1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is a utility pass used for testing the InstructionSimplify analysis. 11 // The analysis is applied to every instruction, and if it simplifies then the 12 // instruction is replaced by the simplification. If you are looking for a pass 13 // that performs serious instruction folding, use the instcombine pass instead. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DiagnosticInfo.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/Allocator.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Transforms/Utils/BuildLibCalls.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 37 using namespace llvm; 38 using namespace PatternMatch; 39 40 static cl::opt<bool> 41 ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden, 42 cl::desc("Treat error-reporting calls as cold")); 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 51 //===----------------------------------------------------------------------===// 52 // Helper Functions 53 //===----------------------------------------------------------------------===// 54 55 static bool ignoreCallingConv(LibFunc::Func Func) { 56 return Func == LibFunc::abs || Func == LibFunc::labs || 57 Func == LibFunc::llabs || Func == LibFunc::strlen; 58 } 59 60 /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 61 /// value is equal or not-equal to zero. 62 static bool isOnlyUsedInZeroEqualityComparison(Value *V) { 63 for (User *U : V->users()) { 64 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 65 if (IC->isEquality()) 66 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 67 if (C->isNullValue()) 68 continue; 69 // Unknown instruction. 70 return false; 71 } 72 return true; 73 } 74 75 /// isOnlyUsedInEqualityComparison - Return true if it is only used in equality 76 /// comparisons with With. 77 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 78 for (User *U : V->users()) { 79 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 80 if (IC->isEquality() && IC->getOperand(1) == With) 81 continue; 82 // Unknown instruction. 83 return false; 84 } 85 return true; 86 } 87 88 static bool callHasFloatingPointArgument(const CallInst *CI) { 89 return std::any_of(CI->op_begin(), CI->op_end(), [](const Use &OI) { 90 return OI->getType()->isFloatingPointTy(); 91 }); 92 } 93 94 /// \brief Check whether the overloaded unary floating point function 95 /// corresponding to \a Ty is available. 96 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, 97 LibFunc::Func DoubleFn, LibFunc::Func FloatFn, 98 LibFunc::Func LongDoubleFn) { 99 switch (Ty->getTypeID()) { 100 case Type::FloatTyID: 101 return TLI->has(FloatFn); 102 case Type::DoubleTyID: 103 return TLI->has(DoubleFn); 104 default: 105 return TLI->has(LongDoubleFn); 106 } 107 } 108 109 /// \brief Check whether we can use unsafe floating point math for 110 /// the function passed as input. 111 static bool canUseUnsafeFPMath(Function *F) { 112 113 // FIXME: For finer-grain optimization, we need intrinsics to have the same 114 // fast-math flag decorations that are applied to FP instructions. For now, 115 // we have to rely on the function-level unsafe-fp-math attribute to do this 116 // optimization because there's no other way to express that the call can be 117 // relaxed. 118 if (F->hasFnAttribute("unsafe-fp-math")) { 119 Attribute Attr = F->getFnAttribute("unsafe-fp-math"); 120 if (Attr.getValueAsString() == "true") 121 return true; 122 } 123 return false; 124 } 125 126 /// \brief Returns whether \p F matches the signature expected for the 127 /// string/memory copying library function \p Func. 128 /// Acceptable functions are st[rp][n]?cpy, memove, memcpy, and memset. 129 /// Their fortified (_chk) counterparts are also accepted. 130 static bool checkStringCopyLibFuncSignature(Function *F, LibFunc::Func Func) { 131 const DataLayout &DL = F->getParent()->getDataLayout(); 132 FunctionType *FT = F->getFunctionType(); 133 LLVMContext &Context = F->getContext(); 134 Type *PCharTy = Type::getInt8PtrTy(Context); 135 Type *SizeTTy = DL.getIntPtrType(Context); 136 unsigned NumParams = FT->getNumParams(); 137 138 // All string libfuncs return the same type as the first parameter. 139 if (FT->getReturnType() != FT->getParamType(0)) 140 return false; 141 142 switch (Func) { 143 default: 144 llvm_unreachable("Can't check signature for non-string-copy libfunc."); 145 case LibFunc::stpncpy_chk: 146 case LibFunc::strncpy_chk: 147 --NumParams; // fallthrough 148 case LibFunc::stpncpy: 149 case LibFunc::strncpy: { 150 if (NumParams != 3 || FT->getParamType(0) != FT->getParamType(1) || 151 FT->getParamType(0) != PCharTy || !FT->getParamType(2)->isIntegerTy()) 152 return false; 153 break; 154 } 155 case LibFunc::strcpy_chk: 156 case LibFunc::stpcpy_chk: 157 --NumParams; // fallthrough 158 case LibFunc::stpcpy: 159 case LibFunc::strcpy: { 160 if (NumParams != 2 || FT->getParamType(0) != FT->getParamType(1) || 161 FT->getParamType(0) != PCharTy) 162 return false; 163 break; 164 } 165 case LibFunc::memmove_chk: 166 case LibFunc::memcpy_chk: 167 --NumParams; // fallthrough 168 case LibFunc::memmove: 169 case LibFunc::memcpy: { 170 if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() || 171 !FT->getParamType(1)->isPointerTy() || FT->getParamType(2) != SizeTTy) 172 return false; 173 break; 174 } 175 case LibFunc::memset_chk: 176 --NumParams; // fallthrough 177 case LibFunc::memset: { 178 if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() || 179 !FT->getParamType(1)->isIntegerTy() || FT->getParamType(2) != SizeTTy) 180 return false; 181 break; 182 } 183 } 184 // If this is a fortified libcall, the last parameter is a size_t. 185 if (NumParams == FT->getNumParams() - 1) 186 return FT->getParamType(FT->getNumParams() - 1) == SizeTTy; 187 return true; 188 } 189 190 //===----------------------------------------------------------------------===// 191 // String and Memory Library Call Optimizations 192 //===----------------------------------------------------------------------===// 193 194 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 195 Function *Callee = CI->getCalledFunction(); 196 // Verify the "strcat" function prototype. 197 FunctionType *FT = Callee->getFunctionType(); 198 if (FT->getNumParams() != 2|| 199 FT->getReturnType() != B.getInt8PtrTy() || 200 FT->getParamType(0) != FT->getReturnType() || 201 FT->getParamType(1) != FT->getReturnType()) 202 return nullptr; 203 204 // Extract some information from the instruction 205 Value *Dst = CI->getArgOperand(0); 206 Value *Src = CI->getArgOperand(1); 207 208 // See if we can get the length of the input string. 209 uint64_t Len = GetStringLength(Src); 210 if (Len == 0) 211 return nullptr; 212 --Len; // Unbias length. 213 214 // Handle the simple, do-nothing case: strcat(x, "") -> x 215 if (Len == 0) 216 return Dst; 217 218 return emitStrLenMemCpy(Src, Dst, Len, B); 219 } 220 221 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 222 IRBuilder<> &B) { 223 // We need to find the end of the destination string. That's where the 224 // memory is to be moved to. We just generate a call to strlen. 225 Value *DstLen = EmitStrLen(Dst, B, DL, TLI); 226 if (!DstLen) 227 return nullptr; 228 229 // Now that we have the destination's length, we must index into the 230 // destination's pointer to get the actual memcpy destination (end of 231 // the string .. we're concatenating). 232 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 233 234 // We have enough information to now generate the memcpy call to do the 235 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 236 B.CreateMemCpy(CpyDst, Src, 237 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1), 238 1); 239 return Dst; 240 } 241 242 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 243 Function *Callee = CI->getCalledFunction(); 244 // Verify the "strncat" function prototype. 245 FunctionType *FT = Callee->getFunctionType(); 246 if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() || 247 FT->getParamType(0) != FT->getReturnType() || 248 FT->getParamType(1) != FT->getReturnType() || 249 !FT->getParamType(2)->isIntegerTy()) 250 return nullptr; 251 252 // Extract some information from the instruction 253 Value *Dst = CI->getArgOperand(0); 254 Value *Src = CI->getArgOperand(1); 255 uint64_t Len; 256 257 // We don't do anything if length is not constant 258 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 259 Len = LengthArg->getZExtValue(); 260 else 261 return nullptr; 262 263 // See if we can get the length of the input string. 264 uint64_t SrcLen = GetStringLength(Src); 265 if (SrcLen == 0) 266 return nullptr; 267 --SrcLen; // Unbias length. 268 269 // Handle the simple, do-nothing cases: 270 // strncat(x, "", c) -> x 271 // strncat(x, c, 0) -> x 272 if (SrcLen == 0 || Len == 0) 273 return Dst; 274 275 // We don't optimize this case 276 if (Len < SrcLen) 277 return nullptr; 278 279 // strncat(x, s, c) -> strcat(x, s) 280 // s is constant so the strcat can be optimized further 281 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 282 } 283 284 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 285 Function *Callee = CI->getCalledFunction(); 286 // Verify the "strchr" function prototype. 287 FunctionType *FT = Callee->getFunctionType(); 288 if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || 289 FT->getParamType(0) != FT->getReturnType() || 290 !FT->getParamType(1)->isIntegerTy(32)) 291 return nullptr; 292 293 Value *SrcStr = CI->getArgOperand(0); 294 295 // If the second operand is non-constant, see if we can compute the length 296 // of the input string and turn this into memchr. 297 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 298 if (!CharC) { 299 uint64_t Len = GetStringLength(SrcStr); 300 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 301 return nullptr; 302 303 return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 304 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 305 B, DL, TLI); 306 } 307 308 // Otherwise, the character is a constant, see if the first argument is 309 // a string literal. If so, we can constant fold. 310 StringRef Str; 311 if (!getConstantStringInfo(SrcStr, Str)) { 312 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 313 return B.CreateGEP(B.getInt8Ty(), SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr"); 314 return nullptr; 315 } 316 317 // Compute the offset, make sure to handle the case when we're searching for 318 // zero (a weird way to spell strlen). 319 size_t I = (0xFF & CharC->getSExtValue()) == 0 320 ? Str.size() 321 : Str.find(CharC->getSExtValue()); 322 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 323 return Constant::getNullValue(CI->getType()); 324 325 // strchr(s+n,c) -> gep(s+n+i,c) 326 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 327 } 328 329 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 330 Function *Callee = CI->getCalledFunction(); 331 // Verify the "strrchr" function prototype. 332 FunctionType *FT = Callee->getFunctionType(); 333 if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || 334 FT->getParamType(0) != FT->getReturnType() || 335 !FT->getParamType(1)->isIntegerTy(32)) 336 return nullptr; 337 338 Value *SrcStr = CI->getArgOperand(0); 339 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 340 341 // Cannot fold anything if we're not looking for a constant. 