Home | History | Annotate | Download | only in bigint
      1 // Copyright 2014 PDFium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // Original code by Matt McCutchen, see the LICENSE file.
      6 
      7 #ifndef BIGUNSIGNED_H
      8 #define BIGUNSIGNED_H
      9 
     10 #include "NumberlikeArray.hh"
     11 
     12 /* A BigUnsigned object represents a nonnegative integer of size limited only by
     13  * available memory.  BigUnsigneds support most mathematical operators and can
     14  * be converted to and from most primitive integer types.
     15  *
     16  * The number is stored as a NumberlikeArray of unsigned longs as if it were
     17  * written in base 256^sizeof(unsigned long).  The least significant block is
     18  * first, and the length is such that the most significant block is nonzero. */
     19 class BigUnsigned : protected NumberlikeArray<unsigned long> {
     20 
     21 public:
     22 	// Enumeration for the result of a comparison.
     23 	enum CmpRes { less = -1, equal = 0, greater = 1 };
     24 
     25 	// BigUnsigneds are built with a Blk type of unsigned long.
     26 	typedef unsigned long Blk;
     27 
     28 	typedef NumberlikeArray<Blk>::Index Index;
     29 	using NumberlikeArray<Blk>::N;
     30 
     31 protected:
     32 	// Creates a BigUnsigned with a capacity; for internal use.
     33 	BigUnsigned(int, Index c) : NumberlikeArray<Blk>(0, c) {}
     34 
     35 	// Decreases len to eliminate any leading zero blocks.
     36 	void zapLeadingZeros() {
     37 		while (len > 0 && blk[len - 1] == 0)
     38 			len--;
     39 	}
     40 
     41 public:
     42 	// Constructs zero.
     43 	BigUnsigned() : NumberlikeArray<Blk>() {}
     44 
     45 	// Copy constructor
     46 	BigUnsigned(const BigUnsigned &x) : NumberlikeArray<Blk>(x) {}
     47 
     48 	// Assignment operator
     49 	void operator=(const BigUnsigned &x) {
     50 		NumberlikeArray<Blk>::operator =(x);
     51 	}
     52 
     53 	// Constructor that copies from a given array of blocks.
     54 	BigUnsigned(const Blk *b, Index blen) : NumberlikeArray<Blk>(b, blen) {
     55 		// Eliminate any leading zeros we may have been passed.
     56 		zapLeadingZeros();
     57 	}
     58 
     59 	// Destructor.  NumberlikeArray does the delete for us.
     60 	~BigUnsigned() {}
     61 
     62 	// Constructors from primitive integer types
     63 	BigUnsigned(unsigned long  x);
     64 	BigUnsigned(         long  x);
     65 	BigUnsigned(unsigned int   x);
     66 	BigUnsigned(         int   x);
     67 	BigUnsigned(unsigned short x);
     68 	BigUnsigned(         short x);
     69 protected:
     70 	// Helpers
     71 	template <class X> void initFromPrimitive      (X x);
     72 	template <class X> void initFromSignedPrimitive(X x);
     73 public:
     74 
     75 	/* Converters to primitive integer types
     76 	 * The implicit conversion operators caused trouble, so these are now
     77 	 * named. */
     78 	unsigned long  toUnsignedLong () const;
     79 	long           toLong         () const;
     80 	unsigned int   toUnsignedInt  () const;
     81 	int            toInt          () const;
     82 	unsigned short toUnsignedShort() const;
     83 	short          toShort        () const;
     84 protected:
     85 	// Helpers
     86 	template <class X> X convertToSignedPrimitive() const;
     87 	template <class X> X convertToPrimitive      () const;
     88 public:
     89 
     90 	// BIT/BLOCK ACCESSORS
     91 
     92 	// Expose these from NumberlikeArray directly.
