Home | History | Annotate | Download | only in Utils
      1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is a utility pass used for testing the InstructionSimplify analysis.
     11 // The analysis is applied to every instruction, and if it simplifies then the
     12 // instruction is replaced by the simplification.  If you are looking for a pass
     13 // that performs serious instruction folding, use the instcombine pass instead.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
     18 #include "llvm/ADT/SmallString.h"
     19 #include "llvm/ADT/StringMap.h"
     20 #include "llvm/ADT/Triple.h"
     21 #include "llvm/Analysis/TargetLibraryInfo.h"
     22 #include "llvm/Analysis/ValueTracking.h"
     23 #include "llvm/IR/DataLayout.h"
     24 #include "llvm/IR/DiagnosticInfo.h"
     25 #include "llvm/IR/Function.h"
     26 #include "llvm/IR/IRBuilder.h"
     27 #include "llvm/IR/IntrinsicInst.h"
     28 #include "llvm/IR/Intrinsics.h"
     29 #include "llvm/IR/LLVMContext.h"
     30 #include "llvm/IR/Module.h"
     31 #include "llvm/IR/PatternMatch.h"
     32 #include "llvm/Support/Allocator.h"
     33 #include "llvm/Support/CommandLine.h"
     34 #include "llvm/Transforms/Utils/BuildLibCalls.h"
     35 #include "llvm/Transforms/Utils/Local.h"
     36 
     37 using namespace llvm;
     38 using namespace PatternMatch;
     39 
     40 static cl::opt<bool>
     41     ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden,
     42                    cl::desc("Treat error-reporting calls as cold"));
     43 
     44 static cl::opt<bool>
     45     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
     46                          cl::init(false),
     47                          cl::desc("Enable unsafe double to float "
     48                                   "shrinking for math lib calls"));
     49 
     50 
     51 //===----------------------------------------------------------------------===//
     52 // Helper Functions
     53 //===----------------------------------------------------------------------===//
     54 
     55 static bool ignoreCallingConv(LibFunc::Func Func) {
     56   return Func == LibFunc::abs || Func == LibFunc::labs ||
     57          Func == LibFunc::llabs || Func == LibFunc::strlen;
     58 }
     59 
     60 /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
     61 /// value is equal or not-equal to zero.
     62 static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
     63   for (User *U : V->users()) {
     64     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
     65       if (IC->isEquality())
     66         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
     67           if (C->isNullValue())
     68             continue;
     69     // Unknown instruction.
     70     return false;
     71   }
     72   return true;
     73 }
     74 
     75 /// isOnlyUsedInEqualityComparison - Return true if it is only used in equality
     76 /// comparisons with With.
     77 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
     78   for (User *U : V->users()) {
     79     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
     80       if (IC->isEquality() && IC->getOperand(1) == With)
     81         continue;
     82     // Unknown instruction.
     83     return false;
     84   }
     85   return true;
     86 }
     87 
     88 static bool callHasFloatingPointArgument(const CallInst *CI) {
     89   return std::any_of(CI->op_begin(), CI->op_end(), [](const Use &OI) {
     90     return OI->getType()->isFloatingPointTy();
     91   });
     92 }
     93 
     94 /// \brief Check whether the overloaded unary floating point function
     95 /// corresponding to \a Ty is available.
     96 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
     97                             LibFunc::Func DoubleFn, LibFunc::Func FloatFn,
     98                             LibFunc::Func LongDoubleFn) {
     99   switch (Ty->getTypeID()) {
    100   case Type::FloatTyID:
    101     return TLI->has(FloatFn);
    102   case Type::DoubleTyID:
    103     return TLI->has(DoubleFn);
    104   default:
    105     return TLI->has(LongDoubleFn);
    106   }
    107 }
    108 
    109 /// \brief Check whether we can use unsafe floating point math for
    110 /// the function passed as input.
    111 static bool canUseUnsafeFPMath(Function *F) {
    112 
    113   // FIXME: For finer-grain optimization, we need intrinsics to have the same
    114   // fast-math flag decorations that are applied to FP instructions. For now,
    115   // we have to rely on the function-level unsafe-fp-math attribute to do this
    116   // optimization because there's no other way to express that the call can be
    117   // relaxed.
    118   if (F->hasFnAttribute("unsafe-fp-math")) {
    119     Attribute Attr = F->getFnAttribute("unsafe-fp-math");
    120     if (Attr.getValueAsString() == "true")
    121       return true;
    122   }
    123   return false;
    124 }
    125 
    126 /// \brief Returns whether \p F matches the signature expected for the
    127 /// string/memory copying library function \p Func.
    128 /// Acceptable functions are st[rp][n]?cpy, memove, memcpy, and memset.
    129 /// Their fortified (_chk) counterparts are also accepted.
    130 static bool checkStringCopyLibFuncSignature(Function *F, LibFunc::Func Func) {
    131   const DataLayout &DL = F->getParent()->getDataLayout();
    132   FunctionType *FT = F->getFunctionType();
    133   LLVMContext &Context = F->getContext();
    134   Type *PCharTy = Type::getInt8PtrTy(Context);
    135   Type *SizeTTy = DL.getIntPtrType(Context);
    136   unsigned NumParams = FT->getNumParams();
    137 
    138   // All string libfuncs return the same type as the first parameter.
    139   if (FT->getReturnType() != FT->getParamType(0))
    140     return false;
    141 
    142   switch (Func) {
    143   default:
    144     llvm_unreachable("Can't check signature for non-string-copy libfunc.");
    145   case LibFunc::stpncpy_chk:
    146   case LibFunc::strncpy_chk:
    147     --NumParams; // fallthrough
    148   case LibFunc::stpncpy:
    149   case LibFunc::strncpy: {
    150     if (NumParams != 3 || FT->getParamType(0) != FT->getParamType(1) ||
    151         FT->getParamType(0) != PCharTy || !FT->getParamType(2)->isIntegerTy())
    152       return false;
    153     break;
    154   }
    155   case LibFunc::strcpy_chk:
    156   case LibFunc::stpcpy_chk:
    157     --NumParams; // fallthrough
    158   case LibFunc::stpcpy:
    159   case LibFunc::strcpy: {
    160     if (NumParams != 2 || FT->getParamType(0) != FT->getParamType(1) ||
    161         FT->getParamType(0) != PCharTy)
    162       return false;
    163     break;
    164   }
    165   case LibFunc::memmove_chk:
    166   case LibFunc::memcpy_chk:
    167     --NumParams; // fallthrough
    168   case LibFunc::memmove:
    169   case LibFunc::memcpy: {
    170     if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() ||
    171         !FT->getParamType(1)->isPointerTy() || FT->getParamType(2) != SizeTTy)
    172       return false;
    173     break;
    174   }
    175   case LibFunc::memset_chk:
    176     --NumParams; // fallthrough
    177   case LibFunc::memset: {
    178     if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() ||
    179         !FT->getParamType(1)->isIntegerTy() || FT->getParamType(2) != SizeTTy)
    180       return false;
    181     break;
    182   }
    183   }
    184   // If this is a fortified libcall, the last parameter is a size_t.
    185   if (NumParams == FT->getNumParams() - 1)
    186     return FT->getParamType(FT->getNumParams() - 1) == SizeTTy;
    187   return true;
    188 }
    189 
    190 //===----------------------------------------------------------------------===//
    191 // String and Memory Library Call Optimizations
    192 //===----------------------------------------------------------------------===//
    193 
    194 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
    195   Function *Callee = CI->getCalledFunction();
    196   // Verify the "strcat" function prototype.
    197   FunctionType *FT = Callee->getFunctionType();
    198   if (FT->getNumParams() != 2||
    199       FT->getReturnType() != B.getInt8PtrTy() ||
    200       FT->getParamType(0) != FT->getReturnType() ||
    201       FT->getParamType(1) != FT->getReturnType())
    202     return nullptr;
    203 
    204   // Extract some information from the instruction
    205   Value *Dst = CI->getArgOperand(0);
    206   Value *Src = CI->getArgOperand(1);
    207 
    208   // See if we can get the length of the input string.
    209   uint64_t Len = GetStringLength(Src);
    210   if (Len == 0)
    211     return nullptr;
    212   --Len; // Unbias length.
    213 
    214   // Handle the simple, do-nothing case: strcat(x, "") -> x
    215   if (Len == 0)
    216     return Dst;
    217 
    218   return emitStrLenMemCpy(Src, Dst, Len, B);
    219 }
    220 
    221 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
    222                                            IRBuilder<> &B) {
    223   // We need to find the end of the destination string.  That's where the
    224   // memory is to be moved to. We just generate a call to strlen.
    225   Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
    226   if (!DstLen)
    227     return nullptr;
    228 
    229   // Now that we have the destination's length, we must index into the
    230   // destination's pointer to get the actual memcpy destination (end of
    231   // the string .. we're concatenating).
    232   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
    233 
    234   // We have enough information to now generate the memcpy call to do the
    235   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
    236   B.CreateMemCpy(CpyDst, Src,
    237                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
    238                  1);
    239   return Dst;
    240 }
    241 
    242 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
    243   Function *Callee = CI->getCalledFunction();
    244   // Verify the "strncat" function prototype.
    245   FunctionType *FT = Callee->getFunctionType();
    246   if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() ||
    247       FT->getParamType(0) != FT->getReturnType() ||
    248       FT->getParamType(1) != FT->getReturnType() ||
    249       !FT->getParamType(2)->isIntegerTy())
    250     return nullptr;
    251 
    252   // Extract some information from the instruction
    253   Value *Dst = CI->getArgOperand(0);
    254   Value *Src = CI->getArgOperand(1);
    255   uint64_t Len;
    256 
    257   // We don't do anything if length is not constant
    258   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
    259     Len = LengthArg->getZExtValue();
    260   else
    261     return nullptr;
    262 
    263   // See if we can get the length of the input string.
    264   uint64_t SrcLen = GetStringLength(Src);
    265   if (SrcLen == 0)
    266     return nullptr;
    267   --SrcLen; // Unbias length.
    268 
    269   // Handle the simple, do-nothing cases:
    270   // strncat(x, "", c) -> x
    271   // strncat(x,  c, 0) -> x
    272   if (SrcLen == 0 || Len == 0)
    273     return Dst;
    274 
    275   // We don't optimize this case
    276   if (Len < SrcLen)
    277     return nullptr;
    278 
    279   // strncat(x, s, c) -> strcat(x, s)
    280   // s is constant so the strcat can be optimized further
    281   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
    282 }
    283 
    284 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
    285   Function *Callee = CI->getCalledFunction();
    286   // Verify the "strchr" function prototype.
    287   FunctionType *FT = Callee->getFunctionType();
    288   if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
    289       FT->getParamType(0) != FT->getReturnType() ||
    290       !FT->getParamType(1)->isIntegerTy(32))
    291     return nullptr;
    292 
    293   Value *SrcStr = CI->getArgOperand(0);
    294 
    295   // If the second operand is non-constant, see if we can compute the length
    296   // of the input string and turn this into memchr.
    297   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
    298   if (!CharC) {
    299     uint64_t Len = GetStringLength(SrcStr);
    300     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
    301       return nullptr;
    302 
    303     return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
    304                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
    305                       B, DL, TLI);
    306   }
    307 
    308   // Otherwise, the character is a constant, see if the first argument is
    309   // a string literal.  If so, we can constant fold.
    310   StringRef Str;
    311   if (!getConstantStringInfo(SrcStr, Str)) {
    312     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
    313       return B.CreateGEP(B.getInt8Ty(), SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr");
    314     return nullptr;
    315   }
    316 
    317   // Compute the offset, make sure to handle the case when we're searching for
    318   // zero (a weird way to spell strlen).
