHS.getComplexFloatImag(), 8383 APFloat::rmNearestTiesToEven); 8384 } else { 8385 Result.getComplexIntReal() += RHS.getComplexIntReal(); 8386 Result.getComplexIntImag() += RHS.getComplexIntImag(); 8387 } 8388 break; 8389 case BO_Sub: 8390 if (Result.isComplexFloat()) { 8391 Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(), 8392 APFloat::rmNearestTiesToEven); 8393 if (LHSReal) { 8394 Result.getComplexFloatImag() = RHS.getComplexFloatImag(); 8395 Result.getComplexFloatImag().changeSign(); 8396 } else if (!RHSReal) { 8397 Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(), 8398 APFloat::rmNearestTiesToEven); 8399 } 8400 } else { 8401 Result.getComplexIntReal() -= RHS.getComplexIntReal(); 8402 Result.getComplexIntImag() -= RHS.getComplexIntImag(); 8403 } 8404 break; 8405 case BO_Mul: 8406 if (Result.isComplexFloat()) { 8407 // This is an implementation of complex multiplication according to the 8408 // constraints laid out in C11 Annex G. The implemantion uses the 8409 // following naming scheme: 8410 // (a + ib) * (c + id) 8411 ComplexValue LHS = Result; 8412 APFloat &A = LHS.getComplexFloatReal(); 8413 APFloat &B = LHS.getComplexFloatImag(); 8414 APFloat &C = RHS.getComplexFloatReal(); 8415 APFloat &D = RHS.getComplexFloatImag(); 8416 APFloat &ResR = Result.getComplexFloatReal(); 8417 APFloat &ResI = Result.getComplexFloatImag(); 8418 if (LHSReal) { 8419 assert(!RHSReal && "Cannot have two real operands for a complex op!"); 8420 ResR = A * C; 8421 ResI = A * D; 8422 } else if (RHSReal) { 8423 ResR = C * A; 8424 ResI = C * B; 8425 } else { 8426 // In the fully general case, we need to handle NaNs and infinities 8427 // robustly. 8428 APFloat AC = A * C; 8429 APFloat BD = B * D; 8430 APFloat AD = A * D; 8431 APFloat BC = B * C; 8432 ResR = AC - BD; 8433 ResI = AD + BC; 8434 if (ResR.isNaN() && ResI.isNaN()) { 8435 bool Recalc = false; 8436 if (A.isInfinity() || B.isInfinity()) { 8437 A = APFloat::copySign( 8438 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A); 8439 B = APFloat::copySign( 8440 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B); 8441 if (C.isNaN()) 8442 C = APFloat::copySign(APFloat(C.getSemantics()), C); 8443 if (D.isNaN()) 8444 D = APFloat::copySign(APFloat(D.getSemantics()), D); 8445 Recalc = true; 8446 } 8447 if (C.isInfinity() || D.isInfinity()) { 8448 C = APFloat::copySign( 8449 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C); 8450 D = APFloat::copySign( 8451 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D); 8452 if (A.isNaN()) 8453 A = APFloat::copySign(APFloat(A.getSemantics()), A); 8454 if (B.isNaN()) 8455 B = APFloat::copySign(APFloat(B.getSemantics()), B); 8456 Recalc = true; 8457 } 8458 if (!Recalc && (AC.isInfinity() || BD.isInfinity() || 8459 AD.isInfinity() || BC.isInfinity())) { 8460 if (A.isNaN()) 8461 A = APFloat::copySign(APFloat(A.getSemantics()), A); 8462 if (B.isNaN()) 8463 B = APFloat::copySign(APFloat(B.getSemantics()), B); 8464 if (C.isNaN()) 8465 C = APFloat::copySign(APFloat(C.getSemantics()), C); 8466 if (D.isNaN()) 8467 D = APFloat::copySign(APFloat(D.getSemantics()), D); 8468 Recalc = true; 8469 } 8470 if (Recalc) { 8471 ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D); 8472 ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C); 8473 } 8474 } 8475 } 8476 } else { 8477 ComplexValue LHS = Result; 8478 Result.getComplexIntReal() = 8479 (LHS.getComplexIntReal() * RHS.getComplexIntReal() - 8480 LHS.getComplexIntImag() * RHS.getComplexIntImag()); 8481 Result.getComplexIntImag() = 8482 (LHS.getComplexIntReal() * RHS.getComplexIntImag() + 8483 LHS.getComplexIntImag() * RHS.getComplexIntReal()); 8484 } 8485 break; 8486 case BO_Div: 8487 if (Result.isComplexFloat()) { 8488 // This is an implementation of complex division according to the 8489 // constraints laid out in C11 Annex G. The implemantion uses the 8490 // following naming scheme: 8491 // (a + ib) / (c + id) 8492 ComplexValue LHS = Result; 8493 APFloat &A = LHS.getComplexFloatReal(); 8494 APFloat &B = LHS.getComplexFloatImag(); 8495 APFloat &C = RHS.getComplexFloatReal(); 8496 APFloat &D = RHS.getComplexFloatImag(); 8497 APFloat &ResR = Result.getComplexFloatReal(); 8498 APFloat &ResI = Result.getComplexFloatImag(); 8499 if (RHSReal) { 8500 ResR = A / C; 8501 ResI = B / C; 8502 } else { 8503 if (LHSReal) { 8504 // No real optimizations we can do here, stub out with zero. 8505 B = APFloat::getZero(A.getSemantics()); 8506 } 8507 int DenomLogB = 0; 8508 APFloat MaxCD = maxnum(abs(C), abs(D)); 8509 if (MaxCD.isFinite()) { 8510 DenomLogB = ilogb(MaxCD); 8511 C = scalbn(C, -DenomLogB); 8512 D = scalbn(D, -DenomLogB); 8513 } 8514 APFloat Denom = C * C + D * D; 8515 ResR = scalbn((A * C + B * D) / Denom, -DenomLogB); 8516 ResI = scalbn((B * C - A * D) / Denom, -DenomLogB); 8517 if (ResR.isNaN() && ResI.isNaN()) { 8518 if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) { 8519 ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A; 8520 ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B; 8521 } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() && 8522 D.isFinite()) { 8523 A = APFloat::copySign( 8524 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A); 8525 B = APFloat::copySign( 8526 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B); 8527 ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D); 