Home | History | Annotate | Download | only in llvmpipe
      1 /**************************************************************************
      2  *
      3  * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
      4  * All Rights Reserved.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the
      8  * "Software"), to deal in the Software without restriction, including
      9  * without limitation the rights to use, copy, modify, merge, publish,
     10  * distribute, sub license, and/or sell copies of the Software, and to
     11  * permit persons to whom the Software is furnished to do so, subject to
     12  * the following conditions:
     13  *
     14  * The above copyright notice and this permission notice (including the
     15  * next paragraph) shall be included in all copies or substantial portions
     16  * of the Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
     19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
     21  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
     22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
     23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
     24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     25  *
     26  **************************************************************************/
     27 
     28 /*
     29  * Binning code for triangles
     30  */
     31 
     32 #include "util/u_math.h"
     33 #include "util/u_memory.h"
     34 #include "util/u_rect.h"
     35 #include "util/u_sse.h"
     36 #include "lp_perf.h"
     37 #include "lp_setup_context.h"
     38 #include "lp_rast.h"
     39 #include "lp_state_fs.h"
     40 #include "lp_state_setup.h"
     41 
     42 #define NUM_CHANNELS 4
     43 
     44 #if defined(PIPE_ARCH_SSE)
     45 #include <emmintrin.h>
     46 #endif
     47 
     48 static INLINE int
     49 subpixel_snap(float a)
     50 {
     51    return util_iround(FIXED_ONE * a);
     52 }
     53 
     54 static INLINE float
     55 fixed_to_float(int a)
     56 {
     57    return a * (1.0 / FIXED_ONE);
     58 }
     59 
     60 
     61 /* Position and area in fixed point coordinates */
     62 struct fixed_position {
     63    int x[4];
     64    int y[4];
     65    int area;
     66    int dx01;
     67    int dy01;
     68    int dx20;
     69    int dy20;
     70 };
     71 
     72 
     73 /**
     74  * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
     75  * immediately after it.
     76  * The memory is allocated from the per-scene pool, not per-tile.
     77  * \param tri_size  returns number of bytes allocated
     78  * \param num_inputs  number of fragment shader inputs
     79  * \return pointer to triangle space
     80  */
     81 struct lp_rast_triangle *
     82 lp_setup_alloc_triangle(struct lp_scene *scene,
     83                         unsigned nr_inputs,
     84                         unsigned nr_planes,
     85                         unsigned *tri_size)
     86 {
     87    unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
     88    unsigned plane_sz = nr_planes * sizeof(struct lp_rast_plane);
     89    struct lp_rast_triangle *tri;
     90 
     91    *tri_size = (sizeof(struct lp_rast_triangle) +
     92                 3 * input_array_sz +
     93                 plane_sz);
     94 
     95    tri = lp_scene_alloc_aligned( scene, *tri_size, 16 );
     96    if (tri == NULL)
     97       return NULL;
     98 
     99    tri->inputs.stride = input_array_sz;
    100 
    101    {
    102       char *a = (char *)tri;
    103       char *b = (char *)&GET_PLANES(tri)[nr_planes];
    104       assert(b - a == *tri_size);
    105    }
    106 
    107    return tri;
    108 }
    109 
    110 void
    111 lp_setup_print_vertex(struct lp_setup_context *setup,
    112                       const char *name,
    113                       const float (*v)[4])
    114 {
    115    const struct lp_setup_variant_key *key = &setup->setup.variant->key;
    116    int i, j;
    117 
    118    debug_printf("   wpos (%s[0]) xyzw %f %f %f %f\n",
    119                 name,
    120                 v[0][0], v[0][1], v[0][2], v[0][3]);
    121 
    122    for (i = 0; i < key->num_inputs; i++) {
    123       const float *in = v[key->inputs[i].src_index];
    124 
    125       debug_printf("  in[%d] (%s[%d]) %s%s%s%s ",
    126                    i,
    127                    name, key->inputs[i].src_index,
    128                    (key->inputs[i].usage_mask & 0x1) ? "x" : " ",
    129                    (key->inputs[i].usage_mask & 0x2) ? "y" : " ",
    130                    (key->inputs[i].usage_mask & 0x4) ? "z" : " ",
    131                    (key->inputs[i].usage_mask & 0x8) ? "w" : " ");
    132 
    133       for (j = 0; j < 4; j++)
    134          if (key->inputs[i].usage_mask & (1<<j))
    135             debug_printf("%.5f ", in[j]);
    136 
    137       debug_printf("\n");
    138    }
    139 }
    140 
    141 
    142 /**
    143  * Print triangle vertex attribs (for debug).
