1 // powerpc.cc -- powerpc target support for gold. 2 3 // Copyright (C) 2008-2014 Free Software Foundation, Inc. 4 // Written by David S. Miller <davem (at) davemloft.net> 5 // and David Edelsohn <edelsohn (at) gnu.org> 6 7 // This file is part of gold. 8 9 // This program is free software; you can redistribute it and/or modify 10 // it under the terms of the GNU General Public License as published by 11 // the Free Software Foundation; either version 3 of the License, or 12 // (at your option) any later version. 13 14 // This program is distributed in the hope that it will be useful, 15 // but WITHOUT ANY WARRANTY; without even the implied warranty of 16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 // GNU General Public License for more details. 18 19 // You should have received a copy of the GNU General Public License 20 // along with this program; if not, write to the Free Software 21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 22 // MA 02110-1301, USA. 23 24 #include "gold.h" 25 26 #include <set> 27 #include <algorithm> 28 #include "elfcpp.h" 29 #include "dwarf.h" 30 #include "parameters.h" 31 #include "reloc.h" 32 #include "powerpc.h" 33 #include "object.h" 34 #include "symtab.h" 35 #include "layout.h" 36 #include "output.h" 37 #include "copy-relocs.h" 38 #include "target.h" 39 #include "target-reloc.h" 40 #include "target-select.h" 41 #include "tls.h" 42 #include "errors.h" 43 #include "gc.h" 44 45 namespace 46 { 47 48 using namespace gold; 49 50 template<int size, bool big_endian> 51 class Output_data_plt_powerpc; 52 53 template<int size, bool big_endian> 54 class Output_data_brlt_powerpc; 55 56 template<int size, bool big_endian> 57 class Output_data_got_powerpc; 58 59 template<int size, bool big_endian> 60 class Output_data_glink; 61 62 template<int size, bool big_endian> 63 class Stub_table; 64 65 template<int size, bool big_endian> 66 class Target_powerpc; 67 68 struct Stub_table_owner 69 { 70 Output_section* output_section; 71 const Output_section::Input_section* owner; 72 }; 73 74 inline bool 75 is_branch_reloc(unsigned int r_type); 76 77 template<int size, bool big_endian> 78 class Powerpc_relobj : public Sized_relobj_file<size, big_endian> 79 { 80 public: 81 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address; 82 typedef Unordered_set<Section_id, Section_id_hash> Section_refs; 83 typedef Unordered_map<Address, Section_refs> Access_from; 84 85 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset, 86 const typename elfcpp::Ehdr<size, big_endian>& ehdr) 87 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr), 88 special_(0), has_small_toc_reloc_(false), opd_valid_(false), 89 opd_ent_(), access_from_map_(), has14_(), stub_table_index_(), 90 e_flags_(ehdr.get_e_flags()), st_other_() 91 { 92 this->set_abiversion(0); 93 } 94 95 ~Powerpc_relobj() 96 { } 97 98 // Read the symbols then set up st_other vector. 99 void 100 do_read_symbols(Read_symbols_data*); 101 102 // The .got2 section shndx. 103 unsigned int 104 got2_shndx() const 105 { 106 if (size == 32) 107 return this->special_; 108 else 109 return 0; 110 } 111 112 // The .opd section shndx. 113 unsigned int 114 opd_shndx() const 115 { 116 if (size == 32) 117 return 0; 118 else 119 return this->special_; 120 } 121 122 // Init OPD entry arrays. 123 void 124 init_opd(size_t opd_size) 125 { 126 size_t count = this->opd_ent_ndx(opd_size); 127 this->opd_ent_.resize(count); 128 } 129 130 // Return section and offset of function entry for .opd + R_OFF. 131 unsigned int 132 get_opd_ent(Address r_off, Address* value = NULL) const 133 { 134 size_t ndx = this->opd_ent_ndx(r_off); 135 gold_assert(ndx < this->opd_ent_.size()); 136 gold_assert(this->opd_ent_[ndx].shndx != 0); 137 if (value != NULL) 138 *value = this->opd_ent_[ndx].off; 139 return this->opd_ent_[ndx].shndx; 140 } 141 142 // Set section and offset of function entry for .opd + R_OFF. 143 void 144 set_opd_ent(Address r_off, unsigned int shndx, Address value) 145 { 146 size_t ndx = this->opd_ent_ndx(r_off); 147 gold_assert(ndx < this->opd_ent_.size()); 148 this->opd_ent_[ndx].shndx = shndx; 149 this->opd_ent_[ndx].off = value; 150 } 151 152 // Return discard flag for .opd + R_OFF. 153 bool 154 get_opd_discard(Address r_off) const 155 { 156 size_t ndx = this->opd_ent_ndx(r_off); 157 gold_assert(ndx < this->opd_ent_.size()); 158 return this->opd_ent_[ndx].discard; 159 } 160 161 // Set discard flag for .opd + R_OFF. 162 void 163 set_opd_discard(Address r_off) 164 { 165 size_t ndx = this->opd_ent_ndx(r_off); 166 gold_assert(ndx < this->opd_ent_.size()); 167 this->opd_ent_[ndx].discard = true; 168 } 169 170 bool 171 opd_valid() const 172 { return this->opd_valid_; } 173 174 void 175 set_opd_valid() 176 { this->opd_valid_ = true; } 177 178 // Examine .rela.opd to build info about function entry points. 179 void 180 scan_opd_relocs(size_t reloc_count, 181 const unsigned char* prelocs, 182 const unsigned char* plocal_syms); 183 184 // Perform the Sized_relobj_file method, then set up opd info from 185 // .opd relocs. 186 void 187 do_read_relocs(Read_relocs_data*); 188 189 bool 190 do_find_special_sections(Read_symbols_data* sd); 191 192 // Adjust this local symbol value. Return false if the symbol 193 // should be discarded from the output file. 194 bool 195 do_adjust_local_symbol(Symbol_value<size>* lv) const 196 { 197 if (size == 64 && this->opd_shndx() != 0) 198 { 199 bool is_ordinary; 200 if (lv->input_shndx(&is_ordinary) != this->opd_shndx()) 201 return true; 202 if (this->get_opd_discard(lv->input_value())) 203 return false; 204 } 205 return true; 206 } 207 208 Access_from* 209 access_from_map() 210 { return &this->access_from_map_; } 211 212 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd 213 // section at DST_OFF. 214 void 215 add_reference(Object* src_obj, 216 unsigned int src_indx, 217 typename elfcpp::Elf_types<size>::Elf_Addr dst_off) 218 { 219 Section_id src_id(src_obj, src_indx); 220 this->access_from_map_[dst_off].insert(src_id); 221 } 222 223 // Add a reference to the code section specified by the .opd entry 224 // at DST_OFF 225 void 226 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off) 227 { 228 size_t ndx = this->opd_ent_ndx(dst_off); 229 if (ndx >= this->opd_ent_.size()) 230 this->opd_ent_.resize(ndx + 1); 231 this->opd_ent_[ndx].gc_mark = true; 232 } 233 234 void 235 process_gc_mark(Symbol_table* symtab) 236 { 237 for (size_t i = 0; i < this->opd_ent_.size(); i++) 238 if (this->opd_ent_[i].gc_mark) 239 { 240 unsigned int shndx = this->opd_ent_[i].shndx; 241 symtab->gc()->worklist().push(Section_id(this, shndx)); 242 } 243 } 244 245 // Return offset in output GOT section that this object will use 246 // as a TOC pointer. Won't be just a constant with multi-toc support. 247 Address 248 toc_base_offset() const 249 { return 0x8000; } 250 251 void 252 set_has_small_toc_reloc() 253 { has_small_toc_reloc_ = true; } 254 255 bool 256 has_small_toc_reloc() const 257 { return has_small_toc_reloc_; } 258 259 void 260 set_has_14bit_branch(unsigned int shndx) 261 { 262 if (shndx >= this->has14_.size()) 263 this->has14_.resize(shndx + 1); 264 this->has14_[shndx] = true; 265 } 266 267 bool 268 has_14bit_branch(unsigned int shndx) const 269 { return shndx < this->has14_.size() && this->has14_[shndx]; } 270 271 void 272 set_stub_table(unsigned int shndx, unsigned int stub_index) 273 { 274 if (shndx >= this->stub_table_index_.size()) 275 this->stub_table_index_.resize(shndx + 1); 276 this->stub_table_index_[shndx] = stub_index; 277 } 278 279 Stub_table<size, big_endian>* 280 stub_table(unsigned int shndx) 281 { 282 if (shndx < this->stub_table_index_.size()) 283 { 284 Target_powerpc<size, big_endian>* target 285 = static_cast<Target_powerpc<size, big_endian>*>( 286 parameters->sized_target<size, big_endian>()); 287 unsigned int indx = this->stub_table_index_[shndx]; 288 gold_assert(indx < target->stub_tables().size()); 289 return target->stub_tables()[indx]; 290 } 291 return NULL; 292 } 293 294 void 295 clear_stub_table() 296 { 297 this->stub_table_index_.clear(); 298 } 299 300 int 301 abiversion() const 302 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; } 303 304 // Set ABI version for input and output 305 void 306 set_abiversion(int ver); 307 308 unsigned int 309 ppc64_local_entry_offset(const Symbol* sym) const 310 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); } 311 312 unsigned int 313 ppc64_local_entry_offset(unsigned int symndx) const 314 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); } 315 316 private: 317 struct Opd_ent 318 { 319 unsigned int shndx; 320 bool discard : 1; 321 bool gc_mark : 1; 322 Address off; 323 }; 324 325 // Return index into opd_ent_ array for .opd entry at OFF. 326 // .opd entries are 24 bytes long, but they can be spaced 16 bytes 327 // apart when the language doesn't use the last 8-byte word, the 328 // environment pointer. Thus dividing the entry section offset by 329 // 16 will give an index into opd_ent_ that works for either layout 330 // of .opd. (It leaves some elements of the vector unused when .opd 331 // entries are spaced 24 bytes apart, but we don't know the spacing 332 // until relocations are processed, and in any case it is possible 333 // for an object to have some entries spaced 16 bytes apart and 334 // others 24 bytes apart.) 335 size_t 336 opd_ent_ndx(size_t off) const 337 { return off >> 4;} 338 339 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx. 340 unsigned int special_; 341 342 // For 64-bit, whether this object uses small model relocs to access 343 // the toc. 344 bool has_small_toc_reloc_; 345 346 // Set at the start of gc_process_relocs, when we know opd_ent_ 347 // vector is valid. The flag could be made atomic and set in 348 // do_read_relocs with memory_order_release and then tested with 349 // memory_order_acquire, potentially resulting in fewer entries in 350 // access_from_map_. 351 bool opd_valid_; 352 353 // The first 8-byte word of an OPD entry gives the address of the 354 // entry point of the function. Relocatable object files have a 355 // relocation on this word. The following vector records the 356 // section and offset specified by these relocations. 357 std::vector<Opd_ent> opd_ent_; 358 359 // References made to this object's .opd section when running 360 // gc_process_relocs for another object, before the opd_ent_ vector 361 // is valid for this object. 362 Access_from access_from_map_; 363 364 // Whether input section has a 14-bit branch reloc. 365 std::vector<bool> has14_; 366 367 // The stub table to use for a given input section. 368 std::vector<unsigned int> stub_table_index_; 369 370 // Header e_flags 371 elfcpp::Elf_Word e_flags_; 372 373 // ELF st_other field for local symbols. 374 std::vector<unsigned char> st_other_; 375 }; 376 377 template<int size, bool big_endian> 378 class Powerpc_dynobj : public Sized_dynobj<size, big_endian> 379 { 380 public: 381 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address; 382 383 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset, 384 const typename elfcpp::Ehdr<size, big_endian>& ehdr) 385 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr), 386 opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags()) 387 { 388 this->set_abiversion(0); 389 } 390 391 ~Powerpc_dynobj() 392 { } 393 394 // Call Sized_dynobj::do_read_symbols to read the symbols then 395 // read .opd from a dynamic object, filling in opd_ent_ vector, 396 void 397 do_read_symbols(Read_symbols_data*); 398 399 // The .opd section shndx. 400 unsigned int 401 opd_shndx() const 402 { 403 return this->opd_shndx_; 404 } 405 406 // The .opd section address. 407 Address 408 opd_address() const 409 { 410 return this->opd_address_; 411 } 412 413 // Init OPD entry arrays. 414 void 415 init_opd(size_t opd_size) 416 { 417 size_t count = this->opd_ent_ndx(opd_size); 418 this->opd_ent_.resize(count); 419 } 420 421 // Return section and offset of function entry for .opd + R_OFF. 422 unsigned int 423 get_opd_ent(Address r_off, Address* value = NULL) const 424 { 425 size_t ndx = this->opd_ent_ndx(r_off); 426 gold_assert(ndx < this->opd_ent_.size()); 427 gold_assert(this->opd_ent_[ndx].shndx != 0); 428 if (value != NULL) 429 *value = this->opd_ent_[ndx].off; 430 return this->opd_ent_[ndx].shndx; 431 } 432 433 // Set section and offset of function entry for .opd + R_OFF. 434 void 435 set_opd_ent(Address r_off, unsigned int shndx, Address value) 436 { 437 size_t ndx = this->opd_ent_ndx(r_off); 438 gold_assert(ndx < this->opd_ent_.size()); 439 this->opd_ent_[ndx].shndx = shndx; 440 this->opd_ent_[ndx].off = value; 441 } 442 443 int 444 abiversion() const 445 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; } 446 447 // Set ABI version for input and output. 448 void 449 set_abiversion(int ver); 450 451 private: 452 // Used to specify extent of executable sections. 453 struct Sec_info 454 { 455 Sec_info(Address start_, Address len_, unsigned int shndx_) 456 : start(start_), len(len_), shndx(shndx_) 457 { } 458 459 bool 460 operator<(const Sec_info& that) const 461 { return this->start < that.start; } 462 463 Address start; 464 Address len; 465 unsigned int shndx; 466 }; 467 468 struct Opd_ent 469 { 470 unsigned int shndx; 471 Address off; 472 }; 473 474 // Return index into opd_ent_ array for .opd entry at OFF. 475 size_t 476 opd_ent_ndx(size_t off) const 477 { return off >> 4;} 478 479 // For 64-bit the .opd section shndx and address. 480 unsigned int opd_shndx_; 481 Address opd_address_; 482 483 // The first 8-byte word of an OPD entry gives the address of the 484 // entry point of the function. Records the section and offset 485 // corresponding to the address. Note that in dynamic objects, 486 // offset is *not* relative to the section. 487 std::vector<Opd_ent> opd_ent_; 488 489 // Header e_flags 490 elfcpp::Elf_Word e_flags_; 491 }; 492 493 template<int size, bool big_endian> 494 class Target_powerpc : public Sized_target<size, big_endian> 495 { 496 public: 497 typedef 498 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section; 499 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address; 500 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address; 501 static const Address invalid_address = static_cast<Address>(0) - 1; 502 // Offset of tp and dtp pointers from start of TLS block. 503 static const Address tp_offset = 0x7000; 504 static const Address dtp_offset = 0x8000; 505 506 Target_powerpc() 507 : Sized_target<size, big_endian>(&powerpc_info), 508 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL), 509 glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY), 510 tlsld_got_offset_(-1U), 511 stub_tables_(), branch_lookup_table_(), branch_info_(), 512 plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0), 513 stub_group_size_(0) 514 { 515 } 516 517 // Process the relocations to determine unreferenced sections for 518 // garbage collection. 519 void 520 gc_process_relocs(Symbol_table* symtab, 521 Layout* layout, 522 Sized_relobj_file<size, big_endian>* object, 523 unsigned int data_shndx, 524 unsigned int sh_type, 525 const unsigned char* prelocs, 526 size_t reloc_count, 527 Output_section* output_section, 528 bool needs_special_offset_handling, 529 size_t local_symbol_count, 530 const unsigned char* plocal_symbols); 531 532 // Scan the relocations to look for symbol adjustments. 533 void 534 scan_relocs(Symbol_table* symtab, 535 Layout* layout, 536 Sized_relobj_file<size, big_endian>* object, 537 unsigned int data_shndx, 538 unsigned int sh_type, 539 const unsigned char* prelocs, 540 size_t reloc_count, 541 Output_section* output_section, 542 bool needs_special_offset_handling, 543 size_t local_symbol_count, 544 const unsigned char* plocal_symbols); 545 546 // Map input .toc section to output .got section. 547 const char* 548 do_output_section_name(const Relobj*, const char* name, size_t* plen) const 549 { 550 if (size == 64 && strcmp(name, ".toc") == 0) 551 { 552 *plen = 4; 553 return ".got"; 554 } 555 return NULL; 556 } 557 558 // Provide linker defined save/restore functions. 559 void 560 define_save_restore_funcs(Layout*, Symbol_table*); 561 562 // No stubs unless a final link. 563 bool 564 do_may_relax() const 565 { return !parameters->options().relocatable(); } 566 567 bool 568 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*); 569 570 void 571 do_plt_fde_location(const Output_data*, unsigned char*, 572 uint64_t*, off_t*) const; 573 574 // Stash info about branches, for stub generation. 575 void 576 push_branch(Powerpc_relobj<size, big_endian>* ppc_object, 577 unsigned int data_shndx, Address r_offset, 578 unsigned int r_type, unsigned int r_sym, Address addend) 579 { 580 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend); 581 this->branch_info_.push_back(info); 582 if (r_type == elfcpp::R_POWERPC_REL14 583 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN 584 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN) 585 ppc_object->set_has_14bit_branch(data_shndx); 586 } 587 588 void 589 do_define_standard_symbols(Symbol_table*, Layout*); 590 591 // Finalize the sections. 592 void 593 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*); 594 595 // Return the value to use for a dynamic which requires special 596 // treatment. 597 uint64_t 598 do_dynsym_value(const Symbol*) const; 599 600 // Return the PLT address to use for a local symbol. 601 uint64_t 602 do_plt_address_for_local(const Relobj*, unsigned int) const; 603 604 // Return the PLT address to use for a global symbol. 605 uint64_t 606 do_plt_address_for_global(const Symbol*) const; 607 608 // Return the offset to use for the GOT_INDX'th got entry which is 609 // for a local tls symbol specified by OBJECT, SYMNDX. 610 int64_t 611 do_tls_offset_for_local(const Relobj* object, 612 unsigned int symndx, 613 unsigned int got_indx) const; 614 615 // Return the offset to use for the GOT_INDX'th got entry which is 616 // for global tls symbol GSYM. 617 int64_t 618 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const; 619 620 void 621 do_function_location(Symbol_location*) const; 622 623 bool 624 do_can_check_for_function_pointers() const 625 { return true; } 626 627 // Relocate a section. 628 void 629 relocate_section(const Relocate_info<size, big_endian>*, 630 unsigned int sh_type, 631 const unsigned char* prelocs, 632 size_t reloc_count, 633 Output_section* output_section, 634 bool needs_special_offset_handling, 635 unsigned char* view, 636 Address view_address, 637 section_size_type view_size, 638 const Reloc_symbol_changes*); 639 640 // Scan the relocs during a relocatable link. 641 void 642 scan_relocatable_relocs(Symbol_table* symtab, 643 Layout* layout, 644 Sized_relobj_file<size, big_endian>* object, 645 unsigned int data_shndx, 646 unsigned int sh_type, 647 const unsigned char* prelocs, 648 size_t reloc_count, 649 Output_section* output_section, 650 bool needs_special_offset_handling, 651 size_t local_symbol_count, 652 const unsigned char* plocal_symbols, 653 Relocatable_relocs*); 654 655 // Emit relocations for a section. 656 void 657 relocate_relocs(const Relocate_info<size, big_endian>*, 658 unsigned int sh_type, 659 const unsigned char* prelocs, 660 size_t reloc_count, 661 Output_section* output_section, 662 typename elfcpp::Elf_types<size>::Elf_Off 663 offset_in_output_section, 664 const Relocatable_relocs*, 665 unsigned char*, 666 Address view_address, 667 section_size_type, 668 unsigned char* reloc_view, 669 section_size_type reloc_view_size); 670 671 // Return whether SYM is defined by the ABI. 672 bool 673 do_is_defined_by_abi(const Symbol* sym) const 674 { 675 return strcmp(sym->name(), "__tls_get_addr") == 0; 676 } 677 678 // Return the size of the GOT section. 679 section_size_type 680 got_size() const 681 { 682 gold_assert(this->got_ != NULL); 683 return this->got_->data_size(); 684 } 685 686 // Get the PLT section. 687 const Output_data_plt_powerpc<size, big_endian>* 688 plt_section() const 689 { 690 gold_assert(this->plt_ != NULL); 691 return this->plt_; 692 } 693 694 // Get the IPLT section. 695 const Output_data_plt_powerpc<size, big_endian>* 696 iplt_section() const 697 { 698 gold_assert(this->iplt_ != NULL); 699 return this->iplt_; 700 } 701 702 // Get the .glink section. 703 const Output_data_glink<size, big_endian>* 704 glink_section() const 705 { 706 gold_assert(this->glink_ != NULL); 707 return this->glink_; 708 } 709 710 Output_data_glink<size, big_endian>* 711 glink_section() 712 { 713 gold_assert(this->glink_ != NULL); 714 return this->glink_; 715 } 716 717 bool has_glink() const 718 { return this->glink_ != NULL; } 719 720 // Get the GOT section. 721 const Output_data_got_powerpc<size, big_endian>* 722 got_section() const 723 { 724 gold_assert(this->got_ != NULL); 725 return this->got_; 726 } 727 728 // Get the GOT section, creating it if necessary. 729 Output_data_got_powerpc<size, big_endian>* 730 got_section(Symbol_table*, Layout*); 731 732 Object* 733 do_make_elf_object(const std::string&, Input_file*, off_t, 734 const elfcpp::Ehdr<size, big_endian>&); 735 736 // Return the number of entries in the GOT. 737 unsigned int 738 got_entry_count() const 739 { 740 if (this->got_ == NULL) 741 return 0; 742 return this->got_size() / (size / 8); 743 } 744 745 // Return the number of entries in the PLT. 746 unsigned int 747 plt_entry_count() const; 748 749 // Return the offset of the first non-reserved PLT entry. 750 unsigned int 751 first_plt_entry_offset() const 752 { 753 if (size == 32) 754 return 0; 755 if (this->abiversion() >= 2) 756 return 16; 757 return 24; 758 } 759 760 // Return the size of each PLT entry. 761 unsigned int 762 plt_entry_size() const 763 { 764 if (size == 32) 765 return 4; 766 if (this->abiversion() >= 2) 767 return 8; 768 return 24; 769 } 770 771 // Add any special sections for this symbol to the gc work list. 772 // For powerpc64, this adds the code section of a function 773 // descriptor. 774 void 775 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const; 776 777 // Handle target specific gc actions when adding a gc reference from 778 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX 779 // and DST_OFF. For powerpc64, this adds a referenc to the code 780 // section of a function descriptor. 781 void 782 do_gc_add_reference(Symbol_table* symtab, 783 Object* src_obj, 784 unsigned int src_shndx, 785 Object* dst_obj, 786 unsigned int dst_shndx, 787 Address dst_off) const; 788 789 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables; 790 const Stub_tables& 791 stub_tables() const 792 { return this->stub_tables_; } 793 794 const Output_data_brlt_powerpc<size, big_endian>* 795 brlt_section() const 796 { return this->brlt_section_; } 797 798 void 799 add_branch_lookup_table(Address to) 800 { 801 unsigned int off = this->branch_lookup_table_.size() * (size / 8); 802 this->branch_lookup_table_.insert(std::make_pair(to, off)); 803 } 804 805 Address 806 find_branch_lookup_table(Address to) 807 { 808 typename Branch_lookup_table::const_iterator p 809 = this->branch_lookup_table_.find(to); 810 return p == this->branch_lookup_table_.end() ? invalid_address : p->second; 811 } 812 813 void 814 write_branch_lookup_table(unsigned char *oview) 815 { 816 for (typename Branch_lookup_table::const_iterator p 817 = this->branch_lookup_table_.begin(); 818 p != this->branch_lookup_table_.end(); 819 ++p) 820 { 821 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first); 822 } 823 } 824 825 bool 826 plt_thread_safe() const 827 { return this->plt_thread_safe_; } 828 829 int 830 abiversion () const 831 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; } 832 833 void 834 set_abiversion (int ver) 835 { 836 elfcpp::Elf_Word flags = this->processor_specific_flags(); 837 flags &= ~elfcpp::EF_PPC64_ABI; 838 flags |= ver & elfcpp::EF_PPC64_ABI; 839 this->set_processor_specific_flags(flags); 840 } 841 842 // Offset to to save stack slot 843 int 844 stk_toc () const 845 { return this->abiversion() < 2 ? 40 : 24; } 846 847 private: 848 849 class Track_tls 850 { 851 public: 852 enum Tls_get_addr 853 { 854 NOT_EXPECTED = 0, 855 EXPECTED = 1, 856 SKIP = 2, 857 NORMAL = 3 858 }; 859 860 Track_tls() 861 : tls_get_addr_(NOT_EXPECTED), 862 relinfo_(NULL), relnum_(0), r_offset_(0) 863 { } 864 865 ~Track_tls() 866 { 867 if (this->tls_get_addr_ != NOT_EXPECTED) 868 this->missing(); 869 } 870 871 void 872 missing(void) 873 { 874 if (this->relinfo_ != NULL) 875 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_, 876 _("missing expected __tls_get_addr call")); 877 } 878 879 void 880 expect_tls_get_addr_call( 881 const Relocate_info<size, big_endian>* relinfo, 882 size_t relnum, 883 Address r_offset) 884 { 885 this->tls_get_addr_ = EXPECTED; 886 this->relinfo_ = relinfo; 887 this->relnum_ = relnum; 888 this->r_offset_ = r_offset; 889 } 890 891 void 892 expect_tls_get_addr_call() 893 { this->tls_get_addr_ = EXPECTED; } 894 895 void 896 skip_next_tls_get_addr_call() 897 {this->tls_get_addr_ = SKIP; } 898 899 Tls_get_addr 900 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym) 901 { 902 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24 903 || r_type == elfcpp::R_PPC_PLTREL24) 904 && gsym != NULL 905 && strcmp(gsym->name(), "__tls_get_addr") == 0); 906 Tls_get_addr last_tls = this->tls_get_addr_; 907 this->tls_get_addr_ = NOT_EXPECTED; 908 if (is_tls_call && last_tls != EXPECTED) 909 return last_tls; 910 else if (!is_tls_call && last_tls != NOT_EXPECTED) 911 { 912 this->missing(); 913 return EXPECTED; 914 } 915 return NORMAL; 916 } 917 918 private: 919 // What we're up to regarding calls to __tls_get_addr. 920 // On powerpc, the branch and link insn making a call to 921 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD, 922 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the 923 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call. 924 // The marker relocation always comes first, and has the same 925 // symbol as the reloc on the insn setting up the __tls_get_addr 926 // argument. This ties the arg setup insn with the call insn, 927 // allowing ld to safely optimize away the call. We check that 928 // every call to __tls_get_addr has a marker relocation, and that 929 // every marker relocation is on a call to __tls_get_addr. 930 Tls_get_addr tls_get_addr_; 931 // Info about the last reloc for error message. 932 const Relocate_info<size, big_endian>* relinfo_; 933 size_t relnum_; 934 Address r_offset_; 935 }; 936 937 // The class which scans relocations. 938 class Scan : protected Track_tls 939 { 940 public: 941 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address; 942 943 Scan() 944 : Track_tls(), issued_non_pic_error_(false) 945 { } 946 947 static inline int 948 get_reference_flags(unsigned int r_type, const Target_powerpc* target); 949 950 inline void 951 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target, 952 Sized_relobj_file<size, big_endian>* object, 953 unsigned int data_shndx, 954 Output_section* output_section, 955 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type, 956 const elfcpp::Sym<size, big_endian>& lsym, 957 bool is_discarded); 958 959 inline void 960 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target, 961 Sized_relobj_file<size, big_endian>* object, 962 unsigned int data_shndx, 963 Output_section* output_section, 964 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type, 965 Symbol* gsym); 966 967 inline bool 968 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , 969 Target_powerpc* , 970 Sized_relobj_file<size, big_endian>* relobj, 971 unsigned int , 972 Output_section* , 973 const elfcpp::Rela<size, big_endian>& , 974 unsigned int r_type, 975 const elfcpp::Sym<size, big_endian>&) 976 { 977 // PowerPC64 .opd is not folded, so any identical function text 978 // may be folded and we'll still keep function addresses distinct. 979 // That means no reloc is of concern here. 980 if (size == 64) 981 { 982 Powerpc_relobj<size, big_endian>* ppcobj = static_cast 983 <Powerpc_relobj<size, big_endian>*>(relobj); 984 if (ppcobj->abiversion() == 1) 985 return false; 986 } 987 // For 32-bit and ELFv2, conservatively assume anything but calls to 988 // function code might be taking the address of the function. 989 return !is_branch_reloc(r_type); 990 } 991 992 inline bool 993 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , 994 Target_powerpc* , 995 Sized_relobj_file<size, big_endian>* relobj, 996 unsigned int , 997 Output_section* , 998 const elfcpp::Rela<size, big_endian>& , 999 unsigned int r_type, 1000 Symbol*) 1001 { 1002 // As above. 1003 if (size == 64) 1004 { 1005 Powerpc_relobj<size, big_endian>* ppcobj = static_cast 1006 <Powerpc_relobj<size, big_endian>*>(relobj); 1007 if (ppcobj->abiversion() == 1) 1008 return false; 1009 } 1010 return !is_branch_reloc(r_type); 1011 } 1012 1013 static bool 1014 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target, 1015 Sized_relobj_file<size, big_endian>* object, 1016 unsigned int r_type, bool report_err); 1017 1018 private: 1019 static void 1020 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*, 1021 unsigned int r_type); 1022 1023 static void 1024 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*, 1025 unsigned int r_type, Symbol*); 1026 1027 static void 1028 generate_tls_call(Symbol_table* symtab, Layout* layout, 1029 Target_powerpc* target); 1030 1031 void 1032 check_non_pic(Relobj*, unsigned int r_type); 1033 1034 // Whether we have issued an error about a non-PIC compilation. 1035 bool issued_non_pic_error_; 1036 }; 1037 1038 bool 1039 symval_for_branch(const Symbol_table* symtab, 1040 const Sized_symbol<size>* gsym, 1041 Powerpc_relobj<size, big_endian>* object, 1042 Address *value, unsigned int *dest_shndx); 1043 1044 // The class which implements relocation. 1045 class Relocate : protected Track_tls 1046 { 1047 public: 1048 // Use 'at' branch hints when true, 'y' when false. 1049 // FIXME maybe: set this with an option. 1050 static const bool is_isa_v2 = true; 1051 1052 Relocate() 1053 : Track_tls() 1054 { } 1055 1056 // Do a relocation. Return false if the caller should not issue 1057 // any warnings about this relocation. 1058 inline bool 1059 relocate(const Relocate_info<size, big_endian>*, Target_powerpc*, 1060 Output_section*, size_t relnum, 1061 const elfcpp::Rela<size, big_endian>&, 1062 unsigned int r_type, const Sized_symbol<size>*, 1063 const Symbol_value<size>*, 1064 unsigned char*, 1065 typename elfcpp::Elf_types<size>::Elf_Addr, 1066 section_size_type); 1067 }; 1068 1069 class Relocate_comdat_behavior 1070 { 1071 public: 1072 // Decide what the linker should do for relocations that refer to 1073 // discarded comdat sections. 1074 inline Comdat_behavior 1075 get(const char* name) 1076 { 1077 gold::Default_comdat_behavior default_behavior; 1078 Comdat_behavior ret = default_behavior.get(name); 1079 if (ret == CB_WARNING) 1080 { 1081 if (size == 32 1082 && (strcmp(name, ".fixup") == 0 1083 || strcmp(name, ".got2") == 0)) 1084 ret = CB_IGNORE; 1085 if (size == 64 1086 && (strcmp(name, ".opd") == 0 1087 || strcmp(name, ".toc") == 0 1088 || strcmp(name, ".toc1") == 0)) 1089 ret = CB_IGNORE; 1090 } 1091 return ret; 1092 } 1093 }; 1094 1095 // A class which returns the size required for a relocation type, 1096 // used while scanning relocs during a relocatable link. 1097 class Relocatable_size_for_reloc 1098 { 1099 public: 1100 unsigned int 1101 get_size_for_reloc(unsigned int, Relobj*) 1102 { 1103 gold_unreachable(); 1104 return 0; 1105 } 1106 }; 1107 1108 // Optimize the TLS relocation type based on what we know about the 1109 // symbol. IS_FINAL is true if the final address of this symbol is 1110 // known at link time. 1111 1112 tls::Tls_optimization 1113 optimize_tls_gd(bool is_final) 1114 { 1115 // If we are generating a shared library, then we can't do anything 1116 // in the linker. 1117 if (parameters->options().shared()) 1118 return tls::TLSOPT_NONE; 1119 1120 if (!is_final) 1121 return tls::TLSOPT_TO_IE; 1122 return tls::TLSOPT_TO_LE; 1123 } 1124 1125 tls::Tls_optimization 1126 optimize_tls_ld() 1127 { 1128 if (parameters->options().shared()) 1129 return tls::TLSOPT_NONE; 1130 1131 return tls::TLSOPT_TO_LE; 1132 } 1133 1134 tls::Tls_optimization 1135 optimize_tls_ie(bool is_final) 1136 { 1137 if (!is_final || parameters->options().shared()) 1138 return tls::TLSOPT_NONE; 1139 1140 return tls::TLSOPT_TO_LE; 1141 } 1142 1143 // Create glink. 1144 void 1145 make_glink_section(Layout*); 1146 1147 // Create the PLT section. 1148 void 1149 make_plt_section(Symbol_table*, Layout*); 1150 1151 void 1152 make_iplt_section(Symbol_table*, Layout*); 1153 1154 void 1155 make_brlt_section(Layout*); 1156 1157 // Create a PLT entry for a global symbol. 1158 void 1159 make_plt_entry(Symbol_table*, Layout*, Symbol*); 1160 1161 // Create a PLT entry for a local IFUNC symbol. 1162 void 1163 make_local_ifunc_plt_entry(Symbol_table*, Layout*, 1164 Sized_relobj_file<size, big_endian>*, 1165 unsigned int); 1166 1167 1168 // Create a GOT entry for local dynamic __tls_get_addr. 1169 unsigned int 1170 tlsld_got_offset(Symbol_table* symtab, Layout* layout, 1171 Sized_relobj_file<size, big_endian>* object); 1172 1173 unsigned int 1174 tlsld_got_offset() const 1175 { 1176 return this->tlsld_got_offset_; 1177 } 1178 1179 // Get the dynamic reloc section, creating it if necessary. 