Home | History | Annotate | Download | only in arm
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_ARM_MACRO_ASSEMBLER_ARM_H_
      6 #define V8_ARM_MACRO_ASSEMBLER_ARM_H_
      7 
      8 #include "src/assembler.h"
      9 #include "src/bailout-reason.h"
     10 #include "src/frames.h"
     11 #include "src/globals.h"
     12 
     13 namespace v8 {
     14 namespace internal {
     15 
     16 // Give alias names to registers for calling conventions.
     17 const Register kReturnRegister0 = {Register::kCode_r0};
     18 const Register kReturnRegister1 = {Register::kCode_r1};
     19 const Register kJSFunctionRegister = {Register::kCode_r1};
     20 const Register kContextRegister = {Register::kCode_r7};
     21 const Register kInterpreterAccumulatorRegister = {Register::kCode_r0};
     22 const Register kInterpreterRegisterFileRegister = {Register::kCode_r4};
     23 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r5};
     24 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r6};
     25 const Register kInterpreterDispatchTableRegister = {Register::kCode_r8};
     26 const Register kJavaScriptCallArgCountRegister = {Register::kCode_r0};
     27 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_r3};
     28 const Register kRuntimeCallFunctionRegister = {Register::kCode_r1};
     29 const Register kRuntimeCallArgCountRegister = {Register::kCode_r0};
     30 
     31 // ----------------------------------------------------------------------------
     32 // Static helper functions
     33 
     34 // Generate a MemOperand for loading a field from an object.
     35 inline MemOperand FieldMemOperand(Register object, int offset) {
     36   return MemOperand(object, offset - kHeapObjectTag);
     37 }
     38 
     39 
     40 // Give alias names to registers
     41 const Register cp = {Register::kCode_r7};  // JavaScript context pointer.
     42 const Register pp = {Register::kCode_r8};  // Constant pool pointer.
     43 const Register kRootRegister = {Register::kCode_r10};  // Roots array pointer.
     44 
     45 // Flags used for AllocateHeapNumber
     46 enum TaggingMode {
     47   // Tag the result.
     48   TAG_RESULT,
     49   // Don't tag
     50   DONT_TAG_RESULT
     51 };
     52 
     53 
     54 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
     55 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
     56 enum PointersToHereCheck {
     57   kPointersToHereMaybeInteresting,
     58   kPointersToHereAreAlwaysInteresting
     59 };
     60 enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
     61 
     62 
     63 Register GetRegisterThatIsNotOneOf(Register reg1,
     64                                    Register reg2 = no_reg,
     65                                    Register reg3 = no_reg,
     66                                    Register reg4 = no_reg,
     67                                    Register reg5 = no_reg,
     68                                    Register reg6 = no_reg);
     69 
     70 
     71 #ifdef DEBUG
     72 bool AreAliased(Register reg1,
     73                 Register reg2,
     74                 Register reg3 = no_reg,
     75                 Register reg4 = no_reg,
     76                 Register reg5 = no_reg,
     77                 Register reg6 = no_reg,
     78                 Register reg7 = no_reg,
     79                 Register reg8 = no_reg);
     80 #endif
     81 
     82 
     83 enum TargetAddressStorageMode {
     84   CAN_INLINE_TARGET_ADDRESS,
     85   NEVER_INLINE_TARGET_ADDRESS
     86 };
     87 
     88 // MacroAssembler implements a collection of frequently used macros.
     89 class MacroAssembler: public Assembler {
     90  public:
     91   MacroAssembler(Isolate* isolate, void* buffer, int size,
     92                  CodeObjectRequired create_code_object);
     93 
     94 
     95   // Returns the size of a call in instructions. Note, the value returned is
     96   // only valid as long as no entries are added to the constant pool between
     97   // checking the call size and emitting the actual call.
     98   static int CallSize(Register target, Condition cond = al);
     99   int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
    100   int CallStubSize(CodeStub* stub,
    101                    TypeFeedbackId ast_id = TypeFeedbackId::None(),
    102                    Condition cond = al);
    103   static int CallSizeNotPredictableCodeSize(Isolate* isolate,
    104                                             Address target,
    105                                             RelocInfo::Mode rmode,
    106                                             Condition cond = al);
    107 
    108   // Jump, Call, and Ret pseudo instructions implementing inter-working.
    109   void Jump(Register target, Condition cond = al);
    110   void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
    111   void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
    112   void Call(Register target, Condition cond = al);
    113   void Call(Address target, RelocInfo::Mode rmode,
    114             Condition cond = al,
    115             TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS);
    116   int CallSize(Handle<Code> code,
    117                RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
    118                TypeFeedbackId ast_id = TypeFeedbackId::None(),
    119                Condition cond = al);
    120   void Call(Handle<Code> code,
    121             RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
    122             TypeFeedbackId ast_id = TypeFeedbackId::None(),
    123             Condition cond = al,
    124             TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS);
    125   void Ret(Condition cond = al);
    126 
    127   // Emit code to discard a non-negative number of pointer-sized elements
    128   // from the stack, clobbering only the sp register.
    129   void Drop(int count, Condition cond = al);
    130 
    131   void Ret(int drop, Condition cond = al);
    132 
    133   // Swap two registers.  If the scratch register is omitted then a slightly
    134   // less efficient form using xor instead of mov is emitted.
    135   void Swap(Register reg1,
    136             Register reg2,
    137             Register scratch = no_reg,
    138             Condition cond = al);
    139 
    140   void Mls(Register dst, Register src1, Register src2, Register srcA,
    141            Condition cond = al);
    142   void And(Register dst, Register src1, const Operand& src2,
    143            Condition cond = al);
    144   void Ubfx(Register dst, Register src, int lsb, int width,
    145             Condition cond = al);
    146   void Sbfx(Register dst, Register src, int lsb, int width,
    147             Condition cond = al);
    148   // The scratch register is not used for ARMv7.
    149   // scratch can be the same register as src (in which case it is trashed), but
    150   // not the same as dst.
    151   void Bfi(Register dst,
    152            Register src,
    153            Register scratch,
    154            int lsb,
    155            int width,
    156            Condition cond = al);
    157   void Bfc(Register dst, Register src, int lsb, int width, Condition cond = al);
    158   void Usat(Register dst, int satpos, const Operand& src,
    159             Condition cond = al);
    160 
    161   void Call(Label* target);
    162   void Push(Register src) { push(src); }
    163   void Pop(Register dst) { pop(dst); }
    164 
    165   // Register move. May do nothing if the registers are identical.
    166   void Move(Register dst, Smi* smi) { mov(dst, Operand(smi)); }
    167   void Move(Register dst, Handle<Object> value);
    168   void Move(Register dst, Register src, Condition cond = al);
    169   void Move(Register dst, const Operand& src, SBit sbit = LeaveCC,
    170             Condition cond = al) {
    171     if (!src.is_reg() || !src.rm().is(dst) || sbit != LeaveCC) {
    172       mov(dst, src, sbit, cond);
    173     }
    174   }
    175   void Move(DwVfpRegister dst, DwVfpRegister src);
    176 
    177   void Load(Register dst, const MemOperand& src, Representation r);
    178   void Store(Register src, const MemOperand& dst, Representation r);
    179 
    180   // Load an object from the root table.
    181   void LoadRoot(Register destination,
    182                 Heap::RootListIndex index,
    183                 Condition cond = al);
    184   // Store an object to the root table.
