Home | History | Annotate | Download | only in CodeGen
      1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements basic block placement transformations using the CFG
     11 // structure and branch probability estimates.
     12 //
     13 // The pass strives to preserve the structure of the CFG (that is, retain
     14 // a topological ordering of basic blocks) in the absence of a *strong* signal
     15 // to the contrary from probabilities. However, within the CFG structure, it
     16 // attempts to choose an ordering which favors placing more likely sequences of
     17 // blocks adjacent to each other.
     18 //
     19 // The algorithm works from the inner-most loop within a function outward, and
     20 // at each stage walks through the basic blocks, trying to coalesce them into
     21 // sequential chains where allowed by the CFG (or demanded by heavy
     22 // probabilities). Finally, it walks the blocks in topological order, and the
     23 // first time it reaches a chain of basic blocks, it schedules them in the
     24 // function in-order.
     25 //
     26 //===----------------------------------------------------------------------===//
     27 
     28 #include "llvm/CodeGen/Passes.h"
     29 #include "llvm/ADT/DenseMap.h"
     30 #include "llvm/ADT/SmallPtrSet.h"
     31 #include "llvm/ADT/SmallVector.h"
     32 #include "llvm/ADT/Statistic.h"
     33 #include "llvm/CodeGen/MachineBasicBlock.h"
     34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
     36 #include "llvm/CodeGen/MachineDominators.h"
     37 #include "llvm/CodeGen/MachineFunction.h"
     38 #include "llvm/CodeGen/MachineFunctionPass.h"
     39 #include "llvm/CodeGen/MachineLoopInfo.h"
     40 #include "llvm/CodeGen/MachineModuleInfo.h"
     41 #include "llvm/Support/Allocator.h"
     42 #include "llvm/Support/CommandLine.h"
     43 #include "llvm/Support/Debug.h"
     44 #include "llvm/Support/raw_ostream.h"
     45 #include "llvm/Target/TargetInstrInfo.h"
     46 #include "llvm/Target/TargetLowering.h"
     47 #include "llvm/Target/TargetSubtargetInfo.h"
     48 #include <algorithm>
     49 using namespace llvm;
     50 
     51 #define DEBUG_TYPE "block-placement"
     52 
     53 STATISTIC(NumCondBranches, "Number of conditional branches");
     54 STATISTIC(NumUncondBranches, "Number of unconditional branches");
     55 STATISTIC(CondBranchTakenFreq,
     56           "Potential frequency of taking conditional branches");
     57 STATISTIC(UncondBranchTakenFreq,
     58           "Potential frequency of taking unconditional branches");
     59 
     60 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
     61                                        cl::desc("Force the alignment of all "
     62                                                 "blocks in the function."),
     63                                        cl::init(0), cl::Hidden);
     64 
     65 // FIXME: Find a good default for this flag and remove the flag.
     66 static cl::opt<unsigned> ExitBlockBias(
     67     "block-placement-exit-block-bias",
     68     cl::desc("Block frequency percentage a loop exit block needs "
     69              "over the original exit to be considered the new exit."),
     70     cl::init(0), cl::Hidden);
     71 
     72 static cl::opt<bool> OutlineOptionalBranches(
     73     "outline-optional-branches",
     74     cl::desc("Put completely optional branches, i.e. branches with a common "
     75              "post dominator, out of line."),
     76     cl::init(false), cl::Hidden);
     77 
     78 static cl::opt<unsigned> OutlineOptionalThreshold(
     79     "outline-optional-threshold",
     80     cl::desc("Don't outline optional branches that are a single block with an "
     81              "instruction count below this threshold"),
     82     cl::init(4), cl::Hidden);
     83 
     84 static cl::opt<unsigned> LoopToColdBlockRatio(
     85     "loop-to-cold-block-ratio",
     86     cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
     87              "(frequency of block) is greater than this ratio"),
     88     cl::init(5), cl::Hidden);
     89 
     90 static cl::opt<bool>
     91     PreciseRotationCost("precise-rotation-cost",
     92                         cl::desc("Model the cost of loop rotation more "
     93                                  "precisely by using profile data."),
     94                         cl::init(false), cl::Hidden);
     95 
     96 static cl::opt<unsigned> MisfetchCost(
     97     "misfetch-cost",
     98     cl::desc("Cost that models the probablistic risk of an instruction "
     99              "misfetch due to a jump comparing to falling through, whose cost "
    100              "is zero."),
    101     cl::init(1), cl::Hidden);
    102 
    103 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
    104                                       cl::desc("Cost of jump instructions."),
    105                                       cl::init(1), cl::Hidden);
    106 
    107 namespace {
    108 class BlockChain;
    109 /// \brief Type for our function-wide basic block -> block chain mapping.
    110 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
    111 }
    112 
    113 namespace {
    114 /// \brief A chain of blocks which will be laid out contiguously.
    115 ///
    116 /// This is the datastructure representing a chain of consecutive blocks that
    117 /// are profitable to layout together in order to maximize fallthrough
    118 /// probabilities and code locality. We also can use a block chain to represent
    119 /// a sequence of basic blocks which have some external (correctness)
    120 /// requirement for sequential layout.
    121 ///
    122 /// Chains can be built around a single basic block and can be merged to grow
    123 /// them. They participate in a block-to-chain mapping, which is updated
    124 /// automatically as chains are merged together.
    125 class BlockChain {
    126   /// \brief The sequence of blocks belonging to this chain.
    127   ///
    128   /// This is the sequence of blocks for a particular chain. These will be laid
    129   /// out in-order within the function.
    130   SmallVector<MachineBasicBlock *, 4> Blocks;
    131 
    132   /// \brief A handle to the function-wide basic block to block chain mapping.
    133   ///
    134   /// This is retained in each block chain to simplify the computation of child
    135   /// block chains for SCC-formation and iteration. We store the edges to child
    136   /// basic blocks, and map them back to their associated chains using this
    137   /// structure.
    138   BlockToChainMapType &BlockToChain;
    139 
    140 public:
    141   /// \brief Construct a new BlockChain.
    142   ///
    143   /// This builds a new block chain representing a single basic block in the
    144   /// function. It also registers itself as the chain that block participates
    145   /// in with the BlockToChain mapping.
    146   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
    147       : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
    148     assert(BB && "Cannot create a chain with a null basic block");
    149     BlockToChain[BB] = this;
    150   }
    151 
    152   /// \brief Iterator over blocks within the chain.
    153   typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
    154 
    155   /// \brief Beginning of blocks within the chain.
    156   iterator begin() { return Blocks.begin(); }
    157 
    158   /// \brief End of blocks within the chain.
    159   iterator end() { return Blocks.end(); }
    160 
    161   /// \brief Merge a block chain into this one.
    162   ///
    163   /// This routine merges a block chain into this one. It takes care of forming
    164   /// a contiguous sequence of basic blocks, updating the edge list, and
    165   /// updating the block -> chain mapping. It does not free or tear down the
    166   /// old chain, but the old chain's block list is no longer valid.
    167   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
    168     assert(BB);
    169     assert(!Blocks.empty());
    170 
    171     // Fast path in case we don't have a chain already.
    172     if (!Chain) {
    173       assert(!BlockToChain[BB]);
    174       Blocks.push_back(BB);
    175       BlockToChain[BB] = this;
    176       return;
    177     }
    178 
    179     assert(BB == *Chain->begin());
    180     assert(Chain->begin() != Chain->end());
    181 
    182     // Update the incoming blocks to point to this chain, and add them to the
    183     // chain structure.