     93 	using NumberlikeArray<Blk>::getCapacity;
     94 	using NumberlikeArray<Blk>::getLength;
     95 
     96 	/* Returns the requested block, or 0 if it is beyond the length (as if
     97 	 * the number had 0s infinitely to the left). */
     98 	Blk getBlock(Index i) const { return i >= len ? 0 : blk[i]; }
     99 	/* Sets the requested block.  The number grows or shrinks as necessary. */
    100 	void setBlock(Index i, Blk newBlock);
    101 
    102 	// The number is zero if and only if the canonical length is zero.
    103 	bool isZero() const { return NumberlikeArray<Blk>::isEmpty(); }
    104 
    105 	/* Returns the length of the number in bits, i.e., zero if the number
    106 	 * is zero and otherwise one more than the largest value of bi for
    107 	 * which getBit(bi) returns true. */
    108 	Index bitLength() const;
    109 	/* Get the state of bit bi, which has value 2^bi.  Bits beyond the
    110 	 * number's length are considered to be 0. */
    111 	bool getBit(Index bi) const {
    112 		return (getBlock(bi / N) & (Blk(1) << (bi % N))) != 0;
    113 	}
    114 	/* Sets the state of bit bi to newBit.  The number grows or shrinks as
    115 	 * necessary. */
    116 	void setBit(Index bi, bool newBit);
    117 
    118 	// COMPARISONS
    119 
    120 	// Compares this to x like Perl's <=>
    121 	CmpRes compareTo(const BigUnsigned &x) const;
    122 
    123 	// Ordinary comparison operators
    124 	bool operator ==(const BigUnsigned &x) const {
    125 		return NumberlikeArray<Blk>::operator ==(x);
    126 	}
    127 	bool operator !=(const BigUnsigned &x) const {
    128 		return NumberlikeArray<Blk>::operator !=(x);
    129 	}
    130 	bool operator < (const BigUnsigned &x) const { return compareTo(x) == less   ; }
    131 	bool operator <=(const BigUnsigned &x) const { return compareTo(x) != greater; }
    132 	bool operator >=(const BigUnsigned &x) const { return compareTo(x) != less   ; }
    133 	bool operator > (const BigUnsigned &x) const { return compareTo(x) == greater; }
    134 
    135 	/*
    136 	 * BigUnsigned and BigInteger both provide three kinds of operators.
    137 	 * Here ``big-integer'' refers to BigInteger or BigUnsigned.
    138 	 *
    139 	 * (1) Overloaded ``return-by-value'' operators:
    140 	 *     +, -, *, /, %, unary -, &, |, ^, <<, >>.
    141 	 * Big-integer code using these operators looks identical to code using
    142 	 * the primitive integer types.  These operators take one or two
    143 	 * big-integer inputs and return a big-integer result, which can then
    144 	 * be assigned to a BigInteger variable or used in an expression.
    145 	 * Example:
    146 	 *     BigInteger a(1), b = 1;
    147 	 *     BigInteger c = a + b;
    148 	 *
    149 	 * (2) Overloaded assignment operators:
    150 	 *     +=, -=, *=, /=, %=, flipSign, &=, |=, ^=, <<=, >>=, ++, --.
    151 	 * Again, these are used on big integers just like on ints.  They take
    152 	 * one writable big integer that both provides an operand and receives a
    153 	 * result.  Most also take a second read-only operand.
    154 	 * Example:
    155 	 *     BigInteger a(1), b(1);
    156 	 *     a += b;
    157 	 *
    158 	 * (3) Copy-less operations: `add', `subtract', etc.
    159 	 * These named methods take operands as arguments and store the result
    160 	 * in the receiver (*this), avoiding unnecessary copies and allocations.
    161 	 * `divideWithRemainder' is special: it both takes the dividend from and
    162 	 * stores the remainder into the receiver, and it takes a separate
    163 	 * object in which to store the quotient.  NOTE: If you are wondering
    164 	 * why these don't return a value, you probably mean to use the
    165 	 * overloaded return-by-value operators instead.