342 if (!CharC) 343 return nullptr; 344 345 StringRef Str; 346 if (!getConstantStringInfo(SrcStr, Str)) { 347 // strrchr(s, 0) -> strchr(s, 0) 348 if (CharC->isZero()) 349 return EmitStrChr(SrcStr, '\0', B, TLI); 350 return nullptr; 351 } 352 353 // Compute the offset. 354 size_t I = (0xFF & CharC->getSExtValue()) == 0 355 ? Str.size() 356 : Str.rfind(CharC->getSExtValue()); 357 if (I == StringRef::npos) // Didn't find the char. Return null. 358 return Constant::getNullValue(CI->getType()); 359 360 // strrchr(s+n,c) -> gep(s+n+i,c) 361 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 362 } 363 364 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 365 Function *Callee = CI->getCalledFunction(); 366 // Verify the "strcmp" function prototype. 367 FunctionType *FT = Callee->getFunctionType(); 368 if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) || 369 FT->getParamType(0) != FT->getParamType(1) || 370 FT->getParamType(0) != B.getInt8PtrTy()) 371 return nullptr; 372 373 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 374 if (Str1P == Str2P) // strcmp(x,x) -> 0 375 return ConstantInt::get(CI->getType(), 0); 376 377 StringRef Str1, Str2; 378 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 379 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 380 381 // strcmp(x, y) -> cnst (if both x and y are constant strings) 382 if (HasStr1 && HasStr2) 383 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 384 385 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 386 return B.CreateNeg( 387 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 388 389 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 390 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 391 392 // strcmp(P, "x") -> memcmp(P, "x", 2) 393 uint64_t Len1 = GetStringLength(Str1P); 394 uint64_t Len2 = GetStringLength(Str2P); 395 if (Len1 && Len2) { 396 return EmitMemCmp(Str1P, Str2P, 397 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 398 std::min(Len1, Len2)), 399 B, DL, TLI); 400 } 401 402 return nullptr; 403 } 404 405 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 406 Function *Callee = CI->getCalledFunction(); 407 // Verify the "strncmp" function prototype. 408 FunctionType *FT = Callee->getFunctionType(); 409 if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) || 410 FT->getParamType(0) != FT->getParamType(1) || 411 FT->getParamType(0) != B.getInt8PtrTy() || 412 !FT->getParamType(2)->isIntegerTy()) 413 return nullptr; 414 415 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 416 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 417 return ConstantInt::get(CI->getType(), 0); 418 419 // Get the length argument if it is constant. 420 uint64_t Length; 421 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 422 Length = LengthArg->getZExtValue(); 423 else 424 return nullptr; 425 426 if (Length == 0) // strncmp(x,y,0) -> 0 427 return ConstantInt::get(CI->getType(), 0); 428 429 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 430 return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 431 432 StringRef Str1, Str2; 433 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 434 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 435 436 // strncmp(x, y) -> cnst (if both x and y are constant strings) 437 if (HasStr1 && HasStr2) { 438 StringRef SubStr1 = Str1.substr(0, Length); 439 StringRef SubStr2 = Str2.substr(0, Length); 440 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 441 } 442 443 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 444 return B.CreateNeg( 445 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 446 447 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 448 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 449 450 return nullptr; 451 } 452 453 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 454 Function *Callee = CI->getCalledFunction(); 455 456 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strcpy)) 457 return nullptr; 458 459 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 460 if (Dst == Src) // strcpy(x,x) -> x 461 return Src; 462 463 // See if we can get the length of the input string. 464 uint64_t Len = GetStringLength(Src); 465 if (Len == 0) 466 return nullptr; 467 468 // We have enough information to now generate the memcpy call to do the 469 // copy for us. Make a memcpy to copy the nul byte with align = 1. 470 B.CreateMemCpy(Dst, Src, 471 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1); 472 return Dst; 473 } 474 475 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 476 Function *Callee = CI->getCalledFunction(); 477 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::stpcpy)) 478 return nullptr; 479 480 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 481 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 482 Value *StrLen = EmitStrLen(Src, B, DL, TLI); 483 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 484 } 485 486 // See if we can get the length of the input string. 487 uint64_t Len = GetStringLength(Src); 488 if (Len == 0) 489 return nullptr; 490 491 Type *PT = Callee->getFunctionType()->getParamType(0); 492 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 493 Value *DstEnd = 494 B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 495 496 // We have enough information to now generate the memcpy call to do the 497 // copy for us. Make a memcpy to copy the nul byte with align = 1. 498 B.CreateMemCpy(Dst, Src, LenV, 1); 499 return DstEnd; 500 } 501 502 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 503 Function *Callee = CI->getCalledFunction(); 504 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strncpy)) 505 return nullptr; 506 507 Value *Dst = CI->getArgOperand(0); 508 Value *Src = CI->getArgOperand(1); 509 Value *LenOp = CI->getArgOperand(2); 510 511 // See if we can get the length of the input string. 512 uint64_t SrcLen = GetStringLength(Src); 513 if (SrcLen == 0) 514 return nullptr; 515 --SrcLen; 516 517 if (SrcLen == 0) { 518 // strncpy(x, "", y) -> memset(x, '\0', y, 1) 519 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 520 return Dst; 521 } 522 523 uint64_t Len; 524 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 525 Len = LengthArg->getZExtValue(); 526 else 527 return nullptr; 528 529 if (Len == 0) 530 return Dst; // strncpy(x, y, 0) -> x 531 532 // Let strncpy handle the zero padding 533 if (Len > SrcLen + 1) 534 return nullptr; 535 536 Type *PT = Callee->getFunctionType()->getParamType(0); 537 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] 538 B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1); 539 540 return Dst; 541 } 542 543 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 544 Function *Callee = CI->getCalledFunction(); 545 FunctionType *FT = Callee->getFunctionType(); 546 if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() || 547 !FT->getReturnType()->isIntegerTy()) 548 return nullptr; 549 550 Value *Src = CI->getArgOperand(0); 551 552 // Constant folding: strlen("xyz") -> 3 553 if (uint64_t Len = GetStringLength(Src)) 554 return ConstantInt::get(CI->getType(), Len - 1); 555 556 // strlen(x?"foo":"bars") --> x ? 3 : 4 557 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 558 uint64_t LenTrue = GetStringLength(SI->getTrueValue()); 559 uint64_t LenFalse = GetStringLength(SI->getFalseValue()); 560 if (LenTrue && LenFalse) { 561 Function *Caller = CI->getParent()->getParent(); 562 emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller, 563 SI->getDebugLoc(), 564 "folded strlen(select) to select of constants"); 565 return B.CreateSelect(SI->getCondition(), 566 ConstantInt::get(CI->getType(), LenTrue - 1), 567 ConstantInt::get(CI->getType(), LenFalse - 1)); 568 } 569 } 570 571 // strlen(x) != 0 --> *x != 0 572 // strlen(x) == 0 --> *x == 0 573 if (isOnlyUsedInZeroEqualityComparison(CI)) 574 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 575 576 return nullptr; 577 } 578 579 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 580 Function *Callee = CI->getCalledFunction(); 581 FunctionType *FT = Callee->getFunctionType(); 582 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 583 FT->getParamType(1) != FT->getParamType(0) || 584 FT->getReturnType() != FT->getParamType(0)) 585 return nullptr; 586 587 StringRef S1, S2; 588 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 589 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 590 591 // strpbrk(s, "") -> nullptr 592 // strpbrk("", s) -> nullptr 593 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 594 return Constant::getNullValue(CI->getType()); 595 596 // Constant folding. 597 if (HasS1 && HasS2) { 598 size_t I = S1.find_first_of(S2); 599 if (I == StringRef::npos) // No match. 600 return Constant::getNullValue(CI->getType()); 601 602 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), "strpbrk"); 603 } 604 605 // strpbrk(s, "a") -> strchr(s, 'a') 606 if (HasS2 && S2.size() == 1) 607 return EmitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 608 609 return nullptr; 610 } 611 612 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 613 Function *Callee = CI->getCalledFunction(); 614 FunctionType *FT = Callee->getFunctionType(); 615 if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) || 616 !FT->getParamType(0)->isPointerTy() || 617 !FT->getParamType(1)->isPointerTy()) 618 return nullptr; 619 620 Value *EndPtr = CI->getArgOperand(1); 621 if (isa<ConstantPointerNull>(EndPtr)) { 622 // With a null EndPtr, this function won't capture the main argument. 623 // It would be readonly too, except that it still may write to errno. 624 CI->addAttribute(1, Attribute::NoCapture); 625 } 626 627 return nullptr; 628 } 629 630 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 631 Function *Callee = CI->getCalledFunction(); 632 FunctionType *FT = Callee->getFunctionType(); 633 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 634 FT->getParamType(1) != FT->getParamType(0) || 635 !FT->getReturnType()->isIntegerTy()) 636 return nullptr; 637 638 StringRef S1, S2; 639 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 640 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 641 642 // strspn(s, "") -> 0 643 // strspn("", s) -> 0 644 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 645 return Constant::getNullValue(CI->getType()); 646 647 // Constant folding. 648 if (HasS1 && HasS2) { 649 size_t Pos = S1.find_first_not_of(S2); 650 if (Pos == StringRef::npos) 651 Pos = S1.size(); 652 return ConstantInt::get(CI->getType(), Pos); 653 } 654 655 return nullptr; 656 } 657 658 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 659 Function *Callee = CI->getCalledFunction(); 660 FunctionType *FT = Callee->getFunctionType(); 661 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 662 FT->getParamType(1) != FT->getParamType(0) || 663 !FT->getReturnType()->isIntegerTy()) 664 return nullptr; 665 666 StringRef S1, S2; 667 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 668 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 669 670 // strcspn("", s) -> 0 671 if (HasS1 && S1.empty()) 672 return Constant::getNullValue(CI->getType()); 673 674 // Constant folding. 