1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GetElementPtrTypeIterator.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/PatternMatch.h" 37 #include "llvm/IR/Statepoint.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/IR/ValueMap.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Target/TargetLowering.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/BuildLibCalls.h" 48 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 49 #include "llvm/Transforms/Utils/Local.h" 50 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 51 using namespace llvm; 52 using namespace llvm::PatternMatch; 53 54 #define DEBUG_TYPE "codegenprepare" 55 56 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 57 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 58 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 59 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 60 "sunken Cmps"); 61 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 62 "of sunken Casts"); 63 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 64 "computations were sunk"); 65 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 66 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 67 STATISTIC(NumAndsAdded, 68 "Number of and mask instructions added to form ext loads"); 69 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 70 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 71 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 72 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 73 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 74 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 75 76 static cl::opt<bool> DisableBranchOpts( 77 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 78 cl::desc("Disable branch optimizations in CodeGenPrepare")); 79 80 static cl::opt<bool> 81 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 82 cl::desc("Disable GC optimizations in CodeGenPrepare")); 83 84 static cl::opt<bool> DisableSelectToBranch( 85 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 86 cl::desc("Disable select to branch conversion.")); 87 88 static cl::opt<bool> AddrSinkUsingGEPs( 89 "addr-sink-using-gep", cl::Hidden, cl::init(false), 90 cl::desc("Address sinking in CGP using GEPs.")); 91 92 static cl::opt<bool> EnableAndCmpSinking( 93 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 94 cl::desc("Enable sinkinig and/cmp into branches.")); 95 96 static cl::opt<bool> DisableStoreExtract( 97 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 98 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 99 100 static cl::opt<bool> StressStoreExtract( 101 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 102 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 103 104 static cl::opt<bool> DisableExtLdPromotion( 105 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 106 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 107 "CodeGenPrepare")); 108 109 static cl::opt<bool> StressExtLdPromotion( 110 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 111 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 112 "optimization in CodeGenPrepare")); 113 114 namespace { 115 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 116 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 117 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 118 class TypePromotionTransaction; 119 120 class CodeGenPrepare : public FunctionPass { 121 const TargetMachine *TM; 122 const TargetLowering *TLI; 123 const TargetTransformInfo *TTI; 124 const TargetLibraryInfo *TLInfo; 125 126 /// As we scan instructions optimizing them, this is the next instruction 127 /// to optimize. Transforms that can invalidate this should update it. 128 BasicBlock::iterator CurInstIterator; 129 130 /// Keeps track of non-local addresses that have been sunk into a block. 131 /// This allows us to avoid inserting duplicate code for blocks with 132 /// multiple load/stores of the same address. 133 ValueMap<Value*, Value*> SunkAddrs; 134 135 /// Keeps track of all instructions inserted for the current function. 136 SetOfInstrs InsertedInsts; 137 /// Keeps track of the type of the related instruction before their 138 /// promotion for the current function. 139 InstrToOrigTy PromotedInsts; 140 141 /// True if CFG is modified in any way. 142 bool ModifiedDT; 143 144 /// True if optimizing for size. 145 bool OptSize; 146 147 /// DataLayout for the Function being processed. 148 const DataLayout *DL; 149 150 public: 151 static char ID; // Pass identification, replacement for typeid 152 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 153 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { 154 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 155 } 156 bool runOnFunction(Function &F) override; 157 158 const char *getPassName() const override { return "CodeGen Prepare"; } 159 160 void getAnalysisUsage(AnalysisUsage &AU) const override { 161 AU.addPreserved<DominatorTreeWrapperPass>(); 162 AU.addRequired<TargetLibraryInfoWrapperPass>(); 163 AU.addRequired<TargetTransformInfoWrapperPass>(); 164 } 165 166 private: 167 bool eliminateFallThrough(Function &F); 168 bool eliminateMostlyEmptyBlocks(Function &F); 169 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 170 void eliminateMostlyEmptyBlock(BasicBlock *BB); 171 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); 172 bool optimizeInst(Instruction *I, bool& ModifiedDT); 173 bool optimizeMemoryInst(Instruction *I, Value *Addr, 174 Type *AccessTy, unsigned AS); 175 bool optimizeInlineAsmInst(CallInst *CS); 176 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); 177 bool moveExtToFormExtLoad(Instruction *&I); 178 bool optimizeExtUses(Instruction *I); 179 bool optimizeLoadExt(LoadInst *I); 180 bool optimizeSelectInst(SelectInst *SI); 181 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 182 bool optimizeSwitchInst(SwitchInst *CI); 183 bool optimizeExtractElementInst(Instruction *Inst); 184 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 185 bool placeDbgValues(Function &F); 186 bool sinkAndCmp(Function &F); 187 bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 188 Instruction *&Inst, 189 const SmallVectorImpl<Instruction *> &Exts, 190 unsigned CreatedInstCost); 191 bool splitBranchCondition(Function &F); 192 bool simplifyOffsetableRelocate(Instruction &I); 193 void stripInvariantGroupMetadata(Instruction &I); 194 }; 195 } 196 197 char CodeGenPrepare::ID = 0; 198 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", 199 "Optimize for code generation", false, false) 200 201 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 202 return new CodeGenPrepare(TM); 203 } 204 205 bool CodeGenPrepare::runOnFunction(Function &F) { 206 if (skipOptnoneFunction(F)) 207 return false; 208 209 DL = &F.getParent()->getDataLayout(); 210 211 bool EverMadeChange = false; 212 // Clear per function information. 213 InsertedInsts.clear(); 214 PromotedInsts.clear(); 215 216 ModifiedDT = false; 217 if (TM) 218 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 219 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 220 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 221 OptSize = F.optForSize(); 222 223 /// This optimization identifies DIV instructions that can be 224 /// profitably bypassed and carried out with a shorter, faster divide. 225 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 226 const DenseMap<unsigned int, unsigned int> &BypassWidths = 227 TLI->getBypassSlowDivWidths(); 228 for (Function::iterator I = F.begin(); I != F.end(); I++) 229 EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); 230 } 231 232 // Eliminate blocks that contain only PHI nodes and an 233 // unconditional branch. 234 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 235 236 // llvm.dbg.value is far away from the value then iSel may not be able 237 // handle it properly. iSel will drop llvm.dbg.value if it can not 238 // find a node corresponding to the value. 239 EverMadeChange |= placeDbgValues(F); 240 241 // If there is a mask, compare against zero, and branch that can be combined 242 // into a single target instruction, push the mask and compare into branch 243 // users. Do this before OptimizeBlock -> OptimizeInst -> 244 // OptimizeCmpExpression, which perturbs the pattern being searched for. 245 if (!DisableBranchOpts) { 246 EverMadeChange |= sinkAndCmp(F); 247 EverMadeChange |= splitBranchCondition(F); 248 } 249 250 bool MadeChange = true; 251 while (MadeChange) { 252 MadeChange = false; 253 for (Function::iterator I = F.begin(); I != F.end(); ) { 254 BasicBlock *BB = &*I++; 255 bool ModifiedDTOnIteration = false; 256 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 257 258 // Restart BB iteration if the dominator tree of the Function was changed 259 if (ModifiedDTOnIteration) 260 break; 261 } 262 EverMadeChange |= MadeChange; 263 } 264 265 SunkAddrs.clear(); 266 267 if (!DisableBranchOpts) { 268 MadeChange = false; 269 SmallPtrSet<BasicBlock*, 8> WorkList; 270 for (BasicBlock &BB : F) { 271 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 272 MadeChange |= ConstantFoldTerminator(&BB, true); 273 if (!MadeChange) continue; 274 275 for (SmallVectorImpl<BasicBlock*>::iterator 276 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 277 if (pred_begin(*II) == pred_end(*II)) 278 WorkList.insert(*II); 279 } 280 281 // Delete the dead blocks and any of their dead successors. 282 MadeChange |= !WorkList.empty(); 283 while (!WorkList.empty()) { 284 BasicBlock *BB = *WorkList.begin(); 285 WorkList.erase(BB); 286 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 287 288 DeleteDeadBlock(BB); 289 290 for (SmallVectorImpl<BasicBlock*>::iterator 291 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 292 if (pred_begin(*II) == pred_end(*II)) 293 WorkList.insert(*II); 294 } 295 296 // Merge pairs of basic blocks with unconditional branches, connected by 297 // a single edge. 298 if (EverMadeChange || MadeChange) 299 MadeChange |= eliminateFallThrough(F); 300 301 EverMadeChange |= MadeChange; 302 } 303 304 if (!DisableGCOpts) { 305 SmallVector<Instruction *, 2> Statepoints; 306 for (BasicBlock &BB : F) 307 for (Instruction &I : BB) 308 if (isStatepoint(I)) 309 Statepoints.push_back(&I); 310 for (auto &I : Statepoints) 311 EverMadeChange |= simplifyOffsetableRelocate(*I); 312 } 313 314 return EverMadeChange; 315 } 316 317 /// Merge basic blocks which are connected by a single edge, where one of the 318 /// basic blocks has a single successor pointing to the other basic block, 319 /// which has a single predecessor. 320 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 321 bool Changed = false; 322 // Scan all of the blocks in the function, except for the entry block. 323 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 324 BasicBlock *BB = &*I++; 325 // If the destination block has a single pred, then this is a trivial 326 // edge, just collapse it. 327 BasicBlock *SinglePred = BB->getSinglePredecessor(); 328 329 // Don't merge if BB's address is taken. 330 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 331 332 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 333 if (Term && !Term->isConditional()) { 334 Changed = true; 335 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 336 // Remember if SinglePred was the entry block of the function. 337 // If so, we will need to move BB back to the entry position. 338 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 339 MergeBasicBlockIntoOnlyPred(BB, nullptr); 340 341 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 342 BB->moveBefore(&BB->getParent()->getEntryBlock()); 343 344 // We have erased a block. Update the iterator. 345 I = BB->getIterator(); 346 } 347 } 348 return Changed; 349 } 350 351 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 352 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 353 /// edges in ways that are non-optimal for isel. Start by eliminating these 354 /// blocks so we can split them the way we want them. 355 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 356 bool MadeChange = false; 357 // Note that this intentionally skips the entry block. 358 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 359 BasicBlock *BB = &*I++; 360 361 // If this block doesn't end with an uncond branch, ignore it. 362 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 363 if (!BI || !BI->isUnconditional()) 364 continue; 365 366 // If the instruction before the branch (skipping debug info) isn't a phi 367 // node, then other stuff is happening here. 368 BasicBlock::iterator BBI = BI->getIterator(); 369 if (BBI != BB->begin()) { 370 --BBI; 371 while (isa<DbgInfoIntrinsic>(BBI)) { 372 if (BBI == BB->begin()) 373 break; 374 --BBI; 375 } 376 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 377 continue; 378 } 379 380 // Do not break infinite loops. 381 BasicBlock *DestBB = BI->getSuccessor(0); 382 if (DestBB == BB) 383 continue; 384 385 if (!canMergeBlocks(BB, DestBB)) 386 continue; 387 388 eliminateMostlyEmptyBlock(BB); 389 MadeChange = true; 390 } 391 return MadeChange; 392 } 393 394 /// Return true if we can merge BB into DestBB if there is a single 395 /// unconditional branch between them, and BB contains no other non-phi 396 /// instructions. 397 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 398 const BasicBlock *DestBB) const { 399 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 400 // the successor. If there are more complex condition (e.g. preheaders), 401 // don't mess around with them. 402 BasicBlock::const_iterator BBI = BB->begin(); 403 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 404 for (const User *U : PN->users()) { 405 const Instruction *UI = cast<Instruction>(U); 406 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 407 return false; 408 // If User is inside DestBB block and it is a PHINode then check 409 // incoming value. If incoming value is not from BB then this is 410 // a complex condition (e.g. preheaders) we want to avoid here. 411 if (UI->getParent() == DestBB) { 412 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 413 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 414 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 415 if (Insn && Insn->getParent() == BB && 416 Insn->getParent() != UPN->getIncomingBlock(I)) 417 return false; 418 } 419 } 420 } 421 } 422 423 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 424 // and DestBB may have conflicting incoming values for the block. If so, we 425 // can't merge the block. 426 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 427 if (!DestBBPN) return true; // no conflict. 428 429 // Collect the preds of BB. 430 SmallPtrSet<const BasicBlock*, 16> BBPreds; 431 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 432 // It is faster to get preds from a PHI than with pred_iterator. 433 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 434 BBPreds.insert(BBPN->getIncomingBlock(i)); 435 } else { 436 BBPreds.insert(pred_begin(BB), pred_end(BB)); 437 } 438 439 // Walk the preds of DestBB. 440 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 441 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 442 if (BBPreds.count(Pred)) { // Common predecessor? 443 BBI = DestBB->begin(); 444 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 445 const Value *V1 = PN->getIncomingValueForBlock(Pred); 446 const Value *V2 = PN->getIncomingValueForBlock(BB); 447 448 // If V2 is a phi node in BB, look up what the mapped value will be. 449 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 450 if (V2PN->getParent() == BB) 451 V2 = V2PN->getIncomingValueForBlock(Pred); 452 453 // If there is a conflict, bail out. 454 if (V1 != V2) return false; 455 } 456 } 457 } 458 459 return true; 460 } 461 462 463 /// Eliminate a basic block that has only phi's and an unconditional branch in 464 /// it. 465 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 466 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 467 BasicBlock *DestBB = BI->getSuccessor(0); 468 469 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 470 471 // If the destination block has a single pred, then this is a trivial edge, 472 // just collapse it. 473 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 474 if (SinglePred != DestBB) { 475 // Remember if SinglePred was the entry block of the function. If so, we 476 // will need to move BB back to the entry position. 477 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 478 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 479 480 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 481 BB->moveBefore(&BB->getParent()->getEntryBlock()); 482 483 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 484 return; 485 } 486 } 487 488 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 489 // to handle the new incoming edges it is about to have. 490 PHINode *PN; 491 for (BasicBlock::iterator BBI = DestBB->begin(); 492 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 493 // Remove the incoming value for BB, and remember it. 494 Value *InVal = PN->removeIncomingValue(BB, false); 495 496 // Two options: either the InVal is a phi node defined in BB or it is some 497 // value that dominates BB. 498 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 499 if (InValPhi && InValPhi->getParent() == BB) { 500 // Add all of the input values of the input PHI as inputs of this phi. 501 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 502 PN->addIncoming(InValPhi->getIncomingValue(i), 503 InValPhi->getIncomingBlock(i)); 504 } else { 505 // Otherwise, add one instance of the dominating value for each edge that 506 // we will be adding. 507 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 508 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 509 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 510 } else { 511 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 512 PN->addIncoming(InVal, *PI); 513 } 514 } 515 } 516 517 // The PHIs are now updated, change everything that refers to BB to use 518 // DestBB and remove BB. 519 BB->replaceAllUsesWith(DestBB); 520 BB->eraseFromParent(); 521 ++NumBlocksElim; 522 523 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 524 } 525 526 // Computes a map of base pointer relocation instructions to corresponding 527 // derived pointer relocation instructions given a vector of all relocate calls 528 static void computeBaseDerivedRelocateMap( 529 const SmallVectorImpl<User *> &AllRelocateCalls, 530 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> & 531 RelocateInstMap) { 532 // Collect information in two maps: one primarily for locating the base object 533 // while filling the second map; the second map is the final structure holding 534 // a mapping between Base and corresponding Derived relocate calls 535 DenseMap<std::pair<unsigned, unsigned>, IntrinsicInst *> RelocateIdxMap; 536 for (auto &U : AllRelocateCalls) { 537 GCRelocateOperands ThisRelocate(U); 538 IntrinsicInst *I = cast<IntrinsicInst>(U); 539 auto K = std::make_pair(ThisRelocate.getBasePtrIndex(), 540 ThisRelocate.getDerivedPtrIndex()); 541 RelocateIdxMap.insert(std::make_pair(K, I)); 542 } 543 for (auto &Item : RelocateIdxMap) { 544 std::pair<unsigned, unsigned> Key = Item.first; 545 if (Key.first == Key.second) 546 // Base relocation: nothing to insert 547 continue; 548 549 IntrinsicInst *I = Item.second; 550 auto BaseKey = std::make_pair(Key.first, Key.first); 551 552 // We're iterating over RelocateIdxMap so we cannot modify it. 553 auto MaybeBase = RelocateIdxMap.find(BaseKey); 554 if (MaybeBase == RelocateIdxMap.end()) 555 // TODO: We might want to insert a new base object relocate and gep off 556 // that, if there are enough derived object relocates. 557 continue; 558 559 RelocateInstMap[MaybeBase->second].push_back(I); 560 } 561 } 562 563 // Accepts a GEP and extracts the operands into a vector provided they're all 564 // small integer constants 565 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 566 SmallVectorImpl<Value *> &OffsetV) { 567 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 568 // Only accept small constant integer operands 569 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 570 if (!Op || Op->getZExtValue() > 20) 571 return false; 572 } 573 574 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 575 OffsetV.push_back(GEP->getOperand(i)); 576 return true; 577 } 578 579 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 580 // replace, computes a replacement, and affects it. 581 static bool 582 simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase, 583 const SmallVectorImpl<IntrinsicInst *> &Targets) { 584 bool MadeChange = false; 585 for (auto &ToReplace : Targets) { 586 GCRelocateOperands MasterRelocate(RelocatedBase); 587 GCRelocateOperands ThisRelocate(ToReplace); 588 589 assert(ThisRelocate.getBasePtrIndex() == MasterRelocate.getBasePtrIndex() && 590 "Not relocating a derived object of the original base object"); 591 if (ThisRelocate.getBasePtrIndex() == ThisRelocate.getDerivedPtrIndex()) { 592 // A duplicate relocate call. TODO: coalesce duplicates. 593 continue; 594 } 595 596 if (RelocatedBase->getParent() != ToReplace->getParent()) { 597 // Base and derived relocates are in different basic blocks. 598 // In this case transform is only valid when base dominates derived 599 // relocate. However it would be too expensive to check dominance 600 // for each such relocate, so we skip the whole transformation. 601 continue; 602 } 603 604 Value *Base = ThisRelocate.getBasePtr(); 605 auto Derived = dyn_cast<GetElementPtrInst>(ThisRelocate.getDerivedPtr()); 606 if (!Derived || Derived->getPointerOperand() != Base) 607 continue; 608 609 SmallVector<Value *, 2> OffsetV; 610 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 611 continue; 612 613 // Create a Builder and replace the target callsite with a gep 614 assert(RelocatedBase->getNextNode() && "Should always have one since it's not a terminator"); 615 616 // Insert after RelocatedBase 617 IRBuilder<> Builder(RelocatedBase->getNextNode()); 618 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 619 620 // If gc_relocate does not match the actual type, cast it to the right type. 621 // In theory, there must be a bitcast after gc_relocate if the type does not 622 // match, and we should reuse it to get the derived pointer. But it could be 623 // cases like this: 624 // bb1: 625 // ... 626 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 627 // br label %merge 628 // 629 // bb2: 630 // ... 631 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 632 // br label %merge 633 // 634 // merge: 635 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 636 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 637 // 638 // In this case, we can not find the bitcast any more. So we insert a new bitcast 639 // no matter there is already one or not. In this way, we can handle all cases, and 640 // the extra bitcast should be optimized away in later passes. 641 Value *ActualRelocatedBase = RelocatedBase; 642 if (RelocatedBase->getType() != Base->getType()) { 643 ActualRelocatedBase = 644 Builder.CreateBitCast(RelocatedBase, Base->getType()); 645 } 646 Value *Replacement = Builder.CreateGEP( 647 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 648 Replacement->takeName(ToReplace); 649 // If the newly generated derived pointer's type does not match the original derived 650 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 651 Value *ActualReplacement = Replacement; 652 if (Replacement->getType() != ToReplace->getType()) { 653 ActualReplacement = 654 Builder.CreateBitCast(Replacement, ToReplace->getType()); 655 } 656 ToReplace->replaceAllUsesWith(ActualReplacement); 657 ToReplace->eraseFromParent(); 658 659 MadeChange = true; 660 } 661 return MadeChange; 662 } 663 664 // Turns this: 665 // 666 // %base = ... 