    144  */
    145 void
    146 lp_setup_print_triangle(struct lp_setup_context *setup,
    147                         const float (*v0)[4],
    148                         const float (*v1)[4],
    149                         const float (*v2)[4])
    150 {
    151    debug_printf("triangle\n");
    152 
    153    {
    154       const float ex = v0[0][0] - v2[0][0];
    155       const float ey = v0[0][1] - v2[0][1];
    156       const float fx = v1[0][0] - v2[0][0];
    157       const float fy = v1[0][1] - v2[0][1];
    158 
    159       /* det = cross(e,f).z */
    160       const float det = ex * fy - ey * fx;
    161       if (det < 0.0f)
    162          debug_printf("   - ccw\n");
    163       else if (det > 0.0f)
    164          debug_printf("   - cw\n");
    165       else
    166          debug_printf("   - zero area\n");
    167    }
    168 
    169    lp_setup_print_vertex(setup, "v0", v0);
    170    lp_setup_print_vertex(setup, "v1", v1);
    171    lp_setup_print_vertex(setup, "v2", v2);
    172 }
    173 
    174 
    175 #define MAX_PLANES 8
    176 static unsigned
    177 lp_rast_tri_tab[MAX_PLANES+1] = {
    178    0,               /* should be impossible */
    179    LP_RAST_OP_TRIANGLE_1,
    180    LP_RAST_OP_TRIANGLE_2,
    181    LP_RAST_OP_TRIANGLE_3,
    182    LP_RAST_OP_TRIANGLE_4,
    183    LP_RAST_OP_TRIANGLE_5,
    184    LP_RAST_OP_TRIANGLE_6,
    185    LP_RAST_OP_TRIANGLE_7,
    186    LP_RAST_OP_TRIANGLE_8
    187 };
    188 
    189 
    190 
    191 /**
    192  * The primitive covers the whole tile- shade whole tile.
    193  *
    194  * \param tx, ty  the tile position in tiles, not pixels
    195  */
    196 static boolean
    197 lp_setup_whole_tile(struct lp_setup_context *setup,
    198                     const struct lp_rast_shader_inputs *inputs,
    199                     int tx, int ty)
    200 {
    201    struct lp_scene *scene = setup->scene;
    202 
    203    LP_COUNT(nr_fully_covered_64);
    204 
    205    /* if variant is opaque and scissor doesn't effect the tile */
    206    if (inputs->opaque) {
    207       if (!scene->fb.zsbuf) {
    208          /*
    209           * All previous rendering will be overwritten so reset the bin.
    210           */
    211          lp_scene_bin_reset( scene, tx, ty );
    212       }
    213 
    214       LP_COUNT(nr_shade_opaque_64);
    215       return lp_scene_bin_cmd_with_state( scene, tx, ty,
    216                                           setup->fs.stored,
    217                                           LP_RAST_OP_SHADE_TILE_OPAQUE,
    218                                           lp_rast_arg_inputs(inputs) );
    219    } else {
    220       LP_COUNT(nr_shade_64);
    221       return lp_scene_bin_cmd_with_state( scene, tx, ty,
    222                                           setup->fs.stored,
    223                                           LP_RAST_OP_SHADE_TILE,
    224                                           lp_rast_arg_inputs(inputs) );
    225    }
    226 }
    227 
    228 
    229 /**
    230  * Do basic setup for triangle rasterization and determine which
    231  * framebuffer tiles are touched.  Put the triangle in the scene's
    232  * bins for the tiles which we overlap.
    233  */
    234 static boolean
    235 do_triangle_ccw(struct lp_setup_context *setup,
    236                 struct fixed_position* position,
    237                 const float (*v0)[4],
    238                 const float (*v1)[4],
    239                 const float (*v2)[4],
    240                 boolean frontfacing )
    241 {
    242    struct lp_scene *scene = setup->scene;
    243    const struct lp_setup_variant_key *key = &setup->setup.variant->key;
    244    struct lp_rast_triangle *tri;
    245    struct lp_rast_plane *plane;
    246    struct u_rect bbox;
    247    unsigned tri_bytes;
    248    int nr_planes = 3;
    249 
    250    /* Area should always be positive here */
    251    assert(position->area > 0);
    252 
    253    if (0)
    254       lp_setup_print_triangle(setup, v0, v1, v2);
    255 
    256    if (setup->scissor_test) {
    257       nr_planes = 7;
    258    }
    259    else {
    260       nr_planes = 3;
    261    }
    262 
    263    /* Bounding rectangle (in pixels) */
    264    {
    265       /* Yes this is necessary to accurately calculate bounding boxes
    266        * with the two fill-conventions we support.  GL (normally) ends
    267        * up needing a bottom-left fill convention, which requires
    268        * slightly different rounding.
