1 //===---- DemandedBits.cpp - Determine demanded bits ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a demanded bits analysis. A demanded bit is one that 11 // contributes to a result; bits that are not demanded can be either zero or 12 // one without affecting control or data flow. For example in this sequence: 13 // 14 // %1 = add i32 %x, %y 15 // %2 = trunc i32 %1 to i16 16 // 17 // Only the lowest 16 bits of %1 are demanded; the rest are removed by the 18 // trunc. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Analysis/DemandedBits.h" 23 #include "llvm/Transforms/Scalar.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DepthFirstIterator.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/Analysis/AssumptionCache.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/InstIterator.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 using namespace llvm; 44 45 #define DEBUG_TYPE "demanded-bits" 46 47 char DemandedBits::ID = 0; 48 INITIALIZE_PASS_BEGIN(DemandedBits, "demanded-bits", "Demanded bits analysis", 49 false, false) 50 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 51 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 52 INITIALIZE_PASS_END(DemandedBits, "demanded-bits", "Demanded bits analysis", 53 false, false) 54 55 DemandedBits::DemandedBits() : FunctionPass(ID), F(nullptr), Analyzed(false) { 56 initializeDemandedBitsPass(*PassRegistry::getPassRegistry()); 57 } 58 59 void DemandedBits::getAnalysisUsage(AnalysisUsage &AU) const { 60 AU.setPreservesCFG(); 61 AU.addRequired<AssumptionCacheTracker>(); 62 AU.addRequired<DominatorTreeWrapperPass>(); 63 AU.setPreservesAll(); 64 } 65 66 static bool isAlwaysLive(Instruction *I) { 67 return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 68 I->isEHPad() || I->mayHaveSideEffects(); 69 } 70 71 void DemandedBits::determineLiveOperandBits( 72 const Instruction *UserI, const Instruction *I, unsigned OperandNo, 73 const APInt &AOut, APInt &AB, APInt &KnownZero, APInt &KnownOne, 74 APInt &KnownZero2, APInt &KnownOne2) { 75 unsigned BitWidth = AB.getBitWidth(); 76 77 // We're called once per operand, but for some instructions, we need to 78 // compute known bits of both operands in order to determine the live bits of 79 // either (when both operands are instructions themselves). We don't, 80 // however, want to do this twice, so we cache the result in APInts that live 81 // in the caller. For the two-relevant-operands case, both operand values are 82 // provided here. 83 auto ComputeKnownBits = 84 [&](unsigned BitWidth, const Value *V1, const Value *V2) { 85 const DataLayout &DL = I->getModule()->getDataLayout(); 86 KnownZero = APInt(BitWidth, 0); 87 KnownOne = APInt(BitWidth, 0); 88 computeKnownBits(const_cast<Value *>(V1), KnownZero, KnownOne, DL, 0, 89 AC, UserI, DT); 90 91 if (V2) { 92 KnownZero2 = APInt(BitWidth, 0); 93 KnownOne2 = APInt(BitWidth, 0); 94 computeKnownBits(const_cast<Value *>(V2), KnownZero2, KnownOne2, DL, 95 0, AC, UserI, DT); 96 } 97 }; 98 99 switch (UserI->getOpcode()) { 100 default: break; 101 case Instruction::Call: 102 case Instruction::Invoke: 103 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI)) 104 switch (II->getIntrinsicID()) { 105 default: break; 106 case Intrinsic::bswap: 107 // The alive bits of the input are the swapped alive bits of 108 // the output. 109 AB = AOut.byteSwap(); 110 break; 111 case Intrinsic::ctlz: 112 if (OperandNo == 0) { 113 // We need some output bits, so we need all bits of the 114 // input to the left of, and including, the leftmost bit 115 // known to be one. 116 ComputeKnownBits(BitWidth, I, nullptr); 117 AB = APInt::getHighBitsSet(BitWidth, 118 std::min(BitWidth, KnownOne.countLeadingZeros()+1)); 119 } 120 break; 121 case Intrinsic::cttz: 122 if (OperandNo == 0) { 123 // We need some output bits, so we need all bits of the 124 // input to the right of, and including, the rightmost bit 125 // known to be one. 126 ComputeKnownBits(BitWidth, I, nullptr); 127 AB = APInt::getLowBitsSet(BitWidth, 128 std::min(BitWidth, KnownOne.countTrailingZeros()+1)); 129 } 130 break; 131 } 132 break; 133 case Instruction::Add: 134 case Instruction::Sub: 135 case Instruction::Mul: 136 // Find the highest live output bit. We don't need any more input 137 // bits than that (adds, and thus subtracts, ripple only to the 138 // left). 