    319   size_t I = (0xFF & CharC->getSExtValue()) == 0
    320                  ? Str.size()
    321                  : Str.find(CharC->getSExtValue());
    322   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
    323     return Constant::getNullValue(CI->getType());
    324 
    325   // strchr(s+n,c)  -> gep(s+n+i,c)
    326   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
    327 }
    328 
    329 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
    330   Function *Callee = CI->getCalledFunction();
    331   // Verify the "strrchr" function prototype.
    332   FunctionType *FT = Callee->getFunctionType();
    333   if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
    334       FT->getParamType(0) != FT->getReturnType() ||
    335       !FT->getParamType(1)->isIntegerTy(32))
    336     return nullptr;
    337 
    338   Value *SrcStr = CI->getArgOperand(0);
    339   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
    340 
    341   // Cannot fold anything if we're not looking for a constant.
    342   if (!CharC)
    343     return nullptr;
    344 
    345   StringRef Str;
    346   if (!getConstantStringInfo(SrcStr, Str)) {
    347     // strrchr(s, 0) -> strchr(s, 0)
    348     if (CharC->isZero())
    349       return EmitStrChr(SrcStr, '\0', B, TLI);
    350     return nullptr;
    351   }
    352 
    353   // Compute the offset.
    354   size_t I = (0xFF & CharC->getSExtValue()) == 0
    355                  ? Str.size()
    356                  : Str.rfind(CharC->getSExtValue());
    357   if (I == StringRef::npos) // Didn't find the char. Return null.
    358     return Constant::getNullValue(CI->getType());
    359 
    360   // strrchr(s+n,c) -> gep(s+n+i,c)
    361   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
    362 }
    363 
    364 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
    365   Function *Callee = CI->getCalledFunction();
    366   // Verify the "strcmp" function prototype.
    367   FunctionType *FT = Callee->getFunctionType();
    368   if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) ||
    369       FT->getParamType(0) != FT->getParamType(1) ||
    370       FT->getParamType(0) != B.getInt8PtrTy())
    371     return nullptr;
    372 
    373   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
    374   if (Str1P == Str2P) // strcmp(x,x)  -> 0
    375     return ConstantInt::get(CI->getType(), 0);
    376 
    377   StringRef Str1, Str2;
    378   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
    379   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
    380 
    381   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
    382   if (HasStr1 && HasStr2)
    383     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
    384 
    385   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
    386     return B.CreateNeg(
    387         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
    388 
    389   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
    390     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
    391 
    392   // strcmp(P, "x") -> memcmp(P, "x", 2)
    393   uint64_t Len1 = GetStringLength(Str1P);
    394   uint64_t Len2 = GetStringLength(Str2P);
    395   if (Len1 && Len2) {
    396     return EmitMemCmp(Str1P, Str2P,
    397                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
    398                                        std::min(Len1, Len2)),
    399                       B, DL, TLI);
    400   }
    401 
    402   return nullptr;
    403 }
    404 
    405 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
    406   Function *Callee = CI->getCalledFunction();
    407   // Verify the "strncmp" function prototype.
    408   FunctionType *FT = Callee->getFunctionType();
    409   if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) ||
    410       FT->getParamType(0) != FT->getParamType(1) ||
    411       FT->getParamType(0) != B.getInt8PtrTy() ||
    412       !FT->getParamType(2)->isIntegerTy())
    413     return nullptr;
    414 
    415   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
    416   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
    417     return ConstantInt::get(CI->getType(), 0);
    418 
    419   // Get the length argument if it is constant.
    420   uint64_t Length;
    421   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
    422     Length = LengthArg->getZExtValue();
    423   else
    424     return nullptr;
    425 
    426   if (Length == 0) // strncmp(x,y,0)   -> 0
    427     return ConstantInt::get(CI->getType(), 0);
    428 
    429   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
    430     return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
    431 
    432   StringRef Str1, Str2;
    433   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
    434   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
    435 
    436   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
    437   if (HasStr1 && HasStr2) {
    438     StringRef SubStr1 = Str1.substr(0, Length);
    439     StringRef SubStr2 = Str2.substr(0, Length);
    440     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
    441   }
    442 
    443   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
    444     return B.CreateNeg(
    445         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
    446 
    447   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
    448     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
    449 
    450   return nullptr;
    451 }
    452 
    453 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
    454   Function *Callee = CI->getCalledFunction();
    455 
    456   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strcpy))
    457     return nullptr;
    458 
    459   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
    460   if (Dst == Src) // strcpy(x,x)  -> x
    461     return Src;
    462 
    463   // See if we can get the length of the input string.
    464   uint64_t Len = GetStringLength(Src);
    465   if (Len == 0)
    466     return nullptr;
    467 
    468   // We have enough information to now generate the memcpy call to do the
    469   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
    470   B.CreateMemCpy(Dst, Src,
    471                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
    472   return Dst;
    473 }
    474 
    475 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
    476   Function *Callee = CI->getCalledFunction();
    477   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::stpcpy))
    478     return nullptr;
    479 
    480   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
    481   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
    482     Value *StrLen = EmitStrLen(Src, B, DL, TLI);
    483     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
    484   }
    485 
    486   // See if we can get the length of the input string.
    487   uint64_t Len = GetStringLength(Src);
    488   if (Len == 0)
    489     return nullptr;
    490 
    491   Type *PT = Callee->getFunctionType()->getParamType(0);
    492   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
    493   Value *DstEnd =
    494       B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
    495 
    496   // We have enough information to now generate the memcpy call to do the
    497   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
    498   B.CreateMemCpy(Dst, Src, LenV, 1);
    499   return DstEnd;
    500 }
    501 
    502 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
    503   Function *Callee = CI->getCalledFunction();
    504   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strncpy))
    505     return nullptr;
    506 
    507   Value *Dst = CI->getArgOperand(0);
    508   Value *Src = CI->getArgOperand(1);
    509   Value *LenOp = CI->getArgOperand(2);
    510 
    511   // See if we can get the length of the input string.
    512   uint64_t SrcLen = GetStringLength(Src);
    513   if (SrcLen == 0)
    514     return nullptr;
    515   --SrcLen;
    516 
    517   if (SrcLen == 0) {
    518     // strncpy(x, "", y) -> memset(x, '\0', y, 1)
    519     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
    520     return Dst;
    521   }
    522 
    523   uint64_t Len;
    524   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
    525     Len = LengthArg->getZExtValue();
    526   else
    527     return nullptr;
    528 
    529   if (Len == 0)
    530     return Dst; // strncpy(x, y, 0) -> x
    531 
    532   // Let strncpy handle the zero padding
    533   if (Len > SrcLen + 1)
    534     return nullptr;
    535 
    536   Type *PT = Callee->getFunctionType()->getParamType(0);
    537   // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
    538   B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
    539 
    540   return Dst;
    541 }
    542 
    543 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
    544   Function *Callee = CI->getCalledFunction();
    545   FunctionType *FT = Callee->getFunctionType();
    546   if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() ||
    547       !FT->getReturnType()->isIntegerTy())
    548     return nullptr;
    549 
    550   Value *Src = CI->getArgOperand(0);
    551 
    552   // Constant folding: strlen("xyz") -> 3
    553   if (uint64_t Len = GetStringLength(Src))
    554     return ConstantInt::get(CI->getType(), Len - 1);
    555 
    556   // strlen(x?"foo":"bars") --> x ? 3 : 4
    557   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
    558     uint64_t LenTrue = GetStringLength(SI->getTrueValue());
    559     uint64_t LenFalse = GetStringLength(SI->getFalseValue());
    560     if (LenTrue && LenFalse) {
    561       Function *Caller = CI->getParent()->getParent();
    562       emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller,
    563                              SI->getDebugLoc(),
    564                              "folded strlen(select) to select of constants");
    565       return B.CreateSelect(SI->getCondition(),
    566                             ConstantInt::get(CI->getType(), LenTrue - 1),
    567                             ConstantInt::get(CI->getType(), LenFalse - 1));
    568     }
    569   }
    570 
    571   // strlen(x) != 0 --> *x != 0
    572   // strlen(x) == 0 --> *x == 0
    573   if (isOnlyUsedInZeroEqualityComparison(CI))
    574     return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
    575 
    576   return nullptr;
    577 }
    578 
    579 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
    580   Function *Callee = CI->getCalledFunction();
    581   FunctionType *FT = Callee->getFunctionType();
    582   if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
    583       FT->getParamType(1) != FT->getParamType(0) ||
    584       FT->getReturnType() != FT->getParamType(0))
    585     return nullptr;
    586 
    587   StringRef S1, S2;
    588   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
    589   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
    590 
    591   // strpbrk(s, "") -> nullptr
    592   // strpbrk("", s) -> nullptr
    593   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
    594     return Constant::getNullValue(CI->getType());
    595 
    596   // Constant folding.
    597   if (HasS1 && HasS2) {
    598     size_t I = S1.find_first_of(S2);
    599     if (I == StringRef::npos) // No match.
    600       return Constant::getNullValue(CI->getType());
    601 
    602     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), "strpbrk");
    603   }
    604 
    605   // strpbrk(s, "a") -> strchr(s, 'a')
    606   if (HasS2 && S2.size() == 1)
    607     return EmitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
    608 
    609   return nullptr;
    610 }
    611 
    612 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
    613   Function *Callee = CI->getCalledFunction();
    614   FunctionType *FT = Callee->getFunctionType();
    615   if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
    616       !FT->getParamType(0)->isPointerTy() ||
    617       !FT->getParamType(1)->isPointerTy())
    618     return nullptr;
    619 
    620   Value *EndPtr = CI->getArgOperand(1);
    621   if (isa<ConstantPointerNull>(EndPtr)) {
    622     // With a null EndPtr, this function won't capture the main argument.
    623     // It would be readonly too, except that it still may write to errno.
    624     CI->addAttribute(1, Attribute::NoCapture);
    625   }
    626 
    627   return nullptr;
    628 }
    629 
    630 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
    631   Function *Callee = CI->getCalledFunction();
    632   FunctionType *FT = Callee->getFunctionType();
    633   if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
    634       FT->getParamType(1) != FT->getParamType(0) ||
    635       !FT->getReturnType()->isIntegerTy())
    636     return nullptr;
    637 
    638   StringRef S1, S2;
    639   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
    640   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
    641 
    642   // strspn(s, "") -> 0
    643   // strspn("", s) -> 0
    644   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
    645     return Constant::getNullValue(CI->getType());
    646 
    647   // Constant folding.
    648   if (HasS1 && HasS2) {
    649     size_t Pos = S1.find_first_not_of(S2);
    650     if (Pos == StringRef::npos)
    651       Pos = S1.size();
    652     return ConstantInt::get(CI->getType(), Pos);
    653   }
    654 
    655   return nullptr;
    656 }
    657 
    658 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
    659   Function *Callee = CI->getCalledFunction();
    660   FunctionType *FT = Callee->getFunctionType();
    661   if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
    662       FT->getParamType(1) != FT->getParamType(0) ||
    663       !FT->getReturnType()->isIntegerTy())
    664     return nullptr;
    665 
    666   StringRef S1, S2;
    667   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
    668   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
    669 
    670   // strcspn("", s) -> 0
    671   if (HasS1 && S1.empty())
    672     return Constant::getNullValue(CI->getType());
    673 
    674   // Constant folding.
