Home | History | Annotate | Download | only in ppc
      1 // Copyright 2014 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #if V8_TARGET_ARCH_PPC
      6 
      7 #include "src/regexp/ppc/regexp-macro-assembler-ppc.h"
      8 
      9 #include "src/base/bits.h"
     10 #include "src/code-stubs.h"
     11 #include "src/log.h"
     12 #include "src/macro-assembler.h"
     13 #include "src/profiler/cpu-profiler.h"
     14 #include "src/regexp/regexp-macro-assembler.h"
     15 #include "src/regexp/regexp-stack.h"
     16 #include "src/unicode.h"
     17 
     18 namespace v8 {
     19 namespace internal {
     20 
     21 #ifndef V8_INTERPRETED_REGEXP
     22 /*
     23  * This assembler uses the following register assignment convention
     24  * - r25: Temporarily stores the index of capture start after a matching pass
     25  *        for a global regexp.
     26  * - r26: Pointer to current code object (Code*) including heap object tag.
     27  * - r27: Current position in input, as negative offset from end of string.
     28  *        Please notice that this is the byte offset, not the character offset!
     29  * - r28: Currently loaded character. Must be loaded using
     30  *        LoadCurrentCharacter before using any of the dispatch methods.
     31  * - r29: Points to tip of backtrack stack
     32  * - r30: End of input (points to byte after last character in input).
     33  * - r31: Frame pointer. Used to access arguments, local variables and
     34  *         RegExp registers.
     35  * - r12: IP register, used by assembler. Very volatile.
     36  * - r1/sp : Points to tip of C stack.
     37  *
     38  * The remaining registers are free for computations.
     39  * Each call to a public method should retain this convention.
     40  *
     41  * The stack will have the following structure:
     42  *  - fp[44]  Isolate* isolate   (address of the current isolate)
     43  *  - fp[40]  secondary link/return address used by native call.
     44  *  - fp[36]  lr save area (currently unused)
     45  *  - fp[32]  backchain    (currently unused)
     46  *  --- sp when called ---
     47  *  - fp[28]  return address     (lr).
     48  *  - fp[24]  old frame pointer  (r31).
     49  *  - fp[0..20]  backup of registers r25..r30
     50  *  --- frame pointer ----
     51  *  - fp[-4]  direct_call        (if 1, direct call from JavaScript code,
     52  *                                if 0, call through the runtime system).
     53  *  - fp[-8]  stack_area_base    (high end of the memory area to use as
     54  *                                backtracking stack).
     55  *  - fp[-12] capture array size (may fit multiple sets of matches)
     56  *  - fp[-16] int* capture_array (int[num_saved_registers_], for output).
     57  *  - fp[-20] end of input       (address of end of string).
     58  *  - fp[-24] start of input     (address of first character in string).
     59  *  - fp[-28] start index        (character index of start).
     60  *  - fp[-32] void* input_string (location of a handle containing the string).
     61  *  - fp[-36] success counter    (only for global regexps to count matches).
     62  *  - fp[-40] Offset of location before start of input (effectively character
     63  *            string start - 1). Used to initialize capture registers to a
     64  *            non-position.
     65  *  - fp[-44] At start (if 1, we are starting at the start of the
     66  *    string, otherwise 0)
     67  *  - fp[-48] register 0         (Only positions must be stored in the first
     68  *  -         register 1          num_saved_registers_ registers)
     69  *  -         ...
     70  *  -         register num_registers-1
     71  *  --- sp ---
     72  *
     73  * The first num_saved_registers_ registers are initialized to point to
     74  * "character -1" in the string (i.e., char_size() bytes before the first
     75  * character of the string). The remaining registers start out as garbage.
     76  *
     77  * The data up to the return address must be placed there by the calling
     78  * code and the remaining arguments are passed in registers, e.g. by calling the
     79  * code entry as cast to a function with the signature:
     80  * int (*match)(String* input_string,
     81  *              int start_index,
     82  *              Address start,
     83  *              Address end,
     84  *              int* capture_output_array,
     85  *              byte* stack_area_base,
     86  *              Address secondary_return_address,  // Only used by native call.
     87  *              bool direct_call = false)
     88  * The call is performed by NativeRegExpMacroAssembler::Execute()
     89  * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
     90  * in ppc/simulator-ppc.h.
     91  * When calling as a non-direct call (i.e., from C++ code), the return address
     92  * area is overwritten with the LR register by the RegExp code. When doing a
     93  * direct call from generated code, the return address is placed there by
     94  * the calling code, as in a normal exit frame.
     95  */
     96 
     97 #define __ ACCESS_MASM(masm_)
     98 
     99 RegExpMacroAssemblerPPC::RegExpMacroAssemblerPPC(Isolate* isolate, Zone* zone,
    100                                                  Mode mode,
    101                                                  int registers_to_save)
    102     : NativeRegExpMacroAssembler(isolate, zone),
    103       masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize,
    104                                CodeObjectRequired::kYes)),
    105       mode_(mode),
    106       num_registers_(registers_to_save),
    107       num_saved_registers_(registers_to_save),
    108       entry_label_(),
    109       start_label_(),
    110       success_label_(),
    111       backtrack_label_(),
    112       exit_label_(),
    113       internal_failure_label_() {
    114   DCHECK_EQ(0, registers_to_save % 2);
    115 
    116 // Called from C
    117   __ function_descriptor();
    118 
    119   __ b(&entry_label_);  // We'll write the entry code later.
    120   // If the code gets too big or corrupted, an internal exception will be
    121   // raised, and we will exit right away.
    122   __ bind(&internal_failure_label_);
    123   __ li(r3, Operand(FAILURE));
    124   __ Ret();
    125   __ bind(&start_label_);  // And then continue from here.
    126 }
    127 
    128 
    129 RegExpMacroAssemblerPPC::~RegExpMacroAssemblerPPC() {
    130   delete masm_;
    131   // Unuse labels in case we throw away the assembler without calling GetCode.
    132   entry_label_.Unuse();
    133   start_label_.Unuse();
    134   success_label_.Unuse();
    135   backtrack_label_.Unuse();
    136   exit_label_.Unuse();
    137   check_preempt_label_.Unuse();
    138   stack_overflow_label_.Unuse();
    139   internal_failure_label_.Unuse();
    140 }
    141 
    142 
    143 int RegExpMacroAssemblerPPC::stack_limit_slack() {
    144   return RegExpStack::kStackLimitSlack;
    145 }
    146 
    147 
    148 void RegExpMacroAssemblerPPC::AdvanceCurrentPosition(int by) {
    149   if (by != 0) {
    150     __ addi(current_input_offset(), current_input_offset(),
    151             Operand(by * char_size()));
    152   }
    153 }
    154 
    155 
    156 void RegExpMacroAssemblerPPC::AdvanceRegister(int reg, int by) {
    157   DCHECK(reg >= 0);
    158   DCHECK(reg < num_registers_);
    159   if (by != 0) {
    160     __ LoadP(r3, register_location(reg), r0);
    161     __ mov(r0, Operand(by));
    162     __ add(r3, r3, r0);
    163     __ StoreP(r3, register_location(reg), r0);
    164   }
    165 }
    166 
    167 
    168 void RegExpMacroAssemblerPPC::Backtrack() {
    169   CheckPreemption();
    170   // Pop Code* offset from backtrack stack, add Code* and jump to location.