139 AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits()); 140 break; 141 case Instruction::Shl: 142 if (OperandNo == 0) 143 if (ConstantInt *CI = 144 dyn_cast<ConstantInt>(UserI->getOperand(1))) { 145 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1); 146 AB = AOut.lshr(ShiftAmt); 147 148 // If the shift is nuw/nsw, then the high bits are not dead 149 // (because we've promised that they *must* be zero). 150 const ShlOperator *S = cast<ShlOperator>(UserI); 151 if (S->hasNoSignedWrap()) 152 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); 153 else if (S->hasNoUnsignedWrap()) 154 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 155 } 156 break; 157 case Instruction::LShr: 158 if (OperandNo == 0) 159 if (ConstantInt *CI = 160 dyn_cast<ConstantInt>(UserI->getOperand(1))) { 161 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1); 162 AB = AOut.shl(ShiftAmt); 163 164 // If the shift is exact, then the low bits are not dead 165 // (they must be zero). 166 if (cast<LShrOperator>(UserI)->isExact()) 167 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 168 } 169 break; 170 case Instruction::AShr: 171 if (OperandNo == 0) 172 if (ConstantInt *CI = 173 dyn_cast<ConstantInt>(UserI->getOperand(1))) { 174 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1); 175 AB = AOut.shl(ShiftAmt); 176 // Because the high input bit is replicated into the 177 // high-order bits of the result, if we need any of those 178 // bits, then we must keep the highest input bit. 179 if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt)) 180 .getBoolValue()) 181 AB.setBit(BitWidth-1); 182 183 // If the shift is exact, then the low bits are not dead 184 // (they must be zero). 185 if (cast<AShrOperator>(UserI)->isExact()) 186 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 187 } 188 break; 189 case Instruction::And: 190 AB = AOut; 191 192 // For bits that are known zero, the corresponding bits in the 193 // other operand are dead (unless they're both zero, in which 194 // case they can't both be dead, so just mark the LHS bits as 195 // dead). 196 if (OperandNo == 0) { 197 ComputeKnownBits(BitWidth, I, UserI->getOperand(1)); 198 AB &= ~KnownZero2; 199 } else { 200 if (!isa<Instruction>(UserI->getOperand(0))) 201 ComputeKnownBits(BitWidth, UserI->getOperand(0), I); 202 AB &= ~(KnownZero & ~KnownZero2); 203 } 204 break; 205 case Instruction::Or: 206 AB = AOut; 207 208 // For bits that are known one, the corresponding bits in the 209 // other operand are dead (unless they're both one, in which 210 // case they can't both be dead, so just mark the LHS bits as 211 // dead). 212 if (OperandNo == 0) { 213 ComputeKnownBits(BitWidth, I, UserI->getOperand(1)); 214 AB &= ~KnownOne2; 215 } else { 216 if (!isa<Instruction>(UserI->getOperand(0))) 217 ComputeKnownBits(BitWidth, UserI->getOperand(0), I); 218 AB &= ~(KnownOne & ~KnownOne2); 219 } 220 break; 221 case Instruction::Xor: 222 case Instruction::PHI: 223 AB = AOut; 224 break; 225 case Instruction::Trunc: 226 AB = AOut.zext(BitWidth); 227 break; 228 case Instruction::ZExt: 229 AB = AOut.trunc(BitWidth); 230 break; 231 case Instruction::SExt: 232 AB = AOut.trunc(BitWidth); 233 // Because the high input bit is replicated into the 234 // high-order bits of the result, if we need any of those 235 // bits, then we must keep the highest input bit. 236 if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(), 237 AOut.getBitWidth() - BitWidth)) 238 .getBoolValue()) 239 AB.setBit(BitWidth-1); 240 break; 241 case Instruction::Select: 242 if (OperandNo != 0) 243 AB = AOut; 244 break; 245 case Instruction::ICmp: 246 // Count the number of leading zeroes in each operand. 247 ComputeKnownBits(BitWidth, I, UserI->getOperand(1)); 248 auto NumLeadingZeroes = std::min(KnownZero.countLeadingOnes(), 249 KnownZero2.countLeadingOnes()); 250 AB = ~APInt::getHighBitsSet(BitWidth, NumLeadingZeroes); 251 break; 252 } 253 } 254 255 bool DemandedBits::runOnFunction(Function& Fn) { 256 F = &Fn; 257 Analyzed = false; 258 return false; 259 } 260 261 void DemandedBits::performAnalysis() { 262 if (Analyzed) 263 // Analysis already completed for this function. 