    675   if (HasS1 && HasS2) {
    676     size_t Pos = S1.find_first_of(S2);
    677     if (Pos == StringRef::npos)
    678       Pos = S1.size();
    679     return ConstantInt::get(CI->getType(), Pos);
    680   }
    681 
    682   // strcspn(s, "") -> strlen(s)
    683   if (HasS2 && S2.empty())
    684     return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
    685 
    686   return nullptr;
    687 }
    688 
    689 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
    690   Function *Callee = CI->getCalledFunction();
    691   FunctionType *FT = Callee->getFunctionType();
    692   if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
    693       !FT->getParamType(1)->isPointerTy() ||
    694       !FT->getReturnType()->isPointerTy())
    695     return nullptr;
    696 
    697   // fold strstr(x, x) -> x.
    698   if (CI->getArgOperand(0) == CI->getArgOperand(1))
    699     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
    700 
    701   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
    702   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
    703     Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
    704     if (!StrLen)
    705       return nullptr;
    706     Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
    707                                  StrLen, B, DL, TLI);
    708     if (!StrNCmp)
    709       return nullptr;
    710     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
    711       ICmpInst *Old = cast<ICmpInst>(*UI++);
    712       Value *Cmp =
    713           B.CreateICmp(Old->getPredicate(), StrNCmp,
    714                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
    715       replaceAllUsesWith(Old, Cmp);
    716     }
    717     return CI;
    718   }
    719 
    720   // See if either input string is a constant string.
    721   StringRef SearchStr, ToFindStr;
    722   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
    723   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
    724 
    725   // fold strstr(x, "") -> x.
    726   if (HasStr2 && ToFindStr.empty())
    727     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
    728 
    729   // If both strings are known, constant fold it.
    730   if (HasStr1 && HasStr2) {
    731     size_t Offset = SearchStr.find(ToFindStr);
    732 
    733     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
    734       return Constant::getNullValue(CI->getType());
    735 
    736     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
    737     Value *Result = CastToCStr(CI->getArgOperand(0), B);
    738     Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
    739     return B.CreateBitCast(Result, CI->getType());
    740   }
    741 
    742   // fold strstr(x, "y") -> strchr(x, 'y').
    743   if (HasStr2 && ToFindStr.size() == 1) {
    744     Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
    745     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
    746   }
    747   return nullptr;
    748 }
    749 
    750 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
    751   Function *Callee = CI->getCalledFunction();
    752   FunctionType *FT = Callee->getFunctionType();
    753   if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
    754       !FT->getParamType(1)->isIntegerTy(32) ||
    755       !FT->getParamType(2)->isIntegerTy() ||
    756       !FT->getReturnType()->isPointerTy())
    757     return nullptr;
    758 
    759   Value *SrcStr = CI->getArgOperand(0);
    760   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
    761   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
    762 
    763   // memchr(x, y, 0) -> null
    764   if (LenC && LenC->isNullValue())
    765     return Constant::getNullValue(CI->getType());
    766 
    767   // From now on we need at least constant length and string.
    768   StringRef Str;
    769   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
    770     return nullptr;
    771 
    772   // Truncate the string to LenC. If Str is smaller than LenC we will still only
    773   // scan the string, as reading past the end of it is undefined and we can just
    774   // return null if we don't find the char.
    775   Str = Str.substr(0, LenC->getZExtValue());
    776 
    777   // If the char is variable but the input str and length are not we can turn
    778   // this memchr call into a simple bit field test. Of course this only works
    779   // when the return value is only checked against null.
    780   //
    781   // It would be really nice to reuse switch lowering here but we can't change
    782   // the CFG at this point.
    783   //
    784   // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
    785   //   after bounds check.
    786   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
    787     unsigned char Max =
    788         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
    789                           reinterpret_cast<const unsigned char *>(Str.end()));
    790 
    791     // Make sure the bit field we're about to create fits in a register on the
    792     // target.
    793     // FIXME: On a 64 bit architecture this prevents us from using the
    794     // interesting range of alpha ascii chars. We could do better by emitting
    795     // two bitfields or shifting the range by 64 if no lower chars are used.
    796     if (!DL.fitsInLegalInteger(Max + 1))
    797       return nullptr;
    798 
    799     // For the bit field use a power-of-2 type with at least 8 bits to avoid
    800     // creating unnecessary illegal types.
    801     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
    802 
    803     // Now build the bit field.
    804     APInt Bitfield(Width, 0);
    805     for (char C : Str)
    806       Bitfield.setBit((unsigned char)C);
    807     Value *BitfieldC = B.getInt(Bitfield);
    808 
    809     // First check that the bit field access is within bounds.
    810     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
    811     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
    812                                  "memchr.bounds");
    813 
    814     // Create code that checks if the given bit is set in the field.
    815     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
    816     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
    817 
    818     // Finally merge both checks and cast to pointer type. The inttoptr
    819     // implicitly zexts the i1 to intptr type.
    820     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
    821   }
    822 
    823   // Check if all arguments are constants.  If so, we can constant fold.
    824   if (!CharC)
    825     return nullptr;
    826 
    827   // Compute the offset.
    828   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
    829   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
    830     return Constant::getNullValue(CI->getType());
    831 
    832   // memchr(s+n,c,l) -> gep(s+n+i,c)
    833   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
    834 }
    835 
    836 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
    837   Function *Callee = CI->getCalledFunction();
    838   FunctionType *FT = Callee->getFunctionType();
    839   if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
    840       !FT->getParamType(1)->isPointerTy() ||
    841       !FT->getReturnType()->isIntegerTy(32))
    842     return nullptr;
    843 
    844   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
    845 
    846   if (LHS == RHS) // memcmp(s,s,x) -> 0
    847     return Constant::getNullValue(CI->getType());
    848 
    849   // Make sure we have a constant length.
    850   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
    851   if (!LenC)
    852     return nullptr;
    853   uint64_t Len = LenC->getZExtValue();
    854 
    855   if (Len == 0) // memcmp(s1,s2,0) -> 0
    856     return Constant::getNullValue(CI->getType());
    857 
    858   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
    859   if (Len == 1) {
    860     Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
    861                                CI->getType(), "lhsv");
    862     Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
    863                                CI->getType(), "rhsv");
    864     return B.CreateSub(LHSV, RHSV, "chardiff");
    865   }
    866 
    867   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
    868   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
    869 
    870     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
    871     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
    872 
    873     if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment &&
    874         getKnownAlignment(RHS, DL, CI) >= PrefAlignment) {
    875 
    876       Type *LHSPtrTy =
    877           IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
    878       Type *RHSPtrTy =
    879           IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
    880 
    881       Value *LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv");
    882       Value *RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv");
    883 
    884       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
    885     }
    886   }
    887 
    888   // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
    889   StringRef LHSStr, RHSStr;
    890   if (getConstantStringInfo(LHS, LHSStr) &&
    891       getConstantStringInfo(RHS, RHSStr)) {
    892     // Make sure we're not reading out-of-bounds memory.
    893     if (Len > LHSStr.size() || Len > RHSStr.size())
    894       return nullptr;
    895     // Fold the memcmp and normalize the result.  This way we get consistent
    896     // results across multiple platforms.
    897     uint64_t Ret = 0;
    898     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
    899     if (Cmp < 0)
    900       Ret = -1;
    901     else if (Cmp > 0)
    902       Ret = 1;
    903     return ConstantInt::get(CI->getType(), Ret);
    904   }
    905 
    906   return nullptr;
    907 }
    908 
    909 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
    910   Function *Callee = CI->getCalledFunction();
    911 
    912   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy))
    913     return nullptr;
    914 
    915   // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
    916   B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
    917                  CI->getArgOperand(2), 1);
    918   return CI->getArgOperand(0);
    919 }
    920 
    921 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
    922   Function *Callee = CI->getCalledFunction();
    923 
    924   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove))
    925     return nullptr;
    926 
    927   // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
    928   B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
    929                   CI->getArgOperand(2), 1);
    930   return CI->getArgOperand(0);
    931 }
    932 
    933 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
    934   Function *Callee = CI->getCalledFunction();
    935 
    936   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset))
    937     return nullptr;
    938 
    939   // memset(p, v, n) -> llvm.memset(p, v, n, 1)
    940   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
    941   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
    942   return CI->getArgOperand(0);
    943 }
    944 
    945 //===----------------------------------------------------------------------===//
    946 // Math Library Optimizations
    947 //===----------------------------------------------------------------------===//
    948 
    949 /// Return a variant of Val with float type.
    950 /// Currently this works in two cases: If Val is an FPExtension of a float
    951 /// value to something bigger, simply return the operand.
    952 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
    953 /// loss of precision do so.
    954 static Value *valueHasFloatPrecision(Value *Val) {
    955   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
    956     Value *Op = Cast->getOperand(0);
    957     if (Op->getType()->isFloatTy())
    958       return Op;
    959   }
    960   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
    961     APFloat F = Const->getValueAPF();
    962     bool losesInfo;
    963     (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
    964                     &losesInfo);
    965     if (!losesInfo)
    966       return ConstantFP::get(Const->getContext(), F);
    967   }
    968   return nullptr;
    969 }
    970 
    971 //===----------------------------------------------------------------------===//
    972 // Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
    973 
    974 Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
    975                                                 bool CheckRetType) {
    976   Function *Callee = CI->getCalledFunction();
    977   FunctionType *FT = Callee->getFunctionType();
    978   if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
    979       !FT->getParamType(0)->isDoubleTy())
    980     return nullptr;
    981 
    982   if (CheckRetType) {
    983     // Check if all the uses for function like 'sin' are converted to float.
    984     for (User *U : CI->users()) {
    985       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
    986       if (!Cast || !Cast->getType()->isFloatTy())
    987         return nullptr;
    988     }
    989   }
    990 
    991   // If this is something like 'floor((double)floatval)', convert to floorf.
    992   Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
    993   if (V == nullptr)
    994     return nullptr;
    995 
    996   // floor((double)floatval) -> (double)floorf(floatval)
    997   if (Callee->isIntrinsic()) {
    998     Module *M = CI->getModule();
    999     Intrinsic::ID IID = Callee->getIntrinsicID();
   1000     Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
   1001     V = B.CreateCall(F, V);
   1002   } else {
   1003     // The call is a library call rather than an intrinsic.
   1004     V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
   1005   }
   1006 
   1007   return B.CreateFPExt(V, B.getDoubleTy());
   1008 }
   1009 
   1010 // Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax'
   1011 Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
   1012   Function *Callee = CI->getCalledFunction();
   1013   FunctionType *FT = Callee->getFunctionType();
   1014   // Just make sure this has 2 arguments of the same FP type, which match the
   1015   // result type.
   1016   if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
   1017       FT->getParamType(0) != FT->getParamType(1) ||
   1018       !FT->getParamType(0)->isFloatingPointTy())
   1019     return nullptr;
   1020 
   1021   // If this is something like 'fmin((double)floatval1, (double)floatval2)',
   1022   // or fmin(1.0, (double)floatval), then we convert it to fminf.
   1023   Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
   1024   if (V1 == nullptr)
   1025     return nullptr;
   1026   Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
   1027   if (V2 == nullptr)
   1028     return nullptr;
   1029 
   1030   // fmin((double)floatval1, (double)floatval2)
   1031   //                      -> (double)fminf(floatval1, floatval2)
   1032   // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
   1033   Value *V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
   1034                                    Callee->getAttributes());
   1035   return B.CreateFPExt(V, B.getDoubleTy());
   1036 }
   1037 
   1038 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
   1039   Function *Callee = CI->getCalledFunction();
   1040   Value *Ret = nullptr;
   1041   StringRef Name = Callee->getName();
   1042   if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name))
   1043     Ret = optimizeUnaryDoubleFP(CI, B, true);
   1044 
   1045   FunctionType *FT = Callee->getFunctionType();
   1046   // Just make sure this has 1 argument of FP type, which matches the
   1047   // result type.
