1 /* 2 Copyright (C) Intel Corp. 2006. All Rights Reserved. 3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to 4 develop this 3D driver. 5 6 Permission is hereby granted, free of charge, to any person obtaining 7 a copy of this software and associated documentation files (the 8 "Software"), to deal in the Software without restriction, including 9 without limitation the rights to use, copy, modify, merge, publish, 10 distribute, sublicense, and/or sell copies of the Software, and to 11 permit persons to whom the Software is furnished to do so, subject to 12 the following conditions: 13 14 The above copyright notice and this permission notice (including the 15 next paragraph) shall be included in all copies or substantial 16 portions of the Software. 17 18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. 21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE 22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 25 26 **********************************************************************/ 27 /* 28 * Authors: 29 * Keith Whitwell <keith (at) tungstengraphics.com> 30 */ 31 32 33 #include "main/glheader.h" 34 #include "main/macros.h" 35 #include "main/enums.h" 36 37 #include "program/program.h" 38 #include "intel_batchbuffer.h" 39 40 #include "brw_defines.h" 41 #include "brw_context.h" 42 #include "brw_eu.h" 43 #include "brw_gs.h" 44 45 /** 46 * Allocate registers for GS. 47 * 48 * If sol_program is true, then: 49 * 50 * - The thread will be spawned with the "SVBI Payload Enable" bit set, so GRF 51 * 1 needs to be set aside to hold the streamed vertex buffer indices. 52 * 53 * - The thread will need to use the destination_indices register. 54 */ 55 static void brw_gs_alloc_regs( struct brw_gs_compile *c, 56 GLuint nr_verts, 57 bool sol_program ) 58 { 59 GLuint i = 0,j; 60 61 /* Register usage is static, precompute here: 62 */ 63 c->reg.R0 = retype(brw_vec8_grf(i, 0), BRW_REGISTER_TYPE_UD); i++; 64 65 /* Streamed vertex buffer indices */ 66 if (sol_program) 67 c->reg.SVBI = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD); 68 69 /* Payload vertices plus space for more generated vertices: 70 */ 71 for (j = 0; j < nr_verts; j++) { 72 c->reg.vertex[j] = brw_vec4_grf(i, 0); 73 i += c->nr_regs; 74 } 75 76 c->reg.header = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD); 77 c->reg.temp = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD); 78 79 if (sol_program) { 80 c->reg.destination_indices = 81 retype(brw_vec4_grf(i++, 0), BRW_REGISTER_TYPE_UD); 82 } 83 84 c->prog_data.urb_read_length = c->nr_regs; 85 c->prog_data.total_grf = i; 86 } 87 88 89 /** 90 * Set up the initial value of c->reg.header register based on c->reg.R0. 91 * 92 * The following information is passed to the GS thread in R0, and needs to be 93 * included in the first URB_WRITE or FF_SYNC message sent by the GS: 94 * 95 * - DWORD 0 [31:0] handle info (Gen4 only) 96 * - DWORD 5 [7:0] FFTID 97 * - DWORD 6 [31:0] Debug info 98 * - DWORD 7 [31:0] Debug info 99 * 100 * This function sets up the above data by copying by copying the contents of 101 * R0 to the header register. 102 */ 103 static void brw_gs_initialize_header(struct brw_gs_compile *c) 104 { 105 struct brw_compile *p = &c->func; 106 brw_MOV(p, c->reg.header, c->reg.R0); 107 } 108 109 /** 110 * Overwrite DWORD 2 of c->reg.header with the given immediate unsigned value. 111 * 112 * In URB_WRITE messages, DWORD 2 contains the fields PrimType, PrimStart, 113 * PrimEnd, Increment CL_INVOCATIONS, and SONumPrimsWritten, many of which we 114 * need to be able to update on a per-vertex basis. 115 */ 116 static void brw_gs_overwrite_header_dw2(struct brw_gs_compile *c, 117 unsigned dw2) 118 { 119 struct brw_compile *p = &c->func; 120 brw_MOV(p, get_element_ud(c->reg.header, 2), brw_imm_ud(dw2)); 121 } 122 123 /** 124 * Overwrite DWORD 2 of c->reg.header with the primitive type from c->reg.R0. 