8528 ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D); 8529 } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) { 8530 C = APFloat::copySign( 8531 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C); 8532 D = APFloat::copySign( 8533 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D); 8534 ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D); 8535 ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D); 8536 } 8537 } 8538 } 8539 } else { 8540 if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0) 8541 return Error(E, diag::note_expr_divide_by_zero); 8542 8543 ComplexValue LHS = Result; 8544 APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() + 8545 RHS.getComplexIntImag() * RHS.getComplexIntImag(); 8546 Result.getComplexIntReal() = 8547 (LHS.getComplexIntReal() * RHS.getComplexIntReal() + 8548 LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den; 8549 Result.getComplexIntImag() = 8550 (LHS.getComplexIntImag() * RHS.getComplexIntReal() - 8551 LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den; 8552 } 8553 break; 8554 } 8555 8556 return true; 8557 } 8558 8559 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { 8560 // Get the operand value into 'Result'. 8561 if (!Visit(E->getSubExpr())) 8562 return false; 8563 8564 switch (E->getOpcode()) { 8565 default: 8566 return Error(E); 8567 case UO_Extension: 8568 return true; 8569 case UO_Plus: 8570 // The result is always just the subexpr. 8571 return true; 8572 case UO_Minus: 8573 if (Result.isComplexFloat()) { 8574 Result.getComplexFloatReal().changeSign(); 8575 Result.getComplexFloatImag().changeSign(); 8576 } 8577 else { 8578 Result.getComplexIntReal() = -Result.getComplexIntReal(); 8579 Result.getComplexIntImag() = -Result.getComplexIntImag(); 8580 } 8581 return true; 8582 case UO_Not: 8583 if (Result.isComplexFloat()) 8584 Result.getComplexFloatImag().changeSign(); 8585 else 8586 Result.getComplexIntImag() = -Result.getComplexIntImag(); 8587 return true; 8588 } 8589 } 8590 8591 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) { 8592 if (E->getNumInits() == 2) { 8593 if (E->getType()->isComplexType()) { 8594 Result.makeComplexFloat(); 8595 if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info)) 8596 return false; 8597 if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info)) 8598 return false; 8599 } else { 8600 Result.makeComplexInt(); 8601 if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info)) 8602 return false; 8603 if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info)) 8604 return false; 8605 } 8606 return true; 8607 } 8608 return ExprEvaluatorBaseTy::VisitInitListExpr(E); 8609 } 8610 8611 //===----------------------------------------------------------------------===// 8612 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic 8613 // implicit conversion. 8614 //===----------------------------------------------------------------------===// 8615 8616 namespace { 8617 class AtomicExprEvaluator : 8618 public ExprEvaluatorBase<AtomicExprEvaluator> { 8619 APValue &Result; 8620 public: 8621 AtomicExprEvaluator(EvalInfo &Info, APValue &Result) 8622 : ExprEvaluatorBaseTy(Info), Result(Result) {} 8623 8624 bool Success(const APValue &V, const Expr *E) { 8625 Result = V; 8626 return true; 8627 } 8628 8629 bool ZeroInitialization(const Expr *E) { 8630 ImplicitValueInitExpr VIE( 8631 E->getType()->castAs<AtomicType>()->getValueType()); 8632 return Evaluate(Result, Info, &VIE); 8633 } 8634 8635 bool VisitCastExpr(const CastExpr *E) { 8636 switch (E->getCastKind()) { 8637 default: 8638 return ExprEvaluatorBaseTy::VisitCastExpr(E); 8639 case CK_NonAtomicToAtomic: 8640 return Evaluate(Result, Info, E->getSubExpr()); 8641 } 8642 } 8643 }; 8644 } // end anonymous namespace 8645 8646 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info) { 8647 assert(E->isRValue() && E->getType()->isAtomicType()); 8648 return AtomicExprEvaluator(Info, Result).Visit(E); 8649 } 8650 8651 //===----------------------------------------------------------------------===// 8652 // Void expression evaluation, primarily for a cast to void on the LHS of a 8653 // comma operator 8654 //===----------------------------------------------------------------------===// 8655 8656 namespace { 8657 class VoidExprEvaluator 8658 : public ExprEvaluatorBase<VoidExprEvaluator> { 8659 public: 8660 VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {} 8661 8662 bool Success(const APValue &V, const Expr *e) { return true; } 8663 8664 bool VisitCastExpr(const CastExpr *E) { 8665 switch (E->getCastKind()) { 8666 default: 8667 return ExprEvaluatorBaseTy::VisitCastExpr(E); 8668 case CK_ToVoid: 8669 VisitIgnoredValue(E->getSubExpr()); 8670 return true; 8671 } 8672 } 8673 8674 bool VisitCallExpr(const CallExpr *E) { 8675 switch (E->getBuiltinCallee()) { 8676 default: 8677 return ExprEvaluatorBaseTy::VisitCallExpr(E); 8678 case Builtin::BI__assume: 8679 case Builtin::BI__builtin_assume: 8680 // The argument is not evaluated! 8681 return true; 8682 } 8683 } 8684 }; 8685 } // end anonymous namespace 8686 8687 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) { 8688 assert(E->isRValue() && E->getType()->isVoidType()); 8689 return VoidExprEvaluator(Info).Visit(E); 8690 } 8691 8692 //===----------------------------------------------------------------------===// 8693 // Top level Expr::EvaluateAsRValue method. 