    269        */
    270       int adj = (setup->pixel_offset != 0) ? 1 : 0;
    271 
    272       /* Inclusive x0, exclusive x1 */
    273       bbox.x0 =  MIN3(position->x[0], position->x[1], position->x[2]) >> FIXED_ORDER;
    274       bbox.x1 = (MAX3(position->x[0], position->x[1], position->x[2]) - 1) >> FIXED_ORDER;
    275 
    276       /* Inclusive / exclusive depending upon adj (bottom-left or top-right) */
    277       bbox.y0 = (MIN3(position->y[0], position->y[1], position->y[2]) + adj) >> FIXED_ORDER;
    278       bbox.y1 = (MAX3(position->y[0], position->y[1], position->y[2]) - 1 + adj) >> FIXED_ORDER;
    279    }
    280 
    281    if (bbox.x1 < bbox.x0 ||
    282        bbox.y1 < bbox.y0) {
    283       if (0) debug_printf("empty bounding box\n");
    284       LP_COUNT(nr_culled_tris);
    285       return TRUE;
    286    }
    287 
    288    if (!u_rect_test_intersection(&setup->draw_region, &bbox)) {
    289       if (0) debug_printf("offscreen\n");
    290       LP_COUNT(nr_culled_tris);
    291       return TRUE;
    292    }
    293 
    294    /* Can safely discard negative regions, but need to keep hold of
    295     * information about when the triangle extends past screen
    296     * boundaries.  See trimmed_box in lp_setup_bin_triangle().
    297     */
    298    bbox.x0 = MAX2(bbox.x0, 0);
    299    bbox.y0 = MAX2(bbox.y0, 0);
    300 
    301    tri = lp_setup_alloc_triangle(scene,
    302                                  key->num_inputs,
    303                                  nr_planes,
    304                                  &tri_bytes);
    305    if (!tri)
    306       return FALSE;
    307 
    308 #if 0
    309    tri->v[0][0] = v0[0][0];
    310    tri->v[1][0] = v1[0][0];
    311    tri->v[2][0] = v2[0][0];
    312    tri->v[0][1] = v0[0][1];
    313    tri->v[1][1] = v1[0][1];
    314    tri->v[2][1] = v2[0][1];
    315 #endif
    316 
    317    LP_COUNT(nr_tris);
    318 
    319    /* Setup parameter interpolants:
    320     */
    321    setup->setup.variant->jit_function( v0,
    322 				       v1,
    323 				       v2,
    324 				       frontfacing,
    325 				       GET_A0(&tri->inputs),
    326 				       GET_DADX(&tri->inputs),
    327 				       GET_DADY(&tri->inputs) );
    328 
    329    tri->inputs.frontfacing = frontfacing;
    330    tri->inputs.disable = FALSE;
    331    tri->inputs.opaque = setup->fs.current.variant->opaque;
    332 
    333    if (0)
    334       lp_dump_setup_coef(&setup->setup.variant->key,
    335 			 (const float (*)[4])GET_A0(&tri->inputs),
    336 			 (const float (*)[4])GET_DADX(&tri->inputs),
    337 			 (const float (*)[4])GET_DADY(&tri->inputs));
    338 
    339    plane = GET_PLANES(tri);
    340 
    341 #if defined(PIPE_ARCH_SSE)
    342    {
    343       __m128i vertx, verty;
    344       __m128i shufx, shufy;
    345       __m128i dcdx, dcdy, c;
    346       __m128i unused;
    347       __m128i dcdx_neg_mask;
    348       __m128i dcdy_neg_mask;
    349       __m128i dcdx_zero_mask;
    350       __m128i top_left_flag;
    351       __m128i c_inc_mask, c_inc;
    352       __m128i eo, p0, p1, p2;
    353       __m128i zero = _mm_setzero_si128();
    354 
    355       vertx = _mm_loadu_si128((__m128i *)position->x); /* vertex x coords */
    356       verty = _mm_loadu_si128((__m128i *)position->y); /* vertex y coords */
    357 
    358       shufx = _mm_shuffle_epi32(vertx, _MM_SHUFFLE(3,0,2,1));
    359       shufy = _mm_shuffle_epi32(verty, _MM_SHUFFLE(3,0,2,1));
    360 
    361       dcdx = _mm_sub_epi32(verty, shufy);
    362       dcdy = _mm_sub_epi32(vertx, shufx);
    363 
    364       dcdx_neg_mask = _mm_srai_epi32(dcdx, 31);
    365       dcdx_zero_mask = _mm_cmpeq_epi32(dcdx, zero);
    366       dcdy_neg_mask = _mm_srai_epi32(dcdy, 31);
    367 
    368       top_left_flag = _mm_set1_epi32((setup->pixel_offset == 0) ? ~0 : 0);