    171   Pop(r3);
    172   __ add(r3, r3, code_pointer());
    173   __ Jump(r3);
    174 }
    175 
    176 
    177 void RegExpMacroAssemblerPPC::Bind(Label* label) { __ bind(label); }
    178 
    179 
    180 void RegExpMacroAssemblerPPC::CheckCharacter(uint32_t c, Label* on_equal) {
    181   __ Cmpli(current_character(), Operand(c), r0);
    182   BranchOrBacktrack(eq, on_equal);
    183 }
    184 
    185 
    186 void RegExpMacroAssemblerPPC::CheckCharacterGT(uc16 limit, Label* on_greater) {
    187   __ Cmpli(current_character(), Operand(limit), r0);
    188   BranchOrBacktrack(gt, on_greater);
    189 }
    190 
    191 
    192 void RegExpMacroAssemblerPPC::CheckAtStart(Label* on_at_start) {
    193   __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
    194   __ addi(r3, current_input_offset(), Operand(-char_size()));
    195   __ cmp(r3, r4);
    196   BranchOrBacktrack(eq, on_at_start);
    197 }
    198 
    199 
    200 void RegExpMacroAssemblerPPC::CheckNotAtStart(int cp_offset,
    201                                               Label* on_not_at_start) {
    202   __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
    203   __ addi(r3, current_input_offset(),
    204           Operand(-char_size() + cp_offset * char_size()));
    205   __ cmp(r3, r4);
    206   BranchOrBacktrack(ne, on_not_at_start);
    207 }
    208 
    209 
    210 void RegExpMacroAssemblerPPC::CheckCharacterLT(uc16 limit, Label* on_less) {
    211   __ Cmpli(current_character(), Operand(limit), r0);
    212   BranchOrBacktrack(lt, on_less);
    213 }
    214 
    215 
    216 void RegExpMacroAssemblerPPC::CheckGreedyLoop(Label* on_equal) {
    217   Label backtrack_non_equal;
    218   __ LoadP(r3, MemOperand(backtrack_stackpointer(), 0));
    219   __ cmp(current_input_offset(), r3);
    220   __ bne(&backtrack_non_equal);
    221   __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
    222           Operand(kPointerSize));
    223 
    224   __ bind(&backtrack_non_equal);
    225   BranchOrBacktrack(eq, on_equal);
    226 }
    227 
    228 
    229 void RegExpMacroAssemblerPPC::CheckNotBackReferenceIgnoreCase(
    230     int start_reg, bool read_backward, Label* on_no_match) {
    231   Label fallthrough;
    232   __ LoadP(r3, register_location(start_reg), r0);  // Index of start of capture
    233   __ LoadP(r4, register_location(start_reg + 1), r0);  // Index of end
    234   __ sub(r4, r4, r3, LeaveOE, SetRC);                  // Length of capture.
    235 
    236   // At this point, the capture registers are either both set or both cleared.
    237   // If the capture length is zero, then the capture is either empty or cleared.
    238   // Fall through in both cases.
    239   __ beq(&fallthrough, cr0);
    240 
    241   // Check that there are enough characters left in the input.
    242   if (read_backward) {
    243     __ LoadP(r6, MemOperand(frame_pointer(), kStringStartMinusOne));
    244     __ add(r6, r6, r4);
    245     __ cmp(current_input_offset(), r6);
    246     BranchOrBacktrack(le, on_no_match);
    247   } else {
    248     __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
    249     BranchOrBacktrack(gt, on_no_match, cr0);
    250   }
    251 
    252   if (mode_ == LATIN1) {
    253     Label success;
    254     Label fail;
    255     Label loop_check;
    256 
    257     // r3 - offset of start of capture
    258     // r4 - length of capture
    259     __ add(r3, r3, end_of_input_address());
    260     __ add(r5, end_of_input_address(), current_input_offset());
    261     if (read_backward) {
    262       __ sub(r5, r5, r4);  // Offset by length when matching backwards.
    263     }
    264     __ add(r4, r3, r4);
    265 
    266     // r3 - Address of start of capture.
    267     // r4 - Address of end of capture
    268     // r5 - Address of current input position.
    269 
    270     Label loop;
    271     __ bind(&loop);
    272     __ lbz(r6, MemOperand(r3));
    273     __ addi(r3, r3, Operand(char_size()));
    274     __ lbz(r25, MemOperand(r5));
    275     __ addi(r5, r5, Operand(char_size()));
    276     __ cmp(r25, r6);
    277     __ beq(&loop_check);
    278 
    279     // Mismatch, try case-insensitive match (converting letters to lower-case).
    280     __ ori(r6, r6, Operand(0x20));  // Convert capture character to lower-case.
    281     __ ori(r25, r25, Operand(0x20));  // Also convert input character.
    282     __ cmp(r25, r6);
    283     __ bne(&fail);
    284     __ subi(r6, r6, Operand('a'));
    285     __ cmpli(r6, Operand('z' - 'a'));  // Is r6 a lowercase letter?
    286     __ ble(&loop_check);               // In range 'a'-'z'.
    287     // Latin-1: Check for values in range [224,254] but not 247.
    288     __ subi(r6, r6, Operand(224 - 'a'));
    289     __ cmpli(r6, Operand(254 - 224));
    290     __ bgt(&fail);                    // Weren't Latin-1 letters.
    291     __ cmpi(r6, Operand(247 - 224));  // Check for 247.
    292     __ beq(&fail);
    293 
    294     __ bind(&loop_check);
    295     __ cmp(r3, r4);
    296     __ blt(&loop);
    297     __ b(&success);
    298 
    299     __ bind(&fail);
    300     BranchOrBacktrack(al, on_no_match);
    301 
    302     __ bind(&success);
    303     // Compute new value of character position after the matched part.
    304     __ sub(current_input_offset(), r5, end_of_input_address());
    305     if (read_backward) {
    306       __ LoadP(r3, register_location(start_reg));  // Index of start of capture
    307       __ LoadP(r4,
    308                register_location(start_reg + 1));  // Index of end of capture
    309       __ add(current_input_offset(), current_input_offset(), r3);
    310       __ sub(current_input_offset(), current_input_offset(), r4);
    311     }
    312   } else {
    313     DCHECK(mode_ == UC16);
    314     int argument_count = 4;
    315     __ PrepareCallCFunction(argument_count, r5);
    316 
    317     // r3 - offset of start of capture
    318     // r4 - length of capture
    319 
    320     // Put arguments into arguments registers.