   1048   if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
   1049       !FT->getParamType(0)->isFloatingPointTy())
   1050     return Ret;
   1051 
   1052   // cos(-x) -> cos(x)
   1053   Value *Op1 = CI->getArgOperand(0);
   1054   if (BinaryOperator::isFNeg(Op1)) {
   1055     BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
   1056     return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
   1057   }
   1058   return Ret;
   1059 }
   1060 
   1061 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
   1062   // Multiplications calculated using Addition Chains.
   1063   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
   1064 
   1065   assert(Exp != 0 && "Incorrect exponent 0 not handled");
   1066 
   1067   if (InnerChain[Exp])
   1068     return InnerChain[Exp];
   1069 
   1070   static const unsigned AddChain[33][2] = {
   1071       {0, 0}, // Unused.
   1072       {0, 0}, // Unused (base case = pow1).
   1073       {1, 1}, // Unused (pre-computed).
   1074       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
   1075       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
   1076       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
   1077       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
   1078       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
   1079   };
   1080 
   1081   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
   1082                                  getPow(InnerChain, AddChain[Exp][1], B));
   1083   return InnerChain[Exp];
   1084 }
   1085 
   1086 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
   1087   Function *Callee = CI->getCalledFunction();
   1088   Value *Ret = nullptr;
   1089   StringRef Name = Callee->getName();
   1090   if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name))
   1091     Ret = optimizeUnaryDoubleFP(CI, B, true);
   1092 
   1093   FunctionType *FT = Callee->getFunctionType();
   1094   // Just make sure this has 2 arguments of the same FP type, which match the
   1095   // result type.
   1096   if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
   1097       FT->getParamType(0) != FT->getParamType(1) ||
   1098       !FT->getParamType(0)->isFloatingPointTy())
   1099     return Ret;
   1100 
   1101   Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
   1102   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
   1103     // pow(1.0, x) -> 1.0
   1104     if (Op1C->isExactlyValue(1.0))
   1105       return Op1C;
   1106     // pow(2.0, x) -> exp2(x)
   1107     if (Op1C->isExactlyValue(2.0) &&
   1108         hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f,
   1109                         LibFunc::exp2l))
   1110       return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp2), B,
   1111                                   Callee->getAttributes());
   1112     // pow(10.0, x) -> exp10(x)
   1113     if (Op1C->isExactlyValue(10.0) &&
   1114         hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
   1115                         LibFunc::exp10l))
   1116       return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
   1117                                   Callee->getAttributes());
   1118   }
   1119 
   1120   bool unsafeFPMath = canUseUnsafeFPMath(CI->getParent()->getParent());
   1121 
   1122   // pow(exp(x), y) -> exp(x*y)
   1123   // pow(exp2(x), y) -> exp2(x * y)
   1124   // We enable these only under fast-math. Besides rounding
   1125   // differences the transformation changes overflow and
   1126   // underflow behavior quite dramatically.
   1127   // Example: x = 1000, y = 0.001.
   1128   // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
   1129   if (unsafeFPMath) {
   1130     if (auto *OpC = dyn_cast<CallInst>(Op1)) {
   1131       IRBuilder<>::FastMathFlagGuard Guard(B);
   1132       FastMathFlags FMF;
   1133       FMF.setUnsafeAlgebra();
   1134       B.SetFastMathFlags(FMF);
   1135 
   1136       LibFunc::Func Func;
   1137       Function *OpCCallee = OpC->getCalledFunction();
   1138       if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) &&
   1139           TLI->has(Func) && (Func == LibFunc::exp || Func == LibFunc::exp2))
   1140         return EmitUnaryFloatFnCall(
   1141             B.CreateFMul(OpC->getArgOperand(0), Op2, "mul"),
   1142             OpCCallee->getName(), B, OpCCallee->getAttributes());
   1143     }
   1144   }
   1145 
   1146   ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
   1147   if (!Op2C)
   1148     return Ret;
   1149 
   1150   if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
   1151     return ConstantFP::get(CI->getType(), 1.0);
   1152 
   1153   if (Op2C->isExactlyValue(0.5) &&
   1154       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
   1155                       LibFunc::sqrtl) &&
   1156       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
   1157                       LibFunc::fabsl)) {
   1158 
   1159     // In -ffast-math, pow(x, 0.5) -> sqrt(x).
   1160     if (unsafeFPMath)
   1161       return EmitUnaryFloatFnCall(Op1, TLI->getName(LibFunc::sqrt), B,
   1162                                   Callee->getAttributes());
   1163 
   1164     // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
   1165     // This is faster than calling pow, and still handles negative zero
   1166     // and negative infinity correctly.
   1167     // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
   1168     Value *Inf = ConstantFP::getInfinity(CI->getType());
   1169     Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
   1170     Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
   1171     Value *FAbs =
   1172         EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes());
   1173     Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
   1174     Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
   1175     return Sel;
   1176   }
   1177 
   1178   if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
   1179     return Op1;
   1180   if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
   1181     return B.CreateFMul(Op1, Op1, "pow2");
   1182   if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
   1183     return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
   1184 
   1185   // In -ffast-math, generate repeated fmul instead of generating pow(x, n).
   1186   if (unsafeFPMath) {
   1187     APFloat V = abs(Op2C->getValueAPF());
   1188     // We limit to a max of 7 fmul(s). Thus max exponent is 32.
   1189     // This transformation applies to integer exponents only.
   1190     if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan ||
   1191         !V.isInteger())
   1192       return nullptr;
   1193 
   1194     // We will memoize intermediate products of the Addition Chain.
   1195     Value *InnerChain[33] = {nullptr};
   1196     InnerChain[1] = Op1;
   1197     InnerChain[2] = B.CreateFMul(Op1, Op1);
   1198 
   1199     // We cannot readily convert a non-double type (like float) to a double.
   1200     // So we first convert V to something which could be converted to double.
   1201     bool ignored;
   1202     V.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &ignored);
   1203     Value *FMul = getPow(InnerChain, V.convertToDouble(), B);
   1204     // For negative exponents simply compute the reciprocal.
   1205     if (Op2C->isNegative())
   1206       FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul);
   1207     return FMul;
   1208   }
   1209 
   1210   return nullptr;
   1211 }
   1212 
   1213 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
   1214   Function *Callee = CI->getCalledFunction();
   1215   Function *Caller = CI->getParent()->getParent();
   1216   Value *Ret = nullptr;
   1217   StringRef Name = Callee->getName();
   1218   if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
   1219     Ret = optimizeUnaryDoubleFP(CI, B, true);
   1220 
   1221   FunctionType *FT = Callee->getFunctionType();
   1222   // Just make sure this has 1 argument of FP type, which matches the
   1223   // result type.
   1224   if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
   1225       !FT->getParamType(0)->isFloatingPointTy())
   1226     return Ret;
   1227 
   1228   Value *Op = CI->getArgOperand(0);
   1229   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
   1230   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
   1231   LibFunc::Func LdExp = LibFunc::ldexpl;
   1232   if (Op->getType()->isFloatTy())
   1233     LdExp = LibFunc::ldexpf;
   1234   else if (Op->getType()->isDoubleTy())
   1235     LdExp = LibFunc::ldexp;
   1236 
   1237   if (TLI->has(LdExp)) {
   1238     Value *LdExpArg = nullptr;
   1239     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
   1240       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
   1241         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
   1242     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
   1243       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
   1244         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
   1245     }
   1246 
   1247     if (LdExpArg) {
   1248       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
   1249       if (!Op->getType()->isFloatTy())
   1250         One = ConstantExpr::getFPExtend(One, Op->getType());
   1251 
   1252       Module *M = Caller->getParent();
   1253       Value *Callee =
   1254           M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
   1255                                  Op->getType(), B.getInt32Ty(), nullptr);
   1256       CallInst *CI = B.CreateCall(Callee, {One, LdExpArg});
   1257       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
   1258         CI->setCallingConv(F->getCallingConv());
   1259 
   1260       return CI;
   1261     }
   1262   }
   1263   return Ret;
   1264 }
   1265 
   1266 Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) {
   1267   Function *Callee = CI->getCalledFunction();
   1268   Value *Ret = nullptr;
   1269   StringRef Name = Callee->getName();
   1270   if (Name == "fabs" && hasFloatVersion(Name))
   1271     Ret = optimizeUnaryDoubleFP(CI, B, false);
   1272 
   1273   FunctionType *FT = Callee->getFunctionType();
   1274   // Make sure this has 1 argument of FP type which matches the result type.
   1275   if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
   1276       !FT->getParamType(0)->isFloatingPointTy())
   1277     return Ret;
   1278 
   1279   Value *Op = CI->getArgOperand(0);
   1280   if (Instruction *I = dyn_cast<Instruction>(Op)) {
   1281     // Fold fabs(x * x) -> x * x; any squared FP value must already be positive.
   1282     if (I->getOpcode() == Instruction::FMul)
   1283       if (I->getOperand(0) == I->getOperand(1))
   1284         return Op;
   1285   }
   1286   return Ret;
   1287 }
   1288 
   1289 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
   1290   // If we can shrink the call to a float function rather than a double
   1291   // function, do that first.
   1292   Function *Callee = CI->getCalledFunction();
   1293   StringRef Name = Callee->getName();
   1294   if ((Name == "fmin" && hasFloatVersion(Name)) ||
   1295       (Name == "fmax" && hasFloatVersion(Name))) {
   1296     Value *Ret = optimizeBinaryDoubleFP(CI, B);
   1297     if (Ret)
   1298       return Ret;
   1299   }
   1300 
   1301   // Make sure this has 2 arguments of FP type which match the result type.
   1302   FunctionType *FT = Callee->getFunctionType();
   1303   if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
   1304       FT->getParamType(0) != FT->getParamType(1) ||
   1305       !FT->getParamType(0)->isFloatingPointTy())
   1306     return nullptr;
   1307 
   1308   IRBuilder<>::FastMathFlagGuard Guard(B);
   1309   FastMathFlags FMF;
   1310   Function *F = CI->getParent()->getParent();
   1311   if (canUseUnsafeFPMath(F)) {
   1312     // Unsafe algebra sets all fast-math-flags to true.
   1313     FMF.setUnsafeAlgebra();
   1314   } else {
   1315     // At a minimum, no-nans-fp-math must be true.
   1316     Attribute Attr = F->getFnAttribute("no-nans-fp-math");
   1317     if (Attr.getValueAsString() != "true")
   1318       return nullptr;
   1319     // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
   1320     // "Ideally, fmax would be sensitive to the sign of zero, for example
   1321     // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
   1322     // might be impractical."
   1323     FMF.setNoSignedZeros();
   1324     FMF.setNoNaNs();
   1325   }
   1326   B.SetFastMathFlags(FMF);
   1327 
   1328   // We have a relaxed floating-point environment. We can ignore NaN-handling
   1329   // and transform to a compare and select. We do not have to consider errno or
   1330   // exceptions, because fmin/fmax do not have those.