    369 
    370       c_inc_mask = _mm_or_si128(dcdx_neg_mask,
    371                                 _mm_and_si128(dcdx_zero_mask,
    372                                               _mm_xor_si128(dcdy_neg_mask,
    373                                                             top_left_flag)));
    374 
    375       c_inc = _mm_srli_epi32(c_inc_mask, 31);
    376 
    377       c = _mm_sub_epi32(mm_mullo_epi32(dcdx, vertx),
    378                         mm_mullo_epi32(dcdy, verty));
    379 
    380       c = _mm_add_epi32(c, c_inc);
    381 
    382       /* Scale up to match c:
    383        */
    384       dcdx = _mm_slli_epi32(dcdx, FIXED_ORDER);
    385       dcdy = _mm_slli_epi32(dcdy, FIXED_ORDER);
    386 
    387       /* Calculate trivial reject values:
    388        */
    389       eo = _mm_sub_epi32(_mm_andnot_si128(dcdy_neg_mask, dcdy),
    390                          _mm_and_si128(dcdx_neg_mask, dcdx));
    391 
    392       /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
    393 
    394       /* Pointless transpose which gets undone immediately in
    395        * rasterization:
    396        */
    397       transpose4_epi32(&c, &dcdx, &dcdy, &eo,
    398                        &p0, &p1, &p2, &unused);
    399 
    400       _mm_store_si128((__m128i *)&plane[0], p0);
    401       _mm_store_si128((__m128i *)&plane[1], p1);
    402       _mm_store_si128((__m128i *)&plane[2], p2);
    403    }
    404 #else
    405    {
    406       int i;
    407       plane[0].dcdy = position->dx01;
    408       plane[1].dcdy = position->x[1] - position->x[2];
    409       plane[2].dcdy = position->dx20;
    410       plane[0].dcdx = position->dy01;
    411       plane[1].dcdx = position->y[1] - position->y[2];
    412       plane[2].dcdx = position->dy20;
    413 
    414       for (i = 0; i < 3; i++) {
    415          /* half-edge constants, will be interated over the whole render
    416           * target.
    417           */
    418          plane[i].c = plane[i].dcdx * position->x[i] - plane[i].dcdy * position->y[i];
    419 
    420          /* correct for top-left vs. bottom-left fill convention.
    421           *
    422           * note that we're overloading gl_rasterization_rules to mean
    423           * both (0.5,0.5) pixel centers *and* bottom-left filling
    424           * convention.
    425           *
    426           * GL actually has a top-left filling convention, but GL's
    427           * notion of "top" differs from gallium's...
    428           *
    429           * Also, sometimes (in FBO cases) GL will render upside down
    430           * to its usual method, in which case it will probably want
    431           * to use the opposite, top-left convention.
    432           */
    433          if (plane[i].dcdx < 0) {
    434             /* both fill conventions want this - adjust for left edges */
    435             plane[i].c++;
    436          }
    437          else if (plane[i].dcdx == 0) {
    438             if (setup->pixel_offset == 0) {
    439                /* correct for top-left fill convention:
    440                 */
    441                if (plane[i].dcdy > 0) plane[i].c++;
    442             }
    443             else {
    444                /* correct for bottom-left fill convention:
    445                 */
    446                if (plane[i].dcdy < 0) plane[i].c++;
    447             }
    448          }
    449 
    450          plane[i].dcdx *= FIXED_ONE;
    451          plane[i].dcdy *= FIXED_ONE;
    452 
    453          /* find trivial reject offsets for each edge for a single-pixel
    454           * sized block.  These will be scaled up at each recursive level to
    455           * match the active blocksize.  Scaling in this way works best if
    456           * the blocks are square.
