Home | History | Annotate | Download | only in i965
      1 /*
      2  Copyright (C) Intel Corp.  2006.  All Rights Reserved.
      3  Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
      4  develop this 3D driver.
      5 
      6  Permission is hereby granted, free of charge, to any person obtaining
      7  a copy of this software and associated documentation files (the
      8  "Software"), to deal in the Software without restriction, including
      9  without limitation the rights to use, copy, modify, merge, publish,
     10  distribute, sublicense, and/or sell copies of the Software, and to
     11  permit persons to whom the Software is furnished to do so, subject to
     12  the following conditions:
     13 
     14  The above copyright notice and this permission notice (including the
     15  next paragraph) shall be included in all copies or substantial
     16  portions of the Software.
     17 
     18  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     19  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     20  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
     21  IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
     22  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
     23  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
     24  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     25 
     26  **********************************************************************/
     27  /*
     28   * Authors:
     29   *   Keith Whitwell <keith (at) tungstengraphics.com>
     30   */
     31 
     32 
     33 #include "main/glheader.h"
     34 #include "main/macros.h"
     35 #include "main/enums.h"
     36 
     37 #include "program/program.h"
     38 #include "intel_batchbuffer.h"
     39 
     40 #include "brw_defines.h"
     41 #include "brw_context.h"
     42 #include "brw_eu.h"
     43 #include "brw_gs.h"
     44 
     45 /**
     46  * Allocate registers for GS.
     47  *
     48  * If sol_program is true, then:
     49  *
     50  * - The thread will be spawned with the "SVBI Payload Enable" bit set, so GRF
     51  *   1 needs to be set aside to hold the streamed vertex buffer indices.
     52  *
     53  * - The thread will need to use the destination_indices register.
     54  */
     55 static void brw_gs_alloc_regs( struct brw_gs_compile *c,
     56 			       GLuint nr_verts,
     57                                bool sol_program )
     58 {
     59    GLuint i = 0,j;
     60 
     61    /* Register usage is static, precompute here:
     62     */
     63    c->reg.R0 = retype(brw_vec8_grf(i, 0), BRW_REGISTER_TYPE_UD); i++;
     64 
     65    /* Streamed vertex buffer indices */
     66    if (sol_program)
     67       c->reg.SVBI = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
     68 
     69    /* Payload vertices plus space for more generated vertices:
     70     */
     71    for (j = 0; j < nr_verts; j++) {
     72       c->reg.vertex[j] = brw_vec4_grf(i, 0);
     73       i += c->nr_regs;
     74    }
     75 
     76    c->reg.header = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
     77    c->reg.temp = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
     78 
     79    if (sol_program) {
     80       c->reg.destination_indices =
     81          retype(brw_vec4_grf(i++, 0), BRW_REGISTER_TYPE_UD);
     82    }
     83 
     84    c->prog_data.urb_read_length = c->nr_regs;
     85    c->prog_data.total_grf = i;
     86 }
     87 
     88 
     89 /**
     90  * Set up the initial value of c->reg.header register based on c->reg.R0.
     91  *
     92  * The following information is passed to the GS thread in R0, and needs to be
     93  * included in the first URB_WRITE or FF_SYNC message sent by the GS:
     94  *
     95  * - DWORD 0 [31:0] handle info (Gen4 only)
     96  * - DWORD 5 [7:0] FFTID
     97  * - DWORD 6 [31:0] Debug info
     98  * - DWORD 7 [31:0] Debug info
     99  *
    100  * This function sets up the above data by copying by copying the contents of
    101  * R0 to the header register.
    102  */
    103 static void brw_gs_initialize_header(struct brw_gs_compile *c)
    104 {
    105    struct brw_compile *p = &c->func;
    106    brw_MOV(p, c->reg.header, c->reg.R0);
    107 }
    108 
    109 /**
    110  * Overwrite DWORD 2 of c->reg.header with the given immediate unsigned value.
    111  *
    112  * In URB_WRITE messages, DWORD 2 contains the fields PrimType, PrimStart,
    113  * PrimEnd, Increment CL_INVOCATIONS, and SONumPrimsWritten, many of which we
    114  * need to be able to update on a per-vertex basis.