1180 Reloc_section* 1181 rela_dyn_section(Layout*); 1182 1183 // Similarly, but for ifunc symbols get the one for ifunc. 1184 Reloc_section* 1185 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc); 1186 1187 // Copy a relocation against a global symbol. 1188 void 1189 copy_reloc(Symbol_table* symtab, Layout* layout, 1190 Sized_relobj_file<size, big_endian>* object, 1191 unsigned int shndx, Output_section* output_section, 1192 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc) 1193 { 1194 this->copy_relocs_.copy_reloc(symtab, layout, 1195 symtab->get_sized_symbol<size>(sym), 1196 object, shndx, output_section, 1197 reloc, this->rela_dyn_section(layout)); 1198 } 1199 1200 // Look over all the input sections, deciding where to place stubs. 1201 void 1202 group_sections(Layout*, const Task*, bool); 1203 1204 // Sort output sections by address. 1205 struct Sort_sections 1206 { 1207 bool 1208 operator()(const Output_section* sec1, const Output_section* sec2) 1209 { return sec1->address() < sec2->address(); } 1210 }; 1211 1212 class Branch_info 1213 { 1214 public: 1215 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object, 1216 unsigned int data_shndx, 1217 Address r_offset, 1218 unsigned int r_type, 1219 unsigned int r_sym, 1220 Address addend) 1221 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset), 1222 r_type_(r_type), r_sym_(r_sym), addend_(addend) 1223 { } 1224 1225 ~Branch_info() 1226 { } 1227 1228 // If this branch needs a plt call stub, or a long branch stub, make one. 1229 bool 1230 make_stub(Stub_table<size, big_endian>*, 1231 Stub_table<size, big_endian>*, 1232 Symbol_table*) const; 1233 1234 private: 1235 // The branch location.. 1236 Powerpc_relobj<size, big_endian>* object_; 1237 unsigned int shndx_; 1238 Address offset_; 1239 // ..and the branch type and destination. 1240 unsigned int r_type_; 1241 unsigned int r_sym_; 1242 Address addend_; 1243 }; 1244 1245 // Information about this specific target which we pass to the 1246 // general Target structure. 1247 static Target::Target_info powerpc_info; 1248 1249 // The types of GOT entries needed for this platform. 1250 // These values are exposed to the ABI in an incremental link. 1251 // Do not renumber existing values without changing the version 1252 // number of the .gnu_incremental_inputs section. 1253 enum Got_type 1254 { 1255 GOT_TYPE_STANDARD, 1256 GOT_TYPE_TLSGD, // double entry for @got@tlsgd 1257 GOT_TYPE_DTPREL, // entry for @got@dtprel 1258 GOT_TYPE_TPREL // entry for @got@tprel 1259 }; 1260 1261 // The GOT section. 1262 Output_data_got_powerpc<size, big_endian>* got_; 1263 // The PLT section. This is a container for a table of addresses, 1264 // and their relocations. Each address in the PLT has a dynamic 1265 // relocation (R_*_JMP_SLOT) and each address will have a 1266 // corresponding entry in .glink for lazy resolution of the PLT. 1267 // ppc32 initialises the PLT to point at the .glink entry, while 1268 // ppc64 leaves this to ld.so. To make a call via the PLT, the 1269 // linker adds a stub that loads the PLT entry into ctr then 1270 // branches to ctr. There may be more than one stub for each PLT 1271 // entry. DT_JMPREL points at the first PLT dynamic relocation and 1272 // DT_PLTRELSZ gives the total size of PLT dynamic relocations. 1273 Output_data_plt_powerpc<size, big_endian>* plt_; 1274 // The IPLT section. Like plt_, this is a container for a table of 1275 // addresses and their relocations, specifically for STT_GNU_IFUNC 1276 // functions that resolve locally (STT_GNU_IFUNC functions that 1277 // don't resolve locally go in PLT). Unlike plt_, these have no 1278 // entry in .glink for lazy resolution, and the relocation section 1279 // does not have a 1-1 correspondence with IPLT addresses. In fact, 1280 // the relocation section may contain relocations against 1281 // STT_GNU_IFUNC symbols at locations outside of IPLT. The 1282 // relocation section will appear at the end of other dynamic 1283 // relocations, so that ld.so applies these relocations after other 1284 // dynamic relocations. In a static executable, the relocation 1285 // section is emitted and marked with __rela_iplt_start and 1286 // __rela_iplt_end symbols. 1287 Output_data_plt_powerpc<size, big_endian>* iplt_; 1288 // Section holding long branch destinations. 1289 Output_data_brlt_powerpc<size, big_endian>* brlt_section_; 1290 // The .glink section. 1291 Output_data_glink<size, big_endian>* glink_; 1292 // The dynamic reloc section. 1293 Reloc_section* rela_dyn_; 1294 // Relocs saved to avoid a COPY reloc. 1295 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_; 1296 // Offset of the GOT entry for local dynamic __tls_get_addr calls. 1297 unsigned int tlsld_got_offset_; 1298 1299 Stub_tables stub_tables_; 1300 typedef Unordered_map<Address, unsigned int> Branch_lookup_table; 1301 Branch_lookup_table branch_lookup_table_; 1302 1303 typedef std::vector<Branch_info> Branches; 1304 Branches branch_info_; 1305 1306 bool plt_thread_safe_; 1307 1308 bool relax_failed_; 1309 int relax_fail_count_; 1310 int32_t stub_group_size_; 1311 }; 1312 1313 template<> 1314 Target::Target_info Target_powerpc<32, true>::powerpc_info = 1315 { 1316 32, // size 1317 true, // is_big_endian 1318 elfcpp::EM_PPC, // machine_code 1319 false, // has_make_symbol 1320 false, // has_resolve 1321 false, // has_code_fill 1322 true, // is_default_stack_executable 1323 false, // can_icf_inline_merge_sections 1324 '\0', // wrap_char 1325 "/usr/lib/ld.so.1", // dynamic_linker 1326 0x10000000, // default_text_segment_address 1327 64 * 1024, // abi_pagesize (overridable by -z max-page-size) 1328 4 * 1024, // common_pagesize (overridable by -z common-page-size) 1329 false, // isolate_execinstr 1330 0, // rosegment_gap 1331 elfcpp::SHN_UNDEF, // small_common_shndx 1332 elfcpp::SHN_UNDEF, // large_common_shndx 1333 0, // small_common_section_flags 1334 0, // large_common_section_flags 1335 NULL, // attributes_section 1336 NULL, // attributes_vendor 1337 "_start" // entry_symbol_name 1338 }; 1339 1340 template<> 1341 Target::Target_info Target_powerpc<32, false>::powerpc_info = 1342 { 1343 32, // size 1344 false, // is_big_endian 1345 elfcpp::EM_PPC, // machine_code 1346 false, // has_make_symbol 1347 false, // has_resolve 1348 false, // has_code_fill 1349 true, // is_default_stack_executable 1350 false, // can_icf_inline_merge_sections 1351 '\0', // wrap_char 1352 "/usr/lib/ld.so.1", // dynamic_linker 1353 0x10000000, // default_text_segment_address 1354 64 * 1024, // abi_pagesize (overridable by -z max-page-size) 1355 4 * 1024, // common_pagesize (overridable by -z common-page-size) 1356 false, // isolate_execinstr 1357 0, // rosegment_gap 1358 elfcpp::SHN_UNDEF, // small_common_shndx 1359 elfcpp::SHN_UNDEF, // large_common_shndx 1360 0, // small_common_section_flags 1361 0, // large_common_section_flags 1362 NULL, // attributes_section 1363 NULL, // attributes_vendor 1364 "_start" // entry_symbol_name 1365 }; 1366 1367 template<> 1368 Target::Target_info Target_powerpc<64, true>::powerpc_info = 1369 { 1370 64, // size 1371 true, // is_big_endian 1372 elfcpp::EM_PPC64, // machine_code 1373 false, // has_make_symbol 1374 false, // has_resolve 1375 false, // has_code_fill 1376 true, // is_default_stack_executable 1377 false, // can_icf_inline_merge_sections 1378 '\0', // wrap_char 1379 "/usr/lib/ld.so.1", // dynamic_linker 1380 0x10000000, // default_text_segment_address 1381 64 * 1024, // abi_pagesize (overridable by -z max-page-size) 1382 4 * 1024, // common_pagesize (overridable by -z common-page-size) 1383 false, // isolate_execinstr 1384 0, // rosegment_gap 1385 elfcpp::SHN_UNDEF, // small_common_shndx 1386 elfcpp::SHN_UNDEF, // large_common_shndx 1387 0, // small_common_section_flags 1388 0, // large_common_section_flags 1389 NULL, // attributes_section 1390 NULL, // attributes_vendor 1391 "_start" // entry_symbol_name 1392 }; 1393 1394 template<> 1395 Target::Target_info Target_powerpc<64, false>::powerpc_info = 1396 { 1397 64, // size 1398 false, // is_big_endian 1399 elfcpp::EM_PPC64, // machine_code 1400 false, // has_make_symbol 1401 false, // has_resolve 1402 false, // has_code_fill 1403 true, // is_default_stack_executable 1404 false, // can_icf_inline_merge_sections 1405 '\0', // wrap_char 1406 "/usr/lib/ld.so.1", // dynamic_linker 1407 0x10000000, // default_text_segment_address 1408 64 * 1024, // abi_pagesize (overridable by -z max-page-size) 1409 4 * 1024, // common_pagesize (overridable by -z common-page-size) 1410 false, // isolate_execinstr 1411 0, // rosegment_gap 1412 elfcpp::SHN_UNDEF, // small_common_shndx 1413 elfcpp::SHN_UNDEF, // large_common_shndx 1414 0, // small_common_section_flags 1415 0, // large_common_section_flags 1416 NULL, // attributes_section 1417 NULL, // attributes_vendor 1418 "_start" // entry_symbol_name 1419 }; 1420 1421 inline bool 1422 is_branch_reloc(unsigned int r_type) 1423 { 1424 return (r_type == elfcpp::R_POWERPC_REL24 1425 || r_type == elfcpp::R_PPC_PLTREL24 1426 || r_type == elfcpp::R_PPC_LOCAL24PC 1427 || r_type == elfcpp::R_POWERPC_REL14 1428 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN 1429 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN 1430 || r_type == elfcpp::R_POWERPC_ADDR24 1431 || r_type == elfcpp::R_POWERPC_ADDR14 1432 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN 1433 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN); 1434 } 1435 1436 // If INSN is an opcode that may be used with an @tls operand, return 1437 // the transformed insn for TLS optimisation, otherwise return 0. If 1438 // REG is non-zero only match an insn with RB or RA equal to REG. 1439 uint32_t 1440 at_tls_transform(uint32_t insn, unsigned int reg) 1441 { 1442 if ((insn & (0x3f << 26)) != 31 << 26) 1443 return 0; 1444 1445 unsigned int rtra; 1446 if (reg == 0 || ((insn >> 11) & 0x1f) == reg) 1447 rtra = insn & ((1 << 26) - (1 << 16)); 1448 else if (((insn >> 16) & 0x1f) == reg) 1449 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5); 1450 else 1451 return 0; 1452 1453 if ((insn & (0x3ff << 1)) == 266 << 1) 1454 // add -> addi 1455 insn = 14 << 26; 1456 else if ((insn & (0x1f << 1)) == 23 << 1 1457 && ((insn & (0x1f << 6)) < 14 << 6 1458 || ((insn & (0x1f << 6)) >= 16 << 6 1459 && (insn & (0x1f << 6)) < 24 << 6))) 1460 // load and store indexed -> dform 1461 insn = (32 | ((insn >> 6) & 0x1f)) << 26; 1462 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1) 1463 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu 1464 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1); 1465 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1) 1466 // lwax -> lwa 1467 insn = (58 << 26) | 2; 1468 else 1469 return 0; 1470 insn |= rtra; 1471 return insn; 1472 } 1473 1474 1475 template<int size, bool big_endian> 1476 class Powerpc_relocate_functions 1477 { 1478 public: 1479 enum Overflow_check 1480 { 1481 CHECK_NONE, 1482 CHECK_SIGNED, 1483 CHECK_UNSIGNED, 1484 CHECK_BITFIELD, 1485 CHECK_LOW_INSN, 1486 CHECK_HIGH_INSN 1487 }; 1488 1489 enum Status 1490 { 1491 STATUS_OK, 1492 STATUS_OVERFLOW 1493 }; 1494 1495 private: 1496 typedef Powerpc_relocate_functions<size, big_endian> This; 1497 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address; 1498 1499 template<int valsize> 1500 static inline bool 1501 has_overflow_signed(Address value) 1502 { 1503 // limit = 1 << (valsize - 1) without shift count exceeding size of type 1504 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1); 1505 limit <<= ((valsize - 1) >> 1); 1506 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1)); 1507 return value + limit > (limit << 1) - 1; 1508 } 1509 1510 template<int valsize> 1511 static inline bool 1512 has_overflow_unsigned(Address value) 1513 { 1514 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1); 1515 limit <<= ((valsize - 1) >> 1); 1516 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1)); 1517 return value > (limit << 1) - 1; 1518 } 1519 1520 template<int valsize> 1521 static inline bool 1522 has_overflow_bitfield(Address value) 1523 { 1524 return (has_overflow_unsigned<valsize>(value) 1525 && has_overflow_signed<valsize>(value)); 1526 } 1527 1528 template<int valsize> 1529 static inline Status 1530 overflowed(Address value, Overflow_check overflow) 1531 { 1532 if (overflow == CHECK_SIGNED) 1533 { 1534 if (has_overflow_signed<valsize>(value)) 1535 return STATUS_OVERFLOW; 1536 } 1537 else if (overflow == CHECK_UNSIGNED) 1538 { 1539 if (has_overflow_unsigned<valsize>(value)) 1540 return STATUS_OVERFLOW; 1541 } 1542 else if (overflow == CHECK_BITFIELD) 1543 { 1544 if (has_overflow_bitfield<valsize>(value)) 1545 return STATUS_OVERFLOW; 1546 } 1547 return STATUS_OK; 1548 } 1549 1550 // Do a simple RELA relocation 1551 template<int fieldsize, int valsize> 1552 static inline Status 1553 rela(unsigned char* view, Address value, Overflow_check overflow) 1554 { 1555 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype; 1556 Valtype* wv = reinterpret_cast<Valtype*>(view); 1557 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value); 1558 return overflowed<valsize>(value, overflow); 1559 } 1560 1561 template<int fieldsize, int valsize> 1562 static inline Status 1563 rela(unsigned char* view, 1564 unsigned int right_shift, 1565 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask, 1566 Address value, 1567 Overflow_check overflow) 1568 { 1569 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype; 1570 Valtype* wv = reinterpret_cast<Valtype*>(view); 1571 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv); 1572 Valtype reloc = value >> right_shift; 1573 val &= ~dst_mask; 1574 reloc &= dst_mask; 1575 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc); 1576 return overflowed<valsize>(value >> right_shift, overflow); 1577 } 1578 1579 // Do a simple RELA relocation, unaligned. 1580 template<int fieldsize, int valsize> 1581 static inline Status 1582 rela_ua(unsigned char* view, Address value, Overflow_check overflow) 1583 { 1584 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value); 1585 return overflowed<valsize>(value, overflow); 1586 } 1587 1588 template<int fieldsize, int valsize> 1589 static inline Status 1590 rela_ua(unsigned char* view, 1591 unsigned int right_shift, 1592 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask, 1593 Address value, 1594 Overflow_check overflow) 1595 { 1596 typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype 1597 Valtype; 1598 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view); 1599 Valtype reloc = value >> right_shift; 1600 val &= ~dst_mask; 1601 reloc &= dst_mask; 1602 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc); 1603 return overflowed<valsize>(value >> right_shift, overflow); 1604 } 1605 1606 public: 1607 // R_PPC64_ADDR64: (Symbol + Addend) 1608 static inline void 1609 addr64(unsigned char* view, Address value) 1610 { This::template rela<64,64>(view, value, CHECK_NONE); } 1611 1612 // R_PPC64_UADDR64: (Symbol + Addend) unaligned 1613 static inline void 1614 addr64_u(unsigned char* view, Address value) 1615 { This::template rela_ua<64,64>(view, value, CHECK_NONE); } 1616 1617 // R_POWERPC_ADDR32: (Symbol + Addend) 1618 static inline Status 1619 addr32(unsigned char* view, Address value, Overflow_check overflow) 1620 { return This::template rela<32,32>(view, value, overflow); } 1621 1622 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned 1623 static inline Status 1624 addr32_u(unsigned char* view, Address value, Overflow_check overflow) 1625 { return This::template rela_ua<32,32>(view, value, overflow); } 1626 1627 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc 1628 static inline Status 1629 addr24(unsigned char* view, Address value, Overflow_check overflow) 1630 { 1631 Status stat = This::template rela<32,26>(view, 0, 0x03fffffc, 1632 value, overflow); 1633 if (overflow != CHECK_NONE && (value & 3) != 0) 1634 stat = STATUS_OVERFLOW; 1635 return stat; 1636 } 1637 1638 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff 1639 static inline Status 1640 addr16(unsigned char* view, Address value, Overflow_check overflow) 1641 { return This::template rela<16,16>(view, value, overflow); } 1642 1643 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned 1644 static inline Status 1645 addr16_u(unsigned char* view, Address value, Overflow_check overflow) 1646 { return This::template rela_ua<16,16>(view, value, overflow); } 1647 1648 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc 1649 static inline Status 1650 addr16_ds(unsigned char* view, Address value, Overflow_check overflow) 1651 { 1652 Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow); 1653 if (overflow != CHECK_NONE && (value & 3) != 0) 1654 stat = STATUS_OVERFLOW; 1655 return stat; 1656 } 1657 1658 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff 1659 static inline void 1660 addr16_hi(unsigned char* view, Address value) 1661 { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); } 1662 1663 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff 1664 static inline void 1665 addr16_ha(unsigned char* view, Address value) 1666 { This::addr16_hi(view, value + 0x8000); } 1667 1668 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff 1669 static inline void 1670 addr16_hi2(unsigned char* view, Address value) 1671 { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); } 1672 1673 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff 1674 static inline void 1675 addr16_ha2(unsigned char* view, Address value) 1676 { This::addr16_hi2(view, value + 0x8000); } 1677 1678 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff 1679 static inline void 1680 addr16_hi3(unsigned char* view, Address value) 1681 { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); } 1682 1683 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff 1684 static inline void 1685 addr16_ha3(unsigned char* view, Address value) 1686 { This::addr16_hi3(view, value + 0x8000); } 1687 1688 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc 1689 static inline Status 1690 addr14(unsigned char* view, Address value, Overflow_check overflow) 1691 { 1692 Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow); 1693 if (overflow != CHECK_NONE && (value & 3) != 0) 1694 stat = STATUS_OVERFLOW; 1695 return stat; 1696 } 1697 }; 1698 1699 // Set ABI version for input and output. 1700 1701 template<int size, bool big_endian> 1702 void 1703 Powerpc_relobj<size, big_endian>::set_abiversion(int ver) 1704 { 1705 this->e_flags_ |= ver; 1706 if (this->abiversion() != 0) 1707 { 1708 Target_powerpc<size, big_endian>* target = 1709 static_cast<Target_powerpc<size, big_endian>*>( 1710 parameters->sized_target<size, big_endian>()); 1711 if (target->abiversion() == 0) 1712 target->set_abiversion(this->abiversion()); 1713 else if (target->abiversion() != this->abiversion()) 1714 gold_error(_("%s: ABI version %d is not compatible " 1715 "with ABI version %d output"), 1716 this->name().c_str(), 1717 this->abiversion(), target->abiversion()); 1718 1719 } 1720 } 1721 1722 // Stash away the index of .got2 or .opd in a relocatable object, if 1723 // such a section exists. 1724 1725 template<int size, bool big_endian> 1726 bool 1727 Powerpc_relobj<size, big_endian>::do_find_special_sections( 1728 Read_symbols_data* sd) 1729 { 1730 const unsigned char* const pshdrs = sd->section_headers->data(); 1731 const unsigned char* namesu = sd->section_names->data(); 1732 const char* names = reinterpret_cast<const char*>(namesu); 1733 section_size_type names_size = sd->section_names_size; 1734 const unsigned char* s; 1735 1736 s = this->template find_shdr<size, big_endian>(pshdrs, 1737 size == 32 ? ".got2" : ".opd", 1738 names, names_size, NULL); 1739 if (s != NULL) 1740 { 1741 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size; 1742 this->special_ = ndx; 1743 if (size == 64) 1744 { 1745 if (this->abiversion() == 0) 1746 this->set_abiversion(1); 1747 else if (this->abiversion() > 1) 1748 gold_error(_("%s: .opd invalid in abiv%d"), 1749 this->name().c_str(), this->abiversion()); 1750 } 1751 } 1752 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd); 1753 } 1754 1755 // Examine .rela.opd to build info about function entry points. 1756 1757 template<int size, bool big_endian> 1758 void 1759 Powerpc_relobj<size, big_endian>::scan_opd_relocs( 1760 size_t reloc_count, 1761 const unsigned char* prelocs, 1762 const unsigned char* plocal_syms) 1763 { 1764 if (size == 64) 1765 { 1766 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc 1767 Reltype; 1768 const int reloc_size 1769 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size; 1770 const int sym_size = elfcpp::Elf_sizes<size>::sym_size; 1771 Address expected_off = 0; 1772 bool regular = true; 1773 unsigned int opd_ent_size = 0; 1774 1775 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size) 1776 { 1777 Reltype reloc(prelocs); 1778 typename elfcpp::Elf_types<size>::Elf_WXword r_info 1779 = reloc.get_r_info(); 1780 unsigned int r_type = elfcpp::elf_r_type<size>(r_info); 1781 if (r_type == elfcpp::R_PPC64_ADDR64) 1782 { 1783 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info); 1784 typename elfcpp::Elf_types<size>::Elf_Addr value; 1785 bool is_ordinary; 1786 unsigned int shndx; 1787 if (r_sym < this->local_symbol_count()) 1788 { 1789 typename elfcpp::Sym<size, big_endian> 1790 lsym(plocal_syms + r_sym * sym_size); 1791 shndx = lsym.get_st_shndx(); 1792 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary); 1793 value = lsym.get_st_value(); 1794 } 1795 else 1796 shndx = this->symbol_section_and_value(r_sym, &value, 1797 &is_ordinary); 1798 this->set_opd_ent(reloc.get_r_offset(), shndx, 1799 value + reloc.get_r_addend()); 1800 if (i == 2) 1801 { 1802 expected_off = reloc.get_r_offset(); 1803 opd_ent_size = expected_off; 1804 } 1805 else if (expected_off != reloc.get_r_offset()) 1806 regular = false; 1807 expected_off += opd_ent_size; 1808 } 1809 else if (r_type == elfcpp::R_PPC64_TOC) 1810 { 1811 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset()) 1812 regular = false; 1813 } 1814 else 1815 { 1816 gold_warning(_("%s: unexpected reloc type %u in .opd section"), 1817 this->name().c_str(), r_type); 1818 regular = false; 1819 } 1820 } 1821 if (reloc_count <= 2) 1822 opd_ent_size = this->section_size(this->opd_shndx()); 1823 if (opd_ent_size != 24 && opd_ent_size != 16) 1824 regular = false; 1825 if (!regular) 1826 { 1827 gold_warning(_("%s: .opd is not a regular array of opd entries"), 1828 this->name().c_str()); 1829 opd_ent_size = 0; 1830 } 1831 } 1832 } 1833 1834 template<int size, bool big_endian> 1835 void 1836 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd) 1837 { 1838 Sized_relobj_file<size, big_endian>::do_read_relocs(rd); 1839 if (size == 64) 1840 { 1841 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin(); 1842 p != rd->relocs.end(); 1843 ++p) 1844 { 1845 if (p->data_shndx == this->opd_shndx()) 1846 { 1847 uint64_t opd_size = this->section_size(this->opd_shndx()); 1848 gold_assert(opd_size == static_cast<size_t>(opd_size)); 1849 if (opd_size != 0) 1850 { 1851 this->init_opd(opd_size); 1852 this->scan_opd_relocs(p->reloc_count, p->contents->data(), 1853 rd->local_symbols->data()); 1854 } 1855 break; 1856 } 1857 } 1858 } 1859 } 1860 1861 // Read the symbols then set up st_other vector. 1862 1863 template<int size, bool big_endian> 1864 void 1865 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd) 1866 { 1867 this->base_read_symbols(sd); 1868 if (size == 64) 1869 { 1870 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size; 1871 const unsigned char* const pshdrs = sd->section_headers->data(); 1872 const unsigned int loccount = this->do_local_symbol_count(); 1873 if (loccount != 0) 1874 { 1875 this->st_other_.resize(loccount); 1876 const int sym_size = elfcpp::Elf_sizes<size>::sym_size; 1877 off_t locsize = loccount * sym_size; 1878 const unsigned int symtab_shndx = this->symtab_shndx(); 1879 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size; 1880 typename elfcpp::Shdr<size, big_endian> shdr(psymtab); 1881 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(), 1882 locsize, true, false); 1883 psyms += sym_size; 1884 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) 1885 { 1886 elfcpp::Sym<size, big_endian> sym(psyms); 1887 unsigned char st_other = sym.get_st_other(); 1888 this->st_other_[i] = st_other; 1889 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0) 1890 { 1891 if (this->abiversion() == 0) 1892 this->set_abiversion(2); 1893 else if (this->abiversion() < 2) 1894 gold_error(_("%s: local symbol %d has invalid st_other" 1895 " for ABI version 1"), 1896 this->name().c_str(), i); 1897 } 1898 } 1899 } 1900 } 1901 } 1902 1903 template<int size, bool big_endian> 1904 void 1905 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver) 1906 { 1907 this->e_flags_ |= ver; 1908 if (this->abiversion() != 0) 1909 { 1910 Target_powerpc<size, big_endian>* target = 1911 static_cast<Target_powerpc<size, big_endian>*>( 1912 parameters->sized_target<size, big_endian>()); 1913 if (target->abiversion() == 0) 1914 target->set_abiversion(this->abiversion()); 1915 else if (target->abiversion() != this->abiversion()) 1916 gold_error(_("%s: ABI version %d is not compatible " 1917 "with ABI version %d output"), 1918 this->name().c_str(), 1919 this->abiversion(), target->abiversion()); 1920 1921 } 1922 } 1923 1924 // Call Sized_dynobj::base_read_symbols to read the symbols then 1925 // read .opd from a dynamic object, filling in opd_ent_ vector, 1926 1927 template<int size, bool big_endian> 1928 void 1929 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd) 1930 { 1931 this->base_read_symbols(sd); 1932 if (size == 64) 1933 { 1934 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size; 1935 const unsigned char* const pshdrs = sd->section_headers->data(); 1936 const unsigned char* namesu = sd->section_names->data(); 1937 const char* names = reinterpret_cast<const char*>(namesu); 1938 const unsigned char* s = NULL; 1939 const unsigned char* opd; 1940 section_size_type opd_size; 1941 1942 // Find and read .opd section. 1943 while (1) 1944 { 1945 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names, 1946 sd->section_names_size, 1947 s); 1948 if (s == NULL) 1949 return; 1950 1951 typename elfcpp::Shdr<size, big_endian> shdr(s); 1952 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS 1953 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0) 1954 { 1955 if (this->abiversion() == 0) 1956 this->set_abiversion(1); 1957 else if (this->abiversion() > 1) 1958 gold_error(_("%s: .opd invalid in abiv%d"), 1959 this->name().c_str(), this->abiversion()); 1960 1961 this->opd_shndx_ = (s - pshdrs) / shdr_size; 1962 this->opd_address_ = shdr.get_sh_addr(); 1963 opd_size = convert_to_section_size_type(shdr.get_sh_size()); 1964 opd = this->get_view(shdr.get_sh_offset(), opd_size, 1965 true, false); 1966 break; 1967 } 1968 } 1969 1970 // Build set of executable sections. 1971 // Using a set is probably overkill. There is likely to be only 1972 // a few executable sections, typically .init, .text and .fini, 1973 // and they are generally grouped together. 1974 typedef std::set<Sec_info> Exec_sections; 1975 Exec_sections exec_sections; 1976 s = pshdrs; 1977 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size) 1978 { 1979 typename elfcpp::Shdr<size, big_endian> shdr(s); 1980 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS 1981 && ((shdr.get_sh_flags() 1982 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) 1983 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) 1984 && shdr.get_sh_size() != 0) 1985 { 1986 exec_sections.insert(Sec_info(shdr.get_sh_addr(), 1987 shdr.get_sh_size(), i)); 1988 } 1989 } 1990 if (exec_sections.empty()) 1991 return; 1992 1993 // Look over the OPD entries. This is complicated by the fact 1994 // that some binaries will use two-word entries while others 1995 // will use the standard three-word entries. In most cases 1996 // the third word (the environment pointer for languages like 1997 // Pascal) is unused and will be zero. If the third word is 1998 // used it should not be pointing into executable sections, 1999 // I think. 2000 this->init_opd(opd_size); 2001 for (const unsigned char* p = opd; p < opd + opd_size; p += 8) 2002 { 2003 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype; 2004 const Valtype* valp = reinterpret_cast<const Valtype*>(p); 2005 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp); 2006 if (val == 0) 2007 // Chances are that this is the third word of an OPD entry. 2008 continue; 2009 typename Exec_sections::const_iterator e 2010 = exec_sections.upper_bound(Sec_info(val, 0, 0)); 2011 if (e != exec_sections.begin()) 2012 { 2013 --e; 2014 if (e->start <= val && val < e->start + e->len) 2015 { 2016 // We have an address in an executable section. 2017 // VAL ought to be the function entry, set it up. 2018 this->set_opd_ent(p - opd, e->shndx, val); 2019 // Skip second word of OPD entry, the TOC pointer. 2020 p += 8; 2021 } 2022 } 2023 // If we didn't match any executable sections, we likely 2024 // have a non-zero third word in the OPD entry. 2025 } 2026 } 2027 } 2028 2029 // Set up some symbols. 2030 2031 template<int size, bool big_endian> 2032 void 2033 Target_powerpc<size, big_endian>::do_define_standard_symbols( 2034 Symbol_table* symtab, 2035 Layout* layout) 2036 { 2037 if (size == 32) 2038 { 2039 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as 2040 // undefined when scanning relocs (and thus requires 2041 // non-relative dynamic relocs). The proper value will be 2042 // updated later. 2043 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL); 2044 if (gotsym != NULL && gotsym->is_undefined()) 2045 { 2046 Target_powerpc<size, big_endian>* target = 2047 static_cast<Target_powerpc<size, big_endian>*>( 2048 parameters->sized_target<size, big_endian>()); 2049 Output_data_got_powerpc<size, big_endian>* got 2050 = target->got_section(symtab, layout); 2051 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL, 2052 Symbol_table::PREDEFINED, 2053 got, 0, 0, 2054 elfcpp::STT_OBJECT, 2055 elfcpp::STB_LOCAL, 2056 elfcpp::STV_HIDDEN, 0, 2057 false, false); 2058 } 2059 2060 // Define _SDA_BASE_ at the start of the .sdata section + 32768. 2061 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL); 2062 if (sdasym != NULL && sdasym->is_undefined()) 2063 { 2064 Output_data_space* sdata = new Output_data_space(4, "** sdata"); 2065 Output_section* os 2066 = layout->add_output_section_data(".sdata", 0, 2067 elfcpp::SHF_ALLOC 2068 | elfcpp::SHF_WRITE, 2069 sdata, ORDER_SMALL_DATA, false); 2070 symtab->define_in_output_data("_SDA_BASE_", NULL, 2071 Symbol_table::PREDEFINED, 2072 os, 32768, 0, elfcpp::STT_OBJECT, 2073 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 2074 0, false, false); 2075 } 2076 } 2077 else 2078 { 2079 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_ 2080 Symbol *gotsym = symtab->lookup(".TOC.", NULL); 2081 if (gotsym != NULL && gotsym->is_undefined()) 2082 { 2083 Target_powerpc<size, big_endian>* target = 2084 static_cast<Target_powerpc<size, big_endian>*>( 2085 parameters->sized_target<size, big_endian>()); 2086 Output_data_got_powerpc<size, big_endian>* got 2087 = target->got_section(symtab, layout); 2088 symtab->define_in_output_data(".TOC.", NULL, 2089 Symbol_table::PREDEFINED, 2090 got, 0x8000, 0, 2091 elfcpp::STT_OBJECT, 2092 elfcpp::STB_LOCAL, 2093 elfcpp::STV_HIDDEN, 0, 2094 false, false); 2095 } 2096 } 2097 } 2098 2099 // Set up PowerPC target specific relobj. 2100 2101 template<int size, bool big_endian> 2102 Object* 2103 Target_powerpc<size, big_endian>::do_make_elf_object( 2104 const std::string& name, 2105 Input_file* input_file, 2106 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr) 2107 { 2108 int et = ehdr.get_e_type(); 2109 // ET_EXEC files are valid input for --just-symbols/-R, 2110 // and we treat them as relocatable objects. 2111 if (et == elfcpp::ET_REL 2112 || (et == elfcpp::ET_EXEC && input_file->just_symbols())) 2113 { 2114 Powerpc_relobj<size, big_endian>* obj = 2115 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr); 2116 obj->setup(); 2117 return obj; 2118 } 2119 else if (et == elfcpp::ET_DYN) 2120 { 2121 Powerpc_dynobj<size, big_endian>* obj = 2122 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr); 2123 obj->setup(); 2124 return obj; 2125 } 2126 else 2127 { 2128 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et); 2129 return NULL; 2130 } 2131 } 2132 2133 template<int size, bool big_endian> 2134 class Output_data_got_powerpc : public Output_data_got<size, big_endian> 2135 { 2136 public: 2137 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype; 2138 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn; 2139 2140 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout) 2141 : Output_data_got<size, big_endian>(), 2142 symtab_(symtab), layout_(layout), 2143 header_ent_cnt_(size == 32 ? 