667 // %ptr = gep %base + 15 668 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 669 // %base' = relocate(%tok, i32 4, i32 4) 670 // %ptr' = relocate(%tok, i32 4, i32 5) 671 // %val = load %ptr' 672 // 673 // into this: 674 // 675 // %base = ... 676 // %ptr = gep %base + 15 677 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 678 // %base' = gc.relocate(%tok, i32 4, i32 4) 679 // %ptr' = gep %base' + 15 680 // %val = load %ptr' 681 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 682 bool MadeChange = false; 683 SmallVector<User *, 2> AllRelocateCalls; 684 685 for (auto *U : I.users()) 686 if (isGCRelocate(dyn_cast<Instruction>(U))) 687 // Collect all the relocate calls associated with a statepoint 688 AllRelocateCalls.push_back(U); 689 690 // We need atleast one base pointer relocation + one derived pointer 691 // relocation to mangle 692 if (AllRelocateCalls.size() < 2) 693 return false; 694 695 // RelocateInstMap is a mapping from the base relocate instruction to the 696 // corresponding derived relocate instructions 697 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> RelocateInstMap; 698 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 699 if (RelocateInstMap.empty()) 700 return false; 701 702 for (auto &Item : RelocateInstMap) 703 // Item.first is the RelocatedBase to offset against 704 // Item.second is the vector of Targets to replace 705 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 706 return MadeChange; 707 } 708 709 /// SinkCast - Sink the specified cast instruction into its user blocks 710 static bool SinkCast(CastInst *CI) { 711 BasicBlock *DefBB = CI->getParent(); 712 713 /// InsertedCasts - Only insert a cast in each block once. 714 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 715 716 bool MadeChange = false; 717 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 718 UI != E; ) { 719 Use &TheUse = UI.getUse(); 720 Instruction *User = cast<Instruction>(*UI); 721 722 // Figure out which BB this cast is used in. For PHI's this is the 723 // appropriate predecessor block. 724 BasicBlock *UserBB = User->getParent(); 725 if (PHINode *PN = dyn_cast<PHINode>(User)) { 726 UserBB = PN->getIncomingBlock(TheUse); 727 } 728 729 // Preincrement use iterator so we don't invalidate it. 730 ++UI; 731 732 // If the block selected to receive the cast is an EH pad that does not 733 // allow non-PHI instructions before the terminator, we can't sink the 734 // cast. 735 if (UserBB->getTerminator()->isEHPad()) 736 continue; 737 738 // If this user is in the same block as the cast, don't change the cast. 739 if (UserBB == DefBB) continue; 740 741 // If we have already inserted a cast into this block, use it. 742 CastInst *&InsertedCast = InsertedCasts[UserBB]; 743 744 if (!InsertedCast) { 745 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 746 assert(InsertPt != UserBB->end()); 747 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 748 CI->getType(), "", &*InsertPt); 749 } 750 751 // Replace a use of the cast with a use of the new cast. 752 TheUse = InsertedCast; 753 MadeChange = true; 754 ++NumCastUses; 755 } 756 757 // If we removed all uses, nuke the cast. 758 if (CI->use_empty()) { 759 CI->eraseFromParent(); 760 MadeChange = true; 761 } 762 763 return MadeChange; 764 } 765 766 /// If the specified cast instruction is a noop copy (e.g. it's casting from 767 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 768 /// reduce the number of virtual registers that must be created and coalesced. 769 /// 770 /// Return true if any changes are made. 771 /// 772 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 773 const DataLayout &DL) { 774 // If this is a noop copy, 775 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 776 EVT DstVT = TLI.getValueType(DL, CI->getType()); 777 778 // This is an fp<->int conversion? 779 if (SrcVT.isInteger() != DstVT.isInteger()) 780 return false; 781 782 // If this is an extension, it will be a zero or sign extension, which 783 // isn't a noop. 784 if (SrcVT.bitsLT(DstVT)) return false; 785 786 // If these values will be promoted, find out what they will be promoted 787 // to. This helps us consider truncates on PPC as noop copies when they 788 // are. 789 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 790 TargetLowering::TypePromoteInteger) 791 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 792 if (TLI.getTypeAction(CI->getContext(), DstVT) == 793 TargetLowering::TypePromoteInteger) 794 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 795 796 // If, after promotion, these are the same types, this is a noop copy. 797 if (SrcVT != DstVT) 798 return false; 799 800 return SinkCast(CI); 801 } 802 803 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 804 /// possible. 805 /// 806 /// Return true if any changes were made. 807 static bool CombineUAddWithOverflow(CmpInst *CI) { 808 Value *A, *B; 809 Instruction *AddI; 810 if (!match(CI, 811 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 812 return false; 813 814 Type *Ty = AddI->getType(); 815 if (!isa<IntegerType>(Ty)) 816 return false; 817 818 // We don't want to move around uses of condition values this late, so we we 819 // check if it is legal to create the call to the intrinsic in the basic 820 // block containing the icmp: 821 822 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 823 return false; 824 825 #ifndef NDEBUG 826 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 827 // for now: 828 if (AddI->hasOneUse()) 829 assert(*AddI->user_begin() == CI && "expected!"); 830 #endif 831 832 Module *M = CI->getModule(); 833 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 834 835 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 836 837 auto *UAddWithOverflow = 838 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 839 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 840 auto *Overflow = 841 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 842 843 CI->replaceAllUsesWith(Overflow); 844 AddI->replaceAllUsesWith(UAdd); 845 CI->eraseFromParent(); 846 AddI->eraseFromParent(); 847 return true; 848 } 849 850 /// Sink the given CmpInst into user blocks to reduce the number of virtual 851 /// registers that must be created and coalesced. This is a clear win except on 852 /// targets with multiple condition code registers (PowerPC), where it might 853 /// lose; some adjustment may be wanted there. 854 /// 855 /// Return true if any changes are made. 856 static bool SinkCmpExpression(CmpInst *CI) { 857 BasicBlock *DefBB = CI->getParent(); 858 859 /// Only insert a cmp in each block once. 860 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 861 862 bool MadeChange = false; 863 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 864 UI != E; ) { 865 Use &TheUse = UI.getUse(); 866 Instruction *User = cast<Instruction>(*UI); 867 868 // Preincrement use iterator so we don't invalidate it. 869 ++UI; 870 871 // Don't bother for PHI nodes. 872 if (isa<PHINode>(User)) 873 continue; 874 875 // Figure out which BB this cmp is used in. 876 BasicBlock *UserBB = User->getParent(); 877 878 // If this user is in the same block as the cmp, don't change the cmp. 879 if (UserBB == DefBB) continue; 880 881 // If we have already inserted a cmp into this block, use it. 882 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 883 884 if (!InsertedCmp) { 885 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 886 assert(InsertPt != UserBB->end()); 887 InsertedCmp = 888 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 889 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 890 } 891 892 // Replace a use of the cmp with a use of the new cmp. 893 TheUse = InsertedCmp; 894 MadeChange = true; 895 ++NumCmpUses; 896 } 897 898 // If we removed all uses, nuke the cmp. 899 if (CI->use_empty()) { 900 CI->eraseFromParent(); 901 MadeChange = true; 902 } 903 904 return MadeChange; 905 } 906 907 static bool OptimizeCmpExpression(CmpInst *CI) { 908 if (SinkCmpExpression(CI)) 909 return true; 910 911 if (CombineUAddWithOverflow(CI)) 912 return true; 913 914 return false; 915 } 916 917 /// Check if the candidates could be combined with a shift instruction, which 918 /// includes: 919 /// 1. Truncate instruction 920 /// 2. And instruction and the imm is a mask of the low bits: 921 /// imm & (imm+1) == 0 922 static bool isExtractBitsCandidateUse(Instruction *User) { 923 if (!isa<TruncInst>(User)) { 924 if (User->getOpcode() != Instruction::And || 925 !isa<ConstantInt>(User->getOperand(1))) 926 return false; 927 928 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 929 930 if ((Cimm & (Cimm + 1)).getBoolValue()) 931 return false; 932 } 933 return true; 934 } 935 936 /// Sink both shift and truncate instruction to the use of truncate's BB. 937 static bool 938 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 939 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 940 const TargetLowering &TLI, const DataLayout &DL) { 941 BasicBlock *UserBB = User->getParent(); 942 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 943 TruncInst *TruncI = dyn_cast<TruncInst>(User); 944 bool MadeChange = false; 945 946 for (Value::user_iterator TruncUI = TruncI->user_begin(), 947 TruncE = TruncI->user_end(); 948 TruncUI != TruncE;) { 949 950 Use &TruncTheUse = TruncUI.getUse(); 951 Instruction *TruncUser = cast<Instruction>(*TruncUI); 952 // Preincrement use iterator so we don't invalidate it. 953 954 ++TruncUI; 955 956 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 957 if (!ISDOpcode) 958 continue; 959 960 // If the use is actually a legal node, there will not be an 961 // implicit truncate. 962 // FIXME: always querying the result type is just an 963 // approximation; some nodes' legality is determined by the 964 // operand or other means. There's no good way to find out though. 965 if (TLI.isOperationLegalOrCustom( 966 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 967 continue; 968 969 // Don't bother for PHI nodes. 970 if (isa<PHINode>(TruncUser)) 971 continue; 972 973 BasicBlock *TruncUserBB = TruncUser->getParent(); 974 975 if (UserBB == TruncUserBB) 976 continue; 977 978 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 979 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 980 981 if (!InsertedShift && !InsertedTrunc) { 982 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 983 assert(InsertPt != TruncUserBB->end()); 984 // Sink the shift 985 if (ShiftI->getOpcode() == Instruction::AShr) 986 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 987 "", &*InsertPt); 988 else 989 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 990 "", &*InsertPt); 991 992 // Sink the trunc 993 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 994 TruncInsertPt++; 995 assert(TruncInsertPt != TruncUserBB->end()); 996 997 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 998 TruncI->getType(), "", &*TruncInsertPt); 999 1000 MadeChange = true; 1001 1002 TruncTheUse = InsertedTrunc; 1003 } 1004 } 1005 return MadeChange; 1006 } 1007 1008 /// Sink the shift *right* instruction into user blocks if the uses could 1009 /// potentially be combined with this shift instruction and generate BitExtract 1010 /// instruction. It will only be applied if the architecture supports BitExtract 1011 /// instruction. Here is an example: 1012 /// BB1: 1013 /// %x.extract.shift = lshr i64 %arg1, 32 1014 /// BB2: 1015 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1016 /// ==> 1017 /// 1018 /// BB2: 1019 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1020 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1021 /// 1022 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1023 /// instruction. 1024 /// Return true if any changes are made. 1025 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1026 const TargetLowering &TLI, 1027 const DataLayout &DL) { 1028 BasicBlock *DefBB = ShiftI->getParent(); 1029 1030 /// Only insert instructions in each block once. 1031 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1032 1033 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1034 1035 bool MadeChange = false; 1036 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1037 UI != E;) { 1038 Use &TheUse = UI.getUse(); 1039 Instruction *User = cast<Instruction>(*UI); 1040 // Preincrement use iterator so we don't invalidate it. 1041 ++UI; 1042 1043 // Don't bother for PHI nodes. 1044 if (isa<PHINode>(User)) 1045 continue; 1046 1047 if (!isExtractBitsCandidateUse(User)) 1048 continue; 1049 1050 BasicBlock *UserBB = User->getParent(); 1051 1052 if (UserBB == DefBB) { 1053 // If the shift and truncate instruction are in the same BB. The use of 1054 // the truncate(TruncUse) may still introduce another truncate if not 1055 // legal. In this case, we would like to sink both shift and truncate 1056 // instruction to the BB of TruncUse. 1057 // for example: 1058 // BB1: 1059 // i64 shift.result = lshr i64 opnd, imm 1060 // trunc.result = trunc shift.result to i16 1061 // 1062 // BB2: 1063 // ----> We will have an implicit truncate here if the architecture does 1064 // not have i16 compare. 1065 // cmp i16 trunc.result, opnd2 1066 // 1067 if (isa<TruncInst>(User) && shiftIsLegal 1068 // If the type of the truncate is legal, no trucate will be 1069 // introduced in other basic blocks. 1070 && 1071 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1072 MadeChange = 1073 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1074 1075 continue; 1076 } 1077 // If we have already inserted a shift into this block, use it. 1078 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1079 1080 if (!InsertedShift) { 1081 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1082 assert(InsertPt != UserBB->end()); 1083 1084 if (ShiftI->getOpcode() == Instruction::AShr) 1085 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1086 "", &*InsertPt); 1087 else 1088 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1089 "", &*InsertPt); 1090 1091 MadeChange = true; 1092 } 1093 1094 // Replace a use of the shift with a use of the new shift. 1095 TheUse = InsertedShift; 1096 } 1097 1098 // If we removed all uses, nuke the shift. 1099 if (ShiftI->use_empty()) 1100 ShiftI->eraseFromParent(); 1101 1102 return MadeChange; 1103 } 1104 1105 // Translate a masked load intrinsic like 1106 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1107 // <16 x i1> %mask, <16 x i32> %passthru) 1108 // to a chain of basic blocks, with loading element one-by-one if 1109 // the appropriate mask bit is set 1110 // 1111 // %1 = bitcast i8* %addr to i32* 1112 // %2 = extractelement <16 x i1> %mask, i32 0 1113 // %3 = icmp eq i1 %2, true 1114 // br i1 %3, label %cond.load, label %else 1115 // 1116 //cond.load: ; preds = %0 1117 // %4 = getelementptr i32* %1, i32 0 1118 // %5 = load i32* %4 1119 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1120 // br label %else 1121 // 1122 //else: ; preds = %0, %cond.load 1123 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1124 // %7 = extractelement <16 x i1> %mask, i32 1 1125 // %8 = icmp eq i1 %7, true 1126 // br i1 %8, label %cond.load1, label %else2 1127 // 1128 //cond.load1: ; preds = %else 1129 // %9 = getelementptr i32* %1, i32 1 1130 // %10 = load i32* %9 1131 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1132 // br label %else2 1133 // 1134 //else2: ; preds = %else, %cond.load1 1135 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1136 // %12 = extractelement <16 x i1> %mask, i32 2 1137 // %13 = icmp eq i1 %12, true 1138 // br i1 %13, label %cond.load4, label %else5 1139 // 1140 static void ScalarizeMaskedLoad(CallInst *CI) { 1141 Value *Ptr = CI->getArgOperand(0); 1142 Value *Alignment = CI->getArgOperand(1); 1143 Value *Mask = CI->getArgOperand(2); 1144 Value *Src0 = CI->getArgOperand(3); 1145 1146 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1147 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1148 assert(VecType && "Unexpected return type of masked load intrinsic"); 1149 1150 Type *EltTy = CI->getType()->getVectorElementType(); 1151 1152 IRBuilder<> Builder(CI->getContext()); 1153 Instruction *InsertPt = CI; 1154 BasicBlock *IfBlock = CI->getParent(); 1155 BasicBlock *CondBlock = nullptr; 1156 BasicBlock *PrevIfBlock = CI->getParent(); 1157 1158 Builder.SetInsertPoint(InsertPt); 1159 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1160 1161 // Short-cut if the mask is all-true. 1162 bool IsAllOnesMask = isa<Constant>(Mask) && 1163 cast<Constant>(Mask)->isAllOnesValue(); 1164 1165 if (IsAllOnesMask) { 1166 Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal); 1167 CI->replaceAllUsesWith(NewI); 1168 CI->eraseFromParent(); 1169 return; 1170 } 1171 1172 // Adjust alignment for the scalar instruction. 1173 AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8); 1174 // Bitcast %addr fron i8* to EltTy* 1175 Type *NewPtrType = 1176 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1177 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1178 unsigned VectorWidth = VecType->getNumElements(); 1179 1180 Value *UndefVal = UndefValue::get(VecType); 1181 1182 // The result vector 1183 Value *VResult = UndefVal; 1184 1185 if (isa<ConstantVector>(Mask)) { 1186 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1187 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1188 continue; 1189 Value *Gep = 1190 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1191 LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1192 VResult = Builder.CreateInsertElement(VResult, Load, 1193 Builder.getInt32(Idx)); 1194 } 1195 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1196 CI->replaceAllUsesWith(NewI); 1197 CI->eraseFromParent(); 1198 return; 1199 } 1200 1201 PHINode *Phi = nullptr; 1202 Value *PrevPhi = UndefVal; 1203 1204 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1205 1206 // Fill the "else" block, created in the previous iteration 1207 // 1208 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1209 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1210 // %to_load = icmp eq i1 %mask_1, true 1211 // br i1 %to_load, label %cond.load, label %else 1212 // 1213 if (Idx > 0) { 1214 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1215 Phi->addIncoming(VResult, CondBlock); 1216 Phi->addIncoming(PrevPhi, PrevIfBlock); 1217 PrevPhi = Phi; 1218 VResult = Phi; 1219 } 1220 1221 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1222 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1223 ConstantInt::get(Predicate->getType(), 1)); 1224 1225 // Create "cond" block 1226 // 1227 // %EltAddr = getelementptr i32* %1, i32 0 1228 // %Elt = load i32* %EltAddr 1229 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1230 // 1231 CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load"); 1232 Builder.SetInsertPoint(InsertPt); 1233 1234 Value *Gep = 1235 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1236 LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1237 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1238 1239 // Create "else" block, fill it in the next iteration 1240 BasicBlock *NewIfBlock = 1241 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1242 Builder.SetInsertPoint(InsertPt); 1243 Instruction *OldBr = IfBlock->getTerminator(); 1244 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1245 OldBr->eraseFromParent(); 1246 PrevIfBlock = IfBlock; 1247 IfBlock = NewIfBlock; 1248 } 1249 1250 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1251 Phi->addIncoming(VResult, CondBlock); 1252 Phi->addIncoming(PrevPhi, PrevIfBlock); 1253 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1254 CI->replaceAllUsesWith(NewI); 1255 CI->eraseFromParent(); 1256 } 1257 1258 // Translate a masked store intrinsic, like 1259 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1260 // <16 x i1> %mask) 1261 // to a chain of basic blocks, that stores element one-by-one if 1262 // the appropriate mask bit is set 1263 // 1264 // %1 = bitcast i8* %addr to i32* 1265 // %2 = extractelement <16 x i1> %mask, i32 0 1266 // %3 = icmp eq i1 %2, true 1267 // br i1 %3, label %cond.store, label %else 1268 // 1269 // cond.store: ; preds = %0 1270 // %4 = extractelement <16 x i32> %val, i32 0 1271 // %5 = getelementptr i32* %1, i32 0 1272 // store i32 %4, i32* %5 1273 // br label %else 1274 // 1275 // else: ; preds = %0, %cond.store 1276 // %6 = extractelement <16 x i1> %mask, i32 1 1277 // %7 = icmp eq i1 %6, true 1278 // br i1 %7, label %cond.store1, label %else2 1279 // 1280 // cond.store1: ; preds = %else 1281 // %8 = extractelement <16 x i32> %val, i32 1 1282 // %9 = getelementptr i32* %1, i32 1 1283 // store i32 %8, i32* %9 1284 // br label %else2 1285 // . . . 1286 static void ScalarizeMaskedStore(CallInst *CI) { 1287 Value *Src = CI->getArgOperand(0); 1288 Value *Ptr = CI->getArgOperand(1); 1289 Value *Alignment = CI->getArgOperand(2); 1290 Value *Mask = CI->getArgOperand(3); 1291 1292 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1293 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1294 assert(VecType && "Unexpected data type in masked store intrinsic"); 1295 1296 Type *EltTy = VecType->getElementType(); 1297 1298 IRBuilder<> Builder(CI->getContext()); 1299 Instruction *InsertPt = CI; 1300 BasicBlock *IfBlock = CI->getParent(); 1301 Builder.SetInsertPoint(InsertPt); 1302 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1303 1304 // Short-cut if the mask is all-true. 1305 bool IsAllOnesMask = isa<Constant>(Mask) && 1306 cast<Constant>(Mask)->isAllOnesValue(); 1307 1308 if (IsAllOnesMask) { 1309 Builder.CreateAlignedStore(Src, Ptr, AlignVal); 1310 CI->eraseFromParent(); 1311 return; 1312 } 1313 1314 // Adjust alignment for the scalar instruction. 1315 AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8); 1316 // Bitcast %addr fron i8* to EltTy* 1317 Type *NewPtrType = 1318 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1319 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1320 unsigned VectorWidth = VecType->getNumElements(); 1321 1322 if (isa<ConstantVector>(Mask)) { 1323 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1324 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1325 continue; 1326 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1327 Value *Gep = 1328 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1329 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1330 } 1331 CI->eraseFromParent(); 1332 return; 1333 } 1334 1335 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1336 1337 // Fill the "else" block, created in the previous iteration 1338 // 1339 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1340 // %to_store = icmp eq i1 %mask_1, true 1341 // br i1 %to_store, label %cond.store, label %else 1342 // 1343 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1344 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1345 ConstantInt::get(Predicate->getType(), 1)); 1346 1347 // Create "cond" block 1348 // 1349 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1350 // %EltAddr = getelementptr i32* %1, i32 0 1351 // %store i32 %OneElt, i32* %EltAddr 1352 // 1353 BasicBlock *CondBlock = 1354 IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store"); 1355 Builder.SetInsertPoint(InsertPt); 1356 1357 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1358 Value *Gep = 1359 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1360 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1361 1362 // Create "else" block, fill it in the next iteration 1363 BasicBlock *NewIfBlock = 1364 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1365 Builder.SetInsertPoint(InsertPt); 1366 Instruction *OldBr = IfBlock->getTerminator(); 1367 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1368 OldBr->eraseFromParent(); 1369 IfBlock = NewIfBlock; 1370 } 1371 CI->eraseFromParent(); 1372 } 1373 1374 // Translate a masked gather intrinsic like 1375 // <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4, 1376 // <16 x i1> %Mask, <16 x i32> %Src) 1377 // to a chain of basic blocks, with loading element one-by-one if 1378 // the appropriate mask bit is set 1379 // 1380 // % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind 1381 // % Mask0 = extractelement <16 x i1> %Mask, i32 0 1382 // % ToLoad0 = icmp eq i1 % Mask0, true 1383 // br i1 % ToLoad0, label %cond.load, label %else 1384 // 1385 // cond.load: 1386 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1387 // % Load0 = load i32, i32* % Ptr0, align 4 1388 // % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0 1389 // br label %else 1390 // 1391 // else: 1392 // %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0] 1393 // % Mask1 = extractelement <16 x i1> %Mask, i32 1 1394 // % ToLoad1 = icmp eq i1 % Mask1, true 1395 // br i1 % ToLoad1, label %cond.load1, label %else2 1396 // 1397 // cond.load1: 1398 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1399 // % Load1 = load i32, i32* % Ptr1, align 4 1400 // % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1 1401 // br label %else2 1402 // . . . 