    115  */
    116 static void brw_gs_overwrite_header_dw2(struct brw_gs_compile *c,
    117                                         unsigned dw2)
    118 {
    119    struct brw_compile *p = &c->func;
    120    brw_MOV(p, get_element_ud(c->reg.header, 2), brw_imm_ud(dw2));
    121 }
    122 
    123 /**
    124  * Overwrite DWORD 2 of c->reg.header with the primitive type from c->reg.R0.
    125  *
    126  * When the thread is spawned, GRF 0 contains the primitive type in bits 4:0
    127  * of DWORD 2.  URB_WRITE messages need the primitive type in bits 6:2 of
    128  * DWORD 2.  So this function extracts the primitive type field, bitshifts it
    129  * appropriately, and stores it in c->reg.header.
    130  */
    131 static void brw_gs_overwrite_header_dw2_from_r0(struct brw_gs_compile *c)
    132 {
    133    struct brw_compile *p = &c->func;
    134    brw_AND(p, get_element_ud(c->reg.header, 2), get_element_ud(c->reg.R0, 2),
    135            brw_imm_ud(0x1f));
    136    brw_SHL(p, get_element_ud(c->reg.header, 2),
    137            get_element_ud(c->reg.header, 2), brw_imm_ud(2));
    138 }
    139 
    140 /**
    141  * Apply an additive offset to DWORD 2 of c->reg.header.
    142  *
    143  * This is used to set/unset the "PrimStart" and "PrimEnd" flags appropriately
    144  * for each vertex.
    145  */
    146 static void brw_gs_offset_header_dw2(struct brw_gs_compile *c, int offset)
    147 {
    148    struct brw_compile *p = &c->func;
    149    brw_ADD(p, get_element_d(c->reg.header, 2), get_element_d(c->reg.header, 2),
    150            brw_imm_d(offset));
    151 }
    152 
    153 
    154 /**
    155  * Emit a vertex using the URB_WRITE message.  Use the contents of
    156  * c->reg.header for the message header, and the registers starting at \c vert
    157  * for the vertex data.
    158  *
    159  * If \c last is true, then this is the last vertex, so no further URB space
    160  * should be allocated, and this message should end the thread.
    161  *
    162  * If \c last is false, then a new URB entry will be allocated, and its handle
    163  * will be stored in DWORD 0 of c->reg.header for use in the next URB_WRITE
    164  * message.
    165  */
    166 static void brw_gs_emit_vue(struct brw_gs_compile *c,
    167 			    struct brw_reg vert,
    168 			    bool last)
    169 {
    170    struct brw_compile *p = &c->func;
    171    bool allocate = !last;
    172 
    173    /* Copy the vertex from vertn into m1..mN+1:
    174     */
    175    brw_copy8(p, brw_message_reg(1), vert, c->nr_regs);
    176 
    177    /* Send each vertex as a seperate write to the urb.  This is
    178     * different to the concept in brw_sf_emit.c, where subsequent
    179     * writes are used to build up a single urb entry.  Each of these
    180     * writes instantiates a seperate urb entry, and a new one must be
    181     * allocated each time.
    182     */
    183    brw_urb_WRITE(p,
    184 		 allocate ? c->reg.temp
    185                           : retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
    186 		 0,
    187 		 c->reg.header,
    188 		 allocate,
    189 		 1,		/* used */
    190 		 c->nr_regs + 1, /* msg length */
    191 		 allocate ? 1 : 0, /* response length */
    192 		 allocate ? 0 : 1, /* eot */
    193 		 1,		/* writes_complete */
    194 		 0,		/* urb offset */
    195 		 BRW_URB_SWIZZLE_NONE);
    196 
    197    if (allocate) {
    198       brw_MOV(p, get_element_ud(c->reg.header, 0),
    199               get_element_ud(c->reg.temp, 0));
    200    }
    201 }
    202 
    203 /**
    204  * De-allocate the URB entry that was previously allocated to this thread
    205  * (without writing any vertex data to it), and terminate the thread.  This is
    206  * used to implement RASTERIZER_DISCARD functionality.
