Home | History | Annotate | Download | only in AsmParser
      1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines the parser class for .ll files.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "LLParser.h"
     15 #include "llvm/ADT/SmallPtrSet.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/AsmParser/SlotMapping.h"
     18 #include "llvm/IR/AutoUpgrade.h"
     19 #include "llvm/IR/CallingConv.h"
     20 #include "llvm/IR/Constants.h"
     21 #include "llvm/IR/DebugInfo.h"
     22 #include "llvm/IR/DebugInfoMetadata.h"
     23 #include "llvm/IR/DerivedTypes.h"
     24 #include "llvm/IR/InlineAsm.h"
     25 #include "llvm/IR/Instructions.h"
     26 #include "llvm/IR/LLVMContext.h"
     27 #include "llvm/IR/Module.h"
     28 #include "llvm/IR/Operator.h"
     29 #include "llvm/IR/ValueSymbolTable.h"
     30 #include "llvm/Support/Dwarf.h"
     31 #include "llvm/Support/ErrorHandling.h"
     32 #include "llvm/Support/SaveAndRestore.h"
     33 #include "llvm/Support/raw_ostream.h"
     34 using namespace llvm;
     35 
     36 static std::string getTypeString(Type *T) {
     37   std::string Result;
     38   raw_string_ostream Tmp(Result);
     39   Tmp << *T;
     40   return Tmp.str();
     41 }
     42 
     43 /// Run: module ::= toplevelentity*
     44 bool LLParser::Run() {
     45   // Prime the lexer.
     46   Lex.Lex();
     47 
     48   return ParseTopLevelEntities() ||
     49          ValidateEndOfModule();
     50 }
     51 
     52 bool LLParser::parseStandaloneConstantValue(Constant *&C,
     53                                             const SlotMapping *Slots) {
     54   restoreParsingState(Slots);
     55   Lex.Lex();
     56 
     57   Type *Ty = nullptr;
     58   if (ParseType(Ty) || parseConstantValue(Ty, C))
     59     return true;
     60   if (Lex.getKind() != lltok::Eof)
     61     return Error(Lex.getLoc(), "expected end of string");
     62   return false;
     63 }
     64 
     65 void LLParser::restoreParsingState(const SlotMapping *Slots) {
     66   if (!Slots)
     67     return;
     68   NumberedVals = Slots->GlobalValues;
     69   NumberedMetadata = Slots->MetadataNodes;
     70   for (const auto &I : Slots->NamedTypes)
     71     NamedTypes.insert(
     72         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
     73   for (const auto &I : Slots->Types)
     74     NumberedTypes.insert(
     75         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
     76 }
     77 
     78 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
     79 /// module.
     80 bool LLParser::ValidateEndOfModule() {
     81   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
     82     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
     83 
     84   // Handle any function attribute group forward references.
     85   for (std::map<Value*, std::vector<unsigned> >::iterator
     86          I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
     87          I != E; ++I) {
     88     Value *V = I->first;
     89     std::vector<unsigned> &Vec = I->second;
     90     AttrBuilder B;
     91 
     92     for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
     93          VI != VE; ++VI)
     94       B.merge(NumberedAttrBuilders[*VI]);
     95 
     96     if (Function *Fn = dyn_cast<Function>(V)) {
     97       AttributeSet AS = Fn->getAttributes();
     98       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
     99       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
    100                                AS.getFnAttributes());
    101 
    102       FnAttrs.merge(B);
    103 
    104       // If the alignment was parsed as an attribute, move to the alignment
    105       // field.
    106       if (FnAttrs.hasAlignmentAttr()) {
    107         Fn->setAlignment(FnAttrs.getAlignment());
    108         FnAttrs.removeAttribute(Attribute::Alignment);
    109       }
    110 
    111       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
    112                             AttributeSet::get(Context,
    113                                               AttributeSet::FunctionIndex,
    114                                               FnAttrs));
    115       Fn->setAttributes(AS);
    116     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
    117       AttributeSet AS = CI->getAttributes();
    118       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
    119       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
    120                                AS.getFnAttributes());
    121       FnAttrs.merge(B);
    122       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
    123                             AttributeSet::get(Context,
    124                                               AttributeSet::FunctionIndex,
    125                                               FnAttrs));
    126       CI->setAttributes(AS);
    127     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
    128       AttributeSet AS = II->getAttributes();
    129       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
    130       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
    131                                AS.getFnAttributes());
    132       FnAttrs.merge(B);
    133       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
    134                             AttributeSet::get(Context,
    135                                               AttributeSet::FunctionIndex,
    136                                               FnAttrs));
    137       II->setAttributes(AS);
    138     } else {
    139       llvm_unreachable("invalid object with forward attribute group reference");
    140     }
    141   }
    142 
    143   // If there are entries in ForwardRefBlockAddresses at this point, the
    144   // function was never defined.
    145   if (!ForwardRefBlockAddresses.empty())
    146     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
    147                  "expected function name in blockaddress");
    148 
    149   for (const auto &NT : NumberedTypes)
    150     if (NT.second.second.isValid())
    151       return Error(NT.second.second,
    152                    "use of undefined type '%" + Twine(NT.first) + "'");
    153 
    154   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
    155        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
    156     if (I->second.second.isValid())
    157       return Error(I->second.second,
    158                    "use of undefined type named '" + I->getKey() + "'");
    159 
    160   if (!ForwardRefComdats.empty())
    161     return Error(ForwardRefComdats.begin()->second,
    162                  "use of undefined comdat '$" +
    163                      ForwardRefComdats.begin()->first + "'");
    164 
    165   if (!ForwardRefVals.empty())
    166     return Error(ForwardRefVals.begin()->second.second,
    167                  "use of undefined value '@" + ForwardRefVals.begin()->first +
    168                  "'");
    169 
    170   if (!ForwardRefValIDs.empty())
    171     return Error(ForwardRefValIDs.begin()->second.second,
    172                  "use of undefined value '@" +
    173                  Twine(ForwardRefValIDs.begin()->first) + "'");
    174 
    175   if (!ForwardRefMDNodes.empty())
    176     return Error(ForwardRefMDNodes.begin()->second.second,
    177                  "use of undefined metadata '!" +
    178                  Twine(ForwardRefMDNodes.begin()->first) + "'");
    179 
    180   // Resolve metadata cycles.
    181   for (auto &N : NumberedMetadata) {
    182     if (N.second && !N.second->isResolved())
    183       N.second->resolveCycles();
    184   }
    185 
    186   // Look for intrinsic functions and CallInst that need to be upgraded
    187   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
    188     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
    189 
    190   UpgradeDebugInfo(*M);
    191 
    192   if (!Slots)
    193     return false;
    194   // Initialize the slot mapping.
    195   // Because by this point we've parsed and validated everything, we can "steal"
    196   // the mapping from LLParser as it doesn't need it anymore.
    197   Slots->GlobalValues = std::move(NumberedVals);
    198   Slots->MetadataNodes = std::move(NumberedMetadata);
    199   for (const auto &I : NamedTypes)
    200     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
    201   for (const auto &I : NumberedTypes)
    202     Slots->Types.insert(std::make_pair(I.first, I.second.first));
    203 
    204   return false;
    205 }
    206 
    207 //===----------------------------------------------------------------------===//
    208 // Top-Level Entities
    209 //===----------------------------------------------------------------------===//
    210 
    211 bool LLParser::ParseTopLevelEntities() {
    212   while (1) {
    213     switch (Lex.getKind()) {
    214     default:         return TokError("expected top-level entity");
    215     case lltok::Eof: return false;
    216     case lltok::kw_declare: if (ParseDeclare()) return true; break;
    217     case lltok::kw_define:  if (ParseDefine()) return true; break;
    218     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
    219     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
    220     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
    221     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
    222     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
    223     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
    224     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
    225     case lltok::ComdatVar:  if (parseComdat()) return true; break;
    226     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
    227     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
    228 
    229     // The Global variable production with no name can have many different
    230     // optional leading prefixes, the production is:
    231     // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
    232     //               OptionalThreadLocal OptionalAddrSpace OptionalUnnamedAddr
    233     //               ('constant'|'global') ...
    234     case lltok::kw_private:             // OptionalLinkage
    235     case lltok::kw_internal:            // OptionalLinkage
    236     case lltok::kw_weak:                // OptionalLinkage
    237     case lltok::kw_weak_odr:            // OptionalLinkage
    238     case lltok::kw_linkonce:            // OptionalLinkage
    239     case lltok::kw_linkonce_odr:        // OptionalLinkage
    240     case lltok::kw_appending:           // OptionalLinkage
    241     case lltok::kw_common:              // OptionalLinkage
    242     case lltok::kw_extern_weak:         // OptionalLinkage
    243     case lltok::kw_external:            // OptionalLinkage
    244     case lltok::kw_default:             // OptionalVisibility
    245     case lltok::kw_hidden:              // OptionalVisibility
    246     case lltok::kw_protected:           // OptionalVisibility
    247     case lltok::kw_dllimport:           // OptionalDLLStorageClass
    248     case lltok::kw_dllexport:           // OptionalDLLStorageClass
    249     case lltok::kw_thread_local:        // OptionalThreadLocal
    250     case lltok::kw_addrspace:           // OptionalAddrSpace
    251     case lltok::kw_constant:            // GlobalType
    252     case lltok::kw_global: {            // GlobalType
    253       unsigned Linkage, Visibility, DLLStorageClass;
    254       bool UnnamedAddr;
    255       GlobalVariable::ThreadLocalMode TLM;
    256       bool HasLinkage;
    257       if (ParseOptionalLinkage(Linkage, HasLinkage) ||
    258           ParseOptionalVisibility(Visibility) ||
    259           ParseOptionalDLLStorageClass(DLLStorageClass) ||
    260           ParseOptionalThreadLocal(TLM) ||
    261           parseOptionalUnnamedAddr(UnnamedAddr) ||
    262           ParseGlobal("", SMLoc(), Linkage, HasLinkage, Visibility,
    263                       DLLStorageClass, TLM, UnnamedAddr))
    264         return true;
    265       break;
    266     }
    267 
    268     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
    269     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
    270     case lltok::kw_uselistorder_bb:
    271                                  if (ParseUseListOrderBB()) return true; break;
    272     }
    273   }
    274 }
    275 
    276 
    277 /// toplevelentity
    278 ///   ::= 'module' 'asm' STRINGCONSTANT
    279 bool LLParser::ParseModuleAsm() {
    280   assert(Lex.getKind() == lltok::kw_module);
    281   Lex.Lex();
    282 
    283   std::string AsmStr;
    284   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
    285       ParseStringConstant(AsmStr)) return true;
    286 
    287   M->appendModuleInlineAsm(AsmStr);
    288   return false;
    289 }
    290 
    291 /// toplevelentity
    292 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
    293 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
    294 bool LLParser::ParseTargetDefinition() {
    295   assert(Lex.getKind() == lltok::kw_target);
    296   std::string Str;
    297   switch (Lex.Lex()) {
    298   default: return TokError("unknown target property");
    299   case lltok::kw_triple:
    300     Lex.Lex();
    301     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
    302         ParseStringConstant(Str))
    303       return true;
    304     M->setTargetTriple(Str);
    305     return false;
    306   case lltok::kw_datalayout:
    307     Lex.Lex();
    308     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
    309         ParseStringConstant(Str))
    310       return true;
    311     M->setDataLayout(Str);
    312     return false;
    313   }
    314 }
    315 
    316 /// toplevelentity
    317 ///   ::= 'deplibs' '=' '[' ']'
    318 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
    319 /// FIXME: Remove in 4.0. Currently parse, but ignore.
    320 bool LLParser::ParseDepLibs() {
    321   assert(Lex.getKind() == lltok::kw_deplibs);
    322   Lex.Lex();
    323   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
    324       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
    325     return true;
    326 
    327   if (EatIfPresent(lltok::rsquare))
    328     return false;
    329 
    330   do {
    331     std::string Str;
    332     if (ParseStringConstant(Str)) return true;
    333   } while (EatIfPresent(lltok::comma));
    334 
    335   return ParseToken(lltok::rsquare, "expected ']' at end of list");
    336 }
    337 
    338 /// ParseUnnamedType:
    339 ///   ::= LocalVarID '=' 'type' type
    340 bool LLParser::ParseUnnamedType() {
    341   LocTy TypeLoc = Lex.getLoc();
    342   unsigned TypeID = Lex.getUIntVal();
    343   Lex.Lex(); // eat LocalVarID;
    344 
    345   if (ParseToken(lltok::equal, "expected '=' after name") ||
    346       ParseToken(lltok::kw_type, "expected 'type' after '='"))
    347     return true;
    348 
    349   Type *Result = nullptr;
    350   if (ParseStructDefinition(TypeLoc, "",
    351                             NumberedTypes[TypeID], Result)) return true;
    352 
    353   if (!isa<StructType>(Result)) {
    354     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
    355     if (Entry.first)
    356       return Error(TypeLoc, "non-struct types may not be recursive");
    357     Entry.first = Result;
    358     Entry.second = SMLoc();
    359   }
    360 
    361   return false;
    362 }
    363 
    364 
    365 /// toplevelentity
    366 ///   ::= LocalVar '=' 'type' type
    367 bool LLParser::ParseNamedType() {
    368   std::string Name = Lex.getStrVal();
    369   LocTy NameLoc = Lex.getLoc();
    370   Lex.Lex();  // eat LocalVar.
    371 
    372   if (ParseToken(lltok::equal, "expected '=' after name") ||
    373       ParseToken(lltok::kw_type, "expected 'type' after name"))
    374     return true;
    375 
    376   Type *Result = nullptr;
    377   if (ParseStructDefinition(NameLoc, Name,
    378                             NamedTypes[Name], Result)) return true;
    379 
    380   if (!isa<StructType>(Result)) {
    381     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
    382     if (Entry.first)
    383       return Error(NameLoc, "non-struct types may not be recursive");
    384     Entry.first = Result;
    385     Entry.second = SMLoc();
    386   }
    387 
    388   return false;
    389 }
    390 
    391 
    392 /// toplevelentity
    393 ///   ::= 'declare' FunctionHeader
    394 bool LLParser::ParseDeclare() {
    395   assert(Lex.getKind() == lltok::kw_declare);
    396   Lex.Lex();
    397 
    398   Function *F;
    399   return ParseFunctionHeader(F, false);
    400 }
    401 
    402 /// toplevelentity
    403 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
    404 bool LLParser::ParseDefine() {
    405   assert(Lex.getKind() == lltok::kw_define);
    406   Lex.Lex();
    407 
    408   Function *F;
    409   return ParseFunctionHeader(F, true) ||
    410          ParseOptionalFunctionMetadata(*F) ||
    411          ParseFunctionBody(*F);
    412 }
    413 
    414 /// ParseGlobalType
    415 ///   ::= 'constant'
    416 ///   ::= 'global'
    417 bool LLParser::ParseGlobalType(bool &IsConstant) {
    418   if (Lex.getKind() == lltok::kw_constant)
    419     IsConstant = true;
    420   else if (Lex.getKind() == lltok::kw_global)
    421     IsConstant = false;
    422   else {
    423     IsConstant = false;
    424     return TokError("expected 'global' or 'constant'");
    425   }
    426   Lex.Lex();
    427   return false;
    428 }
    429 
    430 /// ParseUnnamedGlobal:
    431 ///   OptionalVisibility ALIAS ...
    432 ///   OptionalLinkage OptionalVisibility OptionalDLLStorageClass
    433 ///                                                     ...   -> global variable
    434 ///   GlobalID '=' OptionalVisibility ALIAS ...
    435 ///   GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
    436 ///                                                     ...   -> global variable
    437 bool LLParser::ParseUnnamedGlobal() {
    438   unsigned VarID = NumberedVals.size();
    439   std::string Name;
    440   LocTy NameLoc = Lex.getLoc();
    441 
    442   // Handle the GlobalID form.
    443   if (Lex.getKind() == lltok::GlobalID) {
    444     if (Lex.getUIntVal() != VarID)
    445       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
    446                    Twine(VarID) + "'");
    447     Lex.Lex(); // eat GlobalID;
    448 
    449     if (ParseToken(lltok::equal, "expected '=' after name"))
    450       return true;
    451   }
    452 
    453   bool HasLinkage;
    454   unsigned Linkage, Visibility, DLLStorageClass;
    455   GlobalVariable::ThreadLocalMode TLM;
    456   bool UnnamedAddr;
    457   if (ParseOptionalLinkage(Linkage, HasLinkage) ||
    458       ParseOptionalVisibility(Visibility) ||
    459       ParseOptionalDLLStorageClass(DLLStorageClass) ||
    460       ParseOptionalThreadLocal(TLM) ||
    461       parseOptionalUnnamedAddr(UnnamedAddr))
    462     return true;
    463 
    464   if (Lex.getKind() != lltok::kw_alias)
    465     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
    466                        DLLStorageClass, TLM, UnnamedAddr);
    467   return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM,
    468                     UnnamedAddr);
    469 }
    470 
    471 /// ParseNamedGlobal:
    472 ///   GlobalVar '=' OptionalVisibility ALIAS ...
    473 ///   GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
    474 ///                                                     ...   -> global variable
    475 bool LLParser::ParseNamedGlobal() {
    476   assert(Lex.getKind() == lltok::GlobalVar);
    477   LocTy NameLoc = Lex.getLoc();
    478   std::string Name = Lex.getStrVal();
    479   Lex.Lex();
    480 
    481   bool HasLinkage;
    482   unsigned Linkage, Visibility, DLLStorageClass;
    483   GlobalVariable::ThreadLocalMode TLM;
    484   bool UnnamedAddr;
    485   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
    486       ParseOptionalLinkage(Linkage, HasLinkage) ||
    487       ParseOptionalVisibility(Visibility) ||
    488       ParseOptionalDLLStorageClass(DLLStorageClass) ||
    489       ParseOptionalThreadLocal(TLM) ||
    490       parseOptionalUnnamedAddr(UnnamedAddr))
    491     return true;
    492 
    493   if (Lex.getKind() != lltok::kw_alias)
    494     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
    495                        DLLStorageClass, TLM, UnnamedAddr);
    496 
    497   return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM,
    498                     UnnamedAddr);
    499 }
    500 
    501 bool LLParser::parseComdat() {
    502   assert(Lex.getKind() == lltok::ComdatVar);
    503   std::string Name = Lex.getStrVal();
    504   LocTy NameLoc = Lex.getLoc();
    505   Lex.Lex();
    506 
    507   if (ParseToken(lltok::equal, "expected '=' here"))
    508     return true;
    509 
    510   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
    511     return TokError("expected comdat type");
    512 
    513   Comdat::SelectionKind SK;
    514   switch (Lex.getKind()) {
    515   default:
    516     return TokError("unknown selection kind");
    517   case lltok::kw_any:
    518     SK = Comdat::Any;
    519     break;
    520   case lltok::kw_exactmatch:
    521     SK = Comdat::ExactMatch;
    522     break;
    523   case lltok::kw_largest:
    524     SK = Comdat::Largest;
    525     break;
    526   case lltok::kw_noduplicates:
    527     SK = Comdat::NoDuplicates;
    528     break;
    529   case lltok::kw_samesize:
    530     SK = Comdat::SameSize;
    531     break;
    532   }
    533   Lex.Lex();
    534 
    535   // See if the comdat was forward referenced, if so, use the comdat.
    536   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
    537   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
    538   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
    539     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
    540 
    541   Comdat *C;
    542   if (I != ComdatSymTab.end())
    543     C = &I->second;
    544   else
    545     C = M->getOrInsertComdat(Name);
    546   C->setSelectionKind(SK);
    547 
    548   return false;
    549 }
    550 
    551 // MDString:
    552 //   ::= '!' STRINGCONSTANT
    553 bool LLParser::ParseMDString(MDString *&Result) {
    554   std::string Str;
    555   if (ParseStringConstant(Str)) return true;
    556   llvm::UpgradeMDStringConstant(Str);
    557   Result = MDString::get(Context, Str);
    558   return false;
    559 }
    560 
    561 // MDNode:
    562 //   ::= '!' MDNodeNumber
    563 bool LLParser::ParseMDNodeID(MDNode *&Result) {
    564   // !{ ..., !42, ... }
    565   unsigned MID = 0;
    566   if (ParseUInt32(MID))
    567     return true;
    568 
    569   // If not a forward reference, just return it now.
    570   if (NumberedMetadata.count(MID)) {
    571     Result = NumberedMetadata[MID];
    572     return false;
    573   }
    574 
    575   // Otherwise, create MDNode forward reference.
    576   auto &FwdRef = ForwardRefMDNodes[MID];
    577   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), Lex.getLoc());
    578 
    579   Result = FwdRef.first.get();
    580   NumberedMetadata[MID].reset(Result);
    581   return false;
    582 }
    583 
    584 /// ParseNamedMetadata:
    585 ///   !foo = !{ !1, !2 }
    586 bool LLParser::ParseNamedMetadata() {
    587   assert(Lex.getKind() == lltok::MetadataVar);
    588   std::string Name = Lex.getStrVal();
    589   Lex.Lex();
    590 
    591   if (ParseToken(lltok::equal, "expected '=' here") ||
    592       ParseToken(lltok::exclaim, "Expected '!' here") ||
    593       ParseToken(lltok::lbrace, "Expected '{' here"))
    594     return true;
    595 
    596   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
    597   if (Lex.getKind() != lltok::rbrace)
    598     do {
    599       if (ParseToken(lltok::exclaim, "Expected '!' here"))
    600         return true;
    601 
    602       MDNode *N = nullptr;
    603       if (ParseMDNodeID(N)) return true;
    604       NMD->addOperand(N);
    605     } while (EatIfPresent(lltok::comma));
    606 
    607   return ParseToken(lltok::rbrace, "expected end of metadata node");
    608 }
    609 
    610 /// ParseStandaloneMetadata:
    611 ///   !42 = !{...}
    612 bool LLParser::ParseStandaloneMetadata() {
    613   assert(Lex.getKind() == lltok::exclaim);
    614   Lex.Lex();
    615   unsigned MetadataID = 0;
    616 
    617   MDNode *Init;
    618   if (ParseUInt32(MetadataID) ||
    619       ParseToken(lltok::equal, "expected '=' here"))
    620     return true;
    621 
    622   // Detect common error, from old metadata syntax.
    623   if (Lex.getKind() == lltok::Type)
    624     return TokError("unexpected type in metadata definition");
    625 
    626   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
    627   if (Lex.getKind() == lltok::MetadataVar) {
    628     if (ParseSpecializedMDNode(Init, IsDistinct))
    629       return true;
    630   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
    631              ParseMDTuple(Init, IsDistinct))
    632     return true;
    633 
    634   // See if this was forward referenced, if so, handle it.
    635   auto FI = ForwardRefMDNodes.find(MetadataID);
    636   if (FI != ForwardRefMDNodes.end()) {
    637     FI->second.first->replaceAllUsesWith(Init);
    638     ForwardRefMDNodes.erase(FI);
    639 
    640     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
    641   } else {
    642     if (NumberedMetadata.count(MetadataID))
    643       return TokError("Metadata id is already used");
    644     NumberedMetadata[MetadataID].reset(Init);
    645   }
    646 
    647   return false;
    648 }
    649 
    650 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
    651   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
    652          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
    653 }
    654 
    655 /// ParseAlias:
    656 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility
    657 ///                     OptionalDLLStorageClass OptionalThreadLocal
    658 ///                     OptionalUnnamedAddr 'alias' Aliasee
    659 ///
    660 /// Aliasee
    661 ///   ::= TypeAndValue
    662 ///
    663 /// Everything through OptionalUnnamedAddr has already been parsed.
    664 ///
    665 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, unsigned L,
    666                           unsigned Visibility, unsigned DLLStorageClass,
    667                           GlobalVariable::ThreadLocalMode TLM,
    668                           bool UnnamedAddr) {
    669   assert(Lex.getKind() == lltok::kw_alias);
    670   Lex.Lex();
    671 
    672   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
    673 
    674   if(!GlobalAlias::isValidLinkage(Linkage))
    675     return Error(NameLoc, "invalid linkage type for alias");
    676 
    677   if (!isValidVisibilityForLinkage(Visibility, L))
    678     return Error(NameLoc,
    679                  "symbol with local linkage must have default visibility");
    680 
    681   Type *Ty;
    682   LocTy ExplicitTypeLoc = Lex.getLoc();
    683   if (ParseType(Ty) ||
    684       ParseToken(lltok::comma, "expected comma after alias's type"))
    685     return true;
    686 
    687   Constant *Aliasee;
    688   LocTy AliaseeLoc = Lex.getLoc();
    689   if (Lex.getKind() != lltok::kw_bitcast &&
    690       Lex.getKind() != lltok::kw_getelementptr &&
    691       Lex.getKind() != lltok::kw_addrspacecast &&
    692       Lex.getKind() != lltok::kw_inttoptr) {
    693     if (ParseGlobalTypeAndValue(Aliasee))
    694       return true;
    695   } else {
    696     // The bitcast dest type is not present, it is implied by the dest type.
    697     ValID ID;
    698     if (ParseValID(ID))
    699       return true;
    700     if (ID.Kind != ValID::t_Constant)
    701       return Error(AliaseeLoc, "invalid aliasee");
    702     Aliasee = ID.ConstantVal;
    703   }
    704 
    705   Type *AliaseeType = Aliasee->getType();
    706   auto *PTy = dyn_cast<PointerType>(AliaseeType);
    707   if (!PTy)
    708     return Error(AliaseeLoc, "An alias must have pointer type");
    709   unsigned AddrSpace = PTy->getAddressSpace();
    710 
    711   if (Ty != PTy->getElementType())
    712     return Error(
    713         ExplicitTypeLoc,
    714         "explicit pointee type doesn't match operand's pointee type");
    715 
    716   GlobalValue *GVal = nullptr;
    717 
    718   // See if the alias was forward referenced, if so, prepare to replace the
    719   // forward reference.
    720   if (!Name.empty()) {
    721     GVal = M->getNamedValue(Name);
    722     if (GVal) {
    723       if (!ForwardRefVals.erase(Name))
    724         return Error(NameLoc, "redefinition of global '@" + Name + "'");
    725     }
    726   } else {
    727     auto I = ForwardRefValIDs.find(NumberedVals.size());
    728     if (I != ForwardRefValIDs.end()) {
    729       GVal = I->second.first;
    730       ForwardRefValIDs.erase(I);
    731     }
    732   }
    733 
    734   // Okay, create the alias but do not insert it into the module yet.
    735   std::unique_ptr<GlobalAlias> GA(
    736       GlobalAlias::create(Ty, AddrSpace, (GlobalValue::LinkageTypes)Linkage,
    737                           Name, Aliasee, /*Parent*/ nullptr));
    738   GA->setThreadLocalMode(TLM);
    739   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
    740   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
    741   GA->setUnnamedAddr(UnnamedAddr);
    742 
    743   if (Name.empty())
    744     NumberedVals.push_back(GA.get());
    745 
    746   if (GVal) {
    747     // Verify that types agree.
    748     if (GVal->getType() != GA->getType())
    749       return Error(
    750           ExplicitTypeLoc,
    751           "forward reference and definition of alias have different types");
    752 
    753     // If they agree, just RAUW the old value with the alias and remove the
    754     // forward ref info.
    755     GVal->replaceAllUsesWith(GA.get());
    756     GVal->eraseFromParent();
    757   }
    758 
    759   // Insert into the module, we know its name won't collide now.
    760   M->getAliasList().push_back(GA.get());
    761   assert(GA->getName() == Name && "Should not be a name conflict!");
    762 
    763   // The module owns this now
    764   GA.release();
    765 
    766   return false;
    767 }
    768 
    769 /// ParseGlobal
    770 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
    771 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
    772 ///       OptionalExternallyInitialized GlobalType Type Const
    773 ///   ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
    774 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
    775 ///       OptionalExternallyInitialized GlobalType Type Const
    776 ///
    777 /// Everything up to and including OptionalUnnamedAddr has been parsed
    778 /// already.