1403 // % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src 1404 // ret <16 x i32> %Result 1405 static void ScalarizeMaskedGather(CallInst *CI) { 1406 Value *Ptrs = CI->getArgOperand(0); 1407 Value *Alignment = CI->getArgOperand(1); 1408 Value *Mask = CI->getArgOperand(2); 1409 Value *Src0 = CI->getArgOperand(3); 1410 1411 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1412 1413 assert(VecType && "Unexpected return type of masked load intrinsic"); 1414 1415 IRBuilder<> Builder(CI->getContext()); 1416 Instruction *InsertPt = CI; 1417 BasicBlock *IfBlock = CI->getParent(); 1418 BasicBlock *CondBlock = nullptr; 1419 BasicBlock *PrevIfBlock = CI->getParent(); 1420 Builder.SetInsertPoint(InsertPt); 1421 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1422 1423 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1424 1425 Value *UndefVal = UndefValue::get(VecType); 1426 1427 // The result vector 1428 Value *VResult = UndefVal; 1429 unsigned VectorWidth = VecType->getNumElements(); 1430 1431 // Shorten the way if the mask is a vector of constants. 1432 bool IsConstMask = isa<ConstantVector>(Mask); 1433 1434 if (IsConstMask) { 1435 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1436 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1437 continue; 1438 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1439 "Ptr" + Twine(Idx)); 1440 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1441 "Load" + Twine(Idx)); 1442 VResult = Builder.CreateInsertElement(VResult, Load, 1443 Builder.getInt32(Idx), 1444 "Res" + Twine(Idx)); 1445 } 1446 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1447 CI->replaceAllUsesWith(NewI); 1448 CI->eraseFromParent(); 1449 return; 1450 } 1451 1452 PHINode *Phi = nullptr; 1453 Value *PrevPhi = UndefVal; 1454 1455 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1456 1457 // Fill the "else" block, created in the previous iteration 1458 // 1459 // %Mask1 = extractelement <16 x i1> %Mask, i32 1 1460 // %ToLoad1 = icmp eq i1 %Mask1, true 1461 // br i1 %ToLoad1, label %cond.load, label %else 1462 // 1463 if (Idx > 0) { 1464 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1465 Phi->addIncoming(VResult, CondBlock); 1466 Phi->addIncoming(PrevPhi, PrevIfBlock); 1467 PrevPhi = Phi; 1468 VResult = Phi; 1469 } 1470 1471 Value *Predicate = Builder.CreateExtractElement(Mask, 1472 Builder.getInt32(Idx), 1473 "Mask" + Twine(Idx)); 1474 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1475 ConstantInt::get(Predicate->getType(), 1), 1476 "ToLoad" + Twine(Idx)); 1477 1478 // Create "cond" block 1479 // 1480 // %EltAddr = getelementptr i32* %1, i32 0 1481 // %Elt = load i32* %EltAddr 1482 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1483 // 1484 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1485 Builder.SetInsertPoint(InsertPt); 1486 1487 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1488 "Ptr" + Twine(Idx)); 1489 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1490 "Load" + Twine(Idx)); 1491 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx), 1492 "Res" + Twine(Idx)); 1493 1494 // Create "else" block, fill it in the next iteration 1495 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1496 Builder.SetInsertPoint(InsertPt); 1497 Instruction *OldBr = IfBlock->getTerminator(); 1498 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1499 OldBr->eraseFromParent(); 1500 PrevIfBlock = IfBlock; 1501 IfBlock = NewIfBlock; 1502 } 1503 1504 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1505 Phi->addIncoming(VResult, CondBlock); 1506 Phi->addIncoming(PrevPhi, PrevIfBlock); 1507 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1508 CI->replaceAllUsesWith(NewI); 1509 CI->eraseFromParent(); 1510 } 1511 1512 // Translate a masked scatter intrinsic, like 1513 // void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4, 1514 // <16 x i1> %Mask) 1515 // to a chain of basic blocks, that stores element one-by-one if 1516 // the appropriate mask bit is set. 1517 // 1518 // % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind 1519 // % Mask0 = extractelement <16 x i1> % Mask, i32 0 1520 // % ToStore0 = icmp eq i1 % Mask0, true 1521 // br i1 %ToStore0, label %cond.store, label %else 1522 // 1523 // cond.store: 1524 // % Elt0 = extractelement <16 x i32> %Src, i32 0 1525 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1526 // store i32 %Elt0, i32* % Ptr0, align 4 1527 // br label %else 1528 // 1529 // else: 1530 // % Mask1 = extractelement <16 x i1> % Mask, i32 1 1531 // % ToStore1 = icmp eq i1 % Mask1, true 1532 // br i1 % ToStore1, label %cond.store1, label %else2 1533 // 1534 // cond.store1: 1535 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1536 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1537 // store i32 % Elt1, i32* % Ptr1, align 4 1538 // br label %else2 1539 // . . . 1540 static void ScalarizeMaskedScatter(CallInst *CI) { 1541 Value *Src = CI->getArgOperand(0); 1542 Value *Ptrs = CI->getArgOperand(1); 1543 Value *Alignment = CI->getArgOperand(2); 1544 Value *Mask = CI->getArgOperand(3); 1545 1546 assert(isa<VectorType>(Src->getType()) && 1547 "Unexpected data type in masked scatter intrinsic"); 1548 assert(isa<VectorType>(Ptrs->getType()) && 1549 isa<PointerType>(Ptrs->getType()->getVectorElementType()) && 1550 "Vector of pointers is expected in masked scatter intrinsic"); 1551 1552 IRBuilder<> Builder(CI->getContext()); 1553 Instruction *InsertPt = CI; 1554 BasicBlock *IfBlock = CI->getParent(); 1555 Builder.SetInsertPoint(InsertPt); 1556 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1557 1558 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1559 unsigned VectorWidth = Src->getType()->getVectorNumElements(); 1560 1561 // Shorten the way if the mask is a vector of constants. 1562 bool IsConstMask = isa<ConstantVector>(Mask); 1563 1564 if (IsConstMask) { 1565 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1566 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1567 continue; 1568 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1569 "Elt" + Twine(Idx)); 1570 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1571 "Ptr" + Twine(Idx)); 1572 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1573 } 1574 CI->eraseFromParent(); 1575 return; 1576 } 1577 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1578 // Fill the "else" block, created in the previous iteration 1579 // 1580 // % Mask1 = extractelement <16 x i1> % Mask, i32 Idx 1581 // % ToStore = icmp eq i1 % Mask1, true 1582 // br i1 % ToStore, label %cond.store, label %else 1583 // 1584 Value *Predicate = Builder.CreateExtractElement(Mask, 1585 Builder.getInt32(Idx), 1586 "Mask" + Twine(Idx)); 1587 Value *Cmp = 1588 Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1589 ConstantInt::get(Predicate->getType(), 1), 1590 "ToStore" + Twine(Idx)); 1591 1592 // Create "cond" block 1593 // 1594 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1595 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1596 // %store i32 % Elt1, i32* % Ptr1 1597 // 1598 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1599 Builder.SetInsertPoint(InsertPt); 1600 1601 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1602 "Elt" + Twine(Idx)); 1603 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1604 "Ptr" + Twine(Idx)); 1605 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1606 1607 // Create "else" block, fill it in the next iteration 1608 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1609 Builder.SetInsertPoint(InsertPt); 1610 Instruction *OldBr = IfBlock->getTerminator(); 1611 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1612 OldBr->eraseFromParent(); 1613 IfBlock = NewIfBlock; 1614 } 1615 CI->eraseFromParent(); 1616 } 1617 1618 /// If counting leading or trailing zeros is an expensive operation and a zero 1619 /// input is defined, add a check for zero to avoid calling the intrinsic. 1620 /// 1621 /// We want to transform: 1622 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1623 /// 1624 /// into: 1625 /// entry: 1626 /// %cmpz = icmp eq i64 %A, 0 1627 /// br i1 %cmpz, label %cond.end, label %cond.false 1628 /// cond.false: 1629 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1630 /// br label %cond.end 1631 /// cond.end: 1632 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1633 /// 1634 /// If the transform is performed, return true and set ModifiedDT to true. 1635 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1636 const TargetLowering *TLI, 1637 const DataLayout *DL, 1638 bool &ModifiedDT) { 1639 if (!TLI || !DL) 1640 return false; 1641 1642 // If a zero input is undefined, it doesn't make sense to despeculate that. 1643 if (match(CountZeros->getOperand(1), m_One())) 1644 return false; 1645 1646 // If it's cheap to speculate, there's nothing to do. 1647 auto IntrinsicID = CountZeros->getIntrinsicID(); 1648 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1649 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1650 return false; 1651 1652 // Only handle legal scalar cases. Anything else requires too much work. 1653 Type *Ty = CountZeros->getType(); 1654 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1655 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSize()) 1656 return false; 1657 1658 // The intrinsic will be sunk behind a compare against zero and branch. 1659 BasicBlock *StartBlock = CountZeros->getParent(); 1660 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1661 1662 // Create another block after the count zero intrinsic. A PHI will be added 1663 // in this block to select the result of the intrinsic or the bit-width 1664 // constant if the input to the intrinsic is zero. 1665 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1666 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1667 1668 // Set up a builder to create a compare, conditional branch, and PHI. 1669 IRBuilder<> Builder(CountZeros->getContext()); 1670 Builder.SetInsertPoint(StartBlock->getTerminator()); 1671 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1672 1673 // Replace the unconditional branch that was created by the first split with 1674 // a compare against zero and a conditional branch. 1675 Value *Zero = Constant::getNullValue(Ty); 1676 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1677 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1678 StartBlock->getTerminator()->eraseFromParent(); 1679 1680 // Create a PHI in the end block to select either the output of the intrinsic 1681 // or the bit width of the operand. 1682 Builder.SetInsertPoint(&EndBlock->front()); 1683 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1684 CountZeros->replaceAllUsesWith(PN); 1685 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1686 PN->addIncoming(BitWidth, StartBlock); 1687 PN->addIncoming(CountZeros, CallBlock); 1688 1689 // We are explicitly handling the zero case, so we can set the intrinsic's 1690 // undefined zero argument to 'true'. This will also prevent reprocessing the 1691 // intrinsic; we only despeculate when a zero input is defined. 1692 CountZeros->setArgOperand(1, Builder.getTrue()); 1693 ModifiedDT = true; 1694 return true; 1695 } 1696 1697 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1698 BasicBlock *BB = CI->getParent(); 1699 1700 // Lower inline assembly if we can. 1701 // If we found an inline asm expession, and if the target knows how to 1702 // lower it to normal LLVM code, do so now. 1703 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1704 if (TLI->ExpandInlineAsm(CI)) { 1705 // Avoid invalidating the iterator. 1706 CurInstIterator = BB->begin(); 1707 // Avoid processing instructions out of order, which could cause 1708 // reuse before a value is defined. 1709 SunkAddrs.clear(); 1710 return true; 1711 } 1712 // Sink address computing for memory operands into the block. 1713 if (optimizeInlineAsmInst(CI)) 1714 return true; 1715 } 1716 1717 // Align the pointer arguments to this call if the target thinks it's a good 1718 // idea 1719 unsigned MinSize, PrefAlign; 1720 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1721 for (auto &Arg : CI->arg_operands()) { 1722 // We want to align both objects whose address is used directly and 1723 // objects whose address is used in casts and GEPs, though it only makes 1724 // sense for GEPs if the offset is a multiple of the desired alignment and 1725 // if size - offset meets the size threshold. 1726 if (!Arg->getType()->isPointerTy()) 1727 continue; 1728 APInt Offset(DL->getPointerSizeInBits( 1729 cast<PointerType>(Arg->getType())->getAddressSpace()), 1730 0); 1731 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1732 uint64_t Offset2 = Offset.getLimitedValue(); 1733 if ((Offset2 & (PrefAlign-1)) != 0) 1734 continue; 1735 AllocaInst *AI; 1736 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1737 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1738 AI->setAlignment(PrefAlign); 1739 // Global variables can only be aligned if they are defined in this 1740 // object (i.e. they are uniquely initialized in this object), and 1741 // over-aligning global variables that have an explicit section is 1742 // forbidden. 1743 GlobalVariable *GV; 1744 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->hasUniqueInitializer() && 1745 !GV->hasSection() && GV->getAlignment() < PrefAlign && 1746 DL->getTypeAllocSize(GV->getType()->getElementType()) >= 1747 MinSize + Offset2) 1748 GV->setAlignment(PrefAlign); 1749 } 1750 // If this is a memcpy (or similar) then we may be able to improve the 1751 // alignment 1752 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1753 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1754 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1755 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1756 if (Align > MI->getAlignment()) 1757 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1758 } 1759 } 1760 1761 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1762 if (II) { 1763 switch (II->getIntrinsicID()) { 1764 default: break; 1765 case Intrinsic::objectsize: { 1766 // Lower all uses of llvm.objectsize.* 1767 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); 1768 Type *ReturnTy = CI->getType(); 1769 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); 1770 1771 // Substituting this can cause recursive simplifications, which can 1772 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1773 // happens. 1774 WeakVH IterHandle(&*CurInstIterator); 1775 1776 replaceAndRecursivelySimplify(CI, RetVal, 1777 TLInfo, nullptr); 1778 1779 // If the iterator instruction was recursively deleted, start over at the 1780 // start of the block. 1781 if (IterHandle != CurInstIterator.getNodePtrUnchecked()) { 1782 CurInstIterator = BB->begin(); 1783 SunkAddrs.clear(); 1784 } 1785 return true; 1786 } 1787 case Intrinsic::masked_load: { 1788 // Scalarize unsupported vector masked load 1789 if (!TTI->isLegalMaskedLoad(CI->getType())) { 1790 ScalarizeMaskedLoad(CI); 1791 ModifiedDT = true; 1792 return true; 1793 } 1794 return false; 1795 } 1796 case Intrinsic::masked_store: { 1797 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) { 1798 ScalarizeMaskedStore(CI); 1799 ModifiedDT = true; 1800 return true; 1801 } 1802 return false; 1803 } 1804 case Intrinsic::masked_gather: { 1805 if (!TTI->isLegalMaskedGather(CI->getType())) { 1806 ScalarizeMaskedGather(CI); 1807 ModifiedDT = true; 1808 return true; 1809 } 1810 return false; 1811 } 1812 case Intrinsic::masked_scatter: { 1813 if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) { 1814 ScalarizeMaskedScatter(CI); 1815 ModifiedDT = true; 1816 return true; 1817 } 1818 return false; 1819 } 1820 case Intrinsic::aarch64_stlxr: 1821 case Intrinsic::aarch64_stxr: { 1822 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1823 if (!ExtVal || !ExtVal->hasOneUse() || 1824 ExtVal->getParent() == CI->getParent()) 1825 return false; 1826 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1827 ExtVal->moveBefore(CI); 1828 // Mark this instruction as "inserted by CGP", so that other 1829 // optimizations don't touch it. 1830 InsertedInsts.insert(ExtVal); 1831 return true; 1832 } 1833 case Intrinsic::invariant_group_barrier: 1834 II->replaceAllUsesWith(II->getArgOperand(0)); 1835 II->eraseFromParent(); 1836 return true; 1837 1838 case Intrinsic::cttz: 1839 case Intrinsic::ctlz: 1840 // If counting zeros is expensive, try to avoid it. 1841 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1842 } 1843 1844 if (TLI) { 1845 // Unknown address space. 1846 // TODO: Target hook to pick which address space the intrinsic cares 1847 // about? 1848 unsigned AddrSpace = ~0u; 1849 SmallVector<Value*, 2> PtrOps; 1850 Type *AccessTy; 1851 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace)) 1852 while (!PtrOps.empty()) 1853 if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace)) 1854 return true; 1855 } 1856 } 1857 1858 // From here on out we're working with named functions. 1859 if (!CI->getCalledFunction()) return false; 1860 1861 // Lower all default uses of _chk calls. This is very similar 1862 // to what InstCombineCalls does, but here we are only lowering calls 1863 // to fortified library functions (e.g. __memcpy_chk) that have the default 1864 // "don't know" as the objectsize. Anything else should be left alone. 1865 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1866 if (Value *V = Simplifier.optimizeCall(CI)) { 1867 CI->replaceAllUsesWith(V); 1868 CI->eraseFromParent(); 1869 return true; 1870 } 1871 return false; 1872 } 1873 1874 /// Look for opportunities to duplicate return instructions to the predecessor 1875 /// to enable tail call optimizations. The case it is currently looking for is: 1876 /// @code 1877 /// bb0: 1878 /// %tmp0 = tail call i32 @f0() 1879 /// br label %return 1880 /// bb1: 1881 /// %tmp1 = tail call i32 @f1() 1882 /// br label %return 1883 /// bb2: 1884 /// %tmp2 = tail call i32 @f2() 1885 /// br label %return 1886 /// return: 1887 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1888 /// ret i32 %retval 1889 /// @endcode 1890 /// 1891 /// => 1892 /// 1893 /// @code 1894 /// bb0: 1895 /// %tmp0 = tail call i32 @f0() 1896 /// ret i32 %tmp0 1897 /// bb1: 1898 /// %tmp1 = tail call i32 @f1() 1899 /// ret i32 %tmp1 1900 /// bb2: 1901 /// %tmp2 = tail call i32 @f2() 1902 /// ret i32 %tmp2 1903 /// @endcode 1904 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1905 if (!TLI) 1906 return false; 1907 1908 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 1909 if (!RI) 1910 return false; 1911 1912 PHINode *PN = nullptr; 1913 BitCastInst *BCI = nullptr; 1914 Value *V = RI->getReturnValue(); 1915 if (V) { 1916 BCI = dyn_cast<BitCastInst>(V); 1917 if (BCI) 1918 V = BCI->getOperand(0); 1919 1920 PN = dyn_cast<PHINode>(V); 1921 if (!PN) 1922 return false; 1923 } 1924 1925 if (PN && PN->getParent() != BB) 1926 return false; 1927 1928 // It's not safe to eliminate the sign / zero extension of the return value. 1929 // See llvm::isInTailCallPosition(). 1930 const Function *F = BB->getParent(); 1931 AttributeSet CallerAttrs = F->getAttributes(); 1932 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 1933 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1934 return false; 1935 1936 // Make sure there are no instructions between the PHI and return, or that the 1937 // return is the first instruction in the block. 1938 if (PN) { 1939 BasicBlock::iterator BI = BB->begin(); 1940 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1941 if (&*BI == BCI) 1942 // Also skip over the bitcast. 1943 ++BI; 1944 if (&*BI != RI) 1945 return false; 1946 } else { 1947 BasicBlock::iterator BI = BB->begin(); 1948 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1949 if (&*BI != RI) 1950 return false; 1951 } 1952 1953 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1954 /// call. 1955 SmallVector<CallInst*, 4> TailCalls; 1956 if (PN) { 1957 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1958 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1959 // Make sure the phi value is indeed produced by the tail call. 1960 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1961 TLI->mayBeEmittedAsTailCall(CI)) 1962 TailCalls.push_back(CI); 1963 } 1964 } else { 1965 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1966 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1967 if (!VisitedBBs.insert(*PI).second) 1968 continue; 1969 1970 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1971 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1972 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1973 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1974 if (RI == RE) 1975 continue; 1976 1977 CallInst *CI = dyn_cast<CallInst>(&*RI); 1978 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) 1979 TailCalls.push_back(CI); 1980 } 1981 } 1982 1983 bool Changed = false; 1984 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1985 CallInst *CI = TailCalls[i]; 1986 CallSite CS(CI); 1987 1988 // Conservatively require the attributes of the call to match those of the 1989 // return. Ignore noalias because it doesn't affect the call sequence. 1990 AttributeSet CalleeAttrs = CS.getAttributes(); 1991 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1992 removeAttribute(Attribute::NoAlias) != 1993 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1994 removeAttribute(Attribute::NoAlias)) 1995 continue; 1996 1997 // Make sure the call instruction is followed by an unconditional branch to 1998 // the return block. 1999 BasicBlock *CallBB = CI->getParent(); 2000 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2001 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2002 continue; 2003 2004 // Duplicate the return into CallBB. 2005 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); 2006 ModifiedDT = Changed = true; 2007 ++NumRetsDup; 2008 } 2009 2010 // If we eliminated all predecessors of the block, delete the block now. 2011 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2012 BB->eraseFromParent(); 2013 2014 return Changed; 2015 } 2016 2017 //===----------------------------------------------------------------------===// 2018 // Memory Optimization 2019 //===----------------------------------------------------------------------===// 2020 2021 namespace { 2022 2023 /// This is an extended version of TargetLowering::AddrMode 2024 /// which holds actual Value*'s for register values. 