125 * 126 * When the thread is spawned, GRF 0 contains the primitive type in bits 4:0 127 * of DWORD 2. URB_WRITE messages need the primitive type in bits 6:2 of 128 * DWORD 2. So this function extracts the primitive type field, bitshifts it 129 * appropriately, and stores it in c->reg.header. 130 */ 131 static void brw_gs_overwrite_header_dw2_from_r0(struct brw_gs_compile *c) 132 { 133 struct brw_compile *p = &c->func; 134 brw_AND(p, get_element_ud(c->reg.header, 2), get_element_ud(c->reg.R0, 2), 135 brw_imm_ud(0x1f)); 136 brw_SHL(p, get_element_ud(c->reg.header, 2), 137 get_element_ud(c->reg.header, 2), brw_imm_ud(2)); 138 } 139 140 /** 141 * Apply an additive offset to DWORD 2 of c->reg.header. 142 * 143 * This is used to set/unset the "PrimStart" and "PrimEnd" flags appropriately 144 * for each vertex. 145 */ 146 static void brw_gs_offset_header_dw2(struct brw_gs_compile *c, int offset) 147 { 148 struct brw_compile *p = &c->func; 149 brw_ADD(p, get_element_d(c->reg.header, 2), get_element_d(c->reg.header, 2), 150 brw_imm_d(offset)); 151 } 152 153 154 /** 155 * Emit a vertex using the URB_WRITE message. Use the contents of 156 * c->reg.header for the message header, and the registers starting at \c vert 157 * for the vertex data. 158 * 159 * If \c last is true, then this is the last vertex, so no further URB space 160 * should be allocated, and this message should end the thread. 161 * 162 * If \c last is false, then a new URB entry will be allocated, and its handle 163 * will be stored in DWORD 0 of c->reg.header for use in the next URB_WRITE 164 * message. 165 */ 166 static void brw_gs_emit_vue(struct brw_gs_compile *c, 167 struct brw_reg vert, 168 bool last) 169 { 170 struct brw_compile *p = &c->func; 171 bool allocate = !last; 172 173 /* Copy the vertex from vertn into m1..mN+1: 174 */ 175 brw_copy8(p, brw_message_reg(1), vert, c->nr_regs); 176 177 /* Send each vertex as a seperate write to the urb. This is 178 * different to the concept in brw_sf_emit.c, where subsequent 179 * writes are used to build up a single urb entry. Each of these 180 * writes instantiates a seperate urb entry, and a new one must be 181 * allocated each time. 182 */ 183 brw_urb_WRITE(p, 184 allocate ? c->reg.temp 185 : retype(brw_null_reg(), BRW_REGISTER_TYPE_UD), 186 0, 187 c->reg.header, 188 allocate, 189 1, /* used */ 190 c->nr_regs + 1, /* msg length */ 191 allocate ? 1 : 0, /* response length */ 192 allocate ? 0 : 1, /* eot */ 193 1, /* writes_complete */ 194 0, /* urb offset */ 195 BRW_URB_SWIZZLE_NONE); 196 197 if (allocate) { 198 brw_MOV(p, get_element_ud(c->reg.header, 0), 199 get_element_ud(c->reg.temp, 0)); 200 } 201 } 202 203 /** 204 * De-allocate the URB entry that was previously allocated to this thread 205 * (without writing any vertex data to it), and terminate the thread. This is 206 * used to implement RASTERIZER_DISCARD functionality. 207 */ 208 static void brw_gs_terminate(struct brw_gs_compile *c) 209 { 210 struct brw_compile *p = &c->func; 211 brw_urb_WRITE(p, 212 retype(brw_null_reg(), BRW_REGISTER_TYPE_UD), /* dest */ 213 0, /* msg_reg_nr */ 214 c->reg.header, /* src0 */ 215 false, /* allocate */ 216 false, /* used */ 217 1, /* msg_length */ 218 0, /* response_length */ 219 true, /* eot */ 220 true, /* writes_complete */ 221 0, /* offset */ 222 BRW_URB_SWIZZLE_NONE); 223 } 224 225 /** 226 * Send an FF_SYNC message to ensure that all previously spawned GS threads 227 * have finished sending primitives down the pipeline, and to allocate a URB 228 * entry for the first output vertex. Only needed when intel->needs_ff_sync 229 * is true. 230 * 231 * This function modifies c->reg.header: in DWORD 1, it stores num_prim (which 232 * is needed by the FF_SYNC message), and in DWORD 0, it stores the handle to 233 * the allocated URB entry (which will be needed by the URB_WRITE meesage that 234 * follows). 