    779 ///
    780 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
    781                            unsigned Linkage, bool HasLinkage,
    782                            unsigned Visibility, unsigned DLLStorageClass,
    783                            GlobalVariable::ThreadLocalMode TLM,
    784                            bool UnnamedAddr) {
    785   if (!isValidVisibilityForLinkage(Visibility, Linkage))
    786     return Error(NameLoc,
    787                  "symbol with local linkage must have default visibility");
    788 
    789   unsigned AddrSpace;
    790   bool IsConstant, IsExternallyInitialized;
    791   LocTy IsExternallyInitializedLoc;
    792   LocTy TyLoc;
    793 
    794   Type *Ty = nullptr;
    795   if (ParseOptionalAddrSpace(AddrSpace) ||
    796       ParseOptionalToken(lltok::kw_externally_initialized,
    797                          IsExternallyInitialized,
    798                          &IsExternallyInitializedLoc) ||
    799       ParseGlobalType(IsConstant) ||
    800       ParseType(Ty, TyLoc))
    801     return true;
    802 
    803   // If the linkage is specified and is external, then no initializer is
    804   // present.
    805   Constant *Init = nullptr;
    806   if (!HasLinkage || (Linkage != GlobalValue::ExternalWeakLinkage &&
    807                       Linkage != GlobalValue::ExternalLinkage)) {
    808     if (ParseGlobalValue(Ty, Init))
    809       return true;
    810   }
    811 
    812   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
    813     return Error(TyLoc, "invalid type for global variable");
    814 
    815   GlobalValue *GVal = nullptr;
    816 
    817   // See if the global was forward referenced, if so, use the global.
    818   if (!Name.empty()) {
    819     GVal = M->getNamedValue(Name);
    820     if (GVal) {
    821       if (!ForwardRefVals.erase(Name))
    822         return Error(NameLoc, "redefinition of global '@" + Name + "'");
    823     }
    824   } else {
    825     auto I = ForwardRefValIDs.find(NumberedVals.size());
    826     if (I != ForwardRefValIDs.end()) {
    827       GVal = I->second.first;
    828       ForwardRefValIDs.erase(I);
    829     }
    830   }
    831 
    832   GlobalVariable *GV;
    833   if (!GVal) {
    834     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
    835                             Name, nullptr, GlobalVariable::NotThreadLocal,
    836                             AddrSpace);
    837   } else {
    838     if (GVal->getValueType() != Ty)
    839       return Error(TyLoc,
    840             "forward reference and definition of global have different types");
    841 
    842     GV = cast<GlobalVariable>(GVal);
    843 
    844     // Move the forward-reference to the correct spot in the module.
    845     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
    846   }
    847 
    848   if (Name.empty())
    849     NumberedVals.push_back(GV);
    850 
    851   // Set the parsed properties on the global.
    852   if (Init)
    853     GV->setInitializer(Init);
    854   GV->setConstant(IsConstant);
    855   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
    856   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
    857   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
    858   GV->setExternallyInitialized(IsExternallyInitialized);
    859   GV->setThreadLocalMode(TLM);
    860   GV->setUnnamedAddr(UnnamedAddr);
    861 
    862   // Parse attributes on the global.
    863   while (Lex.getKind() == lltok::comma) {
    864     Lex.Lex();
    865 
    866     if (Lex.getKind() == lltok::kw_section) {
    867       Lex.Lex();
    868       GV->setSection(Lex.getStrVal());
    869       if (ParseToken(lltok::StringConstant, "expected global section string"))
    870         return true;
    871     } else if (Lex.getKind() == lltok::kw_align) {
    872       unsigned Alignment;
    873       if (ParseOptionalAlignment(Alignment)) return true;
    874       GV->setAlignment(Alignment);
    875     } else {
    876       Comdat *C;
    877       if (parseOptionalComdat(Name, C))
    878         return true;
    879       if (C)
    880         GV->setComdat(C);
    881       else
    882         return TokError("unknown global variable property!");
    883     }
    884   }
    885 
    886   return false;
    887 }
    888 
    889 /// ParseUnnamedAttrGrp
    890 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
    891 bool LLParser::ParseUnnamedAttrGrp() {
    892   assert(Lex.getKind() == lltok::kw_attributes);
    893   LocTy AttrGrpLoc = Lex.getLoc();
    894   Lex.Lex();
    895 
    896   if (Lex.getKind() != lltok::AttrGrpID)
    897     return TokError("expected attribute group id");
    898 
    899   unsigned VarID = Lex.getUIntVal();
    900   std::vector<unsigned> unused;
    901   LocTy BuiltinLoc;
    902   Lex.Lex();
    903 
    904   if (ParseToken(lltok::equal, "expected '=' here") ||
    905       ParseToken(lltok::lbrace, "expected '{' here") ||
    906       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
    907                                  BuiltinLoc) ||
    908       ParseToken(lltok::rbrace, "expected end of attribute group"))
    909     return true;
    910 
    911   if (!NumberedAttrBuilders[VarID].hasAttributes())
    912     return Error(AttrGrpLoc, "attribute group has no attributes");
    913 
    914   return false;
    915 }
    916 
    917 /// ParseFnAttributeValuePairs
    918 ///   ::= <attr> | <attr> '=' <value>
    919 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
    920                                           std::vector<unsigned> &FwdRefAttrGrps,
    921                                           bool inAttrGrp, LocTy &BuiltinLoc) {
    922   bool HaveError = false;
    923 
    924   B.clear();
    925 
    926   while (true) {
    927     lltok::Kind Token = Lex.getKind();
    928     if (Token == lltok::kw_builtin)
    929       BuiltinLoc = Lex.getLoc();
    930     switch (Token) {
    931     default:
    932       if (!inAttrGrp) return HaveError;
    933       return Error(Lex.getLoc(), "unterminated attribute group");
    934     case lltok::rbrace:
    935       // Finished.
    936       return false;
    937 
    938     case lltok::AttrGrpID: {
    939       // Allow a function to reference an attribute group:
    940       //
    941       //   define void @foo() #1 { ... }
    942       if (inAttrGrp)
    943         HaveError |=
    944           Error(Lex.getLoc(),
    945               "cannot have an attribute group reference in an attribute group");
    946 
    947       unsigned AttrGrpNum = Lex.getUIntVal();
    948       if (inAttrGrp) break;
    949 
    950       // Save the reference to the attribute group. We'll fill it in later.
    951       FwdRefAttrGrps.push_back(AttrGrpNum);
    952       break;
    953     }
    954     // Target-dependent attributes:
    955     case lltok::StringConstant: {
    956       if (ParseStringAttribute(B))
    957         return true;
    958       continue;
    959     }
    960 
    961     // Target-independent attributes:
    962     case lltok::kw_align: {
    963       // As a hack, we allow function alignment to be initially parsed as an
    964       // attribute on a function declaration/definition or added to an attribute
    965       // group and later moved to the alignment field.
    966       unsigned Alignment;
    967       if (inAttrGrp) {
    968         Lex.Lex();
    969         if (ParseToken(lltok::equal, "expected '=' here") ||
    970             ParseUInt32(Alignment))
    971           return true;
    972       } else {
    973         if (ParseOptionalAlignment(Alignment))
    974           return true;
    975       }
    976       B.addAlignmentAttr(Alignment);
    977       continue;
    978     }
    979     case lltok::kw_alignstack: {
    980       unsigned Alignment;
    981       if (inAttrGrp) {
    982         Lex.Lex();
    983         if (ParseToken(lltok::equal, "expected '=' here") ||
    984             ParseUInt32(Alignment))
    985           return true;
    986       } else {
    987         if (ParseOptionalStackAlignment(Alignment))
    988           return true;
    989       }
    990       B.addStackAlignmentAttr(Alignment);
    991       continue;
    992     }
    993     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
    994     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
    995     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
    996     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
    997     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
    998     case lltok::kw_inaccessiblememonly:
    999       B.addAttribute(Attribute::InaccessibleMemOnly); break;
   1000     case lltok::kw_inaccessiblemem_or_argmemonly:
   1001       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
   1002     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
   1003     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
   1004     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
   1005     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
   1006     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
   1007     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
   1008     case lltok::kw_noimplicitfloat:
   1009       B.addAttribute(Attribute::NoImplicitFloat); break;
   1010     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
   1011     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
   1012     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
   1013     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
   1014     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
   1015     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
   1016     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
   1017     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
   1018     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
   1019     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
   1020     case lltok::kw_returns_twice:
   1021       B.addAttribute(Attribute::ReturnsTwice); break;
   1022     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
   1023     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
   1024     case lltok::kw_sspstrong:
   1025       B.addAttribute(Attribute::StackProtectStrong); break;
   1026     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
   1027     case lltok::kw_sanitize_address:
   1028       B.addAttribute(Attribute::SanitizeAddress); break;
   1029     case lltok::kw_sanitize_thread:
   1030       B.addAttribute(Attribute::SanitizeThread); break;
   1031     case lltok::kw_sanitize_memory:
   1032       B.addAttribute(Attribute::SanitizeMemory); break;
   1033     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
   1034 
   1035     // Error handling.
   1036     case lltok::kw_inreg:
   1037     case lltok::kw_signext:
   1038     case lltok::kw_zeroext:
   1039       HaveError |=
   1040         Error(Lex.getLoc(),
   1041               "invalid use of attribute on a function");
   1042       break;
   1043     case lltok::kw_byval:
   1044     case lltok::kw_dereferenceable:
   1045     case lltok::kw_dereferenceable_or_null:
   1046     case lltok::kw_inalloca:
   1047     case lltok::kw_nest:
   1048     case lltok::kw_noalias:
   1049     case lltok::kw_nocapture:
   1050     case lltok::kw_nonnull:
   1051     case lltok::kw_returned:
   1052     case lltok::kw_sret:
   1053       HaveError |=
   1054         Error(Lex.getLoc(),
   1055               "invalid use of parameter-only attribute on a function");
   1056       break;
   1057     }
   1058 
   1059     Lex.Lex();
   1060   }
   1061 }
   1062 
   1063 //===----------------------------------------------------------------------===//
   1064 // GlobalValue Reference/Resolution Routines.
   1065 //===----------------------------------------------------------------------===//
   1066 
   1067 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
   1068                                               const std::string &Name) {
   1069   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
   1070     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
   1071   else
   1072     return new GlobalVariable(*M, PTy->getElementType(), false,
   1073                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
   1074                               nullptr, GlobalVariable::NotThreadLocal,
   1075                               PTy->getAddressSpace());
   1076 }
   1077 
   1078 /// GetGlobalVal - Get a value with the specified name or ID, creating a
   1079 /// forward reference record if needed.  This can return null if the value
   1080 /// exists but does not have the right type.
   1081 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
   1082                                     LocTy Loc) {
   1083   PointerType *PTy = dyn_cast<PointerType>(Ty);
   1084   if (!PTy) {
   1085     Error(Loc, "global variable reference must have pointer type");
   1086     return nullptr;
   1087   }
   1088 
   1089   // Look this name up in the normal function symbol table.
   1090   GlobalValue *Val =
   1091     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
   1092 
   1093   // If this is a forward reference for the value, see if we already created a
   1094   // forward ref record.
   1095   if (!Val) {
   1096     auto I = ForwardRefVals.find(Name);
   1097     if (I != ForwardRefVals.end())
   1098       Val = I->second.first;
   1099   }
   1100 
   1101   // If we have the value in the symbol table or fwd-ref table, return it.
   1102   if (Val) {
   1103     if (Val->getType() == Ty) return Val;
   1104     Error(Loc, "'@" + Name + "' defined with type '" +
   1105           getTypeString(Val->getType()) + "'");
   1106     return nullptr;
   1107   }
   1108 
   1109   // Otherwise, create a new forward reference for this value and remember it.
   1110   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
   1111   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
   1112   return FwdVal;
   1113 }
   1114 
   1115 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
   1116   PointerType *PTy = dyn_cast<PointerType>(Ty);
   1117   if (!PTy) {
   1118     Error(Loc, "global variable reference must have pointer type");
   1119     return nullptr;
   1120   }
   1121 
   1122   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
   1123 
   1124   // If this is a forward reference for the value, see if we already created a
   1125   // forward ref record.
   1126   if (!Val) {
   1127     auto I = ForwardRefValIDs.find(ID);
   1128     if (I != ForwardRefValIDs.end())
   1129       Val = I->second.first;
   1130   }
   1131 
   1132   // If we have the value in the symbol table or fwd-ref table, return it.
   1133   if (Val) {
   1134     if (Val->getType() == Ty) return Val;
   1135     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
   1136           getTypeString(Val->getType()) + "'");
   1137     return nullptr;
   1138   }
   1139 
   1140   // Otherwise, create a new forward reference for this value and remember it.
   1141   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
   1142   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
   1143   return FwdVal;
   1144 }
   1145 
   1146 
   1147 //===----------------------------------------------------------------------===//
   1148 // Comdat Reference/Resolution Routines.
   1149 //===----------------------------------------------------------------------===//
   1150 
   1151 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
   1152   // Look this name up in the comdat symbol table.
   1153   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
   1154   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
   1155   if (I != ComdatSymTab.end())
   1156     return &I->second;
   1157 
   1158   // Otherwise, create a new forward reference for this value and remember it.
   1159   Comdat *C = M->getOrInsertComdat(Name);
   1160   ForwardRefComdats[Name] = Loc;
   1161   return C;
   1162 }
   1163 
   1164 
   1165 //===----------------------------------------------------------------------===//
   1166 // Helper Routines.
   1167 //===----------------------------------------------------------------------===//
   1168 
   1169 /// ParseToken - If the current token has the specified kind, eat it and return
   1170 /// success.  Otherwise, emit the specified error and return failure.
   1171 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
   1172   if (Lex.getKind() != T)
   1173     return TokError(ErrMsg);
   1174   Lex.Lex();
   1175   return false;
   1176 }
   1177 
   1178 /// ParseStringConstant
   1179 ///   ::= StringConstant
   1180 bool LLParser::ParseStringConstant(std::string &Result) {
   1181   if (Lex.getKind() != lltok::StringConstant)
   1182     return TokError("expected string constant");
   1183   Result = Lex.getStrVal();
   1184   Lex.Lex();
   1185   return false;
   1186 }
   1187 
   1188 /// ParseUInt32
   1189 ///   ::= uint32
   1190 bool LLParser::ParseUInt32(unsigned &Val) {
   1191   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
   1192     return TokError("expected integer");
   1193   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
   1194   if (Val64 != unsigned(Val64))
   1195     return TokError("expected 32-bit integer (too large)");
   1196   Val = Val64;
   1197   Lex.Lex();
   1198   return false;
   1199 }
   1200 
   1201 /// ParseUInt64
   1202 ///   ::= uint64
   1203 bool LLParser::ParseUInt64(uint64_t &Val) {
   1204   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
   1205     return TokError("expected integer");
   1206   Val = Lex.getAPSIntVal().getLimitedValue();
   1207   Lex.Lex();
   1208   return false;
   1209 }
   1210 
   1211 /// ParseTLSModel
   1212 ///   := 'localdynamic'
   1213 ///   := 'initialexec'
   1214 ///   := 'localexec'
   1215 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
   1216   switch (Lex.getKind()) {
   1217     default:
   1218       return TokError("expected localdynamic, initialexec or localexec");
   1219     case lltok::kw_localdynamic:
   1220       TLM = GlobalVariable::LocalDynamicTLSModel;
   1221       break;
   1222     case lltok::kw_initialexec:
   1223       TLM = GlobalVariable::InitialExecTLSModel;
   1224       break;
   1225     case lltok::kw_localexec:
   1226       TLM = GlobalVariable::LocalExecTLSModel;
   1227       break;
   1228   }
   1229 
   1230   Lex.Lex();
   1231   return false;
   1232 }
   1233 
   1234 /// ParseOptionalThreadLocal
   1235 ///   := /*empty*/
   1236 ///   := 'thread_local'
   1237 ///   := 'thread_local' '(' tlsmodel ')'
   1238 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
   1239   TLM = GlobalVariable::NotThreadLocal;
   1240   if (!EatIfPresent(lltok::kw_thread_local))
   1241     return false;
   1242 
   1243   TLM = GlobalVariable::GeneralDynamicTLSModel;
   1244   if (Lex.getKind() == lltok::lparen) {
   1245     Lex.Lex();
   1246     return ParseTLSModel(TLM) ||
   1247       ParseToken(lltok::rparen, "expected ')' after thread local model");
   1248   }
   1249   return false;
   1250 }
   1251 
   1252 /// ParseOptionalAddrSpace
   1253 ///   := /*empty*/
   1254 ///   := 'addrspace' '(' uint32 ')'
   1255 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
   1256   AddrSpace = 0;
   1257   if (!EatIfPresent(lltok::kw_addrspace))
   1258     return false;
   1259   return ParseToken(lltok::lparen, "expected '(' in address space") ||
   1260          ParseUInt32(AddrSpace) ||
   1261          ParseToken(lltok::rparen, "expected ')' in address space");
   1262 }
   1263 
   1264 /// ParseStringAttribute
   1265 ///   := StringConstant
   1266 ///   := StringConstant '=' StringConstant
   1267 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
   1268   std::string Attr = Lex.getStrVal();
   1269   Lex.Lex();
   1270   std::string Val;
   1271   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
   1272     return true;
   1273   B.addAttribute(Attr, Val);
   1274   return false;
   1275 }
   1276 
   1277 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
   1278 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
   1279   bool HaveError = false;
   1280 
   1281   B.clear();
   1282 
   1283   while (1) {
   1284     lltok::Kind Token = Lex.getKind();
   1285     switch (Token) {
   1286     default:  // End of attributes.
   1287       return HaveError;
   1288     case lltok::StringConstant: {
   1289       if (ParseStringAttribute(B))
   1290         return true;
   1291       continue;
   1292     }
   1293     case lltok::kw_align: {
   1294       unsigned Alignment;
   1295       if (ParseOptionalAlignment(Alignment))
   1296         return true;
   1297       B.addAlignmentAttr(Alignment);
   1298       continue;
   1299     }
   1300     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
   1301     case lltok::kw_dereferenceable: {
   1302       uint64_t Bytes;
   1303       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
   1304         return true;
   1305       B.addDereferenceableAttr(Bytes);
   1306       continue;
   1307     }
   1308     case lltok::kw_dereferenceable_or_null: {
   1309       uint64_t Bytes;
   1310       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
   1311         return true;
   1312       B.addDereferenceableOrNullAttr(Bytes);
   1313       continue;
   1314     }
   1315     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
   1316     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
   1317     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
   1318     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
   1319     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
   1320     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
   1321     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
   1322     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
   1323     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
   1324     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
   1325     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
   1326     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
   1327 
   1328     case lltok::kw_alignstack:
   1329     case lltok::kw_alwaysinline:
   1330     case lltok::kw_argmemonly:
   1331     case lltok::kw_builtin:
   1332     case lltok::kw_inlinehint:
   1333     case lltok::kw_jumptable:
   1334     case lltok::kw_minsize:
   1335     case lltok::kw_naked:
   1336     case lltok::kw_nobuiltin:
   1337     case lltok::kw_noduplicate:
   1338     case lltok::kw_noimplicitfloat:
   1339     case lltok::kw_noinline:
   1340     case lltok::kw_nonlazybind:
   1341     case lltok::kw_noredzone:
   1342     case lltok::kw_noreturn:
   1343     case lltok::kw_nounwind:
   1344     case lltok::kw_optnone:
   1345     case lltok::kw_optsize:
   1346     case lltok::kw_returns_twice:
   1347     case lltok::kw_sanitize_address:
   1348     case lltok::kw_sanitize_memory:
   1349     case lltok::kw_sanitize_thread:
   1350     case lltok::kw_ssp:
   1351     case lltok::kw_sspreq:
   1352     case lltok::kw_sspstrong:
   1353     case lltok::kw_safestack:
   1354     case lltok::kw_uwtable:
   1355       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
   1356       break;
   1357     }
   1358 
   1359     Lex.Lex();
   1360   }
   1361 }
   1362 
   1363 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
   1364 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
   1365   bool HaveError = false;
   1366 
   1367   B.clear();
   1368 
   1369   while (1) {
   1370     lltok::Kind Token = Lex.getKind();
   1371     switch (Token) {
   1372     default:  // End of attributes.
   1373       return HaveError;
   1374     case lltok::StringConstant: {
   1375       if (ParseStringAttribute(B))
   1376         return true;
   1377       continue;
   1378     }
   1379     case lltok::kw_dereferenceable: {
   1380       uint64_t Bytes;
   1381       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
   1382         return true;
   1383       B.addDereferenceableAttr(Bytes);
   1384       continue;
   1385     }
   1386     case lltok::kw_dereferenceable_or_null: {
   1387       uint64_t Bytes;
   1388       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
   1389         return true;
   1390       B.addDereferenceableOrNullAttr(Bytes);
   1391       continue;
   1392     }
   1393     case lltok::kw_align: {
   1394       unsigned Alignment;
   1395       if (ParseOptionalAlignment(Alignment))
   1396         return true;
   1397       B.addAlignmentAttr(Alignment);
   1398       continue;
   1399     }
   1400     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
   1401     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
   1402     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
   1403     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
   1404     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
   1405 
   1406     // Error handling.
   1407     case lltok::kw_byval:
   1408     case lltok::kw_inalloca:
   1409     case lltok::kw_nest:
   1410     case lltok::kw_nocapture:
   1411     case lltok::kw_returned:
   1412     case lltok::kw_sret:
   1413       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
   1414       break;
   1415 
   1416     case lltok::kw_alignstack:
   1417     case lltok::kw_alwaysinline:
   1418     case lltok::kw_argmemonly:
   1419     case lltok::kw_builtin:
   1420     case lltok::kw_cold:
   1421     case lltok::kw_inlinehint:
   1422     case lltok::kw_jumptable:
   1423     case lltok::kw_minsize:
   1424     case lltok::kw_naked:
   1425     case lltok::kw_nobuiltin:
   1426     case lltok::kw_noduplicate:
   1427     case lltok::kw_noimplicitfloat:
   1428     case lltok::kw_noinline:
   1429     case lltok::kw_nonlazybind:
   1430     case lltok::kw_noredzone:
   1431     case lltok::kw_noreturn:
   1432     case lltok::kw_nounwind:
   1433     case lltok::kw_optnone:
   1434     case lltok::kw_optsize:
   1435     case lltok::kw_returns_twice:
   1436     case lltok::kw_sanitize_address:
   1437     case lltok::kw_sanitize_memory:
   1438     case lltok::kw_sanitize_thread:
   1439     case lltok::kw_ssp:
   1440     case lltok::kw_sspreq:
   1441     case lltok::kw_sspstrong:
   1442     case lltok::kw_safestack:
   1443     case lltok::kw_uwtable:
   1444       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
   1445       break;
   1446 
   1447     case lltok::kw_readnone:
   1448     case lltok::kw_readonly:
   1449       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
   1450     }
   1451 
   1452     Lex.Lex();
   1453   }
   1454 }
   1455 
   1456 /// ParseOptionalLinkage
   1457 ///   ::= /*empty*/
   1458 ///   ::= 'private'
   1459 ///   ::= 'internal'
   1460 ///   ::= 'weak'
   1461 ///   ::= 'weak_odr'
   1462 ///   ::= 'linkonce'
   1463 ///   ::= 'linkonce_odr'
   1464 ///   ::= 'available_externally'
   1465 ///   ::= 'appending'
   1466 ///   ::= 'common'
   1467 ///   ::= 'extern_weak'
   1468 ///   ::= 'external'
   1469 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
   1470   HasLinkage = false;
   1471   switch (Lex.getKind()) {
   1472   default:                       Res=GlobalValue::ExternalLinkage; return false;
   1473   case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
   1474   case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
   1475   case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
   1476   case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
   1477   case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
   1478   case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
   1479   case lltok::kw_available_externally:
   1480     Res = GlobalValue::AvailableExternallyLinkage;
   1481     break;
   1482   case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
   1483   case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
   1484   case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
   1485   case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
   1486   }
   1487   Lex.Lex();
   1488   HasLinkage = true;
   1489   return false;
   1490 }
   1491 
   1492 /// ParseOptionalVisibility
   1493 ///   ::= /*empty*/
   1494 ///   ::= 'default'
   1495 ///   ::= 'hidden'
   1496 ///   ::= 'protected'
   1497 ///
   1498 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
   1499   switch (Lex.getKind()) {
   1500   default:                  Res = GlobalValue::DefaultVisibility; return false;
   1501   case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
   1502   case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
   1503   case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
   1504   }
   1505   Lex.Lex();
   1506   return false;
   1507 }
   1508 
   1509 /// ParseOptionalDLLStorageClass
   1510 ///   ::= /*empty*/
   1511 ///   ::= 'dllimport'
   1512 ///   ::= 'dllexport'
   1513 ///
   1514 bool LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
   1515   switch (Lex.getKind()) {
   1516   default:                  Res = GlobalValue::DefaultStorageClass; return false;
   1517   case lltok::kw_dllimport: Res = GlobalValue::DLLImportStorageClass; break;
   1518   case lltok::kw_dllexport: Res = GlobalValue::DLLExportStorageClass; break;
   1519   }
   1520   Lex.Lex();
   1521   return false;
   1522 }
   1523 
   1524 /// ParseOptionalCallingConv
   1525 ///   ::= /*empty*/
   1526 ///   ::= 'ccc'
   1527 ///   ::= 'fastcc'
   1528 ///   ::= 'intel_ocl_bicc'
   1529 ///   ::= 'coldcc'
   1530 ///   ::= 'x86_stdcallcc'
   1531 ///   ::= 'x86_fastcallcc'
   1532 ///   ::= 'x86_thiscallcc'
   1533 ///   ::= 'x86_vectorcallcc'
   1534 ///   ::= 'arm_apcscc'
   1535 ///   ::= 'arm_aapcscc'
   1536 ///   ::= 'arm_aapcs_vfpcc'
   1537 ///   ::= 'msp430_intrcc'
   1538 ///   ::= 'ptx_kernel'
   1539 ///   ::= 'ptx_device'
   1540 ///   ::= 'spir_func'
   1541 ///   ::= 'spir_kernel'
   1542 ///   ::= 'x86_64_sysvcc'
   1543 ///   ::= 'x86_64_win64cc'
   1544 ///   ::= 'webkit_jscc'
   1545 ///   ::= 'anyregcc'
   1546 ///   ::= 'preserve_mostcc'
   1547 ///   ::= 'preserve_allcc'
   1548 ///   ::= 'ghccc'
   1549 ///   ::= 'x86_intrcc'
   1550 ///   ::= 'hhvmcc'
   1551 ///   ::= 'hhvm_ccc'
   1552 ///   ::= 'cxx_fast_tlscc'
   1553 ///   ::= 'cc' UINT
   1554 ///
   1555 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
   1556   switch (Lex.getKind()) {
   1557   default:                       CC = CallingConv::C; return false;
   1558   case lltok::kw_ccc:            CC = CallingConv::C; break;
   1559   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
   1560   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
   1561   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
   1562   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
   1563   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
   1564   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
   1565   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
   1566   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
   1567   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
   1568   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
   1569   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
   1570   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
   1571   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
   1572   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
   1573   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
   1574   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
   1575   case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
   1576   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
   1577   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
   1578   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
   1579   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
   1580   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
   1581   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
   1582   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
   1583   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
   1584   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
   1585   case lltok::kw_cc: {
   1586       Lex.Lex();
   1587       return ParseUInt32(CC);
   1588     }
   1589   }
   1590 
   1591   Lex.Lex();
   1592   return false;
   1593 }
   1594 
   1595 /// ParseMetadataAttachment
   1596 ///   ::= !dbg !42
   1597 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
   1598   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
   1599 
   1600   std::string Name = Lex.getStrVal();
   1601   Kind = M->getMDKindID(Name);
   1602   Lex.Lex();
   1603 
   1604   return ParseMDNode(MD);
   1605 }
   1606 
   1607 /// ParseInstructionMetadata
   1608 ///   ::= !dbg !42 (',' !dbg !57)*
   1609 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
   1610   do {
   1611     if (Lex.getKind() != lltok::MetadataVar)
   1612       return TokError("expected metadata after comma");
   1613 
   1614     unsigned MDK;
   1615     MDNode *N;
   1616     if (ParseMetadataAttachment(MDK, N))
   1617       return true;
   1618 
   1619     Inst.setMetadata(MDK, N);
   1620     if (MDK == LLVMContext::MD_tbaa)
   1621       InstsWithTBAATag.push_back(&Inst);
   1622 
   1623     // If this is the end of the list, we're done.