    184     for (MachineBasicBlock *ChainBB : *Chain) {
    185       Blocks.push_back(ChainBB);
    186       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
    187       BlockToChain[ChainBB] = this;
    188     }
    189   }
    190 
    191 #ifndef NDEBUG
    192   /// \brief Dump the blocks in this chain.
    193   LLVM_DUMP_METHOD void dump() {
    194     for (MachineBasicBlock *MBB : *this)
    195       MBB->dump();
    196   }
    197 #endif // NDEBUG
    198 
    199   /// \brief Count of predecessors within the loop currently being processed.
    200   ///
    201   /// This count is updated at each loop we process to represent the number of
    202   /// in-loop predecessors of this chain.
    203   unsigned LoopPredecessors;
    204 };
    205 }
    206 
    207 namespace {
    208 class MachineBlockPlacement : public MachineFunctionPass {
    209   /// \brief A typedef for a block filter set.
    210   typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
    211 
    212   /// \brief A handle to the branch probability pass.
    213   const MachineBranchProbabilityInfo *MBPI;
    214 
    215   /// \brief A handle to the function-wide block frequency pass.
    216   const MachineBlockFrequencyInfo *MBFI;
    217 
    218   /// \brief A handle to the loop info.
    219   const MachineLoopInfo *MLI;
    220 
    221   /// \brief A handle to the target's instruction info.
    222   const TargetInstrInfo *TII;
    223 
    224   /// \brief A handle to the target's lowering info.
    225   const TargetLoweringBase *TLI;
    226 
    227   /// \brief A handle to the post dominator tree.
    228   MachineDominatorTree *MDT;
    229 
    230   /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
    231   /// all terminators of the MachineFunction.
    232   SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
    233 
    234   /// \brief Allocator and owner of BlockChain structures.
    235   ///
    236   /// We build BlockChains lazily while processing the loop structure of
    237   /// a function. To reduce malloc traffic, we allocate them using this
    238   /// slab-like allocator, and destroy them after the pass completes. An
    239   /// important guarantee is that this allocator produces stable pointers to
    240   /// the chains.
    241   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
    242 
    243   /// \brief Function wide BasicBlock to BlockChain mapping.
    244   ///
    245   /// This mapping allows efficiently moving from any given basic block to the
    246   /// BlockChain it participates in, if any. We use it to, among other things,
    247   /// allow implicitly defining edges between chains as the existing edges
    248   /// between basic blocks.
    249   DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
    250 
    251   void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
    252                            SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
    253                            const BlockFilterSet *BlockFilter = nullptr);
    254   MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
    255                                          BlockChain &Chain,
    256                                          const BlockFilterSet *BlockFilter);
    257   MachineBasicBlock *
    258   selectBestCandidateBlock(BlockChain &Chain,
    259                            SmallVectorImpl<MachineBasicBlock *> &WorkList,
    260                            const BlockFilterSet *BlockFilter);
    261   MachineBasicBlock *
    262   getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain,
    263                         MachineFunction::iterator &PrevUnplacedBlockIt,
    264                         const BlockFilterSet *BlockFilter);
    265   void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
    266                   SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
    267                   const BlockFilterSet *BlockFilter = nullptr);
    268   MachineBasicBlock *findBestLoopTop(MachineLoop &L,
    269                                      const BlockFilterSet &LoopBlockSet);
    270   MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L,
    271                                       const BlockFilterSet &LoopBlockSet);
    272   BlockFilterSet collectLoopBlockSet(MachineFunction &F, MachineLoop &L);
    273   void buildLoopChains(MachineFunction &F, MachineLoop &L);
    274   void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
    275                   const BlockFilterSet &LoopBlockSet);
    276   void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L,
    277                              const BlockFilterSet &LoopBlockSet);
    278   void buildCFGChains(MachineFunction &F);
    279 
    280 public:
    281   static char ID; // Pass identification, replacement for typeid
    282   MachineBlockPlacement() : MachineFunctionPass(ID) {
    283     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
    284   }
    285 
    286   bool runOnMachineFunction(MachineFunction &F) override;
    287 
    288   void getAnalysisUsage(AnalysisUsage &AU) const override {
    289     AU.addRequired<MachineBranchProbabilityInfo>();
    290     AU.addRequired<MachineBlockFrequencyInfo>();
    291     AU.addRequired<MachineDominatorTree>();
    292     AU.addRequired<MachineLoopInfo>();
    293     MachineFunctionPass::getAnalysisUsage(AU);
    294   }
    295 };
    296 }
    297 
    298 char MachineBlockPlacement::ID = 0;
    299 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
    300 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
    301                       "Branch Probability Basic Block Placement", false, false)
    302 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
    303 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
    304 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    305 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    306 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
    307                     "Branch Probability Basic Block Placement", false, false)
    308 
    309 #ifndef NDEBUG
    310 /// \brief Helper to print the name of a MBB.
    311 ///
    312 /// Only used by debug logging.
    313 static std::string getBlockName(MachineBasicBlock *BB) {
    314   std::string Result;
    315   raw_string_ostream OS(Result);
    316   OS << "BB#" << BB->getNumber();
    317   OS << " (derived from LLVM BB '" << BB->getName() << "')";
    318   OS.flush();
    319   return Result;
    320 }
    321 
    322 /// \brief Helper to print the number of a MBB.
    323 ///
    324 /// Only used by debug logging.
    325 static std::string getBlockNum(MachineBasicBlock *BB) {
    326   std::string Result;
    327   raw_string_ostream OS(Result);
    328   OS << "BB#" << BB->getNumber();
    329   OS.flush();
    330   return Result;
    331 }
    332 #endif
    333 
    334 /// \brief Mark a chain's successors as having one fewer preds.
    335 ///
    336 /// When a chain is being merged into the "placed" chain, this routine will
    337 /// quickly walk the successors of each block in the chain and mark them as
    338 /// having one fewer active predecessor. It also adds any successors of this
    339 /// chain which reach the zero-predecessor state to the worklist passed in.
    340 void MachineBlockPlacement::markChainSuccessors(
    341     BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
    342     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
    343     const BlockFilterSet *BlockFilter) {
    344   // Walk all the blocks in this chain, marking their successors as having
    345   // a predecessor placed.
    346   for (MachineBasicBlock *MBB : Chain) {
    347     // Add any successors for which this is the only un-placed in-loop
    348     // predecessor to the worklist as a viable candidate for CFG-neutral
    349     // placement. No subsequent placement of this block will violate the CFG
    350     // shape, so we get to use heuristics to choose a favorable placement.
    351     for (MachineBasicBlock *Succ : MBB->successors()) {
    352       if (BlockFilter && !BlockFilter->count(Succ))
    353         continue;
    354       BlockChain &SuccChain = *BlockToChain[Succ];
    355       // Disregard edges within a fixed chain, or edges to the loop header.
    356       if (&Chain == &SuccChain || Succ == LoopHeaderBB)
    357         continue;
    358 
    359       // This is a cross-chain edge that is within the loop, so decrement the
    360       // loop predecessor count of the destination chain.
    361       if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
    362         BlockWorkList.push_back(*SuccChain.begin());
    363     }
    364   }
    365 }
    366 
    367 /// \brief Select the best successor for a block.