    185   void StoreRoot(Register source,
    186                  Heap::RootListIndex index,
    187                  Condition cond = al);
    188 
    189   // ---------------------------------------------------------------------------
    190   // GC Support
    191 
    192   void IncrementalMarkingRecordWriteHelper(Register object,
    193                                            Register value,
    194                                            Register address);
    195 
    196   enum RememberedSetFinalAction {
    197     kReturnAtEnd,
    198     kFallThroughAtEnd
    199   };
    200 
    201   // Record in the remembered set the fact that we have a pointer to new space
    202   // at the address pointed to by the addr register.  Only works if addr is not
    203   // in new space.
    204   void RememberedSetHelper(Register object,  // Used for debug code.
    205                            Register addr,
    206                            Register scratch,
    207                            SaveFPRegsMode save_fp,
    208                            RememberedSetFinalAction and_then);
    209 
    210   void CheckPageFlag(Register object,
    211                      Register scratch,
    212                      int mask,
    213                      Condition cc,
    214                      Label* condition_met);
    215 
    216   // Check if object is in new space.  Jumps if the object is not in new space.
    217   // The register scratch can be object itself, but scratch will be clobbered.
    218   void JumpIfNotInNewSpace(Register object,
    219                            Register scratch,
    220                            Label* branch) {
    221     InNewSpace(object, scratch, ne, branch);
    222   }
    223 
    224   // Check if object is in new space.  Jumps if the object is in new space.
    225   // The register scratch can be object itself, but it will be clobbered.
    226   void JumpIfInNewSpace(Register object,
    227                         Register scratch,
    228                         Label* branch) {
    229     InNewSpace(object, scratch, eq, branch);
    230   }
    231 
    232   // Check if an object has a given incremental marking color.
    233   void HasColor(Register object,
    234                 Register scratch0,
    235                 Register scratch1,
    236                 Label* has_color,
    237                 int first_bit,
    238                 int second_bit);
    239 
    240   void JumpIfBlack(Register object,
    241                    Register scratch0,
    242                    Register scratch1,
    243                    Label* on_black);
    244 
    245   // Checks the color of an object.  If the object is white we jump to the
    246   // incremental marker.
    247   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
    248                    Register scratch3, Label* value_is_white);
    249 
    250   // Notify the garbage collector that we wrote a pointer into an object.
    251   // |object| is the object being stored into, |value| is the object being
    252   // stored.  value and scratch registers are clobbered by the operation.
    253   // The offset is the offset from the start of the object, not the offset from
    254   // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
    255   void RecordWriteField(
    256       Register object,
    257       int offset,
    258       Register value,
    259       Register scratch,
    260       LinkRegisterStatus lr_status,
    261       SaveFPRegsMode save_fp,
    262       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    263       SmiCheck smi_check = INLINE_SMI_CHECK,
    264       PointersToHereCheck pointers_to_here_check_for_value =
    265           kPointersToHereMaybeInteresting);
    266 
    267   // As above, but the offset has the tag presubtracted.  For use with
    268   // MemOperand(reg, off).
    269   inline void RecordWriteContextSlot(
    270       Register context,
    271       int offset,
    272       Register value,
    273       Register scratch,
    274       LinkRegisterStatus lr_status,
    275       SaveFPRegsMode save_fp,
    276       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    277       SmiCheck smi_check = INLINE_SMI_CHECK,
    278       PointersToHereCheck pointers_to_here_check_for_value =
    279           kPointersToHereMaybeInteresting) {
    280     RecordWriteField(context,
    281                      offset + kHeapObjectTag,
    282                      value,
    283                      scratch,
    284                      lr_status,
    285                      save_fp,
    286                      remembered_set_action,
    287                      smi_check,
    288                      pointers_to_here_check_for_value);
    289   }
    290 
    291   void RecordWriteForMap(
    292       Register object,
    293       Register map,
    294       Register dst,
    295       LinkRegisterStatus lr_status,
    296       SaveFPRegsMode save_fp);
    297 
    298   // For a given |object| notify the garbage collector that the slot |address|
    299   // has been written.  |value| is the object being stored. The value and
    300   // address registers are clobbered by the operation.
    301   void RecordWrite(
    302       Register object,
    303       Register address,
    304       Register value,
    305       LinkRegisterStatus lr_status,
    306       SaveFPRegsMode save_fp,
    307       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    308       SmiCheck smi_check = INLINE_SMI_CHECK,
    309       PointersToHereCheck pointers_to_here_check_for_value =
    310           kPointersToHereMaybeInteresting);
    311 
    312   // Push a handle.
    313   void Push(Handle<Object> handle);
    314   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
    315 
    316   // Push two registers.  Pushes leftmost register first (to highest address).
    317   void Push(Register src1, Register src2, Condition cond = al) {
    318     DCHECK(!src1.is(src2));
    319     if (src1.code() > src2.code()) {
    320       stm(db_w, sp, src1.bit() | src2.bit(), cond);
    321     } else {
    322       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
    323       str(src2, MemOperand(sp, 4, NegPreIndex), cond);
    324     }
    325   }
    326 
    327   // Push three registers.  Pushes leftmost register first (to highest address).
    328   void Push(Register src1, Register src2, Register src3, Condition cond = al) {
    329     DCHECK(!AreAliased(src1, src2, src3));
    330     if (src1.code() > src2.code()) {
    331       if (src2.code() > src3.code()) {
    332         stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    333       } else {
    334         stm(db_w, sp, src1.bit() | src2.bit(), cond);
    335         str(src3, MemOperand(sp, 4, NegPreIndex), cond);
    336       }
    337     } else {
    338       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
    339       Push(src2, src3, cond);
    340     }
    341   }
    342 
    343   // Push four registers.  Pushes leftmost register first (to highest address).
    344   void Push(Register src1,
    345             Register src2,
    346             Register src3,
    347             Register src4,
    348             Condition cond = al) {
    349     DCHECK(!AreAliased(src1, src2, src3, src4));
    350     if (src1.code() > src2.code()) {
    351       if (src2.code() > src3.code()) {
    352         if (src3.code() > src4.code()) {
    353           stm(db_w,
    354               sp,
    355               src1.bit() | src2.bit() | src3.bit() | src4.bit(),
    356               cond);
    357         } else {
    358           stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    359           str(src4, MemOperand(sp, 4, NegPreIndex), cond);
    360         }
    361       } else {
    362         stm(db_w, sp, src1.bit() | src2.bit(), cond);
    363         Push(src3, src4, cond);
    364       }
    365     } else {
    366       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
    367       Push(src2, src3, src4, cond);
    368     }
    369   }
    370 
    371   // Push five registers.  Pushes leftmost register first (to highest address).
    372   void Push(Register src1, Register src2, Register src3, Register src4,
    373             Register src5, Condition cond = al) {
    374     DCHECK(!AreAliased(src1, src2, src3, src4, src5));
    375     if (src1.code() > src2.code()) {
    376       if (src2.code() > src3.code()) {
    377         if (src3.code() > src4.code()) {
    378           if (src4.code() > src5.code()) {
    379             stm(db_w, sp,
    380                 src1.bit() | src2.bit() | src3.bit() | src4.bit() | src5.bit(),
    381                 cond);
    382           } else {
    383             stm(db_w, sp, src1.bit() | src2.bit() | src3.bit() | src4.bit(),
    384                 cond);
    385             str(src5, MemOperand(sp, 4, NegPreIndex), cond);
    386           }
    387         } else {
    388           stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    389           Push(src4, src5, cond);
    390         }
    391       } else {
    392         stm(db_w, sp, src1.bit() | src2.bit(), cond);
    393         Push(src3, src4, src5, cond);
    394       }
    395     } else {
    396       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
    397       Push(src2, src3, src4, src5, cond);
    398     }
    399   }
    400 
    401   // Pop two registers. Pops rightmost register first (from lower address).