   1624   } while (EatIfPresent(lltok::comma));
   1625   return false;
   1626 }
   1627 
   1628 /// ParseOptionalFunctionMetadata
   1629 ///   ::= (!dbg !57)*
   1630 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
   1631   while (Lex.getKind() == lltok::MetadataVar) {
   1632     unsigned MDK;
   1633     MDNode *N;
   1634     if (ParseMetadataAttachment(MDK, N))
   1635       return true;
   1636 
   1637     F.setMetadata(MDK, N);
   1638   }
   1639   return false;
   1640 }
   1641 
   1642 /// ParseOptionalAlignment
   1643 ///   ::= /* empty */
   1644 ///   ::= 'align' 4
   1645 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
   1646   Alignment = 0;
   1647   if (!EatIfPresent(lltok::kw_align))
   1648     return false;
   1649   LocTy AlignLoc = Lex.getLoc();
   1650   if (ParseUInt32(Alignment)) return true;
   1651   if (!isPowerOf2_32(Alignment))
   1652     return Error(AlignLoc, "alignment is not a power of two");
   1653   if (Alignment > Value::MaximumAlignment)
   1654     return Error(AlignLoc, "huge alignments are not supported yet");
   1655   return false;
   1656 }
   1657 
   1658 /// ParseOptionalDerefAttrBytes
   1659 ///   ::= /* empty */
   1660 ///   ::= AttrKind '(' 4 ')'
   1661 ///
   1662 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
   1663 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
   1664                                            uint64_t &Bytes) {
   1665   assert((AttrKind == lltok::kw_dereferenceable ||
   1666           AttrKind == lltok::kw_dereferenceable_or_null) &&
   1667          "contract!");
   1668 
   1669   Bytes = 0;
   1670   if (!EatIfPresent(AttrKind))
   1671     return false;
   1672   LocTy ParenLoc = Lex.getLoc();
   1673   if (!EatIfPresent(lltok::lparen))
   1674     return Error(ParenLoc, "expected '('");
   1675   LocTy DerefLoc = Lex.getLoc();
   1676   if (ParseUInt64(Bytes)) return true;
   1677   ParenLoc = Lex.getLoc();
   1678   if (!EatIfPresent(lltok::rparen))
   1679     return Error(ParenLoc, "expected ')'");
   1680   if (!Bytes)
   1681     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
   1682   return false;
   1683 }
   1684 
   1685 /// ParseOptionalCommaAlign
   1686 ///   ::=
   1687 ///   ::= ',' align 4
   1688 ///
   1689 /// This returns with AteExtraComma set to true if it ate an excess comma at the
   1690 /// end.
   1691 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
   1692                                        bool &AteExtraComma) {
   1693   AteExtraComma = false;
   1694   while (EatIfPresent(lltok::comma)) {
   1695     // Metadata at the end is an early exit.
   1696     if (Lex.getKind() == lltok::MetadataVar) {
   1697       AteExtraComma = true;
   1698       return false;
   1699     }
   1700 
   1701     if (Lex.getKind() != lltok::kw_align)
   1702       return Error(Lex.getLoc(), "expected metadata or 'align'");
   1703 
   1704     if (ParseOptionalAlignment(Alignment)) return true;
   1705   }
   1706 
   1707   return false;
   1708 }
   1709 
   1710 /// ParseScopeAndOrdering
   1711 ///   if isAtomic: ::= 'singlethread'? AtomicOrdering
   1712 ///   else: ::=
   1713 ///
   1714 /// This sets Scope and Ordering to the parsed values.
   1715 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
   1716                                      AtomicOrdering &Ordering) {
   1717   if (!isAtomic)
   1718     return false;
   1719 
   1720   Scope = CrossThread;
   1721   if (EatIfPresent(lltok::kw_singlethread))
   1722     Scope = SingleThread;
   1723 
   1724   return ParseOrdering(Ordering);
   1725 }
   1726 
   1727 /// ParseOrdering
   1728 ///   ::= AtomicOrdering
   1729 ///
   1730 /// This sets Ordering to the parsed value.
   1731 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
   1732   switch (Lex.getKind()) {
   1733   default: return TokError("Expected ordering on atomic instruction");
   1734   case lltok::kw_unordered: Ordering = Unordered; break;
   1735   case lltok::kw_monotonic: Ordering = Monotonic; break;
   1736   case lltok::kw_acquire: Ordering = Acquire; break;
   1737   case lltok::kw_release: Ordering = Release; break;
   1738   case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
   1739   case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
   1740   }
   1741   Lex.Lex();
   1742   return false;
   1743 }
   1744 
   1745 /// ParseOptionalStackAlignment
   1746 ///   ::= /* empty */
   1747 ///   ::= 'alignstack' '(' 4 ')'
   1748 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
   1749   Alignment = 0;
   1750   if (!EatIfPresent(lltok::kw_alignstack))
   1751     return false;
   1752   LocTy ParenLoc = Lex.getLoc();
   1753   if (!EatIfPresent(lltok::lparen))
   1754     return Error(ParenLoc, "expected '('");
   1755   LocTy AlignLoc = Lex.getLoc();
   1756   if (ParseUInt32(Alignment)) return true;
   1757   ParenLoc = Lex.getLoc();
   1758   if (!EatIfPresent(lltok::rparen))
   1759     return Error(ParenLoc, "expected ')'");
   1760   if (!isPowerOf2_32(Alignment))
   1761     return Error(AlignLoc, "stack alignment is not a power of two");
   1762   return false;
   1763 }
   1764 
   1765 /// ParseIndexList - This parses the index list for an insert/extractvalue
   1766 /// instruction.  This sets AteExtraComma in the case where we eat an extra
   1767 /// comma at the end of the line and find that it is followed by metadata.
   1768 /// Clients that don't allow metadata can call the version of this function that
   1769 /// only takes one argument.
   1770 ///
   1771 /// ParseIndexList
   1772 ///    ::=  (',' uint32)+
   1773 ///
   1774 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
   1775                               bool &AteExtraComma) {
   1776   AteExtraComma = false;
   1777 
   1778   if (Lex.getKind() != lltok::comma)
   1779     return TokError("expected ',' as start of index list");
   1780 
   1781   while (EatIfPresent(lltok::comma)) {
   1782     if (Lex.getKind() == lltok::MetadataVar) {
   1783       if (Indices.empty()) return TokError("expected index");
   1784       AteExtraComma = true;
   1785       return false;
   1786     }
   1787     unsigned Idx = 0;
   1788     if (ParseUInt32(Idx)) return true;
   1789     Indices.push_back(Idx);
   1790   }
   1791 
   1792   return false;
   1793 }
   1794 
   1795 //===----------------------------------------------------------------------===//
   1796 // Type Parsing.
   1797 //===----------------------------------------------------------------------===//
   1798 
   1799 /// ParseType - Parse a type.
   1800 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
   1801   SMLoc TypeLoc = Lex.getLoc();
   1802   switch (Lex.getKind()) {
   1803   default:
   1804     return TokError(Msg);
   1805   case lltok::Type:
   1806     // Type ::= 'float' | 'void' (etc)
   1807     Result = Lex.getTyVal();
   1808     Lex.Lex();
   1809     break;
   1810   case lltok::lbrace:
   1811     // Type ::= StructType
   1812     if (ParseAnonStructType(Result, false))
   1813       return true;
   1814     break;
   1815   case lltok::lsquare:
   1816     // Type ::= '[' ... ']'
   1817     Lex.Lex(); // eat the lsquare.
   1818     if (ParseArrayVectorType(Result, false))
   1819       return true;
   1820     break;
   1821   case lltok::less: // Either vector or packed struct.
   1822     // Type ::= '<' ... '>'
   1823     Lex.Lex();
   1824     if (Lex.getKind() == lltok::lbrace) {
   1825       if (ParseAnonStructType(Result, true) ||
   1826           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
   1827         return true;
   1828     } else if (ParseArrayVectorType(Result, true))
   1829       return true;
   1830     break;
   1831   case lltok::LocalVar: {
   1832     // Type ::= %foo
   1833     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
   1834 
   1835     // If the type hasn't been defined yet, create a forward definition and
   1836     // remember where that forward def'n was seen (in case it never is defined).
   1837     if (!Entry.first) {
   1838       Entry.first = StructType::create(Context, Lex.getStrVal());
   1839       Entry.second = Lex.getLoc();
   1840     }
   1841     Result = Entry.first;
   1842     Lex.Lex();
   1843     break;
   1844   }
   1845 
   1846   case lltok::LocalVarID: {
   1847     // Type ::= %4
   1848     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
   1849 
   1850     // If the type hasn't been defined yet, create a forward definition and
   1851     // remember where that forward def'n was seen (in case it never is defined).
   1852     if (!Entry.first) {
   1853       Entry.first = StructType::create(Context);
   1854       Entry.second = Lex.getLoc();
   1855     }
   1856     Result = Entry.first;
   1857     Lex.Lex();
   1858     break;
   1859   }
   1860   }
   1861 
   1862   // Parse the type suffixes.
   1863   while (1) {
   1864     switch (Lex.getKind()) {
   1865     // End of type.
   1866     default:
   1867       if (!AllowVoid && Result->isVoidTy())
   1868         return Error(TypeLoc, "void type only allowed for function results");
   1869       return false;
   1870 
   1871     // Type ::= Type '*'
   1872     case lltok::star:
   1873       if (Result->isLabelTy())
   1874         return TokError("basic block pointers are invalid");
   1875       if (Result->isVoidTy())
   1876         return TokError("pointers to void are invalid - use i8* instead");
   1877       if (!PointerType::isValidElementType(Result))
   1878         return TokError("pointer to this type is invalid");
   1879       Result = PointerType::getUnqual(Result);
   1880       Lex.Lex();
   1881       break;
   1882 
   1883     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
   1884     case lltok::kw_addrspace: {
   1885       if (Result->isLabelTy())
   1886         return TokError("basic block pointers are invalid");
   1887       if (Result->isVoidTy())
   1888         return TokError("pointers to void are invalid; use i8* instead");
   1889       if (!PointerType::isValidElementType(Result))
   1890         return TokError("pointer to this type is invalid");
   1891       unsigned AddrSpace;
   1892       if (ParseOptionalAddrSpace(AddrSpace) ||
   1893           ParseToken(lltok::star, "expected '*' in address space"))
   1894         return true;
   1895 
   1896       Result = PointerType::get(Result, AddrSpace);
   1897       break;
   1898     }
   1899 
   1900     /// Types '(' ArgTypeListI ')' OptFuncAttrs
   1901     case lltok::lparen:
   1902       if (ParseFunctionType(Result))
   1903         return true;
   1904       break;
   1905     }
   1906   }
   1907 }
   1908 
   1909 /// ParseParameterList
   1910 ///    ::= '(' ')'
   1911 ///    ::= '(' Arg (',' Arg)* ')'
   1912 ///  Arg
   1913 ///    ::= Type OptionalAttributes Value OptionalAttributes
   1914 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
   1915                                   PerFunctionState &PFS, bool IsMustTailCall,
   1916                                   bool InVarArgsFunc) {
   1917   if (ParseToken(lltok::lparen, "expected '(' in call"))
   1918     return true;
   1919 
   1920   unsigned AttrIndex = 1;
   1921   while (Lex.getKind() != lltok::rparen) {
   1922     // If this isn't the first argument, we need a comma.
   1923     if (!ArgList.empty() &&
   1924         ParseToken(lltok::comma, "expected ',' in argument list"))
   1925       return true;
   1926 
   1927     // Parse an ellipsis if this is a musttail call in a variadic function.
   1928     if (Lex.getKind() == lltok::dotdotdot) {
   1929       const char *Msg = "unexpected ellipsis in argument list for ";
   1930       if (!IsMustTailCall)
   1931         return TokError(Twine(Msg) + "non-musttail call");
   1932       if (!InVarArgsFunc)
   1933         return TokError(Twine(Msg) + "musttail call in non-varargs function");
   1934       Lex.Lex();  // Lex the '...', it is purely for readability.
   1935       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
   1936     }
   1937 
   1938     // Parse the argument.
   1939     LocTy ArgLoc;
   1940     Type *ArgTy = nullptr;
   1941     AttrBuilder ArgAttrs;
   1942     Value *V;
   1943     if (ParseType(ArgTy, ArgLoc))
   1944       return true;
   1945 
   1946     if (ArgTy->isMetadataTy()) {
   1947       if (ParseMetadataAsValue(V, PFS))
   1948         return true;
   1949     } else {
   1950       // Otherwise, handle normal operands.
   1951       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
   1952         return true;
   1953     }
   1954     ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
   1955                                                              AttrIndex++,
   1956                                                              ArgAttrs)));
   1957   }
   1958 
   1959   if (IsMustTailCall && InVarArgsFunc)
   1960     return TokError("expected '...' at end of argument list for musttail call "
   1961                     "in varargs function");
   1962 
   1963   Lex.Lex();  // Lex the ')'.
   1964   return false;
   1965 }
   1966 
   1967 /// ParseOptionalOperandBundles
   1968 ///    ::= /*empty*/
   1969 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
   1970 ///
   1971 /// OperandBundle
   1972 ///    ::= bundle-tag '(' ')'
   1973 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
   1974 ///
   1975 /// bundle-tag ::= String Constant
   1976 bool LLParser::ParseOptionalOperandBundles(
   1977     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
   1978   LocTy BeginLoc = Lex.getLoc();
   1979   if (!EatIfPresent(lltok::lsquare))
   1980     return false;
   1981 
   1982   while (Lex.getKind() != lltok::rsquare) {
   1983     // If this isn't the first operand bundle, we need a comma.
   1984     if (!BundleList.empty() &&
   1985         ParseToken(lltok::comma, "expected ',' in input list"))
   1986       return true;
   1987 
   1988     std::string Tag;
   1989     if (ParseStringConstant(Tag))
   1990       return true;
   1991 
   1992     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
   1993       return true;
   1994 
   1995     std::vector<Value *> Inputs;
   1996     while (Lex.getKind() != lltok::rparen) {
   1997       // If this isn't the first input, we need a comma.
   1998       if (!Inputs.empty() &&
   1999           ParseToken(lltok::comma, "expected ',' in input list"))
   2000         return true;
   2001 
   2002       Type *Ty = nullptr;
   2003       Value *Input = nullptr;
   2004       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
   2005         return true;
   2006       Inputs.push_back(Input);
   2007     }
   2008 
   2009     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
   2010 
   2011     Lex.Lex(); // Lex the ')'.
   2012   }
   2013 
   2014   if (BundleList.empty())
   2015     return Error(BeginLoc, "operand bundle set must not be empty");
   2016 
   2017   Lex.Lex(); // Lex the ']'.
   2018   return false;
   2019 }
   2020 
   2021 /// ParseArgumentList - Parse the argument list for a function type or function
   2022 /// prototype.
   2023 ///   ::= '(' ArgTypeListI ')'
   2024 /// ArgTypeListI
   2025 ///   ::= /*empty*/
   2026 ///   ::= '...'
   2027 ///   ::= ArgTypeList ',' '...'
   2028 ///   ::= ArgType (',' ArgType)*
   2029 ///
   2030 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
   2031                                  bool &isVarArg){
   2032   isVarArg = false;
   2033   assert(Lex.getKind() == lltok::lparen);
   2034   Lex.Lex(); // eat the (.
   2035 
   2036   if (Lex.getKind() == lltok::rparen) {
   2037     // empty
   2038   } else if (Lex.getKind() == lltok::dotdotdot) {
   2039     isVarArg = true;
   2040     Lex.Lex();
   2041   } else {
   2042     LocTy TypeLoc = Lex.getLoc();
   2043     Type *ArgTy = nullptr;
   2044     AttrBuilder Attrs;
   2045     std::string Name;
   2046 
   2047     if (ParseType(ArgTy) ||
   2048         ParseOptionalParamAttrs(Attrs)) return true;
   2049 
   2050     if (ArgTy->isVoidTy())
   2051       return Error(TypeLoc, "argument can not have void type");
   2052 
   2053     if (Lex.getKind() == lltok::LocalVar) {
   2054       Name = Lex.getStrVal();
   2055       Lex.Lex();
   2056     }
   2057 
   2058     if (!FunctionType::isValidArgumentType(ArgTy))
   2059       return Error(TypeLoc, "invalid type for function argument");
   2060 
   2061     unsigned AttrIndex = 1;
   2062     ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(),
   2063                                                            AttrIndex++, Attrs),
   2064                          std::move(Name));
   2065 
   2066     while (EatIfPresent(lltok::comma)) {
   2067       // Handle ... at end of arg list.
   2068       if (EatIfPresent(lltok::dotdotdot)) {
   2069         isVarArg = true;
   2070         break;
   2071       }
   2072 
   2073       // Otherwise must be an argument type.
   2074       TypeLoc = Lex.getLoc();
   2075       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
   2076 
   2077       if (ArgTy->isVoidTy())
   2078         return Error(TypeLoc, "argument can not have void type");
   2079 
   2080       if (Lex.getKind() == lltok::LocalVar) {
   2081         Name = Lex.getStrVal();
   2082         Lex.Lex();
   2083       } else {
   2084         Name = "";
   2085       }
   2086 
   2087       if (!ArgTy->isFirstClassType())
   2088         return Error(TypeLoc, "invalid type for function argument");
   2089 
   2090       ArgList.emplace_back(
   2091           TypeLoc, ArgTy,
   2092           AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs),
   2093           std::move(Name));
   2094     }
   2095   }
   2096 
   2097   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
   2098 }
   2099 
   2100 /// ParseFunctionType
   2101 ///  ::= Type ArgumentList OptionalAttrs
   2102 bool LLParser::ParseFunctionType(Type *&Result) {
   2103   assert(Lex.getKind() == lltok::lparen);
   2104 
   2105   if (!FunctionType::isValidReturnType(Result))
   2106     return TokError("invalid function return type");
   2107 
   2108   SmallVector<ArgInfo, 8> ArgList;
   2109   bool isVarArg;
   2110   if (ParseArgumentList(ArgList, isVarArg))
   2111     return true;
   2112 
   2113   // Reject names on the arguments lists.
   2114   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
   2115     if (!ArgList[i].Name.empty())
   2116       return Error(ArgList[i].Loc, "argument name invalid in function type");
   2117     if (ArgList[i].Attrs.hasAttributes(i + 1))
   2118       return Error(ArgList[i].Loc,
   2119                    "argument attributes invalid in function type");
   2120   }
   2121 
   2122   SmallVector<Type*, 16> ArgListTy;
   2123   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
   2124     ArgListTy.push_back(ArgList[i].Ty);
   2125 
   2126   Result = FunctionType::get(Result, ArgListTy, isVarArg);
   2127   return false;
   2128 }
   2129 
   2130 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
   2131 /// other structs.
   2132 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
   2133   SmallVector<Type*, 8> Elts;
   2134   if (ParseStructBody(Elts)) return true;
   2135 
   2136   Result = StructType::get(Context, Elts, Packed);
   2137   return false;
   2138 }
   2139 
   2140 /// ParseStructDefinition - Parse a struct in a 'type' definition.
   2141 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
   2142                                      std::pair<Type*, LocTy> &Entry,
   2143                                      Type *&ResultTy) {
   2144   // If the type was already defined, diagnose the redefinition.
   2145   if (Entry.first && !Entry.second.isValid())
   2146     return Error(TypeLoc, "redefinition of type");
   2147 
   2148   // If we have opaque, just return without filling in the definition for the
   2149   // struct.  This counts as a definition as far as the .ll file goes.
   2150   if (EatIfPresent(lltok::kw_opaque)) {
   2151     // This type is being defined, so clear the location to indicate this.
   2152     Entry.second = SMLoc();
   2153 
   2154     // If this type number has never been uttered, create it.
   2155     if (!Entry.first)
   2156       Entry.first = StructType::create(Context, Name);
   2157     ResultTy = Entry.first;
   2158     return false;
   2159   }
   2160 
   2161   // If the type starts with '<', then it is either a packed struct or a vector.
   2162   bool isPacked = EatIfPresent(lltok::less);
   2163 
   2164   // If we don't have a struct, then we have a random type alias, which we
   2165   // accept for compatibility with old files.  These types are not allowed to be
   2166   // forward referenced and not allowed to be recursive.
   2167   if (Lex.getKind() != lltok::lbrace) {
   2168     if (Entry.first)
   2169       return Error(TypeLoc, "forward references to non-struct type");
   2170 
   2171     ResultTy = nullptr;
   2172     if (isPacked)
   2173       return ParseArrayVectorType(ResultTy, true);
   2174     return ParseType(ResultTy);
   2175   }
   2176 
   2177   // This type is being defined, so clear the location to indicate this.
   2178   Entry.second = SMLoc();
   2179 
   2180   // If this type number has never been uttered, create it.
   2181   if (!Entry.first)
   2182     Entry.first = StructType::create(Context, Name);
   2183 
   2184   StructType *STy = cast<StructType>(Entry.first);
   2185 
   2186   SmallVector<Type*, 8> Body;
   2187   if (ParseStructBody(Body) ||
   2188       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
   2189     return true;
   2190 
   2191   STy->setBody(Body, isPacked);
   2192   ResultTy = STy;
   2193   return false;
   2194 }
   2195 
   2196 
   2197 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
   2198 ///   StructType
   2199 ///     ::= '{' '}'
   2200 ///     ::= '{' Type (',' Type)* '}'
   2201 ///     ::= '<' '{' '}' '>'
   2202 ///     ::= '<' '{' Type (',' Type)* '}' '>'
   2203 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
   2204   assert(Lex.getKind() == lltok::lbrace);
   2205   Lex.Lex(); // Consume the '{'
   2206 
   2207   // Handle the empty struct.
   2208   if (EatIfPresent(lltok::rbrace))
   2209     return false;
   2210 
   2211   LocTy EltTyLoc = Lex.getLoc();
   2212   Type *Ty = nullptr;
   2213   if (ParseType(Ty)) return true;
   2214   Body.push_back(Ty);
   2215 
   2216   if (!StructType::isValidElementType(Ty))
   2217     return Error(EltTyLoc, "invalid element type for struct");
   2218 
   2219   while (EatIfPresent(lltok::comma)) {
   2220     EltTyLoc = Lex.getLoc();
   2221     if (ParseType(Ty)) return true;
   2222 
   2223     if (!StructType::isValidElementType(Ty))
   2224       return Error(EltTyLoc, "invalid element type for struct");
   2225 
   2226     Body.push_back(Ty);
   2227   }
   2228 
   2229   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
   2230 }
   2231 
   2232 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
   2233 /// token has already been consumed.
   2234 ///   Type
   2235 ///     ::= '[' APSINTVAL 'x' Types ']'
   2236 ///     ::= '<' APSINTVAL 'x' Types '>'
   2237 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
   2238   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
   2239       Lex.getAPSIntVal().getBitWidth() > 64)
   2240     return TokError("expected number in address space");
   2241 
   2242   LocTy SizeLoc = Lex.getLoc();
   2243   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
   2244   Lex.Lex();
   2245 
   2246   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
   2247       return true;
   2248 
   2249   LocTy TypeLoc = Lex.getLoc();
   2250   Type *EltTy = nullptr;
   2251   if (ParseType(EltTy)) return true;
   2252 
   2253   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
   2254                  "expected end of sequential type"))
   2255     return true;
   2256 
   2257   if (isVector) {
   2258     if (Size == 0)
   2259       return Error(SizeLoc, "zero element vector is illegal");
   2260     if ((unsigned)Size != Size)
   2261       return Error(SizeLoc, "size too large for vector");
   2262     if (!VectorType::isValidElementType(EltTy))
   2263       return Error(TypeLoc, "invalid vector element type");
   2264     Result = VectorType::get(EltTy, unsigned(Size));
   2265   } else {
   2266     if (!ArrayType::isValidElementType(EltTy))
   2267       return Error(TypeLoc, "invalid array element type");
   2268     Result = ArrayType::get(EltTy, Size);
   2269   }
   2270   return false;
   2271 }
   2272 
   2273 //===----------------------------------------------------------------------===//
   2274 // Function Semantic Analysis.
   2275 //===----------------------------------------------------------------------===//
   2276 
   2277 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
   2278                                              int functionNumber)
   2279   : P(p), F(f), FunctionNumber(functionNumber) {
   2280 
   2281   // Insert unnamed arguments into the NumberedVals list.
   2282   for (Argument &A : F.args())
   2283     if (!A.hasName())
   2284       NumberedVals.push_back(&A);
   2285 }
   2286 
   2287 LLParser::PerFunctionState::~PerFunctionState() {
   2288   // If there were any forward referenced non-basicblock values, delete them.
   2289 
   2290   for (const auto &P : ForwardRefVals) {
   2291     if (isa<BasicBlock>(P.second.first))
   2292       continue;
   2293     P.second.first->replaceAllUsesWith(
   2294         UndefValue::get(P.second.first->getType()));
   2295     delete P.second.first;
   2296   }
   2297 
   2298   for (const auto &P : ForwardRefValIDs) {
   2299     if (isa<BasicBlock>(P.second.first))
   2300       continue;
   2301     P.second.first->replaceAllUsesWith(
   2302         UndefValue::get(P.second.first->getType()));
   2303     delete P.second.first;
   2304   }
   2305 }
   2306 
   2307 bool LLParser::PerFunctionState::FinishFunction() {
   2308   if (!ForwardRefVals.empty())
   2309     return P.Error(ForwardRefVals.begin()->second.second,
   2310                    "use of undefined value '%" + ForwardRefVals.begin()->first +
   2311                    "'");
   2312   if (!ForwardRefValIDs.empty())
   2313     return P.Error(ForwardRefValIDs.begin()->second.second,
   2314                    "use of undefined value '%" +
   2315                    Twine(ForwardRefValIDs.begin()->first) + "'");
   2316   return false;
   2317 }
   2318 
   2319 
   2320 /// GetVal - Get a value with the specified name or ID, creating a
   2321 /// forward reference record if needed.  This can return null if the value
   2322 /// exists but does not have the right type.
   2323 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
   2324                                           LocTy Loc) {
   2325   // Look this name up in the normal function symbol table.
   2326   Value *Val = F.getValueSymbolTable().lookup(Name);
   2327 
   2328   // If this is a forward reference for the value, see if we already created a
   2329   // forward ref record.
   2330   if (!Val) {
   2331     auto I = ForwardRefVals.find(Name);
   2332     if (I != ForwardRefVals.end())
   2333       Val = I->second.first;
   2334   }
   2335 
   2336   // If we have the value in the symbol table or fwd-ref table, return it.
   2337   if (Val) {
   2338     if (Val->getType() == Ty) return Val;
   2339     if (Ty->isLabelTy())
   2340       P.Error(Loc, "'%" + Name + "' is not a basic block");
   2341     else
   2342       P.Error(Loc, "'%" + Name + "' defined with type '" +
   2343               getTypeString(Val->getType()) + "'");
   2344     return nullptr;
   2345   }
   2346 
   2347   // Don't make placeholders with invalid type.
   2348   if (!Ty->isFirstClassType()) {
   2349     P.Error(Loc, "invalid use of a non-first-class type");
   2350     return nullptr;
   2351   }
   2352 
   2353   // Otherwise, create a new forward reference for this value and remember it.
   2354   Value *FwdVal;
   2355   if (Ty->isLabelTy()) {
   2356     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
   2357   } else {
   2358     FwdVal = new Argument(Ty, Name);
   2359   }
   2360 
   2361   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
   2362   return FwdVal;
   2363 }
   2364 
   2365 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) {
   2366   // Look this name up in the normal function symbol table.