8694 //===----------------------------------------------------------------------===// 8695 8696 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) { 8697 // In C, function designators are not lvalues, but we evaluate them as if they 8698 // are. 8699 QualType T = E->getType(); 8700 if (E->isGLValue() || T->isFunctionType()) { 8701 LValue LV; 8702 if (!EvaluateLValue(E, LV, Info)) 8703 return false; 8704 LV.moveInto(Result); 8705 } else if (T->isVectorType()) { 8706 if (!EvaluateVector(E, Result, Info)) 8707 return false; 8708 } else if (T->isIntegralOrEnumerationType()) { 8709 if (!IntExprEvaluator(Info, Result).Visit(E)) 8710 return false; 8711 } else if (T->hasPointerRepresentation()) { 8712 LValue LV; 8713 if (!EvaluatePointer(E, LV, Info)) 8714 return false; 8715 LV.moveInto(Result); 8716 } else if (T->isRealFloatingType()) { 8717 llvm::APFloat F(0.0); 8718 if (!EvaluateFloat(E, F, Info)) 8719 return false; 8720 Result = APValue(F); 8721 } else if (T->isAnyComplexType()) { 8722 ComplexValue C; 8723 if (!EvaluateComplex(E, C, Info)) 8724 return false; 8725 C.moveInto(Result); 8726 } else if (T->isMemberPointerType()) { 8727 MemberPtr P; 8728 if (!EvaluateMemberPointer(E, P, Info)) 8729 return false; 8730 P.moveInto(Result); 8731 return true; 8732 } else if (T->isArrayType()) { 8733 LValue LV; 8734 LV.set(E, Info.CurrentCall->Index); 8735 APValue &Value = Info.CurrentCall->createTemporary(E, false); 8736 if (!EvaluateArray(E, LV, Value, Info)) 8737 return false; 8738 Result = Value; 8739 } else if (T->isRecordType()) { 8740 LValue LV; 8741 LV.set(E, Info.CurrentCall->Index); 8742 APValue &Value = Info.CurrentCall->createTemporary(E, false); 8743 if (!EvaluateRecord(E, LV, Value, Info)) 8744 return false; 8745 Result = Value; 8746 } else if (T->isVoidType()) { 8747 if (!Info.getLangOpts().CPlusPlus11) 8748 Info.CCEDiag(E, diag::note_constexpr_nonliteral) 8749 << E->getType(); 8750 if (!EvaluateVoid(E, Info)) 8751 return false; 8752 } else if (T->isAtomicType()) { 8753 if (!EvaluateAtomic(E, Result, Info)) 8754 return false; 8755 } else if (Info.getLangOpts().CPlusPlus11) { 8756 Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType(); 8757 return false; 8758 } else { 8759 Info.Diag(E, diag::note_invalid_subexpr_in_const_expr); 8760 return false; 8761 } 8762 8763 return true; 8764 } 8765 8766 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some 8767 /// cases, the in-place evaluation is essential, since later initializers for 8768 /// an object can indirectly refer to subobjects which were initialized earlier. 8769 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This, 8770 const Expr *E, bool AllowNonLiteralTypes) { 8771 assert(!E->isValueDependent()); 8772 8773 if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This)) 8774 return false; 8775 8776 if (E->isRValue()) { 8777 // Evaluate arrays and record types in-place, so that later initializers can 8778 // refer to earlier-initialized members of the object. 8779 if (E->getType()->isArrayType()) 8780 return EvaluateArray(E, This, Result, Info); 8781 else if (E->getType()->isRecordType()) 8782 return EvaluateRecord(E, This, Result, Info); 8783 } 8784 8785 // For any other type, in-place evaluation is unimportant. 8786 return Evaluate(Result, Info, E); 8787 } 8788 8789 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit 8790 /// lvalue-to-rvalue cast if it is an lvalue. 8791 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) { 8792 if (E->getType().isNull()) 8793 return false; 8794 8795 if (!CheckLiteralType(Info, E)) 8796 return false; 8797 8798 if (!::Evaluate(Result, Info, E)) 8799 return false; 8800 8801 if (E->isGLValue()) { 8802 LValue LV; 8803 LV.setFrom(Info.Ctx, Result); 8804 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) 8805 return false; 8806 } 8807 8808 // Check this core constant expression is a constant expression. 8809 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result); 8810 } 8811 8812 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result, 8813 const ASTContext &Ctx, bool &IsConst) { 8814 // Fast-path evaluations of integer literals, since we sometimes see files 8815 // containing vast quantities of these. 8816 if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) { 8817 Result.Val = APValue(APSInt(L->getValue(), 8818 L->getType()->isUnsignedIntegerType())); 8819 IsConst = true; 8820 return true; 8821 } 8822 8823 // This case should be rare, but we need to check it before we check on 8824 // the type below. 8825 if (Exp->getType().isNull()) { 8826 IsConst = false; 8827 return true; 8828 } 8829 8830 // FIXME: Evaluating values of large array and record types can cause 8831 // performance problems. Only do so in C++11 for now. 8832 if (Exp->isRValue() && (Exp->getType()->isArrayType() || 8833 Exp->getType()->isRecordType()) && 8834 !Ctx.getLangOpts().CPlusPlus11) { 8835 IsConst = false; 8836 return true; 8837 } 8838 return false; 8839 } 8840 8841 8842 /// EvaluateAsRValue - Return true if this is a constant which we can fold using 8843 /// any crazy technique (that has nothing to do with language standards) that 8844 /// we want to. If this function returns true, it returns the folded constant 8845 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion 8846 /// will be applied to the result. 