    207  */
    208 static void brw_gs_terminate(struct brw_gs_compile *c)
    209 {
    210    struct brw_compile *p = &c->func;
    211    brw_urb_WRITE(p,
    212                  retype(brw_null_reg(), BRW_REGISTER_TYPE_UD), /* dest */
    213                  0, /* msg_reg_nr */
    214                  c->reg.header, /* src0 */
    215                  false, /* allocate */
    216                  false, /* used */
    217                  1, /* msg_length */
    218                  0, /* response_length */
    219                  true, /* eot */
    220                  true, /* writes_complete */
    221                  0, /* offset */
    222                  BRW_URB_SWIZZLE_NONE);
    223 }
    224 
    225 /**
    226  * Send an FF_SYNC message to ensure that all previously spawned GS threads
    227  * have finished sending primitives down the pipeline, and to allocate a URB
    228  * entry for the first output vertex.  Only needed when intel->needs_ff_sync
    229  * is true.
    230  *
    231  * This function modifies c->reg.header: in DWORD 1, it stores num_prim (which
    232  * is needed by the FF_SYNC message), and in DWORD 0, it stores the handle to
    233  * the allocated URB entry (which will be needed by the URB_WRITE meesage that
    234  * follows).
    235  */
    236 static void brw_gs_ff_sync(struct brw_gs_compile *c, int num_prim)
    237 {
    238    struct brw_compile *p = &c->func;
    239 
    240    brw_MOV(p, get_element_ud(c->reg.header, 1), brw_imm_ud(num_prim));
    241    brw_ff_sync(p,
    242                c->reg.temp,
    243                0,
    244                c->reg.header,
    245                1, /* allocate */
    246                1, /* response length */
    247                0 /* eot */);
    248    brw_MOV(p, get_element_ud(c->reg.header, 0),
    249            get_element_ud(c->reg.temp, 0));
    250 }
    251 
    252 
    253 void brw_gs_quads( struct brw_gs_compile *c, struct brw_gs_prog_key *key )
    254 {
    255    struct intel_context *intel = &c->func.brw->intel;
    256 
    257    brw_gs_alloc_regs(c, 4, false);
    258    brw_gs_initialize_header(c);
    259    /* Use polygons for correct edgeflag behaviour. Note that vertex 3
    260     * is the PV for quads, but vertex 0 for polygons:
    261     */
    262    if (intel->needs_ff_sync)
    263       brw_gs_ff_sync(c, 1);
    264    brw_gs_overwrite_header_dw2(
    265       c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
    266           | URB_WRITE_PRIM_START));
    267    if (key->pv_first) {
    268       brw_gs_emit_vue(c, c->reg.vertex[0], 0);
    269       brw_gs_overwrite_header_dw2(
    270          c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
    271       brw_gs_emit_vue(c, c->reg.vertex[1], 0);
    272       brw_gs_emit_vue(c, c->reg.vertex[2], 0);
    273       brw_gs_overwrite_header_dw2(
    274          c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
    275              | URB_WRITE_PRIM_END));
    276       brw_gs_emit_vue(c, c->reg.vertex[3], 1);
    277    }
    278    else {
    279       brw_gs_emit_vue(c, c->reg.vertex[3], 0);
    280       brw_gs_overwrite_header_dw2(
    281          c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
    282       brw_gs_emit_vue(c, c->reg.vertex[0], 0);
    283       brw_gs_emit_vue(c, c->reg.vertex[1], 0);
    284       brw_gs_overwrite_header_dw2(
    285          c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
    286              | URB_WRITE_PRIM_END));
    287       brw_gs_emit_vue(c, c->reg.vertex[2], 1);
    288    }
    289 }
    290 
    291 void brw_gs_quad_strip( struct brw_gs_compile *c, struct brw_gs_prog_key *key )
    292 {
    293    struct intel_context *intel = &c->func.brw->intel;
    294 
    295    brw_gs_alloc_regs(c, 4, false);
    296    brw_gs_initialize_header(c);
    297 
    298    if (intel->needs_ff_sync)
    299       brw_gs_ff_sync(c, 1);
    300    brw_gs_overwrite_header_dw2(
    301       c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
    302           | URB_WRITE_PRIM_START));