    457           */
    458          plane[i].eo = 0;
    459          if (plane[i].dcdx < 0) plane[i].eo -= plane[i].dcdx;
    460          if (plane[i].dcdy > 0) plane[i].eo += plane[i].dcdy;
    461       }
    462    }
    463 #endif
    464 
    465    if (0) {
    466       debug_printf("p0: %08x/%08x/%08x/%08x\n",
    467                    plane[0].c,
    468                    plane[0].dcdx,
    469                    plane[0].dcdy,
    470                    plane[0].eo);
    471 
    472       debug_printf("p1: %08x/%08x/%08x/%08x\n",
    473                    plane[1].c,
    474                    plane[1].dcdx,
    475                    plane[1].dcdy,
    476                    plane[1].eo);
    477 
    478       debug_printf("p0: %08x/%08x/%08x/%08x\n",
    479                    plane[2].c,
    480                    plane[2].dcdx,
    481                    plane[2].dcdy,
    482                    plane[2].eo);
    483    }
    484 
    485 
    486    /*
    487     * When rasterizing scissored tris, use the intersection of the
    488     * triangle bounding box and the scissor rect to generate the
    489     * scissor planes.
    490     *
    491     * This permits us to cut off the triangle "tails" that are present
    492     * in the intermediate recursive levels caused when two of the
    493     * triangles edges don't diverge quickly enough to trivially reject
    494     * exterior blocks from the triangle.
    495     *
    496     * It's not really clear if it's worth worrying about these tails,
    497     * but since we generate the planes for each scissored tri, it's
    498     * free to trim them in this case.
    499     *
    500     * Note that otherwise, the scissor planes only vary in 'C' value,
    501     * and even then only on state-changes.  Could alternatively store
    502     * these planes elsewhere.
    503     */
    504    if (nr_planes == 7) {
    505       const struct u_rect *scissor = &setup->scissor;
    506 
    507       plane[3].dcdx = -1;
    508       plane[3].dcdy = 0;
    509       plane[3].c = 1-scissor->x0;
    510       plane[3].eo = 1;
    511 
    512       plane[4].dcdx = 1;
    513       plane[4].dcdy = 0;
    514       plane[4].c = scissor->x1+1;
    515       plane[4].eo = 0;
    516 
    517       plane[5].dcdx = 0;
    518       plane[5].dcdy = 1;
    519       plane[5].c = 1-scissor->y0;
    520       plane[5].eo = 1;
    521 
    522       plane[6].dcdx = 0;
    523       plane[6].dcdy = -1;
    524       plane[6].c = scissor->y1+1;
    525       plane[6].eo = 0;
    526    }
    527 
    528    return lp_setup_bin_triangle( setup, tri, &bbox, nr_planes );
    529 }
    530 
    531 /*
    532  * Round to nearest less or equal power of two of the input.
    533  *
    534  * Undefined if no bit set exists, so code should check against 0 first.
    535  */
    536 static INLINE uint32_t
    537 floor_pot(uint32_t n)
    538 {
    539 #if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
    540    if (n == 0)
    541       return 0;
    542 
    543    __asm__("bsr %1,%0"
    544           : "=r" (n)
    545           : "rm" (n));
    546    return 1 << n;
    547 #else
    548    n |= (n >>  1);
    549    n |= (n >>  2);
    550    n |= (n >>  4);
    551    n |= (n >>  8);
    552    n |= (n >> 16);
    553    return n - (n >> 1);
    554 #endif
    555 }
    556 
    557 
    558 boolean
    559 lp_setup_bin_triangle( struct lp_setup_context *setup,
    560                        struct lp_rast_triangle *tri,
    561                        const struct u_rect *bbox,
    562                        int nr_planes )
    563 {
    564    struct lp_scene *scene = setup->scene;
    565    struct u_rect trimmed_box = *bbox;
    566    int i;
    567 
    568    /* What is the largest power-of-two boundary this triangle crosses:
    569     */
    570    int dx = floor_pot((bbox->x0 ^ bbox->x1) |
    571 		      (bbox->y0 ^ bbox->y1));
    572 
    573    /* The largest dimension of the rasterized area of the triangle
    574     * (aligned to a 4x4 grid), rounded down to the nearest power of two:
    575     */
    576    int sz = floor_pot((bbox->x1 - (bbox->x0 & ~3)) |
    577 		      (bbox->y1 - (bbox->y0 & ~3)));
    578 
    579    /* Now apply scissor, etc to the bounding box.  Could do this
    580     * earlier, but it confuses the logic for tri-16 and would force
    581     * the rasterizer to also respect scissor, etc, just for the rare
    582     * cases where a small triangle extends beyond the scissor.