2025 struct ExtAddrMode : public TargetLowering::AddrMode { 2026 Value *BaseReg; 2027 Value *ScaledReg; 2028 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 2029 void print(raw_ostream &OS) const; 2030 void dump() const; 2031 2032 bool operator==(const ExtAddrMode& O) const { 2033 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 2034 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 2035 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 2036 } 2037 }; 2038 2039 #ifndef NDEBUG 2040 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2041 AM.print(OS); 2042 return OS; 2043 } 2044 #endif 2045 2046 void ExtAddrMode::print(raw_ostream &OS) const { 2047 bool NeedPlus = false; 2048 OS << "["; 2049 if (BaseGV) { 2050 OS << (NeedPlus ? " + " : "") 2051 << "GV:"; 2052 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2053 NeedPlus = true; 2054 } 2055 2056 if (BaseOffs) { 2057 OS << (NeedPlus ? " + " : "") 2058 << BaseOffs; 2059 NeedPlus = true; 2060 } 2061 2062 if (BaseReg) { 2063 OS << (NeedPlus ? " + " : "") 2064 << "Base:"; 2065 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2066 NeedPlus = true; 2067 } 2068 if (Scale) { 2069 OS << (NeedPlus ? " + " : "") 2070 << Scale << "*"; 2071 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2072 } 2073 2074 OS << ']'; 2075 } 2076 2077 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2078 void ExtAddrMode::dump() const { 2079 print(dbgs()); 2080 dbgs() << '\n'; 2081 } 2082 #endif 2083 2084 /// \brief This class provides transaction based operation on the IR. 2085 /// Every change made through this class is recorded in the internal state and 2086 /// can be undone (rollback) until commit is called. 2087 class TypePromotionTransaction { 2088 2089 /// \brief This represents the common interface of the individual transaction. 2090 /// Each class implements the logic for doing one specific modification on 2091 /// the IR via the TypePromotionTransaction. 2092 class TypePromotionAction { 2093 protected: 2094 /// The Instruction modified. 2095 Instruction *Inst; 2096 2097 public: 2098 /// \brief Constructor of the action. 2099 /// The constructor performs the related action on the IR. 2100 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2101 2102 virtual ~TypePromotionAction() {} 2103 2104 /// \brief Undo the modification done by this action. 2105 /// When this method is called, the IR must be in the same state as it was 2106 /// before this action was applied. 2107 /// \pre Undoing the action works if and only if the IR is in the exact same 2108 /// state as it was directly after this action was applied. 2109 virtual void undo() = 0; 2110 2111 /// \brief Advocate every change made by this action. 2112 /// When the results on the IR of the action are to be kept, it is important 2113 /// to call this function, otherwise hidden information may be kept forever. 2114 virtual void commit() { 2115 // Nothing to be done, this action is not doing anything. 2116 } 2117 }; 2118 2119 /// \brief Utility to remember the position of an instruction. 2120 class InsertionHandler { 2121 /// Position of an instruction. 2122 /// Either an instruction: 2123 /// - Is the first in a basic block: BB is used. 2124 /// - Has a previous instructon: PrevInst is used. 2125 union { 2126 Instruction *PrevInst; 2127 BasicBlock *BB; 2128 } Point; 2129 /// Remember whether or not the instruction had a previous instruction. 2130 bool HasPrevInstruction; 2131 2132 public: 2133 /// \brief Record the position of \p Inst. 2134 InsertionHandler(Instruction *Inst) { 2135 BasicBlock::iterator It = Inst->getIterator(); 2136 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2137 if (HasPrevInstruction) 2138 Point.PrevInst = &*--It; 2139 else 2140 Point.BB = Inst->getParent(); 2141 } 2142 2143 /// \brief Insert \p Inst at the recorded position. 2144 void insert(Instruction *Inst) { 2145 if (HasPrevInstruction) { 2146 if (Inst->getParent()) 2147 Inst->removeFromParent(); 2148 Inst->insertAfter(Point.PrevInst); 2149 } else { 2150 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2151 if (Inst->getParent()) 2152 Inst->moveBefore(Position); 2153 else 2154 Inst->insertBefore(Position); 2155 } 2156 } 2157 }; 2158 2159 /// \brief Move an instruction before another. 2160 class InstructionMoveBefore : public TypePromotionAction { 2161 /// Original position of the instruction. 2162 InsertionHandler Position; 2163 2164 public: 2165 /// \brief Move \p Inst before \p Before. 2166 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2167 : TypePromotionAction(Inst), Position(Inst) { 2168 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2169 Inst->moveBefore(Before); 2170 } 2171 2172 /// \brief Move the instruction back to its original position. 2173 void undo() override { 2174 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2175 Position.insert(Inst); 2176 } 2177 }; 2178 2179 /// \brief Set the operand of an instruction with a new value. 2180 class OperandSetter : public TypePromotionAction { 2181 /// Original operand of the instruction. 2182 Value *Origin; 2183 /// Index of the modified instruction. 2184 unsigned Idx; 2185 2186 public: 2187 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2188 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2189 : TypePromotionAction(Inst), Idx(Idx) { 2190 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2191 << "for:" << *Inst << "\n" 2192 << "with:" << *NewVal << "\n"); 2193 Origin = Inst->getOperand(Idx); 2194 Inst->setOperand(Idx, NewVal); 2195 } 2196 2197 /// \brief Restore the original value of the instruction. 2198 void undo() override { 2199 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2200 << "for: " << *Inst << "\n" 2201 << "with: " << *Origin << "\n"); 2202 Inst->setOperand(Idx, Origin); 2203 } 2204 }; 2205 2206 /// \brief Hide the operands of an instruction. 2207 /// Do as if this instruction was not using any of its operands. 2208 class OperandsHider : public TypePromotionAction { 2209 /// The list of original operands. 2210 SmallVector<Value *, 4> OriginalValues; 2211 2212 public: 2213 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2214 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2215 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2216 unsigned NumOpnds = Inst->getNumOperands(); 2217 OriginalValues.reserve(NumOpnds); 2218 for (unsigned It = 0; It < NumOpnds; ++It) { 2219 // Save the current operand. 2220 Value *Val = Inst->getOperand(It); 2221 OriginalValues.push_back(Val); 2222 // Set a dummy one. 2223 // We could use OperandSetter here, but that would imply an overhead 2224 // that we are not willing to pay. 2225 Inst->setOperand(It, UndefValue::get(Val->getType())); 2226 } 2227 } 2228 2229 /// \brief Restore the original list of uses. 2230 void undo() override { 2231 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2232 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2233 Inst->setOperand(It, OriginalValues[It]); 2234 } 2235 }; 2236 2237 /// \brief Build a truncate instruction. 2238 class TruncBuilder : public TypePromotionAction { 2239 Value *Val; 2240 public: 2241 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2242 /// result. 2243 /// trunc Opnd to Ty. 2244 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2245 IRBuilder<> Builder(Opnd); 2246 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2247 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2248 } 2249 2250 /// \brief Get the built value. 2251 Value *getBuiltValue() { return Val; } 2252 2253 /// \brief Remove the built instruction. 2254 void undo() override { 2255 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2256 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2257 IVal->eraseFromParent(); 2258 } 2259 }; 2260 2261 /// \brief Build a sign extension instruction. 2262 class SExtBuilder : public TypePromotionAction { 2263 Value *Val; 2264 public: 2265 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2266 /// result. 2267 /// sext Opnd to Ty. 2268 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2269 : TypePromotionAction(InsertPt) { 2270 IRBuilder<> Builder(InsertPt); 2271 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2272 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2273 } 2274 2275 /// \brief Get the built value. 2276 Value *getBuiltValue() { return Val; } 2277 2278 /// \brief Remove the built instruction. 2279 void undo() override { 2280 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2281 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2282 IVal->eraseFromParent(); 2283 } 2284 }; 2285 2286 /// \brief Build a zero extension instruction. 2287 class ZExtBuilder : public TypePromotionAction { 2288 Value *Val; 2289 public: 2290 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2291 /// result. 2292 /// zext Opnd to Ty. 2293 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2294 : TypePromotionAction(InsertPt) { 2295 IRBuilder<> Builder(InsertPt); 2296 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2297 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2298 } 2299 2300 /// \brief Get the built value. 2301 Value *getBuiltValue() { return Val; } 2302 2303 /// \brief Remove the built instruction. 2304 void undo() override { 2305 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2306 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2307 IVal->eraseFromParent(); 2308 } 2309 }; 2310 2311 /// \brief Mutate an instruction to another type. 2312 class TypeMutator : public TypePromotionAction { 2313 /// Record the original type. 2314 Type *OrigTy; 2315 2316 public: 2317 /// \brief Mutate the type of \p Inst into \p NewTy. 2318 TypeMutator(Instruction *Inst, Type *NewTy) 2319 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2320 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2321 << "\n"); 2322 Inst->mutateType(NewTy); 2323 } 2324 2325 /// \brief Mutate the instruction back to its original type. 2326 void undo() override { 2327 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2328 << "\n"); 2329 Inst->mutateType(OrigTy); 2330 } 2331 }; 2332 2333 /// \brief Replace the uses of an instruction by another instruction. 2334 class UsesReplacer : public TypePromotionAction { 2335 /// Helper structure to keep track of the replaced uses. 2336 struct InstructionAndIdx { 2337 /// The instruction using the instruction. 2338 Instruction *Inst; 2339 /// The index where this instruction is used for Inst. 2340 unsigned Idx; 2341 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2342 : Inst(Inst), Idx(Idx) {} 2343 }; 2344 2345 /// Keep track of the original uses (pair Instruction, Index). 2346 SmallVector<InstructionAndIdx, 4> OriginalUses; 2347 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 2348 2349 public: 2350 /// \brief Replace all the use of \p Inst by \p New. 2351 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2352 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2353 << "\n"); 2354 // Record the original uses. 2355 for (Use &U : Inst->uses()) { 2356 Instruction *UserI = cast<Instruction>(U.getUser()); 2357 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2358 } 2359 // Now, we can replace the uses. 2360 Inst->replaceAllUsesWith(New); 2361 } 2362 2363 /// \brief Reassign the original uses of Inst to Inst. 2364 void undo() override { 2365 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2366 for (use_iterator UseIt = OriginalUses.begin(), 2367 EndIt = OriginalUses.end(); 2368 UseIt != EndIt; ++UseIt) { 2369 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2370 } 2371 } 2372 }; 2373 2374 /// \brief Remove an instruction from the IR. 2375 class InstructionRemover : public TypePromotionAction { 2376 /// Original position of the instruction. 2377 InsertionHandler Inserter; 2378 /// Helper structure to hide all the link to the instruction. In other 2379 /// words, this helps to do as if the instruction was removed. 2380 OperandsHider Hider; 2381 /// Keep track of the uses replaced, if any. 2382 UsesReplacer *Replacer; 2383 2384 public: 2385 /// \brief Remove all reference of \p Inst and optinally replace all its 2386 /// uses with New. 2387 /// \pre If !Inst->use_empty(), then New != nullptr 2388 InstructionRemover(Instruction *Inst, Value *New = nullptr) 2389 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2390 Replacer(nullptr) { 2391 if (New) 2392 Replacer = new UsesReplacer(Inst, New); 2393 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2394 Inst->removeFromParent(); 2395 } 2396 2397 ~InstructionRemover() override { delete Replacer; } 2398 2399 /// \brief Really remove the instruction. 2400 void commit() override { delete Inst; } 2401 2402 /// \brief Resurrect the instruction and reassign it to the proper uses if 2403 /// new value was provided when build this action. 2404 void undo() override { 2405 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2406 Inserter.insert(Inst); 2407 if (Replacer) 2408 Replacer->undo(); 2409 Hider.undo(); 2410 } 2411 }; 2412 2413 public: 2414 /// Restoration point. 2415 /// The restoration point is a pointer to an action instead of an iterator 2416 /// because the iterator may be invalidated but not the pointer. 2417 typedef const TypePromotionAction *ConstRestorationPt; 2418 /// Advocate every changes made in that transaction. 2419 void commit(); 2420 /// Undo all the changes made after the given point. 2421 void rollback(ConstRestorationPt Point); 2422 /// Get the current restoration point. 2423 ConstRestorationPt getRestorationPoint() const; 2424 2425 /// \name API for IR modification with state keeping to support rollback. 2426 /// @{ 2427 /// Same as Instruction::setOperand. 2428 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2429 /// Same as Instruction::eraseFromParent. 2430 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2431 /// Same as Value::replaceAllUsesWith. 2432 void replaceAllUsesWith(Instruction *Inst, Value *New); 2433 /// Same as Value::mutateType. 2434 void mutateType(Instruction *Inst, Type *NewTy); 2435 /// Same as IRBuilder::createTrunc. 2436 Value *createTrunc(Instruction *Opnd, Type *Ty); 2437 /// Same as IRBuilder::createSExt. 2438 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2439 /// Same as IRBuilder::createZExt. 2440 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2441 /// Same as Instruction::moveBefore. 2442 void moveBefore(Instruction *Inst, Instruction *Before); 2443 /// @} 2444 2445 private: 2446 /// The ordered list of actions made so far. 2447 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2448 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2449 }; 2450 2451 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2452 Value *NewVal) { 2453 Actions.push_back( 2454 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2455 } 2456 2457 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2458 Value *NewVal) { 2459 Actions.push_back( 2460 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 2461 } 2462 2463 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2464 Value *New) { 2465 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2466 } 2467 2468 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2469 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2470 } 2471 2472 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2473 Type *Ty) { 2474 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2475 Value *Val = Ptr->getBuiltValue(); 2476 Actions.push_back(std::move(Ptr)); 2477 return Val; 2478 } 2479 2480 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2481 Value *Opnd, Type *Ty) { 2482 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2483 Value *Val = Ptr->getBuiltValue(); 2484 Actions.push_back(std::move(Ptr)); 2485 return Val; 2486 } 2487 2488 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2489 Value *Opnd, Type *Ty) { 2490 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2491 Value *Val = Ptr->getBuiltValue(); 2492 Actions.push_back(std::move(Ptr)); 2493 return Val; 2494 } 2495 2496 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2497 Instruction *Before) { 2498 Actions.push_back( 2499 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2500 } 2501 2502 TypePromotionTransaction::ConstRestorationPt 2503 TypePromotionTransaction::getRestorationPoint() const { 2504 return !Actions.empty() ? Actions.back().get() : nullptr; 2505 } 2506 2507 void TypePromotionTransaction::commit() { 2508 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2509 ++It) 2510 (*It)->commit(); 2511 Actions.clear(); 2512 } 2513 2514 void TypePromotionTransaction::rollback( 2515 TypePromotionTransaction::ConstRestorationPt Point) { 2516 while (!Actions.empty() && Point != Actions.back().get()) { 2517 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2518 Curr->undo(); 2519 } 2520 } 2521 2522 /// \brief A helper class for matching addressing modes. 2523 /// 2524 /// This encapsulates the logic for matching the target-legal addressing modes. 2525 class AddressingModeMatcher { 2526 SmallVectorImpl<Instruction*> &AddrModeInsts; 2527 const TargetMachine &TM; 2528 const TargetLowering &TLI; 2529 const DataLayout &DL; 2530 2531 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2532 /// the memory instruction that we're computing this address for. 2533 Type *AccessTy; 2534 unsigned AddrSpace; 2535 Instruction *MemoryInst; 2536 2537 /// This is the addressing mode that we're building up. This is 2538 /// part of the return value of this addressing mode matching stuff. 2539 ExtAddrMode &AddrMode; 2540 2541 /// The instructions inserted by other CodeGenPrepare optimizations. 2542 const SetOfInstrs &InsertedInsts; 2543 /// A map from the instructions to their type before promotion. 2544 InstrToOrigTy &PromotedInsts; 2545 /// The ongoing transaction where every action should be registered. 2546 TypePromotionTransaction &TPT; 2547 2548 /// This is set to true when we should not do profitability checks. 2549 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2550 bool IgnoreProfitability; 2551 2552 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2553 const TargetMachine &TM, Type *AT, unsigned AS, 2554 Instruction *MI, ExtAddrMode &AM, 2555 const SetOfInstrs &InsertedInsts, 2556 InstrToOrigTy &PromotedInsts, 2557 TypePromotionTransaction &TPT) 2558 : AddrModeInsts(AMI), TM(TM), 2559 TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent()) 2560 ->getTargetLowering()), 2561 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2562 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2563 PromotedInsts(PromotedInsts), TPT(TPT) { 2564 IgnoreProfitability = false; 2565 } 2566 public: 2567 2568 /// Find the maximal addressing mode that a load/store of V can fold, 2569 /// give an access type of AccessTy. This returns a list of involved 2570 /// instructions in AddrModeInsts. 2571 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2572 /// optimizations. 2573 /// \p PromotedInsts maps the instructions to their type before promotion. 2574 /// \p The ongoing transaction where every action should be registered. 2575 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2576 Instruction *MemoryInst, 2577 SmallVectorImpl<Instruction*> &AddrModeInsts, 2578 const TargetMachine &TM, 2579 const SetOfInstrs &InsertedInsts, 2580 InstrToOrigTy &PromotedInsts, 2581 TypePromotionTransaction &TPT) { 2582 ExtAddrMode Result; 2583 2584 bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS, 2585 MemoryInst, Result, InsertedInsts, 2586 PromotedInsts, TPT).matchAddr(V, 0); 2587 (void)Success; assert(Success && "Couldn't select *anything*?"); 2588 return Result; 2589 } 2590 private: 2591 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2592 bool matchAddr(Value *V, unsigned Depth); 2593 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2594 bool *MovedAway = nullptr); 2595 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2596 ExtAddrMode &AMBefore, 2597 ExtAddrMode &AMAfter); 2598 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2599 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2600 Value *PromotedOperand) const; 2601 }; 2602 2603 /// Try adding ScaleReg*Scale to the current addressing mode. 2604 /// Return true and update AddrMode if this addr mode is legal for the target, 2605 /// false if not. 2606 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 2607 unsigned Depth) { 2608 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2609 // mode. Just process that directly. 2610 if (Scale == 1) 2611 return matchAddr(ScaleReg, Depth); 2612 2613 // If the scale is 0, it takes nothing to add this. 2614 if (Scale == 0) 2615 return true; 2616 2617 // If we already have a scale of this value, we can add to it, otherwise, we 2618 // need an available scale field. 2619 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2620 return false; 2621 2622 ExtAddrMode TestAddrMode = AddrMode; 2623 2624 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2625 // [A+B + A*7] -> [B+A*8]. 2626 TestAddrMode.Scale += Scale; 2627 TestAddrMode.ScaledReg = ScaleReg; 2628 2629 // If the new address isn't legal, bail out. 2630 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 2631 return false; 2632 2633 // It was legal, so commit it. 2634 AddrMode = TestAddrMode; 2635 2636 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2637 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2638 // X*Scale + C*Scale to addr mode. 2639 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2640 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2641 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2642 TestAddrMode.ScaledReg = AddLHS; 2643 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2644 2645 // If this addressing mode is legal, commit it and remember that we folded 2646 // this instruction. 2647 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 2648 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2649 AddrMode = TestAddrMode; 2650 return true; 2651 } 2652 } 2653 2654 // Otherwise, not (x+c)*scale, just return what we have. 2655 return true; 2656 } 2657 2658 /// This is a little filter, which returns true if an addressing computation 2659 /// involving I might be folded into a load/store accessing it. 2660 /// This doesn't need to be perfect, but needs to accept at least 2661 /// the set of instructions that MatchOperationAddr can. 2662 static bool MightBeFoldableInst(Instruction *I) { 2663 switch (I->getOpcode()) { 2664 case Instruction::BitCast: 2665 case Instruction::AddrSpaceCast: 2666 // Don't touch identity bitcasts. 2667 if (I->getType() == I->getOperand(0)->getType()) 2668 return false; 2669 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2670 case Instruction::PtrToInt: 2671 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2672 return true; 2673 case Instruction::IntToPtr: 2674 // We know the input is intptr_t, so this is foldable. 2675 return true; 2676 case Instruction::Add: 2677 return true; 2678 case Instruction::Mul: 2679 case Instruction::Shl: 2680 // Can only handle X*C and X << C. 2681 return isa<ConstantInt>(I->getOperand(1)); 2682 case Instruction::GetElementPtr: 2683 return true; 2684 default: 2685 return false; 2686 } 2687 } 2688 2689 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2690 /// \note \p Val is assumed to be the product of some type promotion. 