Home | History | Annotate | Download | only in Analysis
      1 //===---- DemandedBits.cpp - Determine demanded bits ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass implements a demanded bits analysis. A demanded bit is one that
     11 // contributes to a result; bits that are not demanded can be either zero or
     12 // one without affecting control or data flow. For example in this sequence:
     13 //
     14 //   %1 = add i32 %x, %y
     15 //   %2 = trunc i32 %1 to i16
     16 //
     17 // Only the lowest 16 bits of %1 are demanded; the rest are removed by the
     18 // trunc.
     19 //
     20 //===----------------------------------------------------------------------===//
     21 
     22 #include "llvm/Analysis/DemandedBits.h"
     23 #include "llvm/Transforms/Scalar.h"
     24 #include "llvm/ADT/DenseMap.h"
     25 #include "llvm/ADT/DepthFirstIterator.h"
     26 #include "llvm/ADT/SmallPtrSet.h"
     27 #include "llvm/ADT/SmallVector.h"
     28 #include "llvm/ADT/StringExtras.h"
     29 #include "llvm/Analysis/AssumptionCache.h"
     30 #include "llvm/Analysis/ValueTracking.h"
     31 #include "llvm/IR/BasicBlock.h"
     32 #include "llvm/IR/CFG.h"
     33 #include "llvm/IR/DataLayout.h"
     34 #include "llvm/IR/Dominators.h"
     35 #include "llvm/IR/InstIterator.h"
     36 #include "llvm/IR/Instructions.h"
     37 #include "llvm/IR/IntrinsicInst.h"
     38 #include "llvm/IR/Module.h"
     39 #include "llvm/IR/Operator.h"
     40 #include "llvm/Pass.h"
     41 #include "llvm/Support/Debug.h"
     42 #include "llvm/Support/raw_ostream.h"
     43 using namespace llvm;
     44 
     45 #define DEBUG_TYPE "demanded-bits"
     46 
     47 char DemandedBits::ID = 0;
     48 INITIALIZE_PASS_BEGIN(DemandedBits, "demanded-bits", "Demanded bits analysis",
     49                       false, false)
     50 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
     51 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
     52 INITIALIZE_PASS_END(DemandedBits, "demanded-bits", "Demanded bits analysis",
     53                     false, false)
     54 
     55 DemandedBits::DemandedBits() : FunctionPass(ID), F(nullptr), Analyzed(false) {
     56   initializeDemandedBitsPass(*PassRegistry::getPassRegistry());
     57 }
     58 
     59 void DemandedBits::getAnalysisUsage(AnalysisUsage &AU) const {
     60   AU.setPreservesCFG();
     61   AU.addRequired<AssumptionCacheTracker>();
     62   AU.addRequired<DominatorTreeWrapperPass>();
     63   AU.setPreservesAll();
     64 }
     65 
     66 static bool isAlwaysLive(Instruction *I) {
     67   return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
     68       I->isEHPad() || I->mayHaveSideEffects();
     69 }
     70 
     71 void DemandedBits::determineLiveOperandBits(
     72     const Instruction *UserI, const Instruction *I, unsigned OperandNo,
     73     const APInt &AOut, APInt &AB, APInt &KnownZero, APInt &KnownOne,
     74     APInt &KnownZero2, APInt &KnownOne2) {
     75   unsigned BitWidth = AB.getBitWidth();
     76 
     77   // We're called once per operand, but for some instructions, we need to
     78   // compute known bits of both operands in order to determine the live bits of
     79   // either (when both operands are instructions themselves). We don't,
     80   // however, want to do this twice, so we cache the result in APInts that live
     81   // in the caller. For the two-relevant-operands case, both operand values are
     82   // provided here.
     83   auto ComputeKnownBits =
     84       [&](unsigned BitWidth, const Value *V1, const Value *V2) {
     85         const DataLayout &DL = I->getModule()->getDataLayout();
     86         KnownZero = APInt(BitWidth, 0);
     87         KnownOne = APInt(BitWidth, 0);
     88         computeKnownBits(const_cast<Value *>(V1), KnownZero, KnownOne, DL, 0,
     89                          AC, UserI, DT);
     90 
     91         if (V2) {
     92           KnownZero2 = APInt(BitWidth, 0);
     93           KnownOne2 = APInt(BitWidth, 0);
     94           computeKnownBits(const_cast<Value *>(V2), KnownZero2, KnownOne2, DL,
     95                            0, AC, UserI, DT);
     96         }
     97       };
     98 
     99   switch (UserI->getOpcode()) {
    100   default: break;
    101   case Instruction::Call:
    102   case Instruction::Invoke:
    103     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
    104       switch (II->getIntrinsicID()) {
    105       default: break;
    106       case Intrinsic::bswap:
    107         // The alive bits of the input are the swapped alive bits of
    108         // the output.
    109         AB = AOut.byteSwap();
    110         break;
    111       case Intrinsic::ctlz:
    112         if (OperandNo == 0) {
    113           // We need some output bits, so we need all bits of the
    114           // input to the left of, and including, the leftmost bit
    115           // known to be one.