235 */ 236 static void brw_gs_ff_sync(struct brw_gs_compile *c, int num_prim) 237 { 238 struct brw_compile *p = &c->func; 239 240 brw_MOV(p, get_element_ud(c->reg.header, 1), brw_imm_ud(num_prim)); 241 brw_ff_sync(p, 242 c->reg.temp, 243 0, 244 c->reg.header, 245 1, /* allocate */ 246 1, /* response length */ 247 0 /* eot */); 248 brw_MOV(p, get_element_ud(c->reg.header, 0), 249 get_element_ud(c->reg.temp, 0)); 250 } 251 252 253 void brw_gs_quads( struct brw_gs_compile *c, struct brw_gs_prog_key *key ) 254 { 255 struct intel_context *intel = &c->func.brw->intel; 256 257 brw_gs_alloc_regs(c, 4, false); 258 brw_gs_initialize_header(c); 259 /* Use polygons for correct edgeflag behaviour. Note that vertex 3 260 * is the PV for quads, but vertex 0 for polygons: 261 */ 262 if (intel->needs_ff_sync) 263 brw_gs_ff_sync(c, 1); 264 brw_gs_overwrite_header_dw2( 265 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT) 266 | URB_WRITE_PRIM_START)); 267 if (key->pv_first) { 268 brw_gs_emit_vue(c, c->reg.vertex[0], 0); 269 brw_gs_overwrite_header_dw2( 270 c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT); 271 brw_gs_emit_vue(c, c->reg.vertex[1], 0); 272 brw_gs_emit_vue(c, c->reg.vertex[2], 0); 273 brw_gs_overwrite_header_dw2( 274 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT) 275 | URB_WRITE_PRIM_END)); 276 brw_gs_emit_vue(c, c->reg.vertex[3], 1); 277 } 278 else { 279 brw_gs_emit_vue(c, c->reg.vertex[3], 0); 280 brw_gs_overwrite_header_dw2( 281 c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT); 282 brw_gs_emit_vue(c, c->reg.vertex[0], 0); 283 brw_gs_emit_vue(c, c->reg.vertex[1], 0); 284 brw_gs_overwrite_header_dw2( 285 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT) 286 | URB_WRITE_PRIM_END)); 287 brw_gs_emit_vue(c, c->reg.vertex[2], 1); 288 } 289 } 290 291 void brw_gs_quad_strip( struct brw_gs_compile *c, struct brw_gs_prog_key *key ) 292 { 293 struct intel_context *intel = &c->func.brw->intel; 294 295 brw_gs_alloc_regs(c, 4, false); 296 brw_gs_initialize_header(c); 297 298 if (intel->needs_ff_sync) 299 brw_gs_ff_sync(c, 1); 300 brw_gs_overwrite_header_dw2( 301 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT) 302 | URB_WRITE_PRIM_START)); 303 if (key->pv_first) { 304 brw_gs_emit_vue(c, c->reg.vertex[0], 0); 305 brw_gs_overwrite_header_dw2( 306 c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT); 307 brw_gs_emit_vue(c, c->reg.vertex[1], 0); 308 brw_gs_emit_vue(c, c->reg.vertex[2], 0); 309 brw_gs_overwrite_header_dw2( 310 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT) 311 | URB_WRITE_PRIM_END)); 312 brw_gs_emit_vue(c, c->reg.vertex[3], 1); 313 } 314 else { 315 brw_gs_emit_vue(c, c->reg.vertex[2], 0); 316 brw_gs_overwrite_header_dw2( 317 c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT); 318 brw_gs_emit_vue(c, c->reg.vertex[3], 0); 319 brw_gs_emit_vue(c, c->reg.vertex[0], 0); 320 brw_gs_overwrite_header_dw2( 321 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT) 322 | URB_WRITE_PRIM_END)); 323 brw_gs_emit_vue(c, c->reg.vertex[1], 1); 324 } 325 } 326 327 void brw_gs_lines( struct brw_gs_compile *c ) 328 { 329 struct intel_context *intel = &c->func.brw->intel; 330 331 brw_gs_alloc_regs(c, 2, false); 332 brw_gs_initialize_header(c); 333 334 if (intel->needs_ff_sync) 335 brw_gs_ff_sync(c, 1); 336 brw_gs_overwrite_header_dw2( 337 c, ((_3DPRIM_LINESTRIP << URB_WRITE_PRIM_TYPE_SHIFT) 338 | URB_WRITE_PRIM_START)); 339 brw_gs_emit_vue(c, c->reg.vertex[0], 0); 340 brw_gs_overwrite_header_dw2( 341 c, ((_3DPRIM_LINESTRIP << URB_WRITE_PRIM_TYPE_SHIFT) 342 | URB_WRITE_PRIM_END)); 343 brw_gs_emit_vue(c, c->reg.vertex[1], 1); 344 } 345 346 /** 347 * Generate the geometry shader program used on Gen6 to perform stream output 348 * (transform feedback). 