    368 ///
    369 /// This looks across all successors of a particular block and attempts to
    370 /// select the "best" one to be the layout successor. It only considers direct
    371 /// successors which also pass the block filter. It will attempt to avoid
    372 /// breaking CFG structure, but cave and break such structures in the case of
    373 /// very hot successor edges.
    374 ///
    375 /// \returns The best successor block found, or null if none are viable.
    376 MachineBasicBlock *
    377 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
    378                                            BlockChain &Chain,
    379                                            const BlockFilterSet *BlockFilter) {
    380   const BranchProbability HotProb(4, 5); // 80%
    381 
    382   MachineBasicBlock *BestSucc = nullptr;
    383   auto BestProb = BranchProbability::getZero();
    384 
    385   // Adjust edge probabilities by excluding edges pointing to blocks that is
    386   // either not in BlockFilter or is already in the current chain. Consider the
    387   // following CFG:
    388   //
    389   //     --->A
    390   //     |  / \
    391   //     | B   C
    392   //     |  \ / \
    393   //     ----D   E
    394   //
    395   // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
    396   // A->C is chosen as a fall-through, D won't be selected as a successor of C
    397   // due to CFG constraint (the probability of C->D is not greater than
    398   // HotProb). If we exclude E that is not in BlockFilter when calculating the
    399   // probability of C->D, D will be selected and we will get A C D B as the
    400   // layout of this loop.
    401   auto AdjustedSumProb = BranchProbability::getOne();
    402   SmallVector<MachineBasicBlock *, 4> Successors;
    403   for (MachineBasicBlock *Succ : BB->successors()) {
    404     bool SkipSucc = false;
    405     if (BlockFilter && !BlockFilter->count(Succ)) {
    406       SkipSucc = true;
    407     } else {
    408       BlockChain *SuccChain = BlockToChain[Succ];
    409       if (SuccChain == &Chain) {
    410         DEBUG(dbgs() << "    " << getBlockName(Succ)
    411                      << " -> Already merged!\n");
    412         SkipSucc = true;
    413       } else if (Succ != *SuccChain->begin()) {
    414         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Mid chain!\n");
    415         continue;
    416       }
    417     }
    418     if (SkipSucc)
    419       AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
    420     else
    421       Successors.push_back(Succ);
    422   }
    423 
    424   DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
    425   for (MachineBasicBlock *Succ : Successors) {
    426     BranchProbability SuccProb;
    427     uint32_t SuccProbN = MBPI->getEdgeProbability(BB, Succ).getNumerator();
    428     uint32_t SuccProbD = AdjustedSumProb.getNumerator();
    429     if (SuccProbN >= SuccProbD)
    430       SuccProb = BranchProbability::getOne();
    431     else
    432       SuccProb = BranchProbability(SuccProbN, SuccProbD);
    433 
    434     // If we outline optional branches, look whether Succ is unavoidable, i.e.
    435     // dominates all terminators of the MachineFunction. If it does, other
    436     // successors must be optional. Don't do this for cold branches.
    437     if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() &&
    438         UnavoidableBlocks.count(Succ) > 0) {
    439       auto HasShortOptionalBranch = [&]() {
    440         for (MachineBasicBlock *Pred : Succ->predecessors()) {
    441           // Check whether there is an unplaced optional branch.
    442           if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
    443               BlockToChain[Pred] == &Chain)
    444             continue;
    445           // Check whether the optional branch has exactly one BB.
    446           if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
    447             continue;
    448           // Check whether the optional branch is small.
    449           if (Pred->size() < OutlineOptionalThreshold)
    450             return true;
    451         }
    452         return false;
    453       };
    454       if (!HasShortOptionalBranch())
    455         return Succ;
    456     }
    457 
    458     // Only consider successors which are either "hot", or wouldn't violate
    459     // any CFG constraints.
    460     BlockChain &SuccChain = *BlockToChain[Succ];
    461     if (SuccChain.LoopPredecessors != 0) {
    462       if (SuccProb < HotProb) {
    463         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
    464                      << " (prob) (CFG conflict)\n");
    465         continue;
    466       }
    467 
    468       // Make sure that a hot successor doesn't have a globally more
    469       // important predecessor.
    470       auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
    471       BlockFrequency CandidateEdgeFreq =
    472           MBFI->getBlockFreq(BB) * RealSuccProb * HotProb.getCompl();
    473       bool BadCFGConflict = false;
    474       for (MachineBasicBlock *Pred : Succ->predecessors()) {
    475         if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
    476             BlockToChain[Pred] == &Chain)
    477           continue;
    478         BlockFrequency PredEdgeFreq =
    479             MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
    480         if (PredEdgeFreq >= CandidateEdgeFreq) {
    481           BadCFGConflict = true;
    482           break;
    483         }
    484       }
    485       if (BadCFGConflict) {
    486         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
    487                      << " (prob) (non-cold CFG conflict)\n");
    488         continue;
    489       }
    490     }
    491 
    492     DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
    493                  << " (prob)"
    494                  << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
    495                  << "\n");
    496     if (BestSucc && BestProb >= SuccProb)
    497       continue;
    498     BestSucc = Succ;
    499     BestProb = SuccProb;
    500   }
    501   return BestSucc;
    502 }
    503 
    504 /// \brief Select the best block from a worklist.
    505 ///
    506 /// This looks through the provided worklist as a list of candidate basic
    507 /// blocks and select the most profitable one to place. The definition of
    508 /// profitable only really makes sense in the context of a loop. This returns
    509 /// the most frequently visited block in the worklist, which in the case of
    510 /// a loop, is the one most desirable to be physically close to the rest of the
    511 /// loop body in order to improve icache behavior.
    512 ///
    513 /// \returns The best block found, or null if none are viable.
    514 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
    515     BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
    516     const BlockFilterSet *BlockFilter) {
    517   // Once we need to walk the worklist looking for a candidate, cleanup the
    518   // worklist of already placed entries.
    519   // FIXME: If this shows up on profiles, it could be folded (at the cost of
    520   // some code complexity) into the loop below.
    521   WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
    522                                 [&](MachineBasicBlock *BB) {
    523                                   return BlockToChain.lookup(BB) == &Chain;
    524                                 }),
    525                  WorkList.end());
    526 
    527   MachineBasicBlock *BestBlock = nullptr;
    528   BlockFrequency BestFreq;
    529   for (MachineBasicBlock *MBB : WorkList) {
    530     BlockChain &SuccChain = *BlockToChain[MBB];
    531     if (&SuccChain == &Chain) {
    532       DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> Already merged!\n");
    533       continue;
    534     }
    535     assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
    536 
    537     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
    538     DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
    539           MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
    540     if (BestBlock && BestFreq >= CandidateFreq)
    541       continue;
    542     BestBlock = MBB;
    543     BestFreq = CandidateFreq;
    544   }
    545   return BestBlock;
    546 }
    547 
    548 /// \brief Retrieve the first unplaced basic block.
    549 ///
    550 /// This routine is called when we are unable to use the CFG to walk through
    551 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
    552 /// We walk through the function's blocks in order, starting from the
    553 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
    554 /// re-scanning the entire sequence on repeated calls to this routine.