    402   void Pop(Register src1, Register src2, Condition cond = al) {
    403     DCHECK(!src1.is(src2));
    404     if (src1.code() > src2.code()) {
    405       ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
    406     } else {
    407       ldr(src2, MemOperand(sp, 4, PostIndex), cond);
    408       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
    409     }
    410   }
    411 
    412   // Pop three registers.  Pops rightmost register first (from lower address).
    413   void Pop(Register src1, Register src2, Register src3, Condition cond = al) {
    414     DCHECK(!AreAliased(src1, src2, src3));
    415     if (src1.code() > src2.code()) {
    416       if (src2.code() > src3.code()) {
    417         ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    418       } else {
    419         ldr(src3, MemOperand(sp, 4, PostIndex), cond);
    420         ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
    421       }
    422     } else {
    423       Pop(src2, src3, cond);
    424       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
    425     }
    426   }
    427 
    428   // Pop four registers.  Pops rightmost register first (from lower address).
    429   void Pop(Register src1,
    430            Register src2,
    431            Register src3,
    432            Register src4,
    433            Condition cond = al) {
    434     DCHECK(!AreAliased(src1, src2, src3, src4));
    435     if (src1.code() > src2.code()) {
    436       if (src2.code() > src3.code()) {
    437         if (src3.code() > src4.code()) {
    438           ldm(ia_w,
    439               sp,
    440               src1.bit() | src2.bit() | src3.bit() | src4.bit(),
    441               cond);
    442         } else {
    443           ldr(src4, MemOperand(sp, 4, PostIndex), cond);
    444           ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
    445         }
    446       } else {
    447         Pop(src3, src4, cond);
    448         ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
    449       }
    450     } else {
    451       Pop(src2, src3, src4, cond);
    452       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
    453     }
    454   }
    455 
    456   // Push a fixed frame, consisting of lr, fp, constant pool (if
    457   // FLAG_enable_embedded_constant_pool), context and JS function / marker id if
    458   // marker_reg is a valid register.
    459   void PushFixedFrame(Register marker_reg = no_reg);
    460   void PopFixedFrame(Register marker_reg = no_reg);
    461 
    462   // Push and pop the registers that can hold pointers, as defined by the
    463   // RegList constant kSafepointSavedRegisters.
    464   void PushSafepointRegisters();
    465   void PopSafepointRegisters();
    466   // Store value in register src in the safepoint stack slot for
    467   // register dst.
    468   void StoreToSafepointRegisterSlot(Register src, Register dst);
    469   // Load the value of the src register from its safepoint stack slot
    470   // into register dst.
    471   void LoadFromSafepointRegisterSlot(Register dst, Register src);
    472 
    473   // Load two consecutive registers with two consecutive memory locations.
    474   void Ldrd(Register dst1,
    475             Register dst2,
    476             const MemOperand& src,
    477             Condition cond = al);
    478 
    479   // Store two consecutive registers to two consecutive memory locations.
    480   void Strd(Register src1,
    481             Register src2,
    482             const MemOperand& dst,
    483             Condition cond = al);
    484 
    485   // Ensure that FPSCR contains values needed by JavaScript.
    486   // We need the NaNModeControlBit to be sure that operations like
    487   // vadd and vsub generate the Canonical NaN (if a NaN must be generated).
    488   // In VFP3 it will be always the Canonical NaN.
    489   // In VFP2 it will be either the Canonical NaN or the negative version
    490   // of the Canonical NaN. It doesn't matter if we have two values. The aim
    491   // is to be sure to never generate the hole NaN.
    492   void VFPEnsureFPSCRState(Register scratch);
    493 
    494   // If the value is a NaN, canonicalize the value else, do nothing.
    495   void VFPCanonicalizeNaN(const DwVfpRegister dst,
    496                           const DwVfpRegister src,
    497                           const Condition cond = al);
    498   void VFPCanonicalizeNaN(const DwVfpRegister value,
    499                           const Condition cond = al) {
    500     VFPCanonicalizeNaN(value, value, cond);
    501   }
    502 
    503   // Compare single values and move the result to the normal condition flags.
    504   void VFPCompareAndSetFlags(const SwVfpRegister src1, const SwVfpRegister src2,
    505                              const Condition cond = al);
    506   void VFPCompareAndSetFlags(const SwVfpRegister src1, const float src2,
    507                              const Condition cond = al);
    508 
    509   // Compare double values and move the result to the normal condition flags.
    510   void VFPCompareAndSetFlags(const DwVfpRegister src1,
    511                              const DwVfpRegister src2,
    512                              const Condition cond = al);
    513   void VFPCompareAndSetFlags(const DwVfpRegister src1,
    514                              const double src2,
    515                              const Condition cond = al);
    516 
    517   // Compare single values and then load the fpscr flags to a register.
    518   void VFPCompareAndLoadFlags(const SwVfpRegister src1,
    519                               const SwVfpRegister src2,
    520                               const Register fpscr_flags,
    521                               const Condition cond = al);
    522   void VFPCompareAndLoadFlags(const SwVfpRegister src1, const float src2,
    523                               const Register fpscr_flags,
    524                               const Condition cond = al);
    525 
    526   // Compare double values and then load the fpscr flags to a register.
    527   void VFPCompareAndLoadFlags(const DwVfpRegister src1,
    528                               const DwVfpRegister src2,
    529                               const Register fpscr_flags,
    530                               const Condition cond = al);
    531   void VFPCompareAndLoadFlags(const DwVfpRegister src1,
    532                               const double src2,
    533                               const Register fpscr_flags,
    534                               const Condition cond = al);
    535 
    536   void Vmov(const DwVfpRegister dst,
    537             const double imm,
    538             const Register scratch = no_reg);
    539 
    540   void VmovHigh(Register dst, DwVfpRegister src);
    541   void VmovHigh(DwVfpRegister dst, Register src);
    542   void VmovLow(Register dst, DwVfpRegister src);
    543   void VmovLow(DwVfpRegister dst, Register src);
    544 
    545   // Loads the number from object into dst register.
    546   // If |object| is neither smi nor heap number, |not_number| is jumped to
    547   // with |object| still intact.
    548   void LoadNumber(Register object,
    549                   LowDwVfpRegister dst,
    550                   Register heap_number_map,
    551                   Register scratch,
    552                   Label* not_number);
    553 
    554   // Loads the number from object into double_dst in the double format.
    555   // Control will jump to not_int32 if the value cannot be exactly represented
    556   // by a 32-bit integer.
    557   // Floating point value in the 32-bit integer range that are not exact integer
    558   // won't be loaded.
    559   void LoadNumberAsInt32Double(Register object,
    560                                DwVfpRegister double_dst,
    561                                Register heap_number_map,
    562                                Register scratch,
    563                                LowDwVfpRegister double_scratch,
    564                                Label* not_int32);
    565 
    566   // Loads the number from object into dst as a 32-bit integer.
    567   // Control will jump to not_int32 if the object cannot be exactly represented
    568   // by a 32-bit integer.
    569   // Floating point value in the 32-bit integer range that are not exact integer
    570   // won't be converted.
    571   void LoadNumberAsInt32(Register object,
    572                          Register dst,
    573                          Register heap_number_map,
    574                          Register scratch,
    575                          DwVfpRegister double_scratch0,
    576                          LowDwVfpRegister double_scratch1,
    577                          Label* not_int32);
    578 
    579   // Generates function and stub prologue code.
    580   void StubPrologue();
    581   void Prologue(bool code_pre_aging);
    582 
    583   // Enter exit frame.
    584   // stack_space - extra stack space, used for alignment before call to C.
    585   void EnterExitFrame(bool save_doubles, int stack_space = 0);
    586 
    587   // Leave the current exit frame. Expects the return value in r0.