    166 	 *
    167 	 * Examples:
    168 	 *     BigInteger a(43), b(7), c, d;
    169 	 *
    170 	 *     c = a + b;   // Now c == 50.
    171 	 *     c.add(a, b); // Same effect but without the two copies.
    172 	 *
    173 	 *     c.divideWithRemainder(b, d);
    174 	 *     // 50 / 7; now d == 7 (quotient) and c == 1 (remainder).
    175 	 *
    176 	 *     // ``Aliased'' calls now do the right thing using a temporary
    177 	 *     // copy, but see note on `divideWithRemainder'.
    178 	 *     a.add(a, b);
    179 	 */
    180 
    181 	// COPY-LESS OPERATIONS
    182 
    183 	// These 8: Arguments are read-only operands, result is saved in *this.
    184 	void add(const BigUnsigned &a, const BigUnsigned &b);
    185 	void subtract(const BigUnsigned &a, const BigUnsigned &b);
    186 	void multiply(const BigUnsigned &a, const BigUnsigned &b);
    187 	void bitAnd(const BigUnsigned &a, const BigUnsigned &b);
    188 	void bitOr(const BigUnsigned &a, const BigUnsigned &b);
    189 	void bitXor(const BigUnsigned &a, const BigUnsigned &b);
    190 	/* Negative shift amounts translate to opposite-direction shifts,
    191 	 * except for -2^(8*sizeof(int)-1) which is unimplemented. */
    192 	void bitShiftLeft(const BigUnsigned &a, int b);
    193 	void bitShiftRight(const BigUnsigned &a, int b);
    194 
    195 	/* `a.divideWithRemainder(b, q)' is like `q = a / b, a %= b'.
    196 	 * / and % use semantics similar to Knuth's, which differ from the
    197 	 * primitive integer semantics under division by zero.  See the
    198 	 * implementation in BigUnsigned.cc for details.
    199 	 * `a.divideWithRemainder(b, a)' throws an exception: it doesn't make
    200 	 * sense to write quotient and remainder into the same variable. */
    201 	void divideWithRemainder(const BigUnsigned &b, BigUnsigned &q);
    202 
    203 	/* `divide' and `modulo' are no longer offered.  Use
    204 	 * `divideWithRemainder' instead. */
    205 
    206 	// OVERLOADED RETURN-BY-VALUE OPERATORS
    207 	BigUnsigned operator +(const BigUnsigned &x) const;
    208 	BigUnsigned operator -(const BigUnsigned &x) const;
    209 	BigUnsigned operator *(const BigUnsigned &x) const;
    210 	BigUnsigned operator /(const BigUnsigned &x) const;
    211 	BigUnsigned operator %(const BigUnsigned &x) const;
    212 	/* OK, maybe unary minus could succeed in one case, but it really
    213 	 * shouldn't be used, so it isn't provided. */
    214 	BigUnsigned operator &(const BigUnsigned &x) const;
    215 	BigUnsigned operator |(const BigUnsigned &x) const;
    216 	BigUnsigned operator ^(const BigUnsigned &x) const;
    217 	BigUnsigned operator <<(int b) const;
    218 	BigUnsigned operator >>(int b) const;
    219 
    220 	// OVERLOADED ASSIGNMENT OPERATORS
    221 	void operator +=(const BigUnsigned &x);
    222 	void operator -=(const BigUnsigned &x);
    223 	void operator *=(const BigUnsigned &x);
    224 	void operator /=(const BigUnsigned &x);
    225 	void operator %=(const BigUnsigned &x);
    226 	void operator &=(const BigUnsigned &x);
    227 	void operator |=(const BigUnsigned &x);
    228 	void operator ^=(const BigUnsigned &x);
    229 	void operator <<=(int b);
    230 	void operator >>=(int b);
    231 
    232 	/* INCREMENT/DECREMENT OPERATORS
    233 	 * To discourage messy coding, these do not return *this, so prefix
    234 	 * and postfix behave the same. */
    235 	void operator ++(   );
    236 	void operator ++(int);
    237 	void operator --(   );
    238 	void operator --(int);
    239 
    240 	// Helper function that needs access to BigUnsigned internals
    241 	friend Blk getShiftedBlock(const BigUnsigned &num, Index x,
    242 			unsigned int y);
    243 
    244 	// See BigInteger.cc.