    303    if (key->pv_first) {
    304       brw_gs_emit_vue(c, c->reg.vertex[0], 0);
    305       brw_gs_overwrite_header_dw2(
    306          c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
    307       brw_gs_emit_vue(c, c->reg.vertex[1], 0);
    308       brw_gs_emit_vue(c, c->reg.vertex[2], 0);
    309       brw_gs_overwrite_header_dw2(
    310          c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
    311              | URB_WRITE_PRIM_END));
    312       brw_gs_emit_vue(c, c->reg.vertex[3], 1);
    313    }
    314    else {
    315       brw_gs_emit_vue(c, c->reg.vertex[2], 0);
    316       brw_gs_overwrite_header_dw2(
    317          c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
    318       brw_gs_emit_vue(c, c->reg.vertex[3], 0);
    319       brw_gs_emit_vue(c, c->reg.vertex[0], 0);
    320       brw_gs_overwrite_header_dw2(
    321          c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
    322              | URB_WRITE_PRIM_END));
    323       brw_gs_emit_vue(c, c->reg.vertex[1], 1);
    324    }
    325 }
    326 
    327 void brw_gs_lines( struct brw_gs_compile *c )
    328 {
    329    struct intel_context *intel = &c->func.brw->intel;
    330 
    331    brw_gs_alloc_regs(c, 2, false);
    332    brw_gs_initialize_header(c);
    333 
    334    if (intel->needs_ff_sync)
    335       brw_gs_ff_sync(c, 1);
    336    brw_gs_overwrite_header_dw2(
    337       c, ((_3DPRIM_LINESTRIP << URB_WRITE_PRIM_TYPE_SHIFT)
    338           | URB_WRITE_PRIM_START));
    339    brw_gs_emit_vue(c, c->reg.vertex[0], 0);
    340    brw_gs_overwrite_header_dw2(
    341       c, ((_3DPRIM_LINESTRIP << URB_WRITE_PRIM_TYPE_SHIFT)
    342           | URB_WRITE_PRIM_END));
    343    brw_gs_emit_vue(c, c->reg.vertex[1], 1);
    344 }
    345 
    346 /**
    347  * Generate the geometry shader program used on Gen6 to perform stream output
    348  * (transform feedback).
    349  */
    350 void
    351 gen6_sol_program(struct brw_gs_compile *c, struct brw_gs_prog_key *key,
    352 	         unsigned num_verts, bool check_edge_flags)
    353 {
    354    struct brw_compile *p = &c->func;
    355    c->prog_data.svbi_postincrement_value = num_verts;
    356 
    357    brw_gs_alloc_regs(c, num_verts, true);
    358    brw_gs_initialize_header(c);
    359 
    360    if (key->num_transform_feedback_bindings > 0) {
    361       unsigned vertex, binding;
    362       struct brw_reg destination_indices_uw =
    363          vec8(retype(c->reg.destination_indices, BRW_REGISTER_TYPE_UW));
    364 
    365       /* Note: since we use the binding table to keep track of buffer offsets
    366        * and stride, the GS doesn't need to keep track of a separate pointer
    367        * into each buffer; it uses a single pointer which increments by 1 for
    368        * each vertex.  So we use SVBI0 for this pointer, regardless of whether
    369        * transform feedback is in interleaved or separate attribs mode.
    370        *
    371        * Make sure that the buffers have enough room for all the vertices.
    372        */
    373       brw_ADD(p, get_element_ud(c->reg.temp, 0),
    374 	         get_element_ud(c->reg.SVBI, 0), brw_imm_ud(num_verts));
    375       brw_CMP(p, vec1(brw_null_reg()), BRW_CONDITIONAL_LE,
    376 	         get_element_ud(c->reg.temp, 0),
    377 	         get_element_ud(c->reg.SVBI, 4));
    378       brw_IF(p, BRW_EXECUTE_1);
    379 
    380       /* Compute the destination indices to write to.  Usually we use SVBI[0]
    381        * + (0, 1, 2).  However, for odd-numbered triangles in tristrips, the
    382        * vertices come down the pipeline in reversed winding order, so we need
    383        * to flip the order when writing to the transform feedback buffer.  To
    384        * ensure that flatshading accuracy is preserved, we need to write them
    385        * in order SVBI[0] + (0, 2, 1) if we're using the first provoking
    386        * vertex convention, and in order SVBI[0] + (1, 0, 2) if we're using
    387        * the last provoking vertex convention.