   2367   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
   2368 
   2369   // If this is a forward reference for the value, see if we already created a
   2370   // forward ref record.
   2371   if (!Val) {
   2372     auto I = ForwardRefValIDs.find(ID);
   2373     if (I != ForwardRefValIDs.end())
   2374       Val = I->second.first;
   2375   }
   2376 
   2377   // If we have the value in the symbol table or fwd-ref table, return it.
   2378   if (Val) {
   2379     if (Val->getType() == Ty) return Val;
   2380     if (Ty->isLabelTy())
   2381       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
   2382     else
   2383       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
   2384               getTypeString(Val->getType()) + "'");
   2385     return nullptr;
   2386   }
   2387 
   2388   if (!Ty->isFirstClassType()) {
   2389     P.Error(Loc, "invalid use of a non-first-class type");
   2390     return nullptr;
   2391   }
   2392 
   2393   // Otherwise, create a new forward reference for this value and remember it.
   2394   Value *FwdVal;
   2395   if (Ty->isLabelTy()) {
   2396     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
   2397   } else {
   2398     FwdVal = new Argument(Ty);
   2399   }
   2400 
   2401   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
   2402   return FwdVal;
   2403 }
   2404 
   2405 /// SetInstName - After an instruction is parsed and inserted into its
   2406 /// basic block, this installs its name.
   2407 bool LLParser::PerFunctionState::SetInstName(int NameID,
   2408                                              const std::string &NameStr,
   2409                                              LocTy NameLoc, Instruction *Inst) {
   2410   // If this instruction has void type, it cannot have a name or ID specified.
   2411   if (Inst->getType()->isVoidTy()) {
   2412     if (NameID != -1 || !NameStr.empty())
   2413       return P.Error(NameLoc, "instructions returning void cannot have a name");
   2414     return false;
   2415   }
   2416 
   2417   // If this was a numbered instruction, verify that the instruction is the
   2418   // expected value and resolve any forward references.
   2419   if (NameStr.empty()) {
   2420     // If neither a name nor an ID was specified, just use the next ID.
   2421     if (NameID == -1)
   2422       NameID = NumberedVals.size();
   2423 
   2424     if (unsigned(NameID) != NumberedVals.size())
   2425       return P.Error(NameLoc, "instruction expected to be numbered '%" +
   2426                      Twine(NumberedVals.size()) + "'");
   2427 
   2428     auto FI = ForwardRefValIDs.find(NameID);
   2429     if (FI != ForwardRefValIDs.end()) {
   2430       Value *Sentinel = FI->second.first;
   2431       if (Sentinel->getType() != Inst->getType())
   2432         return P.Error(NameLoc, "instruction forward referenced with type '" +
   2433                        getTypeString(FI->second.first->getType()) + "'");
   2434 
   2435       Sentinel->replaceAllUsesWith(Inst);
   2436       delete Sentinel;
   2437       ForwardRefValIDs.erase(FI);
   2438     }
   2439 
   2440     NumberedVals.push_back(Inst);
   2441     return false;
   2442   }
   2443 
   2444   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
   2445   auto FI = ForwardRefVals.find(NameStr);
   2446   if (FI != ForwardRefVals.end()) {
   2447     Value *Sentinel = FI->second.first;
   2448     if (Sentinel->getType() != Inst->getType())
   2449       return P.Error(NameLoc, "instruction forward referenced with type '" +
   2450                      getTypeString(FI->second.first->getType()) + "'");
   2451 
   2452     Sentinel->replaceAllUsesWith(Inst);
   2453     delete Sentinel;
   2454     ForwardRefVals.erase(FI);
   2455   }
   2456 
   2457   // Set the name on the instruction.
   2458   Inst->setName(NameStr);
   2459 
   2460   if (Inst->getName() != NameStr)
   2461     return P.Error(NameLoc, "multiple definition of local value named '" +
   2462                    NameStr + "'");
   2463   return false;
   2464 }
   2465 
   2466 /// GetBB - Get a basic block with the specified name or ID, creating a
   2467 /// forward reference record if needed.
   2468 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
   2469                                               LocTy Loc) {
   2470   return dyn_cast_or_null<BasicBlock>(GetVal(Name,
   2471                                       Type::getLabelTy(F.getContext()), Loc));
   2472 }
   2473 
   2474 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
   2475   return dyn_cast_or_null<BasicBlock>(GetVal(ID,
   2476                                       Type::getLabelTy(F.getContext()), Loc));
   2477 }
   2478 
   2479 /// DefineBB - Define the specified basic block, which is either named or
   2480 /// unnamed.  If there is an error, this returns null otherwise it returns
   2481 /// the block being defined.
   2482 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
   2483                                                  LocTy Loc) {
   2484   BasicBlock *BB;
   2485   if (Name.empty())
   2486     BB = GetBB(NumberedVals.size(), Loc);
   2487   else
   2488     BB = GetBB(Name, Loc);
   2489   if (!BB) return nullptr; // Already diagnosed error.
   2490 
   2491   // Move the block to the end of the function.  Forward ref'd blocks are
   2492   // inserted wherever they happen to be referenced.
   2493   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
   2494 
   2495   // Remove the block from forward ref sets.
   2496   if (Name.empty()) {
   2497     ForwardRefValIDs.erase(NumberedVals.size());
   2498     NumberedVals.push_back(BB);
   2499   } else {
   2500     // BB forward references are already in the function symbol table.
   2501     ForwardRefVals.erase(Name);
   2502   }
   2503 
   2504   return BB;
   2505 }
   2506 
   2507 //===----------------------------------------------------------------------===//
   2508 // Constants.
   2509 //===----------------------------------------------------------------------===//
   2510 
   2511 /// ParseValID - Parse an abstract value that doesn't necessarily have a
   2512 /// type implied.  For example, if we parse "4" we don't know what integer type
   2513 /// it has.  The value will later be combined with its type and checked for
   2514 /// sanity.  PFS is used to convert function-local operands of metadata (since
   2515 /// metadata operands are not just parsed here but also converted to values).
   2516 /// PFS can be null when we are not parsing metadata values inside a function.
   2517 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
   2518   ID.Loc = Lex.getLoc();
   2519   switch (Lex.getKind()) {
   2520   default: return TokError("expected value token");
   2521   case lltok::GlobalID:  // @42
   2522     ID.UIntVal = Lex.getUIntVal();
   2523     ID.Kind = ValID::t_GlobalID;
   2524     break;
   2525   case lltok::GlobalVar:  // @foo
   2526     ID.StrVal = Lex.getStrVal();
   2527     ID.Kind = ValID::t_GlobalName;
   2528     break;
   2529   case lltok::LocalVarID:  // %42
   2530     ID.UIntVal = Lex.getUIntVal();
   2531     ID.Kind = ValID::t_LocalID;
   2532     break;
   2533   case lltok::LocalVar:  // %foo
   2534     ID.StrVal = Lex.getStrVal();
   2535     ID.Kind = ValID::t_LocalName;
   2536     break;
   2537   case lltok::APSInt:
   2538     ID.APSIntVal = Lex.getAPSIntVal();
   2539     ID.Kind = ValID::t_APSInt;
   2540     break;
   2541   case lltok::APFloat:
   2542     ID.APFloatVal = Lex.getAPFloatVal();
   2543     ID.Kind = ValID::t_APFloat;
   2544     break;
   2545   case lltok::kw_true:
   2546     ID.ConstantVal = ConstantInt::getTrue(Context);
   2547     ID.Kind = ValID::t_Constant;
   2548     break;
   2549   case lltok::kw_false:
   2550     ID.ConstantVal = ConstantInt::getFalse(Context);
   2551     ID.Kind = ValID::t_Constant;
   2552     break;
   2553   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
   2554   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
   2555   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
   2556   case lltok::kw_none: ID.Kind = ValID::t_None; break;
   2557 
   2558   case lltok::lbrace: {
   2559     // ValID ::= '{' ConstVector '}'
   2560     Lex.Lex();
   2561     SmallVector<Constant*, 16> Elts;
   2562     if (ParseGlobalValueVector(Elts) ||
   2563         ParseToken(lltok::rbrace, "expected end of struct constant"))
   2564       return true;
   2565 
   2566     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
   2567     ID.UIntVal = Elts.size();
   2568     memcpy(ID.ConstantStructElts.get(), Elts.data(),
   2569            Elts.size() * sizeof(Elts[0]));
   2570     ID.Kind = ValID::t_ConstantStruct;
   2571     return false;
   2572   }
   2573   case lltok::less: {
   2574     // ValID ::= '<' ConstVector '>'         --> Vector.
   2575     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
   2576     Lex.Lex();
   2577     bool isPackedStruct = EatIfPresent(lltok::lbrace);
   2578 
   2579     SmallVector<Constant*, 16> Elts;
   2580     LocTy FirstEltLoc = Lex.getLoc();
   2581     if (ParseGlobalValueVector(Elts) ||
   2582         (isPackedStruct &&
   2583          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
   2584         ParseToken(lltok::greater, "expected end of constant"))
   2585       return true;
   2586 
   2587     if (isPackedStruct) {
   2588       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
   2589       memcpy(ID.ConstantStructElts.get(), Elts.data(),
   2590              Elts.size() * sizeof(Elts[0]));
   2591       ID.UIntVal = Elts.size();
   2592       ID.Kind = ValID::t_PackedConstantStruct;
   2593       return false;
   2594     }
   2595 
   2596     if (Elts.empty())
   2597       return Error(ID.Loc, "constant vector must not be empty");
   2598 
   2599     if (!Elts[0]->getType()->isIntegerTy() &&
   2600         !Elts[0]->getType()->isFloatingPointTy() &&
   2601         !Elts[0]->getType()->isPointerTy())
   2602       return Error(FirstEltLoc,
   2603             "vector elements must have integer, pointer or floating point type");
   2604 
   2605     // Verify that all the vector elements have the same type.
   2606     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
   2607       if (Elts[i]->getType() != Elts[0]->getType())
   2608         return Error(FirstEltLoc,
   2609                      "vector element #" + Twine(i) +
   2610                     " is not of type '" + getTypeString(Elts[0]->getType()));
   2611 
   2612     ID.ConstantVal = ConstantVector::get(Elts);
   2613     ID.Kind = ValID::t_Constant;
   2614     return false;
   2615   }
   2616   case lltok::lsquare: {   // Array Constant
   2617     Lex.Lex();
   2618     SmallVector<Constant*, 16> Elts;
   2619     LocTy FirstEltLoc = Lex.getLoc();
   2620     if (ParseGlobalValueVector(Elts) ||
   2621         ParseToken(lltok::rsquare, "expected end of array constant"))
   2622       return true;
   2623 
   2624     // Handle empty element.
   2625     if (Elts.empty()) {
   2626       // Use undef instead of an array because it's inconvenient to determine
   2627       // the element type at this point, there being no elements to examine.
   2628       ID.Kind = ValID::t_EmptyArray;
   2629       return false;
   2630     }
   2631 
   2632     if (!Elts[0]->getType()->isFirstClassType())
   2633       return Error(FirstEltLoc, "invalid array element type: " +
   2634                    getTypeString(Elts[0]->getType()));
   2635 
   2636     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
   2637 
   2638     // Verify all elements are correct type!
   2639     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
   2640       if (Elts[i]->getType() != Elts[0]->getType())
   2641         return Error(FirstEltLoc,
   2642                      "array element #" + Twine(i) +
   2643                      " is not of type '" + getTypeString(Elts[0]->getType()));
   2644     }
   2645 
   2646     ID.ConstantVal = ConstantArray::get(ATy, Elts);
   2647     ID.Kind = ValID::t_Constant;
   2648     return false;
   2649   }
   2650   case lltok::kw_c:  // c "foo"
   2651     Lex.Lex();
   2652     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
   2653                                                   false);
   2654     if (ParseToken(lltok::StringConstant, "expected string")) return true;
   2655     ID.Kind = ValID::t_Constant;
   2656     return false;
   2657 
   2658   case lltok::kw_asm: {
   2659     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
   2660     //             STRINGCONSTANT
   2661     bool HasSideEffect, AlignStack, AsmDialect;
   2662     Lex.Lex();
   2663     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
   2664         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
   2665         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
   2666         ParseStringConstant(ID.StrVal) ||
   2667         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
   2668         ParseToken(lltok::StringConstant, "expected constraint string"))
   2669       return true;
   2670     ID.StrVal2 = Lex.getStrVal();
   2671     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
   2672       (unsigned(AsmDialect)<<2);
   2673     ID.Kind = ValID::t_InlineAsm;
   2674     return false;
   2675   }
   2676 
   2677   case lltok::kw_blockaddress: {
   2678     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
   2679     Lex.Lex();
   2680 
   2681     ValID Fn, Label;
   2682 
   2683     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
   2684         ParseValID(Fn) ||
   2685         ParseToken(lltok::comma, "expected comma in block address expression")||
   2686         ParseValID(Label) ||
   2687         ParseToken(lltok::rparen, "expected ')' in block address expression"))
   2688       return true;
   2689 
   2690     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
   2691       return Error(Fn.Loc, "expected function name in blockaddress");
   2692     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
   2693       return Error(Label.Loc, "expected basic block name in blockaddress");
   2694 
   2695     // Try to find the function (but skip it if it's forward-referenced).
   2696     GlobalValue *GV = nullptr;
   2697     if (Fn.Kind == ValID::t_GlobalID) {
   2698       if (Fn.UIntVal < NumberedVals.size())
   2699         GV = NumberedVals[Fn.UIntVal];
   2700     } else if (!ForwardRefVals.count(Fn.StrVal)) {
   2701       GV = M->getNamedValue(Fn.StrVal);
   2702     }
   2703     Function *F = nullptr;
   2704     if (GV) {
   2705       // Confirm that it's actually a function with a definition.
   2706       if (!isa<Function>(GV))
   2707         return Error(Fn.Loc, "expected function name in blockaddress");
   2708       F = cast<Function>(GV);
   2709       if (F->isDeclaration())
   2710         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
   2711     }
   2712 
   2713     if (!F) {
   2714       // Make a global variable as a placeholder for this reference.
   2715       GlobalValue *&FwdRef =
   2716           ForwardRefBlockAddresses.insert(std::make_pair(
   2717                                               std::move(Fn),
   2718                                               std::map<ValID, GlobalValue *>()))
   2719               .first->second.insert(std::make_pair(std::move(Label), nullptr))
   2720               .first->second;
   2721       if (!FwdRef)
   2722         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
   2723                                     GlobalValue::InternalLinkage, nullptr, "");
   2724       ID.ConstantVal = FwdRef;
   2725       ID.Kind = ValID::t_Constant;
   2726       return false;
   2727     }
   2728 
   2729     // We found the function; now find the basic block.  Don't use PFS, since we
   2730     // might be inside a constant expression.
   2731     BasicBlock *BB;
   2732     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
   2733       if (Label.Kind == ValID::t_LocalID)
   2734         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
   2735       else
   2736         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
   2737       if (!BB)
   2738         return Error(Label.Loc, "referenced value is not a basic block");
   2739     } else {
   2740       if (Label.Kind == ValID::t_LocalID)
   2741         return Error(Label.Loc, "cannot take address of numeric label after "
   2742                                 "the function is defined");
   2743       BB = dyn_cast_or_null<BasicBlock>(
   2744           F->getValueSymbolTable().lookup(Label.StrVal));
   2745       if (!BB)
   2746         return Error(Label.Loc, "referenced value is not a basic block");
   2747     }
   2748 
   2749     ID.ConstantVal = BlockAddress::get(F, BB);
   2750     ID.Kind = ValID::t_Constant;
   2751     return false;
   2752   }
   2753 
   2754   case lltok::kw_trunc:
   2755   case lltok::kw_zext:
   2756   case lltok::kw_sext:
   2757   case lltok::kw_fptrunc:
   2758   case lltok::kw_fpext:
   2759   case lltok::kw_bitcast:
   2760   case lltok::kw_addrspacecast:
   2761   case lltok::kw_uitofp:
   2762   case lltok::kw_sitofp:
   2763   case lltok::kw_fptoui:
   2764   case lltok::kw_fptosi:
   2765   case lltok::kw_inttoptr:
   2766   case lltok::kw_ptrtoint: {
   2767     unsigned Opc = Lex.getUIntVal();
   2768     Type *DestTy = nullptr;
   2769     Constant *SrcVal;
   2770     Lex.Lex();
   2771     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
   2772         ParseGlobalTypeAndValue(SrcVal) ||
   2773         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
   2774         ParseType(DestTy) ||
   2775         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
   2776       return true;
   2777     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
   2778       return Error(ID.Loc, "invalid cast opcode for cast from '" +
   2779                    getTypeString(SrcVal->getType()) + "' to '" +
   2780                    getTypeString(DestTy) + "'");
   2781     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
   2782                                                  SrcVal, DestTy);
   2783     ID.Kind = ValID::t_Constant;
   2784     return false;
   2785   }
   2786   case lltok::kw_extractvalue: {
   2787     Lex.Lex();
   2788     Constant *Val;
   2789     SmallVector<unsigned, 4> Indices;
   2790     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
   2791         ParseGlobalTypeAndValue(Val) ||
   2792         ParseIndexList(Indices) ||
   2793         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
   2794       return true;
   2795 
   2796     if (!Val->getType()->isAggregateType())
   2797       return Error(ID.Loc, "extractvalue operand must be aggregate type");
   2798     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
   2799       return Error(ID.Loc, "invalid indices for extractvalue");
   2800     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
   2801     ID.Kind = ValID::t_Constant;
   2802     return false;
   2803   }
   2804   case lltok::kw_insertvalue: {
   2805     Lex.Lex();
   2806     Constant *Val0, *Val1;
   2807     SmallVector<unsigned, 4> Indices;
   2808     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
   2809         ParseGlobalTypeAndValue(Val0) ||
   2810         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
   2811         ParseGlobalTypeAndValue(Val1) ||
   2812         ParseIndexList(Indices) ||
   2813         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
   2814       return true;
   2815     if (!Val0->getType()->isAggregateType())
   2816       return Error(ID.Loc, "insertvalue operand must be aggregate type");
   2817     Type *IndexedType =
   2818         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
   2819     if (!IndexedType)
   2820       return Error(ID.Loc, "invalid indices for insertvalue");
   2821     if (IndexedType != Val1->getType())
   2822       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
   2823                                getTypeString(Val1->getType()) +
   2824                                "' instead of '" + getTypeString(IndexedType) +
   2825                                "'");
   2826     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
   2827     ID.Kind = ValID::t_Constant;
   2828     return false;
   2829   }
   2830   case lltok::kw_icmp:
   2831   case lltok::kw_fcmp: {
   2832     unsigned PredVal, Opc = Lex.getUIntVal();
   2833     Constant *Val0, *Val1;
   2834     Lex.Lex();
   2835     if (ParseCmpPredicate(PredVal, Opc) ||
   2836         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
   2837         ParseGlobalTypeAndValue(Val0) ||
   2838         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
   2839         ParseGlobalTypeAndValue(Val1) ||
   2840         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
   2841       return true;
   2842 
   2843     if (Val0->getType() != Val1->getType())
   2844       return Error(ID.Loc, "compare operands must have the same type");
   2845 
   2846     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
   2847 
   2848     if (Opc == Instruction::FCmp) {
   2849       if (!Val0->getType()->isFPOrFPVectorTy())
   2850         return Error(ID.Loc, "fcmp requires floating point operands");
   2851       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
   2852     } else {
   2853       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
   2854       if (!Val0->getType()->isIntOrIntVectorTy() &&
   2855           !Val0->getType()->getScalarType()->isPointerTy())
   2856         return Error(ID.Loc, "icmp requires pointer or integer operands");
   2857       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
   2858     }
   2859     ID.Kind = ValID::t_Constant;
   2860     return false;
   2861   }
   2862 
   2863   // Binary Operators.
   2864   case lltok::kw_add:
   2865   case lltok::kw_fadd:
   2866   case lltok::kw_sub:
   2867   case lltok::kw_fsub:
   2868   case lltok::kw_mul:
   2869   case lltok::kw_fmul:
   2870   case lltok::kw_udiv:
   2871   case lltok::kw_sdiv:
   2872   case lltok::kw_fdiv:
   2873   case lltok::kw_urem:
   2874   case lltok::kw_srem:
   2875   case lltok::kw_frem:
   2876   case lltok::kw_shl:
   2877   case lltok::kw_lshr:
   2878   case lltok::kw_ashr: {
   2879     bool NUW = false;
   2880     bool NSW = false;
   2881     bool Exact = false;
   2882     unsigned Opc = Lex.getUIntVal();
   2883     Constant *Val0, *Val1;
   2884     Lex.Lex();
   2885     LocTy ModifierLoc = Lex.getLoc();
   2886     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
   2887         Opc == Instruction::Mul || Opc == Instruction::Shl) {
   2888       if (EatIfPresent(lltok::kw_nuw))
   2889         NUW = true;
   2890       if (EatIfPresent(lltok::kw_nsw)) {
   2891         NSW = true;
   2892         if (EatIfPresent(lltok::kw_nuw))
   2893           NUW = true;
   2894       }
   2895     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
   2896                Opc == Instruction::LShr || Opc == Instruction::AShr) {
   2897       if (EatIfPresent(lltok::kw_exact))
   2898         Exact = true;
   2899     }
   2900     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
   2901         ParseGlobalTypeAndValue(Val0) ||
   2902         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
   2903         ParseGlobalTypeAndValue(Val1) ||
   2904         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
   2905       return true;
   2906     if (Val0->getType() != Val1->getType())
   2907       return Error(ID.Loc, "operands of constexpr must have same type");
   2908     if (!Val0->getType()->isIntOrIntVectorTy()) {
   2909       if (NUW)
   2910         return Error(ModifierLoc, "nuw only applies to integer operations");
   2911       if (NSW)
   2912         return Error(ModifierLoc, "nsw only applies to integer operations");
   2913     }
   2914     // Check that the type is valid for the operator.
   2915     switch (Opc) {
   2916     case Instruction::Add:
   2917     case Instruction::Sub:
   2918     case Instruction::Mul:
   2919     case Instruction::UDiv:
   2920     case Instruction::SDiv:
   2921     case Instruction::URem:
   2922     case Instruction::SRem:
   2923     case Instruction::Shl:
   2924     case Instruction::AShr:
   2925     case Instruction::LShr:
   2926       if (!Val0->getType()->isIntOrIntVectorTy())
   2927         return Error(ID.Loc, "constexpr requires integer operands");
   2928       break;
   2929     case Instruction::FAdd:
   2930     case Instruction::FSub:
   2931     case Instruction::FMul:
   2932     case Instruction::FDiv:
   2933     case Instruction::FRem:
   2934       if (!Val0->getType()->isFPOrFPVectorTy())
   2935         return Error(ID.Loc, "constexpr requires fp operands");
   2936       break;
   2937     default: llvm_unreachable("Unknown binary operator!");
   2938     }
   2939     unsigned Flags = 0;
   2940     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
   2941     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
   2942     if (Exact) Flags |= PossiblyExactOperator::IsExact;
   2943     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
   2944     ID.ConstantVal = C;
   2945     ID.Kind = ValID::t_Constant;
   2946     return false;
   2947   }
   2948 
   2949   // Logical Operations
   2950   case lltok::kw_and:
   2951   case lltok::kw_or:
   2952   case lltok::kw_xor: {
   2953     unsigned Opc = Lex.getUIntVal();
   2954     Constant *Val0, *Val1;
   2955     Lex.Lex();
   2956     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
   2957         ParseGlobalTypeAndValue(Val0) ||
   2958         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
   2959         ParseGlobalTypeAndValue(Val1) ||
   2960         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
   2961       return true;
   2962     if (Val0->getType() != Val1->getType())
   2963       return Error(ID.Loc, "operands of constexpr must have same type");
   2964     if (!Val0->getType()->isIntOrIntVectorTy())
   2965       return Error(ID.Loc,
   2966                    "constexpr requires integer or integer vector operands");
   2967     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
   2968     ID.Kind = ValID::t_Constant;
   2969     return false;
   2970   }
   2971 
   2972   case lltok::kw_getelementptr:
   2973   case lltok::kw_shufflevector:
   2974   case lltok::kw_insertelement:
   2975   case lltok::kw_extractelement:
   2976   case lltok::kw_select: {
   2977     unsigned Opc = Lex.getUIntVal();
   2978     SmallVector<Constant*, 16> Elts;
   2979     bool InBounds = false;
   2980     Type *Ty;
   2981     Lex.Lex();
   2982 
   2983     if (Opc == Instruction::GetElementPtr)
   2984       InBounds = EatIfPresent(lltok::kw_inbounds);
   2985 
   2986     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
   2987       return true;
   2988 
   2989     LocTy ExplicitTypeLoc = Lex.getLoc();
   2990     if (Opc == Instruction::GetElementPtr) {
   2991       if (ParseType(Ty) ||
   2992           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
   2993         return true;
   2994     }
   2995 
   2996     if (ParseGlobalValueVector(Elts) ||
   2997         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
   2998       return true;
   2999 
   3000     if (Opc == Instruction::GetElementPtr) {
   3001       if (Elts.size() == 0 ||
   3002           !Elts[0]->getType()->getScalarType()->isPointerTy())
   3003         return Error(ID.Loc, "base of getelementptr must be a pointer");
   3004 
   3005       Type *BaseType = Elts[0]->getType();
   3006       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
   3007       if (Ty != BasePointerType->getElementType())
   3008         return Error(
   3009             ExplicitTypeLoc,
   3010             "explicit pointee type doesn't match operand's pointee type");
   3011 
   3012       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
   3013       for (Constant *Val : Indices) {
   3014         Type *ValTy = Val->getType();
   3015         if (!ValTy->getScalarType()->isIntegerTy())
   3016           return Error(ID.Loc, "getelementptr index must be an integer");
   3017         if (ValTy->isVectorTy() != BaseType->isVectorTy())
   3018           return Error(ID.Loc, "getelementptr index type missmatch");
   3019         if (ValTy->isVectorTy()) {
   3020           unsigned ValNumEl = ValTy->getVectorNumElements();
   3021           unsigned PtrNumEl = BaseType->getVectorNumElements();
   3022           if (ValNumEl != PtrNumEl)
   3023             return Error(
   3024                 ID.Loc,
   3025                 "getelementptr vector index has a wrong number of elements");
   3026         }
   3027       }
   3028 
   3029       SmallPtrSet<Type*, 4> Visited;
   3030       if (!Indices.empty() && !Ty->isSized(&Visited))
   3031         return Error(ID.Loc, "base element of getelementptr must be sized");
   3032 
   3033       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
   3034         return Error(ID.Loc, "invalid getelementptr indices");
   3035       ID.ConstantVal =
   3036           ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds);
   3037     } else if (Opc == Instruction::Select) {
   3038       if (Elts.size() != 3)
   3039         return Error(ID.Loc, "expected three operands to select");
   3040       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
   3041                                                               Elts[2]))
   3042         return Error(ID.Loc, Reason);
   3043       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
   3044     } else if (Opc == Instruction::ShuffleVector) {
   3045       if (Elts.size() != 3)
   3046         return Error(ID.Loc, "expected three operands to shufflevector");
   3047       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
   3048         return Error(ID.Loc, "invalid operands to shufflevector");
   3049       ID.ConstantVal =
   3050                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
   3051     } else if (Opc == Instruction::ExtractElement) {
   3052       if (Elts.size() != 2)
   3053         return Error(ID.Loc, "expected two operands to extractelement");
   3054       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
   3055         return Error(ID.Loc, "invalid extractelement operands");
   3056       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
   3057     } else {
   3058       assert(Opc == Instruction::InsertElement && "Unknown opcode");
   3059       if (Elts.size() != 3)
   3060       return Error(ID.Loc, "expected three operands to insertelement");
   3061       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
   3062         return Error(ID.Loc, "invalid insertelement operands");
   3063       ID.ConstantVal =
   3064                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
   3065     }
   3066 
   3067     ID.Kind = ValID::t_Constant;
   3068     return false;
   3069   }
   3070   }
   3071 
   3072   Lex.Lex();
   3073   return false;
   3074 }
   3075 
   3076 /// ParseGlobalValue - Parse a global value with the specified type.