    321     // Parameters are
    322     //   r3: Address byte_offset1 - Address captured substring's start.
    323     //   r4: Address byte_offset2 - Address of current character position.
    324     //   r5: size_t byte_length - length of capture in bytes(!)
    325     //   r6: Isolate* isolate
    326 
    327     // Address of start of capture.
    328     __ add(r3, r3, end_of_input_address());
    329     // Length of capture.
    330     __ mr(r5, r4);
    331     // Save length in callee-save register for use on return.
    332     __ mr(r25, r4);
    333     // Address of current input position.
    334     __ add(r4, current_input_offset(), end_of_input_address());
    335     if (read_backward) {
    336       __ sub(r4, r4, r25);
    337     }
    338     // Isolate.
    339     __ mov(r6, Operand(ExternalReference::isolate_address(isolate())));
    340 
    341     {
    342       AllowExternalCallThatCantCauseGC scope(masm_);
    343       ExternalReference function =
    344           ExternalReference::re_case_insensitive_compare_uc16(isolate());
    345       __ CallCFunction(function, argument_count);
    346     }
    347 
    348     // Check if function returned non-zero for success or zero for failure.
    349     __ cmpi(r3, Operand::Zero());
    350     BranchOrBacktrack(eq, on_no_match);
    351 
    352     // On success, advance position by length of capture.
    353     if (read_backward) {
    354       __ sub(current_input_offset(), current_input_offset(), r25);
    355     } else {
    356       __ add(current_input_offset(), current_input_offset(), r25);
    357     }
    358   }
    359 
    360   __ bind(&fallthrough);
    361 }
    362 
    363 
    364 void RegExpMacroAssemblerPPC::CheckNotBackReference(int start_reg,
    365                                                     bool read_backward,
    366                                                     Label* on_no_match) {
    367   Label fallthrough;
    368   Label success;
    369 
    370   // Find length of back-referenced capture.
    371   __ LoadP(r3, register_location(start_reg), r0);
    372   __ LoadP(r4, register_location(start_reg + 1), r0);
    373   __ sub(r4, r4, r3, LeaveOE, SetRC);  // Length to check.
    374 
    375   // At this point, the capture registers are either both set or both cleared.
    376   // If the capture length is zero, then the capture is either empty or cleared.
    377   // Fall through in both cases.
    378   __ beq(&fallthrough, cr0);
    379 
    380   // Check that there are enough characters left in the input.
    381   if (read_backward) {
    382     __ LoadP(r6, MemOperand(frame_pointer(), kStringStartMinusOne));
    383     __ add(r6, r6, r4);
    384     __ cmp(current_input_offset(), r6);
    385     BranchOrBacktrack(lt, on_no_match);
    386   } else {
    387     __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
    388     BranchOrBacktrack(gt, on_no_match, cr0);
    389   }
    390 
    391   // r3 - offset of start of capture
    392   // r4 - length of capture
    393   __ add(r3, r3, end_of_input_address());
    394   __ add(r5, end_of_input_address(), current_input_offset());
    395   if (read_backward) {
    396     __ sub(r5, r5, r4);  // Offset by length when matching backwards.
    397   }
    398   __ add(r4, r4, r3);
    399 
    400   Label loop;
    401   __ bind(&loop);
    402   if (mode_ == LATIN1) {
    403     __ lbz(r6, MemOperand(r3));
    404     __ addi(r3, r3, Operand(char_size()));
    405     __ lbz(r25, MemOperand(r5));
    406     __ addi(r5, r5, Operand(char_size()));
    407   } else {
    408     DCHECK(mode_ == UC16);
    409     __ lhz(r6, MemOperand(r3));
    410     __ addi(r3, r3, Operand(char_size()));
    411     __ lhz(r25, MemOperand(r5));
    412     __ addi(r5, r5, Operand(char_size()));
    413   }
    414   __ cmp(r6, r25);
    415   BranchOrBacktrack(ne, on_no_match);
    416   __ cmp(r3, r4);
    417   __ blt(&loop);
    418 
    419   // Move current character position to position after match.
    420   __ sub(current_input_offset(), r5, end_of_input_address());
    421   if (read_backward) {
    422     __ LoadP(r3, register_location(start_reg));  // Index of start of capture
    423     __ LoadP(r4, register_location(start_reg + 1));  // Index of end of capture
    424     __ add(current_input_offset(), current_input_offset(), r3);
    425     __ sub(current_input_offset(), current_input_offset(), r4);
    426   }
    427 
    428   __ bind(&fallthrough);
    429 }
    430 
    431 
    432 void RegExpMacroAssemblerPPC::CheckNotCharacter(unsigned c,
    433                                                 Label* on_not_equal) {
    434   __ Cmpli(current_character(), Operand(c), r0);
    435   BranchOrBacktrack(ne, on_not_equal);
    436 }
    437 
    438 
    439 void RegExpMacroAssemblerPPC::CheckCharacterAfterAnd(uint32_t c, uint32_t mask,
    440                                                      Label* on_equal) {
    441   __ mov(r0, Operand(mask));
    442   if (c == 0) {
    443     __ and_(r3, current_character(), r0, SetRC);
    444   } else {
    445     __ and_(r3, current_character(), r0);
    446     __ Cmpli(r3, Operand(c), r0, cr0);
    447   }
    448   BranchOrBacktrack(eq, on_equal, cr0);
    449 }
    450 
    451 
    452 void RegExpMacroAssemblerPPC::CheckNotCharacterAfterAnd(unsigned c,
    453                                                         unsigned mask,
    454                                                         Label* on_not_equal) {
    455   __ mov(r0, Operand(mask));
    456   if (c == 0) {
    457     __ and_(r3, current_character(), r0, SetRC);
    458   } else {
    459     __ and_(r3, current_character(), r0);
    460     __ Cmpli(r3, Operand(c), r0, cr0);
    461   }
    462   BranchOrBacktrack(ne, on_not_equal, cr0);
    463 }
    464 
    465 
    466 void RegExpMacroAssemblerPPC::CheckNotCharacterAfterMinusAnd(
    467     uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) {
    468   DCHECK(minus < String::kMaxUtf16CodeUnit);
    469   __ subi(r3, current_character(), Operand(minus));
    470   __ mov(r0, Operand(mask));
    471   __ and_(r3, r3, r0);
    472   __ Cmpli(r3, Operand(c), r0);
    473   BranchOrBacktrack(ne, on_not_equal);
    474 }
    475 
    476 
    477 void RegExpMacroAssemblerPPC::CheckCharacterInRange(uc16 from, uc16 to,
    478                                                     Label* on_in_range) {
    479   __ mov(r0, Operand(from));
    480   __ sub(r3, current_character(), r0);
    481   __ Cmpli(r3, Operand(to - from), r0);