3 : 1), 2144 header_index_(size == 32 ? 0x2000 : 0) 2145 { } 2146 2147 // Override all the Output_data_got methods we use so as to first call 2148 // reserve_ent(). 2149 bool 2150 add_global(Symbol* gsym, unsigned int got_type) 2151 { 2152 this->reserve_ent(); 2153 return Output_data_got<size, big_endian>::add_global(gsym, got_type); 2154 } 2155 2156 bool 2157 add_global_plt(Symbol* gsym, unsigned int got_type) 2158 { 2159 this->reserve_ent(); 2160 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type); 2161 } 2162 2163 bool 2164 add_global_tls(Symbol* gsym, unsigned int got_type) 2165 { return this->add_global_plt(gsym, got_type); } 2166 2167 void 2168 add_global_with_rel(Symbol* gsym, unsigned int got_type, 2169 Output_data_reloc_generic* rel_dyn, unsigned int r_type) 2170 { 2171 this->reserve_ent(); 2172 Output_data_got<size, big_endian>:: 2173 add_global_with_rel(gsym, got_type, rel_dyn, r_type); 2174 } 2175 2176 void 2177 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type, 2178 Output_data_reloc_generic* rel_dyn, 2179 unsigned int r_type_1, unsigned int r_type_2) 2180 { 2181 this->reserve_ent(2); 2182 Output_data_got<size, big_endian>:: 2183 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2); 2184 } 2185 2186 bool 2187 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type) 2188 { 2189 this->reserve_ent(); 2190 return Output_data_got<size, big_endian>::add_local(object, sym_index, 2191 got_type); 2192 } 2193 2194 bool 2195 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type) 2196 { 2197 this->reserve_ent(); 2198 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index, 2199 got_type); 2200 } 2201 2202 bool 2203 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type) 2204 { return this->add_local_plt(object, sym_index, got_type); } 2205 2206 void 2207 add_local_tls_pair(Relobj* object, unsigned int sym_index, 2208 unsigned int got_type, 2209 Output_data_reloc_generic* rel_dyn, 2210 unsigned int r_type) 2211 { 2212 this->reserve_ent(2); 2213 Output_data_got<size, big_endian>:: 2214 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type); 2215 } 2216 2217 unsigned int 2218 add_constant(Valtype constant) 2219 { 2220 this->reserve_ent(); 2221 return Output_data_got<size, big_endian>::add_constant(constant); 2222 } 2223 2224 unsigned int 2225 add_constant_pair(Valtype c1, Valtype c2) 2226 { 2227 this->reserve_ent(2); 2228 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2); 2229 } 2230 2231 // Offset of _GLOBAL_OFFSET_TABLE_. 2232 unsigned int 2233 g_o_t() const 2234 { 2235 return this->got_offset(this->header_index_); 2236 } 2237 2238 // Offset of base used to access the GOT/TOC. 2239 // The got/toc pointer reg will be set to this value. 2240 Valtype 2241 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const 2242 { 2243 if (size == 32) 2244 return this->g_o_t(); 2245 else 2246 return (this->output_section()->address() 2247 + object->toc_base_offset() 2248 - this->address()); 2249 } 2250 2251 // Ensure our GOT has a header. 2252 void 2253 set_final_data_size() 2254 { 2255 if (this->header_ent_cnt_ != 0) 2256 this->make_header(); 2257 Output_data_got<size, big_endian>::set_final_data_size(); 2258 } 2259 2260 // First word of GOT header needs some values that are not 2261 // handled by Output_data_got so poke them in here. 2262 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase. 2263 void 2264 do_write(Output_file* of) 2265 { 2266 Valtype val = 0; 2267 if (size == 32 && this->layout_->dynamic_data() != NULL) 2268 val = this->layout_->dynamic_section()->address(); 2269 if (size == 64) 2270 val = this->output_section()->address() + 0x8000; 2271 this->replace_constant(this->header_index_, val); 2272 Output_data_got<size, big_endian>::do_write(of); 2273 } 2274 2275 private: 2276 void 2277 reserve_ent(unsigned int cnt = 1) 2278 { 2279 if (this->header_ent_cnt_ == 0) 2280 return; 2281 if (this->num_entries() + cnt > this->header_index_) 2282 this->make_header(); 2283 } 2284 2285 void 2286 make_header() 2287 { 2288 this->header_ent_cnt_ = 0; 2289 this->header_index_ = this->num_entries(); 2290 if (size == 32) 2291 { 2292 Output_data_got<size, big_endian>::add_constant(0); 2293 Output_data_got<size, big_endian>::add_constant(0); 2294 Output_data_got<size, big_endian>::add_constant(0); 2295 2296 // Define _GLOBAL_OFFSET_TABLE_ at the header 2297 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL); 2298 if (gotsym != NULL) 2299 { 2300 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym); 2301 sym->set_value(this->g_o_t()); 2302 } 2303 else 2304 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL, 2305 Symbol_table::PREDEFINED, 2306 this, this->g_o_t(), 0, 2307 elfcpp::STT_OBJECT, 2308 elfcpp::STB_LOCAL, 2309 elfcpp::STV_HIDDEN, 0, 2310 false, false); 2311 } 2312 else 2313 Output_data_got<size, big_endian>::add_constant(0); 2314 } 2315 2316 // Stashed pointers. 2317 Symbol_table* symtab_; 2318 Layout* layout_; 2319 2320 // GOT header size. 2321 unsigned int header_ent_cnt_; 2322 // GOT header index. 2323 unsigned int header_index_; 2324 }; 2325 2326 // Get the GOT section, creating it if necessary. 2327 2328 template<int size, bool big_endian> 2329 Output_data_got_powerpc<size, big_endian>* 2330 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab, 2331 Layout* layout) 2332 { 2333 if (this->got_ == NULL) 2334 { 2335 gold_assert(symtab != NULL && layout != NULL); 2336 2337 this->got_ 2338 = new Output_data_got_powerpc<size, big_endian>(symtab, layout); 2339 2340 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, 2341 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE, 2342 this->got_, ORDER_DATA, false); 2343 } 2344 2345 return this->got_; 2346 } 2347 2348 // Get the dynamic reloc section, creating it if necessary. 2349 2350 template<int size, bool big_endian> 2351 typename Target_powerpc<size, big_endian>::Reloc_section* 2352 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout) 2353 { 2354 if (this->rela_dyn_ == NULL) 2355 { 2356 gold_assert(layout != NULL); 2357 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc()); 2358 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA, 2359 elfcpp::SHF_ALLOC, this->rela_dyn_, 2360 ORDER_DYNAMIC_RELOCS, false); 2361 } 2362 return this->rela_dyn_; 2363 } 2364 2365 // Similarly, but for ifunc symbols get the one for ifunc. 2366 2367 template<int size, bool big_endian> 2368 typename Target_powerpc<size, big_endian>::Reloc_section* 2369 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab, 2370 Layout* layout, 2371 bool for_ifunc) 2372 { 2373 if (!for_ifunc) 2374 return this->rela_dyn_section(layout); 2375 2376 if (this->iplt_ == NULL) 2377 this->make_iplt_section(symtab, layout); 2378 return this->iplt_->rel_plt(); 2379 } 2380 2381 class Stub_control 2382 { 2383 public: 2384 // Determine the stub group size. The group size is the absolute 2385 // value of the parameter --stub-group-size. If --stub-group-size 2386 // is passed a negative value, we restrict stubs to be always before 2387 // the stubbed branches. 2388 Stub_control(int32_t size, bool no_size_errors) 2389 : state_(NO_GROUP), stub_group_size_(abs(size)), 2390 stub14_group_size_(abs(size) >> 10), 2391 stubs_always_before_branch_(size < 0), 2392 suppress_size_errors_(no_size_errors), 2393 group_end_addr_(0), owner_(NULL), output_section_(NULL) 2394 { 2395 } 2396 2397 // Return true iff input section can be handled by current stub 2398 // group. 2399 bool 2400 can_add_to_stub_group(Output_section* o, 2401 const Output_section::Input_section* i, 2402 bool has14); 2403 2404 const Output_section::Input_section* 2405 owner() 2406 { return owner_; } 2407 2408 Output_section* 2409 output_section() 2410 { return output_section_; } 2411 2412 void 2413 set_output_and_owner(Output_section* o, 2414 const Output_section::Input_section* i) 2415 { 2416 this->output_section_ = o; 2417 this->owner_ = i; 2418 } 2419 2420 private: 2421 typedef enum 2422 { 2423 NO_GROUP, 2424 FINDING_STUB_SECTION, 2425 HAS_STUB_SECTION 2426 } State; 2427 2428 State state_; 2429 uint32_t stub_group_size_; 2430 uint32_t stub14_group_size_; 2431 bool stubs_always_before_branch_; 2432 bool suppress_size_errors_; 2433 uint64_t group_end_addr_; 2434 const Output_section::Input_section* owner_; 2435 Output_section* output_section_; 2436 }; 2437 2438 // Return true iff input section can be handled by current stub 2439 // group. 2440 2441 bool 2442 Stub_control::can_add_to_stub_group(Output_section* o, 2443 const Output_section::Input_section* i, 2444 bool has14) 2445 { 2446 uint32_t group_size 2447 = has14 ? this->stub14_group_size_ : this->stub_group_size_; 2448 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI; 2449 uint64_t this_size; 2450 uint64_t start_addr = o->address(); 2451 2452 if (whole_sec) 2453 // .init and .fini sections are pasted together to form a single 2454 // function. We can't be adding stubs in the middle of the function. 2455 this_size = o->data_size(); 2456 else 2457 { 2458 start_addr += i->relobj()->output_section_offset(i->shndx()); 2459 this_size = i->data_size(); 2460 } 2461 uint64_t end_addr = start_addr + this_size; 2462 bool toobig = this_size > group_size; 2463 2464 if (toobig && !this->suppress_size_errors_) 2465 gold_warning(_("%s:%s exceeds group size"), 2466 i->relobj()->name().c_str(), 2467 i->relobj()->section_name(i->shndx()).c_str()); 2468 2469 if (this->state_ != HAS_STUB_SECTION 2470 && (!whole_sec || this->output_section_ != o) 2471 && (this->state_ == NO_GROUP 2472 || this->group_end_addr_ - end_addr < group_size)) 2473 { 2474 this->owner_ = i; 2475 this->output_section_ = o; 2476 } 2477 2478 if (this->state_ == NO_GROUP) 2479 { 2480 this->state_ = FINDING_STUB_SECTION; 2481 this->group_end_addr_ = end_addr; 2482 } 2483 else if (this->group_end_addr_ - start_addr < group_size) 2484 ; 2485 // Adding this section would make the group larger than GROUP_SIZE. 2486 else if (this->state_ == FINDING_STUB_SECTION 2487 && !this->stubs_always_before_branch_ 2488 && !toobig) 2489 { 2490 // But wait, there's more! Input sections up to GROUP_SIZE 2491 // bytes before the stub table can be handled by it too. 2492 this->state_ = HAS_STUB_SECTION; 2493 this->group_end_addr_ = end_addr; 2494 } 2495 else 2496 { 2497 this->state_ = NO_GROUP; 2498 return false; 2499 } 2500 return true; 2501 } 2502 2503 // Look over all the input sections, deciding where to place stubs. 2504 2505 template<int size, bool big_endian> 2506 void 2507 Target_powerpc<size, big_endian>::group_sections(Layout* layout, 2508 const Task*, 2509 bool no_size_errors) 2510 { 2511 Stub_control stub_control(this->stub_group_size_, no_size_errors); 2512 2513 // Group input sections and insert stub table 2514 Stub_table_owner* table_owner = NULL; 2515 std::vector<Stub_table_owner*> tables; 2516 Layout::Section_list section_list; 2517 layout->get_executable_sections(§ion_list); 2518 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections()); 2519 for (Layout::Section_list::reverse_iterator o = section_list.rbegin(); 2520 o != section_list.rend(); 2521 ++o) 2522 { 2523 typedef Output_section::Input_section_list Input_section_list; 2524 for (Input_section_list::const_reverse_iterator i 2525 = (*o)->input_sections().rbegin(); 2526 i != (*o)->input_sections().rend(); 2527 ++i) 2528 { 2529 if (i->is_input_section() 2530 || i->is_relaxed_input_section()) 2531 { 2532 Powerpc_relobj<size, big_endian>* ppcobj = static_cast 2533 <Powerpc_relobj<size, big_endian>*>(i->relobj()); 2534 bool has14 = ppcobj->has_14bit_branch(i->shndx()); 2535 if (!stub_control.can_add_to_stub_group(*o, &*i, has14)) 2536 { 2537 table_owner->output_section = stub_control.output_section(); 2538 table_owner->owner = stub_control.owner(); 2539 stub_control.set_output_and_owner(*o, &*i); 2540 table_owner = NULL; 2541 } 2542 if (table_owner == NULL) 2543 { 2544 table_owner = new Stub_table_owner; 2545 tables.push_back(table_owner); 2546 } 2547 ppcobj->set_stub_table(i->shndx(), tables.size() - 1); 2548 } 2549 } 2550 } 2551 if (table_owner != NULL) 2552 { 2553 const Output_section::Input_section* i = stub_control.owner(); 2554 2555 if (tables.size() >= 2 && tables[tables.size() - 2]->owner == i) 2556 { 2557 // Corner case. A new stub group was made for the first 2558 // section (last one looked at here) for some reason, but 2559 // the first section is already being used as the owner for 2560 // a stub table for following sections. Force it into that 2561 // stub group. 2562 tables.pop_back(); 2563 delete table_owner; 2564 Powerpc_relobj<size, big_endian>* ppcobj = static_cast 2565 <Powerpc_relobj<size, big_endian>*>(i->relobj()); 2566 ppcobj->set_stub_table(i->shndx(), tables.size() - 1); 2567 } 2568 else 2569 { 2570 table_owner->output_section = stub_control.output_section(); 2571 table_owner->owner = i; 2572 } 2573 } 2574 for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin(); 2575 t != tables.end(); 2576 ++t) 2577 { 2578 Stub_table<size, big_endian>* stub_table; 2579 2580 if ((*t)->owner->is_input_section()) 2581 stub_table = new Stub_table<size, big_endian>(this, 2582 (*t)->output_section, 2583 (*t)->owner); 2584 else if ((*t)->owner->is_relaxed_input_section()) 2585 stub_table = static_cast<Stub_table<size, big_endian>*>( 2586 (*t)->owner->relaxed_input_section()); 2587 else 2588 gold_unreachable(); 2589 this->stub_tables_.push_back(stub_table); 2590 delete *t; 2591 } 2592 } 2593 2594 static unsigned long 2595 max_branch_delta (unsigned int r_type) 2596 { 2597 if (r_type == elfcpp::R_POWERPC_REL14 2598 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN 2599 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN) 2600 return 1L << 15; 2601 if (r_type == elfcpp::R_POWERPC_REL24 2602 || r_type == elfcpp::R_PPC_PLTREL24 2603 || r_type == elfcpp::R_PPC_LOCAL24PC) 2604 return 1L << 25; 2605 return 0; 2606 } 2607 2608 // If this branch needs a plt call stub, or a long branch stub, make one. 2609 2610 template<int size, bool big_endian> 2611 bool 2612 Target_powerpc<size, big_endian>::Branch_info::make_stub( 2613 Stub_table<size, big_endian>* stub_table, 2614 Stub_table<size, big_endian>* ifunc_stub_table, 2615 Symbol_table* symtab) const 2616 { 2617 Symbol* sym = this->object_->global_symbol(this->r_sym_); 2618 if (sym != NULL && sym->is_forwarder()) 2619 sym = symtab->resolve_forwards(sym); 2620 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym); 2621 Target_powerpc<size, big_endian>* target = 2622 static_cast<Target_powerpc<size, big_endian>*>( 2623 parameters->sized_target<size, big_endian>()); 2624 if (gsym != NULL 2625 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target)) 2626 : this->object_->local_has_plt_offset(this->r_sym_)) 2627 { 2628 if (size == 64 2629 && gsym != NULL 2630 && target->abiversion() >= 2 2631 && !parameters->options().output_is_position_independent() 2632 && !is_branch_reloc(this->r_type_)) 2633 target->glink_section()->add_global_entry(gsym); 2634 else 2635 { 2636 if (stub_table == NULL) 2637 stub_table = this->object_->stub_table(this->shndx_); 2638 if (stub_table == NULL) 2639 { 2640 // This is a ref from a data section to an ifunc symbol. 2641 stub_table = ifunc_stub_table; 2642 } 2643 gold_assert(stub_table != NULL); 2644 Address from = this->object_->get_output_section_offset(this->shndx_); 2645 if (from != invalid_address) 2646 from += (this->object_->output_section(this->shndx_)->address() 2647 + this->offset_); 2648 if (gsym != NULL) 2649 return stub_table->add_plt_call_entry(from, 2650 this->object_, gsym, 2651 this->r_type_, this->addend_); 2652 else 2653 return stub_table->add_plt_call_entry(from, 2654 this->object_, this->r_sym_, 2655 this->r_type_, this->addend_); 2656 } 2657 } 2658 else 2659 { 2660 Address max_branch_offset = max_branch_delta(this->r_type_); 2661 if (max_branch_offset == 0) 2662 return true; 2663 Address from = this->object_->get_output_section_offset(this->shndx_); 2664 gold_assert(from != invalid_address); 2665 from += (this->object_->output_section(this->shndx_)->address() 2666 + this->offset_); 2667 Address to; 2668 if (gsym != NULL) 2669 { 2670 switch (gsym->source()) 2671 { 2672 case Symbol::FROM_OBJECT: 2673 { 2674 Object* symobj = gsym->object(); 2675 if (symobj->is_dynamic() 2676 || symobj->pluginobj() != NULL) 2677 return true; 2678 bool is_ordinary; 2679 unsigned int shndx = gsym->shndx(&is_ordinary); 2680 if (shndx == elfcpp::SHN_UNDEF) 2681 return true; 2682 } 2683 break; 2684 2685 case Symbol::IS_UNDEFINED: 2686 return true; 2687 2688 default: 2689 break; 2690 } 2691 Symbol_table::Compute_final_value_status status; 2692 to = symtab->compute_final_value<size>(gsym, &status); 2693 if (status != Symbol_table::CFVS_OK) 2694 return true; 2695 if (size == 64) 2696 to += this->object_->ppc64_local_entry_offset(gsym); 2697 } 2698 else 2699 { 2700 const Symbol_value<size>* psymval 2701 = this->object_->local_symbol(this->r_sym_); 2702 Symbol_value<size> symval; 2703 typedef Sized_relobj_file<size, big_endian> ObjType; 2704 typename ObjType::Compute_final_local_value_status status 2705 = this->object_->compute_final_local_value(this->r_sym_, psymval, 2706 &symval, symtab); 2707 if (status != ObjType::CFLV_OK 2708 || !symval.has_output_value()) 2709 return true; 2710 to = symval.value(this->object_, 0); 2711 if (size == 64) 2712 to += this->object_->ppc64_local_entry_offset(this->r_sym_); 2713 } 2714 if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24)) 2715 to += this->addend_; 2716 if (stub_table == NULL) 2717 stub_table = this->object_->stub_table(this->shndx_); 2718 if (size == 64 && target->abiversion() < 2) 2719 { 2720 unsigned int dest_shndx; 2721 if (!target->symval_for_branch(symtab, gsym, this->object_, 2722 &to, &dest_shndx)) 2723 return true; 2724 } 2725 Address delta = to - from; 2726 if (delta + max_branch_offset >= 2 * max_branch_offset) 2727 { 2728 if (stub_table == NULL) 2729 { 2730 gold_warning(_("%s:%s: branch in non-executable section," 2731 " no long branch stub for you"), 2732 this->object_->name().c_str(), 2733 this->object_->section_name(this->shndx_).c_str()); 2734 return true; 2735 } 2736 return stub_table->add_long_branch_entry(this->object_, 2737 this->r_type_, from, to); 2738 } 2739 } 2740 return true; 2741 } 2742 2743 // Relaxation hook. This is where we do stub generation. 2744 2745 template<int size, bool big_endian> 2746 bool 2747 Target_powerpc<size, big_endian>::do_relax(int pass, 2748 const Input_objects*, 2749 Symbol_table* symtab, 2750 Layout* layout, 2751 const Task* task) 2752 { 2753 unsigned int prev_brlt_size = 0; 2754 if (pass == 1) 2755 { 2756 bool thread_safe 2757 = this->abiversion() < 2 && parameters->options().plt_thread_safe(); 2758 if (size == 64 2759 && this->abiversion() < 2 2760 && !thread_safe 2761 && !parameters->options().user_set_plt_thread_safe()) 2762 { 2763 static const char* const thread_starter[] = 2764 { 2765 "pthread_create", 2766 /* libstdc++ */ 2767 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE", 2768 /* librt */ 2769 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio", 2770 "mq_notify", "create_timer", 2771 /* libanl */ 2772 "getaddrinfo_a", 2773 /* libgomp */ 2774 "GOMP_parallel", 2775 "GOMP_parallel_start", 2776 "GOMP_parallel_loop_static", 2777 "GOMP_parallel_loop_static_start", 2778 "GOMP_parallel_loop_dynamic", 2779 "GOMP_parallel_loop_dynamic_start", 2780 "GOMP_parallel_loop_guided", 2781 "GOMP_parallel_loop_guided_start", 2782 "GOMP_parallel_loop_runtime", 2783 "GOMP_parallel_loop_runtime_start", 2784 "GOMP_parallel_sections", 2785 "GOMP_parallel_sections_start", 2786 /* libgo */ 2787 "__go_go", 2788 }; 2789 2790 if (parameters->options().shared()) 2791 thread_safe = true; 2792 else 2793 { 2794 for (unsigned int i = 0; 2795 i < sizeof(thread_starter) / sizeof(thread_starter[0]); 2796 i++) 2797 { 2798 Symbol* sym = symtab->lookup(thread_starter[i], NULL); 2799 thread_safe = (sym != NULL 2800 && sym->in_reg() 2801 && sym->in_real_elf()); 2802 if (thread_safe) 2803 break; 2804 } 2805 } 2806 } 2807 this->plt_thread_safe_ = thread_safe; 2808 } 2809 2810 if (pass == 1) 2811 { 2812 this->stub_group_size_ = parameters->options().stub_group_size(); 2813 bool no_size_errors = true; 2814 if (this->stub_group_size_ == 1) 2815 this->stub_group_size_ = 0x1c00000; 2816 else if (this->stub_group_size_ == -1) 2817 this->stub_group_size_ = -0x1e00000; 2818 else 2819 no_size_errors = false; 2820 this->group_sections(layout, task, no_size_errors); 2821 } 2822 else if (this->relax_failed_ && this->relax_fail_count_ < 3) 2823 { 2824 this->branch_lookup_table_.clear(); 2825 for (typename Stub_tables::iterator p = this->stub_tables_.begin(); 2826 p != this->stub_tables_.end(); 2827 ++p) 2828 { 2829 (*p)->clear_stubs(true); 2830 } 2831 this->stub_tables_.clear(); 2832 this->stub_group_size_ = this->stub_group_size_ / 4 * 3; 2833 gold_info(_("%s: stub group size is too large; retrying with %d"), 2834 program_name, this->stub_group_size_); 2835 this->group_sections(layout, task, true); 2836 } 2837 2838 // We need address of stub tables valid for make_stub. 2839 for (typename Stub_tables::iterator p = this->stub_tables_.begin(); 2840 p != this->stub_tables_.end(); 2841 ++p) 2842 { 2843 const Powerpc_relobj<size, big_endian>* object 2844 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj()); 2845 Address off = object->get_output_section_offset((*p)->shndx()); 2846 gold_assert(off != invalid_address); 2847 Output_section* os = (*p)->output_section(); 2848 (*p)->set_address_and_size(os, off); 2849 } 2850 2851 if (pass != 1) 2852 { 2853 // Clear plt call stubs, long branch stubs and branch lookup table. 2854 prev_brlt_size = this->branch_lookup_table_.size(); 2855 this->branch_lookup_table_.clear(); 2856 for (typename Stub_tables::iterator p = this->stub_tables_.begin(); 2857 p != this->stub_tables_.end(); 2858 ++p) 2859 { 2860 (*p)->clear_stubs(false); 2861 } 2862 } 2863 2864 // Build all the stubs. 2865 this->relax_failed_ = false; 2866 Stub_table<size, big_endian>* ifunc_stub_table 2867 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0]; 2868 Stub_table<size, big_endian>* one_stub_table 2869 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table; 2870 for (typename Branches::const_iterator b = this->branch_info_.begin(); 2871 b != this->branch_info_.end(); 2872 b++) 2873 { 2874 if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab) 2875 && !this->relax_failed_) 2876 { 2877 this->relax_failed_ = true; 2878 this->relax_fail_count_++; 2879 if (this->relax_fail_count_ < 3) 2880 return true; 2881 } 2882 } 2883 2884 // Did anything change size? 2885 unsigned int num_huge_branches = this->branch_lookup_table_.size(); 2886 bool again = num_huge_branches != prev_brlt_size; 2887 if (size == 64 && num_huge_branches != 0) 2888 this->make_brlt_section(layout); 2889 if (size == 64 && again) 2890 this->brlt_section_->set_current_size(num_huge_branches); 2891 2892 typedef Unordered_set<Output_section*> Output_sections; 2893 Output_sections os_need_update; 2894 for (typename Stub_tables::iterator p = this->stub_tables_.begin(); 2895 p != this->stub_tables_.end(); 2896 ++p) 2897 { 2898 if ((*p)->size_update()) 2899 { 2900 again = true; 2901 (*p)->add_eh_frame(layout); 2902 os_need_update.insert((*p)->output_section()); 2903 } 2904 } 2905 2906 // Set output section offsets for all input sections in an output 2907 // section that just changed size. Anything past the stubs will 2908 // need updating. 2909 for (typename Output_sections::iterator p = os_need_update.begin(); 2910 p != os_need_update.end(); 2911 p++) 2912 { 2913 Output_section* os = *p; 2914 Address off = 0; 2915 typedef Output_section::Input_section_list Input_section_list; 2916 for (Input_section_list::const_iterator i = os->input_sections().begin(); 2917 i != os->input_sections().end(); 2918 ++i) 2919 { 2920 off = align_address(off, i->addralign()); 2921 if (i->is_input_section() || i->is_relaxed_input_section()) 2922 i->relobj()->set_section_offset(i->shndx(), off); 2923 if (i->is_relaxed_input_section()) 2924 { 2925 Stub_table<size, big_endian>* stub_table 2926 = static_cast<Stub_table<size, big_endian>*>( 2927 i->relaxed_input_section()); 2928 off += stub_table->set_address_and_size(os, off); 2929 } 2930 else 2931 off += i->data_size(); 2932 } 2933 // If .branch_lt is part of this output section, then we have 2934 // just done the offset adjustment. 2935 os->clear_section_offsets_need_adjustment(); 2936 } 2937 2938 if (size == 64 2939 && !again 2940 && num_huge_branches != 0 2941 && parameters->options().output_is_position_independent()) 2942 { 2943 // Fill in the BRLT relocs. 2944 this->brlt_section_->reset_brlt_sizes(); 2945 for (typename Branch_lookup_table::const_iterator p 2946 = this->branch_lookup_table_.begin(); 2947 p != this->branch_lookup_table_.end(); 2948 ++p) 2949 { 2950 this->brlt_section_->add_reloc(p->first, p->second); 2951 } 2952 this->brlt_section_->finalize_brlt_sizes(); 2953 } 2954 return again; 2955 } 2956 2957 template<int size, bool big_endian> 2958 void 2959 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt, 2960 unsigned char* oview, 2961 uint64_t* paddress, 2962 off_t* plen) const 2963 { 2964 uint64_t address = plt->address(); 2965 off_t len = plt->data_size(); 2966 2967 if (plt == this->glink_) 2968 { 2969 // See Output_data_glink::do_write() for glink contents. 2970 if (len == 0) 2971 { 2972 gold_assert(parameters->doing_static_link()); 2973 // Static linking may need stubs, to support ifunc and long 2974 // branches. We need to create an output section for 2975 // .eh_frame early in the link process, to have a place to 2976 // attach stub .eh_frame info. We also need to have 2977 // registered a CIE that matches the stub CIE. Both of 2978 // these requirements are satisfied by creating an FDE and 2979 // CIE for .glink, even though static linking will leave 2980 // .glink zero length. 2981 // ??? Hopefully generating an FDE with a zero address range 2982 // won't confuse anything that consumes .eh_frame info. 2983 } 2984 else if (size == 64) 2985 { 2986 // There is one word before __glink_PLTresolve 2987 address += 8; 2988 len -= 8; 2989 } 2990 else if (parameters->options().output_is_position_independent()) 2991 { 2992 // There are two FDEs for a position independent glink. 2993 // The first covers the branch table, the second 2994 // __glink_PLTresolve at the end of glink. 2995 off_t resolve_size = this->glink_->pltresolve_size; 2996 if (oview[9] == elfcpp::DW_CFA_nop) 2997 len -= resolve_size; 2998 else 2999 { 3000 address += len - resolve_size; 3001 len = resolve_size; 3002 } 3003 } 3004 } 3005 else 3006 { 3007 // Must be a stub table. 3008 const Stub_table<size, big_endian>* stub_table 3009 = static_cast<const Stub_table<size, big_endian>*>(plt); 3010 uint64_t stub_address = stub_table->stub_address(); 3011 len -= stub_address - address; 3012 address = stub_address; 3013 } 3014 3015 *paddress = address; 3016 *plen = len; 3017 } 3018 3019 // A class to handle the PLT data. 3020 3021 template<int size, bool big_endian> 3022 class Output_data_plt_powerpc : public Output_section_data_build 3023 { 3024 public: 3025 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 3026 size, big_endian> Reloc_section; 3027 3028 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ, 3029 Reloc_section* plt_rel, 3030 const char* name) 3031 : Output_section_data_build(size == 32 ? 4 : 8), 3032 rel_(plt_rel), 3033 targ_(targ), 3034 name_(name) 3035 { } 3036 3037 // Add an entry to the PLT. 3038 void 3039 add_entry(Symbol*); 3040 3041 void 3042 add_ifunc_entry(Symbol*); 3043 3044 void 3045 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int); 3046 3047 // Return the .rela.plt section data. 3048 Reloc_section* 3049 rel_plt() const 3050 { 3051 return this->rel_; 3052 } 3053 3054 // Return the number of PLT entries. 3055 unsigned int 3056 entry_count() const 3057 { 3058 if (this->current_data_size() == 0) 3059 return 0; 3060 return ((this->current_data_size() - this->first_plt_entry_offset()) 3061 / this->plt_entry_size()); 3062 } 3063 3064 protected: 3065 void 3066 do_adjust_output_section(Output_section* os) 3067 { 3068 os->set_entsize(0); 3069 } 3070 3071 // Write to a map file. 3072 void 3073 do_print_to_mapfile(Mapfile* mapfile) const 3074 { mapfile->print_output_data(this, this->name_); } 3075 3076 private: 3077 // Return the offset of the first non-reserved PLT entry. 3078 unsigned int 3079 first_plt_entry_offset() const 3080 { 3081 // IPLT has no reserved entry. 3082 if (this->name_[3] == 'I') 3083 return 0; 3084 return this->targ_->first_plt_entry_offset(); 3085 } 3086 3087 // Return the size of each PLT entry. 3088 unsigned int 3089 plt_entry_size() const 3090 { 3091 return this->targ_->plt_entry_size(); 3092 } 3093 3094 // Write out the PLT data. 3095 void 3096 do_write(Output_file*); 3097 3098 // The reloc section. 3099 Reloc_section* rel_; 3100 // Allows access to .glink for do_write. 3101 Target_powerpc<size, big_endian>* targ_; 3102 // What to report in map file. 3103 const char *name_; 3104 }; 3105 3106 // Add an entry to the PLT. 3107 3108 template<int size, bool big_endian> 3109 void 3110 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym) 3111 { 3112 if (!gsym->has_plt_offset()) 3113 { 3114 section_size_type off = this->current_data_size(); 3115 if (off == 0) 3116 off += this->first_plt_entry_offset(); 3117 gsym->set_plt_offset(off); 3118 gsym->set_needs_dynsym_entry(); 3119 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT; 3120 this->rel_->add_global(gsym, dynrel, this, off, 0); 3121 off += this->plt_entry_size(); 3122 this->set_current_data_size(off); 3123 } 3124 } 3125 3126 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT. 3127 3128 template<int size, bool big_endian> 3129 void 3130 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym) 3131 { 3132 if (!gsym->has_plt_offset()) 3133 { 3134 section_size_type off = this->current_data_size(); 3135 gsym->set_plt_offset(off); 3136 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE; 3137 if (size == 64 && this->targ_->abiversion() < 2) 3138 dynrel = elfcpp::R_PPC64_JMP_IREL; 3139 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0); 3140 off += this->plt_entry_size(); 3141 this->set_current_data_size(off); 3142 } 3143 } 3144 3145 // Add an entry for a local ifunc symbol to the IPLT. 3146 3147 template<int size, bool big_endian> 3148 void 3149 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry( 3150 Sized_relobj_file<size, big_endian>* relobj, 3151 unsigned int local_sym_index) 3152 { 3153 if (!relobj->local_has_plt_offset(local_sym_index)) 3154 { 3155 section_size_type off = this->current_data_size(); 3156 relobj->set_local_plt_offset(local_sym_index, off); 3157 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE; 3158 if (size == 64 && this->targ_->abiversion() < 2) 3159 dynrel = elfcpp::R_PPC64_JMP_IREL; 3160 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel, 3161 this, off, 0); 3162 off += this->plt_entry_size(); 3163 this->set_current_data_size(off); 3164 } 3165 } 3166 3167 static const uint32_t add_0_11_11 = 0x7c0b5a14; 3168 static const uint32_t add_2_2_11 = 0x7c425a14; 3169 static const uint32_t add_3_3_2 = 0x7c631214; 3170 static const uint32_t add_3_3_13 = 0x7c636a14; 3171 static const uint32_t add_11_0_11 = 0x7d605a14; 3172 static const uint32_t add_11_2_11 = 0x7d625a14; 3173 static const uint32_t add_11_11_2 = 0x7d6b1214; 3174 static const uint32_t addi_0_12 = 0x380c0000; 3175 static const uint32_t addi_2_2 = 0x38420000; 3176 static const uint32_t addi_3_3 = 0x38630000; 3177 static const uint32_t addi_11_11 = 0x396b0000; 3178 static const uint32_t addi_12_12 = 0x398c0000; 3179 static const uint32_t addis_0_2 = 0x3c020000; 3180 static const uint32_t addis_0_13 = 0x3c0d0000; 3181 static const uint32_t addis_11_2 = 0x3d620000; 3182 static const uint32_t addis_11_11 = 0x3d6b0000; 3183 static const uint32_t addis_11_30 = 0x3d7e0000; 3184 static const uint32_t addis_12_2 = 0x3d820000; 3185 static const uint32_t addis_12_12 = 0x3d8c0000; 3186 static const uint32_t b = 0x48000000; 3187 static const uint32_t bcl_20_31 = 0x429f0005; 3188 static const uint32_t bctr = 0x4e800420; 3189 static const uint32_t blr = 0x4e800020; 3190 static const uint32_t bnectr_p4 = 0x4ce20420; 3191 static const uint32_t cmpldi_2_0 = 0x28220000; 3192 static const uint32_t cror_15_15_15 = 0x4def7b82; 3193 static const uint32_t cror_31_31_31 = 0x4ffffb82; 3194 static const uint32_t ld_0_1 = 0xe8010000; 3195 static const uint32_t ld_0_12 = 0xe80c0000; 3196 static const uint32_t ld_2_1 = 0xe8410000; 3197 static const uint32_t ld_2_2 = 0xe8420000; 3198 static const uint32_t ld_2_11 = 0xe84b0000; 3199 static const uint32_t ld_11_2 = 0xe9620000; 3200 static const uint32_t ld_11_11 = 0xe96b0000; 3201 static const uint32_t ld_12_2 = 0xe9820000; 3202 static const uint32_t ld_12_11 = 0xe98b0000; 3203 static const uint32_t ld_12_12 = 0xe98c0000; 3204 static const uint32_t lfd_0_1 = 0xc8010000; 3205 static const uint32_t li_0_0 = 0x38000000; 3206 static const uint32_t li_12_0 = 0x39800000; 3207 static const uint32_t lis_0_0 = 0x3c000000; 3208 static const uint32_t lis_11 = 0x3d600000; 3209 static const uint32_t lis_12 = 0x3d800000; 3210 static const uint32_t lvx_0_12_0 = 0x7c0c00ce; 3211 static const uint32_t lwz_0_12 = 0x800c0000; 3212 static const uint32_t lwz_11_11 = 0x816b0000; 3213 static const uint32_t lwz_11_30 = 0x817e0000; 3214 static const uint32_t lwz_12_12 = 0x818c0000; 3215 static const uint32_t lwzu_0_12 = 0x840c0000; 3216 static const uint32_t mflr_0 = 0x7c0802a6; 3217 static const uint32_t mflr_11 = 0x7d6802a6; 3218 static const uint32_t mflr_12 = 0x7d8802a6; 3219 static const uint32_t mtctr_0 = 0x7c0903a6; 3220 static const uint32_t mtctr_11 = 0x7d6903a6; 3221 static const uint32_t mtctr_12 = 0x7d8903a6; 3222 static const uint32_t mtlr_0 = 0x7c0803a6; 3223 static const uint32_t mtlr_12 = 0x7d8803a6; 3224 static const uint32_t nop = 0x60000000; 3225 static const uint32_t ori_0_0_0 = 0x60000000; 3226 static const uint32_t srdi_0_0_2 = 0x7800f082; 3227 static const uint32_t std_0_1 = 0xf8010000; 3228 static const uint32_t std_0_12 = 0xf80c0000; 3229 static const uint32_t std_2_1 = 0xf8410000; 3230 static const uint32_t stfd_0_1 = 0xd8010000; 3231 static const uint32_t stvx_0_12_0 = 0x7c0c01ce; 3232 static const uint32_t sub_11_11_12 = 0x7d6c5850; 3233 static const uint32_t sub_12_12_11 = 0x7d8b6050; 3234 static const uint32_t xor_2_12_12 = 0x7d826278; 3235 static const uint32_t xor_11_12_12 = 0x7d8b6278; 3236 3237 // Write out the PLT. 3238 3239 template<int size, bool big_endian> 3240 void 3241 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of) 3242 { 3243 if (size == 32 && this->name_[3] != 'I') 3244 { 3245 const section_size_type offset = this->offset(); 3246 const section_size_type oview_size 3247 = convert_to_section_size_type(this->data_size()); 3248 unsigned char* const oview = of->get_output_view(offset, oview_size); 3249 unsigned char* pov = oview; 3250 unsigned char* endpov = oview + oview_size; 3251 3252 // The address of the .glink branch table 3253 const Output_data_glink<size, big_endian>* glink 3254 = this->targ_->glink_section(); 3255 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address(); 3256 3257 while (pov < endpov) 3258 { 3259 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab); 3260 pov += 4; 3261 branch_tab += 4; 3262 } 3263 3264 of->write_output_view(offset, oview_size, oview); 3265 } 3266 } 3267 3268 // Create the PLT section. 