   3077 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
   3078   C = nullptr;
   3079   ValID ID;
   3080   Value *V = nullptr;
   3081   bool Parsed = ParseValID(ID) ||
   3082                 ConvertValIDToValue(Ty, ID, V, nullptr);
   3083   if (V && !(C = dyn_cast<Constant>(V)))
   3084     return Error(ID.Loc, "global values must be constants");
   3085   return Parsed;
   3086 }
   3087 
   3088 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
   3089   Type *Ty = nullptr;
   3090   return ParseType(Ty) ||
   3091          ParseGlobalValue(Ty, V);
   3092 }
   3093 
   3094 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
   3095   C = nullptr;
   3096 
   3097   LocTy KwLoc = Lex.getLoc();
   3098   if (!EatIfPresent(lltok::kw_comdat))
   3099     return false;
   3100 
   3101   if (EatIfPresent(lltok::lparen)) {
   3102     if (Lex.getKind() != lltok::ComdatVar)
   3103       return TokError("expected comdat variable");
   3104     C = getComdat(Lex.getStrVal(), Lex.getLoc());
   3105     Lex.Lex();
   3106     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
   3107       return true;
   3108   } else {
   3109     if (GlobalName.empty())
   3110       return TokError("comdat cannot be unnamed");
   3111     C = getComdat(GlobalName, KwLoc);
   3112   }
   3113 
   3114   return false;
   3115 }
   3116 
   3117 /// ParseGlobalValueVector
   3118 ///   ::= /*empty*/
   3119 ///   ::= TypeAndValue (',' TypeAndValue)*
   3120 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) {
   3121   // Empty list.
   3122   if (Lex.getKind() == lltok::rbrace ||
   3123       Lex.getKind() == lltok::rsquare ||
   3124       Lex.getKind() == lltok::greater ||
   3125       Lex.getKind() == lltok::rparen)
   3126     return false;
   3127 
   3128   Constant *C;
   3129   if (ParseGlobalTypeAndValue(C)) return true;
   3130   Elts.push_back(C);
   3131 
   3132   while (EatIfPresent(lltok::comma)) {
   3133     if (ParseGlobalTypeAndValue(C)) return true;
   3134     Elts.push_back(C);
   3135   }
   3136 
   3137   return false;
   3138 }
   3139 
   3140 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
   3141   SmallVector<Metadata *, 16> Elts;
   3142   if (ParseMDNodeVector(Elts))
   3143     return true;
   3144 
   3145   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
   3146   return false;
   3147 }
   3148 
   3149 /// MDNode:
   3150 ///  ::= !{ ... }
   3151 ///  ::= !7
   3152 ///  ::= !DILocation(...)
   3153 bool LLParser::ParseMDNode(MDNode *&N) {
   3154   if (Lex.getKind() == lltok::MetadataVar)
   3155     return ParseSpecializedMDNode(N);
   3156 
   3157   return ParseToken(lltok::exclaim, "expected '!' here") ||
   3158          ParseMDNodeTail(N);
   3159 }
   3160 
   3161 bool LLParser::ParseMDNodeTail(MDNode *&N) {
   3162   // !{ ... }
   3163   if (Lex.getKind() == lltok::lbrace)
   3164     return ParseMDTuple(N);
   3165 
   3166   // !42
   3167   return ParseMDNodeID(N);
   3168 }
   3169 
   3170 namespace {
   3171 
   3172 /// Structure to represent an optional metadata field.
   3173 template <class FieldTy> struct MDFieldImpl {
   3174   typedef MDFieldImpl ImplTy;
   3175   FieldTy Val;
   3176   bool Seen;
   3177 
   3178   void assign(FieldTy Val) {
   3179     Seen = true;
   3180     this->Val = std::move(Val);
   3181   }
   3182 
   3183   explicit MDFieldImpl(FieldTy Default)
   3184       : Val(std::move(Default)), Seen(false) {}
   3185 };
   3186 
   3187 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
   3188   uint64_t Max;
   3189 
   3190   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
   3191       : ImplTy(Default), Max(Max) {}
   3192 };
   3193 struct LineField : public MDUnsignedField {
   3194   LineField() : MDUnsignedField(0, UINT32_MAX) {}
   3195 };
   3196 struct ColumnField : public MDUnsignedField {
   3197   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
   3198 };
   3199 struct DwarfTagField : public MDUnsignedField {
   3200   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
   3201   DwarfTagField(dwarf::Tag DefaultTag)
   3202       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
   3203 };
   3204 struct DwarfMacinfoTypeField : public MDUnsignedField {
   3205   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
   3206   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
   3207     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
   3208 };
   3209 struct DwarfAttEncodingField : public MDUnsignedField {
   3210   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
   3211 };
   3212 struct DwarfVirtualityField : public MDUnsignedField {
   3213   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
   3214 };
   3215 struct DwarfLangField : public MDUnsignedField {
   3216   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
   3217 };
   3218 
   3219 struct DIFlagField : public MDUnsignedField {
   3220   DIFlagField() : MDUnsignedField(0, UINT32_MAX) {}
   3221 };
   3222 
   3223 struct MDSignedField : public MDFieldImpl<int64_t> {
   3224   int64_t Min;
   3225   int64_t Max;
   3226 
   3227   MDSignedField(int64_t Default = 0)
   3228       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
   3229   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
   3230       : ImplTy(Default), Min(Min), Max(Max) {}
   3231 };
   3232 
   3233 struct MDBoolField : public MDFieldImpl<bool> {
   3234   MDBoolField(bool Default = false) : ImplTy(Default) {}
   3235 };
   3236 struct MDField : public MDFieldImpl<Metadata *> {
   3237   bool AllowNull;
   3238 
   3239   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
   3240 };
   3241 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
   3242   MDConstant() : ImplTy(nullptr) {}
   3243 };
   3244 struct MDStringField : public MDFieldImpl<MDString *> {
   3245   bool AllowEmpty;
   3246   MDStringField(bool AllowEmpty = true)
   3247       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
   3248 };
   3249 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
   3250   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
   3251 };
   3252 
   3253 } // end namespace
   3254 
   3255 namespace llvm {
   3256 
   3257 template <>
   3258 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
   3259                             MDUnsignedField &Result) {
   3260   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
   3261     return TokError("expected unsigned integer");
   3262 
   3263   auto &U = Lex.getAPSIntVal();
   3264   if (U.ugt(Result.Max))
   3265     return TokError("value for '" + Name + "' too large, limit is " +
   3266                     Twine(Result.Max));
   3267   Result.assign(U.getZExtValue());
   3268   assert(Result.Val <= Result.Max && "Expected value in range");
   3269   Lex.Lex();
   3270   return false;
   3271 }
   3272 
   3273 template <>
   3274 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
   3275   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
   3276 }
   3277 template <>
   3278 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
   3279   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
   3280 }
   3281 
   3282 template <>
   3283 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
   3284   if (Lex.getKind() == lltok::APSInt)
   3285     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
   3286 
   3287   if (Lex.getKind() != lltok::DwarfTag)
   3288     return TokError("expected DWARF tag");
   3289 
   3290   unsigned Tag = dwarf::getTag(Lex.getStrVal());
   3291   if (Tag == dwarf::DW_TAG_invalid)
   3292     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
   3293   assert(Tag <= Result.Max && "Expected valid DWARF tag");
   3294 
   3295   Result.assign(Tag);
   3296   Lex.Lex();
   3297   return false;
   3298 }
   3299 
   3300 template <>
   3301 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
   3302                             DwarfMacinfoTypeField &Result) {
   3303   if (Lex.getKind() == lltok::APSInt)
   3304     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
   3305 
   3306   if (Lex.getKind() != lltok::DwarfMacinfo)
   3307     return TokError("expected DWARF macinfo type");
   3308 
   3309   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
   3310   if (Macinfo == dwarf::DW_MACINFO_invalid)
   3311     return TokError(
   3312         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
   3313   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
   3314 
   3315   Result.assign(Macinfo);
   3316   Lex.Lex();
   3317   return false;
   3318 }
   3319 
   3320 template <>
   3321 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
   3322                             DwarfVirtualityField &Result) {
   3323   if (Lex.getKind() == lltok::APSInt)
   3324     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
   3325 
   3326   if (Lex.getKind() != lltok::DwarfVirtuality)
   3327     return TokError("expected DWARF virtuality code");
   3328 
   3329   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
   3330   if (!Virtuality)
   3331     return TokError("invalid DWARF virtuality code" + Twine(" '") +
   3332                     Lex.getStrVal() + "'");
   3333   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
   3334   Result.assign(Virtuality);
   3335   Lex.Lex();
   3336   return false;
   3337 }
   3338 
   3339 template <>
   3340 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
   3341   if (Lex.getKind() == lltok::APSInt)
   3342     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
   3343 
   3344   if (Lex.getKind() != lltok::DwarfLang)
   3345     return TokError("expected DWARF language");
   3346 
   3347   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
   3348   if (!Lang)
   3349     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
   3350                     "'");
   3351   assert(Lang <= Result.Max && "Expected valid DWARF language");
   3352   Result.assign(Lang);
   3353   Lex.Lex();
   3354   return false;
   3355 }
   3356 
   3357 template <>
   3358 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
   3359                             DwarfAttEncodingField &Result) {
   3360   if (Lex.getKind() == lltok::APSInt)
   3361     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
   3362 
   3363   if (Lex.getKind() != lltok::DwarfAttEncoding)
   3364     return TokError("expected DWARF type attribute encoding");
   3365 
   3366   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
   3367   if (!Encoding)
   3368     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
   3369                     Lex.getStrVal() + "'");
   3370   assert(Encoding <= Result.Max && "Expected valid DWARF language");
   3371   Result.assign(Encoding);
   3372   Lex.Lex();
   3373   return false;
   3374 }
   3375 
   3376 /// DIFlagField
   3377 ///  ::= uint32
   3378 ///  ::= DIFlagVector
   3379 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
   3380 template <>
   3381 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
   3382   assert(Result.Max == UINT32_MAX && "Expected only 32-bits");
   3383 
   3384   // Parser for a single flag.
   3385   auto parseFlag = [&](unsigned &Val) {
   3386     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned())
   3387       return ParseUInt32(Val);
   3388 
   3389     if (Lex.getKind() != lltok::DIFlag)
   3390       return TokError("expected debug info flag");
   3391 
   3392     Val = DINode::getFlag(Lex.getStrVal());
   3393     if (!Val)
   3394       return TokError(Twine("invalid debug info flag flag '") +
   3395                       Lex.getStrVal() + "'");
   3396     Lex.Lex();
   3397     return false;
   3398   };
   3399 
   3400   // Parse the flags and combine them together.
   3401   unsigned Combined = 0;
   3402   do {
   3403     unsigned Val;
   3404     if (parseFlag(Val))
   3405       return true;
   3406     Combined |= Val;
   3407   } while (EatIfPresent(lltok::bar));
   3408 
   3409   Result.assign(Combined);
   3410   return false;
   3411 }
   3412 
   3413 template <>
   3414 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
   3415                             MDSignedField &Result) {
   3416   if (Lex.getKind() != lltok::APSInt)
   3417     return TokError("expected signed integer");
   3418 
   3419   auto &S = Lex.getAPSIntVal();
   3420   if (S < Result.Min)
   3421     return TokError("value for '" + Name + "' too small, limit is " +
   3422                     Twine(Result.Min));
   3423   if (S > Result.Max)
   3424     return TokError("value for '" + Name + "' too large, limit is " +
   3425                     Twine(Result.Max));
   3426   Result.assign(S.getExtValue());
   3427   assert(Result.Val >= Result.Min && "Expected value in range");
   3428   assert(Result.Val <= Result.Max && "Expected value in range");
   3429   Lex.Lex();
   3430   return false;
   3431 }
   3432 
   3433 template <>
   3434 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
   3435   switch (Lex.getKind()) {
   3436   default:
   3437     return TokError("expected 'true' or 'false'");
   3438   case lltok::kw_true:
   3439     Result.assign(true);
   3440     break;
   3441   case lltok::kw_false:
   3442     Result.assign(false);
   3443     break;
   3444   }
   3445   Lex.Lex();
   3446   return false;
   3447 }
   3448 
   3449 template <>
   3450 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
   3451   if (Lex.getKind() == lltok::kw_null) {
   3452     if (!Result.AllowNull)
   3453       return TokError("'" + Name + "' cannot be null");
   3454     Lex.Lex();
   3455     Result.assign(nullptr);
   3456     return false;
   3457   }
   3458 
   3459   Metadata *MD;
   3460   if (ParseMetadata(MD, nullptr))
   3461     return true;
   3462 
   3463   Result.assign(MD);
   3464   return false;
   3465 }
   3466 
   3467 template <>
   3468 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) {
   3469   Metadata *MD;
   3470   if (ParseValueAsMetadata(MD, "expected constant", nullptr))
   3471     return true;
   3472 
   3473   Result.assign(cast<ConstantAsMetadata>(MD));
   3474   return false;
   3475 }
   3476 
   3477 template <>
   3478 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
   3479   LocTy ValueLoc = Lex.getLoc();
   3480   std::string S;
   3481   if (ParseStringConstant(S))
   3482     return true;
   3483 
   3484   if (!Result.AllowEmpty && S.empty())
   3485     return Error(ValueLoc, "'" + Name + "' cannot be empty");
   3486 
   3487   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
   3488   return false;
   3489 }
   3490 
   3491 template <>
   3492 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
   3493   SmallVector<Metadata *, 4> MDs;
   3494   if (ParseMDNodeVector(MDs))
   3495     return true;
   3496 
   3497   Result.assign(std::move(MDs));
   3498   return false;
   3499 }
   3500 
   3501 } // end namespace llvm
   3502 
   3503 template <class ParserTy>
   3504 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
   3505   do {
   3506     if (Lex.getKind() != lltok::LabelStr)
   3507       return TokError("expected field label here");
   3508 
   3509     if (parseField())
   3510       return true;
   3511   } while (EatIfPresent(lltok::comma));
   3512 
   3513   return false;
   3514 }
   3515 
   3516 template <class ParserTy>
   3517 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
   3518   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
   3519   Lex.Lex();
   3520 
   3521   if (ParseToken(lltok::lparen, "expected '(' here"))
   3522     return true;
   3523   if (Lex.getKind() != lltok::rparen)
   3524     if (ParseMDFieldsImplBody(parseField))
   3525       return true;
   3526 
   3527   ClosingLoc = Lex.getLoc();
   3528   return ParseToken(lltok::rparen, "expected ')' here");
   3529 }
   3530 
   3531 template <class FieldTy>
   3532 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
   3533   if (Result.Seen)
   3534     return TokError("field '" + Name + "' cannot be specified more than once");
   3535 
   3536   LocTy Loc = Lex.getLoc();
   3537   Lex.Lex();
   3538   return ParseMDField(Loc, Name, Result);
   3539 }
   3540 
   3541 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
   3542   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
   3543 
   3544 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
   3545   if (Lex.getStrVal() == #CLASS)                                               \
   3546     return Parse##CLASS(N, IsDistinct);
   3547 #include "llvm/IR/Metadata.def"
   3548 
   3549   return TokError("expected metadata type");
   3550 }
   3551 
   3552 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
   3553 #define NOP_FIELD(NAME, TYPE, INIT)
   3554 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
   3555   if (!NAME.Seen)                                                              \
   3556     return Error(ClosingLoc, "missing required field '" #NAME "'");
   3557 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
   3558   if (Lex.getStrVal() == #NAME)                                                \
   3559     return ParseMDField(#NAME, NAME);
   3560 #define PARSE_MD_FIELDS()                                                      \
   3561   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
   3562   do {                                                                         \
   3563     LocTy ClosingLoc;                                                          \
   3564     if (ParseMDFieldsImpl([&]() -> bool {                                      \
   3565       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
   3566       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
   3567     }, ClosingLoc))                                                            \
   3568       return true;                                                             \
   3569     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
   3570   } while (false)
   3571 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
   3572   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
   3573 
   3574 /// ParseDILocationFields:
   3575 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
   3576 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
   3577 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3578   OPTIONAL(line, LineField, );                                                 \
   3579   OPTIONAL(column, ColumnField, );                                             \
   3580   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
   3581   OPTIONAL(inlinedAt, MDField, );
   3582   PARSE_MD_FIELDS();
   3583 #undef VISIT_MD_FIELDS
   3584 
   3585   Result = GET_OR_DISTINCT(
   3586       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
   3587   return false;
   3588 }
   3589 
   3590 /// ParseGenericDINode:
   3591 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
   3592 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
   3593 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3594   REQUIRED(tag, DwarfTagField, );                                              \
   3595   OPTIONAL(header, MDStringField, );                                           \
   3596   OPTIONAL(operands, MDFieldList, );
   3597   PARSE_MD_FIELDS();
   3598 #undef VISIT_MD_FIELDS
   3599 
   3600   Result = GET_OR_DISTINCT(GenericDINode,
   3601                            (Context, tag.Val, header.Val, operands.Val));
   3602   return false;
   3603 }
   3604 
   3605 /// ParseDISubrange:
   3606 ///   ::= !DISubrange(count: 30, lowerBound: 2)
   3607 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
   3608 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3609   REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX));                         \
   3610   OPTIONAL(lowerBound, MDSignedField, );
   3611   PARSE_MD_FIELDS();
   3612 #undef VISIT_MD_FIELDS
   3613 
   3614   Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val));
   3615   return false;
   3616 }
   3617 
   3618 /// ParseDIEnumerator:
   3619 ///   ::= !DIEnumerator(value: 30, name: "SomeKind")
   3620 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
   3621 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3622   REQUIRED(name, MDStringField, );                                             \
   3623   REQUIRED(value, MDSignedField, );
   3624   PARSE_MD_FIELDS();
   3625 #undef VISIT_MD_FIELDS
   3626 
   3627   Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val));
   3628   return false;
   3629 }
   3630 
   3631 /// ParseDIBasicType:
   3632 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
   3633 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
   3634 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3635   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
   3636   OPTIONAL(name, MDStringField, );                                             \
   3637   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
   3638   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
   3639   OPTIONAL(encoding, DwarfAttEncodingField, );
   3640   PARSE_MD_FIELDS();
   3641 #undef VISIT_MD_FIELDS
   3642 
   3643   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
   3644                                          align.Val, encoding.Val));
   3645   return false;
   3646 }
   3647 
   3648 /// ParseDIDerivedType:
   3649 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
   3650 ///                      line: 7, scope: !1, baseType: !2, size: 32,
   3651 ///                      align: 32, offset: 0, flags: 0, extraData: !3)
   3652 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
   3653 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3654   REQUIRED(tag, DwarfTagField, );                                              \
   3655   OPTIONAL(name, MDStringField, );                                             \
   3656   OPTIONAL(file, MDField, );                                                   \
   3657   OPTIONAL(line, LineField, );                                                 \
   3658   OPTIONAL(scope, MDField, );                                                  \
   3659   REQUIRED(baseType, MDField, );                                               \
   3660   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
   3661   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
   3662   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
   3663   OPTIONAL(flags, DIFlagField, );                                              \
   3664   OPTIONAL(extraData, MDField, );
   3665   PARSE_MD_FIELDS();
   3666 #undef VISIT_MD_FIELDS
   3667 
   3668   Result = GET_OR_DISTINCT(DIDerivedType,
   3669                            (Context, tag.Val, name.Val, file.Val, line.Val,
   3670                             scope.Val, baseType.Val, size.Val, align.Val,
   3671                             offset.Val, flags.Val, extraData.Val));
   3672   return false;
   3673 }
   3674 
   3675 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
   3676 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3677   REQUIRED(tag, DwarfTagField, );                                              \
   3678   OPTIONAL(name, MDStringField, );                                             \
   3679   OPTIONAL(file, MDField, );                                                   \
   3680   OPTIONAL(line, LineField, );                                                 \
   3681   OPTIONAL(scope, MDField, );                                                  \
   3682   OPTIONAL(baseType, MDField, );                                               \
   3683   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
   3684   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
   3685   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
   3686   OPTIONAL(flags, DIFlagField, );                                              \
   3687   OPTIONAL(elements, MDField, );                                               \
   3688   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
   3689   OPTIONAL(vtableHolder, MDField, );                                           \
   3690   OPTIONAL(templateParams, MDField, );                                         \
   3691   OPTIONAL(identifier, MDStringField, );
   3692   PARSE_MD_FIELDS();
   3693 #undef VISIT_MD_FIELDS
   3694 
   3695   Result = GET_OR_DISTINCT(
   3696       DICompositeType,
   3697       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
   3698        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
   3699        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
   3700   return false;
   3701 }
   3702 
   3703 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
   3704 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3705   OPTIONAL(flags, DIFlagField, );                                              \
   3706   REQUIRED(types, MDField, );
   3707   PARSE_MD_FIELDS();
   3708 #undef VISIT_MD_FIELDS
   3709 
   3710   Result = GET_OR_DISTINCT(DISubroutineType, (Context, flags.Val, types.Val));
   3711   return false;
   3712 }
   3713 
   3714 /// ParseDIFileType:
   3715 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir")
   3716 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
   3717 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3718   REQUIRED(filename, MDStringField, );                                         \
   3719   REQUIRED(directory, MDStringField, );
   3720   PARSE_MD_FIELDS();
   3721 #undef VISIT_MD_FIELDS
   3722 
   3723   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val));
   3724   return false;
   3725 }
   3726 
   3727 /// ParseDICompileUnit:
   3728 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
   3729 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
   3730 ///                      splitDebugFilename: "abc.debug", emissionKind: 1,
   3731 ///                      enums: !1, retainedTypes: !2, subprograms: !3,
   3732 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
   3733 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
   3734   if (!IsDistinct)
   3735     return Lex.Error("missing 'distinct', required for !DICompileUnit");
   3736 
   3737 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3738   REQUIRED(language, DwarfLangField, );                                        \
   3739   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
   3740   OPTIONAL(producer, MDStringField, );                                         \
   3741   OPTIONAL(isOptimized, MDBoolField, );                                        \
   3742   OPTIONAL(flags, MDStringField, );                                            \
   3743   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
   3744   OPTIONAL(splitDebugFilename, MDStringField, );                               \
   3745   OPTIONAL(emissionKind, MDUnsignedField, (0, UINT32_MAX));                    \
   3746   OPTIONAL(enums, MDField, );                                                  \
   3747   OPTIONAL(retainedTypes, MDField, );                                          \
   3748   OPTIONAL(subprograms, MDField, );                                            \
   3749   OPTIONAL(globals, MDField, );                                                \
   3750   OPTIONAL(imports, MDField, );                                                \
   3751   OPTIONAL(macros, MDField, );                                                 \
   3752   OPTIONAL(dwoId, MDUnsignedField, );
   3753   PARSE_MD_FIELDS();
   3754 #undef VISIT_MD_FIELDS
   3755 
   3756   Result = DICompileUnit::getDistinct(
   3757       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
   3758       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
   3759       retainedTypes.Val, subprograms.Val, globals.Val, imports.Val, macros.Val,
   3760       dwoId.Val);
   3761   return false;
   3762 }
   3763 
   3764 /// ParseDISubprogram:
   3765 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
   3766 ///                     file: !1, line: 7, type: !2, isLocal: false,
   3767 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
   3768 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
   3769 ///                     virtualIndex: 10, flags: 11,
   3770 ///                     isOptimized: false, templateParams: !4, declaration: !5,
   3771 ///                     variables: !6)
   3772 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
   3773   auto Loc = Lex.getLoc();
   3774 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3775   OPTIONAL(scope, MDField, );                                                  \
   3776   OPTIONAL(name, MDStringField, );                                             \
   3777   OPTIONAL(linkageName, MDStringField, );                                      \
   3778   OPTIONAL(file, MDField, );                                                   \
   3779   OPTIONAL(line, LineField, );                                                 \
   3780   OPTIONAL(type, MDField, );                                                   \
   3781   OPTIONAL(isLocal, MDBoolField, );                                            \
   3782   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
   3783   OPTIONAL(scopeLine, LineField, );                                            \
   3784   OPTIONAL(containingType, MDField, );                                         \
   3785   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
   3786   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
   3787   OPTIONAL(flags, DIFlagField, );                                              \
   3788   OPTIONAL(isOptimized, MDBoolField, );                                        \
   3789   OPTIONAL(templateParams, MDField, );                                         \
   3790   OPTIONAL(declaration, MDField, );                                            \
   3791   OPTIONAL(variables, MDField, );
   3792   PARSE_MD_FIELDS();
   3793 #undef VISIT_MD_FIELDS
   3794 
   3795   if (isDefinition.Val && !IsDistinct)
   3796     return Lex.Error(
   3797         Loc,
   3798         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
   3799 
   3800   Result = GET_OR_DISTINCT(
   3801       DISubprogram,
   3802       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
   3803        type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val,
   3804        containingType.Val, virtuality.Val, virtualIndex.Val, flags.Val,
   3805        isOptimized.Val, templateParams.Val, declaration.Val, variables.Val));
   3806   return false;
   3807 }
   3808 
   3809 /// ParseDILexicalBlock:
   3810 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
   3811 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
   3812 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3813   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
   3814   OPTIONAL(file, MDField, );                                                   \
   3815   OPTIONAL(line, LineField, );                                                 \
   3816   OPTIONAL(column, ColumnField, );
   3817   PARSE_MD_FIELDS();
   3818 #undef VISIT_MD_FIELDS
   3819 
   3820   Result = GET_OR_DISTINCT(
   3821       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
   3822   return false;
   3823 }
   3824 
   3825 /// ParseDILexicalBlockFile:
   3826 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
   3827 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
   3828 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3829   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
   3830   OPTIONAL(file, MDField, );                                                   \
   3831   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
   3832   PARSE_MD_FIELDS();
   3833 #undef VISIT_MD_FIELDS
   3834 
   3835   Result = GET_OR_DISTINCT(DILexicalBlockFile,
   3836                            (Context, scope.Val, file.Val, discriminator.Val));
   3837   return false;
   3838 }
   3839 
   3840 /// ParseDINamespace:
   3841 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
   3842 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
   3843 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3844   REQUIRED(scope, MDField, );                                                  \
   3845   OPTIONAL(file, MDField, );                                                   \
   3846   OPTIONAL(name, MDStringField, );                                             \
   3847   OPTIONAL(line, LineField, );
   3848   PARSE_MD_FIELDS();
   3849 #undef VISIT_MD_FIELDS
   3850 
   3851   Result = GET_OR_DISTINCT(DINamespace,
   3852                            (Context, scope.Val, file.Val, name.Val, line.Val));
   3853   return false;
   3854 }
   3855 
   3856 /// ParseDIMacro:
   3857 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
   3858 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
   3859 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3860   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
   3861   REQUIRED(line, LineField, );                                                 \
   3862   REQUIRED(name, MDStringField, );                                             \
   3863   OPTIONAL(value, MDStringField, );
   3864   PARSE_MD_FIELDS();
   3865 #undef VISIT_MD_FIELDS
   3866 
   3867   Result = GET_OR_DISTINCT(DIMacro,
   3868                            (Context, type.Val, line.Val, name.Val, value.Val));
   3869   return false;
   3870 }
   3871 
   3872 /// ParseDIMacroFile:
   3873 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
   3874 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
   3875 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3876   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
   3877   REQUIRED(line, LineField, );                                                 \
   3878   REQUIRED(file, MDField, );                                                   \
   3879   OPTIONAL(nodes, MDField, );
   3880   PARSE_MD_FIELDS();
   3881 #undef VISIT_MD_FIELDS
   3882 
   3883   Result = GET_OR_DISTINCT(DIMacroFile,
   3884                            (Context, type.Val, line.Val, file.Val, nodes.Val));
   3885   return false;
   3886 }
   3887 
   3888 
   3889 /// ParseDIModule:
   3890 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
   3891 ///                 includePath: "/usr/include", isysroot: "/")
   3892 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
   3893 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3894   REQUIRED(scope, MDField, );                                                  \
   3895   REQUIRED(name, MDStringField, );                                             \
   3896   OPTIONAL(configMacros, MDStringField, );                                     \
   3897   OPTIONAL(includePath, MDStringField, );                                      \
   3898   OPTIONAL(isysroot, MDStringField, );
   3899   PARSE_MD_FIELDS();
   3900 #undef VISIT_MD_FIELDS
   3901 
   3902   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
   3903                            configMacros.Val, includePath.Val, isysroot.Val));
   3904   return false;
   3905 }
   3906 
   3907 /// ParseDITemplateTypeParameter:
   3908 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
   3909 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
   3910 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3911   OPTIONAL(name, MDStringField, );                                             \
   3912   REQUIRED(type, MDField, );
   3913   PARSE_MD_FIELDS();
   3914 #undef VISIT_MD_FIELDS
   3915 
   3916   Result =
   3917       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
   3918   return false;
   3919 }
   3920 
   3921 /// ParseDITemplateValueParameter:
   3922 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
   3923 ///                                 name: "V", type: !1, value: i32 7)
   3924 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
   3925 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3926   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
   3927   OPTIONAL(name, MDStringField, );                                             \
   3928   OPTIONAL(type, MDField, );                                                   \
   3929   REQUIRED(value, MDField, );
   3930   PARSE_MD_FIELDS();
   3931 #undef VISIT_MD_FIELDS
   3932 
   3933   Result = GET_OR_DISTINCT(DITemplateValueParameter,
   3934                            (Context, tag.Val, name.Val, type.Val, value.Val));
   3935   return false;
   3936 }
   3937 
   3938 /// ParseDIGlobalVariable:
   3939 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
   3940 ///                         file: !1, line: 7, type: !2, isLocal: false,
   3941 ///                         isDefinition: true, variable: i32* @foo,
   3942 ///                         declaration: !3)
   3943 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
   3944 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3945   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
   3946   OPTIONAL(scope, MDField, );                                                  \
   3947   OPTIONAL(linkageName, MDStringField, );                                      \
   3948   OPTIONAL(file, MDField, );                                                   \
   3949   OPTIONAL(line, LineField, );                                                 \
   3950   OPTIONAL(type, MDField, );                                                   \
   3951   OPTIONAL(isLocal, MDBoolField, );                                            \
   3952   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
   3953   OPTIONAL(variable, MDConstant, );                                            \
   3954   OPTIONAL(declaration, MDField, );
   3955   PARSE_MD_FIELDS();
   3956 #undef VISIT_MD_FIELDS
   3957 
   3958   Result = GET_OR_DISTINCT(DIGlobalVariable,
   3959                            (Context, scope.Val, name.Val, linkageName.Val,
   3960                             file.Val, line.Val, type.Val, isLocal.Val,
   3961                             isDefinition.Val, variable.Val, declaration.Val));
   3962   return false;
   3963 }
   3964 
   3965 /// ParseDILocalVariable:
   3966 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
   3967 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
   3968 ///   ::= !DILocalVariable(scope: !0, name: "foo",
   3969 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
   3970 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
   3971 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   3972   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
   3973   OPTIONAL(name, MDStringField, );                                             \
   3974   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
   3975   OPTIONAL(file, MDField, );                                                   \
   3976   OPTIONAL(line, LineField, );                                                 \
   3977   OPTIONAL(type, MDField, );                                                   \
   3978   OPTIONAL(flags, DIFlagField, );
   3979   PARSE_MD_FIELDS();
   3980 #undef VISIT_MD_FIELDS
   3981 
   3982   Result = GET_OR_DISTINCT(DILocalVariable,
   3983                            (Context, scope.Val, name.Val, file.Val, line.Val,
   3984                             type.Val, arg.Val, flags.Val));
   3985   return false;
   3986 }
   3987 
   3988 /// ParseDIExpression:
   3989 ///   ::= !DIExpression(0, 7, -1)
   3990 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
   3991   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
   3992   Lex.Lex();
   3993 
   3994   if (ParseToken(lltok::lparen, "expected '(' here"))
   3995     return true;
   3996 
   3997   SmallVector<uint64_t, 8> Elements;
   3998   if (Lex.getKind() != lltok::rparen)
   3999     do {
   4000       if (Lex.getKind() == lltok::DwarfOp) {
   4001         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
   4002           Lex.Lex();
   4003           Elements.push_back(Op);
   4004           continue;
   4005         }
   4006         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
   4007       }
   4008 
   4009       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
   4010         return TokError("expected unsigned integer");
   4011 
   4012       auto &U = Lex.getAPSIntVal();
   4013       if (U.ugt(UINT64_MAX))
   4014         return TokError("element too large, limit is " + Twine(UINT64_MAX));
   4015       Elements.push_back(U.getZExtValue());
   4016       Lex.Lex();
   4017     } while (EatIfPresent(lltok::comma));
   4018 
   4019   if (ParseToken(lltok::rparen, "expected ')' here"))
   4020     return true;
   4021 
   4022   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
   4023   return false;
   4024 }
   4025 
   4026 /// ParseDIObjCProperty:
   4027 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
   4028 ///                       getter: "getFoo", attributes: 7, type: !2)
   4029 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
   4030 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   4031   OPTIONAL(name, MDStringField, );                                             \
   4032   OPTIONAL(file, MDField, );                                                   \
   4033   OPTIONAL(line, LineField, );                                                 \
   4034   OPTIONAL(setter, MDStringField, );                                           \
   4035   OPTIONAL(getter, MDStringField, );                                           \
   4036   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
   4037   OPTIONAL(type, MDField, );
   4038   PARSE_MD_FIELDS();
   4039 #undef VISIT_MD_FIELDS
   4040 
   4041   Result = GET_OR_DISTINCT(DIObjCProperty,
   4042                            (Context, name.Val, file.Val, line.Val, setter.Val,
   4043                             getter.Val, attributes.Val, type.Val));
   4044   return false;
   4045 }
   4046 
   4047 /// ParseDIImportedEntity:
   4048 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
   4049 ///                         line: 7, name: "foo")
   4050 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
   4051 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
   4052   REQUIRED(tag, DwarfTagField, );                                              \
   4053   REQUIRED(scope, MDField, );                                                  \
   4054   OPTIONAL(entity, MDField, );                                                 \
   4055   OPTIONAL(line, LineField, );                                                 \
   4056   OPTIONAL(name, MDStringField, );
   4057   PARSE_MD_FIELDS();
   4058 #undef VISIT_MD_FIELDS
   4059 
   4060   Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val,
   4061                                               entity.Val, line.Val, name.Val));
   4062   return false;
   4063 }
   4064 
   4065 #undef PARSE_MD_FIELD
   4066 #undef NOP_FIELD
   4067 #undef REQUIRE_FIELD
   4068 #undef DECLARE_FIELD
   4069 
   4070 /// ParseMetadataAsValue
   4071 ///  ::= metadata i32 %local
   4072 ///  ::= metadata i32 @global
   4073 ///  ::= metadata i32 7
   4074 ///  ::= metadata !0
   4075 ///  ::= metadata !{...}
   4076 ///  ::= metadata !"string"
   4077 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
   4078   // Note: the type 'metadata' has already been parsed.