675 if (HasS1 && HasS2) { 676 size_t Pos = S1.find_first_of(S2); 677 if (Pos == StringRef::npos) 678 Pos = S1.size(); 679 return ConstantInt::get(CI->getType(), Pos); 680 } 681 682 // strcspn(s, "") -> strlen(s) 683 if (HasS2 && S2.empty()) 684 return EmitStrLen(CI->getArgOperand(0), B, DL, TLI); 685 686 return nullptr; 687 } 688 689 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 690 Function *Callee = CI->getCalledFunction(); 691 FunctionType *FT = Callee->getFunctionType(); 692 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 693 !FT->getParamType(1)->isPointerTy() || 694 !FT->getReturnType()->isPointerTy()) 695 return nullptr; 696 697 // fold strstr(x, x) -> x. 698 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 699 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 700 701 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 702 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 703 Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI); 704 if (!StrLen) 705 return nullptr; 706 Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 707 StrLen, B, DL, TLI); 708 if (!StrNCmp) 709 return nullptr; 710 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 711 ICmpInst *Old = cast<ICmpInst>(*UI++); 712 Value *Cmp = 713 B.CreateICmp(Old->getPredicate(), StrNCmp, 714 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 715 replaceAllUsesWith(Old, Cmp); 716 } 717 return CI; 718 } 719 720 // See if either input string is a constant string. 721 StringRef SearchStr, ToFindStr; 722 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 723 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 724 725 // fold strstr(x, "") -> x. 726 if (HasStr2 && ToFindStr.empty()) 727 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 728 729 // If both strings are known, constant fold it. 730 if (HasStr1 && HasStr2) { 731 size_t Offset = SearchStr.find(ToFindStr); 732 733 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 734 return Constant::getNullValue(CI->getType()); 735 736 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 737 Value *Result = CastToCStr(CI->getArgOperand(0), B); 738 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 739 return B.CreateBitCast(Result, CI->getType()); 740 } 741 742 // fold strstr(x, "y") -> strchr(x, 'y'). 743 if (HasStr2 && ToFindStr.size() == 1) { 744 Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 745 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 746 } 747 return nullptr; 748 } 749 750 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 751 Function *Callee = CI->getCalledFunction(); 752 FunctionType *FT = Callee->getFunctionType(); 753 if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || 754 !FT->getParamType(1)->isIntegerTy(32) || 755 !FT->getParamType(2)->isIntegerTy() || 756 !FT->getReturnType()->isPointerTy()) 757 return nullptr; 758 759 Value *SrcStr = CI->getArgOperand(0); 760 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 761 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 762 763 // memchr(x, y, 0) -> null 764 if (LenC && LenC->isNullValue()) 765 return Constant::getNullValue(CI->getType()); 766 767 // From now on we need at least constant length and string. 768 StringRef Str; 769 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 770 return nullptr; 771 772 // Truncate the string to LenC. If Str is smaller than LenC we will still only 773 // scan the string, as reading past the end of it is undefined and we can just 774 // return null if we don't find the char. 775 Str = Str.substr(0, LenC->getZExtValue()); 776 777 // If the char is variable but the input str and length are not we can turn 778 // this memchr call into a simple bit field test. Of course this only works 779 // when the return value is only checked against null. 780 // 781 // It would be really nice to reuse switch lowering here but we can't change 782 // the CFG at this point. 783 // 784 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 785 // after bounds check. 786 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 787 unsigned char Max = 788 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 789 reinterpret_cast<const unsigned char *>(Str.end())); 790 791 // Make sure the bit field we're about to create fits in a register on the 792 // target. 793 // FIXME: On a 64 bit architecture this prevents us from using the 794 // interesting range of alpha ascii chars. We could do better by emitting 795 // two bitfields or shifting the range by 64 if no lower chars are used. 796 if (!DL.fitsInLegalInteger(Max + 1)) 797 return nullptr; 798 799 // For the bit field use a power-of-2 type with at least 8 bits to avoid 800 // creating unnecessary illegal types. 801 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 802 803 // Now build the bit field. 804 APInt Bitfield(Width, 0); 805 for (char C : Str) 806 Bitfield.setBit((unsigned char)C); 807 Value *BitfieldC = B.getInt(Bitfield); 808 809 // First check that the bit field access is within bounds. 810 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 811 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 812 "memchr.bounds"); 813 814 // Create code that checks if the given bit is set in the field. 815 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 816 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 817 818 // Finally merge both checks and cast to pointer type. The inttoptr 819 // implicitly zexts the i1 to intptr type. 820 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 821 } 822 823 // Check if all arguments are constants. If so, we can constant fold. 824 if (!CharC) 825 return nullptr; 826 827 // Compute the offset. 828 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 829 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 830 return Constant::getNullValue(CI->getType()); 831 832 // memchr(s+n,c,l) -> gep(s+n+i,c) 833 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 834 } 835 836 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 837 Function *Callee = CI->getCalledFunction(); 838 FunctionType *FT = Callee->getFunctionType(); 839 if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || 840 !FT->getParamType(1)->isPointerTy() || 841 !FT->getReturnType()->isIntegerTy(32)) 842 return nullptr; 843 844 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 845 846 if (LHS == RHS) // memcmp(s,s,x) -> 0 847 return Constant::getNullValue(CI->getType()); 848 849 // Make sure we have a constant length. 850 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 851 if (!LenC) 852 return nullptr; 853 uint64_t Len = LenC->getZExtValue(); 854 855 if (Len == 0) // memcmp(s1,s2,0) -> 0 856 return Constant::getNullValue(CI->getType()); 857 858 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 859 if (Len == 1) { 860 Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"), 861 CI->getType(), "lhsv"); 862 Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"), 863 CI->getType(), "rhsv"); 864 return B.CreateSub(LHSV, RHSV, "chardiff"); 865 } 866 867 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 868 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 869 870 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 871 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 872 873 if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment && 874 getKnownAlignment(RHS, DL, CI) >= PrefAlignment) { 875 876 Type *LHSPtrTy = 877 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 878 Type *RHSPtrTy = 879 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 880 881 Value *LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv"); 882 Value *RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv"); 883 884 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 885 } 886 } 887 888 // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) 889 StringRef LHSStr, RHSStr; 890 if (getConstantStringInfo(LHS, LHSStr) && 891 getConstantStringInfo(RHS, RHSStr)) { 892 // Make sure we're not reading out-of-bounds memory. 893 if (Len > LHSStr.size() || Len > RHSStr.size()) 894 return nullptr; 895 // Fold the memcmp and normalize the result. This way we get consistent 896 // results across multiple platforms. 897 uint64_t Ret = 0; 898 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 899 if (Cmp < 0) 900 Ret = -1; 901 else if (Cmp > 0) 902 Ret = 1; 903 return ConstantInt::get(CI->getType(), Ret); 904 } 905 906 return nullptr; 907 } 908 909 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 910 Function *Callee = CI->getCalledFunction(); 911 912 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy)) 913 return nullptr; 914 915 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) 916 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 917 CI->getArgOperand(2), 1); 918 return CI->getArgOperand(0); 919 } 920 921 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 922 Function *Callee = CI->getCalledFunction(); 923 924 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove)) 925 return nullptr; 926 927 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) 928 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 929 CI->getArgOperand(2), 1); 930 return CI->getArgOperand(0); 931 } 932 933 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 934 Function *Callee = CI->getCalledFunction(); 935 936 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset)) 937 return nullptr; 938 939 // memset(p, v, n) -> llvm.memset(p, v, n, 1) 940 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 941 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 942 return CI->getArgOperand(0); 943 } 944 945 //===----------------------------------------------------------------------===// 946 // Math Library Optimizations 947 //===----------------------------------------------------------------------===// 948 949 /// Return a variant of Val with float type. 950 /// Currently this works in two cases: If Val is an FPExtension of a float 951 /// value to something bigger, simply return the operand. 952 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 953 /// loss of precision do so. 954 static Value *valueHasFloatPrecision(Value *Val) { 955 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 956 Value *Op = Cast->getOperand(0); 957 if (Op->getType()->isFloatTy()) 958 return Op; 959 } 960 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 961 APFloat F = Const->getValueAPF(); 962 bool losesInfo; 963 (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 964 &losesInfo); 965 if (!losesInfo) 966 return ConstantFP::get(Const->getContext(), F); 967 } 968 return nullptr; 969 } 970 971 //===----------------------------------------------------------------------===// 972 // Double -> Float Shrinking Optimizations for Unary Functions like 'floor' 973 974 Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 975 bool CheckRetType) { 976 Function *Callee = CI->getCalledFunction(); 977 FunctionType *FT = Callee->getFunctionType(); 978 if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() || 979 !FT->getParamType(0)->isDoubleTy()) 980 return nullptr; 981 982 if (CheckRetType) { 983 // Check if all the uses for function like 'sin' are converted to float. 984 for (User *U : CI->users()) { 985 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 986 if (!Cast || !Cast->getType()->isFloatTy()) 987 return nullptr; 988 } 989 } 990 991 // If this is something like 'floor((double)floatval)', convert to floorf. 