    388        *
    389        * Note: since brw_imm_v can only be used in instructions in
    390        * packed-word execution mode, and SVBI is a double-word, we need to
    391        * first move the appropriate immediate constant ((0, 1, 2), (0, 2, 1),
    392        * or (1, 0, 2)) to the destination_indices register, and then add SVBI
    393        * using a separate instruction.  Also, since the immediate constant is
    394        * expressed as packed words, and we need to load double-words into
    395        * destination_indices, we need to intersperse zeros to fill the upper
    396        * halves of each double-word.
    397        */
    398       brw_MOV(p, destination_indices_uw,
    399               brw_imm_v(0x00020100)); /* (0, 1, 2) */
    400       if (num_verts == 3) {
    401          /* Get primitive type into temp register. */
    402          brw_AND(p, get_element_ud(c->reg.temp, 0),
    403                  get_element_ud(c->reg.R0, 2), brw_imm_ud(0x1f));
    404 
    405          /* Test if primitive type is TRISTRIP_REVERSE.  We need to do this as
    406           * an 8-wide comparison so that the conditional MOV that follows
    407           * moves all 8 words correctly.
    408           */
    409          brw_CMP(p, vec8(brw_null_reg()), BRW_CONDITIONAL_EQ,
    410                  get_element_ud(c->reg.temp, 0),
    411                  brw_imm_ud(_3DPRIM_TRISTRIP_REVERSE));
    412 
    413          /* If so, then overwrite destination_indices_uw with the appropriate
    414           * reordering.
    415           */
    416          brw_MOV(p, destination_indices_uw,
    417                  brw_imm_v(key->pv_first ? 0x00010200    /* (0, 2, 1) */
    418                                          : 0x00020001)); /* (1, 0, 2) */
    419          brw_set_predicate_control(p, BRW_PREDICATE_NONE);
    420       }
    421       brw_ADD(p, c->reg.destination_indices,
    422               c->reg.destination_indices, get_element_ud(c->reg.SVBI, 0));
    423 
    424       /* For each vertex, generate code to output each varying using the
    425        * appropriate binding table entry.
    426        */
    427       for (vertex = 0; vertex < num_verts; ++vertex) {
    428          /* Set up the correct destination index for this vertex */
    429          brw_MOV(p, get_element_ud(c->reg.header, 5),
    430                  get_element_ud(c->reg.destination_indices, vertex));
    431 
    432          for (binding = 0; binding < key->num_transform_feedback_bindings;
    433               ++binding) {
    434             unsigned char vert_result =
    435                key->transform_feedback_bindings[binding];
    436             unsigned char slot = c->vue_map.vert_result_to_slot[vert_result];
    437             /* From the Sandybridge PRM, Volume 2, Part 1, Section 4.5.1:
    438              *
    439              *   "Prior to End of Thread with a URB_WRITE, the kernel must
    440              *   ensure that all writes are complete by sending the final
    441              *   write as a committed write."