   4079   Metadata *MD;
   4080   if (ParseMetadata(MD, &PFS))
   4081     return true;
   4082 
   4083   V = MetadataAsValue::get(Context, MD);
   4084   return false;
   4085 }
   4086 
   4087 /// ParseValueAsMetadata
   4088 ///  ::= i32 %local
   4089 ///  ::= i32 @global
   4090 ///  ::= i32 7
   4091 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
   4092                                     PerFunctionState *PFS) {
   4093   Type *Ty;
   4094   LocTy Loc;
   4095   if (ParseType(Ty, TypeMsg, Loc))
   4096     return true;
   4097   if (Ty->isMetadataTy())
   4098     return Error(Loc, "invalid metadata-value-metadata roundtrip");
   4099 
   4100   Value *V;
   4101   if (ParseValue(Ty, V, PFS))
   4102     return true;
   4103 
   4104   MD = ValueAsMetadata::get(V);
   4105   return false;
   4106 }
   4107 
   4108 /// ParseMetadata
   4109 ///  ::= i32 %local
   4110 ///  ::= i32 @global
   4111 ///  ::= i32 7
   4112 ///  ::= !42
   4113 ///  ::= !{...}
   4114 ///  ::= !"string"
   4115 ///  ::= !DILocation(...)
   4116 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
   4117   if (Lex.getKind() == lltok::MetadataVar) {
   4118     MDNode *N;
   4119     if (ParseSpecializedMDNode(N))
   4120       return true;
   4121     MD = N;
   4122     return false;
   4123   }
   4124 
   4125   // ValueAsMetadata:
   4126   // <type> <value>
   4127   if (Lex.getKind() != lltok::exclaim)
   4128     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
   4129 
   4130   // '!'.
   4131   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
   4132   Lex.Lex();
   4133 
   4134   // MDString:
   4135   //   ::= '!' STRINGCONSTANT
   4136   if (Lex.getKind() == lltok::StringConstant) {
   4137     MDString *S;
   4138     if (ParseMDString(S))
   4139       return true;
   4140     MD = S;
   4141     return false;
   4142   }
   4143 
   4144   // MDNode:
   4145   // !{ ... }
   4146   // !7
   4147   MDNode *N;
   4148   if (ParseMDNodeTail(N))
   4149     return true;
   4150   MD = N;
   4151   return false;
   4152 }
   4153 
   4154 
   4155 //===----------------------------------------------------------------------===//
   4156 // Function Parsing.
   4157 //===----------------------------------------------------------------------===//
   4158 
   4159 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
   4160                                    PerFunctionState *PFS) {
   4161   if (Ty->isFunctionTy())
   4162     return Error(ID.Loc, "functions are not values, refer to them as pointers");
   4163 
   4164   switch (ID.Kind) {
   4165   case ValID::t_LocalID:
   4166     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
   4167     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
   4168     return V == nullptr;
   4169   case ValID::t_LocalName:
   4170     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
   4171     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
   4172     return V == nullptr;
   4173   case ValID::t_InlineAsm: {
   4174     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
   4175       return Error(ID.Loc, "invalid type for inline asm constraint string");
   4176     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
   4177                        (ID.UIntVal >> 1) & 1,
   4178                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
   4179     return false;
   4180   }
   4181   case ValID::t_GlobalName:
   4182     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
   4183     return V == nullptr;
   4184   case ValID::t_GlobalID:
   4185     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
   4186     return V == nullptr;
   4187   case ValID::t_APSInt:
   4188     if (!Ty->isIntegerTy())
   4189       return Error(ID.Loc, "integer constant must have integer type");
   4190     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
   4191     V = ConstantInt::get(Context, ID.APSIntVal);
   4192     return false;
   4193   case ValID::t_APFloat:
   4194     if (!Ty->isFloatingPointTy() ||
   4195         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
   4196       return Error(ID.Loc, "floating point constant invalid for type");
   4197 
   4198     // The lexer has no type info, so builds all half, float, and double FP
   4199     // constants as double.  Fix this here.  Long double does not need this.
   4200     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
   4201       bool Ignored;
   4202       if (Ty->isHalfTy())
   4203         ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
   4204                               &Ignored);
   4205       else if (Ty->isFloatTy())
   4206         ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
   4207                               &Ignored);
   4208     }
   4209     V = ConstantFP::get(Context, ID.APFloatVal);
   4210 
   4211     if (V->getType() != Ty)
   4212       return Error(ID.Loc, "floating point constant does not have type '" +
   4213                    getTypeString(Ty) + "'");
   4214 
   4215     return false;
   4216   case ValID::t_Null:
   4217     if (!Ty->isPointerTy())
   4218       return Error(ID.Loc, "null must be a pointer type");
   4219     V = ConstantPointerNull::get(cast<PointerType>(Ty));
   4220     return false;
   4221   case ValID::t_Undef:
   4222     // FIXME: LabelTy should not be a first-class type.
   4223     if (!Ty->isFirstClassType() || Ty->isLabelTy())
   4224       return Error(ID.Loc, "invalid type for undef constant");
   4225     V = UndefValue::get(Ty);
   4226     return false;
   4227   case ValID::t_EmptyArray:
   4228     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
   4229       return Error(ID.Loc, "invalid empty array initializer");
   4230     V = UndefValue::get(Ty);
   4231     return false;
   4232   case ValID::t_Zero:
   4233     // FIXME: LabelTy should not be a first-class type.
   4234     if (!Ty->isFirstClassType() || Ty->isLabelTy())
   4235       return Error(ID.Loc, "invalid type for null constant");
   4236     V = Constant::getNullValue(Ty);
   4237     return false;
   4238   case ValID::t_None:
   4239     if (!Ty->isTokenTy())
   4240       return Error(ID.Loc, "invalid type for none constant");
   4241     V = Constant::getNullValue(Ty);
   4242     return false;
   4243   case ValID::t_Constant:
   4244     if (ID.ConstantVal->getType() != Ty)
   4245       return Error(ID.Loc, "constant expression type mismatch");
   4246 
   4247     V = ID.ConstantVal;
   4248     return false;
   4249   case ValID::t_ConstantStruct:
   4250   case ValID::t_PackedConstantStruct:
   4251     if (StructType *ST = dyn_cast<StructType>(Ty)) {
   4252       if (ST->getNumElements() != ID.UIntVal)
   4253         return Error(ID.Loc,
   4254                      "initializer with struct type has wrong # elements");
   4255       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
   4256         return Error(ID.Loc, "packed'ness of initializer and type don't match");
   4257 
   4258       // Verify that the elements are compatible with the structtype.
   4259       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
   4260         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
   4261           return Error(ID.Loc, "element " + Twine(i) +
   4262                     " of struct initializer doesn't match struct element type");
   4263 
   4264       V = ConstantStruct::get(
   4265           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
   4266     } else
   4267       return Error(ID.Loc, "constant expression type mismatch");
   4268     return false;
   4269   }
   4270   llvm_unreachable("Invalid ValID");
   4271 }
   4272 
   4273 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
   4274   C = nullptr;
   4275   ValID ID;
   4276   auto Loc = Lex.getLoc();
   4277   if (ParseValID(ID, /*PFS=*/nullptr))
   4278     return true;
   4279   switch (ID.Kind) {
   4280   case ValID::t_APSInt:
   4281   case ValID::t_APFloat:
   4282   case ValID::t_Undef:
   4283   case ValID::t_Constant:
   4284   case ValID::t_ConstantStruct:
   4285   case ValID::t_PackedConstantStruct: {
   4286     Value *V;
   4287     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
   4288       return true;
   4289     assert(isa<Constant>(V) && "Expected a constant value");
   4290     C = cast<Constant>(V);
   4291     return false;
   4292   }
   4293   default:
   4294     return Error(Loc, "expected a constant value");
   4295   }
   4296 }
   4297 
   4298 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
   4299   V = nullptr;
   4300   ValID ID;
   4301   return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS);
   4302 }
   4303 
   4304 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
   4305   Type *Ty = nullptr;
   4306   return ParseType(Ty) ||
   4307          ParseValue(Ty, V, PFS);
   4308 }
   4309 
   4310 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
   4311                                       PerFunctionState &PFS) {
   4312   Value *V;
   4313   Loc = Lex.getLoc();
   4314   if (ParseTypeAndValue(V, PFS)) return true;
   4315   if (!isa<BasicBlock>(V))
   4316     return Error(Loc, "expected a basic block");
   4317   BB = cast<BasicBlock>(V);
   4318   return false;
   4319 }
   4320 
   4321 
   4322 /// FunctionHeader
   4323 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
   4324 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
   4325 ///       OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
   4326 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
   4327   // Parse the linkage.
   4328   LocTy LinkageLoc = Lex.getLoc();
   4329   unsigned Linkage;
   4330 
   4331   unsigned Visibility;
   4332   unsigned DLLStorageClass;
   4333   AttrBuilder RetAttrs;
   4334   unsigned CC;
   4335   Type *RetType = nullptr;
   4336   LocTy RetTypeLoc = Lex.getLoc();
   4337   if (ParseOptionalLinkage(Linkage) ||
   4338       ParseOptionalVisibility(Visibility) ||
   4339       ParseOptionalDLLStorageClass(DLLStorageClass) ||
   4340       ParseOptionalCallingConv(CC) ||
   4341       ParseOptionalReturnAttrs(RetAttrs) ||
   4342       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
   4343     return true;
   4344 
   4345   // Verify that the linkage is ok.
   4346   switch ((GlobalValue::LinkageTypes)Linkage) {
   4347   case GlobalValue::ExternalLinkage:
   4348     break; // always ok.
   4349   case GlobalValue::ExternalWeakLinkage:
   4350     if (isDefine)
   4351       return Error(LinkageLoc, "invalid linkage for function definition");
   4352     break;
   4353   case GlobalValue::PrivateLinkage:
   4354   case GlobalValue::InternalLinkage:
   4355   case GlobalValue::AvailableExternallyLinkage:
   4356   case GlobalValue::LinkOnceAnyLinkage:
   4357   case GlobalValue::LinkOnceODRLinkage:
   4358   case GlobalValue::WeakAnyLinkage:
   4359   case GlobalValue::WeakODRLinkage:
   4360     if (!isDefine)
   4361       return Error(LinkageLoc, "invalid linkage for function declaration");
   4362     break;
   4363   case GlobalValue::AppendingLinkage:
   4364   case GlobalValue::CommonLinkage:
   4365     return Error(LinkageLoc, "invalid function linkage type");
   4366   }
   4367 
   4368   if (!isValidVisibilityForLinkage(Visibility, Linkage))
   4369     return Error(LinkageLoc,
   4370                  "symbol with local linkage must have default visibility");
   4371 
   4372   if (!FunctionType::isValidReturnType(RetType))
   4373     return Error(RetTypeLoc, "invalid function return type");
   4374 
   4375   LocTy NameLoc = Lex.getLoc();
   4376 
   4377   std::string FunctionName;
   4378   if (Lex.getKind() == lltok::GlobalVar) {
   4379     FunctionName = Lex.getStrVal();
   4380   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
   4381     unsigned NameID = Lex.getUIntVal();
   4382 
   4383     if (NameID != NumberedVals.size())
   4384       return TokError("function expected to be numbered '%" +
   4385                       Twine(NumberedVals.size()) + "'");
   4386   } else {
   4387     return TokError("expected function name");
   4388   }
   4389 
   4390   Lex.Lex();
   4391 
   4392   if (Lex.getKind() != lltok::lparen)
   4393     return TokError("expected '(' in function argument list");
   4394 
   4395   SmallVector<ArgInfo, 8> ArgList;
   4396   bool isVarArg;
   4397   AttrBuilder FuncAttrs;
   4398   std::vector<unsigned> FwdRefAttrGrps;
   4399   LocTy BuiltinLoc;
   4400   std::string Section;
   4401   unsigned Alignment;
   4402   std::string GC;
   4403   bool UnnamedAddr;
   4404   LocTy UnnamedAddrLoc;
   4405   Constant *Prefix = nullptr;
   4406   Constant *Prologue = nullptr;
   4407   Constant *PersonalityFn = nullptr;
   4408   Comdat *C;
   4409 
   4410   if (ParseArgumentList(ArgList, isVarArg) ||
   4411       ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
   4412                          &UnnamedAddrLoc) ||
   4413       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
   4414                                  BuiltinLoc) ||
   4415       (EatIfPresent(lltok::kw_section) &&
   4416        ParseStringConstant(Section)) ||
   4417       parseOptionalComdat(FunctionName, C) ||
   4418       ParseOptionalAlignment(Alignment) ||
   4419       (EatIfPresent(lltok::kw_gc) &&
   4420        ParseStringConstant(GC)) ||
   4421       (EatIfPresent(lltok::kw_prefix) &&
   4422        ParseGlobalTypeAndValue(Prefix)) ||
   4423       (EatIfPresent(lltok::kw_prologue) &&
   4424        ParseGlobalTypeAndValue(Prologue)) ||
   4425       (EatIfPresent(lltok::kw_personality) &&
   4426        ParseGlobalTypeAndValue(PersonalityFn)))
   4427     return true;
   4428 
   4429   if (FuncAttrs.contains(Attribute::Builtin))
   4430     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
   4431 
   4432   // If the alignment was parsed as an attribute, move to the alignment field.
   4433   if (FuncAttrs.hasAlignmentAttr()) {
   4434     Alignment = FuncAttrs.getAlignment();
   4435     FuncAttrs.removeAttribute(Attribute::Alignment);
   4436   }
   4437 
   4438   // Okay, if we got here, the function is syntactically valid.  Convert types
   4439   // and do semantic checks.
   4440   std::vector<Type*> ParamTypeList;
   4441   SmallVector<AttributeSet, 8> Attrs;
   4442 
   4443   if (RetAttrs.hasAttributes())
   4444     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   4445                                       AttributeSet::ReturnIndex,
   4446                                       RetAttrs));
   4447 
   4448   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
   4449     ParamTypeList.push_back(ArgList[i].Ty);
   4450     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
   4451       AttrBuilder B(ArgList[i].Attrs, i + 1);
   4452       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
   4453     }
   4454   }
   4455 
   4456   if (FuncAttrs.hasAttributes())
   4457     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   4458                                       AttributeSet::FunctionIndex,
   4459                                       FuncAttrs));
   4460 
   4461   AttributeSet PAL = AttributeSet::get(Context, Attrs);
   4462 
   4463   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
   4464     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
   4465 
   4466   FunctionType *FT =
   4467     FunctionType::get(RetType, ParamTypeList, isVarArg);
   4468   PointerType *PFT = PointerType::getUnqual(FT);
   4469 
   4470   Fn = nullptr;
   4471   if (!FunctionName.empty()) {
   4472     // If this was a definition of a forward reference, remove the definition
   4473     // from the forward reference table and fill in the forward ref.
   4474     auto FRVI = ForwardRefVals.find(FunctionName);
   4475     if (FRVI != ForwardRefVals.end()) {
   4476       Fn = M->getFunction(FunctionName);
   4477       if (!Fn)
   4478         return Error(FRVI->second.second, "invalid forward reference to "
   4479                      "function as global value!");
   4480       if (Fn->getType() != PFT)
   4481         return Error(FRVI->second.second, "invalid forward reference to "
   4482                      "function '" + FunctionName + "' with wrong type!");
   4483 
   4484       ForwardRefVals.erase(FRVI);
   4485     } else if ((Fn = M->getFunction(FunctionName))) {
   4486       // Reject redefinitions.
   4487       return Error(NameLoc, "invalid redefinition of function '" +
   4488                    FunctionName + "'");
   4489     } else if (M->getNamedValue(FunctionName)) {
   4490       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
   4491     }
   4492 
   4493   } else {
   4494     // If this is a definition of a forward referenced function, make sure the
   4495     // types agree.
   4496     auto I = ForwardRefValIDs.find(NumberedVals.size());
   4497     if (I != ForwardRefValIDs.end()) {
   4498       Fn = cast<Function>(I->second.first);
   4499       if (Fn->getType() != PFT)
   4500         return Error(NameLoc, "type of definition and forward reference of '@" +
   4501                      Twine(NumberedVals.size()) + "' disagree");
   4502       ForwardRefValIDs.erase(I);
   4503     }
   4504   }
   4505 
   4506   if (!Fn)
   4507     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
   4508   else // Move the forward-reference to the correct spot in the module.
   4509     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
   4510 
   4511   if (FunctionName.empty())
   4512     NumberedVals.push_back(Fn);
   4513 
   4514   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
   4515   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
   4516   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
   4517   Fn->setCallingConv(CC);
   4518   Fn->setAttributes(PAL);
   4519   Fn->setUnnamedAddr(UnnamedAddr);
   4520   Fn->setAlignment(Alignment);
   4521   Fn->setSection(Section);
   4522   Fn->setComdat(C);
   4523   Fn->setPersonalityFn(PersonalityFn);
   4524   if (!GC.empty()) Fn->setGC(GC.c_str());
   4525   Fn->setPrefixData(Prefix);
   4526   Fn->setPrologueData(Prologue);
   4527   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
   4528 
   4529   // Add all of the arguments we parsed to the function.
   4530   Function::arg_iterator ArgIt = Fn->arg_begin();
   4531   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
   4532     // If the argument has a name, insert it into the argument symbol table.
   4533     if (ArgList[i].Name.empty()) continue;
   4534 
   4535     // Set the name, if it conflicted, it will be auto-renamed.
   4536     ArgIt->setName(ArgList[i].Name);
   4537 
   4538     if (ArgIt->getName() != ArgList[i].Name)
   4539       return Error(ArgList[i].Loc, "redefinition of argument '%" +
   4540                    ArgList[i].Name + "'");
   4541   }
   4542 
   4543   if (isDefine)
   4544     return false;
   4545 
   4546   // Check the declaration has no block address forward references.
   4547   ValID ID;
   4548   if (FunctionName.empty()) {
   4549     ID.Kind = ValID::t_GlobalID;
   4550     ID.UIntVal = NumberedVals.size() - 1;
   4551   } else {
   4552     ID.Kind = ValID::t_GlobalName;
   4553     ID.StrVal = FunctionName;
   4554   }
   4555   auto Blocks = ForwardRefBlockAddresses.find(ID);
   4556   if (Blocks != ForwardRefBlockAddresses.end())
   4557     return Error(Blocks->first.Loc,
   4558                  "cannot take blockaddress inside a declaration");
   4559   return false;
   4560 }
   4561 
   4562 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
   4563   ValID ID;
   4564   if (FunctionNumber == -1) {
   4565     ID.Kind = ValID::t_GlobalName;
   4566     ID.StrVal = F.getName();
   4567   } else {
   4568     ID.Kind = ValID::t_GlobalID;
   4569     ID.UIntVal = FunctionNumber;
   4570   }
   4571 
   4572   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
   4573   if (Blocks == P.ForwardRefBlockAddresses.end())
   4574     return false;
   4575 
   4576   for (const auto &I : Blocks->second) {
   4577     const ValID &BBID = I.first;
   4578     GlobalValue *GV = I.second;
   4579 
   4580     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
   4581            "Expected local id or name");
   4582     BasicBlock *BB;
   4583     if (BBID.Kind == ValID::t_LocalName)
   4584       BB = GetBB(BBID.StrVal, BBID.Loc);
   4585     else
   4586       BB = GetBB(BBID.UIntVal, BBID.Loc);
   4587     if (!BB)
   4588       return P.Error(BBID.Loc, "referenced value is not a basic block");
   4589 
   4590     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
   4591     GV->eraseFromParent();
   4592   }
   4593 
   4594   P.ForwardRefBlockAddresses.erase(Blocks);
   4595   return false;
   4596 }
   4597 
   4598 /// ParseFunctionBody
   4599 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
   4600 bool LLParser::ParseFunctionBody(Function &Fn) {
   4601   if (Lex.getKind() != lltok::lbrace)
   4602     return TokError("expected '{' in function body");
   4603   Lex.Lex();  // eat the {.
   4604 
   4605   int FunctionNumber = -1;
   4606   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
   4607 
   4608   PerFunctionState PFS(*this, Fn, FunctionNumber);
   4609 
   4610   // Resolve block addresses and allow basic blocks to be forward-declared
   4611   // within this function.
   4612   if (PFS.resolveForwardRefBlockAddresses())
   4613     return true;
   4614   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
   4615 
   4616   // We need at least one basic block.
   4617   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
   4618     return TokError("function body requires at least one basic block");
   4619 
   4620   while (Lex.getKind() != lltok::rbrace &&
   4621          Lex.getKind() != lltok::kw_uselistorder)
   4622     if (ParseBasicBlock(PFS)) return true;
   4623 
   4624   while (Lex.getKind() != lltok::rbrace)
   4625     if (ParseUseListOrder(&PFS))
   4626       return true;
   4627 
   4628   // Eat the }.
   4629   Lex.Lex();
   4630 
   4631   // Verify function is ok.