    482   BranchOrBacktrack(le, on_in_range);  // Unsigned lower-or-same condition.
    483 }
    484 
    485 
    486 void RegExpMacroAssemblerPPC::CheckCharacterNotInRange(uc16 from, uc16 to,
    487                                                        Label* on_not_in_range) {
    488   __ mov(r0, Operand(from));
    489   __ sub(r3, current_character(), r0);
    490   __ Cmpli(r3, Operand(to - from), r0);
    491   BranchOrBacktrack(gt, on_not_in_range);  // Unsigned higher condition.
    492 }
    493 
    494 
    495 void RegExpMacroAssemblerPPC::CheckBitInTable(Handle<ByteArray> table,
    496                                               Label* on_bit_set) {
    497   __ mov(r3, Operand(table));
    498   if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
    499     __ andi(r4, current_character(), Operand(kTableSize - 1));
    500     __ addi(r4, r4, Operand(ByteArray::kHeaderSize - kHeapObjectTag));
    501   } else {
    502     __ addi(r4, current_character(),
    503             Operand(ByteArray::kHeaderSize - kHeapObjectTag));
    504   }
    505   __ lbzx(r3, MemOperand(r3, r4));
    506   __ cmpi(r3, Operand::Zero());
    507   BranchOrBacktrack(ne, on_bit_set);
    508 }
    509 
    510 
    511 bool RegExpMacroAssemblerPPC::CheckSpecialCharacterClass(uc16 type,
    512                                                          Label* on_no_match) {
    513   // Range checks (c in min..max) are generally implemented by an unsigned
    514   // (c - min) <= (max - min) check
    515   switch (type) {
    516     case 's':
    517       // Match space-characters
    518       if (mode_ == LATIN1) {
    519         // One byte space characters are '\t'..'\r', ' ' and \u00a0.
    520         Label success;
    521         __ cmpi(current_character(), Operand(' '));
    522         __ beq(&success);
    523         // Check range 0x09..0x0d
    524         __ subi(r3, current_character(), Operand('\t'));
    525         __ cmpli(r3, Operand('\r' - '\t'));
    526         __ ble(&success);
    527         // \u00a0 (NBSP).
    528         __ cmpi(r3, Operand(0x00a0 - '\t'));
    529         BranchOrBacktrack(ne, on_no_match);
    530         __ bind(&success);
    531         return true;
    532       }
    533       return false;
    534     case 'S':
    535       // The emitted code for generic character classes is good enough.
    536       return false;
    537     case 'd':
    538       // Match ASCII digits ('0'..'9')
    539       __ subi(r3, current_character(), Operand('0'));
    540       __ cmpli(r3, Operand('9' - '0'));
    541       BranchOrBacktrack(gt, on_no_match);
    542       return true;
    543     case 'D':
    544       // Match non ASCII-digits
    545       __ subi(r3, current_character(), Operand('0'));
    546       __ cmpli(r3, Operand('9' - '0'));
    547       BranchOrBacktrack(le, on_no_match);
    548       return true;
    549     case '.': {
    550       // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
    551       __ xori(r3, current_character(), Operand(0x01));
    552       // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
    553       __ subi(r3, r3, Operand(0x0b));
    554       __ cmpli(r3, Operand(0x0c - 0x0b));
    555       BranchOrBacktrack(le, on_no_match);
    556       if (mode_ == UC16) {
    557         // Compare original value to 0x2028 and 0x2029, using the already
    558         // computed (current_char ^ 0x01 - 0x0b). I.e., check for
    559         // 0x201d (0x2028 - 0x0b) or 0x201e.
    560         __ subi(r3, r3, Operand(0x2028 - 0x0b));
    561         __ cmpli(r3, Operand(1));
    562         BranchOrBacktrack(le, on_no_match);
    563       }
    564       return true;
    565     }
    566     case 'n': {
    567       // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
    568       __ xori(r3, current_character(), Operand(0x01));
    569       // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
    570       __ subi(r3, r3, Operand(0x0b));
    571       __ cmpli(r3, Operand(0x0c - 0x0b));
    572       if (mode_ == LATIN1) {
    573         BranchOrBacktrack(gt, on_no_match);
    574       } else {
    575         Label done;
    576         __ ble(&done);
    577         // Compare original value to 0x2028 and 0x2029, using the already
    578         // computed (current_char ^ 0x01 - 0x0b). I.e., check for
    579         // 0x201d (0x2028 - 0x0b) or 0x201e.
    580         __ subi(r3, r3, Operand(0x2028 - 0x0b));
    581         __ cmpli(r3, Operand(1));
    582         BranchOrBacktrack(gt, on_no_match);
    583         __ bind(&done);
    584       }
    585       return true;
    586     }
    587     case 'w': {
    588       if (mode_ != LATIN1) {
    589         // Table is 256 entries, so all Latin1 characters can be tested.
    590         __ cmpi(current_character(), Operand('z'));
    591         BranchOrBacktrack(gt, on_no_match);
    592       }
    593       ExternalReference map = ExternalReference::re_word_character_map();
    594       __ mov(r3, Operand(map));
    595       __ lbzx(r3, MemOperand(r3, current_character()));
    596       __ cmpli(r3, Operand::Zero());
    597       BranchOrBacktrack(eq, on_no_match);
    598       return true;
    599     }
    600     case 'W': {
    601       Label done;
    602       if (mode_ != LATIN1) {
    603         // Table is 256 entries, so all Latin1 characters can be tested.
    604         __ cmpli(current_character(), Operand('z'));
    605         __ bgt(&done);
    606       }
    607       ExternalReference map = ExternalReference::re_word_character_map();
    608       __ mov(r3, Operand(map));
    609       __ lbzx(r3, MemOperand(r3, current_character()));
    610       __ cmpli(r3, Operand::Zero());
    611       BranchOrBacktrack(ne, on_no_match);
    612       if (mode_ != LATIN1) {
    613         __ bind(&done);
    614       }
    615       return true;
    616     }
    617     case '*':
    618       // Match any character.
    619       return true;
    620     // No custom implementation (yet): s(UC16), S(UC16).
    621     default:
    622       return false;
    623   }
    624 }
    625 
    626 
    627 void RegExpMacroAssemblerPPC::Fail() {
    628   __ li(r3, Operand(FAILURE));
    629   __ b(&exit_label_);
    630 }
    631 
    632 
    633 Handle<HeapObject> RegExpMacroAssemblerPPC::GetCode(Handle<String> source) {
    634   Label return_r3;
    635 
    636   if (masm_->has_exception()) {
    637     // If the code gets corrupted due to long regular expressions and lack of
    638     // space on trampolines, an internal exception flag is set. If this case
    639     // is detected, we will jump into exit sequence right away.
    640     __ bind_to(&entry_label_, internal_failure_label_.pos());
    641   } else {
    642     // Finalize code - write the entry point code now we know how many
    643     // registers we need.
    644 
    645     // Entry code:
    646     __ bind(&entry_label_);
    647 
    648     // Tell the system that we have a stack frame.  Because the type
    649     // is MANUAL, no is generated.