2691 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2692 /// to be legal, as the non-promoted value would have had the same state. 2693 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 2694 const DataLayout &DL, Value *Val) { 2695 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2696 if (!PromotedInst) 2697 return false; 2698 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2699 // If the ISDOpcode is undefined, it was undefined before the promotion. 2700 if (!ISDOpcode) 2701 return true; 2702 // Otherwise, check if the promoted instruction is legal or not. 2703 return TLI.isOperationLegalOrCustom( 2704 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 2705 } 2706 2707 /// \brief Hepler class to perform type promotion. 2708 class TypePromotionHelper { 2709 /// \brief Utility function to check whether or not a sign or zero extension 2710 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2711 /// either using the operands of \p Inst or promoting \p Inst. 2712 /// The type of the extension is defined by \p IsSExt. 2713 /// In other words, check if: 2714 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2715 /// #1 Promotion applies: 2716 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2717 /// #2 Operand reuses: 2718 /// ext opnd1 to ConsideredExtType. 2719 /// \p PromotedInsts maps the instructions to their type before promotion. 2720 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2721 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2722 2723 /// \brief Utility function to determine if \p OpIdx should be promoted when 2724 /// promoting \p Inst. 2725 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2726 return !(isa<SelectInst>(Inst) && OpIdx == 0); 2727 } 2728 2729 /// \brief Utility function to promote the operand of \p Ext when this 2730 /// operand is a promotable trunc or sext or zext. 2731 /// \p PromotedInsts maps the instructions to their type before promotion. 2732 /// \p CreatedInstsCost[out] contains the cost of all instructions 2733 /// created to promote the operand of Ext. 2734 /// Newly added extensions are inserted in \p Exts. 2735 /// Newly added truncates are inserted in \p Truncs. 2736 /// Should never be called directly. 2737 /// \return The promoted value which is used instead of Ext. 2738 static Value *promoteOperandForTruncAndAnyExt( 2739 Instruction *Ext, TypePromotionTransaction &TPT, 2740 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2741 SmallVectorImpl<Instruction *> *Exts, 2742 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 2743 2744 /// \brief Utility function to promote the operand of \p Ext when this 2745 /// operand is promotable and is not a supported trunc or sext. 2746 /// \p PromotedInsts maps the instructions to their type before promotion. 2747 /// \p CreatedInstsCost[out] contains the cost of all the instructions 2748 /// created to promote the operand of Ext. 2749 /// Newly added extensions are inserted in \p Exts. 2750 /// Newly added truncates are inserted in \p Truncs. 2751 /// Should never be called directly. 2752 /// \return The promoted value which is used instead of Ext. 2753 static Value *promoteOperandForOther(Instruction *Ext, 2754 TypePromotionTransaction &TPT, 2755 InstrToOrigTy &PromotedInsts, 2756 unsigned &CreatedInstsCost, 2757 SmallVectorImpl<Instruction *> *Exts, 2758 SmallVectorImpl<Instruction *> *Truncs, 2759 const TargetLowering &TLI, bool IsSExt); 2760 2761 /// \see promoteOperandForOther. 2762 static Value *signExtendOperandForOther( 2763 Instruction *Ext, TypePromotionTransaction &TPT, 2764 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2765 SmallVectorImpl<Instruction *> *Exts, 2766 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2767 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2768 Exts, Truncs, TLI, true); 2769 } 2770 2771 /// \see promoteOperandForOther. 2772 static Value *zeroExtendOperandForOther( 2773 Instruction *Ext, TypePromotionTransaction &TPT, 2774 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2775 SmallVectorImpl<Instruction *> *Exts, 2776 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2777 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2778 Exts, Truncs, TLI, false); 2779 } 2780 2781 public: 2782 /// Type for the utility function that promotes the operand of Ext. 2783 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2784 InstrToOrigTy &PromotedInsts, 2785 unsigned &CreatedInstsCost, 2786 SmallVectorImpl<Instruction *> *Exts, 2787 SmallVectorImpl<Instruction *> *Truncs, 2788 const TargetLowering &TLI); 2789 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2790 /// action to promote the operand of \p Ext instead of using Ext. 2791 /// \return NULL if no promotable action is possible with the current 2792 /// sign extension. 2793 /// \p InsertedInsts keeps track of all the instructions inserted by the 2794 /// other CodeGenPrepare optimizations. This information is important 2795 /// because we do not want to promote these instructions as CodeGenPrepare 2796 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2797 /// \p PromotedInsts maps the instructions to their type before promotion. 2798 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 2799 const TargetLowering &TLI, 2800 const InstrToOrigTy &PromotedInsts); 2801 }; 2802 2803 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2804 Type *ConsideredExtType, 2805 const InstrToOrigTy &PromotedInsts, 2806 bool IsSExt) { 2807 // The promotion helper does not know how to deal with vector types yet. 2808 // To be able to fix that, we would need to fix the places where we 2809 // statically extend, e.g., constants and such. 2810 if (Inst->getType()->isVectorTy()) 2811 return false; 2812 2813 // We can always get through zext. 2814 if (isa<ZExtInst>(Inst)) 2815 return true; 2816 2817 // sext(sext) is ok too. 2818 if (IsSExt && isa<SExtInst>(Inst)) 2819 return true; 2820 2821 // We can get through binary operator, if it is legal. In other words, the 2822 // binary operator must have a nuw or nsw flag. 2823 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2824 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2825 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2826 (IsSExt && BinOp->hasNoSignedWrap()))) 2827 return true; 2828 2829 // Check if we can do the following simplification. 2830 // ext(trunc(opnd)) --> ext(opnd) 2831 if (!isa<TruncInst>(Inst)) 2832 return false; 2833 2834 Value *OpndVal = Inst->getOperand(0); 2835 // Check if we can use this operand in the extension. 2836 // If the type is larger than the result type of the extension, we cannot. 2837 if (!OpndVal->getType()->isIntegerTy() || 2838 OpndVal->getType()->getIntegerBitWidth() > 2839 ConsideredExtType->getIntegerBitWidth()) 2840 return false; 2841 2842 // If the operand of the truncate is not an instruction, we will not have 2843 // any information on the dropped bits. 2844 // (Actually we could for constant but it is not worth the extra logic). 2845 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2846 if (!Opnd) 2847 return false; 2848 2849 // Check if the source of the type is narrow enough. 2850 // I.e., check that trunc just drops extended bits of the same kind of 2851 // the extension. 2852 // #1 get the type of the operand and check the kind of the extended bits. 2853 const Type *OpndType; 2854 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2855 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 2856 OpndType = It->second.getPointer(); 2857 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2858 OpndType = Opnd->getOperand(0)->getType(); 2859 else 2860 return false; 2861 2862 // #2 check that the truncate just drops extended bits. 2863 return Inst->getType()->getIntegerBitWidth() >= 2864 OpndType->getIntegerBitWidth(); 2865 } 2866 2867 TypePromotionHelper::Action TypePromotionHelper::getAction( 2868 Instruction *Ext, const SetOfInstrs &InsertedInsts, 2869 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2870 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2871 "Unexpected instruction type"); 2872 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2873 Type *ExtTy = Ext->getType(); 2874 bool IsSExt = isa<SExtInst>(Ext); 2875 // If the operand of the extension is not an instruction, we cannot 2876 // get through. 2877 // If it, check we can get through. 2878 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2879 return nullptr; 2880 2881 // Do not promote if the operand has been added by codegenprepare. 2882 // Otherwise, it means we are undoing an optimization that is likely to be 2883 // redone, thus causing potential infinite loop. 2884 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 2885 return nullptr; 2886 2887 // SExt or Trunc instructions. 2888 // Return the related handler. 2889 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2890 isa<ZExtInst>(ExtOpnd)) 2891 return promoteOperandForTruncAndAnyExt; 2892 2893 // Regular instruction. 2894 // Abort early if we will have to insert non-free instructions. 2895 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2896 return nullptr; 2897 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2898 } 2899 2900 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2901 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2902 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2903 SmallVectorImpl<Instruction *> *Exts, 2904 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2905 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2906 // get through it and this method should not be called. 2907 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2908 Value *ExtVal = SExt; 2909 bool HasMergedNonFreeExt = false; 2910 if (isa<ZExtInst>(SExtOpnd)) { 2911 // Replace s|zext(zext(opnd)) 2912 // => zext(opnd). 2913 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 2914 Value *ZExt = 2915 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2916 TPT.replaceAllUsesWith(SExt, ZExt); 2917 TPT.eraseInstruction(SExt); 2918 ExtVal = ZExt; 2919 } else { 2920 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2921 // => z|sext(opnd). 2922 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2923 } 2924 CreatedInstsCost = 0; 2925 2926 // Remove dead code. 2927 if (SExtOpnd->use_empty()) 2928 TPT.eraseInstruction(SExtOpnd); 2929 2930 // Check if the extension is still needed. 2931 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 2932 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 2933 if (ExtInst) { 2934 if (Exts) 2935 Exts->push_back(ExtInst); 2936 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 2937 } 2938 return ExtVal; 2939 } 2940 2941 // At this point we have: ext ty opnd to ty. 2942 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 2943 Value *NextVal = ExtInst->getOperand(0); 2944 TPT.eraseInstruction(ExtInst, NextVal); 2945 return NextVal; 2946 } 2947 2948 Value *TypePromotionHelper::promoteOperandForOther( 2949 Instruction *Ext, TypePromotionTransaction &TPT, 2950 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2951 SmallVectorImpl<Instruction *> *Exts, 2952 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 2953 bool IsSExt) { 2954 // By construction, the operand of Ext is an instruction. Otherwise we cannot 2955 // get through it and this method should not be called. 2956 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 2957 CreatedInstsCost = 0; 2958 if (!ExtOpnd->hasOneUse()) { 2959 // ExtOpnd will be promoted. 2960 // All its uses, but Ext, will need to use a truncated value of the 2961 // promoted version. 2962 // Create the truncate now. 2963 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 2964 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 2965 ITrunc->removeFromParent(); 2966 // Insert it just after the definition. 2967 ITrunc->insertAfter(ExtOpnd); 2968 if (Truncs) 2969 Truncs->push_back(ITrunc); 2970 } 2971 2972 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 2973 // Restore the operand of Ext (which has been replaced by the previous call 2974 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 2975 TPT.setOperand(Ext, 0, ExtOpnd); 2976 } 2977 2978 // Get through the Instruction: 2979 // 1. Update its type. 2980 // 2. Replace the uses of Ext by Inst. 2981 // 3. Extend each operand that needs to be extended. 2982 2983 // Remember the original type of the instruction before promotion. 2984 // This is useful to know that the high bits are sign extended bits. 2985 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 2986 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 2987 // Step #1. 2988 TPT.mutateType(ExtOpnd, Ext->getType()); 2989 // Step #2. 2990 TPT.replaceAllUsesWith(Ext, ExtOpnd); 2991 // Step #3. 2992 Instruction *ExtForOpnd = Ext; 2993 2994 DEBUG(dbgs() << "Propagate Ext to operands\n"); 2995 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 2996 ++OpIdx) { 2997 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 2998 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 2999 !shouldExtOperand(ExtOpnd, OpIdx)) { 3000 DEBUG(dbgs() << "No need to propagate\n"); 3001 continue; 3002 } 3003 // Check if we can statically extend the operand. 3004 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3005 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3006 DEBUG(dbgs() << "Statically extend\n"); 3007 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3008 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3009 : Cst->getValue().zext(BitWidth); 3010 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3011 continue; 3012 } 3013 // UndefValue are typed, so we have to statically sign extend them. 3014 if (isa<UndefValue>(Opnd)) { 3015 DEBUG(dbgs() << "Statically extend\n"); 3016 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3017 continue; 3018 } 3019 3020 // Otherwise we have to explicity sign extend the operand. 3021 // Check if Ext was reused to extend an operand. 3022 if (!ExtForOpnd) { 3023 // If yes, create a new one. 3024 DEBUG(dbgs() << "More operands to ext\n"); 3025 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3026 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3027 if (!isa<Instruction>(ValForExtOpnd)) { 3028 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3029 continue; 3030 } 3031 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3032 } 3033 if (Exts) 3034 Exts->push_back(ExtForOpnd); 3035 TPT.setOperand(ExtForOpnd, 0, Opnd); 3036 3037 // Move the sign extension before the insertion point. 3038 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3039 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3040 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3041 // If more sext are required, new instructions will have to be created. 3042 ExtForOpnd = nullptr; 3043 } 3044 if (ExtForOpnd == Ext) { 3045 DEBUG(dbgs() << "Extension is useless now\n"); 3046 TPT.eraseInstruction(Ext); 3047 } 3048 return ExtOpnd; 3049 } 3050 3051 /// Check whether or not promoting an instruction to a wider type is profitable. 3052 /// \p NewCost gives the cost of extension instructions created by the 3053 /// promotion. 3054 /// \p OldCost gives the cost of extension instructions before the promotion 3055 /// plus the number of instructions that have been 3056 /// matched in the addressing mode the promotion. 3057 /// \p PromotedOperand is the value that has been promoted. 3058 /// \return True if the promotion is profitable, false otherwise. 3059 bool AddressingModeMatcher::isPromotionProfitable( 3060 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3061 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3062 // The cost of the new extensions is greater than the cost of the 3063 // old extension plus what we folded. 3064 // This is not profitable. 3065 if (NewCost > OldCost) 3066 return false; 3067 if (NewCost < OldCost) 3068 return true; 3069 // The promotion is neutral but it may help folding the sign extension in 3070 // loads for instance. 3071 // Check that we did not create an illegal instruction. 3072 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3073 } 3074 3075 /// Given an instruction or constant expr, see if we can fold the operation 3076 /// into the addressing mode. If so, update the addressing mode and return 3077 /// true, otherwise return false without modifying AddrMode. 3078 /// If \p MovedAway is not NULL, it contains the information of whether or 3079 /// not AddrInst has to be folded into the addressing mode on success. 3080 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3081 /// because it has been moved away. 3082 /// Thus AddrInst must not be added in the matched instructions. 3083 /// This state can happen when AddrInst is a sext, since it may be moved away. 3084 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3085 /// not be referenced anymore. 3086 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3087 unsigned Depth, 3088 bool *MovedAway) { 3089 // Avoid exponential behavior on extremely deep expression trees. 3090 if (Depth >= 5) return false; 3091 3092 // By default, all matched instructions stay in place. 3093 if (MovedAway) 3094 *MovedAway = false; 3095 3096 switch (Opcode) { 3097 case Instruction::PtrToInt: 3098 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3099 return matchAddr(AddrInst->getOperand(0), Depth); 3100 case Instruction::IntToPtr: { 3101 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3102 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3103 // This inttoptr is a no-op if the integer type is pointer sized. 3104 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3105 return matchAddr(AddrInst->getOperand(0), Depth); 3106 return false; 3107 } 3108 case Instruction::BitCast: 3109 // BitCast is always a noop, and we can handle it as long as it is 3110 // int->int or pointer->pointer (we don't want int<->fp or something). 3111 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3112 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3113 // Don't touch identity bitcasts. These were probably put here by LSR, 3114 // and we don't want to mess around with them. Assume it knows what it 3115 // is doing. 3116 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3117 return matchAddr(AddrInst->getOperand(0), Depth); 3118 return false; 3119 case Instruction::AddrSpaceCast: { 3120 unsigned SrcAS 3121 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3122 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3123 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3124 return matchAddr(AddrInst->getOperand(0), Depth); 3125 return false; 3126 } 3127 case Instruction::Add: { 3128 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3129 ExtAddrMode BackupAddrMode = AddrMode; 3130 unsigned OldSize = AddrModeInsts.size(); 3131 // Start a transaction at this point. 3132 // The LHS may match but not the RHS. 3133 // Therefore, we need a higher level restoration point to undo partially 3134 // matched operation. 3135 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3136 TPT.getRestorationPoint(); 3137 3138 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3139 matchAddr(AddrInst->getOperand(0), Depth+1)) 3140 return true; 3141 3142 // Restore the old addr mode info. 3143 AddrMode = BackupAddrMode; 3144 AddrModeInsts.resize(OldSize); 3145 TPT.rollback(LastKnownGood); 3146 3147 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3148 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3149 matchAddr(AddrInst->getOperand(1), Depth+1)) 3150 return true; 3151 3152 // Otherwise we definitely can't merge the ADD in. 3153 AddrMode = BackupAddrMode; 3154 AddrModeInsts.resize(OldSize); 3155 TPT.rollback(LastKnownGood); 3156 break; 3157 } 3158 //case Instruction::Or: 3159 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3160 //break; 3161 case Instruction::Mul: 3162 case Instruction::Shl: { 3163 // Can only handle X*C and X << C. 3164 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3165 if (!RHS) 3166 return false; 3167 int64_t Scale = RHS->getSExtValue(); 3168 if (Opcode == Instruction::Shl) 3169 Scale = 1LL << Scale; 3170 3171 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3172 } 3173 case Instruction::GetElementPtr: { 3174 // Scan the GEP. We check it if it contains constant offsets and at most 3175 // one variable offset. 3176 int VariableOperand = -1; 3177 unsigned VariableScale = 0; 3178 3179 int64_t ConstantOffset = 0; 3180 gep_type_iterator GTI = gep_type_begin(AddrInst); 3181 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3182 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 3183 const StructLayout *SL = DL.getStructLayout(STy); 3184 unsigned Idx = 3185 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3186 ConstantOffset += SL->getElementOffset(Idx); 3187 } else { 3188 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3189 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3190 ConstantOffset += CI->getSExtValue()*TypeSize; 3191 } else if (TypeSize) { // Scales of zero don't do anything. 3192 // We only allow one variable index at the moment. 3193 if (VariableOperand != -1) 3194 return false; 3195 3196 // Remember the variable index. 3197 VariableOperand = i; 3198 VariableScale = TypeSize; 3199 } 3200 } 3201 } 3202 3203 // A common case is for the GEP to only do a constant offset. In this case, 3204 // just add it to the disp field and check validity. 3205 if (VariableOperand == -1) { 3206 AddrMode.BaseOffs += ConstantOffset; 3207 if (ConstantOffset == 0 || 3208 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3209 // Check to see if we can fold the base pointer in too. 3210 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3211 return true; 3212 } 3213 AddrMode.BaseOffs -= ConstantOffset; 3214 return false; 3215 } 3216 3217 // Save the valid addressing mode in case we can't match. 3218 ExtAddrMode BackupAddrMode = AddrMode; 3219 unsigned OldSize = AddrModeInsts.size(); 3220 3221 // See if the scale and offset amount is valid for this target. 3222 AddrMode.BaseOffs += ConstantOffset; 3223 3224 // Match the base operand of the GEP. 3225 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3226 // If it couldn't be matched, just stuff the value in a register. 3227 if (AddrMode.HasBaseReg) { 3228 AddrMode = BackupAddrMode; 3229 AddrModeInsts.resize(OldSize); 3230 return false; 3231 } 3232 AddrMode.HasBaseReg = true; 3233 AddrMode.BaseReg = AddrInst->getOperand(0); 3234 } 3235 3236 // Match the remaining variable portion of the GEP. 3237 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3238 Depth)) { 3239 // If it couldn't be matched, try stuffing the base into a register 3240 // instead of matching it, and retrying the match of the scale. 3241 AddrMode = BackupAddrMode; 3242 AddrModeInsts.resize(OldSize); 3243 if (AddrMode.HasBaseReg) 3244 return false; 3245 AddrMode.HasBaseReg = true; 3246 AddrMode.BaseReg = AddrInst->getOperand(0); 3247 AddrMode.BaseOffs += ConstantOffset; 3248 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3249 VariableScale, Depth)) { 3250 // If even that didn't work, bail. 3251 AddrMode = BackupAddrMode; 3252 AddrModeInsts.resize(OldSize); 3253 return false; 3254 } 3255 } 3256 3257 return true; 3258 } 3259 case Instruction::SExt: 3260 case Instruction::ZExt: { 3261 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3262 if (!Ext) 3263 return false; 3264 3265 // Try to move this ext out of the way of the addressing mode. 3266 // Ask for a method for doing so. 3267 TypePromotionHelper::Action TPH = 3268 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3269 if (!TPH) 3270 return false; 3271 3272 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3273 TPT.getRestorationPoint(); 3274 unsigned CreatedInstsCost = 0; 3275 unsigned ExtCost = !TLI.isExtFree(Ext); 3276 Value *PromotedOperand = 3277 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3278 // SExt has been moved away. 3279 // Thus either it will be rematched later in the recursive calls or it is 3280 // gone. Anyway, we must not fold it into the addressing mode at this point. 