264 return; 265 Analyzed = true; 266 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(*F); 267 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 268 269 Visited.clear(); 270 AliveBits.clear(); 271 272 SmallVector<Instruction*, 128> Worklist; 273 274 // Collect the set of "root" instructions that are known live. 275 for (Instruction &I : instructions(*F)) { 276 if (!isAlwaysLive(&I)) 277 continue; 278 279 DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n"); 280 // For integer-valued instructions, set up an initial empty set of alive 281 // bits and add the instruction to the work list. For other instructions 282 // add their operands to the work list (for integer values operands, mark 283 // all bits as live). 284 if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) { 285 if (!AliveBits.count(&I)) { 286 AliveBits[&I] = APInt(IT->getBitWidth(), 0); 287 Worklist.push_back(&I); 288 } 289 290 continue; 291 } 292 293 // Non-integer-typed instructions... 294 for (Use &OI : I.operands()) { 295 if (Instruction *J = dyn_cast<Instruction>(OI)) { 296 if (IntegerType *IT = dyn_cast<IntegerType>(J->getType())) 297 AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth()); 298 Worklist.push_back(J); 299 } 300 } 301 // To save memory, we don't add I to the Visited set here. Instead, we 302 // check isAlwaysLive on every instruction when searching for dead 303 // instructions later (we need to check isAlwaysLive for the 304 // integer-typed instructions anyway). 305 } 306 307 // Propagate liveness backwards to operands. 308 while (!Worklist.empty()) { 309 Instruction *UserI = Worklist.pop_back_val(); 310 311 DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI); 312 APInt AOut; 313 if (UserI->getType()->isIntegerTy()) { 314 AOut = AliveBits[UserI]; 315 DEBUG(dbgs() << " Alive Out: " << AOut); 316 } 317 DEBUG(dbgs() << "\n"); 318 319 if (!UserI->getType()->isIntegerTy()) 320 Visited.insert(UserI); 321 322 APInt KnownZero, KnownOne, KnownZero2, KnownOne2; 323 // Compute the set of alive bits for each operand. These are anded into the 324 // existing set, if any, and if that changes the set of alive bits, the 325 // operand is added to the work-list. 326 for (Use &OI : UserI->operands()) { 327 if (Instruction *I = dyn_cast<Instruction>(OI)) { 328 if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) { 329 unsigned BitWidth = IT->getBitWidth(); 330 APInt AB = APInt::getAllOnesValue(BitWidth); 331 if (UserI->getType()->isIntegerTy() && !AOut && 332 !isAlwaysLive(UserI)) { 333 AB = APInt(BitWidth, 0); 334 } else { 335 // If all bits of the output are dead, then all bits of the input 336 // Bits of each operand that are used to compute alive bits of the 337 // output are alive, all others are dead. 338 determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB, 339 KnownZero, KnownOne, 340 KnownZero2, KnownOne2); 341 } 342 343 // If we've added to the set of alive bits (or the operand has not 344 // been previously visited), then re-queue the operand to be visited 345 // again. 346 APInt ABPrev(BitWidth, 0); 347 auto ABI = AliveBits.find(I); 348 if (ABI != AliveBits.end()) 349 ABPrev = ABI->second; 350 351 APInt ABNew = AB | ABPrev; 352 if (ABNew != ABPrev || ABI == AliveBits.end()) { 353 AliveBits[I] = std::move(ABNew); 354 Worklist.push_back(I); 355 } 356 } else if (!Visited.count(I)) { 357 Worklist.push_back(I); 358 } 359 } 360 } 361 } 362 } 363 364 APInt DemandedBits::getDemandedBits(Instruction *I) { 365 performAnalysis(); 366 367 const DataLayout &DL = I->getParent()->getModule()->getDataLayout(); 368 if (AliveBits.count(I)) 369 return AliveBits[I]; 370 return APInt::getAllOnesValue(DL.getTypeSizeInBits(I->getType())); 371 } 372 373 bool DemandedBits::isInstructionDead(Instruction *I) { 374 performAnalysis(); 375 376 return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() && 377 !isAlwaysLive(I); 378 } 379 380 void DemandedBits::print(raw_ostream &OS, const Module *M) const { 381 // This is gross. But the alternative is making all the state mutable 382 // just because of this one debugging method. 383 const_cast<DemandedBits*>(this)->performAnalysis(); 384 for (auto &KV : AliveBits) { 385 OS << "DemandedBits: 0x" << utohexstr(KV.second.getLimitedValue()) << " for " 386 << *KV.first << "\n"; 387 } 388 } 389 390 FunctionPass *llvm::createDemandedBitsPass() { 391 return new DemandedBits(); 392 } 393