    555 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
    556     MachineFunction &F, const BlockChain &PlacedChain,
    557     MachineFunction::iterator &PrevUnplacedBlockIt,
    558     const BlockFilterSet *BlockFilter) {
    559   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
    560        ++I) {
    561     if (BlockFilter && !BlockFilter->count(&*I))
    562       continue;
    563     if (BlockToChain[&*I] != &PlacedChain) {
    564       PrevUnplacedBlockIt = I;
    565       // Now select the head of the chain to which the unplaced block belongs
    566       // as the block to place. This will force the entire chain to be placed,
    567       // and satisfies the requirements of merging chains.
    568       return *BlockToChain[&*I]->begin();
    569     }
    570   }
    571   return nullptr;
    572 }
    573 
    574 void MachineBlockPlacement::buildChain(
    575     MachineBasicBlock *BB, BlockChain &Chain,
    576     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
    577     const BlockFilterSet *BlockFilter) {
    578   assert(BB);
    579   assert(BlockToChain[BB] == &Chain);
    580   MachineFunction &F = *BB->getParent();
    581   MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
    582 
    583   MachineBasicBlock *LoopHeaderBB = BB;
    584   markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
    585   BB = *std::prev(Chain.end());
    586   for (;;) {
    587     assert(BB);
    588     assert(BlockToChain[BB] == &Chain);
    589     assert(*std::prev(Chain.end()) == BB);
    590 
    591     // Look for the best viable successor if there is one to place immediately
    592     // after this block.
    593     MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
    594 
    595     // If an immediate successor isn't available, look for the best viable
    596     // block among those we've identified as not violating the loop's CFG at
    597     // this point. This won't be a fallthrough, but it will increase locality.
    598     if (!BestSucc)
    599       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
    600 
    601     if (!BestSucc) {
    602       BestSucc =
    603           getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter);
    604       if (!BestSucc)
    605         break;
    606 
    607       DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
    608                       "layout successor until the CFG reduces\n");
    609     }
    610 
    611     // Place this block, updating the datastructures to reflect its placement.
    612     BlockChain &SuccChain = *BlockToChain[BestSucc];
    613     // Zero out LoopPredecessors for the successor we're about to merge in case
    614     // we selected a successor that didn't fit naturally into the CFG.
    615     SuccChain.LoopPredecessors = 0;
    616     DEBUG(dbgs() << "Merging from " << getBlockNum(BB) << " to "
    617                  << getBlockNum(BestSucc) << "\n");
    618     markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
    619     Chain.merge(BestSucc, &SuccChain);
    620     BB = *std::prev(Chain.end());
    621   }
    622 
    623   DEBUG(dbgs() << "Finished forming chain for header block "
    624                << getBlockNum(*Chain.begin()) << "\n");
    625 }
    626 
    627 /// \brief Find the best loop top block for layout.
    628 ///
    629 /// Look for a block which is strictly better than the loop header for laying
    630 /// out at the top of the loop. This looks for one and only one pattern:
    631 /// a latch block with no conditional exit. This block will cause a conditional
    632 /// jump around it or will be the bottom of the loop if we lay it out in place,
    633 /// but if it it doesn't end up at the bottom of the loop for any reason,
    634 /// rotation alone won't fix it. Because such a block will always result in an
    635 /// unconditional jump (for the backedge) rotating it in front of the loop
    636 /// header is always profitable.
    637 MachineBasicBlock *
    638 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
    639                                        const BlockFilterSet &LoopBlockSet) {
    640   // Check that the header hasn't been fused with a preheader block due to
    641   // crazy branches. If it has, we need to start with the header at the top to
    642   // prevent pulling the preheader into the loop body.
    643   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
    644   if (!LoopBlockSet.count(*HeaderChain.begin()))
    645     return L.getHeader();
    646 
    647   DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
    648                << "\n");
    649 
    650   BlockFrequency BestPredFreq;
    651   MachineBasicBlock *BestPred = nullptr;
    652   for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
    653     if (!LoopBlockSet.count(Pred))
    654       continue;
    655     DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", "
    656                  << Pred->succ_size() << " successors, ";
    657           MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
    658     if (Pred->succ_size() > 1)
    659       continue;
    660 
    661     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
    662     if (!BestPred || PredFreq > BestPredFreq ||
    663         (!(PredFreq < BestPredFreq) &&
    664          Pred->isLayoutSuccessor(L.getHeader()))) {
    665       BestPred = Pred;
    666       BestPredFreq = PredFreq;
    667     }
    668   }
    669 
    670   // If no direct predecessor is fine, just use the loop header.
    671   if (!BestPred)
    672     return L.getHeader();
    673 
    674   // Walk backwards through any straight line of predecessors.
    675   while (BestPred->pred_size() == 1 &&
    676          (*BestPred->pred_begin())->succ_size() == 1 &&
    677          *BestPred->pred_begin() != L.getHeader())
    678     BestPred = *BestPred->pred_begin();
    679 
    680   DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
    681   return BestPred;
    682 }
    683 
    684 /// \brief Find the best loop exiting block for layout.
    685 ///
    686 /// This routine implements the logic to analyze the loop looking for the best
    687 /// block to layout at the top of the loop. Typically this is done to maximize
    688 /// fallthrough opportunities.
    689 MachineBasicBlock *
    690 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L,
    691                                         const BlockFilterSet &LoopBlockSet) {
    692   // We don't want to layout the loop linearly in all cases. If the loop header
    693   // is just a normal basic block in the loop, we want to look for what block
    694   // within the loop is the best one to layout at the top. However, if the loop
    695   // header has be pre-merged into a chain due to predecessors not having
    696   // analyzable branches, *and* the predecessor it is merged with is *not* part
    697   // of the loop, rotating the header into the middle of the loop will create
    698   // a non-contiguous range of blocks which is Very Bad. So start with the
    699   // header and only rotate if safe.
    700   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
    701   if (!LoopBlockSet.count(*HeaderChain.begin()))
    702     return nullptr;
    703 
    704   BlockFrequency BestExitEdgeFreq;
    705   unsigned BestExitLoopDepth = 0;
    706   MachineBasicBlock *ExitingBB = nullptr;
    707   // If there are exits to outer loops, loop rotation can severely limit
    708   // fallthrough opportunites unless it selects such an exit. Keep a set of
    709   // blocks where rotating to exit with that block will reach an outer loop.
    710   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
    711 
    712   DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
    713                << "\n");
    714   for (MachineBasicBlock *MBB : L.getBlocks()) {
    715     BlockChain &Chain = *BlockToChain[MBB];
    716     // Ensure that this block is at the end of a chain; otherwise it could be
    717     // mid-way through an inner loop or a successor of an unanalyzable branch.
    718     if (MBB != *std::prev(Chain.end()))
    719       continue;
    720 
    721     // Now walk the successors. We need to establish whether this has a viable
    722     // exiting successor and whether it has a viable non-exiting successor.
    723     // We store the old exiting state and restore it if a viable looping
    724     // successor isn't found.
    725     MachineBasicBlock *OldExitingBB = ExitingBB;
    726     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
    727     bool HasLoopingSucc = false;
    728     for (MachineBasicBlock *Succ : MBB->successors()) {
    729       if (Succ->isEHPad())
    730         continue;
    731       if (Succ == MBB)
    732         continue;
    733       BlockChain &SuccChain = *BlockToChain[Succ];
    734       // Don't split chains, either this chain or the successor's chain.