   4632   return PFS.FinishFunction();
   4633 }
   4634 
   4635 /// ParseBasicBlock
   4636 ///   ::= LabelStr? Instruction*
   4637 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
   4638   // If this basic block starts out with a name, remember it.
   4639   std::string Name;
   4640   LocTy NameLoc = Lex.getLoc();
   4641   if (Lex.getKind() == lltok::LabelStr) {
   4642     Name = Lex.getStrVal();
   4643     Lex.Lex();
   4644   }
   4645 
   4646   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
   4647   if (!BB)
   4648     return Error(NameLoc,
   4649                  "unable to create block named '" + Name + "'");
   4650 
   4651   std::string NameStr;
   4652 
   4653   // Parse the instructions in this block until we get a terminator.
   4654   Instruction *Inst;
   4655   do {
   4656     // This instruction may have three possibilities for a name: a) none
   4657     // specified, b) name specified "%foo =", c) number specified: "%4 =".
   4658     LocTy NameLoc = Lex.getLoc();
   4659     int NameID = -1;
   4660     NameStr = "";
   4661 
   4662     if (Lex.getKind() == lltok::LocalVarID) {
   4663       NameID = Lex.getUIntVal();
   4664       Lex.Lex();
   4665       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
   4666         return true;
   4667     } else if (Lex.getKind() == lltok::LocalVar) {
   4668       NameStr = Lex.getStrVal();
   4669       Lex.Lex();
   4670       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
   4671         return true;
   4672     }
   4673 
   4674     switch (ParseInstruction(Inst, BB, PFS)) {
   4675     default: llvm_unreachable("Unknown ParseInstruction result!");
   4676     case InstError: return true;
   4677     case InstNormal:
   4678       BB->getInstList().push_back(Inst);
   4679 
   4680       // With a normal result, we check to see if the instruction is followed by
   4681       // a comma and metadata.
   4682       if (EatIfPresent(lltok::comma))
   4683         if (ParseInstructionMetadata(*Inst))
   4684           return true;
   4685       break;
   4686     case InstExtraComma:
   4687       BB->getInstList().push_back(Inst);
   4688 
   4689       // If the instruction parser ate an extra comma at the end of it, it
   4690       // *must* be followed by metadata.
   4691       if (ParseInstructionMetadata(*Inst))
   4692         return true;
   4693       break;
   4694     }
   4695 
   4696     // Set the name on the instruction.
   4697     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
   4698   } while (!isa<TerminatorInst>(Inst));
   4699 
   4700   return false;
   4701 }
   4702 
   4703 //===----------------------------------------------------------------------===//
   4704 // Instruction Parsing.
   4705 //===----------------------------------------------------------------------===//
   4706 
   4707 /// ParseInstruction - Parse one of the many different instructions.
   4708 ///
   4709 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
   4710                                PerFunctionState &PFS) {
   4711   lltok::Kind Token = Lex.getKind();
   4712   if (Token == lltok::Eof)
   4713     return TokError("found end of file when expecting more instructions");
   4714   LocTy Loc = Lex.getLoc();
   4715   unsigned KeywordVal = Lex.getUIntVal();
   4716   Lex.Lex();  // Eat the keyword.
   4717 
   4718   switch (Token) {
   4719   default:                    return Error(Loc, "expected instruction opcode");
   4720   // Terminator Instructions.
   4721   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
   4722   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
   4723   case lltok::kw_br:          return ParseBr(Inst, PFS);
   4724   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
   4725   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
   4726   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
   4727   case lltok::kw_resume:      return ParseResume(Inst, PFS);
   4728   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
   4729   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
   4730   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
   4731   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
   4732   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
   4733   // Binary Operators.
   4734   case lltok::kw_add:
   4735   case lltok::kw_sub:
   4736   case lltok::kw_mul:
   4737   case lltok::kw_shl: {
   4738     bool NUW = EatIfPresent(lltok::kw_nuw);
   4739     bool NSW = EatIfPresent(lltok::kw_nsw);
   4740     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
   4741 
   4742     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
   4743 
   4744     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
   4745     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
   4746     return false;
   4747   }
   4748   case lltok::kw_fadd:
   4749   case lltok::kw_fsub:
   4750   case lltok::kw_fmul:
   4751   case lltok::kw_fdiv:
   4752   case lltok::kw_frem: {
   4753     FastMathFlags FMF = EatFastMathFlagsIfPresent();
   4754     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
   4755     if (Res != 0)
   4756       return Res;
   4757     if (FMF.any())
   4758       Inst->setFastMathFlags(FMF);
   4759     return 0;
   4760   }
   4761 
   4762   case lltok::kw_sdiv:
   4763   case lltok::kw_udiv:
   4764   case lltok::kw_lshr:
   4765   case lltok::kw_ashr: {
   4766     bool Exact = EatIfPresent(lltok::kw_exact);
   4767 
   4768     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
   4769     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
   4770     return false;
   4771   }
   4772 
   4773   case lltok::kw_urem:
   4774   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
   4775   case lltok::kw_and:
   4776   case lltok::kw_or:
   4777   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
   4778   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
   4779   case lltok::kw_fcmp: {
   4780     FastMathFlags FMF = EatFastMathFlagsIfPresent();
   4781     int Res = ParseCompare(Inst, PFS, KeywordVal);
   4782     if (Res != 0)
   4783       return Res;
   4784     if (FMF.any())
   4785       Inst->setFastMathFlags(FMF);
   4786     return 0;
   4787   }
   4788 
   4789   // Casts.
   4790   case lltok::kw_trunc:
   4791   case lltok::kw_zext:
   4792   case lltok::kw_sext:
   4793   case lltok::kw_fptrunc:
   4794   case lltok::kw_fpext:
   4795   case lltok::kw_bitcast:
   4796   case lltok::kw_addrspacecast:
   4797   case lltok::kw_uitofp:
   4798   case lltok::kw_sitofp:
   4799   case lltok::kw_fptoui:
   4800   case lltok::kw_fptosi:
   4801   case lltok::kw_inttoptr:
   4802   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
   4803   // Other.
   4804   case lltok::kw_select:         return ParseSelect(Inst, PFS);
   4805   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
   4806   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
   4807   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
   4808   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
   4809   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
   4810   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
   4811   // Call.
   4812   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
   4813   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
   4814   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
   4815   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
   4816   // Memory.
   4817   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
   4818   case lltok::kw_load:           return ParseLoad(Inst, PFS);
   4819   case lltok::kw_store:          return ParseStore(Inst, PFS);
   4820   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
   4821   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
   4822   case lltok::kw_fence:          return ParseFence(Inst, PFS);
   4823   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
   4824   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
   4825   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
   4826   }
   4827 }
   4828 
   4829 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
   4830 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
   4831   if (Opc == Instruction::FCmp) {
   4832     switch (Lex.getKind()) {
   4833     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
   4834     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
   4835     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
   4836     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
   4837     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
   4838     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
   4839     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
   4840     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
   4841     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
   4842     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
   4843     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
   4844     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
   4845     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
   4846     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
   4847     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
   4848     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
   4849     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
   4850     }
   4851   } else {
   4852     switch (Lex.getKind()) {
   4853     default: return TokError("expected icmp predicate (e.g. 'eq')");
   4854     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
   4855     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
   4856     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
   4857     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
   4858     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
   4859     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
   4860     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
   4861     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
   4862     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
   4863     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
   4864     }
   4865   }
   4866   Lex.Lex();
   4867   return false;
   4868 }
   4869 
   4870 //===----------------------------------------------------------------------===//
   4871 // Terminator Instructions.
   4872 //===----------------------------------------------------------------------===//
   4873 
   4874 /// ParseRet - Parse a return instruction.
   4875 ///   ::= 'ret' void (',' !dbg, !1)*
   4876 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
   4877 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
   4878                         PerFunctionState &PFS) {
   4879   SMLoc TypeLoc = Lex.getLoc();
   4880   Type *Ty = nullptr;
   4881   if (ParseType(Ty, true /*void allowed*/)) return true;
   4882 
   4883   Type *ResType = PFS.getFunction().getReturnType();
   4884 
   4885   if (Ty->isVoidTy()) {
   4886     if (!ResType->isVoidTy())
   4887       return Error(TypeLoc, "value doesn't match function result type '" +
   4888                    getTypeString(ResType) + "'");
   4889 
   4890     Inst = ReturnInst::Create(Context);
   4891     return false;
   4892   }
   4893 
   4894   Value *RV;
   4895   if (ParseValue(Ty, RV, PFS)) return true;
   4896 
   4897   if (ResType != RV->getType())
   4898     return Error(TypeLoc, "value doesn't match function result type '" +
   4899                  getTypeString(ResType) + "'");
   4900 
   4901   Inst = ReturnInst::Create(Context, RV);
   4902   return false;
   4903 }
   4904 
   4905 
   4906 /// ParseBr
   4907 ///   ::= 'br' TypeAndValue
   4908 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
   4909 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
   4910   LocTy Loc, Loc2;
   4911   Value *Op0;
   4912   BasicBlock *Op1, *Op2;
   4913   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
   4914 
   4915   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
   4916     Inst = BranchInst::Create(BB);
   4917     return false;
   4918   }
   4919 
   4920   if (Op0->getType() != Type::getInt1Ty(Context))
   4921     return Error(Loc, "branch condition must have 'i1' type");
   4922 
   4923   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
   4924       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
   4925       ParseToken(lltok::comma, "expected ',' after true destination") ||
   4926       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
   4927     return true;
   4928 
   4929   Inst = BranchInst::Create(Op1, Op2, Op0);
   4930   return false;
   4931 }
   4932 
   4933 /// ParseSwitch
   4934 ///  Instruction
   4935 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
   4936 ///  JumpTable
   4937 ///    ::= (TypeAndValue ',' TypeAndValue)*
   4938 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
   4939   LocTy CondLoc, BBLoc;
   4940   Value *Cond;
   4941   BasicBlock *DefaultBB;
   4942   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
   4943       ParseToken(lltok::comma, "expected ',' after switch condition") ||
   4944       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
   4945       ParseToken(lltok::lsquare, "expected '[' with switch table"))
   4946     return true;
   4947 
   4948   if (!Cond->getType()->isIntegerTy())
   4949     return Error(CondLoc, "switch condition must have integer type");
   4950 
   4951   // Parse the jump table pairs.
   4952   SmallPtrSet<Value*, 32> SeenCases;
   4953   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
   4954   while (Lex.getKind() != lltok::rsquare) {
   4955     Value *Constant;
   4956     BasicBlock *DestBB;
   4957 
   4958     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
   4959         ParseToken(lltok::comma, "expected ',' after case value") ||
   4960         ParseTypeAndBasicBlock(DestBB, PFS))
   4961       return true;
   4962 
   4963     if (!SeenCases.insert(Constant).second)
   4964       return Error(CondLoc, "duplicate case value in switch");
   4965     if (!isa<ConstantInt>(Constant))
   4966       return Error(CondLoc, "case value is not a constant integer");
   4967 
   4968     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
   4969   }
   4970 
   4971   Lex.Lex();  // Eat the ']'.
   4972 
   4973   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
   4974   for (unsigned i = 0, e = Table.size(); i != e; ++i)
   4975     SI->addCase(Table[i].first, Table[i].second);
   4976   Inst = SI;
   4977   return false;
   4978 }
   4979 
   4980 /// ParseIndirectBr
   4981 ///  Instruction
   4982 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
   4983 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
   4984   LocTy AddrLoc;
   4985   Value *Address;
   4986   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
   4987       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
   4988       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
   4989     return true;
   4990 
   4991   if (!Address->getType()->isPointerTy())
   4992     return Error(AddrLoc, "indirectbr address must have pointer type");
   4993 
   4994   // Parse the destination list.
   4995   SmallVector<BasicBlock*, 16> DestList;
   4996 
   4997   if (Lex.getKind() != lltok::rsquare) {
   4998     BasicBlock *DestBB;
   4999     if (ParseTypeAndBasicBlock(DestBB, PFS))
   5000       return true;
   5001     DestList.push_back(DestBB);
   5002 
   5003     while (EatIfPresent(lltok::comma)) {
   5004       if (ParseTypeAndBasicBlock(DestBB, PFS))
   5005         return true;
   5006       DestList.push_back(DestBB);
   5007     }
   5008   }
   5009 
   5010   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
   5011     return true;
   5012 
   5013   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
   5014   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
   5015     IBI->addDestination(DestList[i]);
   5016   Inst = IBI;
   5017   return false;
   5018 }
   5019 
   5020 
   5021 /// ParseInvoke
   5022 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
   5023 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
   5024 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
   5025   LocTy CallLoc = Lex.getLoc();
   5026   AttrBuilder RetAttrs, FnAttrs;
   5027   std::vector<unsigned> FwdRefAttrGrps;
   5028   LocTy NoBuiltinLoc;
   5029   unsigned CC;
   5030   Type *RetType = nullptr;
   5031   LocTy RetTypeLoc;
   5032   ValID CalleeID;
   5033   SmallVector<ParamInfo, 16> ArgList;
   5034   SmallVector<OperandBundleDef, 2> BundleList;
   5035 
   5036   BasicBlock *NormalBB, *UnwindBB;
   5037   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
   5038       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
   5039       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
   5040       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
   5041                                  NoBuiltinLoc) ||
   5042       ParseOptionalOperandBundles(BundleList, PFS) ||
   5043       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
   5044       ParseTypeAndBasicBlock(NormalBB, PFS) ||
   5045       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
   5046       ParseTypeAndBasicBlock(UnwindBB, PFS))
   5047     return true;
   5048 
   5049   // If RetType is a non-function pointer type, then this is the short syntax
   5050   // for the call, which means that RetType is just the return type.  Infer the
   5051   // rest of the function argument types from the arguments that are present.
   5052   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
   5053   if (!Ty) {
   5054     // Pull out the types of all of the arguments...
   5055     std::vector<Type*> ParamTypes;
   5056     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
   5057       ParamTypes.push_back(ArgList[i].V->getType());
   5058 
   5059     if (!FunctionType::isValidReturnType(RetType))
   5060       return Error(RetTypeLoc, "Invalid result type for LLVM function");
   5061 
   5062     Ty = FunctionType::get(RetType, ParamTypes, false);
   5063   }
   5064 
   5065   CalleeID.FTy = Ty;
   5066 
   5067   // Look up the callee.
   5068   Value *Callee;
   5069   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
   5070     return true;
   5071 
   5072   // Set up the Attribute for the function.
   5073   SmallVector<AttributeSet, 8> Attrs;
   5074   if (RetAttrs.hasAttributes())
   5075     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   5076                                       AttributeSet::ReturnIndex,
   5077                                       RetAttrs));
   5078 
   5079   SmallVector<Value*, 8> Args;
   5080 
   5081   // Loop through FunctionType's arguments and ensure they are specified
   5082   // correctly.  Also, gather any parameter attributes.
   5083   FunctionType::param_iterator I = Ty->param_begin();
   5084   FunctionType::param_iterator E = Ty->param_end();
   5085   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
   5086     Type *ExpectedTy = nullptr;
   5087     if (I != E) {
   5088       ExpectedTy = *I++;
   5089     } else if (!Ty->isVarArg()) {
   5090       return Error(ArgList[i].Loc, "too many arguments specified");
   5091     }
   5092 
   5093     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
   5094       return Error(ArgList[i].Loc, "argument is not of expected type '" +
   5095                    getTypeString(ExpectedTy) + "'");
   5096     Args.push_back(ArgList[i].V);
   5097     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
   5098       AttrBuilder B(ArgList[i].Attrs, i + 1);
   5099       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
   5100     }
   5101   }
   5102 
   5103   if (I != E)
   5104     return Error(CallLoc, "not enough parameters specified for call");
   5105 
   5106   if (FnAttrs.hasAttributes()) {
   5107     if (FnAttrs.hasAlignmentAttr())
   5108       return Error(CallLoc, "invoke instructions may not have an alignment");
   5109 
   5110     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   5111                                       AttributeSet::FunctionIndex,
   5112                                       FnAttrs));
   5113   }
   5114 
   5115   // Finish off the Attribute and check them
   5116   AttributeSet PAL = AttributeSet::get(Context, Attrs);
   5117 
   5118   InvokeInst *II =
   5119       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
   5120   II->setCallingConv(CC);
   5121   II->setAttributes(PAL);
   5122   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
   5123   Inst = II;
   5124   return false;
   5125 }
   5126 
   5127 /// ParseResume
   5128 ///   ::= 'resume' TypeAndValue
   5129 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
   5130   Value *Exn; LocTy ExnLoc;
   5131   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
   5132     return true;
   5133 
   5134   ResumeInst *RI = ResumeInst::Create(Exn);
   5135   Inst = RI;
   5136   return false;
   5137 }
   5138 
   5139 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
   5140                                   PerFunctionState &PFS) {
   5141   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
   5142     return true;
   5143 
   5144   while (Lex.getKind() != lltok::rsquare) {
   5145     // If this isn't the first argument, we need a comma.
   5146     if (!Args.empty() &&
   5147         ParseToken(lltok::comma, "expected ',' in argument list"))
   5148       return true;
   5149 
   5150     // Parse the argument.
   5151     LocTy ArgLoc;
   5152     Type *ArgTy = nullptr;
   5153     if (ParseType(ArgTy, ArgLoc))
   5154       return true;
   5155 
   5156     Value *V;
   5157     if (ArgTy->isMetadataTy()) {
   5158       if (ParseMetadataAsValue(V, PFS))
   5159         return true;
   5160     } else {
   5161       if (ParseValue(ArgTy, V, PFS))
   5162         return true;
   5163     }
   5164     Args.push_back(V);
   5165   }
   5166 
   5167   Lex.Lex();  // Lex the ']'.
   5168   return false;
   5169 }
   5170 
   5171 /// ParseCleanupRet
   5172 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
   5173 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
   5174   Value *CleanupPad = nullptr;
   5175 
   5176   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
   5177     return true;
   5178 
   5179   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
   5180     return true;
   5181 
   5182   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
   5183     return true;
   5184 
   5185   BasicBlock *UnwindBB = nullptr;
   5186   if (Lex.getKind() == lltok::kw_to) {
   5187     Lex.Lex();
   5188     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
   5189       return true;
   5190   } else {
   5191     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
   5192       return true;
   5193     }
   5194   }
   5195 
   5196   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
   5197   return false;
   5198 }
   5199 
   5200 /// ParseCatchRet
   5201 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
   5202 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
   5203   Value *CatchPad = nullptr;
   5204 
   5205   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
   5206     return true;
   5207 
   5208   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
   5209     return true;
   5210 
   5211   BasicBlock *BB;
   5212   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
   5213       ParseTypeAndBasicBlock(BB, PFS))
   5214       return true;
   5215 
   5216   Inst = CatchReturnInst::Create(CatchPad, BB);
   5217   return false;
   5218 }
   5219 
   5220 /// ParseCatchSwitch
   5221 ///   ::= 'catchswitch' within Parent
   5222 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
   5223   Value *ParentPad;
   5224   LocTy BBLoc;
   5225 
   5226   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
   5227     return true;
   5228 
   5229   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
   5230       Lex.getKind() != lltok::LocalVarID)
   5231     return TokError("expected scope value for catchswitch");
   5232 
   5233   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
   5234     return true;
   5235 
   5236   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
   5237     return true;
   5238 
   5239   SmallVector<BasicBlock *, 32> Table;
   5240   do {
   5241     BasicBlock *DestBB;
   5242     if (ParseTypeAndBasicBlock(DestBB, PFS))
   5243       return true;
   5244     Table.push_back(DestBB);
   5245   } while (EatIfPresent(lltok::comma));
   5246 
   5247   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
   5248     return true;
   5249 
   5250   if (ParseToken(lltok::kw_unwind,
   5251                  "expected 'unwind' after catchswitch scope"))
   5252     return true;
   5253 
   5254   BasicBlock *UnwindBB = nullptr;
   5255   if (EatIfPresent(lltok::kw_to)) {
   5256     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
   5257       return true;
   5258   } else {
   5259     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
   5260       return true;
   5261   }
   5262 
   5263   auto *CatchSwitch =
   5264       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
   5265   for (BasicBlock *DestBB : Table)
   5266     CatchSwitch->addHandler(DestBB);
   5267   Inst = CatchSwitch;
   5268   return false;
   5269 }
   5270 
   5271 /// ParseCatchPad
   5272 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
   5273 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
   5274   Value *CatchSwitch = nullptr;
   5275 
   5276   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
   5277     return true;
   5278 
   5279   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
   5280     return TokError("expected scope value for catchpad");
   5281 
   5282   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
   5283     return true;
   5284 
   5285   SmallVector<Value *, 8> Args;
   5286   if (ParseExceptionArgs(Args, PFS))
   5287     return true;
   5288 
   5289   Inst = CatchPadInst::Create(CatchSwitch, Args);
   5290   return false;
   5291 }
   5292 
   5293 /// ParseCleanupPad
   5294 ///   ::= 'cleanuppad' within Parent ParamList
   5295 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
   5296   Value *ParentPad = nullptr;
   5297 
   5298   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
   5299     return true;
   5300 
   5301   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
   5302       Lex.getKind() != lltok::LocalVarID)
   5303     return TokError("expected scope value for cleanuppad");
   5304 
   5305   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
   5306     return true;
   5307 
   5308   SmallVector<Value *, 8> Args;
   5309   if (ParseExceptionArgs(Args, PFS))
   5310     return true;
   5311 
   5312   Inst = CleanupPadInst::Create(ParentPad, Args);
   5313   return false;
   5314 }
   5315 
   5316 //===----------------------------------------------------------------------===//
   5317 // Binary Operators.
   5318 //===----------------------------------------------------------------------===//
   5319 
   5320 /// ParseArithmetic
   5321 ///  ::= ArithmeticOps TypeAndValue ',' Value
   5322 ///
   5323 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
   5324 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
   5325 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
   5326                                unsigned Opc, unsigned OperandType) {
   5327   LocTy Loc; Value *LHS, *RHS;
   5328   if (ParseTypeAndValue(LHS, Loc, PFS) ||
   5329       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
   5330       ParseValue(LHS->getType(), RHS, PFS))
   5331     return true;
   5332 
   5333   bool Valid;
   5334   switch (OperandType) {
   5335   default: llvm_unreachable("Unknown operand type!");
   5336   case 0: // int or FP.
   5337     Valid = LHS->getType()->isIntOrIntVectorTy() ||
   5338             LHS->getType()->isFPOrFPVectorTy();
   5339     break;
   5340   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
   5341   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
   5342   }
   5343 
   5344   if (!Valid)
   5345     return Error(Loc, "invalid operand type for instruction");
   5346 
   5347   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
   5348   return false;
   5349 }
   5350 
   5351 /// ParseLogical
   5352 ///  ::= ArithmeticOps TypeAndValue ',' Value {
   5353 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
   5354                             unsigned Opc) {
   5355   LocTy Loc; Value *LHS, *RHS;
   5356   if (ParseTypeAndValue(LHS, Loc, PFS) ||
   5357       ParseToken(lltok::comma, "expected ',' in logical operation") ||
   5358       ParseValue(LHS->getType(), RHS, PFS))
   5359     return true;
   5360 
   5361   if (!LHS->getType()->isIntOrIntVectorTy())
   5362     return Error(Loc,"instruction requires integer or integer vector operands");
   5363 
   5364   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
   5365   return false;
   5366 }
   5367 
   5368 
   5369 /// ParseCompare
   5370 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
   5371 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
   5372 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
   5373                             unsigned Opc) {
   5374   // Parse the integer/fp comparison predicate.
   5375   LocTy Loc;
   5376   unsigned Pred;
   5377   Value *LHS, *RHS;
   5378   if (ParseCmpPredicate(Pred, Opc) ||
   5379       ParseTypeAndValue(LHS, Loc, PFS) ||
   5380       ParseToken(lltok::comma, "expected ',' after compare value") ||
   5381       ParseValue(LHS->getType(), RHS, PFS))
   5382     return true;
   5383 
   5384   if (Opc == Instruction::FCmp) {
   5385     if (!LHS->getType()->isFPOrFPVectorTy())
   5386       return Error(Loc, "fcmp requires floating point operands");
   5387     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
   5388   } else {
   5389     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
   5390     if (!LHS->getType()->isIntOrIntVectorTy() &&
   5391         !LHS->getType()->getScalarType()->isPointerTy())
   5392       return Error(Loc, "icmp requires integer operands");
   5393     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
   5394   }
   5395   return false;
   5396 }
   5397 
   5398 //===----------------------------------------------------------------------===//
   5399 // Other Instructions.
   5400 //===----------------------------------------------------------------------===//
   5401 
   5402 
   5403 /// ParseCast
   5404 ///   ::= CastOpc TypeAndValue 'to' Type
   5405 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
   5406                          unsigned Opc) {
   5407   LocTy Loc;
   5408   Value *Op;
   5409   Type *DestTy = nullptr;
   5410   if (ParseTypeAndValue(Op, Loc, PFS) ||
   5411       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
   5412       ParseType(DestTy))
   5413     return true;
   5414 
   5415   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
   5416     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
   5417     return Error(Loc, "invalid cast opcode for cast from '" +
   5418                  getTypeString(Op->getType()) + "' to '" +
   5419                  getTypeString(DestTy) + "'");
   5420   }
   5421   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
   5422   return false;
   5423 }
   5424 
   5425 /// ParseSelect
   5426 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
   5427 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
   5428   LocTy Loc;
   5429   Value *Op0, *Op1, *Op2;
   5430   if (ParseTypeAndValue(Op0, Loc, PFS) ||
   5431       ParseToken(lltok::comma, "expected ',' after select condition") ||
   5432       ParseTypeAndValue(Op1, PFS) ||
   5433       ParseToken(lltok::comma, "expected ',' after select value") ||
   5434       ParseTypeAndValue(Op2, PFS))
   5435     return true;
   5436 
   5437   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
   5438     return Error(Loc, Reason);
   5439 
   5440   Inst = SelectInst::Create(Op0, Op1, Op2);
   5441   return false;
   5442 }
   5443 
   5444 /// ParseVA_Arg
   5445 ///   ::= 'va_arg' TypeAndValue ',' Type
   5446 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
   5447   Value *Op;
   5448   Type *EltTy = nullptr;
   5449   LocTy TypeLoc;
   5450   if (ParseTypeAndValue(Op, PFS) ||
   5451       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
   5452       ParseType(EltTy, TypeLoc))
   5453     return true;
   5454 
   5455   if (!EltTy->isFirstClassType())
   5456     return Error(TypeLoc, "va_arg requires operand with first class type");
   5457 
   5458   Inst = new VAArgInst(Op, EltTy);
   5459   return false;
   5460 }
   5461 
   5462 /// ParseExtractElement
   5463 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
   5464 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
   5465   LocTy Loc;
   5466   Value *Op0, *Op1;
   5467   if (ParseTypeAndValue(Op0, Loc, PFS) ||
   5468       ParseToken(lltok::comma, "expected ',' after extract value") ||
   5469       ParseTypeAndValue(Op1, PFS))
   5470     return true;
   5471 
   5472   if (!ExtractElementInst::isValidOperands(Op0, Op1))
   5473     return Error(Loc, "invalid extractelement operands");
   5474 
   5475   Inst = ExtractElementInst::Create(Op0, Op1);
   5476   return false;
   5477 }
   5478 
   5479 /// ParseInsertElement
   5480 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
   5481 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
   5482   LocTy Loc;
   5483   Value *Op0, *Op1, *Op2;
   5484   if (ParseTypeAndValue(Op0, Loc, PFS) ||
   5485       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
   5486       ParseTypeAndValue(Op1, PFS) ||
   5487       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
   5488       ParseTypeAndValue(Op2, PFS))
   5489     return true;
   5490 
   5491   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
   5492     return Error(Loc, "invalid insertelement operands");
   5493 
   5494   Inst = InsertElementInst::Create(Op0, Op1, Op2);
   5495   return false;
   5496 }
   5497 
   5498 /// ParseShuffleVector
   5499 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
   5500 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
   5501   LocTy Loc;
   5502   Value *Op0, *Op1, *Op2;
   5503   if (ParseTypeAndValue(Op0, Loc, PFS) ||
   5504       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
   5505       ParseTypeAndValue(Op1, PFS) ||
   5506       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
   5507       ParseTypeAndValue(Op2, PFS))
   5508     return true;
   5509 
   5510   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
   5511     return Error(Loc, "invalid shufflevector operands");
   5512 
   5513   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
   5514   return false;
   5515 }
   5516 
   5517 /// ParsePHI
   5518 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
   5519 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
   5520   Type *Ty = nullptr;  LocTy TypeLoc;
   5521   Value *Op0, *Op1;
   5522 
   5523   if (ParseType(Ty, TypeLoc) ||
   5524       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
   5525       ParseValue(Ty, Op0, PFS) ||
   5526       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
   5527       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
   5528       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
   5529     return true;
   5530 
   5531   bool AteExtraComma = false;
   5532   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
   5533   while (1) {
   5534     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
   5535 
   5536     if (!EatIfPresent(lltok::comma))
   5537       break;
   5538 
   5539     if (Lex.getKind() == lltok::MetadataVar) {
   5540       AteExtraComma = true;
   5541       break;
   5542     }
   5543 
   5544     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
   5545         ParseValue(Ty, Op0, PFS) ||
   5546         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
   5547         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
   5548         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
   5549       return true;
   5550   }
   5551 
   5552   if (!Ty->isFirstClassType())
   5553     return Error(TypeLoc, "phi node must have first class type");
   5554 
   5555   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
   5556   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
   5557     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
   5558   Inst = PN;
   5559   return AteExtraComma ? InstExtraComma : InstNormal;
   5560 }
   5561 
   5562 /// ParseLandingPad
   5563 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
   5564 /// Clause
   5565 ///   ::= 'catch' TypeAndValue
   5566 ///   ::= 'filter'
   5567 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
   5568 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
   5569   Type *Ty = nullptr; LocTy TyLoc;
   5570 
   5571   if (ParseType(Ty, TyLoc))
   5572     return true;
   5573 
   5574   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
   5575   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
   5576 
   5577   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
   5578     LandingPadInst::ClauseType CT;
   5579     if (EatIfPresent(lltok::kw_catch))
   5580       CT = LandingPadInst::Catch;
   5581     else if (EatIfPresent(lltok::kw_filter))
   5582       CT = LandingPadInst::Filter;
   5583     else
   5584       return TokError("expected 'catch' or 'filter' clause type");
   5585 
   5586     Value *V;
   5587     LocTy VLoc;
   5588     if (ParseTypeAndValue(V, VLoc, PFS))
   5589       return true;
   5590 
   5591     // A 'catch' type expects a non-array constant. A filter clause expects an
   5592     // array constant.