    588   // Expect the number of values, pushed prior to the exit frame, to
    589   // remove in a register (or no_reg, if there is nothing to remove).
    590   void LeaveExitFrame(bool save_doubles, Register argument_count,
    591                       bool restore_context,
    592                       bool argument_count_is_length = false);
    593 
    594   // Get the actual activation frame alignment for target environment.
    595   static int ActivationFrameAlignment();
    596 
    597   void LoadContext(Register dst, int context_chain_length);
    598 
    599   // Load the global object from the current context.
    600   void LoadGlobalObject(Register dst) {
    601     LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
    602   }
    603 
    604   // Load the global proxy from the current context.
    605   void LoadGlobalProxy(Register dst) {
    606     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
    607   }
    608 
    609   // Conditionally load the cached Array transitioned map of type
    610   // transitioned_kind from the native context if the map in register
    611   // map_in_out is the cached Array map in the native context of
    612   // expected_kind.
    613   void LoadTransitionedArrayMapConditional(
    614       ElementsKind expected_kind,
    615       ElementsKind transitioned_kind,
    616       Register map_in_out,
    617       Register scratch,
    618       Label* no_map_match);
    619 
    620   void LoadNativeContextSlot(int index, Register dst);
    621 
    622   // Load the initial map from the global function. The registers
    623   // function and map can be the same, function is then overwritten.
    624   void LoadGlobalFunctionInitialMap(Register function,
    625                                     Register map,
    626                                     Register scratch);
    627 
    628   void InitializeRootRegister() {
    629     ExternalReference roots_array_start =
    630         ExternalReference::roots_array_start(isolate());
    631     mov(kRootRegister, Operand(roots_array_start));
    632   }
    633 
    634   // ---------------------------------------------------------------------------
    635   // JavaScript invokes
    636 
    637   // Invoke the JavaScript function code by either calling or jumping.
    638   void InvokeFunctionCode(Register function, Register new_target,
    639                           const ParameterCount& expected,
    640                           const ParameterCount& actual, InvokeFlag flag,
    641                           const CallWrapper& call_wrapper);
    642 
    643   void FloodFunctionIfStepping(Register fun, Register new_target,
    644                                const ParameterCount& expected,
    645                                const ParameterCount& actual);
    646 
    647   // Invoke the JavaScript function in the given register. Changes the
    648   // current context to the context in the function before invoking.
    649   void InvokeFunction(Register function,
    650                       Register new_target,
    651                       const ParameterCount& actual,
    652                       InvokeFlag flag,
    653                       const CallWrapper& call_wrapper);
    654 
    655   void InvokeFunction(Register function,
    656                       const ParameterCount& expected,
    657                       const ParameterCount& actual,
    658                       InvokeFlag flag,
    659                       const CallWrapper& call_wrapper);
    660 
    661   void InvokeFunction(Handle<JSFunction> function,
    662                       const ParameterCount& expected,
    663                       const ParameterCount& actual,
    664                       InvokeFlag flag,
    665                       const CallWrapper& call_wrapper);
    666 
    667   void IsObjectJSStringType(Register object,
    668                             Register scratch,
    669                             Label* fail);
    670 
    671   void IsObjectNameType(Register object,
    672                         Register scratch,
    673                         Label* fail);
    674 
    675   // ---------------------------------------------------------------------------
    676   // Debugger Support
    677 
    678   void DebugBreak();
    679 
    680   // ---------------------------------------------------------------------------
    681   // Exception handling
    682 
    683   // Push a new stack handler and link into stack handler chain.
    684   void PushStackHandler();
    685 
    686   // Unlink the stack handler on top of the stack from the stack handler chain.
    687   // Must preserve the result register.
    688   void PopStackHandler();
    689 
    690   // ---------------------------------------------------------------------------
    691   // Inline caching support
    692 
    693   // Generate code for checking access rights - used for security checks
    694   // on access to global objects across environments. The holder register
    695   // is left untouched, whereas both scratch registers are clobbered.
    696   void CheckAccessGlobalProxy(Register holder_reg,
    697                               Register scratch,
    698                               Label* miss);
    699 
    700   void GetNumberHash(Register t0, Register scratch);
    701 
    702   void LoadFromNumberDictionary(Label* miss,
    703                                 Register elements,
    704                                 Register key,
    705                                 Register result,
    706                                 Register t0,
    707                                 Register t1,
    708                                 Register t2);
    709 
    710 
    711   inline void MarkCode(NopMarkerTypes type) {
    712     nop(type);
    713   }
    714 
    715   // Check if the given instruction is a 'type' marker.
    716   // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
    717   // These instructions are generated to mark special location in the code,
    718   // like some special IC code.
    719   static inline bool IsMarkedCode(Instr instr, int type) {
    720     DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
    721     return IsNop(instr, type);
    722   }
    723 
    724 
    725   static inline int GetCodeMarker(Instr instr) {
    726     int dst_reg_offset = 12;
    727     int dst_mask = 0xf << dst_reg_offset;
    728     int src_mask = 0xf;
    729     int dst_reg = (instr & dst_mask) >> dst_reg_offset;
    730     int src_reg = instr & src_mask;
    731     uint32_t non_register_mask = ~(dst_mask | src_mask);
    732     uint32_t mov_mask = al | 13 << 21;
    733 
    734     // Return <n> if we have a mov rn rn, else return -1.
    735     int type = ((instr & non_register_mask) == mov_mask) &&
    736                (dst_reg == src_reg) &&
    737                (FIRST_IC_MARKER <= dst_reg) && (dst_reg < LAST_CODE_MARKER)
    738                    ? src_reg
    739                    : -1;
    740     DCHECK((type == -1) ||
    741            ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
    742     return type;
    743   }
    744 
    745 
    746   // ---------------------------------------------------------------------------
    747   // Allocation support
    748 
    749   // Allocate an object in new space or old space. The object_size is
    750   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
    751   // is passed. If the space is exhausted control continues at the gc_required
    752   // label. The allocated object is returned in result. If the flag
    753   // tag_allocated_object is true the result is tagged as as a heap object.
    754   // All registers are clobbered also when control continues at the gc_required
    755   // label.
    756   void Allocate(int object_size,
    757                 Register result,
    758                 Register scratch1,
    759                 Register scratch2,
    760                 Label* gc_required,
    761                 AllocationFlags flags);
    762 
    763   void Allocate(Register object_size, Register result, Register result_end,
    764                 Register scratch, Label* gc_required, AllocationFlags flags);
    765 
    766   void AllocateTwoByteString(Register result,
    767                              Register length,
    768                              Register scratch1,
    769                              Register scratch2,
    770                              Register scratch3,
    771                              Label* gc_required);
    772   void AllocateOneByteString(Register result, Register length,
    773                              Register scratch1, Register scratch2,
    774                              Register scratch3, Label* gc_required);
    775   void AllocateTwoByteConsString(Register result,
    776                                  Register length,
    777                                  Register scratch1,
    778                                  Register scratch2,
    779                                  Label* gc_required);
    780   void AllocateOneByteConsString(Register result, Register length,
    781                                  Register scratch1, Register scratch2,
    782                                  Label* gc_required);
    783   void AllocateTwoByteSlicedString(Register result,
    784                                    Register length,
    785                                    Register scratch1,
    786                                    Register scratch2,
    787                                    Label* gc_required);
    788   void AllocateOneByteSlicedString(Register result, Register length,
    789                                    Register scratch1, Register scratch2,
    790                                    Label* gc_required);
    791 
    792   // Allocates a heap number or jumps to the gc_required label if the young
    793   // space is full and a scavenge is needed. All registers are clobbered also
    794   // when control continues at the gc_required label.