   1331   Value *Op0 = CI->getArgOperand(0);
   1332   Value *Op1 = CI->getArgOperand(1);
   1333   Value *Cmp = Callee->getName().startswith("fmin") ?
   1334     B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
   1335   return B.CreateSelect(Cmp, Op0, Op1);
   1336 }
   1337 
   1338 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
   1339   Function *Callee = CI->getCalledFunction();
   1340   Value *Ret = nullptr;
   1341   StringRef Name = Callee->getName();
   1342   if (UnsafeFPShrink && hasFloatVersion(Name))
   1343     Ret = optimizeUnaryDoubleFP(CI, B, true);
   1344   FunctionType *FT = Callee->getFunctionType();
   1345 
   1346   // Just make sure this has 1 argument of FP type, which matches the
   1347   // result type.
   1348   if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
   1349       !FT->getParamType(0)->isFloatingPointTy())
   1350     return Ret;
   1351 
   1352   if (!canUseUnsafeFPMath(CI->getParent()->getParent()))
   1353     return Ret;
   1354   Value *Op1 = CI->getArgOperand(0);
   1355   auto *OpC = dyn_cast<CallInst>(Op1);
   1356   if (!OpC)
   1357     return Ret;
   1358 
   1359   // log(pow(x,y)) -> y*log(x)
   1360   // This is only applicable to log, log2, log10.
   1361   if (Name != "log" && Name != "log2" && Name != "log10")
   1362     return Ret;
   1363 
   1364   IRBuilder<>::FastMathFlagGuard Guard(B);
   1365   FastMathFlags FMF;
   1366   FMF.setUnsafeAlgebra();
   1367   B.SetFastMathFlags(FMF);
   1368 
   1369   LibFunc::Func Func;
   1370   Function *F = OpC->getCalledFunction();
   1371   if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
   1372       Func == LibFunc::pow) || F->getIntrinsicID() == Intrinsic::pow))
   1373     return B.CreateFMul(OpC->getArgOperand(1),
   1374       EmitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
   1375                            Callee->getAttributes()), "mul");
   1376 
   1377   // log(exp2(y)) -> y*log(2)
   1378   if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
   1379       TLI->has(Func) && Func == LibFunc::exp2)
   1380     return B.CreateFMul(
   1381         OpC->getArgOperand(0),
   1382         EmitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
   1383                              Callee->getName(), B, Callee->getAttributes()),
   1384         "logmul");
   1385   return Ret;
   1386 }
   1387 
   1388 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
   1389   Function *Callee = CI->getCalledFunction();
   1390 
   1391   Value *Ret = nullptr;
   1392   if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" ||
   1393                                    Callee->getIntrinsicID() == Intrinsic::sqrt))
   1394     Ret = optimizeUnaryDoubleFP(CI, B, true);
   1395   if (!canUseUnsafeFPMath(CI->getParent()->getParent()))
   1396     return Ret;
   1397 
   1398   Value *Op = CI->getArgOperand(0);
   1399   if (Instruction *I = dyn_cast<Instruction>(Op)) {
   1400     if (I->getOpcode() == Instruction::FMul && I->hasUnsafeAlgebra()) {
   1401       // We're looking for a repeated factor in a multiplication tree,
   1402       // so we can do this fold: sqrt(x * x) -> fabs(x);
   1403       // or this fold: sqrt(x * x * y) -> fabs(x) * sqrt(y).
   1404       Value *Op0 = I->getOperand(0);
   1405       Value *Op1 = I->getOperand(1);
   1406       Value *RepeatOp = nullptr;
   1407       Value *OtherOp = nullptr;
   1408       if (Op0 == Op1) {
   1409         // Simple match: the operands of the multiply are identical.
   1410         RepeatOp = Op0;
   1411       } else {
   1412         // Look for a more complicated pattern: one of the operands is itself
   1413         // a multiply, so search for a common factor in that multiply.
   1414         // Note: We don't bother looking any deeper than this first level or for
   1415         // variations of this pattern because instcombine's visitFMUL and/or the
   1416         // reassociation pass should give us this form.
   1417         Value *OtherMul0, *OtherMul1;
   1418         if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
   1419           // Pattern: sqrt((x * y) * z)
   1420           if (OtherMul0 == OtherMul1) {
   1421             // Matched: sqrt((x * x) * z)
   1422             RepeatOp = OtherMul0;
   1423             OtherOp = Op1;
   1424           }
   1425         }
   1426       }
   1427       if (RepeatOp) {
   1428         // Fast math flags for any created instructions should match the sqrt
   1429         // and multiply.
   1430         // FIXME: We're not checking the sqrt because it doesn't have
   1431         // fast-math-flags (see earlier comment).
   1432         IRBuilder<>::FastMathFlagGuard Guard(B);
   1433         B.SetFastMathFlags(I->getFastMathFlags());
   1434         // If we found a repeated factor, hoist it out of the square root and
   1435         // replace it with the fabs of that factor.
   1436         Module *M = Callee->getParent();
   1437         Type *ArgType = Op->getType();
   1438         Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
   1439         Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
   1440         if (OtherOp) {
   1441           // If we found a non-repeated factor, we still need to get its square
   1442           // root. We then multiply that by the value that was simplified out
   1443           // of the square root calculation.
   1444           Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
   1445           Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
   1446           return B.CreateFMul(FabsCall, SqrtCall);
   1447         }
   1448         return FabsCall;
   1449       }
   1450     }
   1451   }
   1452   return Ret;
   1453 }
   1454 
   1455 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
   1456   Function *Callee = CI->getCalledFunction();
   1457   Value *Ret = nullptr;
   1458   StringRef Name = Callee->getName();
   1459   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
   1460     Ret = optimizeUnaryDoubleFP(CI, B, true);
   1461   FunctionType *FT = Callee->getFunctionType();
   1462 
   1463   // Just make sure this has 1 argument of FP type, which matches the
   1464   // result type.
   1465   if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
   1466       !FT->getParamType(0)->isFloatingPointTy())
   1467     return Ret;
   1468 
   1469   if (!canUseUnsafeFPMath(CI->getParent()->getParent()))
   1470     return Ret;
   1471   Value *Op1 = CI->getArgOperand(0);
   1472   auto *OpC = dyn_cast<CallInst>(Op1);
   1473   if (!OpC)
   1474     return Ret;
   1475 
   1476   // tan(atan(x)) -> x
   1477   // tanf(atanf(x)) -> x
   1478   // tanl(atanl(x)) -> x
   1479   LibFunc::Func Func;
   1480   Function *F = OpC->getCalledFunction();
   1481   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
   1482       ((Func == LibFunc::atan && Callee->getName() == "tan") ||
   1483        (Func == LibFunc::atanf && Callee->getName() == "tanf") ||
   1484        (Func == LibFunc::atanl && Callee->getName() == "tanl")))
   1485     Ret = OpC->getArgOperand(0);
   1486   return Ret;
   1487 }
   1488 
   1489 static bool isTrigLibCall(CallInst *CI);
   1490 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
   1491                              bool UseFloat, Value *&Sin, Value *&Cos,
   1492                              Value *&SinCos);
   1493 
   1494 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
   1495 
   1496   // Make sure the prototype is as expected, otherwise the rest of the
   1497   // function is probably invalid and likely to abort.
   1498   if (!isTrigLibCall(CI))
   1499     return nullptr;
   1500 
   1501   Value *Arg = CI->getArgOperand(0);
   1502   SmallVector<CallInst *, 1> SinCalls;
   1503   SmallVector<CallInst *, 1> CosCalls;
   1504   SmallVector<CallInst *, 1> SinCosCalls;
   1505 
   1506   bool IsFloat = Arg->getType()->isFloatTy();
   1507 
   1508   // Look for all compatible sinpi, cospi and sincospi calls with the same
   1509   // argument. If there are enough (in some sense) we can make the
   1510   // substitution.
   1511   for (User *U : Arg->users())
   1512     classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
   1513                    SinCosCalls);
   1514 
   1515   // It's only worthwhile if both sinpi and cospi are actually used.
   1516   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
   1517     return nullptr;
   1518 
   1519   Value *Sin, *Cos, *SinCos;
   1520   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
   1521 
   1522   replaceTrigInsts(SinCalls, Sin);
   1523   replaceTrigInsts(CosCalls, Cos);
   1524   replaceTrigInsts(SinCosCalls, SinCos);
   1525 
   1526   return nullptr;
   1527 }
   1528 
   1529 static bool isTrigLibCall(CallInst *CI) {
   1530   Function *Callee = CI->getCalledFunction();
   1531   FunctionType *FT = Callee->getFunctionType();
   1532 
   1533   // We can only hope to do anything useful if we can ignore things like errno
   1534   // and floating-point exceptions.
   1535   bool AttributesSafe =
   1536       CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone);
   1537 
   1538   // Other than that we need float(float) or double(double)
   1539   return AttributesSafe && FT->getNumParams() == 1 &&
   1540          FT->getReturnType() == FT->getParamType(0) &&
   1541          (FT->getParamType(0)->isFloatTy() ||
   1542           FT->getParamType(0)->isDoubleTy());
   1543 }
   1544 
   1545 void
   1546 LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
   1547                                   SmallVectorImpl<CallInst *> &SinCalls,
   1548                                   SmallVectorImpl<CallInst *> &CosCalls,
   1549                                   SmallVectorImpl<CallInst *> &SinCosCalls) {
   1550   CallInst *CI = dyn_cast<CallInst>(Val);
   1551 
   1552   if (!CI)
   1553     return;
   1554 
   1555   Function *Callee = CI->getCalledFunction();
   1556   LibFunc::Func Func;
   1557   if (!Callee || !TLI->getLibFunc(Callee->getName(), Func) || !TLI->has(Func) ||
   1558       !isTrigLibCall(CI))
   1559     return;
   1560 
   1561   if (IsFloat) {
   1562     if (Func == LibFunc::sinpif)
   1563       SinCalls.push_back(CI);
   1564     else if (Func == LibFunc::cospif)
   1565       CosCalls.push_back(CI);
   1566     else if (Func == LibFunc::sincospif_stret)
   1567       SinCosCalls.push_back(CI);
   1568   } else {
   1569     if (Func == LibFunc::sinpi)
   1570       SinCalls.push_back(CI);
   1571     else if (Func == LibFunc::cospi)
   1572       CosCalls.push_back(CI);
   1573     else if (Func == LibFunc::sincospi_stret)
   1574       SinCosCalls.push_back(CI);
   1575   }
   1576 }
   1577 
   1578 void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls,
   1579                                          Value *Res) {
   1580   for (CallInst *C : Calls)
   1581     replaceAllUsesWith(C, Res);
   1582 }
   1583 
   1584 void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
   1585                       bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos) {
   1586   Type *ArgTy = Arg->getType();
   1587   Type *ResTy;
   1588   StringRef Name;
   1589 
   1590   Triple T(OrigCallee->getParent()->getTargetTriple());
   1591   if (UseFloat) {
   1592     Name = "__sincospif_stret";
   1593 
   1594     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
   1595     // x86_64 can't use {float, float} since that would be returned in both
   1596     // xmm0 and xmm1, which isn't what a real struct would do.
   1597     ResTy = T.getArch() == Triple::x86_64
   1598                 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
   1599                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr));
   1600   } else {
   1601     Name = "__sincospi_stret";
   1602     ResTy = StructType::get(ArgTy, ArgTy, nullptr);
   1603   }
   1604 
   1605   Module *M = OrigCallee->getParent();
   1606   Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
   1607                                          ResTy, ArgTy, nullptr);
   1608 
   1609   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
   1610     // If the argument is an instruction, it must dominate all uses so put our
   1611     // sincos call there.
   1612     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
   1613   } else {
   1614     // Otherwise (e.g. for a constant) the beginning of the function is as
   1615     // good a place as any.