    735       if (&Chain == &SuccChain) {
    736         DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
    737                      << getBlockName(Succ) << " (chain conflict)\n");
    738         continue;
    739       }
    740 
    741       auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
    742       if (LoopBlockSet.count(Succ)) {
    743         DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
    744                      << getBlockName(Succ) << " (" << SuccProb << ")\n");
    745         HasLoopingSucc = true;
    746         continue;
    747       }
    748 
    749       unsigned SuccLoopDepth = 0;
    750       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
    751         SuccLoopDepth = ExitLoop->getLoopDepth();
    752         if (ExitLoop->contains(&L))
    753           BlocksExitingToOuterLoop.insert(MBB);
    754       }
    755 
    756       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
    757       DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
    758                    << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
    759             MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
    760       // Note that we bias this toward an existing layout successor to retain
    761       // incoming order in the absence of better information. The exit must have
    762       // a frequency higher than the current exit before we consider breaking
    763       // the layout.
    764       BranchProbability Bias(100 - ExitBlockBias, 100);
    765       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
    766           ExitEdgeFreq > BestExitEdgeFreq ||
    767           (MBB->isLayoutSuccessor(Succ) &&
    768            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
    769         BestExitEdgeFreq = ExitEdgeFreq;
    770         ExitingBB = MBB;
    771       }
    772     }
    773 
    774     if (!HasLoopingSucc) {
    775       // Restore the old exiting state, no viable looping successor was found.
    776       ExitingBB = OldExitingBB;
    777       BestExitEdgeFreq = OldBestExitEdgeFreq;
    778       continue;
    779     }
    780   }
    781   // Without a candidate exiting block or with only a single block in the
    782   // loop, just use the loop header to layout the loop.
    783   if (!ExitingBB || L.getNumBlocks() == 1)
    784     return nullptr;
    785 
    786   // Also, if we have exit blocks which lead to outer loops but didn't select
    787   // one of them as the exiting block we are rotating toward, disable loop
    788   // rotation altogether.
    789   if (!BlocksExitingToOuterLoop.empty() &&
    790       !BlocksExitingToOuterLoop.count(ExitingBB))
    791     return nullptr;
    792 
    793   DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
    794   return ExitingBB;
    795 }
    796 
    797 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
    798 ///
    799 /// Once we have built a chain, try to rotate it to line up the hot exit block
    800 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
    801 /// branches. For example, if the loop has fallthrough into its header and out
    802 /// of its bottom already, don't rotate it.
    803 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
    804                                        MachineBasicBlock *ExitingBB,
    805                                        const BlockFilterSet &LoopBlockSet) {
    806   if (!ExitingBB)
    807     return;
    808 
    809   MachineBasicBlock *Top = *LoopChain.begin();
    810   bool ViableTopFallthrough = false;
    811   for (MachineBasicBlock *Pred : Top->predecessors()) {
    812     BlockChain *PredChain = BlockToChain[Pred];
    813     if (!LoopBlockSet.count(Pred) &&
    814         (!PredChain || Pred == *std::prev(PredChain->end()))) {
    815       ViableTopFallthrough = true;
    816       break;
    817     }
    818   }
    819 
    820   // If the header has viable fallthrough, check whether the current loop
    821   // bottom is a viable exiting block. If so, bail out as rotating will
    822   // introduce an unnecessary branch.
    823   if (ViableTopFallthrough) {
    824     MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
    825     for (MachineBasicBlock *Succ : Bottom->successors()) {
    826       BlockChain *SuccChain = BlockToChain[Succ];
    827       if (!LoopBlockSet.count(Succ) &&
    828           (!SuccChain || Succ == *SuccChain->begin()))
    829         return;
    830     }
    831   }
    832 
    833   BlockChain::iterator ExitIt =
    834       std::find(LoopChain.begin(), LoopChain.end(), ExitingBB);
    835   if (ExitIt == LoopChain.end())
    836     return;
    837 
    838   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
    839 }
    840 
    841 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
    842 ///
    843 /// With profile data, we can determine the cost in terms of missed fall through
    844 /// opportunities when rotating a loop chain and select the best rotation.
    845 /// Basically, there are three kinds of cost to consider for each rotation:
    846 ///    1. The possibly missed fall through edge (if it exists) from BB out of
    847 ///    the loop to the loop header.
    848 ///    2. The possibly missed fall through edges (if they exist) from the loop
    849 ///    exits to BB out of the loop.
    850 ///    3. The missed fall through edge (if it exists) from the last BB to the
    851 ///    first BB in the loop chain.
    852 ///  Therefore, the cost for a given rotation is the sum of costs listed above.
    853 ///  We select the best rotation with the smallest cost.
    854 void MachineBlockPlacement::rotateLoopWithProfile(
    855     BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) {
    856   auto HeaderBB = L.getHeader();
    857   auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB);
    858   auto RotationPos = LoopChain.end();
    859 
    860   BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
    861 
    862   // A utility lambda that scales up a block frequency by dividing it by a
    863   // branch probability which is the reciprocal of the scale.
    864   auto ScaleBlockFrequency = [](BlockFrequency Freq,
    865                                 unsigned Scale) -> BlockFrequency {
    866     if (Scale == 0)
    867       return 0;
    868     // Use operator / between BlockFrequency and BranchProbability to implement
    869     // saturating multiplication.
    870     return Freq / BranchProbability(1, Scale);
    871   };
    872 
    873   // Compute the cost of the missed fall-through edge to the loop header if the
    874   // chain head is not the loop header. As we only consider natural loops with
    875   // single header, this computation can be done only once.
    876   BlockFrequency HeaderFallThroughCost(0);
    877   for (auto *Pred : HeaderBB->predecessors()) {
    878     BlockChain *PredChain = BlockToChain[Pred];
    879     if (!LoopBlockSet.count(Pred) &&
    880         (!PredChain || Pred == *std::prev(PredChain->end()))) {
    881       auto EdgeFreq =
    882           MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
    883       auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
    884       // If the predecessor has only an unconditional jump to the header, we
    885       // need to consider the cost of this jump.
    886       if (Pred->succ_size() == 1)
    887         FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
    888       HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
    889     }
    890   }
    891 
    892   // Here we collect all exit blocks in the loop, and for each exit we find out
    893   // its hottest exit edge. For each loop rotation, we define the loop exit cost
    894   // as the sum of frequencies of exit edges we collect here, excluding the exit
    895   // edge from the tail of the loop chain.
    896   SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
    897   for (auto BB : LoopChain) {
    898     auto LargestExitEdgeProb = BranchProbability::getZero();
    899     for (auto *Succ : BB->successors()) {
    900       BlockChain *SuccChain = BlockToChain[Succ];
    901       if (!LoopBlockSet.count(Succ) &&
    902           (!SuccChain || Succ == *SuccChain->begin())) {
    903         auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
    904         LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
    905       }
    906     }
    907     if (LargestExitEdgeProb > BranchProbability::getZero()) {
    908       auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
    909       ExitsWithFreq.emplace_back(BB, ExitFreq);
    910     }
    911   }
    912 
    913   // In this loop we iterate every block in the loop chain and calculate the
    914   // cost assuming the block is the head of the loop chain. When the loop ends,
    915   // we should have found the best candidate as the loop chain's head.
    916   for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
    917             EndIter = LoopChain.end();
    918        Iter != EndIter; Iter++, TailIter++) {
    919     // TailIter is used to track the tail of the loop chain if the block we are
    920     // checking (pointed by Iter) is the head of the chain.
    921     if (TailIter == LoopChain.end())
    922       TailIter = LoopChain.begin();
    923 
    924     auto TailBB = *TailIter;
    925 
    926     // Calculate the cost by putting this BB to the top.