992 Value *V = valueHasFloatPrecision(CI->getArgOperand(0)); 993 if (V == nullptr) 994 return nullptr; 995 996 // floor((double)floatval) -> (double)floorf(floatval) 997 if (Callee->isIntrinsic()) { 998 Module *M = CI->getModule(); 999 Intrinsic::ID IID = Callee->getIntrinsicID(); 1000 Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1001 V = B.CreateCall(F, V); 1002 } else { 1003 // The call is a library call rather than an intrinsic. 1004 V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); 1005 } 1006 1007 return B.CreateFPExt(V, B.getDoubleTy()); 1008 } 1009 1010 // Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax' 1011 Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) { 1012 Function *Callee = CI->getCalledFunction(); 1013 FunctionType *FT = Callee->getFunctionType(); 1014 // Just make sure this has 2 arguments of the same FP type, which match the 1015 // result type. 1016 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 1017 FT->getParamType(0) != FT->getParamType(1) || 1018 !FT->getParamType(0)->isFloatingPointTy()) 1019 return nullptr; 1020 1021 // If this is something like 'fmin((double)floatval1, (double)floatval2)', 1022 // or fmin(1.0, (double)floatval), then we convert it to fminf. 1023 Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0)); 1024 if (V1 == nullptr) 1025 return nullptr; 1026 Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1)); 1027 if (V2 == nullptr) 1028 return nullptr; 1029 1030 // fmin((double)floatval1, (double)floatval2) 1031 // -> (double)fminf(floatval1, floatval2) 1032 // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP(). 1033 Value *V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B, 1034 Callee->getAttributes()); 1035 return B.CreateFPExt(V, B.getDoubleTy()); 1036 } 1037 1038 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) { 1039 Function *Callee = CI->getCalledFunction(); 1040 Value *Ret = nullptr; 1041 StringRef Name = Callee->getName(); 1042 if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name)) 1043 Ret = optimizeUnaryDoubleFP(CI, B, true); 1044 1045 FunctionType *FT = Callee->getFunctionType(); 1046 // Just make sure this has 1 argument of FP type, which matches the 1047 // result type. 1048 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1049 !FT->getParamType(0)->isFloatingPointTy()) 1050 return Ret; 1051 1052 // cos(-x) -> cos(x) 1053 Value *Op1 = CI->getArgOperand(0); 1054 if (BinaryOperator::isFNeg(Op1)) { 1055 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); 1056 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); 1057 } 1058 return Ret; 1059 } 1060 1061 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1062 // Multiplications calculated using Addition Chains. 1063 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1064 1065 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1066 1067 if (InnerChain[Exp]) 1068 return InnerChain[Exp]; 1069 1070 static const unsigned AddChain[33][2] = { 1071 {0, 0}, // Unused. 1072 {0, 0}, // Unused (base case = pow1). 1073 {1, 1}, // Unused (pre-computed). 1074 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1075 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1076 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1077 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1078 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1079 }; 1080 1081 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1082 getPow(InnerChain, AddChain[Exp][1], B)); 1083 return InnerChain[Exp]; 1084 } 1085 1086 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { 1087 Function *Callee = CI->getCalledFunction(); 1088 Value *Ret = nullptr; 1089 StringRef Name = Callee->getName(); 1090 if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name)) 1091 Ret = optimizeUnaryDoubleFP(CI, B, true); 1092 1093 FunctionType *FT = Callee->getFunctionType(); 1094 // Just make sure this has 2 arguments of the same FP type, which match the 1095 // result type. 1096 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 1097 FT->getParamType(0) != FT->getParamType(1) || 1098 !FT->getParamType(0)->isFloatingPointTy()) 1099 return Ret; 1100 1101 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); 1102 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { 1103 // pow(1.0, x) -> 1.0 1104 if (Op1C->isExactlyValue(1.0)) 1105 return Op1C; 1106 // pow(2.0, x) -> exp2(x) 1107 if (Op1C->isExactlyValue(2.0) && 1108 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f, 1109 LibFunc::exp2l)) 1110 return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp2), B, 1111 Callee->getAttributes()); 1112 // pow(10.0, x) -> exp10(x) 1113 if (Op1C->isExactlyValue(10.0) && 1114 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f, 1115 LibFunc::exp10l)) 1116 return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B, 1117 Callee->getAttributes()); 1118 } 1119 1120 bool unsafeFPMath = canUseUnsafeFPMath(CI->getParent()->getParent()); 1121 1122 // pow(exp(x), y) -> exp(x*y) 1123 // pow(exp2(x), y) -> exp2(x * y) 1124 // We enable these only under fast-math. Besides rounding 1125 // differences the transformation changes overflow and 1126 // underflow behavior quite dramatically. 1127 // Example: x = 1000, y = 0.001. 1128 // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1). 1129 if (unsafeFPMath) { 1130 if (auto *OpC = dyn_cast<CallInst>(Op1)) { 1131 IRBuilder<>::FastMathFlagGuard Guard(B); 1132 FastMathFlags FMF; 1133 FMF.setUnsafeAlgebra(); 1134 B.SetFastMathFlags(FMF); 1135 1136 LibFunc::Func Func; 1137 Function *OpCCallee = OpC->getCalledFunction(); 1138 if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) && 1139 TLI->has(Func) && (Func == LibFunc::exp || Func == LibFunc::exp2)) 1140 return EmitUnaryFloatFnCall( 1141 B.CreateFMul(OpC->getArgOperand(0), Op2, "mul"), 1142 OpCCallee->getName(), B, OpCCallee->getAttributes()); 1143 } 1144 } 1145 1146 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); 1147 if (!Op2C) 1148 return Ret; 1149 1150 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 1151 return ConstantFP::get(CI->getType(), 1.0); 1152 1153 if (Op2C->isExactlyValue(0.5) && 1154 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf, 1155 LibFunc::sqrtl) && 1156 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf, 1157 LibFunc::fabsl)) { 1158 1159 // In -ffast-math, pow(x, 0.5) -> sqrt(x). 1160 if (unsafeFPMath) 1161 return EmitUnaryFloatFnCall(Op1, TLI->getName(LibFunc::sqrt), B, 1162 Callee->getAttributes()); 1163 1164 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). 1165 // This is faster than calling pow, and still handles negative zero 1166 // and negative infinity correctly. 1167 // TODO: In finite-only mode, this could be just fabs(sqrt(x)). 1168 Value *Inf = ConstantFP::getInfinity(CI->getType()); 1169 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); 1170 Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); 1171 Value *FAbs = 1172 EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes()); 1173 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); 1174 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); 1175 return Sel; 1176 } 1177 1178 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x 1179 return Op1; 1180 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x 1181 return B.CreateFMul(Op1, Op1, "pow2"); 1182 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x 1183 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); 1184 1185 // In -ffast-math, generate repeated fmul instead of generating pow(x, n). 1186 if (unsafeFPMath) { 1187 APFloat V = abs(Op2C->getValueAPF()); 1188 // We limit to a max of 7 fmul(s). Thus max exponent is 32. 1189 // This transformation applies to integer exponents only. 1190 if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan || 1191 !V.isInteger()) 1192 return nullptr; 1193 1194 // We will memoize intermediate products of the Addition Chain. 1195 Value *InnerChain[33] = {nullptr}; 1196 InnerChain[1] = Op1; 1197 InnerChain[2] = B.CreateFMul(Op1, Op1); 1198 1199 // We cannot readily convert a non-double type (like float) to a double. 1200 // So we first convert V to something which could be converted to double. 1201 bool ignored; 1202 V.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &ignored); 1203 Value *FMul = getPow(InnerChain, V.convertToDouble(), B); 1204 // For negative exponents simply compute the reciprocal. 1205 if (Op2C->isNegative()) 1206 FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul); 1207 return FMul; 1208 } 1209 1210 return nullptr; 1211 } 1212 1213 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1214 Function *Callee = CI->getCalledFunction(); 1215 Function *Caller = CI->getParent()->getParent(); 1216 Value *Ret = nullptr; 1217 StringRef Name = Callee->getName(); 1218 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1219 Ret = optimizeUnaryDoubleFP(CI, B, true); 1220 1221 FunctionType *FT = Callee->getFunctionType(); 1222 // Just make sure this has 1 argument of FP type, which matches the 1223 // result type. 1224 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1225 !FT->getParamType(0)->isFloatingPointTy()) 1226 return Ret; 1227 1228 Value *Op = CI->getArgOperand(0); 1229 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1230 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1231 LibFunc::Func LdExp = LibFunc::ldexpl; 1232 if (Op->getType()->isFloatTy()) 1233 LdExp = LibFunc::ldexpf; 1234 else if (Op->getType()->isDoubleTy()) 1235 LdExp = LibFunc::ldexp; 1236 1237 if (TLI->has(LdExp)) { 1238 Value *LdExpArg = nullptr; 1239 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1240 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1241 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1242 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1243 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1244 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1245 } 1246 1247 if (LdExpArg) { 1248 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1249 if (!Op->getType()->isFloatTy()) 1250 One = ConstantExpr::getFPExtend(One, Op->getType()); 1251 1252 Module *M = Caller->getParent(); 1253 Value *Callee = 1254 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1255 Op->getType(), B.getInt32Ty(), nullptr); 1256 CallInst *CI = B.CreateCall(Callee, {One, LdExpArg}); 1257 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1258 CI->setCallingConv(F->getCallingConv()); 1259 1260 return CI; 1261 } 1262 } 1263 return Ret; 1264 } 1265 1266 Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) { 1267 Function *Callee = CI->getCalledFunction(); 1268 Value *Ret = nullptr; 1269 StringRef Name = Callee->getName(); 1270 if (Name == "fabs" && hasFloatVersion(Name)) 1271 Ret = optimizeUnaryDoubleFP(CI, B, false); 1272 1273 FunctionType *FT = Callee->getFunctionType(); 1274 // Make sure this has 1 argument of FP type which matches the result type. 1275 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1276 !FT->getParamType(0)->isFloatingPointTy()) 1277 return Ret; 1278 1279 Value *Op = CI->getArgOperand(0); 1280 if (Instruction *I = dyn_cast<Instruction>(Op)) { 1281 // Fold fabs(x * x) -> x * x; any squared FP value must already be positive. 