    650     FrameScope scope(masm_, StackFrame::MANUAL);
    651 
    652     // Ensure register assigments are consistent with callee save mask
    653     DCHECK(r25.bit() & kRegExpCalleeSaved);
    654     DCHECK(code_pointer().bit() & kRegExpCalleeSaved);
    655     DCHECK(current_input_offset().bit() & kRegExpCalleeSaved);
    656     DCHECK(current_character().bit() & kRegExpCalleeSaved);
    657     DCHECK(backtrack_stackpointer().bit() & kRegExpCalleeSaved);
    658     DCHECK(end_of_input_address().bit() & kRegExpCalleeSaved);
    659     DCHECK(frame_pointer().bit() & kRegExpCalleeSaved);
    660 
    661     // Actually emit code to start a new stack frame.
    662     // Push arguments
    663     // Save callee-save registers.
    664     // Start new stack frame.
    665     // Store link register in existing stack-cell.
    666     // Order here should correspond to order of offset constants in header file.
    667     RegList registers_to_retain = kRegExpCalleeSaved;
    668     RegList argument_registers = r3.bit() | r4.bit() | r5.bit() | r6.bit() |
    669                                  r7.bit() | r8.bit() | r9.bit() | r10.bit();
    670     __ mflr(r0);
    671     __ push(r0);
    672     __ MultiPush(argument_registers | registers_to_retain);
    673     // Set frame pointer in space for it if this is not a direct call
    674     // from generated code.
    675     __ addi(frame_pointer(), sp, Operand(8 * kPointerSize));
    676     __ li(r3, Operand::Zero());
    677     __ push(r3);  // Make room for success counter and initialize it to 0.
    678     __ push(r3);  // Make room for "string start - 1" constant.
    679     // Check if we have space on the stack for registers.
    680     Label stack_limit_hit;
    681     Label stack_ok;
    682 
    683     ExternalReference stack_limit =
    684         ExternalReference::address_of_stack_limit(isolate());
    685     __ mov(r3, Operand(stack_limit));
    686     __ LoadP(r3, MemOperand(r3));
    687     __ sub(r3, sp, r3, LeaveOE, SetRC);
    688     // Handle it if the stack pointer is already below the stack limit.
    689     __ ble(&stack_limit_hit, cr0);
    690     // Check if there is room for the variable number of registers above
    691     // the stack limit.
    692     __ Cmpli(r3, Operand(num_registers_ * kPointerSize), r0);
    693     __ bge(&stack_ok);
    694     // Exit with OutOfMemory exception. There is not enough space on the stack
    695     // for our working registers.
    696     __ li(r3, Operand(EXCEPTION));
    697     __ b(&return_r3);
    698 
    699     __ bind(&stack_limit_hit);
    700     CallCheckStackGuardState(r3);
    701     __ cmpi(r3, Operand::Zero());
    702     // If returned value is non-zero, we exit with the returned value as result.
    703     __ bne(&return_r3);
    704 
    705     __ bind(&stack_ok);
    706 
    707     // Allocate space on stack for registers.
    708     __ Add(sp, sp, -num_registers_ * kPointerSize, r0);
    709     // Load string end.
    710     __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
    711     // Load input start.
    712     __ LoadP(r3, MemOperand(frame_pointer(), kInputStart));
    713     // Find negative length (offset of start relative to end).
    714     __ sub(current_input_offset(), r3, end_of_input_address());
    715     // Set r3 to address of char before start of the input string
    716     // (effectively string position -1).
    717     __ LoadP(r4, MemOperand(frame_pointer(), kStartIndex));
    718     __ subi(r3, current_input_offset(), Operand(char_size()));
    719     if (mode_ == UC16) {
    720       __ ShiftLeftImm(r0, r4, Operand(1));
    721       __ sub(r3, r3, r0);
    722     } else {
    723       __ sub(r3, r3, r4);
    724     }
    725     // Store this value in a local variable, for use when clearing
    726     // position registers.
    727     __ StoreP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
    728 
    729     // Initialize code pointer register
    730     __ mov(code_pointer(), Operand(masm_->CodeObject()));
    731 
    732     Label load_char_start_regexp, start_regexp;
    733     // Load newline if index is at start, previous character otherwise.
    734     __ cmpi(r4, Operand::Zero());
    735     __ bne(&load_char_start_regexp);
    736     __ li(current_character(), Operand('\n'));
    737     __ b(&start_regexp);
    738 
    739     // Global regexp restarts matching here.
    740     __ bind(&load_char_start_regexp);
    741     // Load previous char as initial value of current character register.
    742     LoadCurrentCharacterUnchecked(-1, 1);
    743     __ bind(&start_regexp);
    744 
    745     // Initialize on-stack registers.
    746     if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
    747       // Fill saved registers with initial value = start offset - 1
    748       if (num_saved_registers_ > 8) {
    749         // One slot beyond address of register 0.
    750         __ addi(r4, frame_pointer(), Operand(kRegisterZero + kPointerSize));
    751         __ li(r5, Operand(num_saved_registers_));
    752         __ mtctr(r5);
    753         Label init_loop;
    754         __ bind(&init_loop);
    755         __ StorePU(r3, MemOperand(r4, -kPointerSize));
    756         __ bdnz(&init_loop);
    757       } else {
    758         for (int i = 0; i < num_saved_registers_; i++) {
    759           __ StoreP(r3, register_location(i), r0);
    760         }
    761       }
    762     }
    763 
    764     // Initialize backtrack stack pointer.
    765     __ LoadP(backtrack_stackpointer(),
    766              MemOperand(frame_pointer(), kStackHighEnd));
    767 
    768     __ b(&start_label_);
    769 
    770     // Exit code:
    771     if (success_label_.is_linked()) {
    772       // Save captures when successful.
    773       __ bind(&success_label_);
    774       if (num_saved_registers_ > 0) {
    775         // copy captures to output
    776         __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
    777         __ LoadP(r3, MemOperand(frame_pointer(), kRegisterOutput));
    778         __ LoadP(r5, MemOperand(frame_pointer(), kStartIndex));
    779         __ sub(r4, end_of_input_address(), r4);
    780         // r4 is length of input in bytes.
    781         if (mode_ == UC16) {
    782           __ ShiftRightImm(r4, r4, Operand(1));
    783         }
    784         // r4 is length of input in characters.
    785         __ add(r4, r4, r5);
    786         // r4 is length of string in characters.
    787 
    788         DCHECK_EQ(0, num_saved_registers_ % 2);
    789         // Always an even number of capture registers. This allows us to
    790         // unroll the loop once to add an operation between a load of a register
    791         // and the following use of that register.
    792         for (int i = 0; i < num_saved_registers_; i += 2) {
    793           __ LoadP(r5, register_location(i), r0);
    794           __ LoadP(r6, register_location(i + 1), r0);
    795           if (i == 0 && global_with_zero_length_check()) {
    796             // Keep capture start in r25 for the zero-length check later.