    927     BlockFrequency Cost = 0;
    928 
    929     // If the current BB is the loop header, we need to take into account the
    930     // cost of the missed fall through edge from outside of the loop to the
    931     // header.
    932     if (Iter != HeaderIter)
    933       Cost += HeaderFallThroughCost;
    934 
    935     // Collect the loop exit cost by summing up frequencies of all exit edges
    936     // except the one from the chain tail.
    937     for (auto &ExitWithFreq : ExitsWithFreq)
    938       if (TailBB != ExitWithFreq.first)
    939         Cost += ExitWithFreq.second;
    940 
    941     // The cost of breaking the once fall-through edge from the tail to the top
    942     // of the loop chain. Here we need to consider three cases:
    943     // 1. If the tail node has only one successor, then we will get an
    944     //    additional jmp instruction. So the cost here is (MisfetchCost +
    945     //    JumpInstCost) * tail node frequency.
    946     // 2. If the tail node has two successors, then we may still get an
    947     //    additional jmp instruction if the layout successor after the loop
    948     //    chain is not its CFG successor. Note that the more frequently executed
    949     //    jmp instruction will be put ahead of the other one. Assume the
    950     //    frequency of those two branches are x and y, where x is the frequency
    951     //    of the edge to the chain head, then the cost will be
    952     //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
    953     // 3. If the tail node has more than two successors (this rarely happens),
    954     //    we won't consider any additional cost.
    955     if (TailBB->isSuccessor(*Iter)) {
    956       auto TailBBFreq = MBFI->getBlockFreq(TailBB);
    957       if (TailBB->succ_size() == 1)
    958         Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
    959                                     MisfetchCost + JumpInstCost);
    960       else if (TailBB->succ_size() == 2) {
    961         auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
    962         auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
    963         auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
    964                                   ? TailBBFreq * TailToHeadProb.getCompl()
    965                                   : TailToHeadFreq;
    966         Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
    967                 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
    968       }
    969     }
    970 
    971     DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockNum(*Iter)
    972                  << " to the top: " << Cost.getFrequency() << "\n");
    973 
    974     if (Cost < SmallestRotationCost) {
    975       SmallestRotationCost = Cost;
    976       RotationPos = Iter;
    977     }
    978   }
    979 
    980   if (RotationPos != LoopChain.end()) {
    981     DEBUG(dbgs() << "Rotate loop by making " << getBlockNum(*RotationPos)
    982                  << " to the top\n");
    983     std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
    984   }
    985 }
    986 
    987 /// \brief Collect blocks in the given loop that are to be placed.
    988 ///
    989 /// When profile data is available, exclude cold blocks from the returned set;
    990 /// otherwise, collect all blocks in the loop.
    991 MachineBlockPlacement::BlockFilterSet
    992 MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) {
    993   BlockFilterSet LoopBlockSet;
    994 
    995   // Filter cold blocks off from LoopBlockSet when profile data is available.
    996   // Collect the sum of frequencies of incoming edges to the loop header from
    997   // outside. If we treat the loop as a super block, this is the frequency of
    998   // the loop. Then for each block in the loop, we calculate the ratio between
    999   // its frequency and the frequency of the loop block. When it is too small,
   1000   // don't add it to the loop chain. If there are outer loops, then this block
   1001   // will be merged into the first outer loop chain for which this block is not
   1002   // cold anymore. This needs precise profile data and we only do this when
   1003   // profile data is available.
   1004   if (F.getFunction()->getEntryCount()) {
   1005     BlockFrequency LoopFreq(0);
   1006     for (auto LoopPred : L.getHeader()->predecessors())
   1007       if (!L.contains(LoopPred))
   1008         LoopFreq += MBFI->getBlockFreq(LoopPred) *
   1009                     MBPI->getEdgeProbability(LoopPred, L.getHeader());
   1010 
   1011     for (MachineBasicBlock *LoopBB : L.getBlocks()) {
   1012       auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
   1013       if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
   1014         continue;
   1015       LoopBlockSet.insert(LoopBB);
   1016     }
   1017   } else
   1018     LoopBlockSet.insert(L.block_begin(), L.block_end());
   1019 
   1020   return LoopBlockSet;
   1021 }
   1022 
   1023 /// \brief Forms basic block chains from the natural loop structures.
   1024 ///
   1025 /// These chains are designed to preserve the existing *structure* of the code
   1026 /// as much as possible. We can then stitch the chains together in a way which
   1027 /// both preserves the topological structure and minimizes taken conditional
   1028 /// branches.
   1029 void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
   1030                                             MachineLoop &L) {
   1031   // First recurse through any nested loops, building chains for those inner
   1032   // loops.
   1033   for (MachineLoop *InnerLoop : L)
   1034     buildLoopChains(F, *InnerLoop);
   1035 
   1036   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
   1037   BlockFilterSet LoopBlockSet = collectLoopBlockSet(F, L);
   1038 
   1039   // Check if we have profile data for this function. If yes, we will rotate
   1040   // this loop by modeling costs more precisely which requires the profile data
   1041   // for better layout.
   1042   bool RotateLoopWithProfile =
   1043       PreciseRotationCost && F.getFunction()->getEntryCount();
   1044 
   1045   // First check to see if there is an obviously preferable top block for the
   1046   // loop. This will default to the header, but may end up as one of the
   1047   // predecessors to the header if there is one which will result in strictly
   1048   // fewer branches in the loop body.
   1049   // When we use profile data to rotate the loop, this is unnecessary.
   1050   MachineBasicBlock *LoopTop =
   1051       RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
   1052 
   1053   // If we selected just the header for the loop top, look for a potentially
   1054   // profitable exit block in the event that rotating the loop can eliminate
   1055   // branches by placing an exit edge at the bottom.
   1056   MachineBasicBlock *ExitingBB = nullptr;
   1057   if (!RotateLoopWithProfile && LoopTop == L.getHeader())
   1058     ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
   1059 
   1060   BlockChain &LoopChain = *BlockToChain[LoopTop];
   1061 
   1062   // FIXME: This is a really lame way of walking the chains in the loop: we
   1063   // walk the blocks, and use a set to prevent visiting a particular chain
   1064   // twice.
   1065   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
   1066   assert(LoopChain.LoopPredecessors == 0);
   1067   UpdatedPreds.insert(&LoopChain);
   1068 
   1069   for (MachineBasicBlock *LoopBB : LoopBlockSet) {
   1070     BlockChain &Chain = *BlockToChain[LoopBB];
   1071     if (!UpdatedPreds.insert(&Chain).second)
   1072       continue;
   1073 
   1074     assert(Chain.LoopPredecessors == 0);
   1075     for (MachineBasicBlock *ChainBB : Chain) {
   1076       assert(BlockToChain[ChainBB] == &Chain);
   1077       for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
   1078         if (BlockToChain[Pred] == &Chain || !LoopBlockSet.count(Pred))
   1079           continue;
   1080         ++Chain.LoopPredecessors;
   1081       }
   1082     }
   1083 
   1084     if (Chain.LoopPredecessors == 0)
   1085       BlockWorkList.push_back(*Chain.begin());
   1086   }
   1087 
   1088   buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet);
   1089 
   1090   if (RotateLoopWithProfile)
   1091     rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
   1092   else
   1093     rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
   1094 
   1095   DEBUG({
   1096     // Crash at the end so we get all of the debugging output first.