8847 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const { 8848 bool IsConst; 8849 if (FastEvaluateAsRValue(this, Result, Ctx, IsConst)) 8850 return IsConst; 8851 8852 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); 8853 return ::EvaluateAsRValue(Info, this, Result.Val); 8854 } 8855 8856 bool Expr::EvaluateAsBooleanCondition(bool &Result, 8857 const ASTContext &Ctx) const { 8858 EvalResult Scratch; 8859 return EvaluateAsRValue(Scratch, Ctx) && 8860 HandleConversionToBool(Scratch.Val, Result); 8861 } 8862 8863 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result, 8864 Expr::SideEffectsKind SEK) { 8865 return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) || 8866 (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior); 8867 } 8868 8869 bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx, 8870 SideEffectsKind AllowSideEffects) const { 8871 if (!getType()->isIntegralOrEnumerationType()) 8872 return false; 8873 8874 EvalResult ExprResult; 8875 if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() || 8876 hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) 8877 return false; 8878 8879 Result = ExprResult.Val.getInt(); 8880 return true; 8881 } 8882 8883 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const { 8884 EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold); 8885 8886 LValue LV; 8887 if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects || 8888 !CheckLValueConstantExpression(Info, getExprLoc(), 8889 Ctx.getLValueReferenceType(getType()), LV)) 8890 return false; 8891 8892 LV.moveInto(Result.Val); 8893 return true; 8894 } 8895 8896 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx, 8897 const VarDecl *VD, 8898 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 8899 // FIXME: Evaluating initializers for large array and record types can cause 8900 // performance problems. Only do so in C++11 for now. 8901 if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) && 8902 !Ctx.getLangOpts().CPlusPlus11) 8903 return false; 8904 8905 Expr::EvalStatus EStatus; 8906 EStatus.Diag = &Notes; 8907 8908 EvalInfo InitInfo(Ctx, EStatus, VD->isConstexpr() 8909 ? EvalInfo::EM_ConstantExpression 8910 : EvalInfo::EM_ConstantFold); 8911 InitInfo.setEvaluatingDecl(VD, Value); 8912 8913 LValue LVal; 8914 LVal.set(VD); 8915 8916 // C++11 [basic.start.init]p2: 8917 // Variables with static storage duration or thread storage duration shall be 8918 // zero-initialized before any other initialization takes place. 8919 // This behavior is not present in C. 8920 if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() && 8921 !VD->getType()->isReferenceType()) { 8922 ImplicitValueInitExpr VIE(VD->getType()); 8923 if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE, 8924 /*AllowNonLiteralTypes=*/true)) 8925 return false; 8926 } 8927 8928 if (!EvaluateInPlace(Value, InitInfo, LVal, this, 8929 /*AllowNonLiteralTypes=*/true) || 8930 EStatus.HasSideEffects) 8931 return false; 8932 8933 return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(), 8934 Value); 8935 } 8936 8937 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be 8938 /// constant folded, but discard the result. 8939 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const { 8940 EvalResult Result; 8941 return EvaluateAsRValue(Result, Ctx) && 8942 !hasUnacceptableSideEffect(Result, SEK); 8943 } 8944 8945 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx, 8946 SmallVectorImpl<PartialDiagnosticAt> *Diag) const { 8947 EvalResult EvalResult; 8948 EvalResult.Diag = Diag; 8949 bool Result = EvaluateAsRValue(EvalResult, Ctx); 8950 (void)Result; 8951 assert(Result && "Could not evaluate expression"); 8952 assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer"); 8953 8954 return EvalResult.Val.getInt(); 8955 } 8956 8957 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const { 8958 bool IsConst; 8959 EvalResult EvalResult; 8960 if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) { 8961 EvalInfo Info(Ctx, EvalResult, EvalInfo::EM_EvaluateForOverflow); 8962 (void)::EvaluateAsRValue(Info, this, EvalResult.Val); 8963 } 8964 } 8965 8966 bool Expr::EvalResult::isGlobalLValue() const { 8967 assert(Val.isLValue()); 8968 return IsGlobalLValue(Val.getLValueBase()); 8969 } 8970 8971 8972 /// isIntegerConstantExpr - this recursive routine will test if an expression is 8973 /// an integer constant expression. 8974 8975 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, 8976 /// comma, etc 8977 8978 // CheckICE - This function does the fundamental ICE checking: the returned 8979 // ICEDiag contains an ICEKind indicating whether the expression is an ICE, 8980 // and a (possibly null) SourceLocation indicating the location of the problem. 8981 // 8982 // Note that to reduce code duplication, this helper does no evaluation 8983 // itself; the caller checks whether the expression is evaluatable, and 8984 // in the rare cases where CheckICE actually cares about the evaluated 8985 // value, it calls into Evalute. 8986 8987 namespace { 8988 8989 enum ICEKind { 8990 /// This expression is an ICE. 8991 IK_ICE, 8992 /// This expression is not an ICE, but if it isn't evaluated, it's 8993 /// a legal subexpression for an ICE. This return value is used to handle 8994 /// the comma operator in C99 mode, and non-constant subexpressions. 