    797             __ mr(r25, r5);
    798           }
    799           if (mode_ == UC16) {
    800             __ ShiftRightArithImm(r5, r5, 1);
    801             __ add(r5, r4, r5);
    802             __ ShiftRightArithImm(r6, r6, 1);
    803             __ add(r6, r4, r6);
    804           } else {
    805             __ add(r5, r4, r5);
    806             __ add(r6, r4, r6);
    807           }
    808           __ stw(r5, MemOperand(r3));
    809           __ addi(r3, r3, Operand(kIntSize));
    810           __ stw(r6, MemOperand(r3));
    811           __ addi(r3, r3, Operand(kIntSize));
    812         }
    813       }
    814 
    815       if (global()) {
    816         // Restart matching if the regular expression is flagged as global.
    817         __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
    818         __ LoadP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
    819         __ LoadP(r5, MemOperand(frame_pointer(), kRegisterOutput));
    820         // Increment success counter.
    821         __ addi(r3, r3, Operand(1));
    822         __ StoreP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
    823         // Capture results have been stored, so the number of remaining global
    824         // output registers is reduced by the number of stored captures.
    825         __ subi(r4, r4, Operand(num_saved_registers_));
    826         // Check whether we have enough room for another set of capture results.
    827         __ cmpi(r4, Operand(num_saved_registers_));
    828         __ blt(&return_r3);
    829 
    830         __ StoreP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
    831         // Advance the location for output.
    832         __ addi(r5, r5, Operand(num_saved_registers_ * kIntSize));
    833         __ StoreP(r5, MemOperand(frame_pointer(), kRegisterOutput));
    834 
    835         // Prepare r3 to initialize registers with its value in the next run.
    836         __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
    837 
    838         if (global_with_zero_length_check()) {
    839           // Special case for zero-length matches.
    840           // r25: capture start index
    841           __ cmp(current_input_offset(), r25);
    842           // Not a zero-length match, restart.
    843           __ bne(&load_char_start_regexp);
    844           // Offset from the end is zero if we already reached the end.
    845           __ cmpi(current_input_offset(), Operand::Zero());
    846           __ beq(&exit_label_);
    847           // Advance current position after a zero-length match.
    848           __ addi(current_input_offset(), current_input_offset(),
    849                   Operand((mode_ == UC16) ? 2 : 1));
    850         }
    851 
    852         __ b(&load_char_start_regexp);
    853       } else {
    854         __ li(r3, Operand(SUCCESS));
    855       }
    856     }
    857 
    858     // Exit and return r3
    859     __ bind(&exit_label_);
    860     if (global()) {
    861       __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
    862     }
    863 
    864     __ bind(&return_r3);
    865     // Skip sp past regexp registers and local variables..
    866     __ mr(sp, frame_pointer());
    867     // Restore registers r25..r31 and return (restoring lr to pc).
    868     __ MultiPop(registers_to_retain);
    869     __ pop(r0);
    870     __ mtlr(r0);
    871     __ blr();
    872 
    873     // Backtrack code (branch target for conditional backtracks).
    874     if (backtrack_label_.is_linked()) {
    875       __ bind(&backtrack_label_);
    876       Backtrack();
    877     }
    878 
    879     Label exit_with_exception;
    880 
    881     // Preempt-code
    882     if (check_preempt_label_.is_linked()) {
    883       SafeCallTarget(&check_preempt_label_);
    884 
    885       CallCheckStackGuardState(r3);
    886       __ cmpi(r3, Operand::Zero());
    887       // If returning non-zero, we should end execution with the given
    888       // result as return value.
    889       __ bne(&return_r3);
    890 
    891       // String might have moved: Reload end of string from frame.
    892       __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
    893       SafeReturn();
    894     }
    895 
    896     // Backtrack stack overflow code.
    897     if (stack_overflow_label_.is_linked()) {
    898       SafeCallTarget(&stack_overflow_label_);
    899       // Reached if the backtrack-stack limit has been hit.
    900       Label grow_failed;
    901 
    902       // Call GrowStack(backtrack_stackpointer(), &stack_base)
    903       static const int num_arguments = 3;
    904       __ PrepareCallCFunction(num_arguments, r3);
    905       __ mr(r3, backtrack_stackpointer());
    906       __ addi(r4, frame_pointer(), Operand(kStackHighEnd));
    907       __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
    908       ExternalReference grow_stack =
    909           ExternalReference::re_grow_stack(isolate());
    910       __ CallCFunction(grow_stack, num_arguments);
    911       // If return NULL, we have failed to grow the stack, and
    912       // must exit with a stack-overflow exception.
    913       __ cmpi(r3, Operand::Zero());
    914       __ beq(&exit_with_exception);
    915       // Otherwise use return value as new stack pointer.
    916       __ mr(backtrack_stackpointer(), r3);
    917       // Restore saved registers and continue.
    918       SafeReturn();
    919     }
    920 
    921     if (exit_with_exception.is_linked()) {
    922       // If any of the code above needed to exit with an exception.
    923       __ bind(&exit_with_exception);
    924       // Exit with Result EXCEPTION(-1) to signal thrown exception.