   1616     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
   1617     B.SetInsertPoint(&EntryBB, EntryBB.begin());
   1618   }
   1619 
   1620   SinCos = B.CreateCall(Callee, Arg, "sincospi");
   1621 
   1622   if (SinCos->getType()->isStructTy()) {
   1623     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
   1624     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
   1625   } else {
   1626     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
   1627                                  "sinpi");
   1628     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
   1629                                  "cospi");
   1630   }
   1631 }
   1632 
   1633 //===----------------------------------------------------------------------===//
   1634 // Integer Library Call Optimizations
   1635 //===----------------------------------------------------------------------===//
   1636 
   1637 static bool checkIntUnaryReturnAndParam(Function *Callee) {
   1638   FunctionType *FT = Callee->getFunctionType();
   1639   return FT->getNumParams() == 1 && FT->getReturnType()->isIntegerTy(32) &&
   1640     FT->getParamType(0)->isIntegerTy();
   1641 }
   1642 
   1643 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
   1644   Function *Callee = CI->getCalledFunction();
   1645   if (!checkIntUnaryReturnAndParam(Callee))
   1646     return nullptr;
   1647   Value *Op = CI->getArgOperand(0);
   1648 
   1649   // Constant fold.
   1650   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
   1651     if (CI->isZero()) // ffs(0) -> 0.
   1652       return B.getInt32(0);
   1653     // ffs(c) -> cttz(c)+1
   1654     return B.getInt32(CI->getValue().countTrailingZeros() + 1);
   1655   }
   1656 
   1657   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
   1658   Type *ArgType = Op->getType();
   1659   Value *F =
   1660       Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType);
   1661   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
   1662   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
   1663   V = B.CreateIntCast(V, B.getInt32Ty(), false);
   1664 
   1665   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
   1666   return B.CreateSelect(Cond, V, B.getInt32(0));
   1667 }
   1668 
   1669 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
   1670   Function *Callee = CI->getCalledFunction();
   1671   FunctionType *FT = Callee->getFunctionType();
   1672   // We require integer(integer) where the types agree.
   1673   if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
   1674       FT->getParamType(0) != FT->getReturnType())
   1675     return nullptr;
   1676 
   1677   // abs(x) -> x >s -1 ? x : -x
   1678   Value *Op = CI->getArgOperand(0);
   1679   Value *Pos =
   1680       B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
   1681   Value *Neg = B.CreateNeg(Op, "neg");
   1682   return B.CreateSelect(Pos, Op, Neg);
   1683 }
   1684 
   1685 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
   1686   if (!checkIntUnaryReturnAndParam(CI->getCalledFunction()))
   1687     return nullptr;
   1688 
   1689   // isdigit(c) -> (c-'0') <u 10
   1690   Value *Op = CI->getArgOperand(0);
   1691   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
   1692   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
   1693   return B.CreateZExt(Op, CI->getType());
   1694 }
   1695 
   1696 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
   1697   if (!checkIntUnaryReturnAndParam(CI->getCalledFunction()))
   1698     return nullptr;
   1699 
   1700   // isascii(c) -> c <u 128
   1701   Value *Op = CI->getArgOperand(0);
   1702   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
   1703   return B.CreateZExt(Op, CI->getType());
   1704 }
   1705 
   1706 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
   1707   if (!checkIntUnaryReturnAndParam(CI->getCalledFunction()))
   1708     return nullptr;
   1709 
   1710   // toascii(c) -> c & 0x7f
   1711   return B.CreateAnd(CI->getArgOperand(0),
   1712                      ConstantInt::get(CI->getType(), 0x7F));
   1713 }
   1714 
   1715 //===----------------------------------------------------------------------===//
   1716 // Formatting and IO Library Call Optimizations
   1717 //===----------------------------------------------------------------------===//
   1718 
   1719 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
   1720 
   1721 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
   1722                                                  int StreamArg) {
   1723   // Error reporting calls should be cold, mark them as such.
   1724   // This applies even to non-builtin calls: it is only a hint and applies to
   1725   // functions that the frontend might not understand as builtins.
   1726 
   1727   // This heuristic was suggested in:
   1728   // Improving Static Branch Prediction in a Compiler
   1729   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
   1730   // Proceedings of PACT'98, Oct. 1998, IEEE
   1731   Function *Callee = CI->getCalledFunction();
   1732 
   1733   if (!CI->hasFnAttr(Attribute::Cold) &&
   1734       isReportingError(Callee, CI, StreamArg)) {
   1735     CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
   1736   }
   1737 
   1738   return nullptr;
   1739 }
   1740 
   1741 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
   1742   if (!ColdErrorCalls || !Callee || !Callee->isDeclaration())
   1743     return false;
   1744 
   1745   if (StreamArg < 0)
   1746     return true;
   1747 
   1748   // These functions might be considered cold, but only if their stream
   1749   // argument is stderr.
   1750 
   1751   if (StreamArg >= (int)CI->getNumArgOperands())
   1752     return false;
   1753   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
   1754   if (!LI)
   1755     return false;
   1756   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
   1757   if (!GV || !GV->isDeclaration())
   1758     return false;
   1759   return GV->getName() == "stderr";
   1760 }
   1761 
   1762 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
   1763   // Check for a fixed format string.
   1764   StringRef FormatStr;
   1765   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
   1766     return nullptr;
   1767 
   1768   // Empty format string -> noop.
   1769   if (FormatStr.empty()) // Tolerate printf's declared void.
   1770     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
   1771 
   1772   // Do not do any of the following transformations if the printf return value
   1773   // is used, in general the printf return value is not compatible with either
   1774   // putchar() or puts().
   1775   if (!CI->use_empty())
   1776     return nullptr;
   1777 
   1778   // printf("x") -> putchar('x'), even for '%'.
   1779   if (FormatStr.size() == 1) {
   1780     Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TLI);
   1781     if (CI->use_empty() || !Res)
   1782       return Res;
   1783     return B.CreateIntCast(Res, CI->getType(), true);
   1784   }
   1785 
   1786   // printf("foo\n") --> puts("foo")
   1787   if (FormatStr[FormatStr.size() - 1] == '\n' &&
   1788       FormatStr.find('%') == StringRef::npos) { // No format characters.
   1789     // Create a string literal with no \n on it.  We expect the constant merge
   1790     // pass to be run after this pass, to merge duplicate strings.
   1791     FormatStr = FormatStr.drop_back();
   1792     Value *GV = B.CreateGlobalString(FormatStr, "str");
   1793     Value *NewCI = EmitPutS(GV, B, TLI);
   1794     return (CI->use_empty() || !NewCI)
   1795                ? NewCI
   1796                : ConstantInt::get(CI->getType(), FormatStr.size() + 1);
   1797   }
   1798 
   1799   // Optimize specific format strings.
   1800   // printf("%c", chr) --> putchar(chr)
   1801   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
   1802       CI->getArgOperand(1)->getType()->isIntegerTy()) {
   1803     Value *Res = EmitPutChar(CI->getArgOperand(1), B, TLI);
   1804 
   1805     if (CI->use_empty() || !Res)
   1806       return Res;
   1807     return B.CreateIntCast(Res, CI->getType(), true);
   1808   }
   1809 
   1810   // printf("%s\n", str) --> puts(str)
   1811   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
   1812       CI->getArgOperand(1)->getType()->isPointerTy()) {
   1813     return EmitPutS(CI->getArgOperand(1), B, TLI);
   1814   }
   1815   return nullptr;
   1816 }
   1817 
   1818 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
   1819 
   1820   Function *Callee = CI->getCalledFunction();
   1821   // Require one fixed pointer argument and an integer/void result.
   1822   FunctionType *FT = Callee->getFunctionType();
   1823   if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
   1824       !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
   1825     return nullptr;
   1826 
   1827   if (Value *V = optimizePrintFString(CI, B)) {
   1828     return V;
   1829   }
   1830 
   1831   // printf(format, ...) -> iprintf(format, ...) if no floating point
   1832   // arguments.
   1833   if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
   1834     Module *M = B.GetInsertBlock()->getParent()->getParent();
   1835     Constant *IPrintFFn =
   1836         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
   1837     CallInst *New = cast<CallInst>(CI->clone());
   1838     New->setCalledFunction(IPrintFFn);
   1839     B.Insert(New);
   1840     return New;
   1841   }
   1842   return nullptr;
   1843 }
   1844 
   1845 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
   1846   // Check for a fixed format string.
   1847   StringRef FormatStr;
   1848   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
   1849     return nullptr;
   1850 
   1851   // If we just have a format string (nothing else crazy) transform it.
   1852   if (CI->getNumArgOperands() == 2) {
   1853     // Make sure there's no % in the constant array.  We could try to handle
   1854     // %% -> % in the future if we cared.
   1855     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
   1856       if (FormatStr[i] == '%')
   1857         return nullptr; // we found a format specifier, bail out.
   1858 
   1859     // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
   1860     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
   1861                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
   1862                                     FormatStr.size() + 1),
   1863                    1); // Copy the null byte.
   1864     return ConstantInt::get(CI->getType(), FormatStr.size());
   1865   }
   1866 
   1867   // The remaining optimizations require the format string to be "%s" or "%c"
   1868   // and have an extra operand.
   1869   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
   1870       CI->getNumArgOperands() < 3)
   1871     return nullptr;
   1872 
   1873   // Decode the second character of the format string.
   1874   if (FormatStr[1] == 'c') {
   1875     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
   1876     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
   1877       return nullptr;
   1878     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
   1879     Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
   1880     B.CreateStore(V, Ptr);
   1881     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
   1882     B.CreateStore(B.getInt8(0), Ptr);
   1883 
   1884     return ConstantInt::get(CI->getType(), 1);
   1885   }
   1886 
   1887   if (FormatStr[1] == 's') {
   1888     // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
   1889     if (!CI->getArgOperand(2)->getType()->isPointerTy())
   1890       return nullptr;
   1891 
   1892     Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
   1893     if (!Len)
   1894       return nullptr;
   1895     Value *IncLen =
   1896         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
   1897     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
   1898 
   1899     // The sprintf result is the unincremented number of bytes in the string.
   1900     return B.CreateIntCast(Len, CI->getType(), false);
   1901   }
   1902   return nullptr;
   1903 }
   1904 
   1905 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
   1906   Function *Callee = CI->getCalledFunction();
   1907   // Require two fixed pointer arguments and an integer result.
   1908   FunctionType *FT = Callee->getFunctionType();
   1909   if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
   1910       !FT->getParamType(1)->isPointerTy() ||
   1911       !FT->getReturnType()->isIntegerTy())
   1912     return nullptr;
   1913 
   1914   if (Value *V = optimizeSPrintFString(CI, B)) {
   1915     return V;
   1916   }
   1917 
   1918   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
   1919   // point arguments.
   1920   if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
   1921     Module *M = B.GetInsertBlock()->getParent()->getParent();
   1922     Constant *SIPrintFFn =
   1923         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
   1924     CallInst *New = cast<CallInst>(CI->clone());
   1925     New->setCalledFunction(SIPrintFFn);
   1926     B.Insert(New);
   1927     return New;
   1928   }
   1929   return nullptr;
   1930 }
   1931 
   1932 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
   1933   optimizeErrorReporting(CI, B, 0);
   1934 
   1935   // All the optimizations depend on the format string.
   1936   StringRef FormatStr;
   1937   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
   1938     return nullptr;
   1939 
   1940   // Do not do any of the following transformations if the fprintf return
   1941   // value is used, in general the fprintf return value is not compatible
   1942   // with fwrite(), fputc() or fputs().
   1943   if (!CI->use_empty())
   1944     return nullptr;
   1945 
   1946   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
   1947   if (CI->getNumArgOperands() == 2) {
   1948     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
   1949       if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
   1950         return nullptr;        // We found a format specifier.