1282 if (I->getOpcode() == Instruction::FMul) 1283 if (I->getOperand(0) == I->getOperand(1)) 1284 return Op; 1285 } 1286 return Ret; 1287 } 1288 1289 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1290 // If we can shrink the call to a float function rather than a double 1291 // function, do that first. 1292 Function *Callee = CI->getCalledFunction(); 1293 StringRef Name = Callee->getName(); 1294 if ((Name == "fmin" && hasFloatVersion(Name)) || 1295 (Name == "fmax" && hasFloatVersion(Name))) { 1296 Value *Ret = optimizeBinaryDoubleFP(CI, B); 1297 if (Ret) 1298 return Ret; 1299 } 1300 1301 // Make sure this has 2 arguments of FP type which match the result type. 1302 FunctionType *FT = Callee->getFunctionType(); 1303 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 1304 FT->getParamType(0) != FT->getParamType(1) || 1305 !FT->getParamType(0)->isFloatingPointTy()) 1306 return nullptr; 1307 1308 IRBuilder<>::FastMathFlagGuard Guard(B); 1309 FastMathFlags FMF; 1310 Function *F = CI->getParent()->getParent(); 1311 if (canUseUnsafeFPMath(F)) { 1312 // Unsafe algebra sets all fast-math-flags to true. 1313 FMF.setUnsafeAlgebra(); 1314 } else { 1315 // At a minimum, no-nans-fp-math must be true. 1316 Attribute Attr = F->getFnAttribute("no-nans-fp-math"); 1317 if (Attr.getValueAsString() != "true") 1318 return nullptr; 1319 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1320 // "Ideally, fmax would be sensitive to the sign of zero, for example 1321 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1322 // might be impractical." 1323 FMF.setNoSignedZeros(); 1324 FMF.setNoNaNs(); 1325 } 1326 B.SetFastMathFlags(FMF); 1327 1328 // We have a relaxed floating-point environment. We can ignore NaN-handling 1329 // and transform to a compare and select. We do not have to consider errno or 1330 // exceptions, because fmin/fmax do not have those. 1331 Value *Op0 = CI->getArgOperand(0); 1332 Value *Op1 = CI->getArgOperand(1); 1333 Value *Cmp = Callee->getName().startswith("fmin") ? 1334 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1335 return B.CreateSelect(Cmp, Op0, Op1); 1336 } 1337 1338 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1339 Function *Callee = CI->getCalledFunction(); 1340 Value *Ret = nullptr; 1341 StringRef Name = Callee->getName(); 1342 if (UnsafeFPShrink && hasFloatVersion(Name)) 1343 Ret = optimizeUnaryDoubleFP(CI, B, true); 1344 FunctionType *FT = Callee->getFunctionType(); 1345 1346 // Just make sure this has 1 argument of FP type, which matches the 1347 // result type. 1348 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1349 !FT->getParamType(0)->isFloatingPointTy()) 1350 return Ret; 1351 1352 if (!canUseUnsafeFPMath(CI->getParent()->getParent())) 1353 return Ret; 1354 Value *Op1 = CI->getArgOperand(0); 1355 auto *OpC = dyn_cast<CallInst>(Op1); 1356 if (!OpC) 1357 return Ret; 1358 1359 // log(pow(x,y)) -> y*log(x) 1360 // This is only applicable to log, log2, log10. 1361 if (Name != "log" && Name != "log2" && Name != "log10") 1362 return Ret; 1363 1364 IRBuilder<>::FastMathFlagGuard Guard(B); 1365 FastMathFlags FMF; 1366 FMF.setUnsafeAlgebra(); 1367 B.SetFastMathFlags(FMF); 1368 1369 LibFunc::Func Func; 1370 Function *F = OpC->getCalledFunction(); 1371 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1372 Func == LibFunc::pow) || F->getIntrinsicID() == Intrinsic::pow)) 1373 return B.CreateFMul(OpC->getArgOperand(1), 1374 EmitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1375 Callee->getAttributes()), "mul"); 1376 1377 // log(exp2(y)) -> y*log(2) 1378 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1379 TLI->has(Func) && Func == LibFunc::exp2) 1380 return B.CreateFMul( 1381 OpC->getArgOperand(0), 1382 EmitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1383 Callee->getName(), B, Callee->getAttributes()), 1384 "logmul"); 1385 return Ret; 1386 } 1387 1388 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1389 Function *Callee = CI->getCalledFunction(); 1390 1391 Value *Ret = nullptr; 1392 if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" || 1393 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1394 Ret = optimizeUnaryDoubleFP(CI, B, true); 1395 if (!canUseUnsafeFPMath(CI->getParent()->getParent())) 1396 return Ret; 1397 1398 Value *Op = CI->getArgOperand(0); 1399 if (Instruction *I = dyn_cast<Instruction>(Op)) { 1400 if (I->getOpcode() == Instruction::FMul && I->hasUnsafeAlgebra()) { 1401 // We're looking for a repeated factor in a multiplication tree, 1402 // so we can do this fold: sqrt(x * x) -> fabs(x); 1403 // or this fold: sqrt(x * x * y) -> fabs(x) * sqrt(y). 1404 Value *Op0 = I->getOperand(0); 1405 Value *Op1 = I->getOperand(1); 1406 Value *RepeatOp = nullptr; 1407 Value *OtherOp = nullptr; 1408 if (Op0 == Op1) { 1409 // Simple match: the operands of the multiply are identical. 1410 RepeatOp = Op0; 1411 } else { 1412 // Look for a more complicated pattern: one of the operands is itself 1413 // a multiply, so search for a common factor in that multiply. 1414 // Note: We don't bother looking any deeper than this first level or for 1415 // variations of this pattern because instcombine's visitFMUL and/or the 1416 // reassociation pass should give us this form. 1417 Value *OtherMul0, *OtherMul1; 1418 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1419 // Pattern: sqrt((x * y) * z) 1420 if (OtherMul0 == OtherMul1) { 1421 // Matched: sqrt((x * x) * z) 1422 RepeatOp = OtherMul0; 1423 OtherOp = Op1; 1424 } 1425 } 1426 } 1427 if (RepeatOp) { 1428 // Fast math flags for any created instructions should match the sqrt 1429 // and multiply. 1430 // FIXME: We're not checking the sqrt because it doesn't have 1431 // fast-math-flags (see earlier comment). 1432 IRBuilder<>::FastMathFlagGuard Guard(B); 1433 B.SetFastMathFlags(I->getFastMathFlags()); 1434 // If we found a repeated factor, hoist it out of the square root and 1435 // replace it with the fabs of that factor. 1436 Module *M = Callee->getParent(); 1437 Type *ArgType = Op->getType(); 1438 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1439 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1440 if (OtherOp) { 1441 // If we found a non-repeated factor, we still need to get its square 1442 // root. We then multiply that by the value that was simplified out 1443 // of the square root calculation. 1444 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1445 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1446 return B.CreateFMul(FabsCall, SqrtCall); 1447 } 1448 return FabsCall; 1449 } 1450 } 1451 } 1452 return Ret; 1453 } 1454 1455 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1456 Function *Callee = CI->getCalledFunction(); 1457 Value *Ret = nullptr; 1458 StringRef Name = Callee->getName(); 1459 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1460 Ret = optimizeUnaryDoubleFP(CI, B, true); 1461 FunctionType *FT = Callee->getFunctionType(); 1462 1463 // Just make sure this has 1 argument of FP type, which matches the 1464 // result type. 1465 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1466 !FT->getParamType(0)->isFloatingPointTy()) 1467 return Ret; 1468 1469 if (!canUseUnsafeFPMath(CI->getParent()->getParent())) 1470 return Ret; 1471 Value *Op1 = CI->getArgOperand(0); 1472 auto *OpC = dyn_cast<CallInst>(Op1); 1473 if (!OpC) 1474 return Ret; 1475 1476 // tan(atan(x)) -> x 1477 // tanf(atanf(x)) -> x 1478 // tanl(atanl(x)) -> x 1479 LibFunc::Func Func; 1480 Function *F = OpC->getCalledFunction(); 1481 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1482 ((Func == LibFunc::atan && Callee->getName() == "tan") || 1483 (Func == LibFunc::atanf && Callee->getName() == "tanf") || 1484 (Func == LibFunc::atanl && Callee->getName() == "tanl"))) 1485 Ret = OpC->getArgOperand(0); 1486 return Ret; 1487 } 1488 1489 static bool isTrigLibCall(CallInst *CI); 1490 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1491 bool UseFloat, Value *&Sin, Value *&Cos, 1492 Value *&SinCos); 1493 1494 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1495 1496 // Make sure the prototype is as expected, otherwise the rest of the 1497 // function is probably invalid and likely to abort. 1498 if (!isTrigLibCall(CI)) 1499 return nullptr; 1500 1501 Value *Arg = CI->getArgOperand(0); 1502 SmallVector<CallInst *, 1> SinCalls; 1503 SmallVector<CallInst *, 1> CosCalls; 1504 SmallVector<CallInst *, 1> SinCosCalls; 1505 1506 bool IsFloat = Arg->getType()->isFloatTy(); 1507 1508 // Look for all compatible sinpi, cospi and sincospi calls with the same 1509 // argument. If there are enough (in some sense) we can make the 1510 // substitution. 1511 for (User *U : Arg->users()) 1512 classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls, 1513 SinCosCalls); 1514 1515 // It's only worthwhile if both sinpi and cospi are actually used. 1516 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1517 return nullptr; 1518 1519 Value *Sin, *Cos, *SinCos; 1520 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1521 1522 replaceTrigInsts(SinCalls, Sin); 1523 replaceTrigInsts(CosCalls, Cos); 1524 replaceTrigInsts(SinCosCalls, SinCos); 1525 1526 return nullptr; 1527 } 1528 1529 static bool isTrigLibCall(CallInst *CI) { 1530 Function *Callee = CI->getCalledFunction(); 1531 FunctionType *FT = Callee->getFunctionType(); 1532 1533 // We can only hope to do anything useful if we can ignore things like errno 1534 // and floating-point exceptions. 1535 bool AttributesSafe = 1536 CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone); 1537 1538 // Other than that we need float(float) or double(double) 1539 return AttributesSafe && FT->getNumParams() == 1 && 1540 FT->getReturnType() == FT->getParamType(0) && 1541 (FT->getParamType(0)->isFloatTy() || 1542 FT->getParamType(0)->isDoubleTy()); 1543 } 1544 1545 void 1546 LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat, 1547 SmallVectorImpl<CallInst *> &SinCalls, 1548 SmallVectorImpl<CallInst *> &CosCalls, 1549 SmallVectorImpl<CallInst *> &SinCosCalls) { 1550 CallInst *CI = dyn_cast<CallInst>(Val); 1551 1552 if (!CI) 1553 return; 1554 1555 Function *Callee = CI->getCalledFunction(); 1556 LibFunc::Func Func; 1557 if (!Callee || !TLI->getLibFunc(Callee->getName(), Func) || !TLI->has(Func) || 1558 !isTrigLibCall(CI)) 1559 return; 1560 1561 if (IsFloat) { 1562 if (Func == LibFunc::sinpif) 1563 SinCalls.push_back(CI); 1564 else if (Func == LibFunc::cospif) 1565 CosCalls.push_back(CI); 1566 else if (Func == LibFunc::sincospif_stret) 1567 SinCosCalls.push_back(CI); 1568 } else { 1569 if (Func == LibFunc::sinpi) 1570 SinCalls.push_back(CI); 1571 else if (Func == LibFunc::cospi) 1572 CosCalls.push_back(CI); 1573 else if (Func == LibFunc::sincospi_stret) 1574 SinCosCalls.push_back(CI); 1575 } 1576 } 1577 1578 void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls, 1579 Value *Res) { 1580 for (CallInst *C : Calls) 1581 replaceAllUsesWith(C, Res); 1582 } 1583 1584 void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1585 bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos) { 1586 Type *ArgTy = Arg->getType(); 1587 Type *ResTy; 1588 StringRef Name; 1589 1590 Triple T(OrigCallee->getParent()->getTargetTriple()); 1591 if (UseFloat) { 1592 Name = "__sincospif_stret"; 1593 1594 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1595 // x86_64 can't use {float, float} since that would be returned in both 1596 // xmm0 and xmm1, which isn't what a real struct would do. 1597 ResTy = T.getArch() == Triple::x86_64 1598 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1599 : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr)); 1600 } else { 1601 Name = "__sincospi_stret"; 1602 ResTy = StructType::get(ArgTy, ArgTy, nullptr); 1603 } 1604 1605 Module *M = OrigCallee->getParent(); 1606 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1607 ResTy, ArgTy, nullptr); 1608 1609 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1610 // If the argument is an instruction, it must dominate all uses so put our 1611 // sincos call there. 