349 */ 350 void 351 gen6_sol_program(struct brw_gs_compile *c, struct brw_gs_prog_key *key, 352 unsigned num_verts, bool check_edge_flags) 353 { 354 struct brw_compile *p = &c->func; 355 c->prog_data.svbi_postincrement_value = num_verts; 356 357 brw_gs_alloc_regs(c, num_verts, true); 358 brw_gs_initialize_header(c); 359 360 if (key->num_transform_feedback_bindings > 0) { 361 unsigned vertex, binding; 362 struct brw_reg destination_indices_uw = 363 vec8(retype(c->reg.destination_indices, BRW_REGISTER_TYPE_UW)); 364 365 /* Note: since we use the binding table to keep track of buffer offsets 366 * and stride, the GS doesn't need to keep track of a separate pointer 367 * into each buffer; it uses a single pointer which increments by 1 for 368 * each vertex. So we use SVBI0 for this pointer, regardless of whether 369 * transform feedback is in interleaved or separate attribs mode. 370 * 371 * Make sure that the buffers have enough room for all the vertices. 372 */ 373 brw_ADD(p, get_element_ud(c->reg.temp, 0), 374 get_element_ud(c->reg.SVBI, 0), brw_imm_ud(num_verts)); 375 brw_CMP(p, vec1(brw_null_reg()), BRW_CONDITIONAL_LE, 376 get_element_ud(c->reg.temp, 0), 377 get_element_ud(c->reg.SVBI, 4)); 378 brw_IF(p, BRW_EXECUTE_1); 379 380 /* Compute the destination indices to write to. Usually we use SVBI[0] 381 * + (0, 1, 2). However, for odd-numbered triangles in tristrips, the 382 * vertices come down the pipeline in reversed winding order, so we need 383 * to flip the order when writing to the transform feedback buffer. To 384 * ensure that flatshading accuracy is preserved, we need to write them 385 * in order SVBI[0] + (0, 2, 1) if we're using the first provoking 386 * vertex convention, and in order SVBI[0] + (1, 0, 2) if we're using 387 * the last provoking vertex convention. 388 * 389 * Note: since brw_imm_v can only be used in instructions in 390 * packed-word execution mode, and SVBI is a double-word, we need to 391 * first move the appropriate immediate constant ((0, 1, 2), (0, 2, 1), 392 * or (1, 0, 2)) to the destination_indices register, and then add SVBI 393 * using a separate instruction. Also, since the immediate constant is 394 * expressed as packed words, and we need to load double-words into 395 * destination_indices, we need to intersperse zeros to fill the upper 396 * halves of each double-word. 397 */ 398 brw_MOV(p, destination_indices_uw, 399 brw_imm_v(0x00020100)); /* (0, 1, 2) */ 400 if (num_verts == 3) { 401 /* Get primitive type into temp register. */ 402 brw_AND(p, get_element_ud(c->reg.temp, 0), 403 get_element_ud(c->reg.R0, 2), brw_imm_ud(0x1f)); 404 405 /* Test if primitive type is TRISTRIP_REVERSE. We need to do this as 406 * an 8-wide comparison so that the conditional MOV that follows 407 * moves all 8 words correctly. 408 */ 409 brw_CMP(p, vec8(brw_null_reg()), BRW_CONDITIONAL_EQ, 410 get_element_ud(c->reg.temp, 0), 411 brw_imm_ud(_3DPRIM_TRISTRIP_REVERSE)); 412 413 /* If so, then overwrite destination_indices_uw with the appropriate 414 * reordering. 415 */ 416 brw_MOV(p, destination_indices_uw, 417 brw_imm_v(key->pv_first ? 0x00010200 /* (0, 2, 1) */ 418 : 0x00020001)); /* (1, 0, 2) */ 419 brw_set_predicate_control(p, BRW_PREDICATE_NONE); 420 } 421 brw_ADD(p, c->reg.destination_indices, 422 c->reg.destination_indices, get_element_ud(c->reg.SVBI, 0)); 423 424 /* For each vertex, generate code to output each varying using the 425 * appropriate binding table entry. 426 */ 427 for (vertex = 0; vertex < num_verts; ++vertex) { 428 /* Set up the correct destination index for this vertex */ 429 brw_MOV(p, get_element_ud(c->reg.header, 5), 430 get_element_ud(c->reg.destination_indices, vertex)); 431 432 for (binding = 0; binding < key->num_transform_feedback_bindings; 433 ++binding) { 434 unsigned char vert_result = 435 key->transform_feedback_bindings[binding]; 436 unsigned char slot = c->vue_map.vert_result_to_slot[vert_result]; 437 /* From the Sandybridge PRM, Volume 2, Part 1, Section 4.5.1: 438 * 439 * "Prior to End of Thread with a URB_WRITE, the kernel must 440 * ensure that all writes are complete by sending the final 441 * write as a committed write." 