8995 IK_ICEIfUnevaluated, 8996 /// This expression is not an ICE, and is not a legal subexpression for one. 8997 IK_NotICE 8998 }; 8999 9000 struct ICEDiag { 9001 ICEKind Kind; 9002 SourceLocation Loc; 9003 9004 ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {} 9005 }; 9006 9007 } 9008 9009 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); } 9010 9011 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; } 9012 9013 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) { 9014 Expr::EvalResult EVResult; 9015 if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects || 9016 !EVResult.Val.isInt()) 9017 return ICEDiag(IK_NotICE, E->getLocStart()); 9018 9019 return NoDiag(); 9020 } 9021 9022 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) { 9023 assert(!E->isValueDependent() && "Should not see value dependent exprs!"); 9024 if (!E->getType()->isIntegralOrEnumerationType()) 9025 return ICEDiag(IK_NotICE, E->getLocStart()); 9026 9027 switch (E->getStmtClass()) { 9028 #define ABSTRACT_STMT(Node) 9029 #define STMT(Node, Base) case Expr::Node##Class: 9030 #define EXPR(Node, Base) 9031 #include "clang/AST/StmtNodes.inc" 9032 case Expr::PredefinedExprClass: 9033 case Expr::FloatingLiteralClass: 9034 case Expr::ImaginaryLiteralClass: 9035 case Expr::StringLiteralClass: 9036 case Expr::ArraySubscriptExprClass: 9037 case Expr::OMPArraySectionExprClass: 9038 case Expr::MemberExprClass: 9039 case Expr::CompoundAssignOperatorClass: 9040 case Expr::CompoundLiteralExprClass: 9041 case Expr::ExtVectorElementExprClass: 9042 case Expr::DesignatedInitExprClass: 9043 case Expr::NoInitExprClass: 9044 case Expr::DesignatedInitUpdateExprClass: 9045 case Expr::ImplicitValueInitExprClass: 9046 case Expr::ParenListExprClass: 9047 case Expr::VAArgExprClass: 9048 case Expr::AddrLabelExprClass: 9049 case Expr::StmtExprClass: 9050 case Expr::CXXMemberCallExprClass: 9051 case Expr::CUDAKernelCallExprClass: 9052 case Expr::CXXDynamicCastExprClass: 9053 case Expr::CXXTypeidExprClass: 9054 case Expr::CXXUuidofExprClass: 9055 case Expr::MSPropertyRefExprClass: 9056 case Expr::MSPropertySubscriptExprClass: 9057 case Expr::CXXNullPtrLiteralExprClass: 9058 case Expr::UserDefinedLiteralClass: 9059 case Expr::CXXThisExprClass: 9060 case Expr::CXXThrowExprClass: 9061 case Expr::CXXNewExprClass: 9062 case Expr::CXXDeleteExprClass: 9063 case Expr::CXXPseudoDestructorExprClass: 9064 case Expr::UnresolvedLookupExprClass: 9065 case Expr::TypoExprClass: 9066 case Expr::DependentScopeDeclRefExprClass: 9067 case Expr::CXXConstructExprClass: 9068 case Expr::CXXStdInitializerListExprClass: 9069 case Expr::CXXBindTemporaryExprClass: 9070 case Expr::ExprWithCleanupsClass: 9071 case Expr::CXXTemporaryObjectExprClass: 9072 case Expr::CXXUnresolvedConstructExprClass: 9073 case Expr::CXXDependentScopeMemberExprClass: 9074 case Expr::UnresolvedMemberExprClass: 9075 case Expr::ObjCStringLiteralClass: 9076 case Expr::ObjCBoxedExprClass: 9077 case Expr::ObjCArrayLiteralClass: 9078 case Expr::ObjCDictionaryLiteralClass: 9079 case Expr::ObjCEncodeExprClass: 9080 case Expr::ObjCMessageExprClass: 9081 case Expr::ObjCSelectorExprClass: 9082 case Expr::ObjCProtocolExprClass: 9083 case Expr::ObjCIvarRefExprClass: 9084 case Expr::ObjCPropertyRefExprClass: 9085 case Expr::ObjCSubscriptRefExprClass: 9086 case Expr::ObjCIsaExprClass: 9087 case Expr::ShuffleVectorExprClass: 9088 case Expr::ConvertVectorExprClass: 9089 case Expr::BlockExprClass: 9090 case Expr::NoStmtClass: 9091 case Expr::OpaqueValueExprClass: 9092 case Expr::PackExpansionExprClass: 9093 case Expr::SubstNonTypeTemplateParmPackExprClass: 9094 case Expr::FunctionParmPackExprClass: 9095 case Expr::AsTypeExprClass: 9096 case Expr::ObjCIndirectCopyRestoreExprClass: 9097 case Expr::MaterializeTemporaryExprClass: 9098 case Expr::PseudoObjectExprClass: 9099 case Expr::AtomicExprClass: 9100 case Expr::LambdaExprClass: 9101 case Expr::CXXFoldExprClass: 9102 case Expr::CoawaitExprClass: 9103 case Expr::CoyieldExprClass: 9104 return ICEDiag(IK_NotICE, E->getLocStart()); 9105 9106 case Expr::InitListExprClass: { 9107 // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the 9108 // form "T x = { a };" is equivalent to "T x = a;". 9109 // Unless we're initializing a reference, T is a scalar as it is known to be 9110 // of integral or enumeration type. 9111 if (E->isRValue()) 9112 if (cast<InitListExpr>(E)->getNumInits() == 1) 9113 return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx); 9114 return ICEDiag(IK_NotICE, E->getLocStart()); 9115 } 9116 9117 case Expr::SizeOfPackExprClass: 9118 case Expr::GNUNullExprClass: 9119 // GCC considers the GNU __null value to be an integral constant expression. 