1612 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1613 } else { 1614 // Otherwise (e.g. for a constant) the beginning of the function is as 1615 // good a place as any. 1616 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1617 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1618 } 1619 1620 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1621 1622 if (SinCos->getType()->isStructTy()) { 1623 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1624 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1625 } else { 1626 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1627 "sinpi"); 1628 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1629 "cospi"); 1630 } 1631 } 1632 1633 //===----------------------------------------------------------------------===// 1634 // Integer Library Call Optimizations 1635 //===----------------------------------------------------------------------===// 1636 1637 static bool checkIntUnaryReturnAndParam(Function *Callee) { 1638 FunctionType *FT = Callee->getFunctionType(); 1639 return FT->getNumParams() == 1 && FT->getReturnType()->isIntegerTy(32) && 1640 FT->getParamType(0)->isIntegerTy(); 1641 } 1642 1643 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1644 Function *Callee = CI->getCalledFunction(); 1645 if (!checkIntUnaryReturnAndParam(Callee)) 1646 return nullptr; 1647 Value *Op = CI->getArgOperand(0); 1648 1649 // Constant fold. 1650 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1651 if (CI->isZero()) // ffs(0) -> 0. 1652 return B.getInt32(0); 1653 // ffs(c) -> cttz(c)+1 1654 return B.getInt32(CI->getValue().countTrailingZeros() + 1); 1655 } 1656 1657 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1658 Type *ArgType = Op->getType(); 1659 Value *F = 1660 Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType); 1661 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1662 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1663 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1664 1665 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1666 return B.CreateSelect(Cond, V, B.getInt32(0)); 1667 } 1668 1669 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1670 Function *Callee = CI->getCalledFunction(); 1671 FunctionType *FT = Callee->getFunctionType(); 1672 // We require integer(integer) where the types agree. 1673 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || 1674 FT->getParamType(0) != FT->getReturnType()) 1675 return nullptr; 1676 1677 // abs(x) -> x >s -1 ? x : -x 1678 Value *Op = CI->getArgOperand(0); 1679 Value *Pos = 1680 B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); 1681 Value *Neg = B.CreateNeg(Op, "neg"); 1682 return B.CreateSelect(Pos, Op, Neg); 1683 } 1684 1685 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1686 if (!checkIntUnaryReturnAndParam(CI->getCalledFunction())) 1687 return nullptr; 1688 1689 // isdigit(c) -> (c-'0') <u 10 1690 Value *Op = CI->getArgOperand(0); 1691 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1692 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1693 return B.CreateZExt(Op, CI->getType()); 1694 } 1695 1696 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1697 if (!checkIntUnaryReturnAndParam(CI->getCalledFunction())) 1698 return nullptr; 1699 1700 // isascii(c) -> c <u 128 1701 Value *Op = CI->getArgOperand(0); 1702 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1703 return B.CreateZExt(Op, CI->getType()); 1704 } 1705 1706 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1707 if (!checkIntUnaryReturnAndParam(CI->getCalledFunction())) 1708 return nullptr; 1709 1710 // toascii(c) -> c & 0x7f 1711 return B.CreateAnd(CI->getArgOperand(0), 1712 ConstantInt::get(CI->getType(), 0x7F)); 1713 } 1714 1715 //===----------------------------------------------------------------------===// 1716 // Formatting and IO Library Call Optimizations 1717 //===----------------------------------------------------------------------===// 1718 1719 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1720 1721 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1722 int StreamArg) { 1723 // Error reporting calls should be cold, mark them as such. 1724 // This applies even to non-builtin calls: it is only a hint and applies to 1725 // functions that the frontend might not understand as builtins. 1726 1727 // This heuristic was suggested in: 1728 // Improving Static Branch Prediction in a Compiler 1729 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1730 // Proceedings of PACT'98, Oct. 1998, IEEE 1731 Function *Callee = CI->getCalledFunction(); 1732 1733 if (!CI->hasFnAttr(Attribute::Cold) && 1734 isReportingError(Callee, CI, StreamArg)) { 1735 CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold); 1736 } 1737 1738 return nullptr; 1739 } 1740 1741 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1742 if (!ColdErrorCalls || !Callee || !Callee->isDeclaration()) 1743 return false; 1744 1745 if (StreamArg < 0) 1746 return true; 1747 1748 // These functions might be considered cold, but only if their stream 1749 // argument is stderr. 1750 1751 if (StreamArg >= (int)CI->getNumArgOperands()) 1752 return false; 1753 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1754 if (!LI) 1755 return false; 1756 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1757 if (!GV || !GV->isDeclaration()) 1758 return false; 1759 return GV->getName() == "stderr"; 1760 } 1761 1762 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1763 // Check for a fixed format string. 1764 StringRef FormatStr; 1765 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1766 return nullptr; 1767 1768 // Empty format string -> noop. 1769 if (FormatStr.empty()) // Tolerate printf's declared void. 1770 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1771 1772 // Do not do any of the following transformations if the printf return value 1773 // is used, in general the printf return value is not compatible with either 1774 // putchar() or puts(). 1775 if (!CI->use_empty()) 1776 return nullptr; 1777 1778 // printf("x") -> putchar('x'), even for '%'. 1779 if (FormatStr.size() == 1) { 1780 Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TLI); 1781 if (CI->use_empty() || !Res) 1782 return Res; 1783 return B.CreateIntCast(Res, CI->getType(), true); 1784 } 1785 1786 // printf("foo\n") --> puts("foo") 1787 if (FormatStr[FormatStr.size() - 1] == '\n' && 1788 FormatStr.find('%') == StringRef::npos) { // No format characters. 1789 // Create a string literal with no \n on it. We expect the constant merge 1790 // pass to be run after this pass, to merge duplicate strings. 1791 FormatStr = FormatStr.drop_back(); 1792 Value *GV = B.CreateGlobalString(FormatStr, "str"); 1793 Value *NewCI = EmitPutS(GV, B, TLI); 1794 return (CI->use_empty() || !NewCI) 1795 ? NewCI 1796 : ConstantInt::get(CI->getType(), FormatStr.size() + 1); 1797 } 1798 1799 // Optimize specific format strings. 1800 // printf("%c", chr) --> putchar(chr) 1801 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1802 CI->getArgOperand(1)->getType()->isIntegerTy()) { 1803 Value *Res = EmitPutChar(CI->getArgOperand(1), B, TLI); 1804 1805 if (CI->use_empty() || !Res) 1806 return Res; 1807 return B.CreateIntCast(Res, CI->getType(), true); 1808 } 1809 1810 // printf("%s\n", str) --> puts(str) 1811 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1812 CI->getArgOperand(1)->getType()->isPointerTy()) { 1813 return EmitPutS(CI->getArgOperand(1), B, TLI); 1814 } 1815 return nullptr; 1816 } 1817 1818 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 1819 1820 Function *Callee = CI->getCalledFunction(); 1821 // Require one fixed pointer argument and an integer/void result. 1822 FunctionType *FT = Callee->getFunctionType(); 1823 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || 1824 !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) 1825 return nullptr; 1826 1827 if (Value *V = optimizePrintFString(CI, B)) { 1828 return V; 1829 } 1830 1831 // printf(format, ...) -> iprintf(format, ...) if no floating point 1832 // arguments. 1833 if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) { 1834 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1835 Constant *IPrintFFn = 1836 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 1837 CallInst *New = cast<CallInst>(CI->clone()); 1838 New->setCalledFunction(IPrintFFn); 1839 B.Insert(New); 1840 return New; 1841 } 1842 return nullptr; 1843 } 1844 1845 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 1846 // Check for a fixed format string. 1847 StringRef FormatStr; 1848 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1849 return nullptr; 1850 1851 // If we just have a format string (nothing else crazy) transform it. 1852 if (CI->getNumArgOperands() == 2) { 1853 // Make sure there's no % in the constant array. We could try to handle 1854 // %% -> % in the future if we cared. 1855 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1856 if (FormatStr[i] == '%') 1857 return nullptr; // we found a format specifier, bail out. 1858 1859 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) 1860 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 1861 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 1862 FormatStr.size() + 1), 1863 1); // Copy the null byte. 1864 return ConstantInt::get(CI->getType(), FormatStr.size()); 1865 } 1866 1867 // The remaining optimizations require the format string to be "%s" or "%c" 1868 // and have an extra operand. 1869 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1870 CI->getNumArgOperands() < 3) 1871 return nullptr; 1872 1873 // Decode the second character of the format string. 1874 if (FormatStr[1] == 'c') { 1875 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1876 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1877 return nullptr; 1878 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 1879 Value *Ptr = CastToCStr(CI->getArgOperand(0), B); 1880 B.CreateStore(V, Ptr); 1881 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 1882 B.CreateStore(B.getInt8(0), Ptr); 1883 1884 return ConstantInt::get(CI->getType(), 1); 1885 } 1886 1887 if (FormatStr[1] == 's') { 1888 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 1889 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1890 return nullptr; 1891 1892 Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI); 1893 if (!Len) 1894 return nullptr; 1895 Value *IncLen = 1896 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 1897 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); 1898 1899 // The sprintf result is the unincremented number of bytes in the string. 1900 return B.CreateIntCast(Len, CI->getType(), false); 1901 } 1902 return nullptr; 1903 } 1904 1905 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 1906 Function *Callee = CI->getCalledFunction(); 1907 // Require two fixed pointer arguments and an integer result. 