   1097     bool BadLoop = false;
   1098     if (LoopChain.LoopPredecessors) {
   1099       BadLoop = true;
   1100       dbgs() << "Loop chain contains a block without its preds placed!\n"
   1101              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
   1102              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
   1103     }
   1104     for (MachineBasicBlock *ChainBB : LoopChain) {
   1105       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
   1106       if (!LoopBlockSet.erase(ChainBB)) {
   1107         // We don't mark the loop as bad here because there are real situations
   1108         // where this can occur. For example, with an unanalyzable fallthrough
   1109         // from a loop block to a non-loop block or vice versa.
   1110         dbgs() << "Loop chain contains a block not contained by the loop!\n"
   1111                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
   1112                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
   1113                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
   1114       }
   1115     }
   1116 
   1117     if (!LoopBlockSet.empty()) {
   1118       BadLoop = true;
   1119       for (MachineBasicBlock *LoopBB : LoopBlockSet)
   1120         dbgs() << "Loop contains blocks never placed into a chain!\n"
   1121                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
   1122                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
   1123                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
   1124     }
   1125     assert(!BadLoop && "Detected problems with the placement of this loop.");
   1126   });
   1127 }
   1128 
   1129 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
   1130   // Ensure that every BB in the function has an associated chain to simplify
   1131   // the assumptions of the remaining algorithm.
   1132   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
   1133   for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
   1134     MachineBasicBlock *BB = &*FI;
   1135     BlockChain *Chain =
   1136         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
   1137     // Also, merge any blocks which we cannot reason about and must preserve
   1138     // the exact fallthrough behavior for.
   1139     for (;;) {
   1140       Cond.clear();
   1141       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
   1142       if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
   1143         break;
   1144 
   1145       MachineFunction::iterator NextFI = std::next(FI);
   1146       MachineBasicBlock *NextBB = &*NextFI;
   1147       // Ensure that the layout successor is a viable block, as we know that
   1148       // fallthrough is a possibility.
   1149       assert(NextFI != FE && "Can't fallthrough past the last block.");
   1150       DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
   1151                    << getBlockName(BB) << " -> " << getBlockName(NextBB)
   1152                    << "\n");
   1153       Chain->merge(NextBB, nullptr);
   1154       FI = NextFI;
   1155       BB = NextBB;
   1156     }
   1157   }
   1158 
   1159   if (OutlineOptionalBranches) {
   1160     // Find the nearest common dominator of all of F's terminators.
   1161     MachineBasicBlock *Terminator = nullptr;
   1162     for (MachineBasicBlock &MBB : F) {
   1163       if (MBB.succ_size() == 0) {
   1164         if (Terminator == nullptr)
   1165           Terminator = &MBB;
   1166         else
   1167           Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
   1168       }
   1169     }
   1170 
   1171     // MBBs dominating this common dominator are unavoidable.
   1172     UnavoidableBlocks.clear();
   1173     for (MachineBasicBlock &MBB : F) {
   1174       if (MDT->dominates(&MBB, Terminator)) {
   1175         UnavoidableBlocks.insert(&MBB);
   1176       }
   1177     }
   1178   }
   1179 
   1180   // Build any loop-based chains.
   1181   for (MachineLoop *L : *MLI)
   1182     buildLoopChains(F, *L);
   1183 
   1184   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
   1185 
   1186   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
   1187   for (MachineBasicBlock &MBB : F) {
   1188     BlockChain &Chain = *BlockToChain[&MBB];
   1189     if (!UpdatedPreds.insert(&Chain).second)
   1190       continue;
   1191 
   1192     assert(Chain.LoopPredecessors == 0);
   1193     for (MachineBasicBlock *ChainBB : Chain) {
   1194       assert(BlockToChain[ChainBB] == &Chain);
   1195       for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
   1196         if (BlockToChain[Pred] == &Chain)
   1197           continue;
   1198         ++Chain.LoopPredecessors;
   1199       }
   1200     }
   1201 
   1202     if (Chain.LoopPredecessors == 0)
   1203       BlockWorkList.push_back(*Chain.begin());
   1204   }
   1205 
   1206   BlockChain &FunctionChain = *BlockToChain[&F.front()];
   1207   buildChain(&F.front(), FunctionChain, BlockWorkList);
   1208 
   1209 #ifndef NDEBUG
   1210   typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
   1211 #endif
   1212   DEBUG({
   1213     // Crash at the end so we get all of the debugging output first.
   1214     bool BadFunc = false;
   1215     FunctionBlockSetType FunctionBlockSet;
   1216     for (MachineBasicBlock &MBB : F)
   1217       FunctionBlockSet.insert(&MBB);
   1218 
   1219     for (MachineBasicBlock *ChainBB : FunctionChain)
   1220       if (!FunctionBlockSet.erase(ChainBB)) {
   1221         BadFunc = true;
   1222         dbgs() << "Function chain contains a block not in the function!\n"
   1223                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
   1224       }
   1225 
   1226     if (!FunctionBlockSet.empty()) {
   1227       BadFunc = true;
   1228       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
   1229         dbgs() << "Function contains blocks never placed into a chain!\n"
   1230                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
   1231     }
   1232     assert(!BadFunc && "Detected problems with the block placement.");
   1233   });
   1234 
   1235   // Splice the blocks into place.
   1236   MachineFunction::iterator InsertPos = F.begin();
   1237   for (MachineBasicBlock *ChainBB : FunctionChain) {
   1238     DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
   1239                                                        : "          ... ")
   1240                  << getBlockName(ChainBB) << "\n");
   1241     if (InsertPos != MachineFunction::iterator(ChainBB))
   1242       F.splice(InsertPos, ChainBB);
   1243     else
   1244       ++InsertPos;
   1245 
   1246     // Update the terminator of the previous block.
   1247     if (ChainBB == *FunctionChain.begin())
   1248       continue;
   1249     MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
   1250 
   1251     // FIXME: It would be awesome of updateTerminator would just return rather
   1252     // than assert when the branch cannot be analyzed in order to remove this
   1253     // boiler plate.
   1254     Cond.clear();
   1255     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
   1256     if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
   1257       // The "PrevBB" is not yet updated to reflect current code layout, so,
   1258       //   o. it may fall-through to a block without explict "goto" instruction
   1259       //      before layout, and no longer fall-through it after layout; or
   1260       //   o. just opposite.
   1261       //
   1262       // AnalyzeBranch() may return erroneous value for FBB when these two
   1263       // situations take place. For the first scenario FBB is mistakenly set
   1264       // NULL; for the 2nd scenario, the FBB, which is expected to be NULL,
   1265       // is mistakenly pointing to "*BI".
   1266       //
   1267       bool needUpdateBr = true;
   1268       if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
   1269         PrevBB->updateTerminator();
   1270         needUpdateBr = false;
   1271         Cond.clear();
   1272         TBB = FBB = nullptr;
   1273         if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
   1274           // FIXME: This should never take place.
   1275           TBB = FBB = nullptr;
   1276         }
   1277       }
   1278 
   1279       // If PrevBB has a two-way branch, try to re-order the branches
   1280       // such that we branch to the successor with higher probability first.