3269 3270 template<int size, bool big_endian> 3271 void 3272 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab, 3273 Layout* layout) 3274 { 3275 if (this->plt_ == NULL) 3276 { 3277 if (this->got_ == NULL) 3278 this->got_section(symtab, layout); 3279 3280 if (this->glink_ == NULL) 3281 make_glink_section(layout); 3282 3283 // Ensure that .rela.dyn always appears before .rela.plt This is 3284 // necessary due to how, on PowerPC and some other targets, .rela.dyn 3285 // needs to include .rela.plt in its range. 3286 this->rela_dyn_section(layout); 3287 3288 Reloc_section* plt_rel = new Reloc_section(false); 3289 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA, 3290 elfcpp::SHF_ALLOC, plt_rel, 3291 ORDER_DYNAMIC_PLT_RELOCS, false); 3292 this->plt_ 3293 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel, 3294 "** PLT"); 3295 layout->add_output_section_data(".plt", 3296 (size == 32 3297 ? elfcpp::SHT_PROGBITS 3298 : elfcpp::SHT_NOBITS), 3299 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE, 3300 this->plt_, 3301 (size == 32 3302 ? ORDER_SMALL_DATA 3303 : ORDER_SMALL_BSS), 3304 false); 3305 } 3306 } 3307 3308 // Create the IPLT section. 3309 3310 template<int size, bool big_endian> 3311 void 3312 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab, 3313 Layout* layout) 3314 { 3315 if (this->iplt_ == NULL) 3316 { 3317 this->make_plt_section(symtab, layout); 3318 3319 Reloc_section* iplt_rel = new Reloc_section(false); 3320 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel); 3321 this->iplt_ 3322 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel, 3323 "** IPLT"); 3324 this->plt_->output_section()->add_output_section_data(this->iplt_); 3325 } 3326 } 3327 3328 // A section for huge long branch addresses, similar to plt section. 3329 3330 template<int size, bool big_endian> 3331 class Output_data_brlt_powerpc : public Output_section_data_build 3332 { 3333 public: 3334 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address; 3335 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 3336 size, big_endian> Reloc_section; 3337 3338 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ, 3339 Reloc_section* brlt_rel) 3340 : Output_section_data_build(size == 32 ? 4 : 8), 3341 rel_(brlt_rel), 3342 targ_(targ) 3343 { } 3344 3345 void 3346 reset_brlt_sizes() 3347 { 3348 this->reset_data_size(); 3349 this->rel_->reset_data_size(); 3350 } 3351 3352 void 3353 finalize_brlt_sizes() 3354 { 3355 this->finalize_data_size(); 3356 this->rel_->finalize_data_size(); 3357 } 3358 3359 // Add a reloc for an entry in the BRLT. 3360 void 3361 add_reloc(Address to, unsigned int off) 3362 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); } 3363 3364 // Update section and reloc section size. 3365 void 3366 set_current_size(unsigned int num_branches) 3367 { 3368 this->reset_address_and_file_offset(); 3369 this->set_current_data_size(num_branches * 16); 3370 this->finalize_data_size(); 3371 Output_section* os = this->output_section(); 3372 os->set_section_offsets_need_adjustment(); 3373 if (this->rel_ != NULL) 3374 { 3375 unsigned int reloc_size 3376 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size; 3377 this->rel_->reset_address_and_file_offset(); 3378 this->rel_->set_current_data_size(num_branches * reloc_size); 3379 this->rel_->finalize_data_size(); 3380 Output_section* os = this->rel_->output_section(); 3381 os->set_section_offsets_need_adjustment(); 3382 } 3383 } 3384 3385 protected: 3386 void 3387 do_adjust_output_section(Output_section* os) 3388 { 3389 os->set_entsize(0); 3390 } 3391 3392 // Write to a map file. 3393 void 3394 do_print_to_mapfile(Mapfile* mapfile) const 3395 { mapfile->print_output_data(this, "** BRLT"); } 3396 3397 private: 3398 // Write out the BRLT data. 3399 void 3400 do_write(Output_file*); 3401 3402 // The reloc section. 3403 Reloc_section* rel_; 3404 Target_powerpc<size, big_endian>* targ_; 3405 }; 3406 3407 // Make the branch lookup table section. 3408 3409 template<int size, bool big_endian> 3410 void 3411 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout) 3412 { 3413 if (size == 64 && this->brlt_section_ == NULL) 3414 { 3415 Reloc_section* brlt_rel = NULL; 3416 bool is_pic = parameters->options().output_is_position_independent(); 3417 if (is_pic) 3418 { 3419 // When PIC we can't fill in .branch_lt (like .plt it can be 3420 // a bss style section) but must initialise at runtime via 3421 // dynamic relocats. 3422 this->rela_dyn_section(layout); 3423 brlt_rel = new Reloc_section(false); 3424 this->rela_dyn_->output_section()->add_output_section_data(brlt_rel); 3425 } 3426 this->brlt_section_ 3427 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel); 3428 if (this->plt_ && is_pic) 3429 this->plt_->output_section() 3430 ->add_output_section_data(this->brlt_section_); 3431 else 3432 layout->add_output_section_data(".branch_lt", 3433 (is_pic ? elfcpp::SHT_NOBITS 3434 : elfcpp::SHT_PROGBITS), 3435 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE, 3436 this->brlt_section_, 3437 (is_pic ? ORDER_SMALL_BSS 3438 : ORDER_SMALL_DATA), 3439 false); 3440 } 3441 } 3442 3443 // Write out .branch_lt when non-PIC. 3444 3445 template<int size, bool big_endian> 3446 void 3447 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of) 3448 { 3449 if (size == 64 && !parameters->options().output_is_position_independent()) 3450 { 3451 const section_size_type offset = this->offset(); 3452 const section_size_type oview_size 3453 = convert_to_section_size_type(this->data_size()); 3454 unsigned char* const oview = of->get_output_view(offset, oview_size); 3455 3456 this->targ_->write_branch_lookup_table(oview); 3457 of->write_output_view(offset, oview_size, oview); 3458 } 3459 } 3460 3461 static inline uint32_t 3462 l(uint32_t a) 3463 { 3464 return a & 0xffff; 3465 } 3466 3467 static inline uint32_t 3468 hi(uint32_t a) 3469 { 3470 return l(a >> 16); 3471 } 3472 3473 static inline uint32_t 3474 ha(uint32_t a) 3475 { 3476 return hi(a + 0x8000); 3477 } 3478 3479 template<int size> 3480 struct Eh_cie 3481 { 3482 static const unsigned char eh_frame_cie[12]; 3483 }; 3484 3485 template<int size> 3486 const unsigned char Eh_cie<size>::eh_frame_cie[] = 3487 { 3488 1, // CIE version. 3489 'z', 'R', 0, // Augmentation string. 3490 4, // Code alignment. 3491 0x80 - size / 8 , // Data alignment. 3492 65, // RA reg. 3493 1, // Augmentation size. 3494 (elfcpp::DW_EH_PE_pcrel 3495 | elfcpp::DW_EH_PE_sdata4), // FDE encoding. 3496 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0. 3497 }; 3498 3499 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1. 3500 static const unsigned char glink_eh_frame_fde_64v1[] = 3501 { 3502 0, 0, 0, 0, // Replaced with offset to .glink. 3503 0, 0, 0, 0, // Replaced with size of .glink. 3504 0, // Augmentation size. 3505 elfcpp::DW_CFA_advance_loc + 1, 3506 elfcpp::DW_CFA_register, 65, 12, 3507 elfcpp::DW_CFA_advance_loc + 4, 3508 elfcpp::DW_CFA_restore_extended, 65 3509 }; 3510 3511 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2. 3512 static const unsigned char glink_eh_frame_fde_64v2[] = 3513 { 3514 0, 0, 0, 0, // Replaced with offset to .glink. 3515 0, 0, 0, 0, // Replaced with size of .glink. 3516 0, // Augmentation size. 3517 elfcpp::DW_CFA_advance_loc + 1, 3518 elfcpp::DW_CFA_register, 65, 0, 3519 elfcpp::DW_CFA_advance_loc + 4, 3520 elfcpp::DW_CFA_restore_extended, 65 3521 }; 3522 3523 // Describe __glink_PLTresolve use of LR, 32-bit version. 3524 static const unsigned char glink_eh_frame_fde_32[] = 3525 { 3526 0, 0, 0, 0, // Replaced with offset to .glink. 3527 0, 0, 0, 0, // Replaced with size of .glink. 3528 0, // Augmentation size. 3529 elfcpp::DW_CFA_advance_loc + 2, 3530 elfcpp::DW_CFA_register, 65, 0, 3531 elfcpp::DW_CFA_advance_loc + 4, 3532 elfcpp::DW_CFA_restore_extended, 65 3533 }; 3534 3535 static const unsigned char default_fde[] = 3536 { 3537 0, 0, 0, 0, // Replaced with offset to stubs. 3538 0, 0, 0, 0, // Replaced with size of stubs. 3539 0, // Augmentation size. 3540 elfcpp::DW_CFA_nop, // Pad. 3541 elfcpp::DW_CFA_nop, 3542 elfcpp::DW_CFA_nop 3543 }; 3544 3545 template<bool big_endian> 3546 static inline void 3547 write_insn(unsigned char* p, uint32_t v) 3548 { 3549 elfcpp::Swap<32, big_endian>::writeval(p, v); 3550 } 3551 3552 // Stub_table holds information about plt and long branch stubs. 3553 // Stubs are built in an area following some input section determined 3554 // by group_sections(). This input section is converted to a relaxed 3555 // input section allowing it to be resized to accommodate the stubs 3556 3557 template<int size, bool big_endian> 3558 class Stub_table : public Output_relaxed_input_section 3559 { 3560 public: 3561 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address; 3562 static const Address invalid_address = static_cast<Address>(0) - 1; 3563 3564 Stub_table(Target_powerpc<size, big_endian>* targ, 3565 Output_section* output_section, 3566 const Output_section::Input_section* owner) 3567 : Output_relaxed_input_section(owner->relobj(), owner->shndx(), 3568 owner->relobj() 3569 ->section_addralign(owner->shndx())), 3570 targ_(targ), plt_call_stubs_(), long_branch_stubs_(), 3571 orig_data_size_(owner->current_data_size()), 3572 plt_size_(0), last_plt_size_(0), 3573 branch_size_(0), last_branch_size_(0), eh_frame_added_(false) 3574 { 3575 this->set_output_section(output_section); 3576 3577 std::vector<Output_relaxed_input_section*> new_relaxed; 3578 new_relaxed.push_back(this); 3579 output_section->convert_input_sections_to_relaxed_sections(new_relaxed); 3580 } 3581 3582 // Add a plt call stub. 3583 bool 3584 add_plt_call_entry(Address, 3585 const Sized_relobj_file<size, big_endian>*, 3586 const Symbol*, 3587 unsigned int, 3588 Address); 3589 3590 bool 3591 add_plt_call_entry(Address, 3592 const Sized_relobj_file<size, big_endian>*, 3593 unsigned int, 3594 unsigned int, 3595 Address); 3596 3597 // Find a given plt call stub. 3598 Address 3599 find_plt_call_entry(const Symbol*) const; 3600 3601 Address 3602 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*, 3603 unsigned int) const; 3604 3605 Address 3606 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*, 3607 const Symbol*, 3608 unsigned int, 3609 Address) const; 3610 3611 Address 3612 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*, 3613 unsigned int, 3614 unsigned int, 3615 Address) const; 3616 3617 // Add a long branch stub. 3618 bool 3619 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*, 3620 unsigned int, Address, Address); 3621 3622 Address 3623 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*, 3624 Address) const; 3625 3626 bool 3627 can_reach_stub(Address from, unsigned int off, unsigned int r_type) 3628 { 3629 Address max_branch_offset = max_branch_delta(r_type); 3630 if (max_branch_offset == 0) 3631 return true; 3632 gold_assert(from != invalid_address); 3633 Address loc = off + this->stub_address(); 3634 return loc - from + max_branch_offset < 2 * max_branch_offset; 3635 } 3636 3637 void 3638 clear_stubs(bool all) 3639 { 3640 this->plt_call_stubs_.clear(); 3641 this->plt_size_ = 0; 3642 this->long_branch_stubs_.clear(); 3643 this->branch_size_ = 0; 3644 if (all) 3645 { 3646 this->last_plt_size_ = 0; 3647 this->last_branch_size_ = 0; 3648 } 3649 } 3650 3651 Address 3652 set_address_and_size(const Output_section* os, Address off) 3653 { 3654 Address start_off = off; 3655 off += this->orig_data_size_; 3656 Address my_size = this->plt_size_ + this->branch_size_; 3657 if (my_size != 0) 3658 off = align_address(off, this->stub_align()); 3659 // Include original section size and alignment padding in size 3660 my_size += off - start_off; 3661 this->reset_address_and_file_offset(); 3662 this->set_current_data_size(my_size); 3663 this->set_address_and_file_offset(os->address() + start_off, 3664 os->offset() + start_off); 3665 return my_size; 3666 } 3667 3668 Address 3669 stub_address() const 3670 { 3671 return align_address(this->address() + this->orig_data_size_, 3672 this->stub_align()); 3673 } 3674 3675 Address 3676 stub_offset() const 3677 { 3678 return align_address(this->offset() + this->orig_data_size_, 3679 this->stub_align()); 3680 } 3681 3682 section_size_type 3683 plt_size() const 3684 { return this->plt_size_; } 3685 3686 bool 3687 size_update() 3688 { 3689 Output_section* os = this->output_section(); 3690 if (os->addralign() < this->stub_align()) 3691 { 3692 os->set_addralign(this->stub_align()); 3693 // FIXME: get rid of the insane checkpointing. 3694 // We can't increase alignment of the input section to which 3695 // stubs are attached; The input section may be .init which 3696 // is pasted together with other .init sections to form a 3697 // function. Aligning might insert zero padding resulting in 3698 // sigill. However we do need to increase alignment of the 3699 // output section so that the align_address() on offset in 3700 // set_address_and_size() adds the same padding as the 3701 // align_address() on address in stub_address(). 3702 // What's more, we need this alignment for the layout done in 3703 // relaxation_loop_body() so that the output section starts at 3704 // a suitably aligned address. 3705 os->checkpoint_set_addralign(this->stub_align()); 3706 } 3707 if (this->last_plt_size_ != this->plt_size_ 3708 || this->last_branch_size_ != this->branch_size_) 3709 { 3710 this->last_plt_size_ = this->plt_size_; 3711 this->last_branch_size_ = this->branch_size_; 3712 return true; 3713 } 3714 return false; 3715 } 3716 3717 // Add .eh_frame info for this stub section. Unlike other linker 3718 // generated .eh_frame this is added late in the link, because we 3719 // only want the .eh_frame info if this particular stub section is 3720 // non-empty. 3721 void 3722 add_eh_frame(Layout* layout) 3723 { 3724 if (!this->eh_frame_added_) 3725 { 3726 if (!parameters->options().ld_generated_unwind_info()) 3727 return; 3728 3729 // Since we add stub .eh_frame info late, it must be placed 3730 // after all other linker generated .eh_frame info so that 3731 // merge mapping need not be updated for input sections. 3732 // There is no provision to use a different CIE to that used 3733 // by .glink. 3734 if (!this->targ_->has_glink()) 3735 return; 3736 3737 layout->add_eh_frame_for_plt(this, 3738 Eh_cie<size>::eh_frame_cie, 3739 sizeof (Eh_cie<size>::eh_frame_cie), 3740 default_fde, 3741 sizeof (default_fde)); 3742 this->eh_frame_added_ = true; 3743 } 3744 } 3745 3746 Target_powerpc<size, big_endian>* 3747 targ() const 3748 { return targ_; } 3749 3750 private: 3751 class Plt_stub_ent; 3752 class Plt_stub_ent_hash; 3753 typedef Unordered_map<Plt_stub_ent, unsigned int, 3754 Plt_stub_ent_hash> Plt_stub_entries; 3755 3756 // Alignment of stub section. 3757 unsigned int 3758 stub_align() const 3759 { 3760 if (size == 32) 3761 return 16; 3762 unsigned int min_align = 32; 3763 unsigned int user_align = 1 << parameters->options().plt_align(); 3764 return std::max(user_align, min_align); 3765 } 3766 3767 // Return the plt offset for the given call stub. 3768 Address 3769 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const 3770 { 3771 const Symbol* gsym = p->first.sym_; 3772 if (gsym != NULL) 3773 { 3774 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC 3775 && gsym->can_use_relative_reloc(false)); 3776 return gsym->plt_offset(); 3777 } 3778 else 3779 { 3780 *is_iplt = true; 3781 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_; 3782 unsigned int local_sym_index = p->first.locsym_; 3783 return relobj->local_plt_offset(local_sym_index); 3784 } 3785 } 3786 3787 // Size of a given plt call stub. 3788 unsigned int 3789 plt_call_size(typename Plt_stub_entries::const_iterator p) const 3790 { 3791 if (size == 32) 3792 return 16; 3793 3794 bool is_iplt; 3795 Address plt_addr = this->plt_off(p, &is_iplt); 3796 if (is_iplt) 3797 plt_addr += this->targ_->iplt_section()->address(); 3798 else 3799 plt_addr += this->targ_->plt_section()->address(); 3800 Address got_addr = this->targ_->got_section()->output_section()->address(); 3801 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast 3802 <const Powerpc_relobj<size, big_endian>*>(p->first.object_); 3803 got_addr += ppcobj->toc_base_offset(); 3804 Address off = plt_addr - got_addr; 3805 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0); 3806 if (this->targ_->abiversion() < 2) 3807 { 3808 bool static_chain = parameters->options().plt_static_chain(); 3809 bool thread_safe = this->targ_->plt_thread_safe(); 3810 bytes += (4 3811 + 4 * static_chain 3812 + 8 * thread_safe 3813 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))); 3814 } 3815 unsigned int align = 1 << parameters->options().plt_align(); 3816 if (align > 1) 3817 bytes = (bytes + align - 1) & -align; 3818 return bytes; 3819 } 3820 3821 // Return long branch stub size. 3822 unsigned int 3823 branch_stub_size(Address to) 3824 { 3825 Address loc 3826 = this->stub_address() + this->last_plt_size_ + this->branch_size_; 3827 if (to - loc + (1 << 25) < 2 << 25) 3828 return 4; 3829 if (size == 64 || !parameters->options().output_is_position_independent()) 3830 return 16; 3831 return 32; 3832 } 3833 3834 // Write out stubs. 3835 void 3836 do_write(Output_file*); 3837 3838 // Plt call stub keys. 3839 class Plt_stub_ent 3840 { 3841 public: 3842 Plt_stub_ent(const Symbol* sym) 3843 : sym_(sym), object_(0), addend_(0), locsym_(0) 3844 { } 3845 3846 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object, 3847 unsigned int locsym_index) 3848 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index) 3849 { } 3850 3851 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object, 3852 const Symbol* sym, 3853 unsigned int r_type, 3854 Address addend) 3855 : sym_(sym), object_(0), addend_(0), locsym_(0) 3856 { 3857 if (size != 32) 3858 this->addend_ = addend; 3859 else if (parameters->options().output_is_position_independent() 3860 && r_type == elfcpp::R_PPC_PLTREL24) 3861 { 3862 this->addend_ = addend; 3863 if (this->addend_ >= 32768) 3864 this->object_ = object; 3865 } 3866 } 3867 3868 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object, 3869 unsigned int locsym_index, 3870 unsigned int r_type, 3871 Address addend) 3872 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index) 3873 { 3874 if (size != 32) 3875 this->addend_ = addend; 3876 else if (parameters->options().output_is_position_independent() 3877 && r_type == elfcpp::R_PPC_PLTREL24) 3878 this->addend_ = addend; 3879 } 3880 3881 bool operator==(const Plt_stub_ent& that) const 3882 { 3883 return (this->sym_ == that.sym_ 3884 && this->object_ == that.object_ 3885 && this->addend_ == that.addend_ 3886 && this->locsym_ == that.locsym_); 3887 } 3888 3889 const Symbol* sym_; 3890 const Sized_relobj_file<size, big_endian>* object_; 3891 typename elfcpp::Elf_types<size>::Elf_Addr addend_; 3892 unsigned int locsym_; 3893 }; 3894 3895 class Plt_stub_ent_hash 3896 { 3897 public: 3898 size_t operator()(const Plt_stub_ent& ent) const 3899 { 3900 return (reinterpret_cast<uintptr_t>(ent.sym_) 3901 ^ reinterpret_cast<uintptr_t>(ent.object_) 3902 ^ ent.addend_ 3903 ^ ent.locsym_); 3904 } 3905 }; 3906 3907 // Long branch stub keys. 3908 class Branch_stub_ent 3909 { 3910 public: 3911 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to) 3912 : dest_(to), toc_base_off_(0) 3913 { 3914 if (size == 64) 3915 toc_base_off_ = obj->toc_base_offset(); 3916 } 3917 3918 bool operator==(const Branch_stub_ent& that) const 3919 { 3920 return (this->dest_ == that.dest_ 3921 && (size == 32 3922 || this->toc_base_off_ == that.toc_base_off_)); 3923 } 3924 3925 Address dest_; 3926 unsigned int toc_base_off_; 3927 }; 3928 3929 class Branch_stub_ent_hash 3930 { 3931 public: 3932 size_t operator()(const Branch_stub_ent& ent) const 3933 { return ent.dest_ ^ ent.toc_base_off_; } 3934 }; 3935 3936 // In a sane world this would be a global. 3937 Target_powerpc<size, big_endian>* targ_; 3938 // Map sym/object/addend to stub offset. 3939 Plt_stub_entries plt_call_stubs_; 3940 // Map destination address to stub offset. 3941 typedef Unordered_map<Branch_stub_ent, unsigned int, 3942 Branch_stub_ent_hash> Branch_stub_entries; 3943 Branch_stub_entries long_branch_stubs_; 3944 // size of input section 3945 section_size_type orig_data_size_; 3946 // size of stubs 3947 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_; 3948 // Whether .eh_frame info has been created for this stub section. 3949 bool eh_frame_added_; 3950 }; 3951 3952 // Add a plt call stub, if we do not already have one for this 3953 // sym/object/addend combo. 3954 3955 template<int size, bool big_endian> 3956 bool 3957 Stub_table<size, big_endian>::add_plt_call_entry( 3958 Address from, 3959 const Sized_relobj_file<size, big_endian>* object, 3960 const Symbol* gsym, 3961 unsigned int r_type, 3962 Address addend) 3963 { 3964 Plt_stub_ent ent(object, gsym, r_type, addend); 3965 unsigned int off = this->plt_size_; 3966 std::pair<typename Plt_stub_entries::iterator, bool> p 3967 = this->plt_call_stubs_.insert(std::make_pair(ent, off)); 3968 if (p.second) 3969 this->plt_size_ = off + this->plt_call_size(p.first); 3970 return this->can_reach_stub(from, off, r_type); 3971 } 3972 3973 template<int size, bool big_endian> 3974 bool 3975 Stub_table<size, big_endian>::add_plt_call_entry( 3976 Address from, 3977 const Sized_relobj_file<size, big_endian>* object, 3978 unsigned int locsym_index, 3979 unsigned int r_type, 3980 Address addend) 3981 { 3982 Plt_stub_ent ent(object, locsym_index, r_type, addend); 3983 unsigned int off = this->plt_size_; 3984 std::pair<typename Plt_stub_entries::iterator, bool> p 3985 = this->plt_call_stubs_.insert(std::make_pair(ent, off)); 3986 if (p.second) 3987 this->plt_size_ = off + this->plt_call_size(p.first); 3988 return this->can_reach_stub(from, off, r_type); 3989 } 3990 3991 // Find a plt call stub. 3992 3993 template<int size, bool big_endian> 3994 typename Stub_table<size, big_endian>::Address 3995 Stub_table<size, big_endian>::find_plt_call_entry( 3996 const Sized_relobj_file<size, big_endian>* object, 3997 const Symbol* gsym, 3998 unsigned int r_type, 3999 Address addend) const 4000 { 4001 Plt_stub_ent ent(object, gsym, r_type, addend); 4002 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent); 4003 return p == this->plt_call_stubs_.end() ? invalid_address : p->second; 4004 } 4005 4006 template<int size, bool big_endian> 4007 typename Stub_table<size, big_endian>::Address 4008 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const 4009 { 4010 Plt_stub_ent ent(gsym); 4011 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent); 4012 return p == this->plt_call_stubs_.end() ? invalid_address : p->second; 4013 } 4014 4015 template<int size, bool big_endian> 4016 typename Stub_table<size, big_endian>::Address 4017 Stub_table<size, big_endian>::find_plt_call_entry( 4018 const Sized_relobj_file<size, big_endian>* object, 4019 unsigned int locsym_index, 4020 unsigned int r_type, 4021 Address addend) const 4022 { 4023 Plt_stub_ent ent(object, locsym_index, r_type, addend); 4024 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent); 4025 return p == this->plt_call_stubs_.end() ? invalid_address : p->second; 4026 } 4027 4028 template<int size, bool big_endian> 4029 typename Stub_table<size, big_endian>::Address 4030 Stub_table<size, big_endian>::find_plt_call_entry( 4031 const Sized_relobj_file<size, big_endian>* object, 4032 unsigned int locsym_index) const 4033 { 4034 Plt_stub_ent ent(object, locsym_index); 4035 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent); 4036 return p == this->plt_call_stubs_.end() ? invalid_address : p->second; 4037 } 4038 4039 // Add a long branch stub if we don't already have one to given 4040 // destination. 4041 4042 template<int size, bool big_endian> 4043 bool 4044 Stub_table<size, big_endian>::add_long_branch_entry( 4045 const Powerpc_relobj<size, big_endian>* object, 4046 unsigned int r_type, 4047 Address from, 4048 Address to) 4049 { 4050 Branch_stub_ent ent(object, to); 4051 Address off = this->branch_size_; 4052 if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second) 4053 { 4054 unsigned int stub_size = this->branch_stub_size(to); 4055 this->branch_size_ = off + stub_size; 4056 if (size == 64 && stub_size != 4) 4057 this->targ_->add_branch_lookup_table(to); 4058 } 4059 return this->can_reach_stub(from, off, r_type); 4060 } 4061 4062 // Find long branch stub. 4063 4064 template<int size, bool big_endian> 4065 typename Stub_table<size, big_endian>::Address 4066 Stub_table<size, big_endian>::find_long_branch_entry( 4067 const Powerpc_relobj<size, big_endian>* object, 4068 Address to) const 4069 { 4070 Branch_stub_ent ent(object, to); 4071 typename Branch_stub_entries::const_iterator p 4072 = this->long_branch_stubs_.find(ent); 4073 return p == this->long_branch_stubs_.end() ? invalid_address : p->second; 4074 } 4075 4076 // A class to handle .glink. 4077 4078 template<int size, bool big_endian> 4079 class Output_data_glink : public Output_section_data 4080 { 4081 public: 4082 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address; 4083 static const Address invalid_address = static_cast<Address>(0) - 1; 4084 static const int pltresolve_size = 16*4; 4085 4086 Output_data_glink(Target_powerpc<size, big_endian>* targ) 4087 : Output_section_data(16), targ_(targ), global_entry_stubs_(), 4088 end_branch_table_(), ge_size_(0) 4089 { } 4090 4091 void 4092 add_eh_frame(Layout* layout); 4093 4094 void 4095 add_global_entry(const Symbol*); 4096 4097 Address 4098 find_global_entry(const Symbol*) const; 4099 4100 Address 4101 global_entry_address() const 4102 { 4103 gold_assert(this->is_data_size_valid()); 4104 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16; 4105 return this->address() + global_entry_off; 4106 } 4107 4108 protected: 4109 // Write to a map file. 4110 void 4111 do_print_to_mapfile(Mapfile* mapfile) const 4112 { mapfile->print_output_data(this, _("** glink")); } 4113 4114 private: 4115 void 4116 set_final_data_size(); 4117 4118 // Write out .glink 4119 void 4120 do_write(Output_file*); 4121 4122 // Allows access to .got and .plt for do_write. 4123 Target_powerpc<size, big_endian>* targ_; 4124 4125 // Map sym to stub offset. 4126 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries; 4127 Global_entry_stub_entries global_entry_stubs_; 4128 4129 unsigned int end_branch_table_, ge_size_; 4130 }; 4131 4132 template<int size, bool big_endian> 4133 void 4134 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout) 4135 { 4136 if (!parameters->options().ld_generated_unwind_info()) 4137 return; 4138 4139 if (size == 64) 4140 { 4141 if (this->targ_->abiversion() < 2) 4142 layout->add_eh_frame_for_plt(this, 4143 Eh_cie<64>::eh_frame_cie, 4144 sizeof (Eh_cie<64>::eh_frame_cie), 4145 glink_eh_frame_fde_64v1, 4146 sizeof (glink_eh_frame_fde_64v1)); 4147 else 4148 layout->add_eh_frame_for_plt(this, 4149 Eh_cie<64>::eh_frame_cie, 4150 sizeof (Eh_cie<64>::eh_frame_cie), 4151 glink_eh_frame_fde_64v2, 4152 sizeof (glink_eh_frame_fde_64v2)); 4153 } 4154 else 4155 { 4156 // 32-bit .glink can use the default since the CIE return 4157 // address reg, LR, is valid. 4158 layout->add_eh_frame_for_plt(this, 4159 Eh_cie<32>::eh_frame_cie, 4160 sizeof (Eh_cie<32>::eh_frame_cie), 4161 default_fde, 4162 sizeof (default_fde)); 4163 // Except where LR is used in a PIC __glink_PLTresolve. 4164 if (parameters->options().output_is_position_independent()) 4165 layout->add_eh_frame_for_plt(this, 4166 Eh_cie<32>::eh_frame_cie, 4167 sizeof (Eh_cie<32>::eh_frame_cie), 4168 glink_eh_frame_fde_32, 4169 sizeof (glink_eh_frame_fde_32)); 4170 } 4171 } 4172 4173 template<int size, bool big_endian> 4174 void 4175 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym) 4176 { 4177 std::pair<typename Global_entry_stub_entries::iterator, bool> p 4178 = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_)); 4179 if (p.second) 4180 this->ge_size_ += 16; 4181 } 4182 4183 template<int size, bool big_endian> 4184 typename Output_data_glink<size, big_endian>::Address 4185 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const 4186 { 4187 typename Global_entry_stub_entries::const_iterator p 4188 = this->global_entry_stubs_.find(gsym); 4189 return p == this->global_entry_stubs_.end() ? invalid_address : p->second; 4190 } 4191 4192 template<int size, bool big_endian> 4193 void 4194 Output_data_glink<size, big_endian>::set_final_data_size() 4195 { 4196 unsigned int count = this->targ_->plt_entry_count(); 4197 section_size_type total = 0; 4198 4199 if (count != 0) 4200 { 4201 if (size == 32) 4202 { 4203 // space for branch table 4204 total += 4 * (count - 1); 4205 4206 total += -total & 15; 4207 total += this->pltresolve_size; 4208 } 4209 else 4210 { 4211 total += this->pltresolve_size; 4212 4213 // space for branch table 4214 total += 4 * count; 4215 if (this->targ_->abiversion() < 2) 4216 { 4217 total += 4 * count; 4218 if (count > 0x8000) 4219 total += 4 * (count - 0x8000); 4220 } 4221 } 4222 } 4223 this->end_branch_table_ = total; 4224 total = (total + 15) & -16; 4225 total += this->ge_size_; 4226 4227 this->set_data_size(total); 4228 } 4229 4230 // Write out plt and long branch stub code. 4231 4232 template<int size, bool big_endian> 4233 void 4234 Stub_table<size, big_endian>::do_write(Output_file* of) 4235 { 4236 if (this->plt_call_stubs_.empty() 4237 && this->long_branch_stubs_.empty()) 4238 return; 4239 4240 const section_size_type start_off = this->offset(); 4241 const section_size_type off = this->stub_offset(); 4242 const section_size_type oview_size = 4243 convert_to_section_size_type(this->data_size() - (off - start_off)); 4244 unsigned char* const oview = of->get_output_view(off, oview_size); 4245 unsigned char* p; 4246 4247 if (size == 64) 4248 { 4249 const Output_data_got_powerpc<size, big_endian>* got 4250 = this->targ_->got_section(); 4251 Address got_os_addr = got->output_section()->address(); 4252 4253 if (!this->plt_call_stubs_.empty()) 4254 { 4255 // The base address of the .plt section. 4256 Address plt_base = this->targ_->plt_section()->address(); 4257 Address iplt_base = invalid_address; 4258 4259 // Write out plt call stubs. 