    795   void AllocateHeapNumber(Register result,
    796                           Register scratch1,
    797                           Register scratch2,
    798                           Register heap_number_map,
    799                           Label* gc_required,
    800                           TaggingMode tagging_mode = TAG_RESULT,
    801                           MutableMode mode = IMMUTABLE);
    802   void AllocateHeapNumberWithValue(Register result,
    803                                    DwVfpRegister value,
    804                                    Register scratch1,
    805                                    Register scratch2,
    806                                    Register heap_number_map,
    807                                    Label* gc_required);
    808 
    809   // Allocate and initialize a JSValue wrapper with the specified {constructor}
    810   // and {value}.
    811   void AllocateJSValue(Register result, Register constructor, Register value,
    812                        Register scratch1, Register scratch2,
    813                        Label* gc_required);
    814 
    815   // Copies a number of bytes from src to dst. All registers are clobbered. On
    816   // exit src and dst will point to the place just after where the last byte was
    817   // read or written and length will be zero.
    818   void CopyBytes(Register src,
    819                  Register dst,
    820                  Register length,
    821                  Register scratch);
    822 
    823   // Initialize fields with filler values.  Fields starting at |current_address|
    824   // not including |end_address| are overwritten with the value in |filler|.  At
    825   // the end the loop, |current_address| takes the value of |end_address|.
    826   void InitializeFieldsWithFiller(Register current_address,
    827                                   Register end_address, Register filler);
    828 
    829   // ---------------------------------------------------------------------------
    830   // Support functions.
    831 
    832   // Machine code version of Map::GetConstructor().
    833   // |temp| holds |result|'s map when done, and |temp2| its instance type.
    834   void GetMapConstructor(Register result, Register map, Register temp,
    835                          Register temp2);
    836 
    837   // Try to get function prototype of a function and puts the value in
    838   // the result register. Checks that the function really is a
    839   // function and jumps to the miss label if the fast checks fail. The
    840   // function register will be untouched; the other registers may be
    841   // clobbered.
    842   void TryGetFunctionPrototype(Register function, Register result,
    843                                Register scratch, Label* miss);
    844 
    845   // Compare object type for heap object.  heap_object contains a non-Smi
    846   // whose object type should be compared with the given type.  This both
    847   // sets the flags and leaves the object type in the type_reg register.
    848   // It leaves the map in the map register (unless the type_reg and map register
    849   // are the same register).  It leaves the heap object in the heap_object
    850   // register unless the heap_object register is the same register as one of the
    851   // other registers.
    852   // Type_reg can be no_reg. In that case ip is used.
    853   void CompareObjectType(Register heap_object,
    854                          Register map,
    855                          Register type_reg,
    856                          InstanceType type);
    857 
    858   // Compare instance type in a map.  map contains a valid map object whose
    859   // object type should be compared with the given type.  This both
    860   // sets the flags and leaves the object type in the type_reg register.
    861   void CompareInstanceType(Register map,
    862                            Register type_reg,
    863                            InstanceType type);
    864 
    865 
    866   // Check if a map for a JSObject indicates that the object has fast elements.
    867   // Jump to the specified label if it does not.
    868   void CheckFastElements(Register map,
    869                          Register scratch,
    870                          Label* fail);
    871 
    872   // Check if a map for a JSObject indicates that the object can have both smi
    873   // and HeapObject elements.  Jump to the specified label if it does not.
    874   void CheckFastObjectElements(Register map,
    875                                Register scratch,
    876                                Label* fail);
    877 
    878   // Check if a map for a JSObject indicates that the object has fast smi only
    879   // elements.  Jump to the specified label if it does not.
    880   void CheckFastSmiElements(Register map,
    881                             Register scratch,
    882                             Label* fail);
    883 
    884   // Check to see if maybe_number can be stored as a double in
    885   // FastDoubleElements. If it can, store it at the index specified by key in
    886   // the FastDoubleElements array elements. Otherwise jump to fail.
    887   void StoreNumberToDoubleElements(Register value_reg,
    888                                    Register key_reg,
    889                                    Register elements_reg,
    890                                    Register scratch1,
    891                                    LowDwVfpRegister double_scratch,
    892                                    Label* fail,
    893                                    int elements_offset = 0);
    894 
    895   // Compare an object's map with the specified map and its transitioned
    896   // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
    897   // set with result of map compare. If multiple map compares are required, the
    898   // compare sequences branches to early_success.
    899   void CompareMap(Register obj,
    900                   Register scratch,
    901                   Handle<Map> map,
    902                   Label* early_success);
    903 
    904   // As above, but the map of the object is already loaded into the register
    905   // which is preserved by the code generated.
    906   void CompareMap(Register obj_map,
    907                   Handle<Map> map,
    908                   Label* early_success);
    909 
    910   // Check if the map of an object is equal to a specified map and branch to
    911   // label if not. Skip the smi check if not required (object is known to be a
    912   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
    913   // against maps that are ElementsKind transition maps of the specified map.
    914   void CheckMap(Register obj,
    915                 Register scratch,
    916                 Handle<Map> map,
    917                 Label* fail,
    918                 SmiCheckType smi_check_type);
    919 
    920 
    921   void CheckMap(Register obj,
    922                 Register scratch,
    923                 Heap::RootListIndex index,
    924                 Label* fail,
    925                 SmiCheckType smi_check_type);
    926 
    927 
    928   // Check if the map of an object is equal to a specified weak map and branch
    929   // to a specified target if equal. Skip the smi check if not required
    930   // (object is known to be a heap object)
    931   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
    932                        Handle<WeakCell> cell, Handle<Code> success,
    933                        SmiCheckType smi_check_type);
    934 
    935   // Compare the given value and the value of weak cell.
    936   void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
    937 
    938   void GetWeakValue(Register value, Handle<WeakCell> cell);
    939 
    940   // Load the value of the weak cell in the value register. Branch to the given
    941   // miss label if the weak cell was cleared.
    942   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
    943 
    944   // Compare the object in a register to a value from the root list.
    945   // Uses the ip register as scratch.
    946   void CompareRoot(Register obj, Heap::RootListIndex index);
    947   void PushRoot(Heap::RootListIndex index) {
    948     LoadRoot(ip, index);
    949     Push(ip);
    950   }
    951 
    952   // Compare the object in a register to a value and jump if they are equal.
    953   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
    954     CompareRoot(with, index);
    955     b(eq, if_equal);
    956   }
    957 
    958   // Compare the object in a register to a value and jump if they are not equal.
    959   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
    960                      Label* if_not_equal) {
    961     CompareRoot(with, index);
    962     b(ne, if_not_equal);
    963   }
    964 
    965   // Load and check the instance type of an object for being a string.
    966   // Loads the type into the second argument register.
    967   // Returns a condition that will be enabled if the object was a string
    968   // and the passed-in condition passed. If the passed-in condition failed
    969   // then flags remain unchanged.
    970   Condition IsObjectStringType(Register obj,
    971                                Register type,
    972                                Condition cond = al) {
    973     ldr(type, FieldMemOperand(obj, HeapObject::kMapOffset), cond);
    974     ldrb(type, FieldMemOperand(type, Map::kInstanceTypeOffset), cond);
    975     tst(type, Operand(kIsNotStringMask), cond);
    976     DCHECK_EQ(0u, kStringTag);
    977     return eq;
    978   }
    979 
    980 
    981   // Picks out an array index from the hash field.
    982   // Register use:
    983   //   hash - holds the index's hash. Clobbered.
    984   //   index - holds the overwritten index on exit.
    985   void IndexFromHash(Register hash, Register index);
    986 
    987   // Get the number of least significant bits from a register
    988   void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
    989   void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
    990 
    991   // Load the value of a smi object into a double register.
    992   // The register value must be between d0 and d15.