3281 // E.g., 3282 // op = add opnd, 1 3283 // idx = ext op 3284 // addr = gep base, idx 3285 // is now: 3286 // promotedOpnd = ext opnd <- no match here 3287 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3288 // addr = gep base, op <- match 3289 if (MovedAway) 3290 *MovedAway = true; 3291 3292 assert(PromotedOperand && 3293 "TypePromotionHelper should have filtered out those cases"); 3294 3295 ExtAddrMode BackupAddrMode = AddrMode; 3296 unsigned OldSize = AddrModeInsts.size(); 3297 3298 if (!matchAddr(PromotedOperand, Depth) || 3299 // The total of the new cost is equal to the cost of the created 3300 // instructions. 3301 // The total of the old cost is equal to the cost of the extension plus 3302 // what we have saved in the addressing mode. 3303 !isPromotionProfitable(CreatedInstsCost, 3304 ExtCost + (AddrModeInsts.size() - OldSize), 3305 PromotedOperand)) { 3306 AddrMode = BackupAddrMode; 3307 AddrModeInsts.resize(OldSize); 3308 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3309 TPT.rollback(LastKnownGood); 3310 return false; 3311 } 3312 return true; 3313 } 3314 } 3315 return false; 3316 } 3317 3318 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3319 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3320 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3321 /// for the target. 3322 /// 3323 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3324 // Start a transaction at this point that we will rollback if the matching 3325 // fails. 3326 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3327 TPT.getRestorationPoint(); 3328 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3329 // Fold in immediates if legal for the target. 3330 AddrMode.BaseOffs += CI->getSExtValue(); 3331 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3332 return true; 3333 AddrMode.BaseOffs -= CI->getSExtValue(); 3334 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3335 // If this is a global variable, try to fold it into the addressing mode. 3336 if (!AddrMode.BaseGV) { 3337 AddrMode.BaseGV = GV; 3338 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3339 return true; 3340 AddrMode.BaseGV = nullptr; 3341 } 3342 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3343 ExtAddrMode BackupAddrMode = AddrMode; 3344 unsigned OldSize = AddrModeInsts.size(); 3345 3346 // Check to see if it is possible to fold this operation. 3347 bool MovedAway = false; 3348 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3349 // This instruction may have been moved away. If so, there is nothing 3350 // to check here. 3351 if (MovedAway) 3352 return true; 3353 // Okay, it's possible to fold this. Check to see if it is actually 3354 // *profitable* to do so. We use a simple cost model to avoid increasing 3355 // register pressure too much. 3356 if (I->hasOneUse() || 3357 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3358 AddrModeInsts.push_back(I); 3359 return true; 3360 } 3361 3362 // It isn't profitable to do this, roll back. 3363 //cerr << "NOT FOLDING: " << *I; 3364 AddrMode = BackupAddrMode; 3365 AddrModeInsts.resize(OldSize); 3366 TPT.rollback(LastKnownGood); 3367 } 3368 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3369 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3370 return true; 3371 TPT.rollback(LastKnownGood); 3372 } else if (isa<ConstantPointerNull>(Addr)) { 3373 // Null pointer gets folded without affecting the addressing mode. 3374 return true; 3375 } 3376 3377 // Worse case, the target should support [reg] addressing modes. :) 3378 if (!AddrMode.HasBaseReg) { 3379 AddrMode.HasBaseReg = true; 3380 AddrMode.BaseReg = Addr; 3381 // Still check for legality in case the target supports [imm] but not [i+r]. 3382 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3383 return true; 3384 AddrMode.HasBaseReg = false; 3385 AddrMode.BaseReg = nullptr; 3386 } 3387 3388 // If the base register is already taken, see if we can do [r+r]. 3389 if (AddrMode.Scale == 0) { 3390 AddrMode.Scale = 1; 3391 AddrMode.ScaledReg = Addr; 3392 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3393 return true; 3394 AddrMode.Scale = 0; 3395 AddrMode.ScaledReg = nullptr; 3396 } 3397 // Couldn't match. 3398 TPT.rollback(LastKnownGood); 3399 return false; 3400 } 3401 3402 /// Check to see if all uses of OpVal by the specified inline asm call are due 3403 /// to memory operands. If so, return true, otherwise return false. 3404 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3405 const TargetMachine &TM) { 3406 const Function *F = CI->getParent()->getParent(); 3407 const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering(); 3408 const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo(); 3409 TargetLowering::AsmOperandInfoVector TargetConstraints = 3410 TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI, 3411 ImmutableCallSite(CI)); 3412 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3413 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3414 3415 // Compute the constraint code and ConstraintType to use. 3416 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3417 3418 // If this asm operand is our Value*, and if it isn't an indirect memory 3419 // operand, we can't fold it! 3420 if (OpInfo.CallOperandVal == OpVal && 3421 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3422 !OpInfo.isIndirect)) 3423 return false; 3424 } 3425 3426 return true; 3427 } 3428 3429 /// Recursively walk all the uses of I until we find a memory use. 3430 /// If we find an obviously non-foldable instruction, return true. 3431 /// Add the ultimately found memory instructions to MemoryUses. 3432 static bool FindAllMemoryUses( 3433 Instruction *I, 3434 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3435 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) { 3436 // If we already considered this instruction, we're done. 3437 if (!ConsideredInsts.insert(I).second) 3438 return false; 3439 3440 // If this is an obviously unfoldable instruction, bail out. 3441 if (!MightBeFoldableInst(I)) 3442 return true; 3443 3444 // Loop over all the uses, recursively processing them. 3445 for (Use &U : I->uses()) { 3446 Instruction *UserI = cast<Instruction>(U.getUser()); 3447 3448 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3449 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3450 continue; 3451 } 3452 3453 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3454 unsigned opNo = U.getOperandNo(); 3455 if (opNo == 0) return true; // Storing addr, not into addr. 3456 MemoryUses.push_back(std::make_pair(SI, opNo)); 3457 continue; 3458 } 3459 3460 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3461 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3462 if (!IA) return true; 3463 3464 // If this is a memory operand, we're cool, otherwise bail out. 3465 if (!IsOperandAMemoryOperand(CI, IA, I, TM)) 3466 return true; 3467 continue; 3468 } 3469 3470 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM)) 3471 return true; 3472 } 3473 3474 return false; 3475 } 3476 3477 /// Return true if Val is already known to be live at the use site that we're 3478 /// folding it into. If so, there is no cost to include it in the addressing 3479 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 3480 /// instruction already. 3481 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3482 Value *KnownLive2) { 3483 // If Val is either of the known-live values, we know it is live! 3484 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3485 return true; 3486 3487 // All values other than instructions and arguments (e.g. constants) are live. 3488 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3489 3490 // If Val is a constant sized alloca in the entry block, it is live, this is 3491 // true because it is just a reference to the stack/frame pointer, which is 3492 // live for the whole function. 3493 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3494 if (AI->isStaticAlloca()) 3495 return true; 3496 3497 // Check to see if this value is already used in the memory instruction's 3498 // block. If so, it's already live into the block at the very least, so we 3499 // can reasonably fold it. 3500 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3501 } 3502 3503 /// It is possible for the addressing mode of the machine to fold the specified 3504 /// instruction into a load or store that ultimately uses it. 3505 /// However, the specified instruction has multiple uses. 3506 /// Given this, it may actually increase register pressure to fold it 3507 /// into the load. For example, consider this code: 3508 /// 3509 /// X = ... 3510 /// Y = X+1 3511 /// use(Y) -> nonload/store 3512 /// Z = Y+1 3513 /// load Z 3514 /// 3515 /// In this case, Y has multiple uses, and can be folded into the load of Z 3516 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 3517 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 3518 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 3519 /// number of computations either. 3520 /// 3521 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 3522 /// X was live across 'load Z' for other reasons, we actually *would* want to 3523 /// fold the addressing mode in the Z case. This would make Y die earlier. 3524 bool AddressingModeMatcher:: 3525 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 3526 ExtAddrMode &AMAfter) { 3527 if (IgnoreProfitability) return true; 3528 3529 // AMBefore is the addressing mode before this instruction was folded into it, 3530 // and AMAfter is the addressing mode after the instruction was folded. Get 3531 // the set of registers referenced by AMAfter and subtract out those 3532 // referenced by AMBefore: this is the set of values which folding in this 3533 // address extends the lifetime of. 3534 // 3535 // Note that there are only two potential values being referenced here, 3536 // BaseReg and ScaleReg (global addresses are always available, as are any 3537 // folded immediates). 3538 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 3539 3540 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 3541 // lifetime wasn't extended by adding this instruction. 3542 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3543 BaseReg = nullptr; 3544 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3545 ScaledReg = nullptr; 3546 3547 // If folding this instruction (and it's subexprs) didn't extend any live 3548 // ranges, we're ok with it. 3549 if (!BaseReg && !ScaledReg) 3550 return true; 3551 3552 // If all uses of this instruction are ultimately load/store/inlineasm's, 3553 // check to see if their addressing modes will include this instruction. If 3554 // so, we can fold it into all uses, so it doesn't matter if it has multiple 3555 // uses. 3556 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 3557 SmallPtrSet<Instruction*, 16> ConsideredInsts; 3558 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM)) 3559 return false; // Has a non-memory, non-foldable use! 3560 3561 // Now that we know that all uses of this instruction are part of a chain of 3562 // computation involving only operations that could theoretically be folded 3563 // into a memory use, loop over each of these uses and see if they could 3564 // *actually* fold the instruction. 3565 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 3566 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 3567 Instruction *User = MemoryUses[i].first; 3568 unsigned OpNo = MemoryUses[i].second; 3569 3570 // Get the access type of this use. If the use isn't a pointer, we don't 3571 // know what it accesses. 3572 Value *Address = User->getOperand(OpNo); 3573 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 3574 if (!AddrTy) 3575 return false; 3576 Type *AddressAccessTy = AddrTy->getElementType(); 3577 unsigned AS = AddrTy->getAddressSpace(); 3578 3579 // Do a match against the root of this address, ignoring profitability. This 3580 // will tell us if the addressing mode for the memory operation will 3581 // *actually* cover the shared instruction. 3582 ExtAddrMode Result; 3583 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3584 TPT.getRestorationPoint(); 3585 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS, 3586 MemoryInst, Result, InsertedInsts, 3587 PromotedInsts, TPT); 3588 Matcher.IgnoreProfitability = true; 3589 bool Success = Matcher.matchAddr(Address, 0); 3590 (void)Success; assert(Success && "Couldn't select *anything*?"); 3591 3592 // The match was to check the profitability, the changes made are not 3593 // part of the original matcher. Therefore, they should be dropped 3594 // otherwise the original matcher will not present the right state. 3595 TPT.rollback(LastKnownGood); 3596 3597 // If the match didn't cover I, then it won't be shared by it. 3598 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), 3599 I) == MatchedAddrModeInsts.end()) 3600 return false; 3601 3602 MatchedAddrModeInsts.clear(); 3603 } 3604 3605 return true; 3606 } 3607 3608 } // end anonymous namespace 3609 3610 /// Return true if the specified values are defined in a 3611 /// different basic block than BB. 3612 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3613 if (Instruction *I = dyn_cast<Instruction>(V)) 3614 return I->getParent() != BB; 3615 return false; 3616 } 3617 3618 /// Load and Store Instructions often have addressing modes that can do 3619 /// significant amounts of computation. As such, instruction selection will try 3620 /// to get the load or store to do as much computation as possible for the 3621 /// program. The problem is that isel can only see within a single block. As 3622 /// such, we sink as much legal addressing mode work into the block as possible. 3623 /// 3624 /// This method is used to optimize both load/store and inline asms with memory 3625 /// operands. 3626 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3627 Type *AccessTy, unsigned AddrSpace) { 3628 Value *Repl = Addr; 3629 3630 // Try to collapse single-value PHI nodes. This is necessary to undo 3631 // unprofitable PRE transformations. 3632 SmallVector<Value*, 8> worklist; 3633 SmallPtrSet<Value*, 16> Visited; 3634 worklist.push_back(Addr); 3635 3636 // Use a worklist to iteratively look through PHI nodes, and ensure that 3637 // the addressing mode obtained from the non-PHI roots of the graph 3638 // are equivalent. 3639 Value *Consensus = nullptr; 3640 unsigned NumUsesConsensus = 0; 3641 bool IsNumUsesConsensusValid = false; 3642 SmallVector<Instruction*, 16> AddrModeInsts; 3643 ExtAddrMode AddrMode; 3644 TypePromotionTransaction TPT; 3645 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3646 TPT.getRestorationPoint(); 3647 while (!worklist.empty()) { 3648 Value *V = worklist.back(); 3649 worklist.pop_back(); 3650 3651 // Break use-def graph loops. 3652 if (!Visited.insert(V).second) { 3653 Consensus = nullptr; 3654 break; 3655 } 3656 3657 // For a PHI node, push all of its incoming values. 3658 if (PHINode *P = dyn_cast<PHINode>(V)) { 3659 for (Value *IncValue : P->incoming_values()) 3660 worklist.push_back(IncValue); 3661 continue; 3662 } 3663 3664 // For non-PHIs, determine the addressing mode being computed. 3665 SmallVector<Instruction*, 16> NewAddrModeInsts; 3666 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3667 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM, 3668 InsertedInsts, PromotedInsts, TPT); 3669 3670 // This check is broken into two cases with very similar code to avoid using 3671 // getNumUses() as much as possible. Some values have a lot of uses, so 3672 // calling getNumUses() unconditionally caused a significant compile-time 3673 // regression. 3674 if (!Consensus) { 3675 Consensus = V; 3676 AddrMode = NewAddrMode; 3677 AddrModeInsts = NewAddrModeInsts; 3678 continue; 3679 } else if (NewAddrMode == AddrMode) { 3680 if (!IsNumUsesConsensusValid) { 3681 NumUsesConsensus = Consensus->getNumUses(); 3682 IsNumUsesConsensusValid = true; 3683 } 3684 3685 // Ensure that the obtained addressing mode is equivalent to that obtained 3686 // for all other roots of the PHI traversal. Also, when choosing one 3687 // such root as representative, select the one with the most uses in order 3688 // to keep the cost modeling heuristics in AddressingModeMatcher 3689 // applicable. 3690 unsigned NumUses = V->getNumUses(); 3691 if (NumUses > NumUsesConsensus) { 3692 Consensus = V; 3693 NumUsesConsensus = NumUses; 3694 AddrModeInsts = NewAddrModeInsts; 3695 } 3696 continue; 3697 } 3698 3699 Consensus = nullptr; 3700 break; 3701 } 3702 3703 // If the addressing mode couldn't be determined, or if multiple different 3704 // ones were determined, bail out now. 3705 if (!Consensus) { 3706 TPT.rollback(LastKnownGood); 3707 return false; 3708 } 3709 TPT.commit(); 3710 3711 // Check to see if any of the instructions supersumed by this addr mode are 3712 // non-local to I's BB. 3713 bool AnyNonLocal = false; 3714 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 3715 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 3716 AnyNonLocal = true; 3717 break; 3718 } 3719 } 3720 3721 // If all the instructions matched are already in this BB, don't do anything. 3722 if (!AnyNonLocal) { 3723 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3724 return false; 3725 } 3726 3727 // Insert this computation right after this user. Since our caller is 3728 // scanning from the top of the BB to the bottom, reuse of the expr are 3729 // guaranteed to happen later. 3730 IRBuilder<> Builder(MemoryInst); 3731 3732 // Now that we determined the addressing expression we want to use and know 3733 // that we have to sink it into this block. Check to see if we have already 3734 // done this for some other load/store instr in this block. If so, reuse the 3735 // computation. 3736 Value *&SunkAddr = SunkAddrs[Addr]; 3737 if (SunkAddr) { 3738 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3739 << *MemoryInst << "\n"); 3740 if (SunkAddr->getType() != Addr->getType()) 3741 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3742 } else if (AddrSinkUsingGEPs || 3743 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3744 TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) 3745 ->useAA())) { 3746 // By default, we use the GEP-based method when AA is used later. This 3747 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3748 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3749 << *MemoryInst << "\n"); 3750 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3751 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3752 3753 // First, find the pointer. 3754 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3755 ResultPtr = AddrMode.BaseReg; 3756 AddrMode.BaseReg = nullptr; 3757 } 3758 3759 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3760 // We can't add more than one pointer together, nor can we scale a 3761 // pointer (both of which seem meaningless). 3762 if (ResultPtr || AddrMode.Scale != 1) 3763 return false; 3764 3765 ResultPtr = AddrMode.ScaledReg; 3766 AddrMode.Scale = 0; 3767 } 3768 3769 if (AddrMode.BaseGV) { 3770 if (ResultPtr) 3771 return false; 3772 3773 ResultPtr = AddrMode.BaseGV; 3774 } 3775 3776 // If the real base value actually came from an inttoptr, then the matcher 3777 // will look through it and provide only the integer value. In that case, 3778 // use it here. 3779 if (!ResultPtr && AddrMode.BaseReg) { 3780 ResultPtr = 3781 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3782 AddrMode.BaseReg = nullptr; 3783 } else if (!ResultPtr && AddrMode.Scale == 1) { 3784 ResultPtr = 3785 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3786 AddrMode.Scale = 0; 3787 } 3788 3789 if (!ResultPtr && 3790 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3791 SunkAddr = Constant::getNullValue(Addr->getType()); 3792 } else if (!ResultPtr) { 3793 return false; 3794 } else { 3795 Type *I8PtrTy = 3796 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3797 Type *I8Ty = Builder.getInt8Ty(); 3798 3799 // Start with the base register. Do this first so that subsequent address 3800 // matching finds it last, which will prevent it from trying to match it 3801 // as the scaled value in case it happens to be a mul. That would be 3802 // problematic if we've sunk a different mul for the scale, because then 3803 // we'd end up sinking both muls. 3804 if (AddrMode.BaseReg) { 3805 Value *V = AddrMode.BaseReg; 3806 if (V->getType() != IntPtrTy) 3807 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3808 3809 ResultIndex = V; 3810 } 3811 3812 // Add the scale value. 3813 if (AddrMode.Scale) { 3814 Value *V = AddrMode.ScaledReg; 3815 if (V->getType() == IntPtrTy) { 3816 // done. 3817 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3818 cast<IntegerType>(V->getType())->getBitWidth()) { 3819 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3820 } else { 3821 // It is only safe to sign extend the BaseReg if we know that the math 3822 // required to create it did not overflow before we extend it. Since 3823 // the original IR value was tossed in favor of a constant back when 3824 // the AddrMode was created we need to bail out gracefully if widths 3825 // do not match instead of extending it. 3826 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3827 if (I && (ResultIndex != AddrMode.BaseReg)) 3828 I->eraseFromParent(); 3829 return false; 3830 } 3831 3832 if (AddrMode.Scale != 1) 3833 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3834 "sunkaddr"); 3835 if (ResultIndex) 3836 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3837 else 3838 ResultIndex = V; 3839 } 3840 3841 // Add in the Base Offset if present. 3842 if (AddrMode.BaseOffs) { 3843 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3844 if (ResultIndex) { 3845 // We need to add this separately from the scale above to help with 3846 // SDAG consecutive load/store merging. 3847 if (ResultPtr->getType() != I8PtrTy) 3848 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3849 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3850 } 3851 3852 ResultIndex = V; 3853 } 3854 3855 if (!ResultIndex) { 3856 SunkAddr = ResultPtr; 3857 } else { 3858 if (ResultPtr->getType() != I8PtrTy) 3859 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3860 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3861 } 3862 3863 if (SunkAddr->getType() != Addr->getType()) 3864 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3865 } 3866 } else { 3867 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3868 << *MemoryInst << "\n"); 3869 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3870 Value *Result = nullptr; 3871 3872 // Start with the base register. Do this first so that subsequent address 3873 // matching finds it last, which will prevent it from trying to match it 3874 // as the scaled value in case it happens to be a mul. That would be 3875 // problematic if we've sunk a different mul for the scale, because then 3876 // we'd end up sinking both muls. 3877 if (AddrMode.BaseReg) { 3878 Value *V = AddrMode.BaseReg; 3879 if (V->getType()->isPointerTy()) 3880 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3881 if (V->getType() != IntPtrTy) 3882 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3883 Result = V; 3884 } 3885 3886 // Add the scale value. 