1908 FunctionType *FT = Callee->getFunctionType(); 1909 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1910 !FT->getParamType(1)->isPointerTy() || 1911 !FT->getReturnType()->isIntegerTy()) 1912 return nullptr; 1913 1914 if (Value *V = optimizeSPrintFString(CI, B)) { 1915 return V; 1916 } 1917 1918 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 1919 // point arguments. 1920 if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) { 1921 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1922 Constant *SIPrintFFn = 1923 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 1924 CallInst *New = cast<CallInst>(CI->clone()); 1925 New->setCalledFunction(SIPrintFFn); 1926 B.Insert(New); 1927 return New; 1928 } 1929 return nullptr; 1930 } 1931 1932 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 1933 optimizeErrorReporting(CI, B, 0); 1934 1935 // All the optimizations depend on the format string. 1936 StringRef FormatStr; 1937 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1938 return nullptr; 1939 1940 // Do not do any of the following transformations if the fprintf return 1941 // value is used, in general the fprintf return value is not compatible 1942 // with fwrite(), fputc() or fputs(). 1943 if (!CI->use_empty()) 1944 return nullptr; 1945 1946 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 1947 if (CI->getNumArgOperands() == 2) { 1948 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1949 if (FormatStr[i] == '%') // Could handle %% -> % if we cared. 1950 return nullptr; // We found a format specifier. 1951 1952 return EmitFWrite( 1953 CI->getArgOperand(1), 1954 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 1955 CI->getArgOperand(0), B, DL, TLI); 1956 } 1957 1958 // The remaining optimizations require the format string to be "%s" or "%c" 1959 // and have an extra operand. 1960 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1961 CI->getNumArgOperands() < 3) 1962 return nullptr; 1963 1964 // Decode the second character of the format string. 1965 if (FormatStr[1] == 'c') { 1966 // fprintf(F, "%c", chr) --> fputc(chr, F) 1967 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1968 return nullptr; 1969 return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1970 } 1971 1972 if (FormatStr[1] == 's') { 1973 // fprintf(F, "%s", str) --> fputs(str, F) 1974 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1975 return nullptr; 1976 return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1977 } 1978 return nullptr; 1979 } 1980 1981 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 1982 Function *Callee = CI->getCalledFunction(); 1983 // Require two fixed paramters as pointers and integer result. 1984 FunctionType *FT = Callee->getFunctionType(); 1985 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1986 !FT->getParamType(1)->isPointerTy() || 1987 !FT->getReturnType()->isIntegerTy()) 1988 return nullptr; 1989 1990 if (Value *V = optimizeFPrintFString(CI, B)) { 1991 return V; 1992 } 1993 1994 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 1995 // floating point arguments. 1996 if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) { 1997 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1998 Constant *FIPrintFFn = 1999 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2000 CallInst *New = cast<CallInst>(CI->clone()); 2001 New->setCalledFunction(FIPrintFFn); 2002 B.Insert(New); 2003 return New; 2004 } 2005 return nullptr; 2006 } 2007 2008 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 2009 optimizeErrorReporting(CI, B, 3); 2010 2011 Function *Callee = CI->getCalledFunction(); 2012 // Require a pointer, an integer, an integer, a pointer, returning integer. 2013 FunctionType *FT = Callee->getFunctionType(); 2014 if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() || 2015 !FT->getParamType(1)->isIntegerTy() || 2016 !FT->getParamType(2)->isIntegerTy() || 2017 !FT->getParamType(3)->isPointerTy() || 2018 !FT->getReturnType()->isIntegerTy()) 2019 return nullptr; 2020 2021 // Get the element size and count. 2022 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2023 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2024 if (!SizeC || !CountC) 2025 return nullptr; 2026 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2027 2028 // If this is writing zero records, remove the call (it's a noop). 2029 if (Bytes == 0) 2030 return ConstantInt::get(CI->getType(), 0); 2031 2032 // If this is writing one byte, turn it into fputc. 2033 // This optimisation is only valid, if the return value is unused. 2034 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2035 Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char"); 2036 Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TLI); 2037 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2038 } 2039 2040 return nullptr; 2041 } 2042 2043 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 2044 optimizeErrorReporting(CI, B, 1); 2045 2046 Function *Callee = CI->getCalledFunction(); 2047 2048 // Require two pointers. Also, we can't optimize if return value is used. 2049 FunctionType *FT = Callee->getFunctionType(); 2050 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 2051 !FT->getParamType(1)->isPointerTy() || !CI->use_empty()) 2052 return nullptr; 2053 2054 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 2055 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2056 if (!Len) 2057 return nullptr; 2058 2059 // Known to have no uses (see above). 2060 return EmitFWrite( 2061 CI->getArgOperand(0), 2062 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2063 CI->getArgOperand(1), B, DL, TLI); 2064 } 2065 2066 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 2067 Function *Callee = CI->getCalledFunction(); 2068 // Require one fixed pointer argument and an integer/void result. 2069 FunctionType *FT = Callee->getFunctionType(); 2070 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || 2071 !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) 2072 return nullptr; 2073 2074 // Check for a constant string. 2075 StringRef Str; 2076 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2077 return nullptr; 2078 2079 if (Str.empty() && CI->use_empty()) { 2080 // puts("") -> putchar('\n') 2081 Value *Res = EmitPutChar(B.getInt32('\n'), B, TLI); 2082 if (CI->use_empty() || !Res) 2083 return Res; 2084 return B.CreateIntCast(Res, CI->getType(), true); 2085 } 2086 2087 return nullptr; 2088 } 2089 2090 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2091 LibFunc::Func Func; 2092 SmallString<20> FloatFuncName = FuncName; 2093 FloatFuncName += 'f'; 2094 if (TLI->getLibFunc(FloatFuncName, Func)) 2095 return TLI->has(Func); 2096 return false; 2097 } 2098 2099 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2100 IRBuilder<> &Builder) { 2101 LibFunc::Func Func; 2102 Function *Callee = CI->getCalledFunction(); 2103 StringRef FuncName = Callee->getName(); 2104 2105 // Check for string/memory library functions. 2106 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) { 2107 // Make sure we never change the calling convention. 2108 assert((ignoreCallingConv(Func) || 2109 CI->getCallingConv() == llvm::CallingConv::C) && 2110 "Optimizing string/memory libcall would change the calling convention"); 2111 switch (Func) { 2112 case LibFunc::strcat: 2113 return optimizeStrCat(CI, Builder); 2114 case LibFunc::strncat: 2115 return optimizeStrNCat(CI, Builder); 2116 case LibFunc::strchr: 2117 return optimizeStrChr(CI, Builder); 2118 case LibFunc::strrchr: 2119 return optimizeStrRChr(CI, Builder); 2120 case LibFunc::strcmp: 2121 return optimizeStrCmp(CI, Builder); 2122 case LibFunc::strncmp: 2123 return optimizeStrNCmp(CI, Builder); 2124 case LibFunc::strcpy: 2125 return optimizeStrCpy(CI, Builder); 2126 case LibFunc::stpcpy: 2127 return optimizeStpCpy(CI, Builder); 2128 case LibFunc::strncpy: 2129 return optimizeStrNCpy(CI, Builder); 2130 case LibFunc::strlen: 2131 return optimizeStrLen(CI, Builder); 2132 case LibFunc::strpbrk: 2133 return optimizeStrPBrk(CI, Builder); 2134 case LibFunc::strtol: 2135 case LibFunc::strtod: 2136 case LibFunc::strtof: 2137 case LibFunc::strtoul: 2138 case LibFunc::strtoll: 2139 case LibFunc::strtold: 2140 case LibFunc::strtoull: 2141 return optimizeStrTo(CI, Builder); 2142 case LibFunc::strspn: 2143 return optimizeStrSpn(CI, Builder); 2144 case LibFunc::strcspn: 2145 return optimizeStrCSpn(CI, Builder); 2146 case LibFunc::strstr: 2147 return optimizeStrStr(CI, Builder); 2148 case LibFunc::memchr: 2149 return optimizeMemChr(CI, Builder); 2150 case LibFunc::memcmp: 2151 return optimizeMemCmp(CI, Builder); 2152 case LibFunc::memcpy: 2153 return optimizeMemCpy(CI, Builder); 2154 case LibFunc::memmove: 2155 return optimizeMemMove(CI, Builder); 2156 case LibFunc::memset: 2157 return optimizeMemSet(CI, Builder); 2158 default: 2159 break; 2160 } 2161 } 2162 return nullptr; 2163 } 2164 2165 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2166 if (CI->isNoBuiltin()) 2167 return nullptr; 2168 2169 LibFunc::Func Func; 2170 Function *Callee = CI->getCalledFunction(); 2171 StringRef FuncName = Callee->getName(); 2172 IRBuilder<> Builder(CI); 2173 bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C; 2174 2175 // Command-line parameter overrides function attribute. 2176 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2177 UnsafeFPShrink = EnableUnsafeFPShrink; 2178 else if (canUseUnsafeFPMath(Callee)) 2179 UnsafeFPShrink = true; 2180 2181 // First, check for intrinsics. 2182 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2183 if (!isCallingConvC) 2184 return nullptr; 2185 switch (II->getIntrinsicID()) { 2186 case Intrinsic::pow: 2187 return optimizePow(CI, Builder); 2188 case Intrinsic::exp2: 2189 return optimizeExp2(CI, Builder); 2190 case Intrinsic::fabs: 2191 return optimizeFabs(CI, Builder); 2192 case Intrinsic::log: 2193 return optimizeLog(CI, Builder); 2194 case Intrinsic::sqrt: 2195 return optimizeSqrt(CI, Builder); 2196 default: 2197 return nullptr; 2198 } 2199 } 2200 2201 // Also try to simplify calls to fortified library functions. 2202 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2203 // Try to further simplify the result. 2204 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2205 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2206 // Use an IR Builder from SimplifiedCI if available instead of CI 2207 // to guarantee we reach all uses we might replace later on. 2208 IRBuilder<> TmpBuilder(SimplifiedCI); 2209 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2210 // If we were able to further simplify, remove the now redundant call. 2211 SimplifiedCI->replaceAllUsesWith(V); 2212 SimplifiedCI->eraseFromParent(); 2213 return V; 2214 } 2215 } 2216 return SimplifiedFortifiedCI; 2217 } 2218 2219 // Then check for known library functions. 2220 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) { 2221 // We never change the calling convention. 