    116           ComputeKnownBits(BitWidth, I, nullptr);
    117           AB = APInt::getHighBitsSet(BitWidth,
    118                  std::min(BitWidth, KnownOne.countLeadingZeros()+1));
    119         }
    120         break;
    121       case Intrinsic::cttz:
    122         if (OperandNo == 0) {
    123           // We need some output bits, so we need all bits of the
    124           // input to the right of, and including, the rightmost bit
    125           // known to be one.
    126           ComputeKnownBits(BitWidth, I, nullptr);
    127           AB = APInt::getLowBitsSet(BitWidth,
    128                  std::min(BitWidth, KnownOne.countTrailingZeros()+1));
    129         }
    130         break;
    131       }
    132     break;
    133   case Instruction::Add:
    134   case Instruction::Sub:
    135   case Instruction::Mul:
    136     // Find the highest live output bit. We don't need any more input
    137     // bits than that (adds, and thus subtracts, ripple only to the
    138     // left).
    139     AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
    140     break;
    141   case Instruction::Shl:
    142     if (OperandNo == 0)
    143       if (ConstantInt *CI =
    144             dyn_cast<ConstantInt>(UserI->getOperand(1))) {
    145         uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
    146         AB = AOut.lshr(ShiftAmt);
    147 
    148         // If the shift is nuw/nsw, then the high bits are not dead
    149         // (because we've promised that they *must* be zero).
    150         const ShlOperator *S = cast<ShlOperator>(UserI);
    151         if (S->hasNoSignedWrap())
    152           AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
    153         else if (S->hasNoUnsignedWrap())
    154           AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
    155       }
    156     break;
    157   case Instruction::LShr:
    158     if (OperandNo == 0)
    159       if (ConstantInt *CI =
    160             dyn_cast<ConstantInt>(UserI->getOperand(1))) {
    161         uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
    162         AB = AOut.shl(ShiftAmt);
    163 
    164         // If the shift is exact, then the low bits are not dead
    165         // (they must be zero).
    166         if (cast<LShrOperator>(UserI)->isExact())
    167           AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
    168       }
    169     break;
    170   case Instruction::AShr:
    171     if (OperandNo == 0)
    172       if (ConstantInt *CI =
    173             dyn_cast<ConstantInt>(UserI->getOperand(1))) {
    174         uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
    175         AB = AOut.shl(ShiftAmt);
    176         // Because the high input bit is replicated into the
    177         // high-order bits of the result, if we need any of those
    178         // bits, then we must keep the highest input bit.
    179         if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
    180             .getBoolValue())
    181           AB.setBit(BitWidth-1);
    182 
    183         // If the shift is exact, then the low bits are not dead
    184         // (they must be zero).
    185         if (cast<AShrOperator>(UserI)->isExact())
    186           AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
    187       }
    188     break;
    189   case Instruction::And:
    190     AB = AOut;
    191 
    192     // For bits that are known zero, the corresponding bits in the
    193     // other operand are dead (unless they're both zero, in which
    194     // case they can't both be dead, so just mark the LHS bits as
    195     // dead).
    196     if (OperandNo == 0) {
    197       ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
    198       AB &= ~KnownZero2;
    199     } else {
    200       if (!isa<Instruction>(UserI->getOperand(0)))
    201         ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
    202       AB &= ~(KnownZero & ~KnownZero2);
    203     }
    204     break;
    205   case Instruction::Or:
    206     AB = AOut;
    207 
    208     // For bits that are known one, the corresponding bits in the
    209     // other operand are dead (unless they're both one, in which
    210     // case they can't both be dead, so just mark the LHS bits as
    211     // dead).
    212     if (OperandNo == 0) {
    213       ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
    214       AB &= ~KnownOne2;
    215     } else {
    216       if (!isa<Instruction>(UserI->getOperand(0)))
    217         ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
    218       AB &= ~(KnownOne & ~KnownOne2);
    219     }
    220     break;
    221   case Instruction::Xor:
    222   case Instruction::PHI:
    223     AB = AOut;
    224     break;
    225   case Instruction::Trunc:
    226     AB = AOut.zext(BitWidth);
    227     break;
    228   case Instruction::ZExt:
    229     AB = AOut.trunc(BitWidth);
    230     break;
    231   case Instruction::SExt:
    232     AB = AOut.trunc(BitWidth);
    233     // Because the high input bit is replicated into the
    234     // high-order bits of the result, if we need any of those
    235     // bits, then we must keep the highest input bit.
    236     if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
    237                                       AOut.getBitWidth() - BitWidth))
    238         .getBoolValue())
    239       AB.setBit(BitWidth-1);
    240     break;
    241   case Instruction::Select:
    242     if (OperandNo != 0)
    243       AB = AOut;
    244     break;
    245   case Instruction::ICmp:
    246     // Count the number of leading zeroes in each operand.
    247     ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
    248     auto NumLeadingZeroes = std::min(KnownZero.countLeadingOnes(),
    249                                      KnownZero2.countLeadingOnes());
    250     AB = ~APInt::getHighBitsSet(BitWidth, NumLeadingZeroes);
    251     break;
    252   }
    253 }
    254 
    255 bool DemandedBits::runOnFunction(Function& Fn) {
    256   F = &Fn;
    257   Analyzed = false;
    258   return false;
    259 }
    260 
    261 void DemandedBits::performAnalysis() {
    262   if (Analyzed)
    263     // Analysis already completed for this function.