    583     */
    584    u_rect_find_intersection(&setup->draw_region, &trimmed_box);
    585 
    586    /* Determine which tile(s) intersect the triangle's bounding box
    587     */
    588    if (dx < TILE_SIZE)
    589    {
    590       int ix0 = bbox->x0 / TILE_SIZE;
    591       int iy0 = bbox->y0 / TILE_SIZE;
    592       unsigned px = bbox->x0 & 63 & ~3;
    593       unsigned py = bbox->y0 & 63 & ~3;
    594 
    595       assert(iy0 == bbox->y1 / TILE_SIZE &&
    596 	     ix0 == bbox->x1 / TILE_SIZE);
    597 
    598       if (nr_planes == 3) {
    599          if (sz < 4)
    600          {
    601             /* Triangle is contained in a single 4x4 stamp:
    602              */
    603             assert(px + 4 <= TILE_SIZE);
    604             assert(py + 4 <= TILE_SIZE);
    605             return lp_scene_bin_cmd_with_state( scene, ix0, iy0,
    606                                                 setup->fs.stored,
    607                                                 LP_RAST_OP_TRIANGLE_3_4,
    608                                                 lp_rast_arg_triangle_contained(tri, px, py) );
    609          }
    610 
    611          if (sz < 16)
    612          {
    613             /* Triangle is contained in a single 16x16 block:
    614              */
    615 
    616             /*
    617              * The 16x16 block is only 4x4 aligned, and can exceed the tile
    618              * dimensions if the triangle is 16 pixels in one dimension but 4
    619              * in the other. So budge the 16x16 back inside the tile.
    620              */
    621             px = MIN2(px, TILE_SIZE - 16);
    622             py = MIN2(py, TILE_SIZE - 16);
    623 
    624             assert(px + 16 <= TILE_SIZE);
    625             assert(py + 16 <= TILE_SIZE);
    626 
    627             return lp_scene_bin_cmd_with_state( scene, ix0, iy0,
    628                                                 setup->fs.stored,
    629                                                 LP_RAST_OP_TRIANGLE_3_16,
    630                                                 lp_rast_arg_triangle_contained(tri, px, py) );
    631          }
    632       }
    633       else if (nr_planes == 4 && sz < 16)
    634       {
    635          px = MIN2(px, TILE_SIZE - 16);
    636          py = MIN2(py, TILE_SIZE - 16);
    637 
    638          assert(px + 16 <= TILE_SIZE);
    639          assert(py + 16 <= TILE_SIZE);
    640 
    641          return lp_scene_bin_cmd_with_state(scene, ix0, iy0,
    642                                             setup->fs.stored,
    643                                             LP_RAST_OP_TRIANGLE_4_16,
    644                                             lp_rast_arg_triangle_contained(tri, px, py));
    645       }
    646 
    647 
    648       /* Triangle is contained in a single tile:
    649        */
    650       return lp_scene_bin_cmd_with_state( scene, ix0, iy0, setup->fs.stored,
    651                                           lp_rast_tri_tab[nr_planes],
    652                                           lp_rast_arg_triangle(tri, (1<<nr_planes)-1) );
    653    }
    654    else
    655    {
    656       struct lp_rast_plane *plane = GET_PLANES(tri);
    657       int c[MAX_PLANES];
    658       int ei[MAX_PLANES];
    659 
    660       int eo[MAX_PLANES];
    661       int xstep[MAX_PLANES];
    662       int ystep[MAX_PLANES];
    663       int x, y;
    664 
    665       int ix0 = trimmed_box.x0 / TILE_SIZE;
    666       int iy0 = trimmed_box.y0 / TILE_SIZE;
    667       int ix1 = trimmed_box.x1 / TILE_SIZE;
    668       int iy1 = trimmed_box.y1 / TILE_SIZE;
    669 
    670       for (i = 0; i < nr_planes; i++) {
    671          c[i] = (plane[i].c +
    672                  plane[i].dcdy * iy0 * TILE_SIZE -
    673                  plane[i].dcdx * ix0 * TILE_SIZE);
    674 
    675          ei[i] = (plane[i].dcdy -
    676                   plane[i].dcdx -
    677                   plane[i].eo) << TILE_ORDER;
    678 
    679          eo[i] = plane[i].eo << TILE_ORDER;
    680          xstep[i] = -(plane[i].dcdx << TILE_ORDER);
    681          ystep[i] = plane[i].dcdy << TILE_ORDER;
    682       }
    683 
    684 
    685 
    686       /* Test tile-sized blocks against the triangle.
    687        * Discard blocks fully outside the tri.  If the block is fully
    688        * contained inside the tri, bin an lp_rast_shade_tile command.
    689        * Else, bin a lp_rast_triangle command.