442 */ 443 bool final_write = 444 binding == key->num_transform_feedback_bindings - 1 && 445 vertex == num_verts - 1; 446 struct brw_reg vertex_slot = c->reg.vertex[vertex]; 447 vertex_slot.nr += slot / 2; 448 vertex_slot.subnr = (slot % 2) * 16; 449 /* gl_PointSize is stored in VERT_RESULT_PSIZ.w. */ 450 vertex_slot.dw1.bits.swizzle = vert_result == VERT_RESULT_PSIZ 451 ? BRW_SWIZZLE_WWWW : key->transform_feedback_swizzles[binding]; 452 brw_set_access_mode(p, BRW_ALIGN_16); 453 brw_MOV(p, stride(c->reg.header, 4, 4, 1), 454 retype(vertex_slot, BRW_REGISTER_TYPE_UD)); 455 brw_set_access_mode(p, BRW_ALIGN_1); 456 brw_svb_write(p, 457 final_write ? c->reg.temp : brw_null_reg(), /* dest */ 458 1, /* msg_reg_nr */ 459 c->reg.header, /* src0 */ 460 SURF_INDEX_SOL_BINDING(binding), /* binding_table_index */ 461 final_write); /* send_commit_msg */ 462 } 463 } 464 brw_ENDIF(p); 465 466 /* Now, reinitialize the header register from R0 to restore the parts of 467 * the register that we overwrote while streaming out transform feedback 468 * data. 469 */ 470 brw_gs_initialize_header(c); 471 472 /* Finally, wait for the write commit to occur so that we can proceed to 473 * other things safely. 474 * 475 * From the Sandybridge PRM, Volume 4, Part 1, Section 3.3: 476 * 477 * The write commit does not modify the destination register, but 478 * merely clears the dependency associated with the destination 479 * register. Thus, a simple mov instruction using the register as a 480 * source is sufficient to wait for the write commit to occur. 481 */ 482 brw_MOV(p, c->reg.temp, c->reg.temp); 483 } 484 485 brw_gs_ff_sync(c, 1); 486 487 /* If RASTERIZER_DISCARD is enabled, we have nothing further to do, so 488 * release the URB that was just allocated, and terminate the thread. 489 */ 490 if (key->rasterizer_discard) { 491 brw_gs_terminate(c); 492 return; 493 } 494 495 brw_gs_overwrite_header_dw2_from_r0(c); 496 switch (num_verts) { 497 case 1: 498 brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_START | URB_WRITE_PRIM_END); 499 brw_gs_emit_vue(c, c->reg.vertex[0], true); 500 break; 501 case 2: 502 brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_START); 503 brw_gs_emit_vue(c, c->reg.vertex[0], false); 504 brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_END - URB_WRITE_PRIM_START); 505 brw_gs_emit_vue(c, c->reg.vertex[1], true); 506 break; 507 case 3: 508 if (check_edge_flags) { 509 /* Only emit vertices 0 and 1 if this is the first triangle of the 510 * polygon. Otherwise they are redundant. 511 */ 512 brw_set_conditionalmod(p, BRW_CONDITIONAL_NZ); 513 brw_AND(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD), 514 get_element_ud(c->reg.R0, 2), 515 brw_imm_ud(BRW_GS_EDGE_INDICATOR_0)); 516 brw_IF(p, BRW_EXECUTE_1); 517 } 518 brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_START); 519 brw_gs_emit_vue(c, c->reg.vertex[0], false); 520 brw_gs_offset_header_dw2(c, -URB_WRITE_PRIM_START); 521 brw_gs_emit_vue(c, c->reg.vertex[1], false); 522 if (check_edge_flags) { 523 brw_ENDIF(p); 524 /* Only emit vertex 2 in PRIM_END mode if this is the last triangle 525 * of the polygon. Otherwise leave the primitive incomplete because 526 * there are more polygon vertices coming. 527 */ 528 brw_set_conditionalmod(p, BRW_CONDITIONAL_NZ); 529 brw_AND(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD), 530 get_element_ud(c->reg.R0, 2), 531 brw_imm_ud(BRW_GS_EDGE_INDICATOR_1)); 532 brw_set_predicate_control(p, BRW_PREDICATE_NORMAL); 533 } 534 brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_END); 535 brw_set_predicate_control(p, BRW_PREDICATE_NONE); 536 brw_gs_emit_vue(c, c->reg.vertex[2], true); 537 break; 538 } 539 } 540