    264     return;
    265   Analyzed = true;
    266   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(*F);
    267   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    268 
    269   Visited.clear();
    270   AliveBits.clear();
    271 
    272   SmallVector<Instruction*, 128> Worklist;
    273 
    274   // Collect the set of "root" instructions that are known live.
    275   for (Instruction &I : instructions(*F)) {
    276     if (!isAlwaysLive(&I))
    277       continue;
    278 
    279     DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
    280     // For integer-valued instructions, set up an initial empty set of alive
    281     // bits and add the instruction to the work list. For other instructions
    282     // add their operands to the work list (for integer values operands, mark
    283     // all bits as live).
    284     if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
    285       if (!AliveBits.count(&I)) {
    286         AliveBits[&I] = APInt(IT->getBitWidth(), 0);
    287         Worklist.push_back(&I);
    288       }
    289 
    290       continue;
    291     }
    292 
    293     // Non-integer-typed instructions...
    294     for (Use &OI : I.operands()) {
    295       if (Instruction *J = dyn_cast<Instruction>(OI)) {
    296         if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
    297           AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
    298         Worklist.push_back(J);
    299       }
    300     }
    301     // To save memory, we don't add I to the Visited set here. Instead, we
    302     // check isAlwaysLive on every instruction when searching for dead
    303     // instructions later (we need to check isAlwaysLive for the
    304     // integer-typed instructions anyway).
    305   }
    306 
    307   // Propagate liveness backwards to operands.
    308   while (!Worklist.empty()) {
    309     Instruction *UserI = Worklist.pop_back_val();
    310 
    311     DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
    312     APInt AOut;
    313     if (UserI->getType()->isIntegerTy()) {
    314       AOut = AliveBits[UserI];
    315       DEBUG(dbgs() << " Alive Out: " << AOut);
    316     }
    317     DEBUG(dbgs() << "\n");
    318 
    319     if (!UserI->getType()->isIntegerTy())
    320       Visited.insert(UserI);
    321 
    322     APInt KnownZero, KnownOne, KnownZero2, KnownOne2;
    323     // Compute the set of alive bits for each operand. These are anded into the
    324     // existing set, if any, and if that changes the set of alive bits, the
    325     // operand is added to the work-list.
    326     for (Use &OI : UserI->operands()) {
    327       if (Instruction *I = dyn_cast<Instruction>(OI)) {
    328         if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
    329           unsigned BitWidth = IT->getBitWidth();
    330           APInt AB = APInt::getAllOnesValue(BitWidth);
    331           if (UserI->getType()->isIntegerTy() && !AOut &&
    332               !isAlwaysLive(UserI)) {
    333             AB = APInt(BitWidth, 0);
    334           } else {
    335             // If all bits of the output are dead, then all bits of the input
    336             // Bits of each operand that are used to compute alive bits of the
    337             // output are alive, all others are dead.
    338             determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
    339                                      KnownZero, KnownOne,
    340                                      KnownZero2, KnownOne2);
    341           }
    342 
    343           // If we've added to the set of alive bits (or the operand has not
    344           // been previously visited), then re-queue the operand to be visited
    345           // again.
    346           APInt ABPrev(BitWidth, 0);
    347           auto ABI = AliveBits.find(I);
    348           if (ABI != AliveBits.end())
    349             ABPrev = ABI->second;
    350 
    351           APInt ABNew = AB | ABPrev;
    352           if (ABNew != ABPrev || ABI == AliveBits.end()) {
    353             AliveBits[I] = std::move(ABNew);
    354             Worklist.push_back(I);
    355           }
    356         } else if (!Visited.count(I)) {
    357           Worklist.push_back(I);
    358         }
    359       }
    360     }
    361   }
    362 }
    363 
    364 APInt DemandedBits::getDemandedBits(Instruction *I) {
    365   performAnalysis();
    366 
    367   const DataLayout &DL = I->getParent()->getModule()->getDataLayout();
    368   if (AliveBits.count(I))
    369     return AliveBits[I];
    370   return APInt::getAllOnesValue(DL.getTypeSizeInBits(I->getType()));
    371 }
    372 
    373 bool DemandedBits::isInstructionDead(Instruction *I) {
    374   performAnalysis();
    375 
    376   return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
    377     !isAlwaysLive(I);
    378 }
    379 
    380 void DemandedBits::print(raw_ostream &OS, const Module *M) const {
    381   // This is gross. But the alternative is making all the state mutable
    382   // just because of this one debugging method.
    383   const_cast<DemandedBits*>(this)->performAnalysis();
    384   for (auto &KV : AliveBits) {
    385     OS << "DemandedBits: 0x" << utohexstr(KV.second.getLimitedValue()) << " for "
    386        << *KV.first << "\n";
    387   }
    388 }
    389 
    390 FunctionPass *llvm::createDemandedBitsPass() {
    391   return new DemandedBits();
    392 }
    393