2222 if (!ignoreCallingConv(Func) && !isCallingConvC) 2223 return nullptr; 2224 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2225 return V; 2226 switch (Func) { 2227 case LibFunc::cosf: 2228 case LibFunc::cos: 2229 case LibFunc::cosl: 2230 return optimizeCos(CI, Builder); 2231 case LibFunc::sinpif: 2232 case LibFunc::sinpi: 2233 case LibFunc::cospif: 2234 case LibFunc::cospi: 2235 return optimizeSinCosPi(CI, Builder); 2236 case LibFunc::powf: 2237 case LibFunc::pow: 2238 case LibFunc::powl: 2239 return optimizePow(CI, Builder); 2240 case LibFunc::exp2l: 2241 case LibFunc::exp2: 2242 case LibFunc::exp2f: 2243 return optimizeExp2(CI, Builder); 2244 case LibFunc::fabsf: 2245 case LibFunc::fabs: 2246 case LibFunc::fabsl: 2247 return optimizeFabs(CI, Builder); 2248 case LibFunc::sqrtf: 2249 case LibFunc::sqrt: 2250 case LibFunc::sqrtl: 2251 return optimizeSqrt(CI, Builder); 2252 case LibFunc::ffs: 2253 case LibFunc::ffsl: 2254 case LibFunc::ffsll: 2255 return optimizeFFS(CI, Builder); 2256 case LibFunc::abs: 2257 case LibFunc::labs: 2258 case LibFunc::llabs: 2259 return optimizeAbs(CI, Builder); 2260 case LibFunc::isdigit: 2261 return optimizeIsDigit(CI, Builder); 2262 case LibFunc::isascii: 2263 return optimizeIsAscii(CI, Builder); 2264 case LibFunc::toascii: 2265 return optimizeToAscii(CI, Builder); 2266 case LibFunc::printf: 2267 return optimizePrintF(CI, Builder); 2268 case LibFunc::sprintf: 2269 return optimizeSPrintF(CI, Builder); 2270 case LibFunc::fprintf: 2271 return optimizeFPrintF(CI, Builder); 2272 case LibFunc::fwrite: 2273 return optimizeFWrite(CI, Builder); 2274 case LibFunc::fputs: 2275 return optimizeFPuts(CI, Builder); 2276 case LibFunc::log: 2277 case LibFunc::log10: 2278 case LibFunc::log1p: 2279 case LibFunc::log2: 2280 case LibFunc::logb: 2281 return optimizeLog(CI, Builder); 2282 case LibFunc::puts: 2283 return optimizePuts(CI, Builder); 2284 case LibFunc::tan: 2285 case LibFunc::tanf: 2286 case LibFunc::tanl: 2287 return optimizeTan(CI, Builder); 2288 case LibFunc::perror: 2289 return optimizeErrorReporting(CI, Builder); 2290 case LibFunc::vfprintf: 2291 case LibFunc::fiprintf: 2292 return optimizeErrorReporting(CI, Builder, 0); 2293 case LibFunc::fputc: 2294 return optimizeErrorReporting(CI, Builder, 1); 2295 case LibFunc::ceil: 2296 case LibFunc::floor: 2297 case LibFunc::rint: 2298 case LibFunc::round: 2299 case LibFunc::nearbyint: 2300 case LibFunc::trunc: 2301 if (hasFloatVersion(FuncName)) 2302 return optimizeUnaryDoubleFP(CI, Builder, false); 2303 return nullptr; 2304 case LibFunc::acos: 2305 case LibFunc::acosh: 2306 case LibFunc::asin: 2307 case LibFunc::asinh: 2308 case LibFunc::atan: 2309 case LibFunc::atanh: 2310 case LibFunc::cbrt: 2311 case LibFunc::cosh: 2312 case LibFunc::exp: 2313 case LibFunc::exp10: 2314 case LibFunc::expm1: 2315 case LibFunc::sin: 2316 case LibFunc::sinh: 2317 case LibFunc::tanh: 2318 if (UnsafeFPShrink && hasFloatVersion(FuncName)) 2319 return optimizeUnaryDoubleFP(CI, Builder, true); 2320 return nullptr; 2321 case LibFunc::copysign: 2322 if (hasFloatVersion(FuncName)) 2323 return optimizeBinaryDoubleFP(CI, Builder); 2324 return nullptr; 2325 case LibFunc::fminf: 2326 case LibFunc::fmin: 2327 case LibFunc::fminl: 2328 case LibFunc::fmaxf: 2329 case LibFunc::fmax: 2330 case LibFunc::fmaxl: 2331 return optimizeFMinFMax(CI, Builder); 2332 default: 2333 return nullptr; 2334 } 2335 } 2336 return nullptr; 2337 } 2338 2339 LibCallSimplifier::LibCallSimplifier( 2340 const DataLayout &DL, const TargetLibraryInfo *TLI, 2341 function_ref<void(Instruction *, Value *)> Replacer) 2342 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false), 2343 Replacer(Replacer) {} 2344 2345 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2346 // Indirect through the replacer used in this instance. 2347 Replacer(I, With); 2348 } 2349 2350 // TODO: 2351 // Additional cases that we need to add to this file: 2352 // 2353 // cbrt: 2354 // * cbrt(expN(X)) -> expN(x/3) 2355 // * cbrt(sqrt(x)) -> pow(x,1/6) 2356 // * cbrt(cbrt(x)) -> pow(x,1/9) 2357 // 2358 // exp, expf, expl: 2359 // * exp(log(x)) -> x 2360 // 2361 // log, logf, logl: 2362 // * log(exp(x)) -> x 2363 // * log(exp(y)) -> y*log(e) 2364 // * log(exp10(y)) -> y*log(10) 2365 // * log(sqrt(x)) -> 0.5*log(x) 2366 // 2367 // lround, lroundf, lroundl: 2368 // * lround(cnst) -> cnst' 2369 // 2370 // pow, powf, powl: 2371 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2372 // * pow(pow(x,y),z)-> pow(x,y*z) 2373 // 2374 // round, roundf, roundl: 2375 // * round(cnst) -> cnst' 2376 // 2377 // signbit: 2378 // * signbit(cnst) -> cnst' 2379 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2380 // 2381 // sqrt, sqrtf, sqrtl: 2382 // * sqrt(expN(x)) -> expN(x*0.5) 2383 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2384 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2385 // 2386 // trunc, truncf, truncl: 2387 // * trunc(cnst) -> cnst' 2388 // 2389 // 2390 2391 //===----------------------------------------------------------------------===// 2392 // Fortified Library Call Optimizations 2393 //===----------------------------------------------------------------------===// 2394 2395 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2396 unsigned ObjSizeOp, 2397 unsigned SizeOp, 2398 bool isString) { 2399 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2400 return true; 2401 if (ConstantInt *ObjSizeCI = 2402 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2403 if (ObjSizeCI->isAllOnesValue()) 2404 return true; 2405 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2406 if (OnlyLowerUnknownSize) 2407 return false; 2408 if (isString) { 2409 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2410 // If the length is 0 we don't know how long it is and so we can't 2411 // remove the check. 2412 if (Len == 0) 2413 return false; 2414 return ObjSizeCI->getZExtValue() >= Len; 2415 } 2416 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2417 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2418 } 2419 return false; 2420 } 2421 2422 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B) { 2423 Function *Callee = CI->getCalledFunction(); 2424 2425 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy_chk)) 2426 return nullptr; 2427 2428 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2429 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2430 CI->getArgOperand(2), 1); 2431 return CI->getArgOperand(0); 2432 } 2433 return nullptr; 2434 } 2435 2436 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B) { 2437 Function *Callee = CI->getCalledFunction(); 2438 2439 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove_chk)) 2440 return nullptr; 2441 2442 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2443 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 2444 CI->getArgOperand(2), 1); 2445 return CI->getArgOperand(0); 2446 } 2447 return nullptr; 2448 } 2449 2450 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<> &B) { 2451 Function *Callee = CI->getCalledFunction(); 2452 2453 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset_chk)) 2454 return nullptr; 2455 2456 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2457 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2458 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2459 return CI->getArgOperand(0); 2460 } 2461 return nullptr; 2462 } 2463 2464 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2465 IRBuilder<> &B, 2466 LibFunc::Func Func) { 2467 Function *Callee = CI->getCalledFunction(); 2468 StringRef Name = Callee->getName(); 2469 const DataLayout &DL = CI->getModule()->getDataLayout(); 2470 2471 if (!checkStringCopyLibFuncSignature(Callee, Func)) 2472 return nullptr; 2473 2474 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2475 *ObjSize = CI->getArgOperand(2); 2476 2477 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2478 if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2479 Value *StrLen = EmitStrLen(Src, B, DL, TLI); 2480 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2481 } 2482 2483 // If a) we don't have any length information, or b) we know this will 2484 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2485 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2486 // TODO: It might be nice to get a maximum length out of the possible 2487 // string lengths for varying. 2488 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2489 return EmitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2490 2491 if (OnlyLowerUnknownSize) 2492 return nullptr; 2493 2494 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2495 uint64_t Len = GetStringLength(Src); 2496 if (Len == 0) 2497 return nullptr; 2498 2499 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2500 Value *LenV = ConstantInt::get(SizeTTy, Len); 2501 Value *Ret = EmitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2502 // If the function was an __stpcpy_chk, and we were able to fold it into 2503 // a __memcpy_chk, we still need to return the correct end pointer. 2504 if (Ret && Func == LibFunc::stpcpy_chk) 2505 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2506 return Ret; 2507 } 2508 2509 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2510 IRBuilder<> &B, 2511 LibFunc::Func Func) { 2512 Function *Callee = CI->getCalledFunction(); 2513 StringRef Name = Callee->getName(); 2514 2515 if (!checkStringCopyLibFuncSignature(Callee, Func)) 2516 return nullptr; 2517 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2518 Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2519 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2520 return Ret; 2521 } 2522 return nullptr; 2523 } 2524 2525 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2526 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2527 // Some clang users checked for _chk libcall availability using: 2528 // __has_builtin(__builtin___memcpy_chk) 2529 // When compiling with -fno-builtin, this is always true. 2530 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2531 // end up with fortified libcalls, which isn't acceptable in a freestanding 2532 // environment which only provides their non-fortified counterparts. 2533 // 2534 // Until we change clang and/or teach external users to check for availability 2535 // differently, disregard the "nobuiltin" attribute and TLI::has. 2536 // 2537 // PR23093. 2538 2539 LibFunc::Func Func; 2540 Function *Callee = CI->getCalledFunction(); 2541 StringRef FuncName = Callee->getName(); 2542 IRBuilder<> Builder(CI); 2543 bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C; 2544 2545 // First, check that this is a known library functions. 2546 if (!TLI->getLibFunc(FuncName, Func)) 2547 return nullptr; 2548 2549 // We never change the calling convention. 2550 if (!ignoreCallingConv(Func) && !isCallingConvC) 2551 return nullptr; 2552 2553 switch (Func) { 2554 case LibFunc::memcpy_chk: 2555 return optimizeMemCpyChk(CI, Builder); 2556 case LibFunc::memmove_chk: 2557 return optimizeMemMoveChk(CI, Builder); 2558 case LibFunc::memset_chk: 2559 return optimizeMemSetChk(CI, Builder); 2560 case LibFunc::stpcpy_chk: 2561 case LibFunc::strcpy_chk: 2562 return optimizeStrpCpyChk(CI, Builder, Func); 2563 case LibFunc::stpncpy_chk: 2564 case LibFunc::strncpy_chk: 2565 return optimizeStrpNCpyChk(CI, Builder, Func); 2566 default: 2567 break; 2568 } 2569 return nullptr; 2570 } 2571 2572 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2573 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2574 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2575