    925       __ li(r3, Operand(EXCEPTION));
    926       __ b(&return_r3);
    927     }
    928   }
    929 
    930   CodeDesc code_desc;
    931   masm_->GetCode(&code_desc);
    932   Handle<Code> code = isolate()->factory()->NewCode(
    933       code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
    934   PROFILE(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
    935   return Handle<HeapObject>::cast(code);
    936 }
    937 
    938 
    939 void RegExpMacroAssemblerPPC::GoTo(Label* to) { BranchOrBacktrack(al, to); }
    940 
    941 
    942 void RegExpMacroAssemblerPPC::IfRegisterGE(int reg, int comparand,
    943                                            Label* if_ge) {
    944   __ LoadP(r3, register_location(reg), r0);
    945   __ Cmpi(r3, Operand(comparand), r0);
    946   BranchOrBacktrack(ge, if_ge);
    947 }
    948 
    949 
    950 void RegExpMacroAssemblerPPC::IfRegisterLT(int reg, int comparand,
    951                                            Label* if_lt) {
    952   __ LoadP(r3, register_location(reg), r0);
    953   __ Cmpi(r3, Operand(comparand), r0);
    954   BranchOrBacktrack(lt, if_lt);
    955 }
    956 
    957 
    958 void RegExpMacroAssemblerPPC::IfRegisterEqPos(int reg, Label* if_eq) {
    959   __ LoadP(r3, register_location(reg), r0);
    960   __ cmp(r3, current_input_offset());
    961   BranchOrBacktrack(eq, if_eq);
    962 }
    963 
    964 
    965 RegExpMacroAssembler::IrregexpImplementation
    966 RegExpMacroAssemblerPPC::Implementation() {
    967   return kPPCImplementation;
    968 }
    969 
    970 
    971 void RegExpMacroAssemblerPPC::LoadCurrentCharacter(int cp_offset,
    972                                                    Label* on_end_of_input,
    973                                                    bool check_bounds,
    974                                                    int characters) {
    975   DCHECK(cp_offset < (1 << 30));  // Be sane! (And ensure negation works)
    976   if (check_bounds) {
    977     if (cp_offset >= 0) {
    978       CheckPosition(cp_offset + characters - 1, on_end_of_input);
    979     } else {
    980       CheckPosition(cp_offset, on_end_of_input);
    981     }
    982   }
    983   LoadCurrentCharacterUnchecked(cp_offset, characters);
    984 }
    985 
    986 
    987 void RegExpMacroAssemblerPPC::PopCurrentPosition() {
    988   Pop(current_input_offset());
    989 }
    990 
    991 
    992 void RegExpMacroAssemblerPPC::PopRegister(int register_index) {
    993   Pop(r3);
    994   __ StoreP(r3, register_location(register_index), r0);
    995 }
    996 
    997 
    998 void RegExpMacroAssemblerPPC::PushBacktrack(Label* label) {
    999   __ mov_label_offset(r3, label);
   1000   Push(r3);
   1001   CheckStackLimit();
   1002 }
   1003 
   1004 
   1005 void RegExpMacroAssemblerPPC::PushCurrentPosition() {
   1006   Push(current_input_offset());
   1007 }
   1008 
   1009 
   1010 void RegExpMacroAssemblerPPC::PushRegister(int register_index,
   1011                                            StackCheckFlag check_stack_limit) {
   1012   __ LoadP(r3, register_location(register_index), r0);
   1013   Push(r3);
   1014   if (check_stack_limit) CheckStackLimit();
   1015 }
   1016 
   1017 
   1018 void RegExpMacroAssemblerPPC::ReadCurrentPositionFromRegister(int reg) {
   1019   __ LoadP(current_input_offset(), register_location(reg), r0);
   1020 }
   1021 
   1022 
   1023 void RegExpMacroAssemblerPPC::ReadStackPointerFromRegister(int reg) {
   1024   __ LoadP(backtrack_stackpointer(), register_location(reg), r0);
   1025   __ LoadP(r3, MemOperand(frame_pointer(), kStackHighEnd));
   1026   __ add(backtrack_stackpointer(), backtrack_stackpointer(), r3);
   1027 }
   1028 
   1029 
   1030 void RegExpMacroAssemblerPPC::SetCurrentPositionFromEnd(int by) {
   1031   Label after_position;
   1032   __ Cmpi(current_input_offset(), Operand(-by * char_size()), r0);
   1033   __ bge(&after_position);
   1034   __ mov(current_input_offset(), Operand(-by * char_size()));
   1035   // On RegExp code entry (where this operation is used), the character before
   1036   // the current position is expected to be already loaded.
   1037   // We have advanced the position, so it's safe to read backwards.
   1038   LoadCurrentCharacterUnchecked(-1, 1);
   1039   __ bind(&after_position);
   1040 }
   1041 
   1042 
   1043 void RegExpMacroAssemblerPPC::SetRegister(int register_index, int to) {
   1044   DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
   1045   __ mov(r3, Operand(to));
   1046   __ StoreP(r3, register_location(register_index), r0);
   1047 }
   1048 
   1049 
   1050 bool RegExpMacroAssemblerPPC::Succeed() {
   1051   __ b(&success_label_);
   1052   return global();
   1053 }
   1054 
   1055 
   1056 void RegExpMacroAssemblerPPC::WriteCurrentPositionToRegister(int reg,
   1057                                                              int cp_offset) {
   1058   if (cp_offset == 0) {
   1059     __ StoreP(current_input_offset(), register_location(reg), r0);
   1060   } else {
   1061     __ mov(r0, Operand(cp_offset * char_size()));
   1062     __ add(r3, current_input_offset(), r0);
   1063     __ StoreP(r3, register_location(reg), r0);
   1064   }
   1065 }
   1066 
   1067 
   1068 void RegExpMacroAssemblerPPC::ClearRegisters(int reg_from, int reg_to) {
   1069   DCHECK(reg_from <= reg_to);
   1070   __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
   1071   for (int reg = reg_from; reg <= reg_to; reg++) {
   1072     __ StoreP(r3, register_location(reg), r0);
   1073   }
   1074 }
   1075 
   1076 
   1077 void RegExpMacroAssemblerPPC::WriteStackPointerToRegister(int reg) {
   1078   __ LoadP(r4, MemOperand(frame_pointer(), kStackHighEnd));
   1079   __ sub(r3, backtrack_stackpointer(), r4);
   1080   __ StoreP(r3, register_location(reg), r0);
   1081 }
   1082 
   1083 
   1084 // Private methods:
   1085 
   1086 void RegExpMacroAssemblerPPC::CallCheckStackGuardState(Register scratch) {
   1087   int frame_alignment = masm_->ActivationFrameAlignment();
   1088   int stack_space = kNumRequiredStackFrameSlots;
   1089   int stack_passed_arguments = 1;  // space for return address pointer
   1090 
   1091   // The following stack manipulation logic is similar to
   1092   // PrepareCallCFunction.  However, we need an extra slot on the
   1093   // stack to house the return address parameter.
   1094   if (frame_alignment > kPointerSize) {
   1095     // Make stack end at alignment and make room for stack arguments
   1096     // -- preserving original value of sp.
   1097     __ mr(scratch, sp);
   1098     __ addi(sp, sp, Operand(-(stack_passed_arguments + 1) * kPointerSize));
   1099     DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
   1100     __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
   1101     __ StoreP(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
   1102   } else {
   1103     // Make room for stack arguments
   1104     stack_space += stack_passed_arguments;
   1105   }
   1106 
   1107   // Allocate frame with required slots to make ABI work.
   1108   __ li(r0, Operand::Zero());
   1109   __ StorePU(r0, MemOperand(sp, -stack_space * kPointerSize));
   1110 
   1111   // RegExp code frame pointer.
   1112   __ mr(r5, frame_pointer());
   1113   // Code* of self.
   1114   __ mov(r4, Operand(masm_->CodeObject()));
   1115   // r3 will point to the return address, placed by DirectCEntry.
   1116   __ addi(r3, sp, Operand(kStackFrameExtraParamSlot * kPointerSize));
   1117 
   1118   ExternalReference stack_guard_check =
   1119       ExternalReference::re_check_stack_guard_state(isolate());
   1120   __ mov(ip, Operand(stack_guard_check));
   1121   DirectCEntryStub stub(isolate());
   1122   stub.GenerateCall(masm_, ip);
   1123 
   1124   // Restore the stack pointer
   1125   stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments;
   1126   if (frame_alignment > kPointerSize) {
   1127     __ LoadP(sp, MemOperand(sp, stack_space * kPointerSize));
   1128   } else {
   1129     __ addi(sp, sp, Operand(stack_space * kPointerSize));
   1130   }
   1131 
   1132   __ mov(code_pointer(), Operand(masm_->CodeObject()));
   1133 }
   1134 
   1135 
   1136 // Helper function for reading a value out of a stack frame.