    442              */
    443             bool final_write =
    444                binding == key->num_transform_feedback_bindings - 1 &&
    445                vertex == num_verts - 1;
    446             struct brw_reg vertex_slot = c->reg.vertex[vertex];
    447             vertex_slot.nr += slot / 2;
    448             vertex_slot.subnr = (slot % 2) * 16;
    449             /* gl_PointSize is stored in VERT_RESULT_PSIZ.w. */
    450             vertex_slot.dw1.bits.swizzle = vert_result == VERT_RESULT_PSIZ
    451                ? BRW_SWIZZLE_WWWW : key->transform_feedback_swizzles[binding];
    452             brw_set_access_mode(p, BRW_ALIGN_16);
    453             brw_MOV(p, stride(c->reg.header, 4, 4, 1),
    454                     retype(vertex_slot, BRW_REGISTER_TYPE_UD));
    455             brw_set_access_mode(p, BRW_ALIGN_1);
    456             brw_svb_write(p,
    457                           final_write ? c->reg.temp : brw_null_reg(), /* dest */
    458                           1, /* msg_reg_nr */
    459                           c->reg.header, /* src0 */
    460                           SURF_INDEX_SOL_BINDING(binding), /* binding_table_index */
    461                           final_write); /* send_commit_msg */
    462          }
    463       }
    464       brw_ENDIF(p);
    465 
    466       /* Now, reinitialize the header register from R0 to restore the parts of
    467        * the register that we overwrote while streaming out transform feedback
    468        * data.
    469        */
    470       brw_gs_initialize_header(c);
    471 
    472       /* Finally, wait for the write commit to occur so that we can proceed to
    473        * other things safely.
    474        *
    475        * From the Sandybridge PRM, Volume 4, Part 1, Section 3.3:
    476        *
    477        *   The write commit does not modify the destination register, but
    478        *   merely clears the dependency associated with the destination
    479        *   register. Thus, a simple mov instruction using the register as a
    480        *   source is sufficient to wait for the write commit to occur.
    481        */
    482       brw_MOV(p, c->reg.temp, c->reg.temp);
    483    }
    484 
    485    brw_gs_ff_sync(c, 1);
    486 
    487    /* If RASTERIZER_DISCARD is enabled, we have nothing further to do, so
    488     * release the URB that was just allocated, and terminate the thread.
    489     */
    490    if (key->rasterizer_discard) {
    491       brw_gs_terminate(c);
    492       return;
    493    }
    494 
    495    brw_gs_overwrite_header_dw2_from_r0(c);
    496    switch (num_verts) {
    497    case 1:
    498       brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_START | URB_WRITE_PRIM_END);
    499       brw_gs_emit_vue(c, c->reg.vertex[0], true);
    500       break;
    501    case 2:
    502       brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_START);
    503       brw_gs_emit_vue(c, c->reg.vertex[0], false);
    504       brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_END - URB_WRITE_PRIM_START);
    505       brw_gs_emit_vue(c, c->reg.vertex[1], true);
    506       break;
    507    case 3:
    508       if (check_edge_flags) {
    509          /* Only emit vertices 0 and 1 if this is the first triangle of the
    510           * polygon.  Otherwise they are redundant.
    511           */
    512          brw_set_conditionalmod(p, BRW_CONDITIONAL_NZ);
    513          brw_AND(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
    514                  get_element_ud(c->reg.R0, 2),
    515                  brw_imm_ud(BRW_GS_EDGE_INDICATOR_0));
    516          brw_IF(p, BRW_EXECUTE_1);
    517       }
    518       brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_START);
    519       brw_gs_emit_vue(c, c->reg.vertex[0], false);
    520       brw_gs_offset_header_dw2(c, -URB_WRITE_PRIM_START);
    521       brw_gs_emit_vue(c, c->reg.vertex[1], false);
    522       if (check_edge_flags) {
    523          brw_ENDIF(p);
    524          /* Only emit vertex 2 in PRIM_END mode if this is the last triangle
    525           * of the polygon.  Otherwise leave the primitive incomplete because
    526           * there are more polygon vertices coming.
    527           */
    528          brw_set_conditionalmod(p, BRW_CONDITIONAL_NZ);
    529          brw_AND(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
    530                  get_element_ud(c->reg.R0, 2),
    531                  brw_imm_ud(BRW_GS_EDGE_INDICATOR_1));
    532          brw_set_predicate_control(p, BRW_PREDICATE_NORMAL);
    533       }
    534       brw_gs_offset_header_dw2(c, URB_WRITE_PRIM_END);
    535       brw_set_predicate_control(p, BRW_PREDICATE_NONE);
    536       brw_gs_emit_vue(c, c->reg.vertex[2], true);
    537       break;
    538    }
    539 }
    540