3887 if (AddrMode.Scale) { 3888 Value *V = AddrMode.ScaledReg; 3889 if (V->getType() == IntPtrTy) { 3890 // done. 3891 } else if (V->getType()->isPointerTy()) { 3892 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3893 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3894 cast<IntegerType>(V->getType())->getBitWidth()) { 3895 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3896 } else { 3897 // It is only safe to sign extend the BaseReg if we know that the math 3898 // required to create it did not overflow before we extend it. Since 3899 // the original IR value was tossed in favor of a constant back when 3900 // the AddrMode was created we need to bail out gracefully if widths 3901 // do not match instead of extending it. 3902 Instruction *I = dyn_cast_or_null<Instruction>(Result); 3903 if (I && (Result != AddrMode.BaseReg)) 3904 I->eraseFromParent(); 3905 return false; 3906 } 3907 if (AddrMode.Scale != 1) 3908 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3909 "sunkaddr"); 3910 if (Result) 3911 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3912 else 3913 Result = V; 3914 } 3915 3916 // Add in the BaseGV if present. 3917 if (AddrMode.BaseGV) { 3918 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 3919 if (Result) 3920 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3921 else 3922 Result = V; 3923 } 3924 3925 // Add in the Base Offset if present. 3926 if (AddrMode.BaseOffs) { 3927 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3928 if (Result) 3929 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3930 else 3931 Result = V; 3932 } 3933 3934 if (!Result) 3935 SunkAddr = Constant::getNullValue(Addr->getType()); 3936 else 3937 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 3938 } 3939 3940 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 3941 3942 // If we have no uses, recursively delete the value and all dead instructions 3943 // using it. 3944 if (Repl->use_empty()) { 3945 // This can cause recursive deletion, which can invalidate our iterator. 3946 // Use a WeakVH to hold onto it in case this happens. 3947 WeakVH IterHandle(&*CurInstIterator); 3948 BasicBlock *BB = CurInstIterator->getParent(); 3949 3950 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 3951 3952 if (IterHandle != CurInstIterator.getNodePtrUnchecked()) { 3953 // If the iterator instruction was recursively deleted, start over at the 3954 // start of the block. 3955 CurInstIterator = BB->begin(); 3956 SunkAddrs.clear(); 3957 } 3958 } 3959 ++NumMemoryInsts; 3960 return true; 3961 } 3962 3963 /// If there are any memory operands, use OptimizeMemoryInst to sink their 3964 /// address computing into the block when possible / profitable. 3965 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 3966 bool MadeChange = false; 3967 3968 const TargetRegisterInfo *TRI = 3969 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 3970 TargetLowering::AsmOperandInfoVector TargetConstraints = 3971 TLI->ParseConstraints(*DL, TRI, CS); 3972 unsigned ArgNo = 0; 3973 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3974 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3975 3976 // Compute the constraint code and ConstraintType to use. 3977 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3978 3979 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 3980 OpInfo.isIndirect) { 3981 Value *OpVal = CS->getArgOperand(ArgNo++); 3982 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 3983 } else if (OpInfo.Type == InlineAsm::isInput) 3984 ArgNo++; 3985 } 3986 3987 return MadeChange; 3988 } 3989 3990 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 3991 /// sign extensions. 3992 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 3993 assert(!Inst->use_empty() && "Input must have at least one use"); 3994 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 3995 bool IsSExt = isa<SExtInst>(FirstUser); 3996 Type *ExtTy = FirstUser->getType(); 3997 for (const User *U : Inst->users()) { 3998 const Instruction *UI = cast<Instruction>(U); 3999 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4000 return false; 4001 Type *CurTy = UI->getType(); 4002 // Same input and output types: Same instruction after CSE. 4003 if (CurTy == ExtTy) 4004 continue; 4005 4006 // If IsSExt is true, we are in this situation: 4007 // a = Inst 4008 // b = sext ty1 a to ty2 4009 // c = sext ty1 a to ty3 4010 // Assuming ty2 is shorter than ty3, this could be turned into: 4011 // a = Inst 4012 // b = sext ty1 a to ty2 4013 // c = sext ty2 b to ty3 4014 // However, the last sext is not free. 4015 if (IsSExt) 4016 return false; 4017 4018 // This is a ZExt, maybe this is free to extend from one type to another. 4019 // In that case, we would not account for a different use. 4020 Type *NarrowTy; 4021 Type *LargeTy; 4022 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4023 CurTy->getScalarType()->getIntegerBitWidth()) { 4024 NarrowTy = CurTy; 4025 LargeTy = ExtTy; 4026 } else { 4027 NarrowTy = ExtTy; 4028 LargeTy = CurTy; 4029 } 4030 4031 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4032 return false; 4033 } 4034 // All uses are the same or can be derived from one another for free. 4035 return true; 4036 } 4037 4038 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 4039 /// load instruction. 4040 /// If an ext(load) can be formed, it is returned via \p LI for the load 4041 /// and \p Inst for the extension. 4042 /// Otherwise LI == nullptr and Inst == nullptr. 4043 /// When some promotion happened, \p TPT contains the proper state to 4044 /// revert them. 4045 /// 4046 /// \return true when promoting was necessary to expose the ext(load) 4047 /// opportunity, false otherwise. 4048 /// 4049 /// Example: 4050 /// \code 4051 /// %ld = load i32* %addr 4052 /// %add = add nuw i32 %ld, 4 4053 /// %zext = zext i32 %add to i64 4054 /// \endcode 4055 /// => 4056 /// \code 4057 /// %ld = load i32* %addr 4058 /// %zext = zext i32 %ld to i64 4059 /// %add = add nuw i64 %zext, 4 4060 /// \encode 4061 /// Thanks to the promotion, we can match zext(load i32*) to i64. 4062 bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT, 4063 LoadInst *&LI, Instruction *&Inst, 4064 const SmallVectorImpl<Instruction *> &Exts, 4065 unsigned CreatedInstsCost = 0) { 4066 // Iterate over all the extensions to see if one form an ext(load). 4067 for (auto I : Exts) { 4068 // Check if we directly have ext(load). 4069 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 4070 Inst = I; 4071 // No promotion happened here. 4072 return false; 4073 } 4074 // Check whether or not we want to do any promotion. 4075 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4076 continue; 4077 // Get the action to perform the promotion. 4078 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 4079 I, InsertedInsts, *TLI, PromotedInsts); 4080 // Check if we can promote. 4081 if (!TPH) 4082 continue; 4083 // Save the current state. 4084 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4085 TPT.getRestorationPoint(); 4086 SmallVector<Instruction *, 4> NewExts; 4087 unsigned NewCreatedInstsCost = 0; 4088 unsigned ExtCost = !TLI->isExtFree(I); 4089 // Promote. 4090 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4091 &NewExts, nullptr, *TLI); 4092 assert(PromotedVal && 4093 "TypePromotionHelper should have filtered out those cases"); 4094 4095 // We would be able to merge only one extension in a load. 4096 // Therefore, if we have more than 1 new extension we heuristically 4097 // cut this search path, because it means we degrade the code quality. 4098 // With exactly 2, the transformation is neutral, because we will merge 4099 // one extension but leave one. However, we optimistically keep going, 4100 // because the new extension may be removed too. 4101 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4102 TotalCreatedInstsCost -= ExtCost; 4103 if (!StressExtLdPromotion && 4104 (TotalCreatedInstsCost > 1 || 4105 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4106 // The promotion is not profitable, rollback to the previous state. 4107 TPT.rollback(LastKnownGood); 4108 continue; 4109 } 4110 // The promotion is profitable. 4111 // Check if it exposes an ext(load). 4112 (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); 4113 if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4114 // If we have created a new extension, i.e., now we have two 4115 // extensions. We must make sure one of them is merged with 4116 // the load, otherwise we may degrade the code quality. 4117 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 4118 // Promotion happened. 4119 return true; 4120 // If this does not help to expose an ext(load) then, rollback. 4121 TPT.rollback(LastKnownGood); 4122 } 4123 // None of the extension can form an ext(load). 4124 LI = nullptr; 4125 Inst = nullptr; 4126 return false; 4127 } 4128 4129 /// Move a zext or sext fed by a load into the same basic block as the load, 4130 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4131 /// extend into the load. 4132 /// \p I[in/out] the extension may be modified during the process if some 4133 /// promotions apply. 4134 /// 4135 bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) { 4136 // Try to promote a chain of computation if it allows to form 4137 // an extended load. 4138 TypePromotionTransaction TPT; 4139 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4140 TPT.getRestorationPoint(); 4141 SmallVector<Instruction *, 1> Exts; 4142 Exts.push_back(I); 4143 // Look for a load being extended. 4144 LoadInst *LI = nullptr; 4145 Instruction *OldExt = I; 4146 bool HasPromoted = extLdPromotion(TPT, LI, I, Exts); 4147 if (!LI || !I) { 4148 assert(!HasPromoted && !LI && "If we did not match any load instruction " 4149 "the code must remain the same"); 4150 I = OldExt; 4151 return false; 4152 } 4153 4154 // If they're already in the same block, there's nothing to do. 4155 // Make the cheap checks first if we did not promote. 4156 // If we promoted, we need to check if it is indeed profitable. 4157 if (!HasPromoted && LI->getParent() == I->getParent()) 4158 return false; 4159 4160 EVT VT = TLI->getValueType(*DL, I->getType()); 4161 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 4162 4163 // If the load has other users and the truncate is not free, this probably 4164 // isn't worthwhile. 4165 if (!LI->hasOneUse() && TLI && 4166 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 4167 !TLI->isTruncateFree(I->getType(), LI->getType())) { 4168 I = OldExt; 4169 TPT.rollback(LastKnownGood); 4170 return false; 4171 } 4172 4173 // Check whether the target supports casts folded into loads. 4174 unsigned LType; 4175 if (isa<ZExtInst>(I)) 4176 LType = ISD::ZEXTLOAD; 4177 else { 4178 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 4179 LType = ISD::SEXTLOAD; 4180 } 4181 if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) { 4182 I = OldExt; 4183 TPT.rollback(LastKnownGood); 4184 return false; 4185 } 4186 4187 // Move the extend into the same block as the load, so that SelectionDAG 4188 // can fold it. 4189 TPT.commit(); 4190 I->removeFromParent(); 4191 I->insertAfter(LI); 4192 ++NumExtsMoved; 4193 return true; 4194 } 4195 4196 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4197 BasicBlock *DefBB = I->getParent(); 4198 4199 // If the result of a {s|z}ext and its source are both live out, rewrite all 4200 // other uses of the source with result of extension. 4201 Value *Src = I->getOperand(0); 4202 if (Src->hasOneUse()) 4203 return false; 4204 4205 // Only do this xform if truncating is free. 4206 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4207 return false; 4208 4209 // Only safe to perform the optimization if the source is also defined in 4210 // this block. 4211 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4212 return false; 4213 4214 bool DefIsLiveOut = false; 4215 for (User *U : I->users()) { 4216 Instruction *UI = cast<Instruction>(U); 4217 4218 // Figure out which BB this ext is used in. 4219 BasicBlock *UserBB = UI->getParent(); 4220 if (UserBB == DefBB) continue; 4221 DefIsLiveOut = true; 4222 break; 4223 } 4224 if (!DefIsLiveOut) 4225 return false; 4226 4227 // Make sure none of the uses are PHI nodes. 4228 for (User *U : Src->users()) { 4229 Instruction *UI = cast<Instruction>(U); 4230 BasicBlock *UserBB = UI->getParent(); 4231 if (UserBB == DefBB) continue; 4232 // Be conservative. We don't want this xform to end up introducing 4233 // reloads just before load / store instructions. 4234 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 4235 return false; 4236 } 4237 4238 // InsertedTruncs - Only insert one trunc in each block once. 4239 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 4240 4241 bool MadeChange = false; 4242 for (Use &U : Src->uses()) { 4243 Instruction *User = cast<Instruction>(U.getUser()); 4244 4245 // Figure out which BB this ext is used in. 4246 BasicBlock *UserBB = User->getParent(); 4247 if (UserBB == DefBB) continue; 4248 4249 // Both src and def are live in this block. Rewrite the use. 4250 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 4251 4252 if (!InsertedTrunc) { 4253 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4254 assert(InsertPt != UserBB->end()); 4255 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 4256 InsertedInsts.insert(InsertedTrunc); 4257 } 4258 4259 // Replace a use of the {s|z}ext source with a use of the result. 4260 U = InsertedTrunc; 4261 ++NumExtUses; 4262 MadeChange = true; 4263 } 4264 4265 return MadeChange; 4266 } 4267 4268 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 4269 // just after the load if the target can fold this into one extload instruction, 4270 // with the hope of eliminating some of the other later "and" instructions using 4271 // the loaded value. "and"s that are made trivially redundant by the insertion 4272 // of the new "and" are removed by this function, while others (e.g. those whose 4273 // path from the load goes through a phi) are left for isel to potentially 4274 // remove. 4275 // 4276 // For example: 4277 // 4278 // b0: 4279 // x = load i32 4280 // ... 4281 // b1: 4282 // y = and x, 0xff 4283 // z = use y 4284 // 4285 // becomes: 4286 // 4287 // b0: 4288 // x = load i32 4289 // x' = and x, 0xff 4290 // ... 4291 // b1: 4292 // z = use x' 4293 // 4294 // whereas: 4295 // 4296 // b0: 4297 // x1 = load i32 4298 // ... 4299 // b1: 4300 // x2 = load i32 4301 // ... 4302 // b2: 4303 // x = phi x1, x2 4304 // y = and x, 0xff 4305 // 4306 // becomes (after a call to optimizeLoadExt for each load): 4307 // 4308 // b0: 4309 // x1 = load i32 4310 // x1' = and x1, 0xff 4311 // ... 4312 // b1: 4313 // x2 = load i32 4314 // x2' = and x2, 0xff 4315 // ... 4316 // b2: 4317 // x = phi x1', x2' 4318 // y = and x, 0xff 4319 // 4320 4321 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 4322 4323 if (!Load->isSimple() || 4324 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 4325 return false; 4326 4327 // Skip loads we've already transformed or have no reason to transform. 4328 if (Load->hasOneUse()) { 4329 User *LoadUser = *Load->user_begin(); 4330 if (cast<Instruction>(LoadUser)->getParent() == Load->getParent() && 4331 !dyn_cast<PHINode>(LoadUser)) 4332 return false; 4333 } 4334 4335 // Look at all uses of Load, looking through phis, to determine how many bits 4336 // of the loaded value are needed. 4337 SmallVector<Instruction *, 8> WorkList; 4338 SmallPtrSet<Instruction *, 16> Visited; 4339 SmallVector<Instruction *, 8> AndsToMaybeRemove; 4340 for (auto *U : Load->users()) 4341 WorkList.push_back(cast<Instruction>(U)); 4342 4343 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 4344 unsigned BitWidth = LoadResultVT.getSizeInBits(); 4345 APInt DemandBits(BitWidth, 0); 4346 APInt WidestAndBits(BitWidth, 0); 4347 4348 while (!WorkList.empty()) { 4349 Instruction *I = WorkList.back(); 4350 WorkList.pop_back(); 4351 4352 // Break use-def graph loops. 4353 if (!Visited.insert(I).second) 4354 continue; 4355 4356 // For a PHI node, push all of its users. 4357 if (auto *Phi = dyn_cast<PHINode>(I)) { 4358 for (auto *U : Phi->users()) 4359 WorkList.push_back(cast<Instruction>(U)); 4360 continue; 4361 } 4362 4363 switch (I->getOpcode()) { 4364 case llvm::Instruction::And: { 4365 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 4366 if (!AndC) 4367 return false; 4368 APInt AndBits = AndC->getValue(); 4369 DemandBits |= AndBits; 4370 // Keep track of the widest and mask we see. 4371 if (AndBits.ugt(WidestAndBits)) 4372 WidestAndBits = AndBits; 4373 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 4374 AndsToMaybeRemove.push_back(I); 4375 break; 4376 } 4377 4378 case llvm::Instruction::Shl: { 4379 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 4380 if (!ShlC) 4381 return false; 4382 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 4383 auto ShlDemandBits = APInt::getAllOnesValue(BitWidth).lshr(ShiftAmt); 4384 DemandBits |= ShlDemandBits; 4385 break; 4386 } 4387 4388 case llvm::Instruction::Trunc: { 4389 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 4390 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 4391 auto TruncBits = APInt::getAllOnesValue(TruncBitWidth).zext(BitWidth); 4392 DemandBits |= TruncBits; 4393 break; 4394 } 4395 4396 default: 4397 return false; 4398 } 4399 } 4400 4401 uint32_t ActiveBits = DemandBits.getActiveBits(); 4402 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 4403 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 4404 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 4405 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 4406 // followed by an AND. 4407 // TODO: Look into removing this restriction by fixing backends to either 4408 // return false for isLoadExtLegal for i1 or have them select this pattern to 4409 // a single instruction. 4410 // 4411 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 4412 // mask, since these are the only ands that will be removed by isel. 4413 if (ActiveBits <= 1 || !APIntOps::isMask(ActiveBits, DemandBits) || 4414 WidestAndBits != DemandBits) 4415 return false; 4416 4417 LLVMContext &Ctx = Load->getType()->getContext(); 4418 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 4419 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 4420 4421 // Reject cases that won't be matched as extloads. 4422 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 4423 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 4424 return false; 4425 4426 IRBuilder<> Builder(Load->getNextNode()); 4427 auto *NewAnd = dyn_cast<Instruction>( 4428 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 4429 4430 // Replace all uses of load with new and (except for the use of load in the 4431 // new and itself). 4432 Load->replaceAllUsesWith(NewAnd); 4433 NewAnd->setOperand(0, Load); 4434 4435 // Remove any and instructions that are now redundant. 4436 for (auto *And : AndsToMaybeRemove) 4437 // Check that the and mask is the same as the one we decided to put on the 4438 // new and. 4439 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 4440 And->replaceAllUsesWith(NewAnd); 4441 if (&*CurInstIterator == And) 4442 CurInstIterator = std::next(And->getIterator()); 4443 And->eraseFromParent(); 4444 ++NumAndUses; 4445 } 4446 4447 ++NumAndsAdded; 4448 return true; 4449 } 4450 4451 /// Check if V (an operand of a select instruction) is an expensive instruction 4452 /// that is only used once. 4453 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 4454 auto *I = dyn_cast<Instruction>(V); 4455 // If it's safe to speculatively execute, then it should not have side 4456 // effects; therefore, it's safe to sink and possibly *not* execute. 4457 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 4458 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 4459 } 4460 4461 /// Returns true if a SelectInst should be turned into an explicit branch. 4462 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 4463 SelectInst *SI) { 4464 // FIXME: This should use the same heuristics as IfConversion to determine 4465 // whether a select is better represented as a branch. This requires that 4466 // branch probability metadata is preserved for the select, which is not the 4467 // case currently. 4468 4469 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 4470 4471 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 4472 // comparison condition. If the compare has more than one use, there's 4473 // probably another cmov or setcc around, so it's not worth emitting a branch. 4474 if (!Cmp || !Cmp->hasOneUse()) 4475 return false; 4476 4477 Value *CmpOp0 = Cmp->getOperand(0); 4478 Value *CmpOp1 = Cmp->getOperand(1); 4479 4480 // Emit "cmov on compare with a memory operand" as a branch to avoid stalls 4481 // on a load from memory. But if the load is used more than once, do not 4482 // change the select to a branch because the load is probably needed 4483 // regardless of whether the branch is taken or not. 4484 if ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || 4485 (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())) 4486 return true; 4487 4488 // If either operand of the select is expensive and only needed on one side 4489 // of the select, we should form a branch. 4490 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 4491 sinkSelectOperand(TTI, SI->getFalseValue())) 4492 return true; 4493 4494 return false; 4495 } 4496 4497 4498 /// If we have a SelectInst that will likely profit from branch prediction, 4499 /// turn it into a branch. 4500 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 4501 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 4502 4503 // Can we convert the 'select' to CF ? 4504 if (DisableSelectToBranch || OptSize || !TLI || VectorCond) 4505 return false; 4506 4507 TargetLowering::SelectSupportKind SelectKind; 4508 if (VectorCond) 4509 SelectKind = TargetLowering::VectorMaskSelect; 4510 else if (SI->getType()->isVectorTy()) 4511 SelectKind = TargetLowering::ScalarCondVectorVal; 4512 else 4513 SelectKind = TargetLowering::ScalarValSelect; 4514 4515 // Do we have efficient codegen support for this kind of 'selects' ? 4516 if (TLI->isSelectSupported(SelectKind)) { 4517 // We have efficient codegen support for the select instruction. 4518 // Check if it is profitable to keep this 'select'. 4519 if (!TLI->isPredictableSelectExpensive() || 4520 !isFormingBranchFromSelectProfitable(TTI, SI)) 4521 return false; 4522 } 4523 4524 ModifiedDT = true; 4525 4526 // Transform a sequence like this: 4527 // start: 4528 // %cmp = cmp uge i32 %a, %b 4529 // %sel = select i1 %cmp, i32 %c, i32 %d 4530 // 4531 // Into: 4532 // start: 4533 // %cmp = cmp uge i32 %a, %b 4534 // br i1 %cmp, label %select.true, label %select.false 4535 // select.true: 4536 // br label %select.end 4537 // select.false: 4538 // br label %select.end 4539 // select.end: 4540 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 4541 // 4542 // In addition, we may sink instructions that produce %c or %d from 4543 // the entry block into the destination(s) of the new branch. 4544 // If the true or false blocks do not contain a sunken instruction, that 4545 // block and its branch may be optimized away. In that case, one side of the 4546 // first branch will point directly to select.end, and the corresponding PHI 4547 // predecessor block will be the start block. 4548 4549 // First, we split the block containing the select into 2 blocks. 4550 BasicBlock *StartBlock = SI->getParent(); 4551 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); 4552 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 4553 4554 // Delete the unconditional branch that was just created by the split. 