4260 typename Plt_stub_entries::const_iterator cs; 4261 for (cs = this->plt_call_stubs_.begin(); 4262 cs != this->plt_call_stubs_.end(); 4263 ++cs) 4264 { 4265 bool is_iplt; 4266 Address pltoff = this->plt_off(cs, &is_iplt); 4267 Address plt_addr = pltoff; 4268 if (is_iplt) 4269 { 4270 if (iplt_base == invalid_address) 4271 iplt_base = this->targ_->iplt_section()->address(); 4272 plt_addr += iplt_base; 4273 } 4274 else 4275 plt_addr += plt_base; 4276 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast 4277 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_); 4278 Address got_addr = got_os_addr + ppcobj->toc_base_offset(); 4279 Address off = plt_addr - got_addr; 4280 4281 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0) 4282 gold_error(_("%s: linkage table error against `%s'"), 4283 cs->first.object_->name().c_str(), 4284 cs->first.sym_->demangled_name().c_str()); 4285 4286 bool plt_load_toc = this->targ_->abiversion() < 2; 4287 bool static_chain 4288 = plt_load_toc && parameters->options().plt_static_chain(); 4289 bool thread_safe 4290 = plt_load_toc && this->targ_->plt_thread_safe(); 4291 bool use_fake_dep = false; 4292 Address cmp_branch_off = 0; 4293 if (thread_safe) 4294 { 4295 unsigned int pltindex 4296 = ((pltoff - this->targ_->first_plt_entry_offset()) 4297 / this->targ_->plt_entry_size()); 4298 Address glinkoff 4299 = (this->targ_->glink_section()->pltresolve_size 4300 + pltindex * 8); 4301 if (pltindex > 32768) 4302 glinkoff += (pltindex - 32768) * 4; 4303 Address to 4304 = this->targ_->glink_section()->address() + glinkoff; 4305 Address from 4306 = (this->stub_address() + cs->second + 24 4307 + 4 * (ha(off) != 0) 4308 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)) 4309 + 4 * static_chain); 4310 cmp_branch_off = to - from; 4311 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26); 4312 } 4313 4314 p = oview + cs->second; 4315 if (ha(off) != 0) 4316 { 4317 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc()); 4318 p += 4; 4319 if (plt_load_toc) 4320 { 4321 write_insn<big_endian>(p, addis_11_2 + ha(off)); 4322 p += 4; 4323 write_insn<big_endian>(p, ld_12_11 + l(off)); 4324 p += 4; 4325 } 4326 else 4327 { 4328 write_insn<big_endian>(p, addis_12_2 + ha(off)); 4329 p += 4; 4330 write_insn<big_endian>(p, ld_12_12 + l(off)); 4331 p += 4; 4332 } 4333 if (plt_load_toc 4334 && ha(off + 8 + 8 * static_chain) != ha(off)) 4335 { 4336 write_insn<big_endian>(p, addi_11_11 + l(off)); 4337 p += 4; 4338 off = 0; 4339 } 4340 write_insn<big_endian>(p, mtctr_12); 4341 p += 4; 4342 if (plt_load_toc) 4343 { 4344 if (use_fake_dep) 4345 { 4346 write_insn<big_endian>(p, xor_2_12_12); 4347 p += 4; 4348 write_insn<big_endian>(p, add_11_11_2); 4349 p += 4; 4350 } 4351 write_insn<big_endian>(p, ld_2_11 + l(off + 8)); 4352 p += 4; 4353 if (static_chain) 4354 { 4355 write_insn<big_endian>(p, ld_11_11 + l(off + 16)); 4356 p += 4; 4357 } 4358 } 4359 } 4360 else 4361 { 4362 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc()); 4363 p += 4; 4364 write_insn<big_endian>(p, ld_12_2 + l(off)); 4365 p += 4; 4366 if (plt_load_toc 4367 && ha(off + 8 + 8 * static_chain) != ha(off)) 4368 { 4369 write_insn<big_endian>(p, addi_2_2 + l(off)); 4370 p += 4; 4371 off = 0; 4372 } 4373 write_insn<big_endian>(p, mtctr_12); 4374 p += 4; 4375 if (plt_load_toc) 4376 { 4377 if (use_fake_dep) 4378 { 4379 write_insn<big_endian>(p, xor_11_12_12); 4380 p += 4; 4381 write_insn<big_endian>(p, add_2_2_11); 4382 p += 4; 4383 } 4384 if (static_chain) 4385 { 4386 write_insn<big_endian>(p, ld_11_2 + l(off + 16)); 4387 p += 4; 4388 } 4389 write_insn<big_endian>(p, ld_2_2 + l(off + 8)); 4390 p += 4; 4391 } 4392 } 4393 if (thread_safe && !use_fake_dep) 4394 { 4395 write_insn<big_endian>(p, cmpldi_2_0); 4396 p += 4; 4397 write_insn<big_endian>(p, bnectr_p4); 4398 p += 4; 4399 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc)); 4400 } 4401 else 4402 write_insn<big_endian>(p, bctr); 4403 } 4404 } 4405 4406 // Write out long branch stubs. 4407 typename Branch_stub_entries::const_iterator bs; 4408 for (bs = this->long_branch_stubs_.begin(); 4409 bs != this->long_branch_stubs_.end(); 4410 ++bs) 4411 { 4412 p = oview + this->plt_size_ + bs->second; 4413 Address loc = this->stub_address() + this->plt_size_ + bs->second; 4414 Address delta = bs->first.dest_ - loc; 4415 if (delta + (1 << 25) < 2 << 25) 4416 write_insn<big_endian>(p, b | (delta & 0x3fffffc)); 4417 else 4418 { 4419 Address brlt_addr 4420 = this->targ_->find_branch_lookup_table(bs->first.dest_); 4421 gold_assert(brlt_addr != invalid_address); 4422 brlt_addr += this->targ_->brlt_section()->address(); 4423 Address got_addr = got_os_addr + bs->first.toc_base_off_; 4424 Address brltoff = brlt_addr - got_addr; 4425 if (ha(brltoff) == 0) 4426 { 4427 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4; 4428 } 4429 else 4430 { 4431 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4; 4432 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4; 4433 } 4434 write_insn<big_endian>(p, mtctr_12), p += 4; 4435 write_insn<big_endian>(p, bctr); 4436 } 4437 } 4438 } 4439 else 4440 { 4441 if (!this->plt_call_stubs_.empty()) 4442 { 4443 // The base address of the .plt section. 4444 Address plt_base = this->targ_->plt_section()->address(); 4445 Address iplt_base = invalid_address; 4446 // The address of _GLOBAL_OFFSET_TABLE_. 4447 Address g_o_t = invalid_address; 4448 4449 // Write out plt call stubs. 4450 typename Plt_stub_entries::const_iterator cs; 4451 for (cs = this->plt_call_stubs_.begin(); 4452 cs != this->plt_call_stubs_.end(); 4453 ++cs) 4454 { 4455 bool is_iplt; 4456 Address plt_addr = this->plt_off(cs, &is_iplt); 4457 if (is_iplt) 4458 { 4459 if (iplt_base == invalid_address) 4460 iplt_base = this->targ_->iplt_section()->address(); 4461 plt_addr += iplt_base; 4462 } 4463 else 4464 plt_addr += plt_base; 4465 4466 p = oview + cs->second; 4467 if (parameters->options().output_is_position_independent()) 4468 { 4469 Address got_addr; 4470 const Powerpc_relobj<size, big_endian>* ppcobj 4471 = (static_cast<const Powerpc_relobj<size, big_endian>*> 4472 (cs->first.object_)); 4473 if (ppcobj != NULL && cs->first.addend_ >= 32768) 4474 { 4475 unsigned int got2 = ppcobj->got2_shndx(); 4476 got_addr = ppcobj->get_output_section_offset(got2); 4477 gold_assert(got_addr != invalid_address); 4478 got_addr += (ppcobj->output_section(got2)->address() 4479 + cs->first.addend_); 4480 } 4481 else 4482 { 4483 if (g_o_t == invalid_address) 4484 { 4485 const Output_data_got_powerpc<size, big_endian>* got 4486 = this->targ_->got_section(); 4487 g_o_t = got->address() + got->g_o_t(); 4488 } 4489 got_addr = g_o_t; 4490 } 4491 4492 Address off = plt_addr - got_addr; 4493 if (ha(off) == 0) 4494 { 4495 write_insn<big_endian>(p + 0, lwz_11_30 + l(off)); 4496 write_insn<big_endian>(p + 4, mtctr_11); 4497 write_insn<big_endian>(p + 8, bctr); 4498 } 4499 else 4500 { 4501 write_insn<big_endian>(p + 0, addis_11_30 + ha(off)); 4502 write_insn<big_endian>(p + 4, lwz_11_11 + l(off)); 4503 write_insn<big_endian>(p + 8, mtctr_11); 4504 write_insn<big_endian>(p + 12, bctr); 4505 } 4506 } 4507 else 4508 { 4509 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr)); 4510 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr)); 4511 write_insn<big_endian>(p + 8, mtctr_11); 4512 write_insn<big_endian>(p + 12, bctr); 4513 } 4514 } 4515 } 4516 4517 // Write out long branch stubs. 4518 typename Branch_stub_entries::const_iterator bs; 4519 for (bs = this->long_branch_stubs_.begin(); 4520 bs != this->long_branch_stubs_.end(); 4521 ++bs) 4522 { 4523 p = oview + this->plt_size_ + bs->second; 4524 Address loc = this->stub_address() + this->plt_size_ + bs->second; 4525 Address delta = bs->first.dest_ - loc; 4526 if (delta + (1 << 25) < 2 << 25) 4527 write_insn<big_endian>(p, b | (delta & 0x3fffffc)); 4528 else if (!parameters->options().output_is_position_independent()) 4529 { 4530 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_)); 4531 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_)); 4532 write_insn<big_endian>(p + 8, mtctr_12); 4533 write_insn<big_endian>(p + 12, bctr); 4534 } 4535 else 4536 { 4537 delta -= 8; 4538 write_insn<big_endian>(p + 0, mflr_0); 4539 write_insn<big_endian>(p + 4, bcl_20_31); 4540 write_insn<big_endian>(p + 8, mflr_12); 4541 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta)); 4542 write_insn<big_endian>(p + 16, addi_12_12 + l(delta)); 4543 write_insn<big_endian>(p + 20, mtlr_0); 4544 write_insn<big_endian>(p + 24, mtctr_12); 4545 write_insn<big_endian>(p + 28, bctr); 4546 } 4547 } 4548 } 4549 } 4550 4551 // Write out .glink. 4552 4553 template<int size, bool big_endian> 4554 void 4555 Output_data_glink<size, big_endian>::do_write(Output_file* of) 4556 { 4557 const section_size_type off = this->offset(); 4558 const section_size_type oview_size = 4559 convert_to_section_size_type(this->data_size()); 4560 unsigned char* const oview = of->get_output_view(off, oview_size); 4561 unsigned char* p; 4562 4563 // The base address of the .plt section. 4564 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address; 4565 Address plt_base = this->targ_->plt_section()->address(); 4566 4567 if (size == 64) 4568 { 4569 if (this->end_branch_table_ != 0) 4570 { 4571 // Write pltresolve stub. 4572 p = oview; 4573 Address after_bcl = this->address() + 16; 4574 Address pltoff = plt_base - after_bcl; 4575 4576 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8; 4577 4578 if (this->targ_->abiversion() < 2) 4579 { 4580 write_insn<big_endian>(p, mflr_12), p += 4; 4581 write_insn<big_endian>(p, bcl_20_31), p += 4; 4582 write_insn<big_endian>(p, mflr_11), p += 4; 4583 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4; 4584 write_insn<big_endian>(p, mtlr_12), p += 4; 4585 write_insn<big_endian>(p, add_11_2_11), p += 4; 4586 write_insn<big_endian>(p, ld_12_11 + 0), p += 4; 4587 write_insn<big_endian>(p, ld_2_11 + 8), p += 4; 4588 write_insn<big_endian>(p, mtctr_12), p += 4; 4589 write_insn<big_endian>(p, ld_11_11 + 16), p += 4; 4590 } 4591 else 4592 { 4593 write_insn<big_endian>(p, mflr_0), p += 4; 4594 write_insn<big_endian>(p, bcl_20_31), p += 4; 4595 write_insn<big_endian>(p, mflr_11), p += 4; 4596 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4; 4597 write_insn<big_endian>(p, mtlr_0), p += 4; 4598 write_insn<big_endian>(p, sub_12_12_11), p += 4; 4599 write_insn<big_endian>(p, add_11_2_11), p += 4; 4600 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4; 4601 write_insn<big_endian>(p, ld_12_11 + 0), p += 4; 4602 write_insn<big_endian>(p, srdi_0_0_2), p += 4; 4603 write_insn<big_endian>(p, mtctr_12), p += 4; 4604 write_insn<big_endian>(p, ld_11_11 + 8), p += 4; 4605 } 4606 write_insn<big_endian>(p, bctr), p += 4; 4607 while (p < oview + this->pltresolve_size) 4608 write_insn<big_endian>(p, nop), p += 4; 4609 4610 // Write lazy link call stubs. 4611 uint32_t indx = 0; 4612 while (p < oview + this->end_branch_table_) 4613 { 4614 if (this->targ_->abiversion() < 2) 4615 { 4616 if (indx < 0x8000) 4617 { 4618 write_insn<big_endian>(p, li_0_0 + indx), p += 4; 4619 } 4620 else 4621 { 4622 write_insn<big_endian>(p, lis_0_0 + hi(indx)), p += 4; 4623 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4; 4624 } 4625 } 4626 uint32_t branch_off = 8 - (p - oview); 4627 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4; 4628 indx++; 4629 } 4630 } 4631 4632 Address plt_base = this->targ_->plt_section()->address(); 4633 Address iplt_base = invalid_address; 4634 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16; 4635 Address global_entry_base = this->address() + global_entry_off; 4636 typename Global_entry_stub_entries::const_iterator ge; 4637 for (ge = this->global_entry_stubs_.begin(); 4638 ge != this->global_entry_stubs_.end(); 4639 ++ge) 4640 { 4641 p = oview + global_entry_off + ge->second; 4642 Address plt_addr = ge->first->plt_offset(); 4643 if (ge->first->type() == elfcpp::STT_GNU_IFUNC 4644 && ge->first->can_use_relative_reloc(false)) 4645 { 4646 if (iplt_base == invalid_address) 4647 iplt_base = this->targ_->iplt_section()->address(); 4648 plt_addr += iplt_base; 4649 } 4650 else 4651 plt_addr += plt_base; 4652 Address my_addr = global_entry_base + ge->second; 4653 Address off = plt_addr - my_addr; 4654 4655 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0) 4656 gold_error(_("%s: linkage table error against `%s'"), 4657 ge->first->object()->name().c_str(), 4658 ge->first->demangled_name().c_str()); 4659 4660 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4; 4661 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4; 4662 write_insn<big_endian>(p, mtctr_12), p += 4; 4663 write_insn<big_endian>(p, bctr); 4664 } 4665 } 4666 else 4667 { 4668 const Output_data_got_powerpc<size, big_endian>* got 4669 = this->targ_->got_section(); 4670 // The address of _GLOBAL_OFFSET_TABLE_. 4671 Address g_o_t = got->address() + got->g_o_t(); 4672 4673 // Write out pltresolve branch table. 4674 p = oview; 4675 unsigned int the_end = oview_size - this->pltresolve_size; 4676 unsigned char* end_p = oview + the_end; 4677 while (p < end_p - 8 * 4) 4678 write_insn<big_endian>(p, b + end_p - p), p += 4; 4679 while (p < end_p) 4680 write_insn<big_endian>(p, nop), p += 4; 4681 4682 // Write out pltresolve call stub. 4683 if (parameters->options().output_is_position_independent()) 4684 { 4685 Address res0_off = 0; 4686 Address after_bcl_off = the_end + 12; 4687 Address bcl_res0 = after_bcl_off - res0_off; 4688 4689 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0)); 4690 write_insn<big_endian>(p + 4, mflr_0); 4691 write_insn<big_endian>(p + 8, bcl_20_31); 4692 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0)); 4693 write_insn<big_endian>(p + 16, mflr_12); 4694 write_insn<big_endian>(p + 20, mtlr_0); 4695 write_insn<big_endian>(p + 24, sub_11_11_12); 4696 4697 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address()); 4698 4699 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl)); 4700 if (ha(got_bcl) == ha(got_bcl + 4)) 4701 { 4702 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl)); 4703 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4)); 4704 } 4705 else 4706 { 4707 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl)); 4708 write_insn<big_endian>(p + 36, lwz_12_12 + 4); 4709 } 4710 write_insn<big_endian>(p + 40, mtctr_0); 4711 write_insn<big_endian>(p + 44, add_0_11_11); 4712 write_insn<big_endian>(p + 48, add_11_0_11); 4713 write_insn<big_endian>(p + 52, bctr); 4714 write_insn<big_endian>(p + 56, nop); 4715 write_insn<big_endian>(p + 60, nop); 4716 } 4717 else 4718 { 4719 Address res0 = this->address(); 4720 4721 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4)); 4722 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0)); 4723 if (ha(g_o_t + 4) == ha(g_o_t + 8)) 4724 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4)); 4725 else 4726 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4)); 4727 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0)); 4728 write_insn<big_endian>(p + 16, mtctr_0); 4729 write_insn<big_endian>(p + 20, add_0_11_11); 4730 if (ha(g_o_t + 4) == ha(g_o_t + 8)) 4731 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8)); 4732 else 4733 write_insn<big_endian>(p + 24, lwz_12_12 + 4); 4734 write_insn<big_endian>(p + 28, add_11_0_11); 4735 write_insn<big_endian>(p + 32, bctr); 4736 write_insn<big_endian>(p + 36, nop); 4737 write_insn<big_endian>(p + 40, nop); 4738 write_insn<big_endian>(p + 44, nop); 4739 write_insn<big_endian>(p + 48, nop); 4740 write_insn<big_endian>(p + 52, nop); 4741 write_insn<big_endian>(p + 56, nop); 4742 write_insn<big_endian>(p + 60, nop); 4743 } 4744 p += 64; 4745 } 4746 4747 of->write_output_view(off, oview_size, oview); 4748 } 4749 4750 4751 // A class to handle linker generated save/restore functions. 4752 4753 template<int size, bool big_endian> 4754 class Output_data_save_res : public Output_section_data_build 4755 { 4756 public: 4757 Output_data_save_res(Symbol_table* symtab); 4758 4759 protected: 4760 // Write to a map file. 4761 void 4762 do_print_to_mapfile(Mapfile* mapfile) const 4763 { mapfile->print_output_data(this, _("** save/restore")); } 4764 4765 void 4766 do_write(Output_file*); 4767 4768 private: 4769 // The maximum size of save/restore contents. 4770 static const unsigned int savres_max = 218*4; 4771 4772 void 4773 savres_define(Symbol_table* symtab, 4774 const char *name, 4775 unsigned int lo, unsigned int hi, 4776 unsigned char* write_ent(unsigned char*, int), 4777 unsigned char* write_tail(unsigned char*, int)); 4778 4779 unsigned char *contents_; 4780 }; 4781 4782 template<bool big_endian> 4783 static unsigned char* 4784 savegpr0(unsigned char* p, int r) 4785 { 4786 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8; 4787 write_insn<big_endian>(p, insn); 4788 return p + 4; 4789 } 4790 4791 template<bool big_endian> 4792 static unsigned char* 4793 savegpr0_tail(unsigned char* p, int r) 4794 { 4795 p = savegpr0<big_endian>(p, r); 4796 uint32_t insn = std_0_1 + 16; 4797 write_insn<big_endian>(p, insn); 4798 p = p + 4; 4799 write_insn<big_endian>(p, blr); 4800 return p + 4; 4801 } 4802 4803 template<bool big_endian> 4804 static unsigned char* 4805 restgpr0(unsigned char* p, int r) 4806 { 4807 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8; 4808 write_insn<big_endian>(p, insn); 4809 return p + 4; 4810 } 4811 4812 template<bool big_endian> 4813 static unsigned char* 4814 restgpr0_tail(unsigned char* p, int r) 4815 { 4816 uint32_t insn = ld_0_1 + 16; 4817 write_insn<big_endian>(p, insn); 4818 p = p + 4; 4819 p = restgpr0<big_endian>(p, r); 4820 write_insn<big_endian>(p, mtlr_0); 4821 p = p + 4; 4822 if (r == 29) 4823 { 4824 p = restgpr0<big_endian>(p, 30); 4825 p = restgpr0<big_endian>(p, 31); 4826 } 4827 write_insn<big_endian>(p, blr); 4828 return p + 4; 4829 } 4830 4831 template<bool big_endian> 4832 static unsigned char* 4833 savegpr1(unsigned char* p, int r) 4834 { 4835 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8; 4836 write_insn<big_endian>(p, insn); 4837 return p + 4; 4838 } 4839 4840 template<bool big_endian> 4841 static unsigned char* 4842 savegpr1_tail(unsigned char* p, int r) 4843 { 4844 p = savegpr1<big_endian>(p, r); 4845 write_insn<big_endian>(p, blr); 4846 return p + 4; 4847 } 4848 4849 template<bool big_endian> 4850 static unsigned char* 4851 restgpr1(unsigned char* p, int r) 4852 { 4853 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8; 4854 write_insn<big_endian>(p, insn); 4855 return p + 4; 4856 } 4857 4858 template<bool big_endian> 4859 static unsigned char* 4860 restgpr1_tail(unsigned char* p, int r) 4861 { 4862 p = restgpr1<big_endian>(p, r); 4863 write_insn<big_endian>(p, blr); 4864 return p + 4; 4865 } 4866 4867 template<bool big_endian> 4868 static unsigned char* 4869 savefpr(unsigned char* p, int r) 4870 { 4871 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8; 4872 write_insn<big_endian>(p, insn); 4873 return p + 4; 4874 } 4875 4876 template<bool big_endian> 4877 static unsigned char* 4878 savefpr0_tail(unsigned char* p, int r) 4879 { 4880 p = savefpr<big_endian>(p, r); 4881 write_insn<big_endian>(p, std_0_1 + 16); 4882 p = p + 4; 4883 write_insn<big_endian>(p, blr); 4884 return p + 4; 4885 } 4886 4887 template<bool big_endian> 4888 static unsigned char* 4889 restfpr(unsigned char* p, int r) 4890 { 4891 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8; 4892 write_insn<big_endian>(p, insn); 4893 return p + 4; 4894 } 4895 4896 template<bool big_endian> 4897 static unsigned char* 4898 restfpr0_tail(unsigned char* p, int r) 4899 { 4900 write_insn<big_endian>(p, ld_0_1 + 16); 4901 p = p + 4; 4902 p = restfpr<big_endian>(p, r); 4903 write_insn<big_endian>(p, mtlr_0); 4904 p = p + 4; 4905 if (r == 29) 4906 { 4907 p = restfpr<big_endian>(p, 30); 4908 p = restfpr<big_endian>(p, 31); 4909 } 4910 write_insn<big_endian>(p, blr); 4911 return p + 4; 4912 } 4913 4914 template<bool big_endian> 4915 static unsigned char* 4916 savefpr1_tail(unsigned char* p, int r) 4917 { 4918 p = savefpr<big_endian>(p, r); 4919 write_insn<big_endian>(p, blr); 4920 return p + 4; 4921 } 4922 4923 template<bool big_endian> 4924 static unsigned char* 4925 restfpr1_tail(unsigned char* p, int r) 4926 { 4927 p = restfpr<big_endian>(p, r); 4928 write_insn<big_endian>(p, blr); 4929 return p + 4; 4930 } 4931 4932 template<bool big_endian> 4933 static unsigned char* 4934 savevr(unsigned char* p, int r) 4935 { 4936 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16; 4937 write_insn<big_endian>(p, insn); 4938 p = p + 4; 4939 insn = stvx_0_12_0 + (r << 21); 4940 write_insn<big_endian>(p, insn); 4941 return p + 4; 4942 } 4943 4944 template<bool big_endian> 4945 static unsigned char* 4946 savevr_tail(unsigned char* p, int r) 4947 { 4948 p = savevr<big_endian>(p, r); 4949 write_insn<big_endian>(p, blr); 4950 return p + 4; 4951 } 4952 4953 template<bool big_endian> 4954 static unsigned char* 4955 restvr(unsigned char* p, int r) 4956 { 4957 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16; 4958 write_insn<big_endian>(p, insn); 4959 p = p + 4; 4960 insn = lvx_0_12_0 + (r << 21); 4961 write_insn<big_endian>(p, insn); 4962 return p + 4; 4963 } 4964 4965 template<bool big_endian> 4966 static unsigned char* 4967 restvr_tail(unsigned char* p, int r) 4968 { 4969 p = restvr<big_endian>(p, r); 4970 write_insn<big_endian>(p, blr); 4971 return p + 4; 4972 } 4973 4974 4975 template<int size, bool big_endian> 4976 Output_data_save_res<size, big_endian>::Output_data_save_res( 4977 Symbol_table* symtab) 4978 : Output_section_data_build(4), 4979 contents_(NULL) 4980 { 4981 this->savres_define(symtab, 4982 "_savegpr0_", 14, 31, 4983 savegpr0<big_endian>, savegpr0_tail<big_endian>); 4984 this->savres_define(symtab, 4985 "_restgpr0_", 14, 29, 4986 restgpr0<big_endian>, restgpr0_tail<big_endian>); 4987 this->savres_define(symtab, 4988 "_restgpr0_", 30, 31, 4989 restgpr0<big_endian>, restgpr0_tail<big_endian>); 4990 this->savres_define(symtab, 4991 "_savegpr1_", 14, 31, 4992 savegpr1<big_endian>, savegpr1_tail<big_endian>); 4993 this->savres_define(symtab, 4994 "_restgpr1_", 14, 31, 4995 restgpr1<big_endian>, restgpr1_tail<big_endian>); 4996 this->savres_define(symtab, 4997 "_savefpr_", 14, 31, 4998 savefpr<big_endian>, savefpr0_tail<big_endian>); 4999 this->savres_define(symtab, 5000 "_restfpr_", 14, 29, 5001 restfpr<big_endian>, restfpr0_tail<big_endian>); 5002 this->savres_define(symtab, 5003 "_restfpr_", 30, 31, 5004 restfpr<big_endian>, restfpr0_tail<big_endian>); 5005 this->savres_define(symtab, 5006 "._savef", 14, 31, 5007 savefpr<big_endian>, savefpr1_tail<big_endian>); 5008 this->savres_define(symtab, 5009 "._restf", 14, 31, 5010 restfpr<big_endian>, restfpr1_tail<big_endian>); 5011 this->savres_define(symtab, 5012 "_savevr_", 20, 31, 5013 savevr<big_endian>, savevr_tail<big_endian>); 5014 this->savres_define(symtab, 5015 "_restvr_", 20, 31, 5016 restvr<big_endian>, restvr_tail<big_endian>); 5017 } 5018 5019 template<int size, bool big_endian> 5020 void 5021 Output_data_save_res<size, big_endian>::savres_define( 5022 Symbol_table* symtab, 5023 const char *name, 5024 unsigned int lo, unsigned int hi, 5025 unsigned char* write_ent(unsigned char*, int), 5026 unsigned char* write_tail(unsigned char*, int)) 5027 { 5028 size_t len = strlen(name); 5029 bool writing = false; 5030 char sym[16]; 5031 5032 memcpy(sym, name, len); 5033 sym[len + 2] = 0; 5034 5035 for (unsigned int i = lo; i <= hi; i++) 5036 { 5037 sym[len + 0] = i / 10 + '0'; 5038 sym[len + 1] = i % 10 + '0'; 5039 Symbol* gsym = symtab->lookup(sym); 5040 bool refd = gsym != NULL && gsym->is_undefined(); 5041 writing = writing || refd; 5042 if (writing) 5043 { 5044 if (this->contents_ == NULL) 5045 this->contents_ = new unsigned char[this->savres_max]; 5046 5047 section_size_type value = this->current_data_size(); 5048 unsigned char* p = this->contents_ + value; 5049 if (i != hi) 5050 p = write_ent(p, i); 5051 else 5052 p = write_tail(p, i); 5053 section_size_type cur_size = p - this->contents_; 5054 this->set_current_data_size(cur_size); 5055 if (refd) 5056 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED, 5057 this, value, cur_size - value, 5058 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL, 5059 elfcpp::STV_HIDDEN, 0, false, false); 5060 } 5061 } 5062 } 5063 5064 // Write out save/restore. 5065 5066 template<int size, bool big_endian> 5067 void 5068 Output_data_save_res<size, big_endian>::do_write(Output_file* of) 5069 { 5070 const section_size_type off = this->offset(); 5071 const section_size_type oview_size = 5072 convert_to_section_size_type(this->data_size()); 5073 unsigned char* const oview = of->get_output_view(off, oview_size); 5074 memcpy(oview, this->contents_, oview_size); 5075 of->write_output_view(off, oview_size, oview); 5076 } 5077 5078 5079 // Create the glink section. 5080 5081 template<int size, bool big_endian> 5082 void 5083 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout) 5084 { 5085 if (this->glink_ == NULL) 5086 { 5087 this->glink_ = new Output_data_glink<size, big_endian>(this); 5088 this->glink_->add_eh_frame(layout); 5089 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS, 5090 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR, 5091 this->glink_, ORDER_TEXT, false); 5092 } 5093 } 5094 5095 // Create a PLT entry for a global symbol. 5096 5097 template<int size, bool big_endian> 5098 void 5099 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab, 5100 Layout* layout, 5101 Symbol* gsym) 5102 { 5103 if (gsym->type() == elfcpp::STT_GNU_IFUNC 5104 && gsym->can_use_relative_reloc(false)) 5105 { 5106 if (this->iplt_ == NULL) 5107 this->make_iplt_section(symtab, layout); 5108 this->iplt_->add_ifunc_entry(gsym); 5109 } 5110 else 5111 { 5112 if (this->plt_ == NULL) 5113 this->make_plt_section(symtab, layout); 5114 this->plt_->add_entry(gsym); 5115 } 5116 } 5117 5118 // Make a PLT entry for a local STT_GNU_IFUNC symbol. 5119 5120 template<int size, bool big_endian> 5121 void 5122 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry( 5123 Symbol_table* symtab, 5124 Layout* layout, 5125 Sized_relobj_file<size, big_endian>* relobj, 5126 unsigned int r_sym) 5127 { 5128 if (this->iplt_ == NULL) 5129 this->make_iplt_section(symtab, layout); 5130 this->iplt_->add_local_ifunc_entry(relobj, r_sym); 5131 } 5132 5133 // Return the number of entries in the PLT. 5134 5135 template<int size, bool big_endian> 5136 unsigned int 5137 Target_powerpc<size, big_endian>::plt_entry_count() const 5138 { 5139 if (this->plt_ == NULL) 5140 return 0; 5141 return this->plt_->entry_count(); 5142 } 5143 5144 // Create a GOT entry for local dynamic __tls_get_addr calls. 5145 5146 template<int size, bool big_endian> 5147 unsigned int 5148 Target_powerpc<size, big_endian>::tlsld_got_offset( 5149 Symbol_table* symtab, 5150 Layout* layout, 5151 Sized_relobj_file<size, big_endian>* object) 5152 { 5153 if (this->tlsld_got_offset_ == -1U) 5154 { 5155 gold_assert(symtab != NULL && layout != NULL && object != NULL); 5156 Reloc_section* rela_dyn = this->rela_dyn_section(layout); 5157 Output_data_got_powerpc<size, big_endian>* got 5158 = this->got_section(symtab, layout); 5159 unsigned int got_offset = got->add_constant_pair(0, 0); 5160 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got, 5161 got_offset, 0); 5162 this->tlsld_got_offset_ = got_offset; 5163 } 5164 return this->tlsld_got_offset_; 5165 } 5166 5167 // Get the Reference_flags for a particular relocation. 5168 5169 template<int size, bool big_endian> 5170 int 5171 Target_powerpc<size, big_endian>::Scan::get_reference_flags( 5172 unsigned int r_type, 5173 const Target_powerpc* target) 5174 { 5175 int ref = 0; 5176 5177 switch (r_type) 5178 { 5179 case elfcpp::R_POWERPC_NONE: 5180 case elfcpp::R_POWERPC_GNU_VTINHERIT: 5181 case elfcpp::R_POWERPC_GNU_VTENTRY: 5182 case elfcpp::R_PPC64_TOC: 5183 // No symbol reference. 5184 break; 5185 5186 case elfcpp::R_PPC64_ADDR64: 5187 case elfcpp::R_PPC64_UADDR64: 5188 case elfcpp::R_POWERPC_ADDR32: 5189 case elfcpp::R_POWERPC_UADDR32: 5190 case elfcpp::R_POWERPC_ADDR16: 5191 case elfcpp::R_POWERPC_UADDR16: 5192 case elfcpp::R_POWERPC_ADDR16_LO: 5193 case elfcpp::R_POWERPC_ADDR16_HI: 5194 case elfcpp::R_POWERPC_ADDR16_HA: 5195 ref = Symbol::ABSOLUTE_REF; 5196 break; 5197 5198 case elfcpp::R_POWERPC_ADDR24: 5199 case elfcpp::R_POWERPC_ADDR14: 5200 case elfcpp::R_POWERPC_ADDR14_BRTAKEN: 5201 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN: 5202 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF; 5203 break; 5204 5205 case elfcpp::R_PPC64_REL64: 5206 case elfcpp::R_POWERPC_REL32: 5207 case elfcpp::R_PPC_LOCAL24PC: 5208 case elfcpp::R_POWERPC_REL16: 5209 case elfcpp::R_POWERPC_REL16_LO: 5210 case elfcpp::R_POWERPC_REL16_HI: 5211 case elfcpp::R_POWERPC_REL16_HA: 5212 ref = Symbol::RELATIVE_REF; 5213 break; 5214 5215 case elfcpp::R_POWERPC_REL24: 5216 case elfcpp::R_PPC_PLTREL24: 5217 case elfcpp::R_POWERPC_REL14: 5218 case elfcpp::R_POWERPC_REL14_BRTAKEN: 5219 case elfcpp::R_POWERPC_REL14_BRNTAKEN: 5220 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF; 5221 break; 5222 5223 case elfcpp::R_POWERPC_GOT16: 5224 case elfcpp::R_POWERPC_GOT16_LO: 5225 case elfcpp::R_POWERPC_GOT16_HI: 5226 case elfcpp::R_POWERPC_GOT16_HA: 5227 case elfcpp::R_PPC64_GOT16_DS: 5228 case elfcpp::R_PPC64_GOT16_LO_DS: 5229 case elfcpp::R_PPC64_TOC16: 5230 case elfcpp::R_PPC64_TOC16_LO: 5231 case elfcpp::R_PPC64_TOC16_HI: 5232 case elfcpp::R_PPC64_TOC16_HA: 5233 case elfcpp::R_PPC64_TOC16_DS: 5234 case elfcpp::R_PPC64_TOC16_LO_DS: 5235 // Absolute in GOT. 5236 ref = Symbol::ABSOLUTE_REF; 5237 break; 5238 5239 case elfcpp::R_POWERPC_GOT_TPREL16: 5240 case elfcpp::R_POWERPC_TLS: 5241 ref = Symbol::TLS_REF; 5242 break; 5243 5244 case elfcpp::R_POWERPC_COPY: 5245 case elfcpp::R_POWERPC_GLOB_DAT: 5246 case elfcpp::R_POWERPC_JMP_SLOT: 5247 case elfcpp::R_POWERPC_RELATIVE: 5248 case elfcpp::R_POWERPC_DTPMOD: 5249 default: 5250 // Not expected. We will give an error later. 5251 break; 5252 } 5253 5254 if (size == 64 && target->abiversion() < 2) 5255 ref |= Symbol::FUNC_DESC_ABI; 5256 return ref; 5257 } 5258 5259 // Report an unsupported relocation against a local symbol. 5260 5261 template<int size, bool big_endian> 5262 void 5263 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local( 5264 Sized_relobj_file<size, big_endian>* object, 5265 unsigned int r_type) 5266 { 5267 gold_error(_("%s: unsupported reloc %u against local symbol"), 5268 object->name().c_str(), r_type); 5269 } 5270 5271 // We are about to emit a dynamic relocation of type R_TYPE. If the 5272 // dynamic linker does not support it, issue an error. 5273 5274 template<int size, bool big_endian> 5275 void 5276 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object, 5277 unsigned int r_type) 5278 { 5279 gold_assert(r_type != elfcpp::R_POWERPC_NONE); 5280 5281 // These are the relocation types supported by glibc for both 32-bit 5282 // and 64-bit powerpc. 5283 switch (r_type) 5284 { 5285 case elfcpp::R_POWERPC_NONE: 5286 case elfcpp::R_POWERPC_RELATIVE: 5287 case elfcpp::R_POWERPC_GLOB_DAT: 5288 case elfcpp::R_POWERPC_DTPMOD: 5289 case elfcpp::R_POWERPC_DTPREL: 5290 case elfcpp::R_POWERPC_TPREL: 5291 case elfcpp::R_POWERPC_JMP_SLOT: 5292 case elfcpp::R_POWERPC_COPY: 5293 case elfcpp::R_POWERPC_IRELATIVE: 5294 case elfcpp::R_POWERPC_ADDR32: 5295 case elfcpp::R_POWERPC_UADDR32: 5296 case elfcpp::R_POWERPC_ADDR24: 5297 case elfcpp::R_POWERPC_ADDR16: 5298 case elfcpp::R_POWERPC_UADDR16: 5299 case elfcpp::R_POWERPC_ADDR16_LO: 5300 case elfcpp::R_POWERPC_ADDR16_HI: 5301 case elfcpp::R_POWERPC_ADDR16_HA: 5302 case elfcpp::R_POWERPC_ADDR14: 5303 case elfcpp::R_POWERPC_ADDR14_BRTAKEN: 5304 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN: 5305 case elfcpp::R_POWERPC_REL32: 5306 case elfcpp::R_POWERPC_REL24: 5307 case elfcpp::R_POWERPC_TPREL16: 5308 case elfcpp::R_POWERPC_TPREL16_LO: 5309 case elfcpp::R_POWERPC_TPREL16_HI: 5310 case elfcpp::R_POWERPC_TPREL16_HA: 5311 return; 5312 5313 default: 5314 break; 5315 } 5316 5317 if (size == 64) 5318 { 5319 switch (r_type) 5320 { 5321 // These are the relocation types supported only on 64-bit. 5322 case elfcpp::R_PPC64_ADDR64: 5323 case elfcpp::R_PPC64_UADDR64: 5324 case elfcpp::R_PPC64_JMP_IREL: 5325 case elfcpp::R_PPC64_ADDR16_DS: 5326 case elfcpp::R_PPC64_ADDR16_LO_DS: 5327 case elfcpp::R_PPC64_ADDR16_HIGH: 5328 case elfcpp::R_PPC64_ADDR16_HIGHA: 5329 case elfcpp::R_PPC64_ADDR16_HIGHER: 5330 case elfcpp::R_PPC64_ADDR16_HIGHEST: 5331 case elfcpp::R_PPC64_ADDR16_HIGHERA: 5332 case elfcpp::R_PPC64_ADDR16_HIGHESTA: 5333 case elfcpp::R_PPC64_REL64: 5334 case elfcpp::R_POWERPC_ADDR30: 5335 case elfcpp::R_PPC64_TPREL16_DS: 5336 case elfcpp::R_PPC64_TPREL16_LO_DS: 5337 case elfcpp::R_PPC64_TPREL16_HIGH: 5338 case elfcpp::R_PPC64_TPREL16_HIGHA: 5339 case elfcpp::R_PPC64_TPREL16_HIGHER: 5340 case elfcpp::R_PPC64_TPREL16_HIGHEST: 5341 case elfcpp::R_PPC64_TPREL16_HIGHERA: 5342 case elfcpp::R_PPC64_TPREL16_HIGHESTA: 5343 return; 5344 5345 default: 5346 break; 5347 } 5348 } 5349 else 5350 { 5351 switch (r_type) 5352 { 5353 // These are the relocation types supported only on 32-bit. 5354 // ??? glibc ld.so doesn't need to support these. 