   1951 
   1952     return EmitFWrite(
   1953         CI->getArgOperand(1),
   1954         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
   1955         CI->getArgOperand(0), B, DL, TLI);
   1956   }
   1957 
   1958   // The remaining optimizations require the format string to be "%s" or "%c"
   1959   // and have an extra operand.
   1960   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
   1961       CI->getNumArgOperands() < 3)
   1962     return nullptr;
   1963 
   1964   // Decode the second character of the format string.
   1965   if (FormatStr[1] == 'c') {
   1966     // fprintf(F, "%c", chr) --> fputc(chr, F)
   1967     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
   1968       return nullptr;
   1969     return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
   1970   }
   1971 
   1972   if (FormatStr[1] == 's') {
   1973     // fprintf(F, "%s", str) --> fputs(str, F)
   1974     if (!CI->getArgOperand(2)->getType()->isPointerTy())
   1975       return nullptr;
   1976     return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
   1977   }
   1978   return nullptr;
   1979 }
   1980 
   1981 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
   1982   Function *Callee = CI->getCalledFunction();
   1983   // Require two fixed paramters as pointers and integer result.
   1984   FunctionType *FT = Callee->getFunctionType();
   1985   if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
   1986       !FT->getParamType(1)->isPointerTy() ||
   1987       !FT->getReturnType()->isIntegerTy())
   1988     return nullptr;
   1989 
   1990   if (Value *V = optimizeFPrintFString(CI, B)) {
   1991     return V;
   1992   }
   1993 
   1994   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
   1995   // floating point arguments.
   1996   if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
   1997     Module *M = B.GetInsertBlock()->getParent()->getParent();
   1998     Constant *FIPrintFFn =
   1999         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
   2000     CallInst *New = cast<CallInst>(CI->clone());
   2001     New->setCalledFunction(FIPrintFFn);
   2002     B.Insert(New);
   2003     return New;
   2004   }
   2005   return nullptr;
   2006 }
   2007 
   2008 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
   2009   optimizeErrorReporting(CI, B, 3);
   2010 
   2011   Function *Callee = CI->getCalledFunction();
   2012   // Require a pointer, an integer, an integer, a pointer, returning integer.
   2013   FunctionType *FT = Callee->getFunctionType();
   2014   if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
   2015       !FT->getParamType(1)->isIntegerTy() ||
   2016       !FT->getParamType(2)->isIntegerTy() ||
   2017       !FT->getParamType(3)->isPointerTy() ||
   2018       !FT->getReturnType()->isIntegerTy())
   2019     return nullptr;
   2020 
   2021   // Get the element size and count.
   2022   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
   2023   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
   2024   if (!SizeC || !CountC)
   2025     return nullptr;
   2026   uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
   2027 
   2028   // If this is writing zero records, remove the call (it's a noop).
   2029   if (Bytes == 0)
   2030     return ConstantInt::get(CI->getType(), 0);
   2031 
   2032   // If this is writing one byte, turn it into fputc.
   2033   // This optimisation is only valid, if the return value is unused.
   2034   if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
   2035     Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
   2036     Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TLI);
   2037     return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
   2038   }
   2039 
   2040   return nullptr;
   2041 }
   2042 
   2043 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
   2044   optimizeErrorReporting(CI, B, 1);
   2045 
   2046   Function *Callee = CI->getCalledFunction();
   2047 
   2048   // Require two pointers.  Also, we can't optimize if return value is used.
   2049   FunctionType *FT = Callee->getFunctionType();
   2050   if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
   2051       !FT->getParamType(1)->isPointerTy() || !CI->use_empty())
   2052     return nullptr;
   2053 
   2054   // fputs(s,F) --> fwrite(s,1,strlen(s),F)
   2055   uint64_t Len = GetStringLength(CI->getArgOperand(0));
   2056   if (!Len)
   2057     return nullptr;
   2058 
   2059   // Known to have no uses (see above).
   2060   return EmitFWrite(
   2061       CI->getArgOperand(0),
   2062       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
   2063       CI->getArgOperand(1), B, DL, TLI);
   2064 }
   2065 
   2066 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
   2067   Function *Callee = CI->getCalledFunction();
   2068   // Require one fixed pointer argument and an integer/void result.
   2069   FunctionType *FT = Callee->getFunctionType();
   2070   if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
   2071       !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
   2072     return nullptr;
   2073 
   2074   // Check for a constant string.
   2075   StringRef Str;
   2076   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
   2077     return nullptr;
   2078 
   2079   if (Str.empty() && CI->use_empty()) {
   2080     // puts("") -> putchar('\n')
   2081     Value *Res = EmitPutChar(B.getInt32('\n'), B, TLI);
   2082     if (CI->use_empty() || !Res)
   2083       return Res;
   2084     return B.CreateIntCast(Res, CI->getType(), true);
   2085   }
   2086 
   2087   return nullptr;
   2088 }
   2089 
   2090 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
   2091   LibFunc::Func Func;
   2092   SmallString<20> FloatFuncName = FuncName;
   2093   FloatFuncName += 'f';
   2094   if (TLI->getLibFunc(FloatFuncName, Func))
   2095     return TLI->has(Func);
   2096   return false;
   2097 }
   2098 
   2099 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
   2100                                                       IRBuilder<> &Builder) {
   2101   LibFunc::Func Func;
   2102   Function *Callee = CI->getCalledFunction();
   2103   StringRef FuncName = Callee->getName();
   2104 
   2105   // Check for string/memory library functions.
   2106   if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
   2107     // Make sure we never change the calling convention.
   2108     assert((ignoreCallingConv(Func) ||
   2109             CI->getCallingConv() == llvm::CallingConv::C) &&
   2110       "Optimizing string/memory libcall would change the calling convention");
   2111     switch (Func) {
   2112     case LibFunc::strcat:
   2113       return optimizeStrCat(CI, Builder);
   2114     case LibFunc::strncat:
   2115       return optimizeStrNCat(CI, Builder);
   2116     case LibFunc::strchr:
   2117       return optimizeStrChr(CI, Builder);
   2118     case LibFunc::strrchr:
   2119       return optimizeStrRChr(CI, Builder);
   2120     case LibFunc::strcmp:
   2121       return optimizeStrCmp(CI, Builder);
   2122     case LibFunc::strncmp:
   2123       return optimizeStrNCmp(CI, Builder);
   2124     case LibFunc::strcpy:
   2125       return optimizeStrCpy(CI, Builder);
   2126     case LibFunc::stpcpy:
   2127       return optimizeStpCpy(CI, Builder);
   2128     case LibFunc::strncpy:
   2129       return optimizeStrNCpy(CI, Builder);
   2130     case LibFunc::strlen:
   2131       return optimizeStrLen(CI, Builder);
   2132     case LibFunc::strpbrk:
   2133       return optimizeStrPBrk(CI, Builder);
   2134     case LibFunc::strtol:
   2135     case LibFunc::strtod:
   2136     case LibFunc::strtof:
   2137     case LibFunc::strtoul:
   2138     case LibFunc::strtoll:
   2139     case LibFunc::strtold:
   2140     case LibFunc::strtoull:
   2141       return optimizeStrTo(CI, Builder);
   2142     case LibFunc::strspn:
   2143       return optimizeStrSpn(CI, Builder);
   2144     case LibFunc::strcspn:
   2145       return optimizeStrCSpn(CI, Builder);
   2146     case LibFunc::strstr:
   2147       return optimizeStrStr(CI, Builder);
   2148     case LibFunc::memchr:
   2149       return optimizeMemChr(CI, Builder);
   2150     case LibFunc::memcmp:
   2151       return optimizeMemCmp(CI, Builder);
   2152     case LibFunc::memcpy:
   2153       return optimizeMemCpy(CI, Builder);
   2154     case LibFunc::memmove:
   2155       return optimizeMemMove(CI, Builder);
   2156     case LibFunc::memset:
   2157       return optimizeMemSet(CI, Builder);
   2158     default:
   2159       break;
   2160     }
   2161   }
   2162   return nullptr;
   2163 }
   2164 
   2165 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
   2166   if (CI->isNoBuiltin())
   2167     return nullptr;
   2168 
   2169   LibFunc::Func Func;
   2170   Function *Callee = CI->getCalledFunction();
   2171   StringRef FuncName = Callee->getName();
   2172   IRBuilder<> Builder(CI);
   2173   bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
   2174 
   2175   // Command-line parameter overrides function attribute.
   2176   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
   2177     UnsafeFPShrink = EnableUnsafeFPShrink;
   2178   else if (canUseUnsafeFPMath(Callee))
   2179     UnsafeFPShrink = true;
   2180 
   2181   // First, check for intrinsics.
   2182   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
   2183     if (!isCallingConvC)
   2184       return nullptr;
   2185     switch (II->getIntrinsicID()) {
   2186     case Intrinsic::pow:
   2187       return optimizePow(CI, Builder);
   2188     case Intrinsic::exp2:
   2189       return optimizeExp2(CI, Builder);
   2190     case Intrinsic::fabs:
   2191       return optimizeFabs(CI, Builder);
   2192     case Intrinsic::log:
   2193       return optimizeLog(CI, Builder);
   2194     case Intrinsic::sqrt:
   2195       return optimizeSqrt(CI, Builder);
   2196     default:
   2197       return nullptr;
   2198     }
   2199   }
   2200 
   2201   // Also try to simplify calls to fortified library functions.
   2202   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
   2203     // Try to further simplify the result.
   2204     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
   2205     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
   2206       // Use an IR Builder from SimplifiedCI if available instead of CI
   2207       // to guarantee we reach all uses we might replace later on.
   2208       IRBuilder<> TmpBuilder(SimplifiedCI);
   2209       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
   2210         // If we were able to further simplify, remove the now redundant call.
   2211         SimplifiedCI->replaceAllUsesWith(V);
   2212         SimplifiedCI->eraseFromParent();
   2213         return V;
   2214       }
   2215     }
   2216     return SimplifiedFortifiedCI;
   2217   }
   2218 
   2219   // Then check for known library functions.
   2220   if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
   2221     // We never change the calling convention.