    993   void SmiToDouble(LowDwVfpRegister value, Register smi);
    994 
    995   // Check if a double can be exactly represented as a signed 32-bit integer.
    996   // Z flag set to one if true.
    997   void TestDoubleIsInt32(DwVfpRegister double_input,
    998                          LowDwVfpRegister double_scratch);
    999 
   1000   // Try to convert a double to a signed 32-bit integer.
   1001   // Z flag set to one and result assigned if the conversion is exact.
   1002   void TryDoubleToInt32Exact(Register result,
   1003                              DwVfpRegister double_input,
   1004                              LowDwVfpRegister double_scratch);
   1005 
   1006   // Floor a double and writes the value to the result register.
   1007   // Go to exact if the conversion is exact (to be able to test -0),
   1008   // fall through calling code if an overflow occurred, else go to done.
   1009   // In return, input_high is loaded with high bits of input.
   1010   void TryInt32Floor(Register result,
   1011                      DwVfpRegister double_input,
   1012                      Register input_high,
   1013                      LowDwVfpRegister double_scratch,
   1014                      Label* done,
   1015                      Label* exact);
   1016 
   1017   // Performs a truncating conversion of a floating point number as used by
   1018   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
   1019   // succeeds, otherwise falls through if result is saturated. On return
   1020   // 'result' either holds answer, or is clobbered on fall through.
   1021   //
   1022   // Only public for the test code in test-code-stubs-arm.cc.
   1023   void TryInlineTruncateDoubleToI(Register result,
   1024                                   DwVfpRegister input,
   1025                                   Label* done);
   1026 
   1027   // Performs a truncating conversion of a floating point number as used by
   1028   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
   1029   // Exits with 'result' holding the answer.
   1030   void TruncateDoubleToI(Register result, DwVfpRegister double_input);
   1031 
   1032   // Performs a truncating conversion of a heap number as used by
   1033   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
   1034   // must be different registers.  Exits with 'result' holding the answer.
   1035   void TruncateHeapNumberToI(Register result, Register object);
   1036 
   1037   // Converts the smi or heap number in object to an int32 using the rules
   1038   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
   1039   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
   1040   // different registers.
   1041   void TruncateNumberToI(Register object,
   1042                          Register result,
   1043                          Register heap_number_map,
   1044                          Register scratch1,
   1045                          Label* not_int32);
   1046 
   1047   // Check whether d16-d31 are available on the CPU. The result is given by the
   1048   // Z condition flag: Z==0 if d16-d31 available, Z==1 otherwise.
   1049   void CheckFor32DRegs(Register scratch);
   1050 
   1051   // Does a runtime check for 16/32 FP registers. Either way, pushes 32 double
   1052   // values to location, saving [d0..(d15|d31)].
   1053   void SaveFPRegs(Register location, Register scratch);
   1054 
   1055   // Does a runtime check for 16/32 FP registers. Either way, pops 32 double
   1056   // values to location, restoring [d0..(d15|d31)].
   1057   void RestoreFPRegs(Register location, Register scratch);
   1058 
   1059   // ---------------------------------------------------------------------------
   1060   // Runtime calls
   1061 
   1062   // Call a code stub.
   1063   void CallStub(CodeStub* stub,
   1064                 TypeFeedbackId ast_id = TypeFeedbackId::None(),
   1065                 Condition cond = al);
   1066 
   1067   // Call a code stub.
   1068   void TailCallStub(CodeStub* stub, Condition cond = al);
   1069 
   1070   // Call a runtime routine.
   1071   void CallRuntime(const Runtime::Function* f,
   1072                    int num_arguments,
   1073                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
   1074   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
   1075     const Runtime::Function* function = Runtime::FunctionForId(fid);
   1076     CallRuntime(function, function->nargs, kSaveFPRegs);
   1077   }
   1078 
   1079   // Convenience function: Same as above, but takes the fid instead.
   1080   void CallRuntime(Runtime::FunctionId fid,
   1081                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
   1082     const Runtime::Function* function = Runtime::FunctionForId(fid);
   1083     CallRuntime(function, function->nargs, save_doubles);
   1084   }
   1085 
   1086   // Convenience function: Same as above, but takes the fid instead.
   1087   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
   1088                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
   1089     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
   1090   }
   1091 
   1092   // Convenience function: call an external reference.
   1093   void CallExternalReference(const ExternalReference& ext,
   1094                              int num_arguments);
   1095 
   1096   // Convenience function: tail call a runtime routine (jump).
   1097   void TailCallRuntime(Runtime::FunctionId fid);
   1098 
   1099   int CalculateStackPassedWords(int num_reg_arguments,
   1100                                 int num_double_arguments);
   1101 
   1102   // Before calling a C-function from generated code, align arguments on stack.
   1103   // After aligning the frame, non-register arguments must be stored in
   1104   // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
   1105   // are word sized. If double arguments are used, this function assumes that
   1106   // all double arguments are stored before core registers; otherwise the
   1107   // correct alignment of the double values is not guaranteed.
   1108   // Some compilers/platforms require the stack to be aligned when calling
   1109   // C++ code.
   1110   // Needs a scratch register to do some arithmetic. This register will be
   1111   // trashed.
   1112   void PrepareCallCFunction(int num_reg_arguments,
   1113                             int num_double_registers,
   1114                             Register scratch);
   1115   void PrepareCallCFunction(int num_reg_arguments,
   1116                             Register scratch);
   1117 
   1118   // There are two ways of passing double arguments on ARM, depending on
   1119   // whether soft or hard floating point ABI is used. These functions
   1120   // abstract parameter passing for the three different ways we call
   1121   // C functions from generated code.
   1122   void MovToFloatParameter(DwVfpRegister src);
   1123   void MovToFloatParameters(DwVfpRegister src1, DwVfpRegister src2);
   1124   void MovToFloatResult(DwVfpRegister src);
   1125 
   1126   // Calls a C function and cleans up the space for arguments allocated
   1127   // by PrepareCallCFunction. The called function is not allowed to trigger a
   1128   // garbage collection, since that might move the code and invalidate the
   1129   // return address (unless this is somehow accounted for by the called
   1130   // function).
   1131   void CallCFunction(ExternalReference function, int num_arguments);
   1132   void CallCFunction(Register function, int num_arguments);
   1133   void CallCFunction(ExternalReference function,
   1134                      int num_reg_arguments,
   1135                      int num_double_arguments);
   1136   void CallCFunction(Register function,
   1137                      int num_reg_arguments,
   1138                      int num_double_arguments);
   1139 
   1140   void MovFromFloatParameter(DwVfpRegister dst);
   1141   void MovFromFloatResult(DwVfpRegister dst);
   1142 
   1143   // Jump to a runtime routine.
   1144   void JumpToExternalReference(const ExternalReference& builtin);
   1145 
   1146   // Invoke specified builtin JavaScript function.
   1147   void InvokeBuiltin(int native_context_index, InvokeFlag flag,
   1148                      const CallWrapper& call_wrapper = NullCallWrapper());
   1149 
   1150   Handle<Object> CodeObject() {
   1151     DCHECK(!code_object_.is_null());
   1152     return code_object_;
   1153   }
   1154 
   1155 
   1156   // Emit code for a truncating division by a constant. The dividend register is
   1157   // unchanged and ip gets clobbered. Dividend and result must be different.
   1158   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
   1159 
   1160   // ---------------------------------------------------------------------------
   1161   // StatsCounter support
   1162 
   1163   void SetCounter(StatsCounter* counter, int value,
   1164                   Register scratch1, Register scratch2);
   1165   void IncrementCounter(StatsCounter* counter, int value,
   1166                         Register scratch1, Register scratch2);
   1167   void DecrementCounter(StatsCounter* counter, int value,
   1168                         Register scratch1, Register scratch2);
   1169 
   1170 
   1171   // ---------------------------------------------------------------------------
   1172   // Debugging
   1173 
   1174   // Calls Abort(msg) if the condition cond is not satisfied.