5355 case elfcpp::R_POWERPC_DTPREL16: 5356 case elfcpp::R_POWERPC_DTPREL16_LO: 5357 case elfcpp::R_POWERPC_DTPREL16_HI: 5358 case elfcpp::R_POWERPC_DTPREL16_HA: 5359 return; 5360 5361 default: 5362 break; 5363 } 5364 } 5365 5366 // This prevents us from issuing more than one error per reloc 5367 // section. But we can still wind up issuing more than one 5368 // error per object file. 5369 if (this->issued_non_pic_error_) 5370 return; 5371 gold_assert(parameters->options().output_is_position_independent()); 5372 object->error(_("requires unsupported dynamic reloc; " 5373 "recompile with -fPIC")); 5374 this->issued_non_pic_error_ = true; 5375 return; 5376 } 5377 5378 // Return whether we need to make a PLT entry for a relocation of the 5379 // given type against a STT_GNU_IFUNC symbol. 5380 5381 template<int size, bool big_endian> 5382 bool 5383 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc( 5384 Target_powerpc<size, big_endian>* target, 5385 Sized_relobj_file<size, big_endian>* object, 5386 unsigned int r_type, 5387 bool report_err) 5388 { 5389 // In non-pic code any reference will resolve to the plt call stub 5390 // for the ifunc symbol. 5391 if ((size == 32 || target->abiversion() >= 2) 5392 && !parameters->options().output_is_position_independent()) 5393 return true; 5394 5395 switch (r_type) 5396 { 5397 // Word size refs from data sections are OK, but don't need a PLT entry. 5398 case elfcpp::R_POWERPC_ADDR32: 5399 case elfcpp::R_POWERPC_UADDR32: 5400 if (size == 32) 5401 return false; 5402 break; 5403 5404 case elfcpp::R_PPC64_ADDR64: 5405 case elfcpp::R_PPC64_UADDR64: 5406 if (size == 64) 5407 return false; 5408 break; 5409 5410 // GOT refs are good, but also don't need a PLT entry. 5411 case elfcpp::R_POWERPC_GOT16: 5412 case elfcpp::R_POWERPC_GOT16_LO: 5413 case elfcpp::R_POWERPC_GOT16_HI: 5414 case elfcpp::R_POWERPC_GOT16_HA: 5415 case elfcpp::R_PPC64_GOT16_DS: 5416 case elfcpp::R_PPC64_GOT16_LO_DS: 5417 return false; 5418 5419 // Function calls are good, and these do need a PLT entry. 5420 case elfcpp::R_POWERPC_ADDR24: 5421 case elfcpp::R_POWERPC_ADDR14: 5422 case elfcpp::R_POWERPC_ADDR14_BRTAKEN: 5423 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN: 5424 case elfcpp::R_POWERPC_REL24: 5425 case elfcpp::R_PPC_PLTREL24: 5426 case elfcpp::R_POWERPC_REL14: 5427 case elfcpp::R_POWERPC_REL14_BRTAKEN: 5428 case elfcpp::R_POWERPC_REL14_BRNTAKEN: 5429 return true; 5430 5431 default: 5432 break; 5433 } 5434 5435 // Anything else is a problem. 5436 // If we are building a static executable, the libc startup function 5437 // responsible for applying indirect function relocations is going 5438 // to complain about the reloc type. 5439 // If we are building a dynamic executable, we will have a text 5440 // relocation. The dynamic loader will set the text segment 5441 // writable and non-executable to apply text relocations. So we'll 5442 // segfault when trying to run the indirection function to resolve 5443 // the reloc. 5444 if (report_err) 5445 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"), 5446 object->name().c_str(), r_type); 5447 return false; 5448 } 5449 5450 // Scan a relocation for a local symbol. 5451 5452 template<int size, bool big_endian> 5453 inline void 5454 Target_powerpc<size, big_endian>::Scan::local( 5455 Symbol_table* symtab, 5456 Layout* layout, 5457 Target_powerpc<size, big_endian>* target, 5458 Sized_relobj_file<size, big_endian>* object, 5459 unsigned int data_shndx, 5460 Output_section* output_section, 5461 const elfcpp::Rela<size, big_endian>& reloc, 5462 unsigned int r_type, 5463 const elfcpp::Sym<size, big_endian>& lsym, 5464 bool is_discarded) 5465 { 5466 this->maybe_skip_tls_get_addr_call(r_type, NULL); 5467 5468 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD) 5469 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD)) 5470 { 5471 this->expect_tls_get_addr_call(); 5472 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true); 5473 if (tls_type != tls::TLSOPT_NONE) 5474 this->skip_next_tls_get_addr_call(); 5475 } 5476 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD) 5477 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD)) 5478 { 5479 this->expect_tls_get_addr_call(); 5480 const tls::Tls_optimization tls_type = target->optimize_tls_ld(); 5481 if (tls_type != tls::TLSOPT_NONE) 5482 this->skip_next_tls_get_addr_call(); 5483 } 5484 5485 Powerpc_relobj<size, big_endian>* ppc_object 5486 = static_cast<Powerpc_relobj<size, big_endian>*>(object); 5487 5488 if (is_discarded) 5489 { 5490 if (size == 64 5491 && data_shndx == ppc_object->opd_shndx() 5492 && r_type == elfcpp::R_PPC64_ADDR64) 5493 ppc_object->set_opd_discard(reloc.get_r_offset()); 5494 return; 5495 } 5496 5497 // A local STT_GNU_IFUNC symbol may require a PLT entry. 5498 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC; 5499 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true)) 5500 { 5501 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info()); 5502 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(), 5503 r_type, r_sym, reloc.get_r_addend()); 5504 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym); 5505 } 5506 5507 switch (r_type) 5508 { 5509 case elfcpp::R_POWERPC_NONE: 5510 case elfcpp::R_POWERPC_GNU_VTINHERIT: 5511 case elfcpp::R_POWERPC_GNU_VTENTRY: 5512 case elfcpp::R_PPC64_TOCSAVE: 5513 case elfcpp::R_POWERPC_TLS: 5514 break; 5515 5516 case elfcpp::R_PPC64_TOC: 5517 { 5518 Output_data_got_powerpc<size, big_endian>* got 5519 = target->got_section(symtab, layout); 5520 if (parameters->options().output_is_position_independent()) 5521 { 5522 Address off = reloc.get_r_offset(); 5523 if (size == 64 5524 && target->abiversion() < 2 5525 && data_shndx == ppc_object->opd_shndx() 5526 && ppc_object->get_opd_discard(off - 8)) 5527 break; 5528 5529 Reloc_section* rela_dyn = target->rela_dyn_section(layout); 5530 Powerpc_relobj<size, big_endian>* symobj = ppc_object; 5531 rela_dyn->add_output_section_relative(got->output_section(), 5532 elfcpp::R_POWERPC_RELATIVE, 5533 output_section, 5534 object, data_shndx, off, 5535 symobj->toc_base_offset()); 5536 } 5537 } 5538 break; 5539 5540 case elfcpp::R_PPC64_ADDR64: 5541 case elfcpp::R_PPC64_UADDR64: 5542 case elfcpp::R_POWERPC_ADDR32: 5543 case elfcpp::R_POWERPC_UADDR32: 5544 case elfcpp::R_POWERPC_ADDR24: 5545 case elfcpp::R_POWERPC_ADDR16: 5546 case elfcpp::R_POWERPC_ADDR16_LO: 5547 case elfcpp::R_POWERPC_ADDR16_HI: 5548 case elfcpp::R_POWERPC_ADDR16_HA: 5549 case elfcpp::R_POWERPC_UADDR16: 5550 case elfcpp::R_PPC64_ADDR16_HIGH: 5551 case elfcpp::R_PPC64_ADDR16_HIGHA: 5552 case elfcpp::R_PPC64_ADDR16_HIGHER: 5553 case elfcpp::R_PPC64_ADDR16_HIGHERA: 5554 case elfcpp::R_PPC64_ADDR16_HIGHEST: 5555 case elfcpp::R_PPC64_ADDR16_HIGHESTA: 5556 case elfcpp::R_PPC64_ADDR16_DS: 5557 case elfcpp::R_PPC64_ADDR16_LO_DS: 5558 case elfcpp::R_POWERPC_ADDR14: 5559 case elfcpp::R_POWERPC_ADDR14_BRTAKEN: 5560 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN: 5561 // If building a shared library (or a position-independent 5562 // executable), we need to create a dynamic relocation for 5563 // this location. 5564 if (parameters->options().output_is_position_independent() 5565 || (size == 64 && is_ifunc && target->abiversion() < 2)) 5566 { 5567 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout, 5568 is_ifunc); 5569 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info()); 5570 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32) 5571 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64)) 5572 { 5573 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE 5574 : elfcpp::R_POWERPC_RELATIVE); 5575 rela_dyn->add_local_relative(object, r_sym, dynrel, 5576 output_section, data_shndx, 5577 reloc.get_r_offset(), 5578 reloc.get_r_addend(), false); 5579 } 5580 else if (lsym.get_st_type() != elfcpp::STT_SECTION) 5581 { 5582 check_non_pic(object, r_type); 5583 rela_dyn->add_local(object, r_sym, r_type, output_section, 5584 data_shndx, reloc.get_r_offset(), 5585 reloc.get_r_addend()); 5586 } 5587 else 5588 { 5589 gold_assert(lsym.get_st_value() == 0); 5590 unsigned int shndx = lsym.get_st_shndx(); 5591 bool is_ordinary; 5592 shndx = object->adjust_sym_shndx(r_sym, shndx, 5593 &is_ordinary); 5594 if (!is_ordinary) 5595 object->error(_("section symbol %u has bad shndx %u"), 5596 r_sym, shndx); 5597 else 5598 rela_dyn->add_local_section(object, shndx, r_type, 5599 output_section, data_shndx, 5600 reloc.get_r_offset()); 5601 } 5602 } 5603 break; 5604 5605 case elfcpp::R_POWERPC_REL24: 5606 case elfcpp::R_PPC_PLTREL24: 5607 case elfcpp::R_PPC_LOCAL24PC: 5608 case elfcpp::R_POWERPC_REL14: 5609 case elfcpp::R_POWERPC_REL14_BRTAKEN: 5610 case elfcpp::R_POWERPC_REL14_BRNTAKEN: 5611 if (!is_ifunc) 5612 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(), 5613 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()), 5614 reloc.get_r_addend()); 5615 break; 5616 5617 case elfcpp::R_PPC64_REL64: 5618 case elfcpp::R_POWERPC_REL32: 5619 case elfcpp::R_POWERPC_REL16: 5620 case elfcpp::R_POWERPC_REL16_LO: 5621 case elfcpp::R_POWERPC_REL16_HI: 5622 case elfcpp::R_POWERPC_REL16_HA: 5623 case elfcpp::R_POWERPC_SECTOFF: 5624 case elfcpp::R_POWERPC_SECTOFF_LO: 5625 case elfcpp::R_POWERPC_SECTOFF_HI: 5626 case elfcpp::R_POWERPC_SECTOFF_HA: 5627 case elfcpp::R_PPC64_SECTOFF_DS: 5628 case elfcpp::R_PPC64_SECTOFF_LO_DS: 5629 case elfcpp::R_POWERPC_TPREL16: 5630 case elfcpp::R_POWERPC_TPREL16_LO: 5631 case elfcpp::R_POWERPC_TPREL16_HI: 5632 case elfcpp::R_POWERPC_TPREL16_HA: 5633 case elfcpp::R_PPC64_TPREL16_DS: 5634 case elfcpp::R_PPC64_TPREL16_LO_DS: 5635 case elfcpp::R_PPC64_TPREL16_HIGH: 5636 case elfcpp::R_PPC64_TPREL16_HIGHA: 5637 case elfcpp::R_PPC64_TPREL16_HIGHER: 5638 case elfcpp::R_PPC64_TPREL16_HIGHERA: 5639 case elfcpp::R_PPC64_TPREL16_HIGHEST: 5640 case elfcpp::R_PPC64_TPREL16_HIGHESTA: 5641 case elfcpp::R_POWERPC_DTPREL16: 5642 case elfcpp::R_POWERPC_DTPREL16_LO: 5643 case elfcpp::R_POWERPC_DTPREL16_HI: 5644 case elfcpp::R_POWERPC_DTPREL16_HA: 5645 case elfcpp::R_PPC64_DTPREL16_DS: 5646 case elfcpp::R_PPC64_DTPREL16_LO_DS: 5647 case elfcpp::R_PPC64_DTPREL16_HIGH: 5648 case elfcpp::R_PPC64_DTPREL16_HIGHA: 5649 case elfcpp::R_PPC64_DTPREL16_HIGHER: 5650 case elfcpp::R_PPC64_DTPREL16_HIGHERA: 5651 case elfcpp::R_PPC64_DTPREL16_HIGHEST: 5652 case elfcpp::R_PPC64_DTPREL16_HIGHESTA: 5653 case elfcpp::R_PPC64_TLSGD: 5654 case elfcpp::R_PPC64_TLSLD: 5655 case elfcpp::R_PPC64_ADDR64_LOCAL: 5656 break; 5657 5658 case elfcpp::R_POWERPC_GOT16: 5659 case elfcpp::R_POWERPC_GOT16_LO: 5660 case elfcpp::R_POWERPC_GOT16_HI: 5661 case elfcpp::R_POWERPC_GOT16_HA: 5662 case elfcpp::R_PPC64_GOT16_DS: 5663 case elfcpp::R_PPC64_GOT16_LO_DS: 5664 { 5665 // The symbol requires a GOT entry. 5666 Output_data_got_powerpc<size, big_endian>* got 5667 = target->got_section(symtab, layout); 5668 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info()); 5669 5670 if (!parameters->options().output_is_position_independent()) 5671 { 5672 if (is_ifunc 5673 && (size == 32 || target->abiversion() >= 2)) 5674 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD); 5675 else 5676 got->add_local(object, r_sym, GOT_TYPE_STANDARD); 5677 } 5678 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD)) 5679 { 5680 // If we are generating a shared object or a pie, this 5681 // symbol's GOT entry will be set by a dynamic relocation. 5682 unsigned int off; 5683 off = got->add_constant(0); 5684 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off); 5685 5686 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout, 5687 is_ifunc); 5688 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE 5689 : elfcpp::R_POWERPC_RELATIVE); 5690 rela_dyn->add_local_relative(object, r_sym, dynrel, 5691 got, off, 0, false); 5692 } 5693 } 5694 break; 5695 5696 case elfcpp::R_PPC64_TOC16: 5697 case elfcpp::R_PPC64_TOC16_LO: 5698 case elfcpp::R_PPC64_TOC16_HI: 5699 case elfcpp::R_PPC64_TOC16_HA: 5700 case elfcpp::R_PPC64_TOC16_DS: 5701 case elfcpp::R_PPC64_TOC16_LO_DS: 5702 // We need a GOT section. 5703 target->got_section(symtab, layout); 5704 break; 5705 5706 case elfcpp::R_POWERPC_GOT_TLSGD16: 5707 case elfcpp::R_POWERPC_GOT_TLSGD16_LO: 5708 case elfcpp::R_POWERPC_GOT_TLSGD16_HI: 5709 case elfcpp::R_POWERPC_GOT_TLSGD16_HA: 5710 { 5711 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true); 5712 if (tls_type == tls::TLSOPT_NONE) 5713 { 5714 Output_data_got_powerpc<size, big_endian>* got 5715 = target->got_section(symtab, layout); 5716 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info()); 5717 Reloc_section* rela_dyn = target->rela_dyn_section(layout); 5718 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD, 5719 rela_dyn, elfcpp::R_POWERPC_DTPMOD); 5720 } 5721 else if (tls_type == tls::TLSOPT_TO_LE) 5722 { 5723 // no GOT relocs needed for Local Exec. 5724 } 5725 else 5726 gold_unreachable(); 5727 } 5728 break; 5729 5730 case elfcpp::R_POWERPC_GOT_TLSLD16: 5731 case elfcpp::R_POWERPC_GOT_TLSLD16_LO: 5732 case elfcpp::R_POWERPC_GOT_TLSLD16_HI: 5733 case elfcpp::R_POWERPC_GOT_TLSLD16_HA: 5734 { 5735 const tls::Tls_optimization tls_type = target->optimize_tls_ld(); 5736 if (tls_type == tls::TLSOPT_NONE) 5737 target->tlsld_got_offset(symtab, layout, object); 5738 else if (tls_type == tls::TLSOPT_TO_LE) 5739 { 5740 // no GOT relocs needed for Local Exec. 5741 if (parameters->options().emit_relocs()) 5742 { 5743 Output_section* os = layout->tls_segment()->first_section(); 5744 gold_assert(os != NULL); 5745 os->set_needs_symtab_index(); 5746 } 5747 } 5748 else 5749 gold_unreachable(); 5750 } 5751 break; 5752 5753 case elfcpp::R_POWERPC_GOT_DTPREL16: 5754 case elfcpp::R_POWERPC_GOT_DTPREL16_LO: 5755 case elfcpp::R_POWERPC_GOT_DTPREL16_HI: 5756 case elfcpp::R_POWERPC_GOT_DTPREL16_HA: 5757 { 5758 Output_data_got_powerpc<size, big_endian>* got 5759 = target->got_section(symtab, layout); 5760 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info()); 5761 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL); 5762 } 5763 break; 5764 5765 case elfcpp::R_POWERPC_GOT_TPREL16: 5766 case elfcpp::R_POWERPC_GOT_TPREL16_LO: 5767 case elfcpp::R_POWERPC_GOT_TPREL16_HI: 5768 case elfcpp::R_POWERPC_GOT_TPREL16_HA: 5769 { 5770 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true); 5771 if (tls_type == tls::TLSOPT_NONE) 5772 { 5773 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info()); 5774 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL)) 5775 { 5776 Output_data_got_powerpc<size, big_endian>* got 5777 = target->got_section(symtab, layout); 5778 unsigned int off = got->add_constant(0); 5779 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off); 5780 5781 Reloc_section* rela_dyn = target->rela_dyn_section(layout); 5782 rela_dyn->add_symbolless_local_addend(object, r_sym, 5783 elfcpp::R_POWERPC_TPREL, 5784 got, off, 0); 5785 } 5786 } 5787 else if (tls_type == tls::TLSOPT_TO_LE) 5788 { 5789 // no GOT relocs needed for Local Exec. 5790 } 5791 else 5792 gold_unreachable(); 5793 } 5794 break; 5795 5796 default: 5797 unsupported_reloc_local(object, r_type); 5798 break; 5799 } 5800 5801 switch (r_type) 5802 { 5803 case elfcpp::R_POWERPC_GOT_TLSLD16: 5804 case elfcpp::R_POWERPC_GOT_TLSGD16: 5805 case elfcpp::R_POWERPC_GOT_TPREL16: 5806 case elfcpp::R_POWERPC_GOT_DTPREL16: 5807 case elfcpp::R_POWERPC_GOT16: 5808 case elfcpp::R_PPC64_GOT16_DS: 5809 case elfcpp::R_PPC64_TOC16: 5810 case elfcpp::R_PPC64_TOC16_DS: 5811 ppc_object->set_has_small_toc_reloc(); 5812 default: 5813 break; 5814 } 5815 } 5816 5817 // Report an unsupported relocation against a global symbol. 5818 5819 template<int size, bool big_endian> 5820 void 5821 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global( 5822 Sized_relobj_file<size, big_endian>* object, 5823 unsigned int r_type, 5824 Symbol* gsym) 5825 { 5826 gold_error(_("%s: unsupported reloc %u against global symbol %s"), 5827 object->name().c_str(), r_type, gsym->demangled_name().c_str()); 5828 } 5829 5830 // Scan a relocation for a global symbol. 5831 5832 template<int size, bool big_endian> 5833 inline void 5834 Target_powerpc<size, big_endian>::Scan::global( 5835 Symbol_table* symtab, 5836 Layout* layout, 5837 Target_powerpc<size, big_endian>* target, 5838 Sized_relobj_file<size, big_endian>* object, 5839 unsigned int data_shndx, 5840 Output_section* output_section, 5841 const elfcpp::Rela<size, big_endian>& reloc, 5842 unsigned int r_type, 5843 Symbol* gsym) 5844 { 5845 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP) 5846 return; 5847 5848 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD) 5849 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD)) 5850 { 5851 this->expect_tls_get_addr_call(); 5852 const bool final = gsym->final_value_is_known(); 5853 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final); 5854 if (tls_type != tls::TLSOPT_NONE) 5855 this->skip_next_tls_get_addr_call(); 5856 } 5857 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD) 5858 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD)) 5859 { 5860 this->expect_tls_get_addr_call(); 5861 const tls::Tls_optimization tls_type = target->optimize_tls_ld(); 5862 if (tls_type != tls::TLSOPT_NONE) 5863 this->skip_next_tls_get_addr_call(); 5864 } 5865 5866 Powerpc_relobj<size, big_endian>* ppc_object 5867 = static_cast<Powerpc_relobj<size, big_endian>*>(object); 5868 5869 // A STT_GNU_IFUNC symbol may require a PLT entry. 5870 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC; 5871 bool pushed_ifunc = false; 5872 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true)) 5873 { 5874 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(), 5875 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()), 5876 reloc.get_r_addend()); 5877 target->make_plt_entry(symtab, layout, gsym); 5878 pushed_ifunc = true; 5879 } 5880 5881 switch (r_type) 5882 { 5883 case elfcpp::R_POWERPC_NONE: 5884 case elfcpp::R_POWERPC_GNU_VTINHERIT: 5885 case elfcpp::R_POWERPC_GNU_VTENTRY: 5886 case elfcpp::R_PPC_LOCAL24PC: 5887 case elfcpp::R_POWERPC_TLS: 5888 break; 5889 5890 case elfcpp::R_PPC64_TOC: 5891 { 5892 Output_data_got_powerpc<size, big_endian>* got 5893 = target->got_section(symtab, layout); 5894 if (parameters->options().output_is_position_independent()) 5895 { 5896 Address off = reloc.get_r_offset(); 5897 if (size == 64 5898 && data_shndx == ppc_object->opd_shndx() 5899 && ppc_object->get_opd_discard(off - 8)) 5900 break; 5901 5902 Reloc_section* rela_dyn = target->rela_dyn_section(layout); 5903 Powerpc_relobj<size, big_endian>* symobj = ppc_object; 5904 if (data_shndx != ppc_object->opd_shndx()) 5905 symobj = static_cast 5906 <Powerpc_relobj<size, big_endian>*>(gsym->object()); 5907 rela_dyn->add_output_section_relative(got->output_section(), 5908 elfcpp::R_POWERPC_RELATIVE, 5909 output_section, 5910 object, data_shndx, off, 5911 symobj->toc_base_offset()); 5912 } 5913 } 5914 break; 5915 5916 case elfcpp::R_PPC64_ADDR64: 5917 if (size == 64 5918 && target->abiversion() < 2 5919 && data_shndx == ppc_object->opd_shndx() 5920 && (gsym->is_defined_in_discarded_section() 5921 || gsym->object() != object)) 5922 { 5923 ppc_object->set_opd_discard(reloc.get_r_offset()); 5924 break; 5925 } 5926 // Fall thru 5927 case elfcpp::R_PPC64_UADDR64: 5928 case elfcpp::R_POWERPC_ADDR32: 5929 case elfcpp::R_POWERPC_UADDR32: 5930 case elfcpp::R_POWERPC_ADDR24: 5931 case elfcpp::R_POWERPC_ADDR16: 5932 case elfcpp::R_POWERPC_ADDR16_LO: 5933 case elfcpp::R_POWERPC_ADDR16_HI: 5934 case elfcpp::R_POWERPC_ADDR16_HA: 5935 case elfcpp::R_POWERPC_UADDR16: 5936 case elfcpp::R_PPC64_ADDR16_HIGH: 5937 case elfcpp::R_PPC64_ADDR16_HIGHA: 5938 case elfcpp::R_PPC64_ADDR16_HIGHER: 5939 case elfcpp::R_PPC64_ADDR16_HIGHERA: 5940 case elfcpp::R_PPC64_ADDR16_HIGHEST: 5941 case elfcpp::R_PPC64_ADDR16_HIGHESTA: 5942 case elfcpp::R_PPC64_ADDR16_DS: 5943 case elfcpp::R_PPC64_ADDR16_LO_DS: 5944 case elfcpp::R_POWERPC_ADDR14: 5945 case elfcpp::R_POWERPC_ADDR14_BRTAKEN: 5946 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN: 5947 { 5948 // Make a PLT entry if necessary. 5949 if (gsym->needs_plt_entry()) 5950 { 5951 // Since this is not a PC-relative relocation, we may be 5952 // taking the address of a function. In that case we need to 5953 // set the entry in the dynamic symbol table to the address of 5954 // the PLT call stub. 5955 bool need_ifunc_plt = false; 5956 if ((size == 32 || target->abiversion() >= 2) 5957 && gsym->is_from_dynobj() 5958 && !parameters->options().output_is_position_independent()) 5959 { 5960 gsym->set_needs_dynsym_value(); 5961 need_ifunc_plt = true; 5962 } 5963 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt)) 5964 { 5965 target->push_branch(ppc_object, data_shndx, 5966 reloc.get_r_offset(), r_type, 5967 elfcpp::elf_r_sym<size>(reloc.get_r_info()), 5968 reloc.get_r_addend()); 5969 target->make_plt_entry(symtab, layout, gsym); 5970 } 5971 } 5972 // Make a dynamic relocation if necessary. 5973 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)) 5974 || (size == 64 && is_ifunc && target->abiversion() < 2)) 5975 { 5976 if (!parameters->options().output_is_position_independent() 5977 && gsym->may_need_copy_reloc()) 5978 { 5979 target->copy_reloc(symtab, layout, object, 5980 data_shndx, output_section, gsym, reloc); 5981 } 5982 else if ((((size == 32 5983 && r_type == elfcpp::R_POWERPC_ADDR32) 5984 || (size == 64 5985 && r_type == elfcpp::R_PPC64_ADDR64 5986 && target->abiversion() >= 2)) 5987 && gsym->can_use_relative_reloc(false) 5988 && !(gsym->visibility() == elfcpp::STV_PROTECTED 5989 && parameters->options().shared())) 5990 || (size == 64 5991 && r_type == elfcpp::R_PPC64_ADDR64 5992 && target->abiversion() < 2 5993 && (gsym->can_use_relative_reloc(false) 5994 || data_shndx == ppc_object->opd_shndx()))) 5995 { 5996 Reloc_section* rela_dyn 5997 = target->rela_dyn_section(symtab, layout, is_ifunc); 5998 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE 5999 : elfcpp::R_POWERPC_RELATIVE); 6000 rela_dyn->add_symbolless_global_addend( 6001 gsym, dynrel, output_section, object, data_shndx, 6002 reloc.get_r_offset(), reloc.get_r_addend()); 6003 } 6004 else 6005 { 6006 Reloc_section* rela_dyn 6007 = target->rela_dyn_section(symtab, layout, is_ifunc); 6008 check_non_pic(object, r_type); 6009 rela_dyn->add_global(gsym, r_type, output_section, 6010 object, data_shndx, 6011 reloc.get_r_offset(), 6012 reloc.get_r_addend()); 6013 } 6014 } 6015 } 6016 break; 6017 6018 case elfcpp::R_PPC_PLTREL24: 6019 case elfcpp::R_POWERPC_REL24: 6020 if (!is_ifunc) 6021 { 6022 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(), 6023 r_type, 6024 elfcpp::elf_r_sym<size>(reloc.get_r_info()), 6025 reloc.get_r_addend()); 6026 if (gsym->needs_plt_entry() 6027 || (!gsym->final_value_is_known() 6028 && (gsym->is_undefined() 6029 || gsym->is_from_dynobj() 6030 || gsym->is_preemptible()))) 6031 target->make_plt_entry(symtab, layout, gsym); 6032 } 6033 // Fall thru 6034 6035 case elfcpp::R_PPC64_REL64: 6036 case elfcpp::R_POWERPC_REL32: 6037 // Make a dynamic relocation if necessary. 6038 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))) 6039 { 6040 if (!parameters->options().output_is_position_independent() 6041 && gsym->may_need_copy_reloc()) 6042 { 6043 target->copy_reloc(symtab, layout, object, 6044 data_shndx, output_section, gsym, 6045 reloc); 6046 } 6047 else 6048 { 6049 Reloc_section* rela_dyn 6050 = target->rela_dyn_section(symtab, layout, is_ifunc); 6051 check_non_pic(object, r_type); 6052 rela_dyn->add_global(gsym, r_type, output_section, object, 6053 data_shndx, reloc.get_r_offset(), 6054 reloc.get_r_addend()); 6055 } 6056 } 6057 break; 6058 6059 case elfcpp::R_POWERPC_REL14: 6060 case elfcpp::R_POWERPC_REL14_BRTAKEN: 6061 case elfcpp::R_POWERPC_REL14_BRNTAKEN: 6062 if (!is_ifunc) 6063 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(), 6064 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()), 6065 reloc.get_r_addend()); 6066 break; 6067 6068 case elfcpp::R_POWERPC_REL16: 6069 case elfcpp::R_POWERPC_REL16_LO: 6070 case elfcpp::R_POWERPC_REL16_HI: 6071 case elfcpp::R_POWERPC_REL16_HA: 6072 case elfcpp::R_POWERPC_SECTOFF: 6073 case elfcpp::R_POWERPC_SECTOFF_LO: 6074 case elfcpp::R_POWERPC_SECTOFF_HI: 6075 case elfcpp::R_POWERPC_SECTOFF_HA: 6076 case elfcpp::R_PPC64_SECTOFF_DS: 6077 case elfcpp::R_PPC64_SECTOFF_LO_DS: 6078 case elfcpp::R_POWERPC_TPREL16: 6079 case elfcpp::R_POWERPC_TPREL16_LO: 6080 case elfcpp::R_POWERPC_TPREL16_HI: 6081 case elfcpp::R_POWERPC_TPREL16_HA: 6082 case elfcpp::R_PPC64_TPREL16_DS: 6083 case elfcpp::R_PPC64_TPREL16_LO_DS: 6084 case elfcpp::R_PPC64_TPREL16_HIGH: 6085 case elfcpp::R_PPC64_TPREL16_HIGHA: 6086 case elfcpp::R_PPC64_TPREL16_HIGHER: 6087 case elfcpp::R_PPC64_TPREL16_HIGHERA: 6088 case elfcpp::R_PPC64_TPREL16_HIGHEST: 6089 case elfcpp::R_PPC64_TPREL16_HIGHESTA: 6090 case elfcpp::R_POWERPC_DTPREL16: 6091 case elfcpp::R_POWERPC_DTPREL16_LO: 6092 case elfcpp::R_POWERPC_DTPREL16_HI: 6093 case elfcpp::R_POWERPC_DTPREL16_HA: 6094 case elfcpp::R_PPC64_DTPREL16_DS: 6095 case elfcpp::R_PPC64_DTPREL16_LO_DS: 6096 case elfcpp::R_PPC64_DTPREL16_HIGH: 6097 case elfcpp::R_PPC64_DTPREL16_HIGHA: 6098 case elfcpp::R_PPC64_DTPREL16_HIGHER: 6099 case elfcpp::R_PPC64_DTPREL16_HIGHERA: 6100 case elfcpp::R_PPC64_DTPREL16_HIGHEST: 6101 case elfcpp::R_PPC64_DTPREL16_HIGHESTA: 6102 case elfcpp::R_PPC64_TLSGD: 6103 case elfcpp::R_PPC64_TLSLD: 6104 case elfcpp::R_PPC64_ADDR64_LOCAL: 6105 break; 6106 6107 case elfcpp::R_POWERPC_GOT16: 6108 case elfcpp::R_POWERPC_GOT16_LO: 6109 case elfcpp::R_POWERPC_GOT16_HI: 6110 case elfcpp::R_POWERPC_GOT16_HA: 6111 case elfcpp::R_PPC64_GOT16_DS: 6112 case elfcpp::R_PPC64_GOT16_LO_DS: 6113 { 6114 // The symbol requires a GOT entry. 6115 Output_data_got_powerpc<size, big_endian>* got; 6116 6117 got = target->got_section(symtab, layout); 6118 if (gsym->final_value_is_known()) 6119 { 6120 if (is_ifunc 6121 && (size == 32 || target->abiversion() >= 2)) 6122 got->add_global_plt(gsym, GOT_TYPE_STANDARD); 6123 else 6124 got->add_global(gsym, GOT_TYPE_STANDARD); 6125 } 6126 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD)) 6127 { 6128 // If we are generating a shared object or a pie, this 6129 // symbol's GOT entry will be set by a dynamic relocation. 6130 unsigned int off = got->add_constant(0); 6131 gsym->set_got_offset(GOT_TYPE_STANDARD, off); 6132 6133 Reloc_section* rela_dyn 6134 = target->rela_dyn_section(symtab, layout, is_ifunc); 6135 6136 if (gsym->can_use_relative_reloc(false) 6137 && !((size == 32 6138 || target->abiversion() >= 2) 6139 && gsym->visibility() == elfcpp::STV_PROTECTED 6140 && parameters->options().shared())) 6141 { 6142 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE 6143 : elfcpp::R_POWERPC_RELATIVE); 6144 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false); 6145 } 6146 else 6147 { 6148 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT; 6149 rela_dyn->add_global(gsym, dynrel, got, off, 0); 6150 } 6151 } 6152 } 6153 break; 6154 6155 case elfcpp::R_PPC64_TOC16: 6156 case elfcpp::R_PPC64_TOC16_LO: 6157 case elfcpp::R_PPC64_TOC16_HI: 6158 case elfcpp::R_PPC64_TOC16_HA: 6159 case elfcpp::R_PPC64_TOC16_DS: 6160 case elfcpp::R_PPC64_TOC16_LO_DS: 6161 // We need a GOT section. 6162 target->got_section(symtab, layout); 6163 break; 6164 6165 case elfcpp::R_POWERPC_GOT_TLSGD16: 6166 case elfcpp::R_POWERPC_GOT_TLSGD16_LO: 6167 case elfcpp::R_POWERPC_GOT_TLSGD16_HI: 6168 case elfcpp::R_POWERPC_GOT_TLSGD16_HA: 6169 { 6170 const bool final = gsym->final_value_is_known(); 6171 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final); 6172 if (tls_type == tls::TLSOPT_NONE) 6173 { 6174 Output_data_got_powerpc<size, big_endian>* got 6175 = target->got_section(symtab, layout); 6176 Reloc_section* rela_dyn = target->rela_dyn_section(layout); 6177 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn, 6178 elfcpp::R_POWERPC_DTPMOD, 6179 elfcpp::R_POWERPC_DTPREL); 6180 } 6181 else if (tls_type == tls::TLSOPT_TO_IE) 6182 { 6183 if (!gsym->has_got_offset(GOT_TYPE_TPREL)) 6184 { 6185 Output_data_got_powerpc<size, big_endian>* got 6186 = target->got_section(symtab, layout); 6187 Reloc_section* rela_dyn = target->rela_dyn_section(layout); 6188 if (gsym->is_undefined() 6189 || gsym->is_from_dynobj()) 6190 { 6191 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn, 6192 elfcpp::R_POWERPC_TPREL); 6193 } 6194 else 6195 { 6196 unsigned int off = got->add_constant(0); 6197 gsym->set_got_offset(GOT_TYPE_TPREL, off); 6198 unsigned int dynrel = elfcpp::R_POWERPC_TPREL; 6199 rela_dyn->add_symbolless_global_addend(gsym, dynrel, 6200 got, off, 0); 6201 } 6202 } 6203 } 6204 else if (tls_type == tls::TLSOPT_TO_LE) 6205 { 6206 // no GOT relocs needed for Local Exec. 6207 } 6208 else 6209 gold_unreachable(); 6210 } 6211 break; 6212 6213 case elfcpp::R_POWERPC_GOT_TLSLD16: 6214 case elfcpp::R_POWERPC_GOT_TLSLD16_LO: 6215 case elfcpp::R_POWERPC_GOT_TLSLD16_HI: 6216 case elfcpp::R_POWERPC_GOT_TLSLD16_HA: 6217 { 6218 const tls::Tls_optimization tls_type = target->optimize_tls_ld(); 6219 if (tls_type == tls::TLSOPT_NONE) 6220 target->tlsld_got_offset(symtab, layout, object); 6221 else if (tls_type == tls::TLSOPT_TO_LE) 6222 { 6223 // no GOT relocs needed for Local Exec. 6224 if (parameters->options().emit_relocs()) 6225 { 6226 Output_section* os = layout->tls_segment()->first_section(); 6227 gold_assert(os != NULL); 6228 os->set_needs_symtab_index(); 6229 } 6230 } 6231 else 6232 gold_unreachable(); 6233 } 6234 break; 6235 6236 case elfcpp::R_POWERPC_GOT_DTPREL16: 6237 case elfcpp::R_POWERPC_GOT_DTPREL16_LO: 6238 case elfcpp::R_POWERPC_GOT_DTPREL16_HI: 6239 case elfcpp::R_POWERPC_GOT_DTPREL16_HA: 6240 { 6241 Output_data_got_powerpc<size, big_endian>* got 6242 = target->got_section(symtab, layout); 6243 if (!gsym->final_value_is_known() 6244 && (gsym->is_from_dynobj() 6245 || gsym->is_undefined() 6246 || gsym->is_preemptible())) 6247 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL, 6248 target->rela_dyn_section(layout), 6249 elfcpp::R_POWERPC_DTPREL); 6250 else 6251 got->add_global_tls(gsym, GOT_TYPE_DTPREL); 6252 } 6253 break; 6254 6255 case elfcpp::R_POWERPC_GOT_TPREL16: 6256 case elfcpp::R_POWERPC_GOT_TPREL16_LO: 6257 case elfcpp::R_POWERPC_GOT_TPREL16_HI: 6258 case elfcpp::R_POWERPC_GOT_TPREL16_HA: 6259 { 6260 const bool final = gsym->final_value_is_known(); 6261 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final); 6262 if (tls_type == tls::TLSOPT_NONE) 6263 { 6264 if (!gsym->has_got_offset(GOT_TYPE_TPREL)) 6265 { 6266 Output_data_got_powerpc<size, big_endian>* got 6267 = target->got_section(symtab, layout); 6268 Reloc_section* rela_dyn = target->rela_dyn_section(layout); 6269 if (gsym->is_undefined() 6270 || gsym->is_from_dynobj()) 6271 { 6272 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn, 6273 elfcpp::R_POWERPC_TPREL); 6274 } 6275 else 6276 { 6277 unsigned int off = got->add_constant(0); 6278 gsym->set_got_offset(GOT_TYPE_TPREL, off); 6279 unsigned int dynrel = elfcpp::R_POWERPC_TPREL; 6280 rela_dyn->add_symbolless_global_addend(gsym, dynrel, 6281 got, off, 0); 6282 } 6283 } 6284 } 6285 else if (tls_type == tls::TLSOPT_TO_LE) 6286 { 6287 // no GOT relocs needed for Local Exec. 6288 } 6289 else 6290 gold_unreachable(); 6291 } 6292 break; 6293 6294 default: 6295 unsupported_reloc_global(object, r_type, gsym); 6296 break; 6297 } 6298 6299 switch (r_type) 6300 { 6301 case elfcpp::R_POWERPC_GOT_TLSLD16: 6302 case elfcpp::R_POWERPC_GOT_TLSGD16: 6303 case elfcpp::R_POWERPC_GOT_TPREL16: 6304 case elfcpp::R_POWERPC_GOT_DTPREL16: 6305 case elfcpp::R_POWERPC_GOT16: 6306 case elfcpp::R_PPC64_GOT16_DS: 6307 case elfcpp::R_PPC64_TOC16: 6308 case elfcpp::R_PPC64_TOC16_DS: 6309 ppc_object->set_has_small_toc_reloc(); 6310 default: 6311 break; 6312 } 6313 } 6314 6315 // Process relocations for gc. 6316 6317 template<int size, bool big_endian> 6318 void 6319 Target_powerpc<size, big_endian>::gc_process_relocs( 6320 Symbol_table* symtab, 6321 Layout* layout, 6322 Sized_relobj_file<size, big_endian>* object, 6323 unsigned int data_shndx, 6324 unsigned int, 6325 const unsigned char* prelocs, 6326 size_t reloc_count, 6327 Output_section* output_section, 6328 bool needs_special_offset_handling, 6329 size_t local_symbol_count, 6330 const unsigned char* plocal_symbols) 6331 { 6332 typedef Target_powerpc<size, big_endian> Powerpc; 6333 typedef typename Target_powerpc<size, big_endian>::Scan Scan; 6334 Powerpc_relobj<size, big_endian>* ppc_object 6335 = static_cast<Powerpc_relobj<size, big_endian>*>(object); 6336 if (size == 64) 6337 ppc_object->set_opd_valid(); 6338 if (size == 64 && data_shndx == ppc_object->opd_shndx()) 6339 { 6340 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p; 6341 for (p = ppc_object->access_from_map()->begin(); 6342 p != ppc_object->access_from_map()->end(); 6343 ++p) 6344 { 6345 Address dst_off = p->first; 6346 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off); 6347 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s; 6348 for (s = p->second.begin(); s != p->second.end(); ++s) 6349 { 6350 Object* src_obj = s->first; 6351 unsigned int src_indx = s->second; 6352 symtab->gc()->add_reference(src_obj, src_indx, 6353 ppc_object, dst_indx); 6354 } 6355 p->second.clear(); 6356 } 6357 ppc_object->access_from_map()->clear(); 6358 ppc_object->process_gc_mark(symtab); 6359 // Don't look at .opd relocs as .opd will reference everything. 