    245 	template <class X>
    246 	friend X convertBigUnsignedToPrimitiveAccess(const BigUnsigned &a);
    247 };
    248 
    249 /* Implementing the return-by-value and assignment operators in terms of the
    250  * copy-less operations.  The copy-less operations are responsible for making
    251  * any necessary temporary copies to work around aliasing. */
    252 
    253 inline BigUnsigned BigUnsigned::operator +(const BigUnsigned &x) const {
    254 	BigUnsigned ans;
    255 	ans.add(*this, x);
    256 	return ans;
    257 }
    258 inline BigUnsigned BigUnsigned::operator -(const BigUnsigned &x) const {
    259 	BigUnsigned ans;
    260 	ans.subtract(*this, x);
    261 	return ans;
    262 }
    263 inline BigUnsigned BigUnsigned::operator *(const BigUnsigned &x) const {
    264 	BigUnsigned ans;
    265 	ans.multiply(*this, x);
    266 	return ans;
    267 }
    268 inline BigUnsigned BigUnsigned::operator /(const BigUnsigned &x) const {
    269 	if (x.isZero())
    270         abort();
    271 	BigUnsigned q, r;
    272 	r = *this;
    273 	r.divideWithRemainder(x, q);
    274 	return q;
    275 }
    276 inline BigUnsigned BigUnsigned::operator %(const BigUnsigned &x) const {
    277 	if (x.isZero())
    278         abort();
    279 	BigUnsigned q, r;
    280 	r = *this;
    281 	r.divideWithRemainder(x, q);
    282 	return r;
    283 }
    284 inline BigUnsigned BigUnsigned::operator &(const BigUnsigned &x) const {
    285 	BigUnsigned ans;
    286 	ans.bitAnd(*this, x);
    287 	return ans;
    288 }
    289 inline BigUnsigned BigUnsigned::operator |(const BigUnsigned &x) const {
    290 	BigUnsigned ans;
    291 	ans.bitOr(*this, x);
    292 	return ans;
    293 }
    294 inline BigUnsigned BigUnsigned::operator ^(const BigUnsigned &x) const {
    295 	BigUnsigned ans;
    296 	ans.bitXor(*this, x);
    297 	return ans;
    298 }
    299 inline BigUnsigned BigUnsigned::operator <<(int b) const {
    300 	BigUnsigned ans;
    301 	ans.bitShiftLeft(*this, b);
    302 	return ans;
    303 }
    304 inline BigUnsigned BigUnsigned::operator >>(int b) const {
    305 	BigUnsigned ans;
    306 	ans.bitShiftRight(*this, b);
    307 	return ans;
    308 }
    309 
    310 inline void BigUnsigned::operator +=(const BigUnsigned &x) {
    311 	add(*this, x);
    312 }
    313 inline void BigUnsigned::operator -=(const BigUnsigned &x) {
    314 	subtract(*this, x);
    315 }
    316 inline void BigUnsigned::operator *=(const BigUnsigned &x) {
    317 	multiply(*this, x);
    318 }
    319 inline void BigUnsigned::operator /=(const BigUnsigned &x) {
    320 	if (x.isZero())
    321         abort();
    322 	/* The following technique is slightly faster than copying *this first
    323 	 * when x is large. */
    324 	BigUnsigned q;
    325 	divideWithRemainder(x, q);
    326 	// *this contains the remainder, but we overwrite it with the quotient.
    327 	*this = q;
    328 }
    329 inline void BigUnsigned::operator %=(const BigUnsigned &x) {
    330 	if (x.isZero())
    331         abort();
    332 	BigUnsigned q;
    333 	// Mods *this by x.  Don't care about quotient left in q.