   1137 template <typename T>
   1138 static T& frame_entry(Address re_frame, int frame_offset) {
   1139   return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
   1140 }
   1141 
   1142 
   1143 template <typename T>
   1144 static T* frame_entry_address(Address re_frame, int frame_offset) {
   1145   return reinterpret_cast<T*>(re_frame + frame_offset);
   1146 }
   1147 
   1148 
   1149 int RegExpMacroAssemblerPPC::CheckStackGuardState(Address* return_address,
   1150                                                   Code* re_code,
   1151                                                   Address re_frame) {
   1152   return NativeRegExpMacroAssembler::CheckStackGuardState(
   1153       frame_entry<Isolate*>(re_frame, kIsolate),
   1154       frame_entry<intptr_t>(re_frame, kStartIndex),
   1155       frame_entry<intptr_t>(re_frame, kDirectCall) == 1, return_address,
   1156       re_code, frame_entry_address<String*>(re_frame, kInputString),
   1157       frame_entry_address<const byte*>(re_frame, kInputStart),
   1158       frame_entry_address<const byte*>(re_frame, kInputEnd));
   1159 }
   1160 
   1161 
   1162 MemOperand RegExpMacroAssemblerPPC::register_location(int register_index) {
   1163   DCHECK(register_index < (1 << 30));
   1164   if (num_registers_ <= register_index) {
   1165     num_registers_ = register_index + 1;
   1166   }
   1167   return MemOperand(frame_pointer(),
   1168                     kRegisterZero - register_index * kPointerSize);
   1169 }
   1170 
   1171 
   1172 void RegExpMacroAssemblerPPC::CheckPosition(int cp_offset,
   1173                                             Label* on_outside_input) {
   1174   if (cp_offset >= 0) {
   1175     __ Cmpi(current_input_offset(), Operand(-cp_offset * char_size()), r0);
   1176     BranchOrBacktrack(ge, on_outside_input);
   1177   } else {
   1178     __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
   1179     __ addi(r3, current_input_offset(), Operand(cp_offset * char_size()));
   1180     __ cmp(r3, r4);
   1181     BranchOrBacktrack(le, on_outside_input);
   1182   }
   1183 }
   1184 
   1185 
   1186 void RegExpMacroAssemblerPPC::BranchOrBacktrack(Condition condition, Label* to,
   1187                                                 CRegister cr) {
   1188   if (condition == al) {  // Unconditional.
   1189     if (to == NULL) {
   1190       Backtrack();
   1191       return;
   1192     }
   1193     __ b(to);
   1194     return;
   1195   }
   1196   if (to == NULL) {
   1197     __ b(condition, &backtrack_label_, cr);
   1198     return;
   1199   }
   1200   __ b(condition, to, cr);
   1201 }
   1202 
   1203 
   1204 void RegExpMacroAssemblerPPC::SafeCall(Label* to, Condition cond,
   1205                                        CRegister cr) {
   1206   __ b(cond, to, cr, SetLK);
   1207 }
   1208 
   1209 
   1210 void RegExpMacroAssemblerPPC::SafeReturn() {
   1211   __ pop(r0);
   1212   __ mov(ip, Operand(masm_->CodeObject()));
   1213   __ add(r0, r0, ip);
   1214   __ mtlr(r0);
   1215   __ blr();
   1216 }
   1217 
   1218 
   1219 void RegExpMacroAssemblerPPC::SafeCallTarget(Label* name) {
   1220   __ bind(name);
   1221   __ mflr(r0);
   1222   __ mov(ip, Operand(masm_->CodeObject()));
   1223   __ sub(r0, r0, ip);
   1224   __ push(r0);
   1225 }
   1226 
   1227 
   1228 void RegExpMacroAssemblerPPC::Push(Register source) {
   1229   DCHECK(!source.is(backtrack_stackpointer()));
   1230   __ StorePU(source, MemOperand(backtrack_stackpointer(), -kPointerSize));
   1231 }
   1232 
   1233 
   1234 void RegExpMacroAssemblerPPC::Pop(Register target) {
   1235   DCHECK(!target.is(backtrack_stackpointer()));
   1236   __ LoadP(target, MemOperand(backtrack_stackpointer()));
   1237   __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
   1238           Operand(kPointerSize));
   1239 }
   1240 
   1241 
   1242 void RegExpMacroAssemblerPPC::CheckPreemption() {
   1243   // Check for preemption.
   1244   ExternalReference stack_limit =
   1245       ExternalReference::address_of_stack_limit(isolate());
   1246   __ mov(r3, Operand(stack_limit));
   1247   __ LoadP(r3, MemOperand(r3));
   1248   __ cmpl(sp, r3);
   1249   SafeCall(&check_preempt_label_, le);
   1250 }
   1251 
   1252 
   1253 void RegExpMacroAssemblerPPC::CheckStackLimit() {
   1254   ExternalReference stack_limit =
   1255       ExternalReference::address_of_regexp_stack_limit(isolate());
   1256   __ mov(r3, Operand(stack_limit));
   1257   __ LoadP(r3, MemOperand(r3));
   1258   __ cmpl(backtrack_stackpointer(), r3);
   1259   SafeCall(&stack_overflow_label_, le);
   1260 }
   1261 
   1262 
   1263 bool RegExpMacroAssemblerPPC::CanReadUnaligned() {
   1264   return CpuFeatures::IsSupported(UNALIGNED_ACCESSES) && !slow_safe();
   1265 }
   1266 
   1267 
   1268 void RegExpMacroAssemblerPPC::LoadCurrentCharacterUnchecked(int cp_offset,
   1269                                                             int characters) {
   1270   Register offset = current_input_offset();
   1271   if (cp_offset != 0) {
   1272     // r25 is not being used to store the capture start index at this point.
   1273     __ addi(r25, current_input_offset(), Operand(cp_offset * char_size()));
   1274     offset = r25;
   1275   }
   1276   // The lwz, stw, lhz, sth instructions can do unaligned accesses, if the CPU
   1277   // and the operating system running on the target allow it.
   1278   // We assume we don't want to do unaligned loads on PPC, so this function
   1279   // must only be used to load a single character at a time.
   1280 
   1281   DCHECK(characters == 1);
   1282   __ add(current_character(), end_of_input_address(), offset);
   1283   if (mode_ == LATIN1) {
   1284     __ lbz(current_character(), MemOperand(current_character()));
   1285   } else {
   1286     DCHECK(mode_ == UC16);
   1287     __ lhz(current_character(), MemOperand(current_character()));
   1288   }
   1289 }
   1290 
   1291 
   1292 #undef __
   1293 
   1294 #endif  // V8_INTERPRETED_REGEXP
   1295 }  // namespace internal
   1296 }  // namespace v8
   1297 
   1298 #endif  // V8_TARGET_ARCH_PPC
   1299