6360 return; 6361 } 6362 6363 gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan, 6364 typename Target_powerpc::Relocatable_size_for_reloc>( 6365 symtab, 6366 layout, 6367 this, 6368 object, 6369 data_shndx, 6370 prelocs, 6371 reloc_count, 6372 output_section, 6373 needs_special_offset_handling, 6374 local_symbol_count, 6375 plocal_symbols); 6376 } 6377 6378 // Handle target specific gc actions when adding a gc reference from 6379 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX 6380 // and DST_OFF. For powerpc64, this adds a referenc to the code 6381 // section of a function descriptor. 6382 6383 template<int size, bool big_endian> 6384 void 6385 Target_powerpc<size, big_endian>::do_gc_add_reference( 6386 Symbol_table* symtab, 6387 Object* src_obj, 6388 unsigned int src_shndx, 6389 Object* dst_obj, 6390 unsigned int dst_shndx, 6391 Address dst_off) const 6392 { 6393 if (size != 64 || dst_obj->is_dynamic()) 6394 return; 6395 6396 Powerpc_relobj<size, big_endian>* ppc_object 6397 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj); 6398 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx()) 6399 { 6400 if (ppc_object->opd_valid()) 6401 { 6402 dst_shndx = ppc_object->get_opd_ent(dst_off); 6403 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx); 6404 } 6405 else 6406 { 6407 // If we haven't run scan_opd_relocs, we must delay 6408 // processing this function descriptor reference. 6409 ppc_object->add_reference(src_obj, src_shndx, dst_off); 6410 } 6411 } 6412 } 6413 6414 // Add any special sections for this symbol to the gc work list. 6415 // For powerpc64, this adds the code section of a function 6416 // descriptor. 6417 6418 template<int size, bool big_endian> 6419 void 6420 Target_powerpc<size, big_endian>::do_gc_mark_symbol( 6421 Symbol_table* symtab, 6422 Symbol* sym) const 6423 { 6424 if (size == 64) 6425 { 6426 Powerpc_relobj<size, big_endian>* ppc_object 6427 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object()); 6428 bool is_ordinary; 6429 unsigned int shndx = sym->shndx(&is_ordinary); 6430 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx()) 6431 { 6432 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym); 6433 Address dst_off = gsym->value(); 6434 if (ppc_object->opd_valid()) 6435 { 6436 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off); 6437 symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx)); 6438 } 6439 else 6440 ppc_object->add_gc_mark(dst_off); 6441 } 6442 } 6443 } 6444 6445 // For a symbol location in .opd, set LOC to the location of the 6446 // function entry. 6447 6448 template<int size, bool big_endian> 6449 void 6450 Target_powerpc<size, big_endian>::do_function_location( 6451 Symbol_location* loc) const 6452 { 6453 if (size == 64 && loc->shndx != 0) 6454 { 6455 if (loc->object->is_dynamic()) 6456 { 6457 Powerpc_dynobj<size, big_endian>* ppc_object 6458 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object); 6459 if (loc->shndx == ppc_object->opd_shndx()) 6460 { 6461 Address dest_off; 6462 Address off = loc->offset - ppc_object->opd_address(); 6463 loc->shndx = ppc_object->get_opd_ent(off, &dest_off); 6464 loc->offset = dest_off; 6465 } 6466 } 6467 else 6468 { 6469 const Powerpc_relobj<size, big_endian>* ppc_object 6470 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object); 6471 if (loc->shndx == ppc_object->opd_shndx()) 6472 { 6473 Address dest_off; 6474 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off); 6475 loc->offset = dest_off; 6476 } 6477 } 6478 } 6479 } 6480 6481 // Scan relocations for a section. 6482 6483 template<int size, bool big_endian> 6484 void 6485 Target_powerpc<size, big_endian>::scan_relocs( 6486 Symbol_table* symtab, 6487 Layout* layout, 6488 Sized_relobj_file<size, big_endian>* object, 6489 unsigned int data_shndx, 6490 unsigned int sh_type, 6491 const unsigned char* prelocs, 6492 size_t reloc_count, 6493 Output_section* output_section, 6494 bool needs_special_offset_handling, 6495 size_t local_symbol_count, 6496 const unsigned char* plocal_symbols) 6497 { 6498 typedef Target_powerpc<size, big_endian> Powerpc; 6499 typedef typename Target_powerpc<size, big_endian>::Scan Scan; 6500 6501 if (sh_type == elfcpp::SHT_REL) 6502 { 6503 gold_error(_("%s: unsupported REL reloc section"), 6504 object->name().c_str()); 6505 return; 6506 } 6507 6508 gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>( 6509 symtab, 6510 layout, 6511 this, 6512 object, 6513 data_shndx, 6514 prelocs, 6515 reloc_count, 6516 output_section, 6517 needs_special_offset_handling, 6518 local_symbol_count, 6519 plocal_symbols); 6520 } 6521 6522 // Functor class for processing the global symbol table. 6523 // Removes symbols defined on discarded opd entries. 6524 6525 template<bool big_endian> 6526 class Global_symbol_visitor_opd 6527 { 6528 public: 6529 Global_symbol_visitor_opd() 6530 { } 6531 6532 void 6533 operator()(Sized_symbol<64>* sym) 6534 { 6535 if (sym->has_symtab_index() 6536 || sym->source() != Symbol::FROM_OBJECT 6537 || !sym->in_real_elf()) 6538 return; 6539 6540 if (sym->object()->is_dynamic()) 6541 return; 6542 6543 Powerpc_relobj<64, big_endian>* symobj 6544 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object()); 6545 if (symobj->opd_shndx() == 0) 6546 return; 6547 6548 bool is_ordinary; 6549 unsigned int shndx = sym->shndx(&is_ordinary); 6550 if (shndx == symobj->opd_shndx() 6551 && symobj->get_opd_discard(sym->value())) 6552 { 6553 sym->set_undefined(); 6554 sym->set_visibility(elfcpp::STV_DEFAULT); 6555 sym->set_is_defined_in_discarded_section(); 6556 sym->set_symtab_index(-1U); 6557 } 6558 } 6559 }; 6560 6561 template<int size, bool big_endian> 6562 void 6563 Target_powerpc<size, big_endian>::define_save_restore_funcs( 6564 Layout* layout, 6565 Symbol_table* symtab) 6566 { 6567 if (size == 64) 6568 { 6569 Output_data_save_res<64, big_endian>* savres 6570 = new Output_data_save_res<64, big_endian>(symtab); 6571 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS, 6572 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR, 6573 savres, ORDER_TEXT, false); 6574 } 6575 } 6576 6577 // Sort linker created .got section first (for the header), then input 6578 // sections belonging to files using small model code. 6579 6580 template<bool big_endian> 6581 class Sort_toc_sections 6582 { 6583 public: 6584 bool 6585 operator()(const Output_section::Input_section& is1, 6586 const Output_section::Input_section& is2) const 6587 { 6588 if (!is1.is_input_section() && is2.is_input_section()) 6589 return true; 6590 bool small1 6591 = (is1.is_input_section() 6592 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj()) 6593 ->has_small_toc_reloc())); 6594 bool small2 6595 = (is2.is_input_section() 6596 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj()) 6597 ->has_small_toc_reloc())); 6598 return small1 && !small2; 6599 } 6600 }; 6601 6602 // Finalize the sections. 6603 6604 template<int size, bool big_endian> 6605 void 6606 Target_powerpc<size, big_endian>::do_finalize_sections( 6607 Layout* layout, 6608 const Input_objects*, 6609 Symbol_table* symtab) 6610 { 6611 if (parameters->doing_static_link()) 6612 { 6613 // At least some versions of glibc elf-init.o have a strong 6614 // reference to __rela_iplt marker syms. A weak ref would be 6615 // better.. 6616 if (this->iplt_ != NULL) 6617 { 6618 Reloc_section* rel = this->iplt_->rel_plt(); 6619 symtab->define_in_output_data("__rela_iplt_start", NULL, 6620 Symbol_table::PREDEFINED, rel, 0, 0, 6621 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, 6622 elfcpp::STV_HIDDEN, 0, false, true); 6623 symtab->define_in_output_data("__rela_iplt_end", NULL, 6624 Symbol_table::PREDEFINED, rel, 0, 0, 6625 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, 6626 elfcpp::STV_HIDDEN, 0, true, true); 6627 } 6628 else 6629 { 6630 symtab->define_as_constant("__rela_iplt_start", NULL, 6631 Symbol_table::PREDEFINED, 0, 0, 6632 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, 6633 elfcpp::STV_HIDDEN, 0, true, false); 6634 symtab->define_as_constant("__rela_iplt_end", NULL, 6635 Symbol_table::PREDEFINED, 0, 0, 6636 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, 6637 elfcpp::STV_HIDDEN, 0, true, false); 6638 } 6639 } 6640 6641 if (size == 64) 6642 { 6643 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor; 6644 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor()); 6645 6646 if (!parameters->options().relocatable()) 6647 { 6648 this->define_save_restore_funcs(layout, symtab); 6649 6650 // Annoyingly, we need to make these sections now whether or 6651 // not we need them. If we delay until do_relax then we 6652 // need to mess with the relaxation machinery checkpointing. 6653 this->got_section(symtab, layout); 6654 this->make_brlt_section(layout); 6655 6656 if (parameters->options().toc_sort()) 6657 { 6658 Output_section* os = this->got_->output_section(); 6659 if (os != NULL && os->input_sections().size() > 1) 6660 std::stable_sort(os->input_sections().begin(), 6661 os->input_sections().end(), 6662 Sort_toc_sections<big_endian>()); 6663 } 6664 } 6665 } 6666 6667 // Fill in some more dynamic tags. 6668 Output_data_dynamic* odyn = layout->dynamic_data(); 6669 if (odyn != NULL) 6670 { 6671 const Reloc_section* rel_plt = (this->plt_ == NULL 6672 ? NULL 6673 : this->plt_->rel_plt()); 6674 layout->add_target_dynamic_tags(false, this->plt_, rel_plt, 6675 this->rela_dyn_, true, size == 32); 6676 6677 if (size == 32) 6678 { 6679 if (this->got_ != NULL) 6680 { 6681 this->got_->finalize_data_size(); 6682 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT, 6683 this->got_, this->got_->g_o_t()); 6684 } 6685 } 6686 else 6687 { 6688 if (this->glink_ != NULL) 6689 { 6690 this->glink_->finalize_data_size(); 6691 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK, 6692 this->glink_, 6693 (this->glink_->pltresolve_size 6694 - 32)); 6695 } 6696 } 6697 } 6698 6699 // Emit any relocs we saved in an attempt to avoid generating COPY 6700 // relocs. 6701 if (this->copy_relocs_.any_saved_relocs()) 6702 this->copy_relocs_.emit(this->rela_dyn_section(layout)); 6703 } 6704 6705 // Return TRUE iff INSN is one we expect on a _LO variety toc/got 6706 // reloc. 6707 6708 static bool 6709 ok_lo_toc_insn(uint32_t insn) 6710 { 6711 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */ 6712 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */ 6713 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */ 6714 || (insn & (0x3f << 26)) == 36u << 26 /* stw */ 6715 || (insn & (0x3f << 26)) == 38u << 26 /* stb */ 6716 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */ 6717 || (insn & (0x3f << 26)) == 42u << 26 /* lha */ 6718 || (insn & (0x3f << 26)) == 44u << 26 /* sth */ 6719 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */ 6720 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */ 6721 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */ 6722 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */ 6723 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */ 6724 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */ 6725 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */ 6726 && (insn & 3) != 1) 6727 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */ 6728 && ((insn & 3) == 0 || (insn & 3) == 3)) 6729 || (insn & (0x3f << 26)) == 12u << 26 /* addic */); 6730 } 6731 6732 // Return the value to use for a branch relocation. 6733 6734 template<int size, bool big_endian> 6735 bool 6736 Target_powerpc<size, big_endian>::symval_for_branch( 6737 const Symbol_table* symtab, 6738 const Sized_symbol<size>* gsym, 6739 Powerpc_relobj<size, big_endian>* object, 6740 Address *value, 6741 unsigned int *dest_shndx) 6742 { 6743 if (size == 32 || this->abiversion() >= 2) 6744 gold_unreachable(); 6745 *dest_shndx = 0; 6746 6747 // If the symbol is defined in an opd section, ie. is a function 6748 // descriptor, use the function descriptor code entry address 6749 Powerpc_relobj<size, big_endian>* symobj = object; 6750 if (gsym != NULL 6751 && gsym->source() != Symbol::FROM_OBJECT) 6752 return true; 6753 if (gsym != NULL) 6754 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object()); 6755 unsigned int shndx = symobj->opd_shndx(); 6756 if (shndx == 0) 6757 return true; 6758 Address opd_addr = symobj->get_output_section_offset(shndx); 6759 if (opd_addr == invalid_address) 6760 return true; 6761 opd_addr += symobj->output_section_address(shndx); 6762 if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx)) 6763 { 6764 Address sec_off; 6765 *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off); 6766 if (symtab->is_section_folded(symobj, *dest_shndx)) 6767 { 6768 Section_id folded 6769 = symtab->icf()->get_folded_section(symobj, *dest_shndx); 6770 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first); 6771 *dest_shndx = folded.second; 6772 } 6773 Address sec_addr = symobj->get_output_section_offset(*dest_shndx); 6774 if (sec_addr == invalid_address) 6775 return false; 6776 6777 sec_addr += symobj->output_section(*dest_shndx)->address(); 6778 *value = sec_addr + sec_off; 6779 } 6780 return true; 6781 } 6782 6783 // Perform a relocation. 6784 6785 template<int size, bool big_endian> 6786 inline bool 6787 Target_powerpc<size, big_endian>::Relocate::relocate( 6788 const Relocate_info<size, big_endian>* relinfo, 6789 Target_powerpc* target, 6790 Output_section* os, 6791 size_t relnum, 6792 const elfcpp::Rela<size, big_endian>& rela, 6793 unsigned int r_type, 6794 const Sized_symbol<size>* gsym, 6795 const Symbol_value<size>* psymval, 6796 unsigned char* view, 6797 Address address, 6798 section_size_type view_size) 6799 { 6800 if (view == NULL) 6801 return true; 6802 6803 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym)) 6804 { 6805 case Track_tls::NOT_EXPECTED: 6806 gold_error_at_location(relinfo, relnum, rela.get_r_offset(), 6807 _("__tls_get_addr call lacks marker reloc")); 6808 break; 6809 case Track_tls::EXPECTED: 6810 // We have already complained. 6811 break; 6812 case Track_tls::SKIP: 6813 return true; 6814 case Track_tls::NORMAL: 6815 break; 6816 } 6817 6818 typedef Powerpc_relocate_functions<size, big_endian> Reloc; 6819 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn; 6820 Powerpc_relobj<size, big_endian>* const object 6821 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object); 6822 Address value = 0; 6823 bool has_stub_value = false; 6824 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info()); 6825 if ((gsym != NULL 6826 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target)) 6827 : object->local_has_plt_offset(r_sym)) 6828 && (!psymval->is_ifunc_symbol() 6829 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false))) 6830 { 6831 if (size == 64 6832 && gsym != NULL 6833 && target->abiversion() >= 2 6834 && !parameters->options().output_is_position_independent() 6835 && !is_branch_reloc(r_type)) 6836 { 6837 Address off = target->glink_section()->find_global_entry(gsym); 6838 if (off != invalid_address) 6839 { 6840 value = target->glink_section()->global_entry_address() + off; 6841 has_stub_value = true; 6842 } 6843 } 6844 else 6845 { 6846 Stub_table<size, big_endian>* stub_table 6847 = object->stub_table(relinfo->data_shndx); 6848 if (stub_table == NULL) 6849 { 6850 // This is a ref from a data section to an ifunc symbol. 6851 if (target->stub_tables().size() != 0) 6852 stub_table = target->stub_tables()[0]; 6853 } 6854 if (stub_table != NULL) 6855 { 6856 Address off; 6857 if (gsym != NULL) 6858 off = stub_table->find_plt_call_entry(object, gsym, r_type, 6859 rela.get_r_addend()); 6860 else 6861 off = stub_table->find_plt_call_entry(object, r_sym, r_type, 6862 rela.get_r_addend()); 6863 if (off != invalid_address) 6864 { 6865 value = stub_table->stub_address() + off; 6866 has_stub_value = true; 6867 } 6868 } 6869 } 6870 // We don't care too much about bogus debug references to 6871 // non-local functions, but otherwise there had better be a plt 6872 // call stub or global entry stub as appropriate. 6873 gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC)); 6874 } 6875 6876 if (r_type == elfcpp::R_POWERPC_GOT16 6877 || r_type == elfcpp::R_POWERPC_GOT16_LO 6878 || r_type == elfcpp::R_POWERPC_GOT16_HI 6879 || r_type == elfcpp::R_POWERPC_GOT16_HA 6880 || r_type == elfcpp::R_PPC64_GOT16_DS 6881 || r_type == elfcpp::R_PPC64_GOT16_LO_DS) 6882 { 6883 if (gsym != NULL) 6884 { 6885 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD)); 6886 value = gsym->got_offset(GOT_TYPE_STANDARD); 6887 } 6888 else 6889 { 6890 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info()); 6891 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD)); 6892 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD); 6893 } 6894 value -= target->got_section()->got_base_offset(object); 6895 } 6896 else if (r_type == elfcpp::R_PPC64_TOC) 6897 { 6898 value = (target->got_section()->output_section()->address() 6899 + object->toc_base_offset()); 6900 } 6901 else if (gsym != NULL 6902 && (r_type == elfcpp::R_POWERPC_REL24 6903 || r_type == elfcpp::R_PPC_PLTREL24) 6904 && has_stub_value) 6905 { 6906 if (size == 64) 6907 { 6908 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; 6909 Valtype* wv = reinterpret_cast<Valtype*>(view); 6910 bool can_plt_call = false; 6911 if (rela.get_r_offset() + 8 <= view_size) 6912 { 6913 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv); 6914 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1); 6915 if ((insn & 1) != 0 6916 && (insn2 == nop 6917 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31)) 6918 { 6919 elfcpp::Swap<32, big_endian>:: 6920 writeval(wv + 1, ld_2_1 + target->stk_toc()); 6921 can_plt_call = true; 6922 } 6923 } 6924 if (!can_plt_call) 6925 { 6926 // If we don't have a branch and link followed by a nop, 6927 // we can't go via the plt because there is no place to 6928 // put a toc restoring instruction. 6929 // Unless we know we won't be returning. 6930 if (strcmp(gsym->name(), "__libc_start_main") == 0) 6931 can_plt_call = true; 6932 } 6933 if (!can_plt_call) 6934 { 6935 // g++ as of 20130507 emits self-calls without a 6936 // following nop. This is arguably wrong since we have 6937 // conflicting information. On the one hand a global 6938 // symbol and on the other a local call sequence, but 6939 // don't error for this special case. 6940 // It isn't possible to cheaply verify we have exactly 6941 // such a call. Allow all calls to the same section. 6942 bool ok = false; 6943 Address code = value; 6944 if (gsym->source() == Symbol::FROM_OBJECT 6945 && gsym->object() == object) 6946 { 6947 unsigned int dest_shndx = 0; 6948 if (target->abiversion() < 2) 6949 { 6950 Address addend = rela.get_r_addend(); 6951 code = psymval->value(object, addend); 6952 target->symval_for_branch(relinfo->symtab, gsym, object, 6953 &code, &dest_shndx); 6954 } 6955 bool is_ordinary; 6956 if (dest_shndx == 0) 6957 dest_shndx = gsym->shndx(&is_ordinary); 6958 ok = dest_shndx == relinfo->data_shndx; 6959 } 6960 if (!ok) 6961 { 6962 gold_error_at_location(relinfo, relnum, rela.get_r_offset(), 6963 _("call lacks nop, can't restore toc; " 6964 "recompile with -fPIC")); 6965 value = code; 6966 } 6967 } 6968 } 6969 } 6970 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16 6971 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO 6972 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI 6973 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA) 6974 { 6975 // First instruction of a global dynamic sequence, arg setup insn. 6976 const bool final = gsym == NULL || gsym->final_value_is_known(); 6977 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final); 6978 enum Got_type got_type = GOT_TYPE_STANDARD; 6979 if (tls_type == tls::TLSOPT_NONE) 6980 got_type = GOT_TYPE_TLSGD; 6981 else if (tls_type == tls::TLSOPT_TO_IE) 6982 got_type = GOT_TYPE_TPREL; 6983 if (got_type != GOT_TYPE_STANDARD) 6984 { 6985 if (gsym != NULL) 6986 { 6987 gold_assert(gsym->has_got_offset(got_type)); 6988 value = gsym->got_offset(got_type); 6989 } 6990 else 6991 { 6992 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info()); 6993 gold_assert(object->local_has_got_offset(r_sym, got_type)); 6994 value = object->local_got_offset(r_sym, got_type); 6995 } 6996 value -= target->got_section()->got_base_offset(object); 6997 } 6998 if (tls_type == tls::TLSOPT_TO_IE) 6999 { 7000 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16 7001 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO) 7002 { 7003 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian); 7004 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview); 7005 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi 7006 if (size == 32) 7007 insn |= 32 << 26; // lwz 7008 else 7009 insn |= 58 << 26; // ld 7010 elfcpp::Swap<32, big_endian>::writeval(iview, insn); 7011 } 7012 r_type += (elfcpp::R_POWERPC_GOT_TPREL16 7013 - elfcpp::R_POWERPC_GOT_TLSGD16); 7014 } 7015 else if (tls_type == tls::TLSOPT_TO_LE) 7016 { 7017 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16 7018 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO) 7019 { 7020 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian); 7021 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview); 7022 insn &= (1 << 26) - (1 << 21); // extract rt 7023 if (size == 32) 7024 insn |= addis_0_2; 7025 else 7026 insn |= addis_0_13; 7027 elfcpp::Swap<32, big_endian>::writeval(iview, insn); 7028 r_type = elfcpp::R_POWERPC_TPREL16_HA; 7029 value = psymval->value(object, rela.get_r_addend()); 7030 } 7031 else 7032 { 7033 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian); 7034 Insn insn = nop; 7035 elfcpp::Swap<32, big_endian>::writeval(iview, insn); 7036 r_type = elfcpp::R_POWERPC_NONE; 7037 } 7038 } 7039 } 7040 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16 7041 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO 7042 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI 7043 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA) 7044 { 7045 // First instruction of a local dynamic sequence, arg setup insn. 7046 const tls::Tls_optimization tls_type = target->optimize_tls_ld(); 7047 if (tls_type == tls::TLSOPT_NONE) 7048 { 7049 value = target->tlsld_got_offset(); 7050 value -= target->got_section()->got_base_offset(object); 7051 } 7052 else 7053 { 7054 gold_assert(tls_type == tls::TLSOPT_TO_LE); 7055 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16 7056 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO) 7057 { 7058 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian); 7059 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview); 7060 insn &= (1 << 26) - (1 << 21); // extract rt 7061 if (size == 32) 7062 insn = addis_0_2; 7063 else 7064 insn |= addis_0_13; 7065 elfcpp::Swap<32, big_endian>::writeval(iview, insn); 7066 r_type = elfcpp::R_POWERPC_TPREL16_HA; 7067 value = dtp_offset; 7068 } 7069 else 7070 { 7071 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian); 7072 Insn insn = nop; 7073 elfcpp::Swap<32, big_endian>::writeval(iview, insn); 7074 r_type = elfcpp::R_POWERPC_NONE; 7075 } 7076 } 7077 } 7078 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16 7079 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO 7080 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI 7081 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA) 7082 { 7083 // Accesses relative to a local dynamic sequence address, 7084 // no optimisation here. 7085 if (gsym != NULL) 7086 { 7087 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL)); 7088 value = gsym->got_offset(GOT_TYPE_DTPREL); 7089 } 7090 else 7091 { 7092 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info()); 7093 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL)); 7094 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL); 7095 } 7096 value -= target->got_section()->got_base_offset(object); 7097 } 7098 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16 7099 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO 7100 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI 7101 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA) 7102 { 7103 // First instruction of initial exec sequence. 7104 const bool final = gsym == NULL || gsym->final_value_is_known(); 7105 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final); 7106 if (tls_type == tls::TLSOPT_NONE) 7107 { 7108 if (gsym != NULL) 7109 { 7110 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL)); 7111 value = gsym->got_offset(GOT_TYPE_TPREL); 7112 } 7113 else 7114 { 7115 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info()); 7116 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL)); 7117 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL); 7118 } 7119 value -= target->got_section()->got_base_offset(object); 7120 } 7121 else 7122 { 7123 gold_assert(tls_type == tls::TLSOPT_TO_LE); 7124 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16 7125 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO) 7126 { 7127 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian); 7128 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview); 7129 insn &= (1 << 26) - (1 << 21); // extract rt from ld 7130 if (size == 32) 7131 insn |= addis_0_2; 7132 else 7133 insn |= addis_0_13; 7134 elfcpp::Swap<32, big_endian>::writeval(iview, insn); 7135 r_type = elfcpp::R_POWERPC_TPREL16_HA; 7136 value = psymval->value(object, rela.get_r_addend()); 7137 } 7138 else 7139 { 7140 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian); 7141 Insn insn = nop; 7142 elfcpp::Swap<32, big_endian>::writeval(iview, insn); 7143 r_type = elfcpp::R_POWERPC_NONE; 7144 } 7145 } 7146 } 7147 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD) 7148 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD)) 7149 { 7150 // Second instruction of a global dynamic sequence, 7151 // the __tls_get_addr call 7152 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset()); 7153 const bool final = gsym == NULL || gsym->final_value_is_known(); 7154 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final); 7155 if (tls_type != tls::TLSOPT_NONE) 7156 { 7157 if (tls_type == tls::TLSOPT_TO_IE) 7158 { 7159 Insn* iview = reinterpret_cast<Insn*>(view); 7160 Insn insn = add_3_3_13; 7161 if (size == 32) 7162 insn = add_3_3_2; 7163 elfcpp::Swap<32, big_endian>::writeval(iview, insn); 7164 r_type = elfcpp::R_POWERPC_NONE; 7165 } 7166 else 7167 { 7168 Insn* iview = reinterpret_cast<Insn*>(view); 7169 Insn insn = addi_3_3; 7170 elfcpp::Swap<32, big_endian>::writeval(iview, insn); 7171 r_type = elfcpp::R_POWERPC_TPREL16_LO; 7172 view += 2 * big_endian; 7173 value = psymval->value(object, rela.get_r_addend()); 7174 } 7175 this->skip_next_tls_get_addr_call(); 7176 } 7177 } 7178 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD) 7179 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD)) 7180 { 7181 // Second instruction of a local dynamic sequence, 7182 // the __tls_get_addr call 7183 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset()); 7184 const tls::Tls_optimization tls_type = target->optimize_tls_ld(); 7185 if (tls_type == tls::TLSOPT_TO_LE) 7186 { 7187 Insn* iview = reinterpret_cast<Insn*>(view); 7188 Insn insn = addi_3_3; 7189 elfcpp::Swap<32, big_endian>::writeval(iview, insn); 7190 this->skip_next_tls_get_addr_call(); 7191 r_type = elfcpp::R_POWERPC_TPREL16_LO; 7192 view += 2 * big_endian; 7193 value = dtp_offset; 7194 } 7195 } 7196 else if (r_type == elfcpp::R_POWERPC_TLS) 7197 { 7198 // Second instruction of an initial exec sequence 7199 const bool final = gsym == NULL || gsym->final_value_is_known(); 7200 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final); 7201 if (tls_type == tls::TLSOPT_TO_LE) 7202 { 7203 Insn* iview = reinterpret_cast<Insn*>(view); 7204 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview); 7205 unsigned int reg = size == 32 ? 2 : 13; 7206 insn = at_tls_transform(insn, reg); 7207 gold_assert(insn != 0); 7208 elfcpp::Swap<32, big_endian>::writeval(iview, insn); 7209 r_type = elfcpp::R_POWERPC_TPREL16_LO; 7210 view += 2 * big_endian; 7211 value = psymval->value(object, rela.get_r_addend()); 7212 } 7213 } 7214 else if (!has_stub_value) 7215 { 7216 Address addend = 0; 7217 if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24)) 7218 addend = rela.get_r_addend(); 7219 value = psymval->value(object, addend); 7220 if (size == 64 && is_branch_reloc(r_type)) 7221 { 7222 if (target->abiversion() >= 2) 7223 { 7224 if (gsym != NULL) 7225 value += object->ppc64_local_entry_offset(gsym); 7226 else 7227 value += object->ppc64_local_entry_offset(r_sym); 7228 } 7229 else 7230 { 7231 unsigned int dest_shndx; 7232 target->symval_for_branch(relinfo->symtab, gsym, object, 7233 &value, &dest_shndx); 7234 } 7235 } 7236 Address max_branch_offset = max_branch_delta(r_type); 7237 if (max_branch_offset != 0 7238 && value - address + max_branch_offset >= 2 * max_branch_offset) 7239 { 7240 Stub_table<size, big_endian>* stub_table 7241 = object->stub_table(relinfo->data_shndx); 7242 if (stub_table != NULL) 7243 { 7244 Address off = stub_table->find_long_branch_entry(object, value); 7245 if (off != invalid_address) 7246 { 7247 value = (stub_table->stub_address() + stub_table->plt_size() 7248 + off); 7249 has_stub_value = true; 7250 } 7251 } 7252 } 7253 } 7254 7255 switch (r_type) 7256 { 7257 case elfcpp::R_PPC64_REL64: 7258 case elfcpp::R_POWERPC_REL32: 7259 case elfcpp::R_POWERPC_REL24: 7260 case elfcpp::R_PPC_PLTREL24: 7261 case elfcpp::R_PPC_LOCAL24PC: 7262 case elfcpp::R_POWERPC_REL16: 7263 case elfcpp::R_POWERPC_REL16_LO: 7264 case elfcpp::R_POWERPC_REL16_HI: 7265 case elfcpp::R_POWERPC_REL16_HA: 7266 case elfcpp::R_POWERPC_REL14: 7267 case elfcpp::R_POWERPC_REL14_BRTAKEN: 7268 case elfcpp::R_POWERPC_REL14_BRNTAKEN: 7269 value -= address; 7270 break; 7271 7272 case elfcpp::R_PPC64_TOC16: 7273 case elfcpp::R_PPC64_TOC16_LO: 7274 case elfcpp::R_PPC64_TOC16_HI: 7275 case elfcpp::R_PPC64_TOC16_HA: 7276 case elfcpp::R_PPC64_TOC16_DS: 7277 case elfcpp::R_PPC64_TOC16_LO_DS: 7278 // Subtract the TOC base address. 7279 value -= (target->got_section()->output_section()->address() 7280 + object->toc_base_offset()); 7281 break; 7282 7283 case elfcpp::R_POWERPC_SECTOFF: 7284 case elfcpp::R_POWERPC_SECTOFF_LO: 7285 case elfcpp::R_POWERPC_SECTOFF_HI: 7286 case elfcpp::R_POWERPC_SECTOFF_HA: 7287 case elfcpp::R_PPC64_SECTOFF_DS: 7288 case elfcpp::R_PPC64_SECTOFF_LO_DS: 7289 if (os != NULL) 7290 value -= os->address(); 7291 break; 7292 7293 case elfcpp::R_PPC64_TPREL16_DS: 7294 case elfcpp::R_PPC64_TPREL16_LO_DS: 7295 case elfcpp::R_PPC64_TPREL16_HIGH: 7296 case elfcpp::R_PPC64_TPREL16_HIGHA: 7297 if (size != 64) 7298 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI 7299 break; 7300 case elfcpp::R_POWERPC_TPREL16: 7301 case elfcpp::R_POWERPC_TPREL16_LO: 7302 case elfcpp::R_POWERPC_TPREL16_HI: 7303 case elfcpp::R_POWERPC_TPREL16_HA: 7304 case elfcpp::R_POWERPC_TPREL: 7305 case elfcpp::R_PPC64_TPREL16_HIGHER: 7306 case elfcpp::R_PPC64_TPREL16_HIGHERA: 7307 case elfcpp::R_PPC64_TPREL16_HIGHEST: 7308 case elfcpp::R_PPC64_TPREL16_HIGHESTA: 7309 // tls symbol values are relative to tls_segment()->vaddr() 7310 value -= tp_offset; 7311 break; 7312 7313 case elfcpp::R_PPC64_DTPREL16_DS: 7314 case elfcpp::R_PPC64_DTPREL16_LO_DS: 7315 case elfcpp::R_PPC64_DTPREL16_HIGHER: 7316 case elfcpp::R_PPC64_DTPREL16_HIGHERA: 7317 case elfcpp::R_PPC64_DTPREL16_HIGHEST: 7318 case elfcpp::R_PPC64_DTPREL16_HIGHESTA: 7319 if (size != 64) 7320 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO 7321 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16 7322 break; 7323 case elfcpp::R_POWERPC_DTPREL16: 7324 case elfcpp::R_POWERPC_DTPREL16_LO: 7325 case elfcpp::R_POWERPC_DTPREL16_HI: 7326 case elfcpp::R_POWERPC_DTPREL16_HA: 7327 case elfcpp::R_POWERPC_DTPREL: 7328 case elfcpp::R_PPC64_DTPREL16_HIGH: 7329 case elfcpp::R_PPC64_DTPREL16_HIGHA: 7330 // tls symbol values are relative to tls_segment()->vaddr() 7331 value -= dtp_offset; 7332 break; 7333 7334 case elfcpp::R_PPC64_ADDR64_LOCAL: 7335 if (gsym != NULL) 7336 value += object->ppc64_local_entry_offset(gsym); 7337 else 7338 value += object->ppc64_local_entry_offset(r_sym); 7339 break; 7340 7341 default: 7342 break; 7343 } 7344 7345 Insn branch_bit = 0; 7346 switch (r_type) 7347 { 7348 case elfcpp::R_POWERPC_ADDR14_BRTAKEN: 7349 case elfcpp::R_POWERPC_REL14_BRTAKEN: 7350 branch_bit = 1 << 21; 7351 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN: 7352 case elfcpp::R_POWERPC_REL14_BRNTAKEN: 7353 { 7354 Insn* iview = reinterpret_cast<Insn*>(view); 7355 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview); 7356 insn &= ~(1 << 21); 7357 insn |= branch_bit; 7358 if (this->is_isa_v2) 7359 { 7360 // Set 'a' bit. This is 0b00010 in BO field for branch 7361 // on CR(BI) insns (BO == 001at or 011at), and 0b01000 7362 // for branch on CTR insns (BO == 1a00t or 1a01t). 7363 if ((insn & (0x14 << 21)) == (0x04 << 21)) 7364 insn |= 0x02 << 21; 7365 else if ((insn & (0x14 << 21)) == (0x10 << 21)) 7366 insn |= 0x08 << 21; 7367 else 7368 break; 7369 } 7370 else 7371 { 7372 // Invert 'y' bit if not the default. 