   1175   // Use --debug_code to enable.
   1176   void Assert(Condition cond, BailoutReason reason);
   1177   void AssertFastElements(Register elements);
   1178 
   1179   // Like Assert(), but always enabled.
   1180   void Check(Condition cond, BailoutReason reason);
   1181 
   1182   // Print a message to stdout and abort execution.
   1183   void Abort(BailoutReason msg);
   1184 
   1185   // Verify restrictions about code generated in stubs.
   1186   void set_generating_stub(bool value) { generating_stub_ = value; }
   1187   bool generating_stub() { return generating_stub_; }
   1188   void set_has_frame(bool value) { has_frame_ = value; }
   1189   bool has_frame() { return has_frame_; }
   1190   inline bool AllowThisStubCall(CodeStub* stub);
   1191 
   1192   // EABI variant for double arguments in use.
   1193   bool use_eabi_hardfloat() {
   1194 #ifdef __arm__
   1195     return base::OS::ArmUsingHardFloat();
   1196 #elif USE_EABI_HARDFLOAT
   1197     return true;
   1198 #else
   1199     return false;
   1200 #endif
   1201   }
   1202 
   1203   // ---------------------------------------------------------------------------
   1204   // Number utilities
   1205 
   1206   // Check whether the value of reg is a power of two and not zero. If not
   1207   // control continues at the label not_power_of_two. If reg is a power of two
   1208   // the register scratch contains the value of (reg - 1) when control falls
   1209   // through.
   1210   void JumpIfNotPowerOfTwoOrZero(Register reg,
   1211                                  Register scratch,
   1212                                  Label* not_power_of_two_or_zero);
   1213   // Check whether the value of reg is a power of two and not zero.
   1214   // Control falls through if it is, with scratch containing the mask
   1215   // value (reg - 1).
   1216   // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
   1217   // zero or negative, or jumps to the 'not_power_of_two' label if the value is
   1218   // strictly positive but not a power of two.
   1219   void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg,
   1220                                        Register scratch,
   1221                                        Label* zero_and_neg,
   1222                                        Label* not_power_of_two);
   1223 
   1224   // ---------------------------------------------------------------------------
   1225   // Smi utilities
   1226 
   1227   void SmiTag(Register reg, SBit s = LeaveCC) {
   1228     add(reg, reg, Operand(reg), s);
   1229   }
   1230   void SmiTag(Register dst, Register src, SBit s = LeaveCC) {
   1231     add(dst, src, Operand(src), s);
   1232   }
   1233 
   1234   // Try to convert int32 to smi. If the value is to large, preserve
   1235   // the original value and jump to not_a_smi. Destroys scratch and
   1236   // sets flags.
   1237   void TrySmiTag(Register reg, Label* not_a_smi) {
   1238     TrySmiTag(reg, reg, not_a_smi);
   1239   }
   1240   void TrySmiTag(Register reg, Register src, Label* not_a_smi) {
   1241     SmiTag(ip, src, SetCC);
   1242     b(vs, not_a_smi);
   1243     mov(reg, ip);
   1244   }
   1245 
   1246 
   1247   void SmiUntag(Register reg, SBit s = LeaveCC) {
   1248     mov(reg, Operand::SmiUntag(reg), s);
   1249   }
   1250   void SmiUntag(Register dst, Register src, SBit s = LeaveCC) {
   1251     mov(dst, Operand::SmiUntag(src), s);
   1252   }
   1253 
   1254   // Untag the source value into destination and jump if source is a smi.
   1255   // Souce and destination can be the same register.
   1256   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
   1257 
   1258   // Untag the source value into destination and jump if source is not a smi.
   1259   // Souce and destination can be the same register.
   1260   void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
   1261 
   1262   // Test if the register contains a smi (Z == 0 (eq) if true).
   1263   inline void SmiTst(Register value) {
   1264     tst(value, Operand(kSmiTagMask));
   1265   }
   1266   inline void NonNegativeSmiTst(Register value) {
   1267     tst(value, Operand(kSmiTagMask | kSmiSignMask));
   1268   }
   1269   // Jump if the register contains a smi.
   1270   inline void JumpIfSmi(Register value, Label* smi_label) {
   1271     tst(value, Operand(kSmiTagMask));
   1272     b(eq, smi_label);
   1273   }
   1274   // Jump if either of the registers contain a non-smi.
   1275   inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
   1276     tst(value, Operand(kSmiTagMask));
   1277     b(ne, not_smi_label);
   1278   }
   1279   // Jump if either of the registers contain a non-smi.
   1280   void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
   1281   // Jump if either of the registers contain a smi.
   1282   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
   1283 
   1284   // Abort execution if argument is a smi, enabled via --debug-code.
   1285   void AssertNotSmi(Register object);
   1286   void AssertSmi(Register object);
   1287 
   1288   // Abort execution if argument is not a string, enabled via --debug-code.
   1289   void AssertString(Register object);
   1290 
   1291   // Abort execution if argument is not a name, enabled via --debug-code.
   1292   void AssertName(Register object);
   1293 
   1294   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
   1295   void AssertFunction(Register object);
   1296 
   1297   // Abort execution if argument is not a JSBoundFunction,
   1298   // enabled via --debug-code.
   1299   void AssertBoundFunction(Register object);
   1300 
   1301   // Abort execution if argument is not undefined or an AllocationSite, enabled
   1302   // via --debug-code.
   1303   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
   1304 
   1305   // Abort execution if reg is not the root value with the given index,
   1306   // enabled via --debug-code.
   1307   void AssertIsRoot(Register reg, Heap::RootListIndex index);
   1308 
   1309   // ---------------------------------------------------------------------------
   1310   // HeapNumber utilities
   1311 
   1312   void JumpIfNotHeapNumber(Register object,
   1313                            Register heap_number_map,
   1314                            Register scratch,
   1315                            Label* on_not_heap_number);
   1316 
   1317   // ---------------------------------------------------------------------------
   1318   // String utilities
   1319 
   1320   // Checks if both objects are sequential one-byte strings and jumps to label
   1321   // if either is not. Assumes that neither object is a smi.
   1322   void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
   1323                                                     Register object2,
   1324                                                     Register scratch1,
   1325                                                     Register scratch2,
   1326                                                     Label* failure);
   1327 
   1328   // Checks if both objects are sequential one-byte strings and jumps to label
   1329   // if either is not.
   1330   void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
   1331                                              Register scratch1,
   1332                                              Register scratch2,
   1333                                              Label* not_flat_one_byte_strings);
   1334 
   1335   // Checks if both instance types are sequential one-byte strings and jumps to
   1336   // label if either is not.
   1337   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
   1338       Register first_object_instance_type, Register second_object_instance_type,
   1339       Register scratch1, Register scratch2, Label* failure);
   1340 
   1341   // Check if instance type is sequential one-byte string and jump to label if
   1342   // it is not.