9120 return NoDiag(); 9121 9122 case Expr::SubstNonTypeTemplateParmExprClass: 9123 return 9124 CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx); 9125 9126 case Expr::ParenExprClass: 9127 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx); 9128 case Expr::GenericSelectionExprClass: 9129 return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx); 9130 case Expr::IntegerLiteralClass: 9131 case Expr::CharacterLiteralClass: 9132 case Expr::ObjCBoolLiteralExprClass: 9133 case Expr::CXXBoolLiteralExprClass: 9134 case Expr::CXXScalarValueInitExprClass: 9135 case Expr::TypeTraitExprClass: 9136 case Expr::ArrayTypeTraitExprClass: 9137 case Expr::ExpressionTraitExprClass: 9138 case Expr::CXXNoexceptExprClass: 9139 return NoDiag(); 9140 case Expr::CallExprClass: 9141 case Expr::CXXOperatorCallExprClass: { 9142 // C99 6.6/3 allows function calls within unevaluated subexpressions of 9143 // constant expressions, but they can never be ICEs because an ICE cannot 9144 // contain an operand of (pointer to) function type. 9145 const CallExpr *CE = cast<CallExpr>(E); 9146 if (CE->getBuiltinCallee()) 9147 return CheckEvalInICE(E, Ctx); 9148 return ICEDiag(IK_NotICE, E->getLocStart()); 9149 } 9150 case Expr::DeclRefExprClass: { 9151 if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl())) 9152 return NoDiag(); 9153 const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl()); 9154 if (Ctx.getLangOpts().CPlusPlus && 9155 D && IsConstNonVolatile(D->getType())) { 9156 // Parameter variables are never constants. Without this check, 9157 // getAnyInitializer() can find a default argument, which leads 9158 // to chaos. 9159 if (isa<ParmVarDecl>(D)) 9160 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation()); 9161 9162 // C++ 7.1.5.1p2 9163 // A variable of non-volatile const-qualified integral or enumeration 9164 // type initialized by an ICE can be used in ICEs. 9165 if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) { 9166 if (!Dcl->getType()->isIntegralOrEnumerationType()) 9167 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation()); 9168 9169 const VarDecl *VD; 9170 // Look for a declaration of this variable that has an initializer, and 9171 // check whether it is an ICE. 9172 if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE()) 9173 return NoDiag(); 9174 else 9175 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation()); 9176 } 9177 } 9178 return ICEDiag(IK_NotICE, E->getLocStart()); 9179 } 9180 case Expr::UnaryOperatorClass: { 9181 const UnaryOperator *Exp = cast<UnaryOperator>(E); 9182 switch (Exp->getOpcode()) { 9183 case UO_PostInc: 9184 case UO_PostDec: 9185 case UO_PreInc: 9186 case UO_PreDec: 9187 case UO_AddrOf: 9188 case UO_Deref: 9189 case UO_Coawait: 9190 // C99 6.6/3 allows increment and decrement within unevaluated 9191 // subexpressions of constant expressions, but they can never be ICEs 9192 // because an ICE cannot contain an lvalue operand. 9193 return ICEDiag(IK_NotICE, E->getLocStart()); 9194 case UO_Extension: 9195 case UO_LNot: 9196 case UO_Plus: 9197 case UO_Minus: 9198 case UO_Not: 9199 case UO_Real: 9200 case UO_Imag: 9201 return CheckICE(Exp->getSubExpr(), Ctx); 9202 } 9203 9204 // OffsetOf falls through here. 9205 } 9206 case Expr::OffsetOfExprClass: { 9207 // Note that per C99, offsetof must be an ICE. And AFAIK, using 9208 // EvaluateAsRValue matches the proposed gcc behavior for cases like 9209 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect 9210 // compliance: we should warn earlier for offsetof expressions with 9211 // array subscripts that aren't ICEs, and if the array subscripts 9212 // are ICEs, the value of the offsetof must be an integer constant. 9213 return CheckEvalInICE(E, Ctx); 9214 } 9215 case Expr::UnaryExprOrTypeTraitExprClass: { 9216 const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E); 9217 if ((Exp->getKind() == UETT_SizeOf) && 9218 Exp->getTypeOfArgument()->isVariableArrayType()) 9219 return ICEDiag(IK_NotICE, E->getLocStart()); 9220 return NoDiag(); 9221 } 9222 case Expr::BinaryOperatorClass: { 9223 const BinaryOperator *Exp = cast<BinaryOperator>(E); 9224 switch (Exp->getOpcode()) { 9225 case BO_PtrMemD: 9226 case BO_PtrMemI: 9227 case BO_Assign: 9228 case BO_MulAssign: 9229 case BO_DivAssign: 9230 case BO_RemAssign: 9231 case BO_AddAssign: 9232 case BO_SubAssign: 9233 case BO_ShlAssign: 9234 case BO_ShrAssign: 9235 case BO_AndAssign: 9236 case BO_XorAssign: 9237 case BO_OrAssign: 9238 // C99 6.6/3 allows assignments within unevaluated subexpressions of 9239 // constant expressions, but they can never be ICEs because an ICE cannot 9240 // contain an lvalue operand. 9241 return ICEDiag(IK_NotICE, E->getLocStart()); 9242 9243 case BO_Mul: 9244 case BO_Div: 9245 case BO_Rem: 9246 case BO_Add: 9247 case BO_Sub: 9248 case BO_Shl: 9249 case BO_Shr: 9250 case BO_LT: 9251 case BO_GT: 9252 case BO_LE: 9253 case BO_GE: 9254 case BO_EQ: 9255 case BO_NE: 9256 case BO_And: 9257 case BO_Xor: 9258 case BO_Or: 9259 case BO_Comma: { 9260 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); 9261 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); 9262 if (Exp->getOpcode() == BO_Div || 9263 Exp->getOpcode() == BO_Rem) { 9264 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure 9265 // we don't evaluate one. 9266 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) { 9267 llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx); 9268 if (REval == 0) 9269 return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart()); 9270 if (REval.isSigned() && REval.isAllOnesValue()) { 9271 llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx); 9272 if (LEval.isMinSignedValue()) 9273 return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart()); 9274 } 9275 } 9276 } 9277 if (Exp->getOpcode() == BO_Comma) { 9278 if (Ctx.getLangOpts().C99) { 9279 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE 9280 // if it isn't evaluated. 