7373 if (static_cast<Signed_address>(value) < 0) 7374 insn ^= 1 << 21; 7375 } 7376 elfcpp::Swap<32, big_endian>::writeval(iview, insn); 7377 } 7378 break; 7379 7380 default: 7381 break; 7382 } 7383 7384 if (size == 64) 7385 { 7386 // Multi-instruction sequences that access the TOC can be 7387 // optimized, eg. addis ra,r2,0; addi rb,ra,x; 7388 // to nop; addi rb,r2,x; 7389 switch (r_type) 7390 { 7391 default: 7392 break; 7393 7394 case elfcpp::R_POWERPC_GOT_TLSLD16_HA: 7395 case elfcpp::R_POWERPC_GOT_TLSGD16_HA: 7396 case elfcpp::R_POWERPC_GOT_TPREL16_HA: 7397 case elfcpp::R_POWERPC_GOT_DTPREL16_HA: 7398 case elfcpp::R_POWERPC_GOT16_HA: 7399 case elfcpp::R_PPC64_TOC16_HA: 7400 if (parameters->options().toc_optimize()) 7401 { 7402 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian); 7403 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview); 7404 if ((insn & ((0x3f << 26) | 0x1f << 16)) 7405 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */) 7406 gold_error_at_location(relinfo, relnum, rela.get_r_offset(), 7407 _("toc optimization is not supported " 7408 "for %#08x instruction"), insn); 7409 else if (value + 0x8000 < 0x10000) 7410 { 7411 elfcpp::Swap<32, big_endian>::writeval(iview, nop); 7412 return true; 7413 } 7414 } 7415 break; 7416 7417 case elfcpp::R_POWERPC_GOT_TLSLD16_LO: 7418 case elfcpp::R_POWERPC_GOT_TLSGD16_LO: 7419 case elfcpp::R_POWERPC_GOT_TPREL16_LO: 7420 case elfcpp::R_POWERPC_GOT_DTPREL16_LO: 7421 case elfcpp::R_POWERPC_GOT16_LO: 7422 case elfcpp::R_PPC64_GOT16_LO_DS: 7423 case elfcpp::R_PPC64_TOC16_LO: 7424 case elfcpp::R_PPC64_TOC16_LO_DS: 7425 if (parameters->options().toc_optimize()) 7426 { 7427 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian); 7428 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview); 7429 if (!ok_lo_toc_insn(insn)) 7430 gold_error_at_location(relinfo, relnum, rela.get_r_offset(), 7431 _("toc optimization is not supported " 7432 "for %#08x instruction"), insn); 7433 else if (value + 0x8000 < 0x10000) 7434 { 7435 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */) 7436 { 7437 // Transform addic to addi when we change reg. 7438 insn &= ~((0x3f << 26) | (0x1f << 16)); 7439 insn |= (14u << 26) | (2 << 16); 7440 } 7441 else 7442 { 7443 insn &= ~(0x1f << 16); 7444 insn |= 2 << 16; 7445 } 7446 elfcpp::Swap<32, big_endian>::writeval(iview, insn); 7447 } 7448 } 7449 break; 7450 } 7451 } 7452 7453 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE; 7454 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr); 7455 switch (r_type) 7456 { 7457 case elfcpp::R_POWERPC_ADDR32: 7458 case elfcpp::R_POWERPC_UADDR32: 7459 if (size == 64) 7460 overflow = Reloc::CHECK_BITFIELD; 7461 break; 7462 7463 case elfcpp::R_POWERPC_REL32: 7464 if (size == 64) 7465 overflow = Reloc::CHECK_SIGNED; 7466 break; 7467 7468 case elfcpp::R_POWERPC_UADDR16: 7469 overflow = Reloc::CHECK_BITFIELD; 7470 break; 7471 7472 case elfcpp::R_POWERPC_ADDR16: 7473 // We really should have three separate relocations, 7474 // one for 16-bit data, one for insns with 16-bit signed fields, 7475 // and one for insns with 16-bit unsigned fields. 7476 overflow = Reloc::CHECK_BITFIELD; 7477 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0) 7478 overflow = Reloc::CHECK_LOW_INSN; 7479 break; 7480 7481 case elfcpp::R_POWERPC_ADDR16_HI: 7482 case elfcpp::R_POWERPC_ADDR16_HA: 7483 case elfcpp::R_POWERPC_GOT16_HI: 7484 case elfcpp::R_POWERPC_GOT16_HA: 7485 case elfcpp::R_POWERPC_PLT16_HI: 7486 case elfcpp::R_POWERPC_PLT16_HA: 7487 case elfcpp::R_POWERPC_SECTOFF_HI: 7488 case elfcpp::R_POWERPC_SECTOFF_HA: 7489 case elfcpp::R_PPC64_TOC16_HI: 7490 case elfcpp::R_PPC64_TOC16_HA: 7491 case elfcpp::R_PPC64_PLTGOT16_HI: 7492 case elfcpp::R_PPC64_PLTGOT16_HA: 7493 case elfcpp::R_POWERPC_TPREL16_HI: 7494 case elfcpp::R_POWERPC_TPREL16_HA: 7495 case elfcpp::R_POWERPC_DTPREL16_HI: 7496 case elfcpp::R_POWERPC_DTPREL16_HA: 7497 case elfcpp::R_POWERPC_GOT_TLSGD16_HI: 7498 case elfcpp::R_POWERPC_GOT_TLSGD16_HA: 7499 case elfcpp::R_POWERPC_GOT_TLSLD16_HI: 7500 case elfcpp::R_POWERPC_GOT_TLSLD16_HA: 7501 case elfcpp::R_POWERPC_GOT_TPREL16_HI: 7502 case elfcpp::R_POWERPC_GOT_TPREL16_HA: 7503 case elfcpp::R_POWERPC_GOT_DTPREL16_HI: 7504 case elfcpp::R_POWERPC_GOT_DTPREL16_HA: 7505 case elfcpp::R_POWERPC_REL16_HI: 7506 case elfcpp::R_POWERPC_REL16_HA: 7507 if (size != 32) 7508 overflow = Reloc::CHECK_HIGH_INSN; 7509 break; 7510 7511 case elfcpp::R_POWERPC_REL16: 7512 case elfcpp::R_PPC64_TOC16: 7513 case elfcpp::R_POWERPC_GOT16: 7514 case elfcpp::R_POWERPC_SECTOFF: 7515 case elfcpp::R_POWERPC_TPREL16: 7516 case elfcpp::R_POWERPC_DTPREL16: 7517 case elfcpp::R_POWERPC_GOT_TLSGD16: 7518 case elfcpp::R_POWERPC_GOT_TLSLD16: 7519 case elfcpp::R_POWERPC_GOT_TPREL16: 7520 case elfcpp::R_POWERPC_GOT_DTPREL16: 7521 overflow = Reloc::CHECK_LOW_INSN; 7522 break; 7523 7524 case elfcpp::R_POWERPC_ADDR24: 7525 case elfcpp::R_POWERPC_ADDR14: 7526 case elfcpp::R_POWERPC_ADDR14_BRTAKEN: 7527 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN: 7528 case elfcpp::R_PPC64_ADDR16_DS: 7529 case elfcpp::R_POWERPC_REL24: 7530 case elfcpp::R_PPC_PLTREL24: 7531 case elfcpp::R_PPC_LOCAL24PC: 7532 case elfcpp::R_PPC64_TPREL16_DS: 7533 case elfcpp::R_PPC64_DTPREL16_DS: 7534 case elfcpp::R_PPC64_TOC16_DS: 7535 case elfcpp::R_PPC64_GOT16_DS: 7536 case elfcpp::R_PPC64_SECTOFF_DS: 7537 case elfcpp::R_POWERPC_REL14: 7538 case elfcpp::R_POWERPC_REL14_BRTAKEN: 7539 case elfcpp::R_POWERPC_REL14_BRNTAKEN: 7540 overflow = Reloc::CHECK_SIGNED; 7541 break; 7542 } 7543 7544 if (overflow == Reloc::CHECK_LOW_INSN 7545 || overflow == Reloc::CHECK_HIGH_INSN) 7546 { 7547 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian); 7548 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview); 7549 7550 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */) 7551 overflow = Reloc::CHECK_BITFIELD; 7552 else if (overflow == Reloc::CHECK_LOW_INSN 7553 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */ 7554 || (insn & (0x3f << 26)) == 24u << 26 /* ori */ 7555 || (insn & (0x3f << 26)) == 26u << 26 /* xori */) 7556 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */ 7557 || (insn & (0x3f << 26)) == 25u << 26 /* oris */ 7558 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */)) 7559 overflow = Reloc::CHECK_UNSIGNED; 7560 else 7561 overflow = Reloc::CHECK_SIGNED; 7562 } 7563 7564 typename Powerpc_relocate_functions<size, big_endian>::Status status 7565 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK; 7566 switch (r_type) 7567 { 7568 case elfcpp::R_POWERPC_NONE: 7569 case elfcpp::R_POWERPC_TLS: 7570 case elfcpp::R_POWERPC_GNU_VTINHERIT: 7571 case elfcpp::R_POWERPC_GNU_VTENTRY: 7572 break; 7573 7574 case elfcpp::R_PPC64_ADDR64: 7575 case elfcpp::R_PPC64_REL64: 7576 case elfcpp::R_PPC64_TOC: 7577 case elfcpp::R_PPC64_ADDR64_LOCAL: 7578 Reloc::addr64(view, value); 7579 break; 7580 7581 case elfcpp::R_POWERPC_TPREL: 7582 case elfcpp::R_POWERPC_DTPREL: 7583 if (size == 64) 7584 Reloc::addr64(view, value); 7585 else 7586 status = Reloc::addr32(view, value, overflow); 7587 break; 7588 7589 case elfcpp::R_PPC64_UADDR64: 7590 Reloc::addr64_u(view, value); 7591 break; 7592 7593 case elfcpp::R_POWERPC_ADDR32: 7594 status = Reloc::addr32(view, value, overflow); 7595 break; 7596 7597 case elfcpp::R_POWERPC_REL32: 7598 case elfcpp::R_POWERPC_UADDR32: 7599 status = Reloc::addr32_u(view, value, overflow); 7600 break; 7601 7602 case elfcpp::R_POWERPC_ADDR24: 7603 case elfcpp::R_POWERPC_REL24: 7604 case elfcpp::R_PPC_PLTREL24: 7605 case elfcpp::R_PPC_LOCAL24PC: 7606 status = Reloc::addr24(view, value, overflow); 7607 break; 7608 7609 case elfcpp::R_POWERPC_GOT_DTPREL16: 7610 case elfcpp::R_POWERPC_GOT_DTPREL16_LO: 7611 if (size == 64) 7612 { 7613 status = Reloc::addr16_ds(view, value, overflow); 7614 break; 7615 } 7616 case elfcpp::R_POWERPC_ADDR16: 7617 case elfcpp::R_POWERPC_REL16: 7618 case elfcpp::R_PPC64_TOC16: 7619 case elfcpp::R_POWERPC_GOT16: 7620 case elfcpp::R_POWERPC_SECTOFF: 7621 case elfcpp::R_POWERPC_TPREL16: 7622 case elfcpp::R_POWERPC_DTPREL16: 7623 case elfcpp::R_POWERPC_GOT_TLSGD16: 7624 case elfcpp::R_POWERPC_GOT_TLSLD16: 7625 case elfcpp::R_POWERPC_GOT_TPREL16: 7626 case elfcpp::R_POWERPC_ADDR16_LO: 7627 case elfcpp::R_POWERPC_REL16_LO: 7628 case elfcpp::R_PPC64_TOC16_LO: 7629 case elfcpp::R_POWERPC_GOT16_LO: 7630 case elfcpp::R_POWERPC_SECTOFF_LO: 7631 case elfcpp::R_POWERPC_TPREL16_LO: 7632 case elfcpp::R_POWERPC_DTPREL16_LO: 7633 case elfcpp::R_POWERPC_GOT_TLSGD16_LO: 7634 case elfcpp::R_POWERPC_GOT_TLSLD16_LO: 7635 case elfcpp::R_POWERPC_GOT_TPREL16_LO: 7636 status = Reloc::addr16(view, value, overflow); 7637 break; 7638 7639 case elfcpp::R_POWERPC_UADDR16: 7640 status = Reloc::addr16_u(view, value, overflow); 7641 break; 7642 7643 case elfcpp::R_PPC64_ADDR16_HIGH: 7644 case elfcpp::R_PPC64_TPREL16_HIGH: 7645 case elfcpp::R_PPC64_DTPREL16_HIGH: 7646 if (size == 32) 7647 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA 7648 goto unsupp; 7649 case elfcpp::R_POWERPC_ADDR16_HI: 7650 case elfcpp::R_POWERPC_REL16_HI: 7651 case elfcpp::R_PPC64_TOC16_HI: 7652 case elfcpp::R_POWERPC_GOT16_HI: 7653 case elfcpp::R_POWERPC_SECTOFF_HI: 7654 case elfcpp::R_POWERPC_TPREL16_HI: 7655 case elfcpp::R_POWERPC_DTPREL16_HI: 7656 case elfcpp::R_POWERPC_GOT_TLSGD16_HI: 7657 case elfcpp::R_POWERPC_GOT_TLSLD16_HI: 7658 case elfcpp::R_POWERPC_GOT_TPREL16_HI: 7659 case elfcpp::R_POWERPC_GOT_DTPREL16_HI: 7660 Reloc::addr16_hi(view, value); 7661 break; 7662 7663 case elfcpp::R_PPC64_ADDR16_HIGHA: 7664 case elfcpp::R_PPC64_TPREL16_HIGHA: 7665 case elfcpp::R_PPC64_DTPREL16_HIGHA: 7666 if (size == 32) 7667 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD 7668 goto unsupp; 7669 case elfcpp::R_POWERPC_ADDR16_HA: 7670 case elfcpp::R_POWERPC_REL16_HA: 7671 case elfcpp::R_PPC64_TOC16_HA: 7672 case elfcpp::R_POWERPC_GOT16_HA: 7673 case elfcpp::R_POWERPC_SECTOFF_HA: 7674 case elfcpp::R_POWERPC_TPREL16_HA: 7675 case elfcpp::R_POWERPC_DTPREL16_HA: 7676 case elfcpp::R_POWERPC_GOT_TLSGD16_HA: 7677 case elfcpp::R_POWERPC_GOT_TLSLD16_HA: 7678 case elfcpp::R_POWERPC_GOT_TPREL16_HA: 7679 case elfcpp::R_POWERPC_GOT_DTPREL16_HA: 7680 Reloc::addr16_ha(view, value); 7681 break; 7682 7683 case elfcpp::R_PPC64_DTPREL16_HIGHER: 7684 if (size == 32) 7685 // R_PPC_EMB_NADDR16_LO 7686 goto unsupp; 7687 case elfcpp::R_PPC64_ADDR16_HIGHER: 7688 case elfcpp::R_PPC64_TPREL16_HIGHER: 7689 Reloc::addr16_hi2(view, value); 7690 break; 7691 7692 case elfcpp::R_PPC64_DTPREL16_HIGHERA: 7693 if (size == 32) 7694 // R_PPC_EMB_NADDR16_HI 7695 goto unsupp; 7696 case elfcpp::R_PPC64_ADDR16_HIGHERA: 7697 case elfcpp::R_PPC64_TPREL16_HIGHERA: 7698 Reloc::addr16_ha2(view, value); 7699 break; 7700 7701 case elfcpp::R_PPC64_DTPREL16_HIGHEST: 7702 if (size == 32) 7703 // R_PPC_EMB_NADDR16_HA 7704 goto unsupp; 7705 case elfcpp::R_PPC64_ADDR16_HIGHEST: 7706 case elfcpp::R_PPC64_TPREL16_HIGHEST: 7707 Reloc::addr16_hi3(view, value); 7708 break; 7709 7710 case elfcpp::R_PPC64_DTPREL16_HIGHESTA: 7711 if (size == 32) 7712 // R_PPC_EMB_SDAI16 7713 goto unsupp; 7714 case elfcpp::R_PPC64_ADDR16_HIGHESTA: 7715 case elfcpp::R_PPC64_TPREL16_HIGHESTA: 7716 Reloc::addr16_ha3(view, value); 7717 break; 7718 7719 case elfcpp::R_PPC64_DTPREL16_DS: 7720 case elfcpp::R_PPC64_DTPREL16_LO_DS: 7721 if (size == 32) 7722 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16 7723 goto unsupp; 7724 case elfcpp::R_PPC64_TPREL16_DS: 7725 case elfcpp::R_PPC64_TPREL16_LO_DS: 7726 if (size == 32) 7727 // R_PPC_TLSGD, R_PPC_TLSLD 7728 break; 7729 case elfcpp::R_PPC64_ADDR16_DS: 7730 case elfcpp::R_PPC64_ADDR16_LO_DS: 7731 case elfcpp::R_PPC64_TOC16_DS: 7732 case elfcpp::R_PPC64_TOC16_LO_DS: 7733 case elfcpp::R_PPC64_GOT16_DS: 7734 case elfcpp::R_PPC64_GOT16_LO_DS: 7735 case elfcpp::R_PPC64_SECTOFF_DS: 7736 case elfcpp::R_PPC64_SECTOFF_LO_DS: 7737 status = Reloc::addr16_ds(view, value, overflow); 7738 break; 7739 7740 case elfcpp::R_POWERPC_ADDR14: 7741 case elfcpp::R_POWERPC_ADDR14_BRTAKEN: 7742 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN: 7743 case elfcpp::R_POWERPC_REL14: 7744 case elfcpp::R_POWERPC_REL14_BRTAKEN: 7745 case elfcpp::R_POWERPC_REL14_BRNTAKEN: 7746 status = Reloc::addr14(view, value, overflow); 7747 break; 7748 7749 case elfcpp::R_POWERPC_COPY: 7750 case elfcpp::R_POWERPC_GLOB_DAT: 7751 case elfcpp::R_POWERPC_JMP_SLOT: 7752 case elfcpp::R_POWERPC_RELATIVE: 7753 case elfcpp::R_POWERPC_DTPMOD: 7754 case elfcpp::R_PPC64_JMP_IREL: 7755 case elfcpp::R_POWERPC_IRELATIVE: 7756 gold_error_at_location(relinfo, relnum, rela.get_r_offset(), 7757 _("unexpected reloc %u in object file"), 7758 r_type); 7759 break; 7760 7761 case elfcpp::R_PPC_EMB_SDA21: 7762 if (size == 32) 7763 goto unsupp; 7764 else 7765 { 7766 // R_PPC64_TOCSAVE. For the time being this can be ignored. 7767 } 7768 break; 7769 7770 case elfcpp::R_PPC_EMB_SDA2I16: 7771 case elfcpp::R_PPC_EMB_SDA2REL: 7772 if (size == 32) 7773 goto unsupp; 7774 // R_PPC64_TLSGD, R_PPC64_TLSLD 7775 break; 7776 7777 case elfcpp::R_POWERPC_PLT32: 7778 case elfcpp::R_POWERPC_PLTREL32: 7779 case elfcpp::R_POWERPC_PLT16_LO: 7780 case elfcpp::R_POWERPC_PLT16_HI: 7781 case elfcpp::R_POWERPC_PLT16_HA: 7782 case elfcpp::R_PPC_SDAREL16: 7783 case elfcpp::R_POWERPC_ADDR30: 7784 case elfcpp::R_PPC64_PLT64: 7785 case elfcpp::R_PPC64_PLTREL64: 7786 case elfcpp::R_PPC64_PLTGOT16: 7787 case elfcpp::R_PPC64_PLTGOT16_LO: 7788 case elfcpp::R_PPC64_PLTGOT16_HI: 7789 case elfcpp::R_PPC64_PLTGOT16_HA: 7790 case elfcpp::R_PPC64_PLT16_LO_DS: 7791 case elfcpp::R_PPC64_PLTGOT16_DS: 7792 case elfcpp::R_PPC64_PLTGOT16_LO_DS: 7793 case elfcpp::R_PPC_EMB_RELSDA: 7794 case elfcpp::R_PPC_TOC16: 7795 default: 7796 unsupp: 7797 gold_error_at_location(relinfo, relnum, rela.get_r_offset(), 7798 _("unsupported reloc %u"), 7799 r_type); 7800 break; 7801 } 7802 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK 7803 && (has_stub_value 7804 || !(gsym != NULL 7805 && gsym->is_weak_undefined() 7806 && is_branch_reloc(r_type)))) 7807 { 7808 gold_error_at_location(relinfo, relnum, rela.get_r_offset(), 7809 _("relocation overflow")); 7810 if (has_stub_value) 7811 gold_info(_("try relinking with a smaller --stub-group-size")); 7812 } 7813 7814 return true; 7815 } 7816 7817 // Relocate section data. 7818 7819 template<int size, bool big_endian> 7820 void 7821 Target_powerpc<size, big_endian>::relocate_section( 7822 const Relocate_info<size, big_endian>* relinfo, 7823 unsigned int sh_type, 7824 const unsigned char* prelocs, 7825 size_t reloc_count, 7826 Output_section* output_section, 7827 bool needs_special_offset_handling, 7828 unsigned char* view, 7829 Address address, 7830 section_size_type view_size, 7831 const Reloc_symbol_changes* reloc_symbol_changes) 7832 { 7833 typedef Target_powerpc<size, big_endian> Powerpc; 7834 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate; 7835 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior 7836 Powerpc_comdat_behavior; 7837 7838 gold_assert(sh_type == elfcpp::SHT_RELA); 7839 7840 gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA, 7841 Powerpc_relocate, Powerpc_comdat_behavior>( 7842 relinfo, 7843 this, 7844 prelocs, 7845 reloc_count, 7846 output_section, 7847 needs_special_offset_handling, 7848 view, 7849 address, 7850 view_size, 7851 reloc_symbol_changes); 7852 } 7853 7854 class Powerpc_scan_relocatable_reloc 7855 { 7856 public: 7857 // Return the strategy to use for a local symbol which is not a 7858 // section symbol, given the relocation type. 7859 inline Relocatable_relocs::Reloc_strategy 7860 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym) 7861 { 7862 if (r_type == 0 && r_sym == 0) 7863 return Relocatable_relocs::RELOC_DISCARD; 7864 return Relocatable_relocs::RELOC_COPY; 7865 } 7866 7867 // Return the strategy to use for a local symbol which is a section 7868 // symbol, given the relocation type. 7869 inline Relocatable_relocs::Reloc_strategy 7870 local_section_strategy(unsigned int, Relobj*) 7871 { 7872 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA; 7873 } 7874 7875 // Return the strategy to use for a global symbol, given the 7876 // relocation type, the object, and the symbol index. 7877 inline Relocatable_relocs::Reloc_strategy 7878 global_strategy(unsigned int r_type, Relobj*, unsigned int) 7879 { 7880 if (r_type == elfcpp::R_PPC_PLTREL24) 7881 return Relocatable_relocs::RELOC_SPECIAL; 7882 return Relocatable_relocs::RELOC_COPY; 7883 } 7884 }; 7885 7886 // Scan the relocs during a relocatable link. 7887 7888 template<int size, bool big_endian> 7889 void 7890 Target_powerpc<size, big_endian>::scan_relocatable_relocs( 7891 Symbol_table* symtab, 7892 Layout* layout, 7893 Sized_relobj_file<size, big_endian>* object, 7894 unsigned int data_shndx, 7895 unsigned int sh_type, 7896 const unsigned char* prelocs, 7897 size_t reloc_count, 7898 Output_section* output_section, 7899 bool needs_special_offset_handling, 7900 size_t local_symbol_count, 7901 const unsigned char* plocal_symbols, 7902 Relocatable_relocs* rr) 7903 { 7904 gold_assert(sh_type == elfcpp::SHT_RELA); 7905 7906 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA, 7907 Powerpc_scan_relocatable_reloc>( 7908 symtab, 7909 layout, 7910 object, 7911 data_shndx, 7912 prelocs, 7913 reloc_count, 7914 output_section, 7915 needs_special_offset_handling, 7916 local_symbol_count, 7917 plocal_symbols, 7918 rr); 7919 } 7920 7921 // Emit relocations for a section. 7922 // This is a modified version of the function by the same name in 7923 // target-reloc.h. Using relocate_special_relocatable for 7924 // R_PPC_PLTREL24 would require duplication of the entire body of the 7925 // loop, so we may as well duplicate the whole thing. 7926 7927 template<int size, bool big_endian> 7928 void 7929 Target_powerpc<size, big_endian>::relocate_relocs( 7930 const Relocate_info<size, big_endian>* relinfo, 7931 unsigned int sh_type, 7932 const unsigned char* prelocs, 7933 size_t reloc_count, 7934 Output_section* output_section, 7935 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section, 7936 const Relocatable_relocs* rr, 7937 unsigned char*, 7938 Address view_address, 7939 section_size_type, 7940 unsigned char* reloc_view, 7941 section_size_type reloc_view_size) 7942 { 7943 gold_assert(sh_type == elfcpp::SHT_RELA); 7944 7945 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc 7946 Reltype; 7947 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write 7948 Reltype_write; 7949 const int reloc_size 7950 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size; 7951 7952 Powerpc_relobj<size, big_endian>* const object 7953 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object); 7954 const unsigned int local_count = object->local_symbol_count(); 7955 unsigned int got2_shndx = object->got2_shndx(); 7956 Address got2_addend = 0; 7957 if (got2_shndx != 0) 7958 { 7959 got2_addend = object->get_output_section_offset(got2_shndx); 7960 gold_assert(got2_addend != invalid_address); 7961 } 7962 7963 unsigned char* pwrite = reloc_view; 7964 bool zap_next = false; 7965 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size) 7966 { 7967 Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i); 7968 if (strategy == Relocatable_relocs::RELOC_DISCARD) 7969 continue; 7970 7971 Reltype reloc(prelocs); 7972 Reltype_write reloc_write(pwrite); 7973 7974 Address offset = reloc.get_r_offset(); 7975 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info(); 7976 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info); 7977 unsigned int r_type = elfcpp::elf_r_type<size>(r_info); 7978 const unsigned int orig_r_sym = r_sym; 7979 typename elfcpp::Elf_types<size>::Elf_Swxword addend 7980 = reloc.get_r_addend(); 7981 const Symbol* gsym = NULL; 7982 7983 if (zap_next) 7984 { 7985 // We could arrange to discard these and other relocs for 7986 // tls optimised sequences in the strategy methods, but for 7987 // now do as BFD ld does. 7988 r_type = elfcpp::R_POWERPC_NONE; 7989 zap_next = false; 7990 } 7991 7992 // Get the new symbol index. 7993 if (r_sym < local_count) 7994 { 7995 switch (strategy) 7996 { 7997 case Relocatable_relocs::RELOC_COPY: 7998 case Relocatable_relocs::RELOC_SPECIAL: 7999 if (r_sym != 0) 8000 { 8001 r_sym = object->symtab_index(r_sym); 8002 gold_assert(r_sym != -1U); 8003 } 8004 break; 8005 8006 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA: 8007 { 8008 // We are adjusting a section symbol. We need to find 8009 // the symbol table index of the section symbol for 8010 // the output section corresponding to input section 8011 // in which this symbol is defined. 8012 gold_assert(r_sym < local_count); 8013 bool is_ordinary; 8014 unsigned int shndx = 8015 object->local_symbol_input_shndx(r_sym, &is_ordinary); 8016 gold_assert(is_ordinary); 8017 Output_section* os = object->output_section(shndx); 8018 gold_assert(os != NULL); 8019 gold_assert(os->needs_symtab_index()); 8020 r_sym = os->symtab_index(); 8021 } 8022 break; 8023 8024 default: 8025 gold_unreachable(); 8026 } 8027 } 8028 else 8029 { 8030 gsym = object->global_symbol(r_sym); 8031 gold_assert(gsym != NULL); 8032 if (gsym->is_forwarder()) 8033 gsym = relinfo->symtab->resolve_forwards(gsym); 8034 8035 gold_assert(gsym->has_symtab_index()); 8036 r_sym = gsym->symtab_index(); 8037 } 8038 8039 // Get the new offset--the location in the output section where 8040 // this relocation should be applied. 8041 if (static_cast<Address>(offset_in_output_section) != invalid_address) 8042 offset += offset_in_output_section; 8043 else 8044 { 8045 section_offset_type sot_offset = 8046 convert_types<section_offset_type, Address>(offset); 8047 section_offset_type new_sot_offset = 8048 output_section->output_offset(object, relinfo->data_shndx, 8049 sot_offset); 8050 gold_assert(new_sot_offset != -1); 8051 offset = new_sot_offset; 8052 } 8053 8054 // In an object file, r_offset is an offset within the section. 8055 // In an executable or dynamic object, generated by 8056 // --emit-relocs, r_offset is an absolute address. 8057 if (!parameters->options().relocatable()) 8058 { 8059 offset += view_address; 8060 if (static_cast<Address>(offset_in_output_section) != invalid_address) 8061 offset -= offset_in_output_section; 8062 } 8063 8064 // Handle the reloc addend based on the strategy. 8065 if (strategy == Relocatable_relocs::RELOC_COPY) 8066 ; 8067 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA) 8068 { 8069 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym); 8070 addend = psymval->value(object, addend); 8071 } 8072 else if (strategy == Relocatable_relocs::RELOC_SPECIAL) 8073 { 8074 if (addend >= 32768) 8075 addend += got2_addend; 8076 } 8077 else 8078 gold_unreachable(); 8079 8080 if (!parameters->options().relocatable()) 8081 { 8082 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16 8083 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO 8084 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI 8085 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA) 8086 { 8087 // First instruction of a global dynamic sequence, 8088 // arg setup insn. 8089 const bool final = gsym == NULL || gsym->final_value_is_known(); 8090 switch (this->optimize_tls_gd(final)) 8091 { 8092 case tls::TLSOPT_TO_IE: 8093 r_type += (elfcpp::R_POWERPC_GOT_TPREL16 8094 - elfcpp::R_POWERPC_GOT_TLSGD16); 8095 break; 8096 case tls::TLSOPT_TO_LE: 8097 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16 8098 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO) 8099 r_type = elfcpp::R_POWERPC_TPREL16_HA; 8100 else 8101 { 8102 r_type = elfcpp::R_POWERPC_NONE; 8103 offset -= 2 * big_endian; 8104 } 8105 break; 8106 default: 8107 break; 8108 } 8109 } 8110 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16 8111 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO 8112 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI 8113 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA) 8114 { 8115 // First instruction of a local dynamic sequence, 8116 // arg setup insn. 8117 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE) 8118 { 8119 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16 8120 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO) 8121 { 8122 r_type = elfcpp::R_POWERPC_TPREL16_HA; 8123 const Output_section* os = relinfo->layout->tls_segment() 8124 ->first_section(); 8125 gold_assert(os != NULL); 8126 gold_assert(os->needs_symtab_index()); 8127 r_sym = os->symtab_index(); 8128 addend = dtp_offset; 8129 } 8130 else 8131 { 8132 r_type = elfcpp::R_POWERPC_NONE; 8133 offset -= 2 * big_endian; 8134 } 8135 } 8136 } 8137 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16 8138 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO 8139 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI 8140 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA) 8141 { 8142 // First instruction of initial exec sequence. 8143 const bool final = gsym == NULL || gsym->final_value_is_known(); 8144 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE) 8145 { 8146 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16 8147 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO) 8148 r_type = elfcpp::R_POWERPC_TPREL16_HA; 8149 else 8150 { 8151 r_type = elfcpp::R_POWERPC_NONE; 8152 offset -= 2 * big_endian; 8153 } 8154 } 8155 } 8156 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD) 8157 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD)) 8158 { 8159 // Second instruction of a global dynamic sequence, 8160 // the __tls_get_addr call 8161 const bool final = gsym == NULL || gsym->final_value_is_known(); 8162 switch (this->optimize_tls_gd(final)) 8163 { 8164 case tls::TLSOPT_TO_IE: 8165 r_type = elfcpp::R_POWERPC_NONE; 8166 zap_next = true; 8167 break; 8168 case tls::TLSOPT_TO_LE: 8169 r_type = elfcpp::R_POWERPC_TPREL16_LO; 8170 offset += 2 * big_endian; 8171 zap_next = true; 8172 break; 8173 default: 8174 break; 8175 } 8176 } 8177 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD) 8178 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD)) 8179 { 8180 // Second instruction of a local dynamic sequence, 8181 // the __tls_get_addr call 8182 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE) 8183 { 8184 const Output_section* os = relinfo->layout->tls_segment() 8185 ->first_section(); 8186 gold_assert(os != NULL); 8187 gold_assert(os->needs_symtab_index()); 8188 r_sym = os->symtab_index(); 8189 addend = dtp_offset; 8190 r_type = elfcpp::R_POWERPC_TPREL16_LO; 8191 offset += 2 * big_endian; 8192 zap_next = true; 8193 } 8194 } 8195 else if (r_type == elfcpp::R_POWERPC_TLS) 8196 { 8197 // Second instruction of an initial exec sequence 8198 const bool final = gsym == NULL || gsym->final_value_is_known(); 8199 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE) 8200 { 8201 r_type = elfcpp::R_POWERPC_TPREL16_LO; 8202 offset += 2 * big_endian; 8203 } 8204 } 8205 } 8206 8207 reloc_write.put_r_offset(offset); 8208 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type)); 8209 reloc_write.put_r_addend(addend); 8210 8211 pwrite += reloc_size; 8212 } 8213 8214 gold_assert(static_cast<section_size_type>(pwrite - reloc_view) 8215 == reloc_view_size); 8216 } 8217 8218 // Return the value to use for a dynamic symbol which requires special 8219 // treatment. This is how we support equality comparisons of function 8220 // pointers across shared library boundaries, as described in the 8221 // processor specific ABI supplement. 8222 8223 template<int size, bool big_endian> 8224 uint64_t 8225 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const 8226 { 8227 if (size == 32) 8228 { 8229 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset()); 8230 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin(); 8231 p != this->stub_tables_.end(); 8232 ++p) 8233 { 8234 Address off = (*p)->find_plt_call_entry(gsym); 8235 if (off != invalid_address) 8236 return (*p)->stub_address() + off; 8237 } 8238 } 8239 else if (this->abiversion() >= 2) 8240 { 8241 Address off = this->glink_section()->find_global_entry(gsym); 8242 if (off != invalid_address) 8243 return this->glink_section()->global_entry_address() + off; 8244 } 8245 gold_unreachable(); 8246 } 8247 8248 // Return the PLT address to use for a local symbol. 8249 template<int size, bool big_endian> 8250 uint64_t 8251 Target_powerpc<size, big_endian>::do_plt_address_for_local( 8252 const Relobj* object, 8253 unsigned int symndx) const 8254 { 8255 if (size == 32) 8256 { 8257 const Sized_relobj<size, big_endian>* relobj 8258 = static_cast<const Sized_relobj<size, big_endian>*>(object); 8259 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin(); 8260 p != this->stub_tables_.end(); 8261 ++p) 8262 { 8263 Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(), 8264 symndx); 8265 if (off != invalid_address) 8266 return (*p)->stub_address() + off; 8267 } 8268 } 8269 gold_unreachable(); 8270 } 8271 8272 // Return the PLT address to use for a global symbol. 8273 template<int size, bool big_endian> 8274 uint64_t 8275 Target_powerpc<size, big_endian>::do_plt_address_for_global( 8276 const Symbol* gsym) const 8277 { 8278 if (size == 32) 8279 { 8280 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin(); 8281 p != this->stub_tables_.end(); 8282 ++p) 8283 { 8284 Address off = (*p)->find_plt_call_entry(gsym); 8285 if (off != invalid_address) 8286 return (*p)->stub_address() + off; 8287 } 8288 } 8289 else if (this->abiversion() >= 2) 8290 { 8291 Address off = this->glink_section()->find_global_entry(gsym); 8292 if (off != invalid_address) 8293 return this->glink_section()->global_entry_address() + off; 8294 } 8295 gold_unreachable(); 8296 } 8297 8298 // Return the offset to use for the GOT_INDX'th got entry which is 8299 // for a local tls symbol specified by OBJECT, SYMNDX. 8300 template<int size, bool big_endian> 8301 int64_t 8302 Target_powerpc<size, big_endian>::do_tls_offset_for_local( 8303 const Relobj* object, 8304 unsigned int symndx, 8305 unsigned int got_indx) const 8306 { 8307 const Powerpc_relobj<size, big_endian>* ppc_object 8308 = static_cast<const Powerpc_relobj<size, big_endian>*>(object); 8309 if (ppc_object->local_symbol(symndx)->is_tls_symbol()) 8310 { 8311 for (Got_type got_type = GOT_TYPE_TLSGD; 8312 got_type <= GOT_TYPE_TPREL; 8313 got_type = Got_type(got_type + 1)) 8314 if (ppc_object->local_has_got_offset(symndx, got_type)) 8315 { 8316 unsigned int off = ppc_object->local_got_offset(symndx, got_type); 8317 if (got_type == GOT_TYPE_TLSGD) 8318 off += size / 8; 8319 if (off == got_indx * (size / 8)) 8320 { 8321 if (got_type == GOT_TYPE_TPREL) 8322 return -tp_offset; 8323 else 8324 return -dtp_offset; 8325 } 8326 } 8327 } 8328 gold_unreachable(); 8329 } 8330 8331 // Return the offset to use for the GOT_INDX'th got entry which is 8332 // for global tls symbol GSYM. 8333 template<int size, bool big_endian> 8334 int64_t 8335 Target_powerpc<size, big_endian>::do_tls_offset_for_global( 8336 Symbol* gsym, 8337 unsigned int got_indx) const 8338 { 8339 if (gsym->type() == elfcpp::STT_TLS) 8340 { 8341 for (Got_type got_type = GOT_TYPE_TLSGD; 8342 got_type <= GOT_TYPE_TPREL; 8343 got_type = Got_type(got_type + 1)) 8344 if (gsym->has_got_offset(got_type)) 8345 { 8346 unsigned int off = gsym->got_offset(got_type); 8347 if (got_type == GOT_TYPE_TLSGD) 8348 off += size / 8; 8349 if (off == got_indx * (size / 8)) 8350 { 8351 if (got_type == GOT_TYPE_TPREL) 8352 return -tp_offset; 8353 else 8354 return -dtp_offset; 8355 } 8356 } 8357 } 8358 gold_unreachable(); 8359 } 8360 8361 // The selector for powerpc object files. 8362 8363 template<int size, bool big_endian> 8364 class Target_selector_powerpc : public Target_selector 8365 { 8366 public: 8367 Target_selector_powerpc() 8368 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC, 8369 size, big_endian, 8370 (size == 64 8371 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle") 8372 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")), 8373 (size == 64 8374 ? (big_endian ? "elf64ppc" : "elf64lppc") 8375 : (big_endian ? "elf32ppc" : "elf32lppc"))) 8376 { } 8377 8378 virtual Target* 8379 do_instantiate_target() 8380 { return new Target_powerpc<size, big_endian>(); } 8381 }; 8382 8383 Target_selector_powerpc<32, true> target_selector_ppc32; 8384 Target_selector_powerpc<32, false> target_selector_ppc32le; 8385 Target_selector_powerpc<64, true> target_selector_ppc64; 8386 Target_selector_powerpc<64, false> target_selector_ppc64le; 8387 8388 // Instantiate these constants for -O0 8389 template<int size, bool big_endian> 8390 const int Output_data_glink<size, big_endian>::pltresolve_size; 8391 template<int size, bool big_endian> 8392 const typename Output_data_glink<size, big_endian>::Address 8393 Output_data_glink<size, big_endian>::invalid_address; 8394 template<int size, bool big_endian> 8395 const typename Stub_table<size, big_endian>::Address 8396 Stub_table<size, big_endian>::invalid_address; 8397 template<int size, bool big_endian> 8398 const typename Target_powerpc<size, big_endian>::Address 8399 Target_powerpc<size, big_endian>::invalid_address; 8400 8401 } // End anonymous namespace. 8402