    334 	divideWithRemainder(x, q);
    335 }
    336 inline void BigUnsigned::operator &=(const BigUnsigned &x) {
    337 	bitAnd(*this, x);
    338 }
    339 inline void BigUnsigned::operator |=(const BigUnsigned &x) {
    340 	bitOr(*this, x);
    341 }
    342 inline void BigUnsigned::operator ^=(const BigUnsigned &x) {
    343 	bitXor(*this, x);
    344 }
    345 inline void BigUnsigned::operator <<=(int b) {
    346 	bitShiftLeft(*this, b);
    347 }
    348 inline void BigUnsigned::operator >>=(int b) {
    349 	bitShiftRight(*this, b);
    350 }
    351 
    352 /* Templates for conversions of BigUnsigned to and from primitive integers.
    353  * BigInteger.cc needs to instantiate convertToPrimitive, and the uses in
    354  * BigUnsigned.cc didn't do the trick; I think g++ inlined convertToPrimitive
    355  * instead of generating linkable instantiations.  So for consistency, I put
    356  * all the templates here. */
    357 
    358 // CONSTRUCTION FROM PRIMITIVE INTEGERS
    359 
    360 /* Initialize this BigUnsigned from the given primitive integer.  The same
    361  * pattern works for all primitive integer types, so I put it into a template to
    362  * reduce code duplication.  (Don't worry: this is protected and we instantiate
    363  * it only with primitive integer types.)  Type X could be signed, but x is
    364  * known to be nonnegative. */
    365 template <class X>
    366 void BigUnsigned::initFromPrimitive(X x) {
    367 	if (x == 0)
    368 		; // NumberlikeArray already initialized us to zero.
    369 	else {
    370 		// Create a single block.  blk is NULL; no need to delete it.
    371 		cap = 1;
    372 		blk = new Blk[1];
    373 		len = 1;
    374 		blk[0] = Blk(x);
    375 	}
    376 }
    377 
    378 /* Ditto, but first check that x is nonnegative.  I could have put the check in
    379  * initFromPrimitive and let the compiler optimize it out for unsigned-type
    380  * instantiations, but I wanted to avoid the warning stupidly issued by g++ for
    381  * a condition that is constant in *any* instantiation, even if not in all. */
    382 template <class X>
    383 void BigUnsigned::initFromSignedPrimitive(X x) {
    384 	if (x < 0)
    385         abort();
    386 	else
    387 		initFromPrimitive(x);
    388 }
    389 
    390 // CONVERSION TO PRIMITIVE INTEGERS
    391 
    392 /* Template with the same idea as initFromPrimitive.  This might be slightly
    393  * slower than the previous version with the masks, but it's much shorter and
    394  * clearer, which is the library's stated goal. */
    395 template <class X>
    396 X BigUnsigned::convertToPrimitive() const {
    397 	if (len == 0)
    398 		// The number is zero; return zero.
    399 		return 0;
    400 	else if (len == 1) {
    401 		// The single block might fit in an X.  Try the conversion.
    402 		X x = X(blk[0]);
    403 		// Make sure the result accurately represents the block.
    404 		if (Blk(x) == blk[0])
    405 			// Successful conversion.
    406 			return x;
    407 		// Otherwise fall through.
    408 	}
    409     abort();
    410 }
    411 
    412 /* Wrap the above in an x >= 0 test to make sure we got a nonnegative result,
    413  * not a negative one that happened to convert back into the correct nonnegative
    414  * one.  (E.g., catch incorrect conversion of 2^31 to the long -2^31.)  Again,
    415  * separated to avoid a g++ warning. */
    416 template <class X>
    417 X BigUnsigned::convertToSignedPrimitive() const {
    418 	X x = convertToPrimitive<X>();
    419 	if (x >= 0)
    420 		return x;
    421 	else
    422         abort();
    423 }
    424 
    425 #endif
    426