    690        */
    691       for (y = iy0; y <= iy1; y++)
    692       {
    693 	 boolean in = FALSE;  /* are we inside the triangle? */
    694 	 int cx[MAX_PLANES];
    695 
    696          for (i = 0; i < nr_planes; i++)
    697             cx[i] = c[i];
    698 
    699 	 for (x = ix0; x <= ix1; x++)
    700 	 {
    701             int out = 0;
    702             int partial = 0;
    703 
    704             for (i = 0; i < nr_planes; i++) {
    705                int planeout = cx[i] + eo[i];
    706                int planepartial = cx[i] + ei[i] - 1;
    707                out |= (planeout >> 31);
    708                partial |= (planepartial >> 31) & (1<<i);
    709             }
    710 
    711             if (out) {
    712                /* do nothing */
    713                if (in)
    714                   break;  /* exiting triangle, all done with this row */
    715                LP_COUNT(nr_empty_64);
    716             }
    717             else if (partial) {
    718                /* Not trivially accepted by at least one plane -
    719                 * rasterize/shade partial tile
    720                 */
    721                int count = util_bitcount(partial);
    722                in = TRUE;
    723 
    724                if (!lp_scene_bin_cmd_with_state( scene, x, y,
    725                                                  setup->fs.stored,
    726                                                  lp_rast_tri_tab[count],
    727                                                  lp_rast_arg_triangle(tri, partial) ))
    728                   goto fail;
    729 
    730                LP_COUNT(nr_partially_covered_64);
    731             }
    732             else {
    733                /* triangle covers the whole tile- shade whole tile */
    734                LP_COUNT(nr_fully_covered_64);
    735                in = TRUE;
    736                if (!lp_setup_whole_tile(setup, &tri->inputs, x, y))
    737                   goto fail;
    738             }
    739 
    740 	    /* Iterate cx values across the region:
    741 	     */
    742             for (i = 0; i < nr_planes; i++)
    743                cx[i] += xstep[i];
    744 	 }
    745 
    746 	 /* Iterate c values down the region:
    747 	  */
    748          for (i = 0; i < nr_planes; i++)
    749             c[i] += ystep[i];
    750       }
    751    }
    752 
    753    return TRUE;
    754 
    755 fail:
    756    /* Need to disable any partially binned triangle.  This is easier
    757     * than trying to locate all the triangle, shade-tile, etc,
    758     * commands which may have been binned.
    759     */
    760    tri->inputs.disable = TRUE;
    761    return FALSE;
    762 }
    763 
    764 
    765 /**
    766  * Try to draw the triangle, restart the scene on failure.
    767  */
    768 static void retry_triangle_ccw( struct lp_setup_context *setup,
    769                                 struct fixed_position* position,
    770                                 const float (*v0)[4],
    771                                 const float (*v1)[4],
    772                                 const float (*v2)[4],
    773                                 boolean front)
    774 {
    775    if (!do_triangle_ccw( setup, position, v0, v1, v2, front ))
    776    {
    777       if (!lp_setup_flush_and_restart(setup))
    778          return;
    779 
    780       if (!do_triangle_ccw( setup, position, v0, v1, v2, front ))
    781          return;
    782    }
    783 }
    784 
    785 
    786 /**
    787  * Calculate fixed position data for a triangle
    788  */
    789 static INLINE void
    790 calc_fixed_position( struct lp_setup_context *setup,
    791                      struct fixed_position* position,
    792                      const float (*v0)[4],
    793                      const float (*v1)[4],
    794                      const float (*v2)[4])
    795 {
    796    position->x[0] = subpixel_snap(v0[0][0] - setup->pixel_offset);
    797    position->x[1] = subpixel_snap(v1[0][0] - setup->pixel_offset);
    798    position->x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset);
    799    position->x[3] = 0;
    800 
    801    position->y[0] = subpixel_snap(v0[0][1] - setup->pixel_offset);
    802    position->y[1] = subpixel_snap(v1[0][1] - setup->pixel_offset);
    803    position->y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset);
    804    position->y[3] = 0;
    805 
    806    position->dx01 = position->x[0] - position->x[1];
    807    position->dy01 = position->y[0] - position->y[1];
    808 
    809    position->dx20 = position->x[2] - position->x[0];
    810    position->dy20 = position->y[2] - position->y[0];
    811 
    812    position->area = position->dx01 * position->dy20 - position->dx20 * position->dy01;
    813 }
    814 
    815 
    816 /**
    817  * Rotate a triangle, flipping its clockwise direction,
    818  * Swaps values for xy[0] and xy[1]
    819  */
    820 static INLINE void
    821 rotate_fixed_position_01( struct fixed_position* position )
    822 {
    823    int x, y;
    824 
    825    x = position->x[1];
    826    y = position->y[1];
    827    position->x[1] = position->x[0];
    828    position->y[1] = position->y[0];
    829    position->x[0] = x;
    830    position->y[0] = y;
    831 
    832    position->dx01 = -position->dx01;
    833    position->dy01 = -position->dy01;
    834    position->dx20 = position->x[2] - position->x[0];
    835    position->dy20 = position->y[2] - position->y[0];
    836 
    837    position->area = -position->area;
    838 }
    839 
    840 
    841 /**
    842  * Rotate a triangle, flipping its clockwise direction,
    843  * Swaps values for xy[1] and xy[2]
    844  */
    845 static INLINE void
    846 rotate_fixed_position_12( struct fixed_position* position )
    847 {
    848    int x, y;
    849 
    850    x = position->x[2];
    851    y = position->y[2];
    852    position->x[2] = position->x[1];
    853    position->y[2] = position->y[1];
    854    position->x[1] = x;
    855    position->y[1] = y;
    856 
    857    x = position->dx01;
    858    y = position->dy01;
    859    position->dx01 = -position->dx20;
    860    position->dy01 = -position->dy20;
    861    position->dx20 = -x;
    862    position->dy20 = -y;
    863 
    864    position->area = -position->area;
    865 }
    866 
    867 
    868 /**
    869  * Draw triangle if it's CW, cull otherwise.