   1343   void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
   1344                                                 Label* failure);
   1345 
   1346   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
   1347 
   1348   void EmitSeqStringSetCharCheck(Register string,
   1349                                  Register index,
   1350                                  Register value,
   1351                                  uint32_t encoding_mask);
   1352 
   1353 
   1354   void ClampUint8(Register output_reg, Register input_reg);
   1355 
   1356   void ClampDoubleToUint8(Register result_reg,
   1357                           DwVfpRegister input_reg,
   1358                           LowDwVfpRegister double_scratch);
   1359 
   1360 
   1361   void LoadInstanceDescriptors(Register map, Register descriptors);
   1362   void EnumLength(Register dst, Register map);
   1363   void NumberOfOwnDescriptors(Register dst, Register map);
   1364   void LoadAccessor(Register dst, Register holder, int accessor_index,
   1365                     AccessorComponent accessor);
   1366 
   1367   template<typename Field>
   1368   void DecodeField(Register dst, Register src) {
   1369     Ubfx(dst, src, Field::kShift, Field::kSize);
   1370   }
   1371 
   1372   template<typename Field>
   1373   void DecodeField(Register reg) {
   1374     DecodeField<Field>(reg, reg);
   1375   }
   1376 
   1377   template<typename Field>
   1378   void DecodeFieldToSmi(Register dst, Register src) {
   1379     static const int shift = Field::kShift;
   1380     static const int mask = Field::kMask >> shift << kSmiTagSize;
   1381     STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
   1382     STATIC_ASSERT(kSmiTag == 0);
   1383     if (shift < kSmiTagSize) {
   1384       mov(dst, Operand(src, LSL, kSmiTagSize - shift));
   1385       and_(dst, dst, Operand(mask));
   1386     } else if (shift > kSmiTagSize) {
   1387       mov(dst, Operand(src, LSR, shift - kSmiTagSize));
   1388       and_(dst, dst, Operand(mask));
   1389     } else {
   1390       and_(dst, src, Operand(mask));
   1391     }
   1392   }
   1393 
   1394   template<typename Field>
   1395   void DecodeFieldToSmi(Register reg) {
   1396     DecodeField<Field>(reg, reg);
   1397   }
   1398 
   1399   // Load the type feedback vector from a JavaScript frame.
   1400   void EmitLoadTypeFeedbackVector(Register vector);
   1401 
   1402   // Activation support.
   1403   void EnterFrame(StackFrame::Type type,
   1404                   bool load_constant_pool_pointer_reg = false);
   1405   // Returns the pc offset at which the frame ends.
   1406   int LeaveFrame(StackFrame::Type type);
   1407 
   1408   // Expects object in r0 and returns map with validated enum cache
   1409   // in r0.  Assumes that any other register can be used as a scratch.
   1410   void CheckEnumCache(Register null_value, Label* call_runtime);
   1411 
   1412   // AllocationMemento support. Arrays may have an associated
   1413   // AllocationMemento object that can be checked for in order to pretransition
   1414   // to another type.
   1415   // On entry, receiver_reg should point to the array object.
   1416   // scratch_reg gets clobbered.
   1417   // If allocation info is present, condition flags are set to eq.
   1418   void TestJSArrayForAllocationMemento(Register receiver_reg,
   1419                                        Register scratch_reg,
   1420                                        Label* no_memento_found);
   1421 
   1422   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
   1423                                          Register scratch_reg,
   1424                                          Label* memento_found) {
   1425     Label no_memento_found;
   1426     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
   1427                                     &no_memento_found);
   1428     b(eq, memento_found);
   1429     bind(&no_memento_found);
   1430   }
   1431 
   1432   // Jumps to found label if a prototype map has dictionary elements.
   1433   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
   1434                                         Register scratch1, Label* found);
   1435 
   1436   // Loads the constant pool pointer (pp) register.
   1437   void LoadConstantPoolPointerRegisterFromCodeTargetAddress(
   1438       Register code_target_address);
   1439   void LoadConstantPoolPointerRegister();
   1440 
   1441  private:
   1442   void CallCFunctionHelper(Register function,
   1443                            int num_reg_arguments,
   1444                            int num_double_arguments);
   1445 
   1446   void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
   1447 
   1448   // Helper functions for generating invokes.
   1449   void InvokePrologue(const ParameterCount& expected,
   1450                       const ParameterCount& actual,
   1451                       Label* done,
   1452                       bool* definitely_mismatches,
   1453                       InvokeFlag flag,
   1454                       const CallWrapper& call_wrapper);
   1455 
   1456   void InitializeNewString(Register string,
   1457                            Register length,
   1458                            Heap::RootListIndex map_index,
   1459                            Register scratch1,
   1460                            Register scratch2);
   1461 
   1462   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
   1463   void InNewSpace(Register object,
   1464                   Register scratch,
   1465                   Condition cond,  // eq for new space, ne otherwise.
   1466                   Label* branch);
   1467 
   1468   // Helper for finding the mark bits for an address.  Afterwards, the
   1469   // bitmap register points at the word with the mark bits and the mask
   1470   // the position of the first bit.  Leaves addr_reg unchanged.
   1471   inline void GetMarkBits(Register addr_reg,
   1472                           Register bitmap_reg,
   1473                           Register mask_reg);
   1474 
   1475   // Compute memory operands for safepoint stack slots.
   1476   static int SafepointRegisterStackIndex(int reg_code);
   1477   MemOperand SafepointRegisterSlot(Register reg);
   1478   MemOperand SafepointRegistersAndDoublesSlot(Register reg);
   1479 
   1480   bool generating_stub_;
   1481   bool has_frame_;
   1482   // This handle will be patched with the code object on installation.
   1483   Handle<Object> code_object_;
   1484 
   1485   // Needs access to SafepointRegisterStackIndex for compiled frame
   1486   // traversal.
   1487   friend class StandardFrame;
   1488 };
   1489 
   1490 
   1491 // The code patcher is used to patch (typically) small parts of code e.g. for
   1492 // debugging and other types of instrumentation. When using the code patcher
   1493 // the exact number of bytes specified must be emitted. It is not legal to emit
   1494 // relocation information. If any of these constraints are violated it causes
   1495 // an assertion to fail.
   1496 class CodePatcher {
   1497  public:
   1498   enum FlushICache {
   1499     FLUSH,
   1500     DONT_FLUSH
   1501   };
   1502 
   1503   CodePatcher(Isolate* isolate, byte* address, int instructions,
   1504               FlushICache flush_cache = FLUSH);
   1505   ~CodePatcher();
   1506 
   1507   // Macro assembler to emit code.
   1508   MacroAssembler* masm() { return &masm_; }
   1509 
   1510   // Emit an instruction directly.
   1511   void Emit(Instr instr);
   1512 
   1513   // Emit an address directly.
   1514   void Emit(Address addr);
   1515 
   1516   // Emit the condition part of an instruction leaving the rest of the current
   1517   // instruction unchanged.
   1518   void EmitCondition(Condition cond);
   1519 
   1520  private:
   1521   byte* address_;  // The address of the code being patched.
   1522   int size_;  // Number of bytes of the expected patch size.
   1523   MacroAssembler masm_;  // Macro assembler used to generate the code.
   1524   FlushICache flush_cache_;  // Whether to flush the I cache after patching.
   1525 };
   1526 
   1527 
   1528 // -----------------------------------------------------------------------------
   1529 // Static helper functions.
   1530 
   1531 inline MemOperand ContextMemOperand(Register context, int index = 0) {
   1532   return MemOperand(context, Context::SlotOffset(index));
   1533 }
   1534 
   1535 
   1536 inline MemOperand NativeContextMemOperand() {
   1537   return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
   1538 }
   1539 
   1540 
   1541 #ifdef GENERATED_CODE_COVERAGE
   1542 #define CODE_COVERAGE_STRINGIFY(x) #x
   1543 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
   1544 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
   1545 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
   1546 #else
   1547 #define ACCESS_MASM(masm) masm->
   1548 #endif
   1549 
   1550 
   1551 }  // namespace internal
   1552 }  // namespace v8
   1553 
   1554 #endif  // V8_ARM_MACRO_ASSEMBLER_ARM_H_
   1555