9281 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) 9282 return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart()); 9283 } else { 9284 // In both C89 and C++, commas in ICEs are illegal. 9285 return ICEDiag(IK_NotICE, E->getLocStart()); 9286 } 9287 } 9288 return Worst(LHSResult, RHSResult); 9289 } 9290 case BO_LAnd: 9291 case BO_LOr: { 9292 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); 9293 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); 9294 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) { 9295 // Rare case where the RHS has a comma "side-effect"; we need 9296 // to actually check the condition to see whether the side 9297 // with the comma is evaluated. 9298 if ((Exp->getOpcode() == BO_LAnd) != 9299 (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0)) 9300 return RHSResult; 9301 return NoDiag(); 9302 } 9303 9304 return Worst(LHSResult, RHSResult); 9305 } 9306 } 9307 } 9308 case Expr::ImplicitCastExprClass: 9309 case Expr::CStyleCastExprClass: 9310 case Expr::CXXFunctionalCastExprClass: 9311 case Expr::CXXStaticCastExprClass: 9312 case Expr::CXXReinterpretCastExprClass: 9313 case Expr::CXXConstCastExprClass: 9314 case Expr::ObjCBridgedCastExprClass: { 9315 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr(); 9316 if (isa<ExplicitCastExpr>(E)) { 9317 if (const FloatingLiteral *FL 9318 = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) { 9319 unsigned DestWidth = Ctx.getIntWidth(E->getType()); 9320 bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType(); 9321 APSInt IgnoredVal(DestWidth, !DestSigned); 9322 bool Ignored; 9323 // If the value does not fit in the destination type, the behavior is 9324 // undefined, so we are not required to treat it as a constant 9325 // expression. 9326 if (FL->getValue().convertToInteger(IgnoredVal, 9327 llvm::APFloat::rmTowardZero, 9328 &Ignored) & APFloat::opInvalidOp) 9329 return ICEDiag(IK_NotICE, E->getLocStart()); 9330 return NoDiag(); 9331 } 9332 } 9333 switch (cast<CastExpr>(E)->getCastKind()) { 9334 case CK_LValueToRValue: 9335 case CK_AtomicToNonAtomic: 9336 case CK_NonAtomicToAtomic: 9337 case CK_NoOp: 9338 case CK_IntegralToBoolean: 9339 case CK_IntegralCast: 9340 return CheckICE(SubExpr, Ctx); 9341 default: 9342 return ICEDiag(IK_NotICE, E->getLocStart()); 9343 } 9344 } 9345 case Expr::BinaryConditionalOperatorClass: { 9346 const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E); 9347 ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx); 9348 if (CommonResult.Kind == IK_NotICE) return CommonResult; 9349 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); 9350 if (FalseResult.Kind == IK_NotICE) return FalseResult; 9351 if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult; 9352 if (FalseResult.Kind == IK_ICEIfUnevaluated && 9353 Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag(); 9354 return FalseResult; 9355 } 9356 case Expr::ConditionalOperatorClass: { 9357 const ConditionalOperator *Exp = cast<ConditionalOperator>(E); 9358 // If the condition (ignoring parens) is a __builtin_constant_p call, 9359 // then only the true side is actually considered in an integer constant 9360 // expression, and it is fully evaluated. This is an important GNU 9361 // extension. See GCC PR38377 for discussion. 9362 if (const CallExpr *CallCE 9363 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts())) 9364 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) 9365 return CheckEvalInICE(E, Ctx); 9366 ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx); 9367 if (CondResult.Kind == IK_NotICE) 9368 return CondResult; 9369 9370 ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx); 9371 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); 9372 9373 if (TrueResult.Kind == IK_NotICE) 9374 return TrueResult; 9375 if (FalseResult.Kind == IK_NotICE) 9376 return FalseResult; 9377 if (CondResult.Kind == IK_ICEIfUnevaluated) 9378 return CondResult; 9379 if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE) 9380 return NoDiag(); 9381 // Rare case where the diagnostics depend on which side is evaluated 9382 // Note that if we get here, CondResult is 0, and at least one of 9383 // TrueResult and FalseResult is non-zero. 9384 if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) 9385 return FalseResult; 9386 return TrueResult; 9387 } 9388 case Expr::CXXDefaultArgExprClass: 9389 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx); 9390 case Expr::CXXDefaultInitExprClass: 9391 return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx); 9392 case Expr::ChooseExprClass: { 9393 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx); 9394 } 9395 } 9396 9397 llvm_unreachable("Invalid StmtClass!"); 9398 } 9399 9400 /// Evaluate an expression as a C++11 integral constant expression. 