    870  */
    871 static void triangle_cw( struct lp_setup_context *setup,
    872 			 const float (*v0)[4],
    873 			 const float (*v1)[4],
    874 			 const float (*v2)[4] )
    875 {
    876    struct fixed_position position;
    877    calc_fixed_position(setup, &position, v0, v1, v2);
    878 
    879    if (position.area < 0) {
    880       if (setup->flatshade_first) {
    881          rotate_fixed_position_12(&position);
    882          retry_triangle_ccw(setup, &position, v0, v2, v1, !setup->ccw_is_frontface);
    883       } else {
    884          rotate_fixed_position_01(&position);
    885          retry_triangle_ccw(setup, &position, v1, v0, v2, !setup->ccw_is_frontface);
    886       }
    887    }
    888 }
    889 
    890 
    891 static void triangle_ccw( struct lp_setup_context *setup,
    892                           const float (*v0)[4],
    893                           const float (*v1)[4],
    894                           const float (*v2)[4])
    895 {
    896    struct fixed_position position;
    897    calc_fixed_position(setup, &position, v0, v1, v2);
    898 
    899    if (position.area > 0)
    900       retry_triangle_ccw(setup, &position, v0, v1, v2, setup->ccw_is_frontface);
    901 }
    902 
    903 /**
    904  * Draw triangle whether it's CW or CCW.
    905  */
    906 static void triangle_both( struct lp_setup_context *setup,
    907 			   const float (*v0)[4],
    908 			   const float (*v1)[4],
    909 			   const float (*v2)[4] )
    910 {
    911    struct fixed_position position;
    912    calc_fixed_position(setup, &position, v0, v1, v2);
    913 
    914    if (0) {
    915       assert(!util_is_inf_or_nan(v0[0][0]));
    916       assert(!util_is_inf_or_nan(v0[0][1]));
    917       assert(!util_is_inf_or_nan(v1[0][0]));
    918       assert(!util_is_inf_or_nan(v1[0][1]));
    919       assert(!util_is_inf_or_nan(v2[0][0]));
    920       assert(!util_is_inf_or_nan(v2[0][1]));
    921    }
    922 
    923    if (position.area > 0)
    924       retry_triangle_ccw( setup, &position, v0, v1, v2, setup->ccw_is_frontface );
    925    else if (position.area < 0) {
    926       if (setup->flatshade_first) {
    927          rotate_fixed_position_12( &position );
    928          retry_triangle_ccw( setup, &position, v0, v2, v1, !setup->ccw_is_frontface );
    929       } else {
    930          rotate_fixed_position_01( &position );
    931          retry_triangle_ccw( setup, &position, v1, v0, v2, !setup->ccw_is_frontface );
    932       }
    933    }
    934 }
    935 
    936 
    937 static void triangle_nop( struct lp_setup_context *setup,
    938 			  const float (*v0)[4],
    939 			  const float (*v1)[4],
    940 			  const float (*v2)[4] )
    941 {
    942 }
    943 
    944 
    945 void
    946 lp_setup_choose_triangle( struct lp_setup_context *setup )
    947 {
    948    switch (setup->cullmode) {
    949    case PIPE_FACE_NONE:
    950       setup->triangle = triangle_both;
    951       break;
    952    case PIPE_FACE_BACK:
    953       setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
    954       break;
    955    case PIPE_FACE_FRONT:
    956       setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
    957       break;
    958    default:
    959       setup->triangle = triangle_nop;
    960       break;
    961    }
    962 }
    963