   2222     if (!ignoreCallingConv(Func) && !isCallingConvC)
   2223       return nullptr;
   2224     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
   2225       return V;
   2226     switch (Func) {
   2227     case LibFunc::cosf:
   2228     case LibFunc::cos:
   2229     case LibFunc::cosl:
   2230       return optimizeCos(CI, Builder);
   2231     case LibFunc::sinpif:
   2232     case LibFunc::sinpi:
   2233     case LibFunc::cospif:
   2234     case LibFunc::cospi:
   2235       return optimizeSinCosPi(CI, Builder);
   2236     case LibFunc::powf:
   2237     case LibFunc::pow:
   2238     case LibFunc::powl:
   2239       return optimizePow(CI, Builder);
   2240     case LibFunc::exp2l:
   2241     case LibFunc::exp2:
   2242     case LibFunc::exp2f:
   2243       return optimizeExp2(CI, Builder);
   2244     case LibFunc::fabsf:
   2245     case LibFunc::fabs:
   2246     case LibFunc::fabsl:
   2247       return optimizeFabs(CI, Builder);
   2248     case LibFunc::sqrtf:
   2249     case LibFunc::sqrt:
   2250     case LibFunc::sqrtl:
   2251       return optimizeSqrt(CI, Builder);
   2252     case LibFunc::ffs:
   2253     case LibFunc::ffsl:
   2254     case LibFunc::ffsll:
   2255       return optimizeFFS(CI, Builder);
   2256     case LibFunc::abs:
   2257     case LibFunc::labs:
   2258     case LibFunc::llabs:
   2259       return optimizeAbs(CI, Builder);
   2260     case LibFunc::isdigit:
   2261       return optimizeIsDigit(CI, Builder);
   2262     case LibFunc::isascii:
   2263       return optimizeIsAscii(CI, Builder);
   2264     case LibFunc::toascii:
   2265       return optimizeToAscii(CI, Builder);
   2266     case LibFunc::printf:
   2267       return optimizePrintF(CI, Builder);
   2268     case LibFunc::sprintf:
   2269       return optimizeSPrintF(CI, Builder);
   2270     case LibFunc::fprintf:
   2271       return optimizeFPrintF(CI, Builder);
   2272     case LibFunc::fwrite:
   2273       return optimizeFWrite(CI, Builder);
   2274     case LibFunc::fputs:
   2275       return optimizeFPuts(CI, Builder);
   2276     case LibFunc::log:
   2277     case LibFunc::log10:
   2278     case LibFunc::log1p:
   2279     case LibFunc::log2:
   2280     case LibFunc::logb:
   2281       return optimizeLog(CI, Builder);
   2282     case LibFunc::puts:
   2283       return optimizePuts(CI, Builder);
   2284     case LibFunc::tan:
   2285     case LibFunc::tanf:
   2286     case LibFunc::tanl:
   2287       return optimizeTan(CI, Builder);
   2288     case LibFunc::perror:
   2289       return optimizeErrorReporting(CI, Builder);
   2290     case LibFunc::vfprintf:
   2291     case LibFunc::fiprintf:
   2292       return optimizeErrorReporting(CI, Builder, 0);
   2293     case LibFunc::fputc:
   2294       return optimizeErrorReporting(CI, Builder, 1);
   2295     case LibFunc::ceil:
   2296     case LibFunc::floor:
   2297     case LibFunc::rint:
   2298     case LibFunc::round:
   2299     case LibFunc::nearbyint:
   2300     case LibFunc::trunc:
   2301       if (hasFloatVersion(FuncName))
   2302         return optimizeUnaryDoubleFP(CI, Builder, false);
   2303       return nullptr;
   2304     case LibFunc::acos:
   2305     case LibFunc::acosh:
   2306     case LibFunc::asin:
   2307     case LibFunc::asinh:
   2308     case LibFunc::atan:
   2309     case LibFunc::atanh:
   2310     case LibFunc::cbrt:
   2311     case LibFunc::cosh:
   2312     case LibFunc::exp:
   2313     case LibFunc::exp10:
   2314     case LibFunc::expm1:
   2315     case LibFunc::sin:
   2316     case LibFunc::sinh:
   2317     case LibFunc::tanh:
   2318       if (UnsafeFPShrink && hasFloatVersion(FuncName))
   2319         return optimizeUnaryDoubleFP(CI, Builder, true);
   2320       return nullptr;
   2321     case LibFunc::copysign:
   2322       if (hasFloatVersion(FuncName))
   2323         return optimizeBinaryDoubleFP(CI, Builder);
   2324       return nullptr;
   2325     case LibFunc::fminf:
   2326     case LibFunc::fmin:
   2327     case LibFunc::fminl:
   2328     case LibFunc::fmaxf:
   2329     case LibFunc::fmax:
   2330     case LibFunc::fmaxl:
   2331       return optimizeFMinFMax(CI, Builder);
   2332     default:
   2333       return nullptr;
   2334     }
   2335   }
   2336   return nullptr;
   2337 }
   2338 
   2339 LibCallSimplifier::LibCallSimplifier(
   2340     const DataLayout &DL, const TargetLibraryInfo *TLI,
   2341     function_ref<void(Instruction *, Value *)> Replacer)
   2342     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false),
   2343       Replacer(Replacer) {}
   2344 
   2345 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
   2346   // Indirect through the replacer used in this instance.
   2347   Replacer(I, With);
   2348 }
   2349 
   2350 // TODO:
   2351 //   Additional cases that we need to add to this file:
   2352 //
   2353 // cbrt:
   2354 //   * cbrt(expN(X))  -> expN(x/3)
   2355 //   * cbrt(sqrt(x))  -> pow(x,1/6)
   2356 //   * cbrt(cbrt(x))  -> pow(x,1/9)
   2357 //
   2358 // exp, expf, expl:
   2359 //   * exp(log(x))  -> x
   2360 //
   2361 // log, logf, logl:
   2362 //   * log(exp(x))   -> x
   2363 //   * log(exp(y))   -> y*log(e)
   2364 //   * log(exp10(y)) -> y*log(10)
   2365 //   * log(sqrt(x))  -> 0.5*log(x)
   2366 //
   2367 // lround, lroundf, lroundl:
   2368 //   * lround(cnst) -> cnst'
   2369 //
   2370 // pow, powf, powl:
   2371 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
   2372 //   * pow(pow(x,y),z)-> pow(x,y*z)
   2373 //
   2374 // round, roundf, roundl:
   2375 //   * round(cnst) -> cnst'
   2376 //
   2377 // signbit:
   2378 //   * signbit(cnst) -> cnst'
   2379 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
   2380 //
   2381 // sqrt, sqrtf, sqrtl:
   2382 //   * sqrt(expN(x))  -> expN(x*0.5)
   2383 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
   2384 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
   2385 //
   2386 // trunc, truncf, truncl:
   2387 //   * trunc(cnst) -> cnst'
   2388 //
   2389 //
   2390 
   2391 //===----------------------------------------------------------------------===//
   2392 // Fortified Library Call Optimizations
   2393 //===----------------------------------------------------------------------===//
   2394 
   2395 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
   2396                                                          unsigned ObjSizeOp,
   2397                                                          unsigned SizeOp,
   2398                                                          bool isString) {
   2399   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
   2400     return true;
   2401   if (ConstantInt *ObjSizeCI =
   2402           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
   2403     if (ObjSizeCI->isAllOnesValue())
   2404       return true;
   2405     // If the object size wasn't -1 (unknown), bail out if we were asked to.
   2406     if (OnlyLowerUnknownSize)
   2407       return false;
   2408     if (isString) {
   2409       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
   2410       // If the length is 0 we don't know how long it is and so we can't
   2411       // remove the check.
   2412       if (Len == 0)
   2413         return false;
   2414       return ObjSizeCI->getZExtValue() >= Len;
   2415     }
   2416     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
   2417       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
   2418   }
   2419   return false;
   2420 }
   2421 
   2422 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B) {
   2423   Function *Callee = CI->getCalledFunction();
   2424 
   2425   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy_chk))
   2426     return nullptr;
   2427 
   2428   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
   2429     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
   2430                    CI->getArgOperand(2), 1);
   2431     return CI->getArgOperand(0);
   2432   }
   2433   return nullptr;
   2434 }
   2435 
   2436 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B) {
   2437   Function *Callee = CI->getCalledFunction();
   2438 
   2439   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove_chk))
   2440     return nullptr;
   2441 
   2442   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
   2443     B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
   2444                     CI->getArgOperand(2), 1);
   2445     return CI->getArgOperand(0);
   2446   }
   2447   return nullptr;
   2448 }
   2449 
   2450 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<> &B) {
   2451   Function *Callee = CI->getCalledFunction();
   2452 
   2453   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset_chk))
   2454     return nullptr;
   2455 
   2456   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
   2457     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
   2458     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
   2459     return CI->getArgOperand(0);
   2460   }
   2461   return nullptr;
   2462 }
   2463 
   2464 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
   2465                                                       IRBuilder<> &B,
   2466                                                       LibFunc::Func Func) {
   2467   Function *Callee = CI->getCalledFunction();
   2468   StringRef Name = Callee->getName();
   2469   const DataLayout &DL = CI->getModule()->getDataLayout();
   2470 
   2471   if (!checkStringCopyLibFuncSignature(Callee, Func))
   2472     return nullptr;
   2473 
   2474   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
   2475         *ObjSize = CI->getArgOperand(2);
   2476 
   2477   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
   2478   if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
   2479     Value *StrLen = EmitStrLen(Src, B, DL, TLI);
   2480     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
   2481   }
   2482 
   2483   // If a) we don't have any length information, or b) we know this will
   2484   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
   2485   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
   2486   // TODO: It might be nice to get a maximum length out of the possible
   2487   // string lengths for varying.
   2488   if (isFortifiedCallFoldable(CI, 2, 1, true))
   2489     return EmitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
   2490 
   2491   if (OnlyLowerUnknownSize)
   2492     return nullptr;
   2493 
   2494   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
   2495   uint64_t Len = GetStringLength(Src);
   2496   if (Len == 0)
   2497     return nullptr;
   2498 
   2499   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
   2500   Value *LenV = ConstantInt::get(SizeTTy, Len);
   2501   Value *Ret = EmitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
   2502   // If the function was an __stpcpy_chk, and we were able to fold it into
   2503   // a __memcpy_chk, we still need to return the correct end pointer.
   2504   if (Ret && Func == LibFunc::stpcpy_chk)
   2505     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
   2506   return Ret;
   2507 }
   2508 
   2509 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
   2510                                                        IRBuilder<> &B,
   2511                                                        LibFunc::Func Func) {
   2512   Function *Callee = CI->getCalledFunction();
   2513   StringRef Name = Callee->getName();
   2514 
   2515   if (!checkStringCopyLibFuncSignature(Callee, Func))
   2516     return nullptr;
   2517   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
   2518     Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
   2519                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
   2520     return Ret;
   2521   }
   2522   return nullptr;
   2523 }
   2524 
   2525 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
   2526   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
   2527   // Some clang users checked for _chk libcall availability using:
   2528   //   __has_builtin(__builtin___memcpy_chk)
   2529   // When compiling with -fno-builtin, this is always true.
   2530   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
   2531   // end up with fortified libcalls, which isn't acceptable in a freestanding
   2532   // environment which only provides their non-fortified counterparts.
   2533   //
   2534   // Until we change clang and/or teach external users to check for availability
   2535   // differently, disregard the "nobuiltin" attribute and TLI::has.
   2536   //
   2537   // PR23093.
   2538 
   2539   LibFunc::Func Func;
   2540   Function *Callee = CI->getCalledFunction();
   2541   StringRef FuncName = Callee->getName();
   2542   IRBuilder<> Builder(CI);
   2543   bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
   2544 
   2545   // First, check that this is a known library functions.
   2546   if (!TLI->getLibFunc(FuncName, Func))
   2547     return nullptr;
   2548 
   2549   // We never change the calling convention.
   2550   if (!ignoreCallingConv(Func) && !isCallingConvC)
   2551     return nullptr;
   2552 
   2553   switch (Func) {
   2554   case LibFunc::memcpy_chk:
   2555     return optimizeMemCpyChk(CI, Builder);
   2556   case LibFunc::memmove_chk:
   2557     return optimizeMemMoveChk(CI, Builder);
   2558   case LibFunc::memset_chk:
   2559     return optimizeMemSetChk(CI, Builder);
   2560   case LibFunc::stpcpy_chk:
   2561   case LibFunc::strcpy_chk:
   2562     return optimizeStrpCpyChk(CI, Builder, Func);
   2563   case LibFunc::stpncpy_chk:
   2564   case LibFunc::strncpy_chk:
   2565     return optimizeStrpNCpyChk(CI, Builder, Func);
   2566   default:
   2567     break;
   2568   }
   2569   return nullptr;
   2570 }
   2571 
   2572 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
   2573     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
   2574     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
   2575