9401 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx, 9402 const Expr *E, 9403 llvm::APSInt *Value, 9404 SourceLocation *Loc) { 9405 if (!E->getType()->isIntegralOrEnumerationType()) { 9406 if (Loc) *Loc = E->getExprLoc(); 9407 return false; 9408 } 9409 9410 APValue Result; 9411 if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc)) 9412 return false; 9413 9414 if (!Result.isInt()) { 9415 if (Loc) *Loc = E->getExprLoc(); 9416 return false; 9417 } 9418 9419 if (Value) *Value = Result.getInt(); 9420 return true; 9421 } 9422 9423 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx, 9424 SourceLocation *Loc) const { 9425 if (Ctx.getLangOpts().CPlusPlus11) 9426 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc); 9427 9428 ICEDiag D = CheckICE(this, Ctx); 9429 if (D.Kind != IK_ICE) { 9430 if (Loc) *Loc = D.Loc; 9431 return false; 9432 } 9433 return true; 9434 } 9435 9436 bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx, 9437 SourceLocation *Loc, bool isEvaluated) const { 9438 if (Ctx.getLangOpts().CPlusPlus11) 9439 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc); 9440 9441 if (!isIntegerConstantExpr(Ctx, Loc)) 9442 return false; 9443 // The only possible side-effects here are due to UB discovered in the 9444 // evaluation (for instance, INT_MAX + 1). In such a case, we are still 9445 // required to treat the expression as an ICE, so we produce the folded 9446 // value. 9447 if (!EvaluateAsInt(Value, Ctx, SE_AllowSideEffects)) 9448 llvm_unreachable("ICE cannot be evaluated!"); 9449 return true; 9450 } 9451 9452 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const { 9453 return CheckICE(this, Ctx).Kind == IK_ICE; 9454 } 9455 9456 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result, 9457 SourceLocation *Loc) const { 9458 // We support this checking in C++98 mode in order to diagnose compatibility 9459 // issues. 9460 assert(Ctx.getLangOpts().CPlusPlus); 9461 9462 // Build evaluation settings. 9463 Expr::EvalStatus Status; 9464 SmallVector<PartialDiagnosticAt, 8> Diags; 9465 Status.Diag = &Diags; 9466 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); 9467 9468 APValue Scratch; 9469 bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch); 9470 9471 if (!Diags.empty()) { 9472 IsConstExpr = false; 9473 if (Loc) *Loc = Diags[0].first; 9474 } else if (!IsConstExpr) { 9475 // FIXME: This shouldn't happen. 9476 if (Loc) *Loc = getExprLoc(); 9477 } 9478 9479 return IsConstExpr; 9480 } 9481 9482 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx, 9483 const FunctionDecl *Callee, 9484 ArrayRef<const Expr*> Args) const { 9485 Expr::EvalStatus Status; 9486 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated); 9487 9488 ArgVector ArgValues(Args.size()); 9489 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end(); 9490 I != E; ++I) { 9491 if ((*I)->isValueDependent() || 9492 !Evaluate(ArgValues[I - Args.begin()], Info, *I)) 9493 // If evaluation fails, throw away the argument entirely. 9494 ArgValues[I - Args.begin()] = APValue(); 9495 if (Info.EvalStatus.HasSideEffects) 9496 return false; 9497 } 9498 9499 // Build fake call to Callee. 9500 CallStackFrame Frame(Info, Callee->getLocation(), Callee, /*This*/nullptr, 9501 ArgValues.data()); 9502 return Evaluate(Value, Info, this) && !Info.EvalStatus.HasSideEffects; 9503 } 9504 9505 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD, 9506 SmallVectorImpl< 9507 PartialDiagnosticAt> &Diags) { 9508 // FIXME: It would be useful to check constexpr function templates, but at the 9509 // moment the constant expression evaluator cannot cope with the non-rigorous 9510 // ASTs which we build for dependent expressions. 9511 if (FD->isDependentContext()) 9512 return true; 9513 9514 Expr::EvalStatus Status; 9515 Status.Diag = &Diags; 9516 9517 EvalInfo Info(FD->getASTContext(), Status, 9518 EvalInfo::EM_PotentialConstantExpression); 9519 9520 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 9521 const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr; 9522 9523 // Fabricate an arbitrary expression on the stack and pretend that it 9524 // is a temporary being used as the 'this' pointer. 9525 LValue This; 9526 ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy); 9527 This.set(&VIE, Info.CurrentCall->Index); 9528 9529 ArrayRef<const Expr*> Args; 9530 9531 SourceLocation Loc = FD->getLocation(); 9532 9533 APValue Scratch; 9534 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 9535 // Evaluate the call as a constant initializer, to allow the construction 9536 // of objects of non-literal types. 9537 Info.setEvaluatingDecl(This.getLValueBase(), Scratch); 9538 HandleConstructorCall(Loc, This, Args, CD, Info, Scratch); 9539 } else 9540 HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr, 9541 Args, FD->getBody(), Info, Scratch, nullptr); 9542 9543 return Diags.empty(); 9544 } 9545 9546 bool Expr::isPotentialConstantExprUnevaluated(Expr *E, 9547 const FunctionDecl *FD, 9548 SmallVectorImpl< 9549 PartialDiagnosticAt> &Diags) { 9550 Expr::EvalStatus Status; 9551 Status.Diag = &Diags; 9552 9553 EvalInfo Info(FD->getASTContext(), Status, 9554 EvalInfo::EM_PotentialConstantExpressionUnevaluated); 9555 9556 // Fabricate a call stack frame to give the arguments a plausible cover story. 9557 ArrayRef<const Expr*> Args; 9558 ArgVector ArgValues(0); 9559 bool Success = EvaluateArgs(Args, ArgValues, Info); 9560 (void)Success; 9561 assert(Success && 9562 "Failed to set up arguments for potential constant evaluation"); 9563 CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data()); 9564 9565 APValue ResultScratch; 9566 Evaluate(ResultScratch, Info, E); 9567 return Diags.empty(); 9568 } 9569 9570 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx, 9571 unsigned Type) const { 9572 if (!getType()->isPointerType()) 9573 return false; 9574 9575 Expr::EvalStatus Status; 9576 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); 9577 return ::tryEvaluateBuiltinObjectSize(this, Type, Info, Result); 9578 } 9579