   1281       if (TBB && !Cond.empty() && FBB &&
   1282           MBPI->getEdgeProbability(PrevBB, FBB) >
   1283               MBPI->getEdgeProbability(PrevBB, TBB) &&
   1284           !TII->ReverseBranchCondition(Cond)) {
   1285         DEBUG(dbgs() << "Reverse order of the two branches: "
   1286                      << getBlockName(PrevBB) << "\n");
   1287         DEBUG(dbgs() << "    Edge probability: "
   1288                      << MBPI->getEdgeProbability(PrevBB, FBB) << " vs "
   1289                      << MBPI->getEdgeProbability(PrevBB, TBB) << "\n");
   1290         DebugLoc dl; // FIXME: this is nowhere
   1291         TII->RemoveBranch(*PrevBB);
   1292         TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl);
   1293         needUpdateBr = true;
   1294       }
   1295       if (needUpdateBr)
   1296         PrevBB->updateTerminator();
   1297     }
   1298   }
   1299 
   1300   // Fixup the last block.
   1301   Cond.clear();
   1302   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
   1303   if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
   1304     F.back().updateTerminator();
   1305 
   1306   // Walk through the backedges of the function now that we have fully laid out
   1307   // the basic blocks and align the destination of each backedge. We don't rely
   1308   // exclusively on the loop info here so that we can align backedges in
   1309   // unnatural CFGs and backedges that were introduced purely because of the
   1310   // loop rotations done during this layout pass.
   1311   // FIXME: Use Function::optForSize().
   1312   if (F.getFunction()->hasFnAttribute(Attribute::OptimizeForSize))
   1313     return;
   1314   if (FunctionChain.begin() == FunctionChain.end())
   1315     return; // Empty chain.
   1316 
   1317   const BranchProbability ColdProb(1, 5); // 20%
   1318   BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front());
   1319   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
   1320   for (MachineBasicBlock *ChainBB : FunctionChain) {
   1321     if (ChainBB == *FunctionChain.begin())
   1322       continue;
   1323 
   1324     // Don't align non-looping basic blocks. These are unlikely to execute
   1325     // enough times to matter in practice. Note that we'll still handle
   1326     // unnatural CFGs inside of a natural outer loop (the common case) and
   1327     // rotated loops.
   1328     MachineLoop *L = MLI->getLoopFor(ChainBB);
   1329     if (!L)
   1330       continue;
   1331 
   1332     unsigned Align = TLI->getPrefLoopAlignment(L);
   1333     if (!Align)
   1334       continue; // Don't care about loop alignment.
   1335 
   1336     // If the block is cold relative to the function entry don't waste space
   1337     // aligning it.
   1338     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
   1339     if (Freq < WeightedEntryFreq)
   1340       continue;
   1341 
   1342     // If the block is cold relative to its loop header, don't align it
   1343     // regardless of what edges into the block exist.
   1344     MachineBasicBlock *LoopHeader = L->getHeader();
   1345     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
   1346     if (Freq < (LoopHeaderFreq * ColdProb))
   1347       continue;
   1348 
   1349     // Check for the existence of a non-layout predecessor which would benefit
   1350     // from aligning this block.
   1351     MachineBasicBlock *LayoutPred =
   1352         &*std::prev(MachineFunction::iterator(ChainBB));
   1353 
   1354     // Force alignment if all the predecessors are jumps. We already checked
   1355     // that the block isn't cold above.
   1356     if (!LayoutPred->isSuccessor(ChainBB)) {
   1357       ChainBB->setAlignment(Align);
   1358       continue;
   1359     }
   1360 
   1361     // Align this block if the layout predecessor's edge into this block is
   1362     // cold relative to the block. When this is true, other predecessors make up
   1363     // all of the hot entries into the block and thus alignment is likely to be
   1364     // important.
   1365     BranchProbability LayoutProb =
   1366         MBPI->getEdgeProbability(LayoutPred, ChainBB);
   1367     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
   1368     if (LayoutEdgeFreq <= (Freq * ColdProb))
   1369       ChainBB->setAlignment(Align);
   1370   }
   1371 }
   1372 
   1373 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
   1374   // Check for single-block functions and skip them.
   1375   if (std::next(F.begin()) == F.end())
   1376     return false;
   1377 
   1378   if (skipOptnoneFunction(*F.getFunction()))
   1379     return false;
   1380 
   1381   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
   1382   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
   1383   MLI = &getAnalysis<MachineLoopInfo>();
   1384   TII = F.getSubtarget().getInstrInfo();
   1385   TLI = F.getSubtarget().getTargetLowering();
   1386   MDT = &getAnalysis<MachineDominatorTree>();
   1387   assert(BlockToChain.empty());
   1388 
   1389   buildCFGChains(F);
   1390 
   1391   BlockToChain.clear();
   1392   ChainAllocator.DestroyAll();
   1393 
   1394   if (AlignAllBlock)
   1395     // Align all of the blocks in the function to a specific alignment.
   1396     for (MachineBasicBlock &MBB : F)
   1397       MBB.setAlignment(AlignAllBlock);
   1398 
   1399   // We always return true as we have no way to track whether the final order
   1400   // differs from the original order.
   1401   return true;
   1402 }
   1403 
   1404 namespace {
   1405 /// \brief A pass to compute block placement statistics.
   1406 ///
   1407 /// A separate pass to compute interesting statistics for evaluating block
   1408 /// placement. This is separate from the actual placement pass so that they can
   1409 /// be computed in the absence of any placement transformations or when using
   1410 /// alternative placement strategies.
   1411 class MachineBlockPlacementStats : public MachineFunctionPass {
   1412   /// \brief A handle to the branch probability pass.
   1413   const MachineBranchProbabilityInfo *MBPI;
   1414 
   1415   /// \brief A handle to the function-wide block frequency pass.
   1416   const MachineBlockFrequencyInfo *MBFI;
   1417 
   1418 public:
   1419   static char ID; // Pass identification, replacement for typeid
   1420   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
   1421     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
   1422   }
   1423 
   1424   bool runOnMachineFunction(MachineFunction &F) override;
   1425 
   1426   void getAnalysisUsage(AnalysisUsage &AU) const override {
   1427     AU.addRequired<MachineBranchProbabilityInfo>();
   1428     AU.addRequired<MachineBlockFrequencyInfo>();
   1429     AU.setPreservesAll();
   1430     MachineFunctionPass::getAnalysisUsage(AU);
   1431   }
   1432 };
   1433 }
   1434 
   1435 char MachineBlockPlacementStats::ID = 0;
   1436 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
   1437 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
   1438                       "Basic Block Placement Stats", false, false)
   1439 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
   1440 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
   1441 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
   1442                     "Basic Block Placement Stats", false, false)
   1443 
   1444 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
   1445   // Check for single-block functions and skip them.
   1446   if (std::next(F.begin()) == F.end())
   1447     return false;
   1448 
   1449   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
   1450   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
   1451 
   1452   for (MachineBasicBlock &MBB : F) {
   1453     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
   1454     Statistic &NumBranches =
   1455         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
   1456     Statistic &BranchTakenFreq =
   1457         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
   1458     for (MachineBasicBlock *Succ : MBB.successors()) {
   1459       // Skip if this successor is a fallthrough.
   1460       if (MBB.isLayoutSuccessor(Succ))
   1461         continue;
   1462 
   1463       BlockFrequency EdgeFreq =
   1464           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
   1465       ++NumBranches;
   1466       BranchTakenFreq += EdgeFreq.getFrequency();
   1467     }
   1468   }
   1469 
   1470   return false;
   1471 }
   1472