   5593     if (CT == LandingPadInst::Catch) {
   5594       if (isa<ArrayType>(V->getType()))
   5595         Error(VLoc, "'catch' clause has an invalid type");
   5596     } else {
   5597       if (!isa<ArrayType>(V->getType()))
   5598         Error(VLoc, "'filter' clause has an invalid type");
   5599     }
   5600 
   5601     Constant *CV = dyn_cast<Constant>(V);
   5602     if (!CV)
   5603       return Error(VLoc, "clause argument must be a constant");
   5604     LP->addClause(CV);
   5605   }
   5606 
   5607   Inst = LP.release();
   5608   return false;
   5609 }
   5610 
   5611 /// ParseCall
   5612 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
   5613 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
   5614 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
   5615 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
   5616 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
   5617 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
   5618 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
   5619 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
   5620 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
   5621                          CallInst::TailCallKind TCK) {
   5622   AttrBuilder RetAttrs, FnAttrs;
   5623   std::vector<unsigned> FwdRefAttrGrps;
   5624   LocTy BuiltinLoc;
   5625   unsigned CC;
   5626   Type *RetType = nullptr;
   5627   LocTy RetTypeLoc;
   5628   ValID CalleeID;
   5629   SmallVector<ParamInfo, 16> ArgList;
   5630   SmallVector<OperandBundleDef, 2> BundleList;
   5631   LocTy CallLoc = Lex.getLoc();
   5632 
   5633   if (TCK != CallInst::TCK_None &&
   5634       ParseToken(lltok::kw_call,
   5635                  "expected 'tail call', 'musttail call', or 'notail call'"))
   5636     return true;
   5637 
   5638   FastMathFlags FMF = EatFastMathFlagsIfPresent();
   5639 
   5640   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
   5641       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
   5642       ParseValID(CalleeID) ||
   5643       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
   5644                          PFS.getFunction().isVarArg()) ||
   5645       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
   5646       ParseOptionalOperandBundles(BundleList, PFS))
   5647     return true;
   5648 
   5649   if (FMF.any() && !RetType->isFPOrFPVectorTy())
   5650     return Error(CallLoc, "fast-math-flags specified for call without "
   5651                           "floating-point scalar or vector return type");
   5652 
   5653   // If RetType is a non-function pointer type, then this is the short syntax
   5654   // for the call, which means that RetType is just the return type.  Infer the
   5655   // rest of the function argument types from the arguments that are present.
   5656   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
   5657   if (!Ty) {
   5658     // Pull out the types of all of the arguments...
   5659     std::vector<Type*> ParamTypes;
   5660     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
   5661       ParamTypes.push_back(ArgList[i].V->getType());
   5662 
   5663     if (!FunctionType::isValidReturnType(RetType))
   5664       return Error(RetTypeLoc, "Invalid result type for LLVM function");
   5665 
   5666     Ty = FunctionType::get(RetType, ParamTypes, false);
   5667   }
   5668 
   5669   CalleeID.FTy = Ty;
   5670 
   5671   // Look up the callee.
   5672   Value *Callee;
   5673   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
   5674     return true;
   5675 
   5676   // Set up the Attribute for the function.
   5677   SmallVector<AttributeSet, 8> Attrs;
   5678   if (RetAttrs.hasAttributes())
   5679     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   5680                                       AttributeSet::ReturnIndex,
   5681                                       RetAttrs));
   5682 
   5683   SmallVector<Value*, 8> Args;
   5684 
   5685   // Loop through FunctionType's arguments and ensure they are specified
   5686   // correctly.  Also, gather any parameter attributes.
   5687   FunctionType::param_iterator I = Ty->param_begin();
   5688   FunctionType::param_iterator E = Ty->param_end();
   5689   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
   5690     Type *ExpectedTy = nullptr;
   5691     if (I != E) {
   5692       ExpectedTy = *I++;
   5693     } else if (!Ty->isVarArg()) {
   5694       return Error(ArgList[i].Loc, "too many arguments specified");
   5695     }
   5696 
   5697     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
   5698       return Error(ArgList[i].Loc, "argument is not of expected type '" +
   5699                    getTypeString(ExpectedTy) + "'");
   5700     Args.push_back(ArgList[i].V);
   5701     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
   5702       AttrBuilder B(ArgList[i].Attrs, i + 1);
   5703       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
   5704     }
   5705   }
   5706 
   5707   if (I != E)
   5708     return Error(CallLoc, "not enough parameters specified for call");
   5709 
   5710   if (FnAttrs.hasAttributes()) {
   5711     if (FnAttrs.hasAlignmentAttr())
   5712       return Error(CallLoc, "call instructions may not have an alignment");
   5713 
   5714     Attrs.push_back(AttributeSet::get(RetType->getContext(),
   5715                                       AttributeSet::FunctionIndex,
   5716                                       FnAttrs));
   5717   }
   5718 
   5719   // Finish off the Attribute and check them
   5720   AttributeSet PAL = AttributeSet::get(Context, Attrs);
   5721 
   5722   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
   5723   CI->setTailCallKind(TCK);
   5724   CI->setCallingConv(CC);
   5725   if (FMF.any())
   5726     CI->setFastMathFlags(FMF);
   5727   CI->setAttributes(PAL);
   5728   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
   5729   Inst = CI;
   5730   return false;
   5731 }
   5732 
   5733 //===----------------------------------------------------------------------===//
   5734 // Memory Instructions.
   5735 //===----------------------------------------------------------------------===//
   5736 
   5737 /// ParseAlloc
   5738 ///   ::= 'alloca' 'inalloca'? Type (',' TypeAndValue)? (',' 'align' i32)?
   5739 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
   5740   Value *Size = nullptr;
   5741   LocTy SizeLoc, TyLoc;
   5742   unsigned Alignment = 0;
   5743   Type *Ty = nullptr;
   5744 
   5745   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
   5746 
   5747   if (ParseType(Ty, TyLoc)) return true;
   5748 
   5749   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
   5750     return Error(TyLoc, "invalid type for alloca");
   5751 
   5752   bool AteExtraComma = false;
   5753   if (EatIfPresent(lltok::comma)) {
   5754     if (Lex.getKind() == lltok::kw_align) {
   5755       if (ParseOptionalAlignment(Alignment)) return true;
   5756     } else if (Lex.getKind() == lltok::MetadataVar) {
   5757       AteExtraComma = true;
   5758     } else {
   5759       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
   5760           ParseOptionalCommaAlign(Alignment, AteExtraComma))
   5761         return true;
   5762     }
   5763   }
   5764 
   5765   if (Size && !Size->getType()->isIntegerTy())
   5766     return Error(SizeLoc, "element count must have integer type");
   5767 
   5768   AllocaInst *AI = new AllocaInst(Ty, Size, Alignment);
   5769   AI->setUsedWithInAlloca(IsInAlloca);
   5770   Inst = AI;
   5771   return AteExtraComma ? InstExtraComma : InstNormal;
   5772 }
   5773 
   5774 /// ParseLoad
   5775 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
   5776 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
   5777 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
   5778 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
   5779   Value *Val; LocTy Loc;
   5780   unsigned Alignment = 0;
   5781   bool AteExtraComma = false;
   5782   bool isAtomic = false;
   5783   AtomicOrdering Ordering = NotAtomic;
   5784   SynchronizationScope Scope = CrossThread;
   5785 
   5786   if (Lex.getKind() == lltok::kw_atomic) {
   5787     isAtomic = true;
   5788     Lex.Lex();
   5789   }
   5790 
   5791   bool isVolatile = false;
   5792   if (Lex.getKind() == lltok::kw_volatile) {
   5793     isVolatile = true;
   5794     Lex.Lex();
   5795   }
   5796 
   5797   Type *Ty;
   5798   LocTy ExplicitTypeLoc = Lex.getLoc();
   5799   if (ParseType(Ty) ||
   5800       ParseToken(lltok::comma, "expected comma after load's type") ||
   5801       ParseTypeAndValue(Val, Loc, PFS) ||
   5802       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
   5803       ParseOptionalCommaAlign(Alignment, AteExtraComma))
   5804     return true;
   5805 
   5806   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
   5807     return Error(Loc, "load operand must be a pointer to a first class type");
   5808   if (isAtomic && !Alignment)
   5809     return Error(Loc, "atomic load must have explicit non-zero alignment");
   5810   if (Ordering == Release || Ordering == AcquireRelease)
   5811     return Error(Loc, "atomic load cannot use Release ordering");
   5812 
   5813   if (Ty != cast<PointerType>(Val->getType())->getElementType())
   5814     return Error(ExplicitTypeLoc,
   5815                  "explicit pointee type doesn't match operand's pointee type");
   5816 
   5817   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope);
   5818   return AteExtraComma ? InstExtraComma : InstNormal;
   5819 }
   5820 
   5821 /// ParseStore
   5822 
   5823 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
   5824 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
   5825 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
   5826 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
   5827   Value *Val, *Ptr; LocTy Loc, PtrLoc;
   5828   unsigned Alignment = 0;
   5829   bool AteExtraComma = false;
   5830   bool isAtomic = false;
   5831   AtomicOrdering Ordering = NotAtomic;
   5832   SynchronizationScope Scope = CrossThread;
   5833 
   5834   if (Lex.getKind() == lltok::kw_atomic) {
   5835     isAtomic = true;
   5836     Lex.Lex();
   5837   }
   5838 
   5839   bool isVolatile = false;
   5840   if (Lex.getKind() == lltok::kw_volatile) {
   5841     isVolatile = true;
   5842     Lex.Lex();
   5843   }
   5844 
   5845   if (ParseTypeAndValue(Val, Loc, PFS) ||
   5846       ParseToken(lltok::comma, "expected ',' after store operand") ||
   5847       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
   5848       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
   5849       ParseOptionalCommaAlign(Alignment, AteExtraComma))
   5850     return true;
   5851 
   5852   if (!Ptr->getType()->isPointerTy())
   5853     return Error(PtrLoc, "store operand must be a pointer");
   5854   if (!Val->getType()->isFirstClassType())
   5855     return Error(Loc, "store operand must be a first class value");
   5856   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
   5857     return Error(Loc, "stored value and pointer type do not match");
   5858   if (isAtomic && !Alignment)
   5859     return Error(Loc, "atomic store must have explicit non-zero alignment");
   5860   if (Ordering == Acquire || Ordering == AcquireRelease)
   5861     return Error(Loc, "atomic store cannot use Acquire ordering");
   5862 
   5863   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
   5864   return AteExtraComma ? InstExtraComma : InstNormal;
   5865 }
   5866 
   5867 /// ParseCmpXchg
   5868 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
   5869 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
   5870 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
   5871   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
   5872   bool AteExtraComma = false;
   5873   AtomicOrdering SuccessOrdering = NotAtomic;
   5874   AtomicOrdering FailureOrdering = NotAtomic;
   5875   SynchronizationScope Scope = CrossThread;
   5876   bool isVolatile = false;
   5877   bool isWeak = false;
   5878 
   5879   if (EatIfPresent(lltok::kw_weak))
   5880     isWeak = true;
   5881 
   5882   if (EatIfPresent(lltok::kw_volatile))
   5883     isVolatile = true;
   5884 
   5885   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
   5886       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
   5887       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
   5888       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
   5889       ParseTypeAndValue(New, NewLoc, PFS) ||
   5890       ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) ||
   5891       ParseOrdering(FailureOrdering))
   5892     return true;
   5893 
   5894   if (SuccessOrdering == Unordered || FailureOrdering == Unordered)
   5895     return TokError("cmpxchg cannot be unordered");
   5896   if (SuccessOrdering < FailureOrdering)
   5897     return TokError("cmpxchg must be at least as ordered on success as failure");
   5898   if (FailureOrdering == Release || FailureOrdering == AcquireRelease)
   5899     return TokError("cmpxchg failure ordering cannot include release semantics");
   5900   if (!Ptr->getType()->isPointerTy())
   5901     return Error(PtrLoc, "cmpxchg operand must be a pointer");
   5902   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
   5903     return Error(CmpLoc, "compare value and pointer type do not match");
   5904   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
   5905     return Error(NewLoc, "new value and pointer type do not match");
   5906   if (!New->getType()->isIntegerTy())
   5907     return Error(NewLoc, "cmpxchg operand must be an integer");
   5908   unsigned Size = New->getType()->getPrimitiveSizeInBits();
   5909   if (Size < 8 || (Size & (Size - 1)))
   5910     return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
   5911                          " integer");
   5912 
   5913   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
   5914       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope);
   5915   CXI->setVolatile(isVolatile);
   5916   CXI->setWeak(isWeak);
   5917   Inst = CXI;
   5918   return AteExtraComma ? InstExtraComma : InstNormal;
   5919 }
   5920 
   5921 /// ParseAtomicRMW
   5922 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
   5923 ///       'singlethread'? AtomicOrdering
   5924 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
   5925   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
   5926   bool AteExtraComma = false;
   5927   AtomicOrdering Ordering = NotAtomic;
   5928   SynchronizationScope Scope = CrossThread;
   5929   bool isVolatile = false;
   5930   AtomicRMWInst::BinOp Operation;
   5931 
   5932   if (EatIfPresent(lltok::kw_volatile))
   5933     isVolatile = true;
   5934 
   5935   switch (Lex.getKind()) {
   5936   default: return TokError("expected binary operation in atomicrmw");
   5937   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
   5938   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
   5939   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
   5940   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
   5941   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
   5942   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
   5943   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
   5944   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
   5945   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
   5946   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
   5947   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
   5948   }
   5949   Lex.Lex();  // Eat the operation.
   5950 
   5951   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
   5952       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
   5953       ParseTypeAndValue(Val, ValLoc, PFS) ||
   5954       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
   5955     return true;
   5956 
   5957   if (Ordering == Unordered)
   5958     return TokError("atomicrmw cannot be unordered");
   5959   if (!Ptr->getType()->isPointerTy())
   5960     return Error(PtrLoc, "atomicrmw operand must be a pointer");
   5961   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
   5962     return Error(ValLoc, "atomicrmw value and pointer type do not match");
   5963   if (!Val->getType()->isIntegerTy())
   5964     return Error(ValLoc, "atomicrmw operand must be an integer");
   5965   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
   5966   if (Size < 8 || (Size & (Size - 1)))
   5967     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
   5968                          " integer");
   5969 
   5970   AtomicRMWInst *RMWI =
   5971     new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
   5972   RMWI->setVolatile(isVolatile);
   5973   Inst = RMWI;
   5974   return AteExtraComma ? InstExtraComma : InstNormal;
   5975 }
   5976 
   5977 /// ParseFence
   5978 ///   ::= 'fence' 'singlethread'? AtomicOrdering
   5979 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
   5980   AtomicOrdering Ordering = NotAtomic;
   5981   SynchronizationScope Scope = CrossThread;
   5982   if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
   5983     return true;
   5984 
   5985   if (Ordering == Unordered)
   5986     return TokError("fence cannot be unordered");
   5987   if (Ordering == Monotonic)
   5988     return TokError("fence cannot be monotonic");
   5989 
   5990   Inst = new FenceInst(Context, Ordering, Scope);
   5991   return InstNormal;
   5992 }
   5993 
   5994 /// ParseGetElementPtr
   5995 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
   5996 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
   5997   Value *Ptr = nullptr;
   5998   Value *Val = nullptr;
   5999   LocTy Loc, EltLoc;
   6000 
   6001   bool InBounds = EatIfPresent(lltok::kw_inbounds);
   6002 
   6003   Type *Ty = nullptr;
   6004   LocTy ExplicitTypeLoc = Lex.getLoc();
   6005   if (ParseType(Ty) ||
   6006       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
   6007       ParseTypeAndValue(Ptr, Loc, PFS))
   6008     return true;
   6009 
   6010   Type *BaseType = Ptr->getType();
   6011   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
   6012   if (!BasePointerType)
   6013     return Error(Loc, "base of getelementptr must be a pointer");
   6014 
   6015   if (Ty != BasePointerType->getElementType())
   6016     return Error(ExplicitTypeLoc,
   6017                  "explicit pointee type doesn't match operand's pointee type");
   6018 
   6019   SmallVector<Value*, 16> Indices;
   6020   bool AteExtraComma = false;
   6021   // GEP returns a vector of pointers if at least one of parameters is a vector.
   6022   // All vector parameters should have the same vector width.
   6023   unsigned GEPWidth = BaseType->isVectorTy() ?
   6024     BaseType->getVectorNumElements() : 0;
   6025 
   6026   while (EatIfPresent(lltok::comma)) {
   6027     if (Lex.getKind() == lltok::MetadataVar) {
   6028       AteExtraComma = true;
   6029       break;
   6030     }
   6031     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
   6032     if (!Val->getType()->getScalarType()->isIntegerTy())
   6033       return Error(EltLoc, "getelementptr index must be an integer");
   6034 
   6035     if (Val->getType()->isVectorTy()) {
   6036       unsigned ValNumEl = Val->getType()->getVectorNumElements();
   6037       if (GEPWidth && GEPWidth != ValNumEl)
   6038         return Error(EltLoc,
   6039           "getelementptr vector index has a wrong number of elements");
   6040       GEPWidth = ValNumEl;
   6041     }
   6042     Indices.push_back(Val);
   6043   }
   6044 
   6045   SmallPtrSet<Type*, 4> Visited;
   6046   if (!Indices.empty() && !Ty->isSized(&Visited))
   6047     return Error(Loc, "base element of getelementptr must be sized");
   6048 
   6049   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
   6050     return Error(Loc, "invalid getelementptr indices");
   6051   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
   6052   if (InBounds)
   6053     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
   6054   return AteExtraComma ? InstExtraComma : InstNormal;
   6055 }
   6056 
   6057 /// ParseExtractValue
   6058 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
   6059 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
   6060   Value *Val; LocTy Loc;
   6061   SmallVector<unsigned, 4> Indices;
   6062   bool AteExtraComma;
   6063   if (ParseTypeAndValue(Val, Loc, PFS) ||
   6064       ParseIndexList(Indices, AteExtraComma))
   6065     return true;
   6066 
   6067   if (!Val->getType()->isAggregateType())
   6068     return Error(Loc, "extractvalue operand must be aggregate type");
   6069 
   6070   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
   6071     return Error(Loc, "invalid indices for extractvalue");
   6072   Inst = ExtractValueInst::Create(Val, Indices);
   6073   return AteExtraComma ? InstExtraComma : InstNormal;
   6074 }
   6075 
   6076 /// ParseInsertValue
   6077 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
   6078 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
   6079   Value *Val0, *Val1; LocTy Loc0, Loc1;
   6080   SmallVector<unsigned, 4> Indices;
   6081   bool AteExtraComma;
   6082   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
   6083       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
   6084       ParseTypeAndValue(Val1, Loc1, PFS) ||
   6085       ParseIndexList(Indices, AteExtraComma))
   6086     return true;
   6087 
   6088   if (!Val0->getType()->isAggregateType())
   6089     return Error(Loc0, "insertvalue operand must be aggregate type");
   6090 
   6091   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
   6092   if (!IndexedType)
   6093     return Error(Loc0, "invalid indices for insertvalue");
   6094   if (IndexedType != Val1->getType())
   6095     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
   6096                            getTypeString(Val1->getType()) + "' instead of '" +
   6097                            getTypeString(IndexedType) + "'");
   6098   Inst = InsertValueInst::Create(Val0, Val1, Indices);
   6099   return AteExtraComma ? InstExtraComma : InstNormal;
   6100 }
   6101 
   6102 //===----------------------------------------------------------------------===//
   6103 // Embedded metadata.
   6104 //===----------------------------------------------------------------------===//
   6105 
   6106 /// ParseMDNodeVector
   6107 ///   ::= { Element (',' Element)* }
   6108 /// Element
   6109 ///   ::= 'null' | TypeAndValue
   6110 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
   6111   if (ParseToken(lltok::lbrace, "expected '{' here"))
   6112     return true;
   6113 
   6114   // Check for an empty list.
   6115   if (EatIfPresent(lltok::rbrace))
   6116     return false;
   6117 
   6118   do {
   6119     // Null is a special case since it is typeless.
   6120     if (EatIfPresent(lltok::kw_null)) {
   6121       Elts.push_back(nullptr);
   6122       continue;
   6123     }
   6124 
   6125     Metadata *MD;
   6126     if (ParseMetadata(MD, nullptr))
   6127       return true;
   6128     Elts.push_back(MD);
   6129   } while (EatIfPresent(lltok::comma));
   6130 
   6131   return ParseToken(lltok::rbrace, "expected end of metadata node");
   6132 }
   6133 
   6134 //===----------------------------------------------------------------------===//
   6135 // Use-list order directives.
   6136 //===----------------------------------------------------------------------===//
   6137 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
   6138                                 SMLoc Loc) {
   6139   if (V->use_empty())
   6140     return Error(Loc, "value has no uses");
   6141 
   6142   unsigned NumUses = 0;
   6143   SmallDenseMap<const Use *, unsigned, 16> Order;
   6144   for (const Use &U : V->uses()) {
   6145     if (++NumUses > Indexes.size())
   6146       break;
   6147     Order[&U] = Indexes[NumUses - 1];
   6148   }
   6149   if (NumUses < 2)
   6150     return Error(Loc, "value only has one use");
   6151   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
   6152     return Error(Loc, "wrong number of indexes, expected " +
   6153                           Twine(std::distance(V->use_begin(), V->use_end())));
   6154 
   6155   V->sortUseList([&](const Use &L, const Use &R) {
   6156     return Order.lookup(&L) < Order.lookup(&R);
   6157   });
   6158   return false;
   6159 }
   6160 
   6161 /// ParseUseListOrderIndexes
   6162 ///   ::= '{' uint32 (',' uint32)+ '}'
   6163 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
   6164   SMLoc Loc = Lex.getLoc();
   6165   if (ParseToken(lltok::lbrace, "expected '{' here"))
   6166     return true;
   6167   if (Lex.getKind() == lltok::rbrace)
   6168     return Lex.Error("expected non-empty list of uselistorder indexes");
   6169 
   6170   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
   6171   // indexes should be distinct numbers in the range [0, size-1], and should
   6172   // not be in order.
   6173   unsigned Offset = 0;
   6174   unsigned Max = 0;
   6175   bool IsOrdered = true;
   6176   assert(Indexes.empty() && "Expected empty order vector");
   6177   do {
   6178     unsigned Index;
   6179     if (ParseUInt32(Index))
   6180       return true;
   6181 
   6182     // Update consistency checks.
   6183     Offset += Index - Indexes.size();
   6184     Max = std::max(Max, Index);
   6185     IsOrdered &= Index == Indexes.size();
   6186 
   6187     Indexes.push_back(Index);
   6188   } while (EatIfPresent(lltok::comma));
   6189 
   6190   if (ParseToken(lltok::rbrace, "expected '}' here"))
   6191     return true;
   6192 
   6193   if (Indexes.size() < 2)
   6194     return Error(Loc, "expected >= 2 uselistorder indexes");
   6195   if (Offset != 0 || Max >= Indexes.size())
   6196     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
   6197   if (IsOrdered)
   6198     return Error(Loc, "expected uselistorder indexes to change the order");
   6199 
   6200   return false;
   6201 }
   6202 
   6203 /// ParseUseListOrder
   6204 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
   6205 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
   6206   SMLoc Loc = Lex.getLoc();
   6207   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
   6208     return true;
   6209 
   6210   Value *V;
   6211   SmallVector<unsigned, 16> Indexes;
   6212   if (ParseTypeAndValue(V, PFS) ||
   6213       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
   6214       ParseUseListOrderIndexes(Indexes))
   6215     return true;
   6216 
   6217   return sortUseListOrder(V, Indexes, Loc);
   6218 }
   6219 
   6220 /// ParseUseListOrderBB
   6221 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
   6222 bool LLParser::ParseUseListOrderBB() {
   6223   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
   6224   SMLoc Loc = Lex.getLoc();
   6225   Lex.Lex();
   6226 
   6227   ValID Fn, Label;
   6228   SmallVector<unsigned, 16> Indexes;
   6229   if (ParseValID(Fn) ||
   6230       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
   6231       ParseValID(Label) ||
   6232       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
   6233       ParseUseListOrderIndexes(Indexes))
   6234     return true;
   6235 
   6236   // Check the function.
   6237   GlobalValue *GV;
   6238   if (Fn.Kind == ValID::t_GlobalName)
   6239     GV = M->getNamedValue(Fn.StrVal);
   6240   else if (Fn.Kind == ValID::t_GlobalID)
   6241     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
   6242   else
   6243     return Error(Fn.Loc, "expected function name in uselistorder_bb");
   6244   if (!GV)
   6245     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
   6246   auto *F = dyn_cast<Function>(GV);
   6247   if (!F)
   6248     return Error(Fn.Loc, "expected function name in uselistorder_bb");
   6249   if (F->isDeclaration())
   6250     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
   6251 
   6252   // Check the basic block.
   6253   if (Label.Kind == ValID::t_LocalID)
   6254     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
   6255   if (Label.Kind != ValID::t_LocalName)
   6256     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
   6257   Value *V = F->getValueSymbolTable().lookup(Label.StrVal);
   6258   if (!V)
   6259     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
   6260   if (!isa<BasicBlock>(V))
   6261     return Error(Label.Loc, "expected basic block in uselistorder_bb");
   6262 
   6263   return sortUseListOrder(V, Indexes, Loc);
   6264 }
   6265