4555 StartBlock->getTerminator()->eraseFromParent(); 4556 4557 // These are the new basic blocks for the conditional branch. 4558 // At least one will become an actual new basic block. 4559 BasicBlock *TrueBlock = nullptr; 4560 BasicBlock *FalseBlock = nullptr; 4561 4562 // Sink expensive instructions into the conditional blocks to avoid executing 4563 // them speculatively. 4564 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 4565 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 4566 EndBlock->getParent(), EndBlock); 4567 auto *TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 4568 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 4569 TrueInst->moveBefore(TrueBranch); 4570 } 4571 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 4572 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 4573 EndBlock->getParent(), EndBlock); 4574 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 4575 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 4576 FalseInst->moveBefore(FalseBranch); 4577 } 4578 4579 // If there was nothing to sink, then arbitrarily choose the 'false' side 4580 // for a new input value to the PHI. 4581 if (TrueBlock == FalseBlock) { 4582 assert(TrueBlock == nullptr && 4583 "Unexpected basic block transform while optimizing select"); 4584 4585 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 4586 EndBlock->getParent(), EndBlock); 4587 BranchInst::Create(EndBlock, FalseBlock); 4588 } 4589 4590 // Insert the real conditional branch based on the original condition. 4591 // If we did not create a new block for one of the 'true' or 'false' paths 4592 // of the condition, it means that side of the branch goes to the end block 4593 // directly and the path originates from the start block from the point of 4594 // view of the new PHI. 4595 if (TrueBlock == nullptr) { 4596 BranchInst::Create(EndBlock, FalseBlock, SI->getCondition(), SI); 4597 TrueBlock = StartBlock; 4598 } else if (FalseBlock == nullptr) { 4599 BranchInst::Create(TrueBlock, EndBlock, SI->getCondition(), SI); 4600 FalseBlock = StartBlock; 4601 } else { 4602 BranchInst::Create(TrueBlock, FalseBlock, SI->getCondition(), SI); 4603 } 4604 4605 // The select itself is replaced with a PHI Node. 4606 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 4607 PN->takeName(SI); 4608 PN->addIncoming(SI->getTrueValue(), TrueBlock); 4609 PN->addIncoming(SI->getFalseValue(), FalseBlock); 4610 4611 SI->replaceAllUsesWith(PN); 4612 SI->eraseFromParent(); 4613 4614 // Instruct OptimizeBlock to skip to the next block. 4615 CurInstIterator = StartBlock->end(); 4616 ++NumSelectsExpanded; 4617 return true; 4618 } 4619 4620 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 4621 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 4622 int SplatElem = -1; 4623 for (unsigned i = 0; i < Mask.size(); ++i) { 4624 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 4625 return false; 4626 SplatElem = Mask[i]; 4627 } 4628 4629 return true; 4630 } 4631 4632 /// Some targets have expensive vector shifts if the lanes aren't all the same 4633 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 4634 /// it's often worth sinking a shufflevector splat down to its use so that 4635 /// codegen can spot all lanes are identical. 4636 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 4637 BasicBlock *DefBB = SVI->getParent(); 4638 4639 // Only do this xform if variable vector shifts are particularly expensive. 4640 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 4641 return false; 4642 4643 // We only expect better codegen by sinking a shuffle if we can recognise a 4644 // constant splat. 4645 if (!isBroadcastShuffle(SVI)) 4646 return false; 4647 4648 // InsertedShuffles - Only insert a shuffle in each block once. 4649 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 4650 4651 bool MadeChange = false; 4652 for (User *U : SVI->users()) { 4653 Instruction *UI = cast<Instruction>(U); 4654 4655 // Figure out which BB this ext is used in. 4656 BasicBlock *UserBB = UI->getParent(); 4657 if (UserBB == DefBB) continue; 4658 4659 // For now only apply this when the splat is used by a shift instruction. 4660 if (!UI->isShift()) continue; 4661 4662 // Everything checks out, sink the shuffle if the user's block doesn't 4663 // already have a copy. 4664 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 4665 4666 if (!InsertedShuffle) { 4667 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4668 assert(InsertPt != UserBB->end()); 4669 InsertedShuffle = 4670 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4671 SVI->getOperand(2), "", &*InsertPt); 4672 } 4673 4674 UI->replaceUsesOfWith(SVI, InsertedShuffle); 4675 MadeChange = true; 4676 } 4677 4678 // If we removed all uses, nuke the shuffle. 4679 if (SVI->use_empty()) { 4680 SVI->eraseFromParent(); 4681 MadeChange = true; 4682 } 4683 4684 return MadeChange; 4685 } 4686 4687 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 4688 if (!TLI || !DL) 4689 return false; 4690 4691 Value *Cond = SI->getCondition(); 4692 Type *OldType = Cond->getType(); 4693 LLVMContext &Context = Cond->getContext(); 4694 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 4695 unsigned RegWidth = RegType.getSizeInBits(); 4696 4697 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 4698 return false; 4699 4700 // If the register width is greater than the type width, expand the condition 4701 // of the switch instruction and each case constant to the width of the 4702 // register. By widening the type of the switch condition, subsequent 4703 // comparisons (for case comparisons) will not need to be extended to the 4704 // preferred register width, so we will potentially eliminate N-1 extends, 4705 // where N is the number of cases in the switch. 4706 auto *NewType = Type::getIntNTy(Context, RegWidth); 4707 4708 // Zero-extend the switch condition and case constants unless the switch 4709 // condition is a function argument that is already being sign-extended. 4710 // In that case, we can avoid an unnecessary mask/extension by sign-extending 4711 // everything instead. 4712 Instruction::CastOps ExtType = Instruction::ZExt; 4713 if (auto *Arg = dyn_cast<Argument>(Cond)) 4714 if (Arg->hasSExtAttr()) 4715 ExtType = Instruction::SExt; 4716 4717 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 4718 ExtInst->insertBefore(SI); 4719 SI->setCondition(ExtInst); 4720 for (SwitchInst::CaseIt Case : SI->cases()) { 4721 APInt NarrowConst = Case.getCaseValue()->getValue(); 4722 APInt WideConst = (ExtType == Instruction::ZExt) ? 4723 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 4724 Case.setValue(ConstantInt::get(Context, WideConst)); 4725 } 4726 4727 return true; 4728 } 4729 4730 namespace { 4731 /// \brief Helper class to promote a scalar operation to a vector one. 4732 /// This class is used to move downward extractelement transition. 4733 /// E.g., 4734 /// a = vector_op <2 x i32> 4735 /// b = extractelement <2 x i32> a, i32 0 4736 /// c = scalar_op b 4737 /// store c 4738 /// 4739 /// => 4740 /// a = vector_op <2 x i32> 4741 /// c = vector_op a (equivalent to scalar_op on the related lane) 4742 /// * d = extractelement <2 x i32> c, i32 0 4743 /// * store d 4744 /// Assuming both extractelement and store can be combine, we get rid of the 4745 /// transition. 4746 class VectorPromoteHelper { 4747 /// DataLayout associated with the current module. 4748 const DataLayout &DL; 4749 4750 /// Used to perform some checks on the legality of vector operations. 4751 const TargetLowering &TLI; 4752 4753 /// Used to estimated the cost of the promoted chain. 4754 const TargetTransformInfo &TTI; 4755 4756 /// The transition being moved downwards. 4757 Instruction *Transition; 4758 /// The sequence of instructions to be promoted. 4759 SmallVector<Instruction *, 4> InstsToBePromoted; 4760 /// Cost of combining a store and an extract. 4761 unsigned StoreExtractCombineCost; 4762 /// Instruction that will be combined with the transition. 4763 Instruction *CombineInst; 4764 4765 /// \brief The instruction that represents the current end of the transition. 4766 /// Since we are faking the promotion until we reach the end of the chain 4767 /// of computation, we need a way to get the current end of the transition. 4768 Instruction *getEndOfTransition() const { 4769 if (InstsToBePromoted.empty()) 4770 return Transition; 4771 return InstsToBePromoted.back(); 4772 } 4773 4774 /// \brief Return the index of the original value in the transition. 4775 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 4776 /// c, is at index 0. 4777 unsigned getTransitionOriginalValueIdx() const { 4778 assert(isa<ExtractElementInst>(Transition) && 4779 "Other kind of transitions are not supported yet"); 4780 return 0; 4781 } 4782 4783 /// \brief Return the index of the index in the transition. 4784 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 4785 /// is at index 1. 4786 unsigned getTransitionIdx() const { 4787 assert(isa<ExtractElementInst>(Transition) && 4788 "Other kind of transitions are not supported yet"); 4789 return 1; 4790 } 4791 4792 /// \brief Get the type of the transition. 4793 /// This is the type of the original value. 4794 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 4795 /// transition is <2 x i32>. 4796 Type *getTransitionType() const { 4797 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 4798 } 4799 4800 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 4801 /// I.e., we have the following sequence: 4802 /// Def = Transition <ty1> a to <ty2> 4803 /// b = ToBePromoted <ty2> Def, ... 4804 /// => 4805 /// b = ToBePromoted <ty1> a, ... 4806 /// Def = Transition <ty1> ToBePromoted to <ty2> 4807 void promoteImpl(Instruction *ToBePromoted); 4808 4809 /// \brief Check whether or not it is profitable to promote all the 4810 /// instructions enqueued to be promoted. 4811 bool isProfitableToPromote() { 4812 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 4813 unsigned Index = isa<ConstantInt>(ValIdx) 4814 ? cast<ConstantInt>(ValIdx)->getZExtValue() 4815 : -1; 4816 Type *PromotedType = getTransitionType(); 4817 4818 StoreInst *ST = cast<StoreInst>(CombineInst); 4819 unsigned AS = ST->getPointerAddressSpace(); 4820 unsigned Align = ST->getAlignment(); 4821 // Check if this store is supported. 4822 if (!TLI.allowsMisalignedMemoryAccesses( 4823 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 4824 Align)) { 4825 // If this is not supported, there is no way we can combine 4826 // the extract with the store. 4827 return false; 4828 } 4829 4830 // The scalar chain of computation has to pay for the transition 4831 // scalar to vector. 4832 // The vector chain has to account for the combining cost. 4833 uint64_t ScalarCost = 4834 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 4835 uint64_t VectorCost = StoreExtractCombineCost; 4836 for (const auto &Inst : InstsToBePromoted) { 4837 // Compute the cost. 4838 // By construction, all instructions being promoted are arithmetic ones. 4839 // Moreover, one argument is a constant that can be viewed as a splat 4840 // constant. 4841 Value *Arg0 = Inst->getOperand(0); 4842 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 4843 isa<ConstantFP>(Arg0); 4844 TargetTransformInfo::OperandValueKind Arg0OVK = 4845 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4846 : TargetTransformInfo::OK_AnyValue; 4847 TargetTransformInfo::OperandValueKind Arg1OVK = 4848 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4849 : TargetTransformInfo::OK_AnyValue; 4850 ScalarCost += TTI.getArithmeticInstrCost( 4851 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 4852 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 4853 Arg0OVK, Arg1OVK); 4854 } 4855 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 4856 << ScalarCost << "\nVector: " << VectorCost << '\n'); 4857 return ScalarCost > VectorCost; 4858 } 4859 4860 /// \brief Generate a constant vector with \p Val with the same 4861 /// number of elements as the transition. 4862 /// \p UseSplat defines whether or not \p Val should be replicated 4863 /// across the whole vector. 4864 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 4865 /// otherwise we generate a vector with as many undef as possible: 4866 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 4867 /// used at the index of the extract. 4868 Value *getConstantVector(Constant *Val, bool UseSplat) const { 4869 unsigned ExtractIdx = UINT_MAX; 4870 if (!UseSplat) { 4871 // If we cannot determine where the constant must be, we have to 4872 // use a splat constant. 4873 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 4874 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 4875 ExtractIdx = CstVal->getSExtValue(); 4876 else 4877 UseSplat = true; 4878 } 4879 4880 unsigned End = getTransitionType()->getVectorNumElements(); 4881 if (UseSplat) 4882 return ConstantVector::getSplat(End, Val); 4883 4884 SmallVector<Constant *, 4> ConstVec; 4885 UndefValue *UndefVal = UndefValue::get(Val->getType()); 4886 for (unsigned Idx = 0; Idx != End; ++Idx) { 4887 if (Idx == ExtractIdx) 4888 ConstVec.push_back(Val); 4889 else 4890 ConstVec.push_back(UndefVal); 4891 } 4892 return ConstantVector::get(ConstVec); 4893 } 4894 4895 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 4896 /// in \p Use can trigger undefined behavior. 4897 static bool canCauseUndefinedBehavior(const Instruction *Use, 4898 unsigned OperandIdx) { 4899 // This is not safe to introduce undef when the operand is on 4900 // the right hand side of a division-like instruction. 4901 if (OperandIdx != 1) 4902 return false; 4903 switch (Use->getOpcode()) { 4904 default: 4905 return false; 4906 case Instruction::SDiv: 4907 case Instruction::UDiv: 4908 case Instruction::SRem: 4909 case Instruction::URem: 4910 return true; 4911 case Instruction::FDiv: 4912 case Instruction::FRem: 4913 return !Use->hasNoNaNs(); 4914 } 4915 llvm_unreachable(nullptr); 4916 } 4917 4918 public: 4919 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 4920 const TargetTransformInfo &TTI, Instruction *Transition, 4921 unsigned CombineCost) 4922 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 4923 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 4924 assert(Transition && "Do not know how to promote null"); 4925 } 4926 4927 /// \brief Check if we can promote \p ToBePromoted to \p Type. 4928 bool canPromote(const Instruction *ToBePromoted) const { 4929 // We could support CastInst too. 4930 return isa<BinaryOperator>(ToBePromoted); 4931 } 4932 4933 /// \brief Check if it is profitable to promote \p ToBePromoted 4934 /// by moving downward the transition through. 4935 bool shouldPromote(const Instruction *ToBePromoted) const { 4936 // Promote only if all the operands can be statically expanded. 4937 // Indeed, we do not want to introduce any new kind of transitions. 4938 for (const Use &U : ToBePromoted->operands()) { 4939 const Value *Val = U.get(); 4940 if (Val == getEndOfTransition()) { 4941 // If the use is a division and the transition is on the rhs, 4942 // we cannot promote the operation, otherwise we may create a 4943 // division by zero. 4944 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 4945 return false; 4946 continue; 4947 } 4948 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 4949 !isa<ConstantFP>(Val)) 4950 return false; 4951 } 4952 // Check that the resulting operation is legal. 4953 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 4954 if (!ISDOpcode) 4955 return false; 4956 return StressStoreExtract || 4957 TLI.isOperationLegalOrCustom( 4958 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 4959 } 4960 4961 /// \brief Check whether or not \p Use can be combined 4962 /// with the transition. 4963 /// I.e., is it possible to do Use(Transition) => AnotherUse? 4964 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 4965 4966 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 4967 void enqueueForPromotion(Instruction *ToBePromoted) { 4968 InstsToBePromoted.push_back(ToBePromoted); 4969 } 4970 4971 /// \brief Set the instruction that will be combined with the transition. 4972 void recordCombineInstruction(Instruction *ToBeCombined) { 4973 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 4974 CombineInst = ToBeCombined; 4975 } 4976 4977 /// \brief Promote all the instructions enqueued for promotion if it is 4978 /// is profitable. 4979 /// \return True if the promotion happened, false otherwise. 4980 bool promote() { 4981 // Check if there is something to promote. 4982 // Right now, if we do not have anything to combine with, 4983 // we assume the promotion is not profitable. 4984 if (InstsToBePromoted.empty() || !CombineInst) 4985 return false; 4986 4987 // Check cost. 4988 if (!StressStoreExtract && !isProfitableToPromote()) 4989 return false; 4990 4991 // Promote. 4992 for (auto &ToBePromoted : InstsToBePromoted) 4993 promoteImpl(ToBePromoted); 4994 InstsToBePromoted.clear(); 4995 return true; 4996 } 4997 }; 4998 } // End of anonymous namespace. 4999 5000 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5001 // At this point, we know that all the operands of ToBePromoted but Def 5002 // can be statically promoted. 5003 // For Def, we need to use its parameter in ToBePromoted: 5004 // b = ToBePromoted ty1 a 5005 // Def = Transition ty1 b to ty2 5006 // Move the transition down. 5007 // 1. Replace all uses of the promoted operation by the transition. 5008 // = ... b => = ... Def. 5009 assert(ToBePromoted->getType() == Transition->getType() && 5010 "The type of the result of the transition does not match " 5011 "the final type"); 5012 ToBePromoted->replaceAllUsesWith(Transition); 5013 // 2. Update the type of the uses. 5014 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5015 Type *TransitionTy = getTransitionType(); 5016 ToBePromoted->mutateType(TransitionTy); 5017 // 3. Update all the operands of the promoted operation with promoted 5018 // operands. 5019 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5020 for (Use &U : ToBePromoted->operands()) { 5021 Value *Val = U.get(); 5022 Value *NewVal = nullptr; 5023 if (Val == Transition) 5024 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5025 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5026 isa<ConstantFP>(Val)) { 5027 // Use a splat constant if it is not safe to use undef. 5028 NewVal = getConstantVector( 5029 cast<Constant>(Val), 5030 isa<UndefValue>(Val) || 5031 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5032 } else 5033 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5034 "this?"); 5035 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5036 } 5037 Transition->removeFromParent(); 5038 Transition->insertAfter(ToBePromoted); 5039 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5040 } 5041 5042 /// Some targets can do store(extractelement) with one instruction. 5043 /// Try to push the extractelement towards the stores when the target 5044 /// has this feature and this is profitable. 5045 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5046 unsigned CombineCost = UINT_MAX; 5047 if (DisableStoreExtract || !TLI || 5048 (!StressStoreExtract && 5049 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5050 Inst->getOperand(1), CombineCost))) 5051 return false; 5052 5053 // At this point we know that Inst is a vector to scalar transition. 5054 // Try to move it down the def-use chain, until: 5055 // - We can combine the transition with its single use 5056 // => we got rid of the transition. 5057 // - We escape the current basic block 5058 // => we would need to check that we are moving it at a cheaper place and 5059 // we do not do that for now. 5060 BasicBlock *Parent = Inst->getParent(); 5061 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5062 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5063 // If the transition has more than one use, assume this is not going to be 5064 // beneficial. 5065 while (Inst->hasOneUse()) { 5066 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5067 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5068 5069 if (ToBePromoted->getParent() != Parent) { 5070 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5071 << ToBePromoted->getParent()->getName() 5072 << ") than the transition (" << Parent->getName() << ").\n"); 5073 return false; 5074 } 5075 5076 if (VPH.canCombine(ToBePromoted)) { 5077 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5078 << "will be combined with: " << *ToBePromoted << '\n'); 5079 VPH.recordCombineInstruction(ToBePromoted); 5080 bool Changed = VPH.promote(); 5081 NumStoreExtractExposed += Changed; 5082 return Changed; 5083 } 5084 5085 DEBUG(dbgs() << "Try promoting.\n"); 5086 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5087 return false; 5088 5089 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5090 5091 VPH.enqueueForPromotion(ToBePromoted); 5092 Inst = ToBePromoted; 5093 } 5094 return false; 5095 } 5096 5097 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { 5098 // Bail out if we inserted the instruction to prevent optimizations from 5099 // stepping on each other's toes. 5100 if (InsertedInsts.count(I)) 5101 return false; 5102 5103 if (PHINode *P = dyn_cast<PHINode>(I)) { 5104 // It is possible for very late stage optimizations (such as SimplifyCFG) 5105 // to introduce PHI nodes too late to be cleaned up. If we detect such a 5106 // trivial PHI, go ahead and zap it here. 5107 if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) { 5108 P->replaceAllUsesWith(V); 5109 P->eraseFromParent(); 5110 ++NumPHIsElim; 5111 return true; 5112 } 5113 return false; 5114 } 5115 5116 if (CastInst *CI = dyn_cast<CastInst>(I)) { 5117 // If the source of the cast is a constant, then this should have 5118 // already been constant folded. The only reason NOT to constant fold 5119 // it is if something (e.g. LSR) was careful to place the constant 5120 // evaluation in a block other than then one that uses it (e.g. to hoist 5121 // the address of globals out of a loop). If this is the case, we don't 5122 // want to forward-subst the cast. 5123 if (isa<Constant>(CI->getOperand(0))) 5124 return false; 5125 5126 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 5127 return true; 5128 5129 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 5130 /// Sink a zext or sext into its user blocks if the target type doesn't 5131 /// fit in one register 5132 if (TLI && 5133 TLI->getTypeAction(CI->getContext(), 5134 TLI->getValueType(*DL, CI->getType())) == 5135 TargetLowering::TypeExpandInteger) { 5136 return SinkCast(CI); 5137 } else { 5138 bool MadeChange = moveExtToFormExtLoad(I); 5139 return MadeChange | optimizeExtUses(I); 5140 } 5141 } 5142 return false; 5143 } 5144 5145 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5146 if (!TLI || !TLI->hasMultipleConditionRegisters()) 5147 return OptimizeCmpExpression(CI); 5148 5149 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5150 stripInvariantGroupMetadata(*LI); 5151 if (TLI) { 5152 bool Modified = optimizeLoadExt(LI); 5153 unsigned AS = LI->getPointerAddressSpace(); 5154 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 5155 return Modified; 5156 } 5157 return false; 5158 } 5159 5160 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 5161 stripInvariantGroupMetadata(*SI); 5162 if (TLI) { 5163 unsigned AS = SI->getPointerAddressSpace(); 5164 return optimizeMemoryInst(I, SI->getOperand(1), 5165 SI->getOperand(0)->getType(), AS); 5166 } 5167 return false; 5168 } 5169 5170 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 5171 5172 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 5173 BinOp->getOpcode() == Instruction::LShr)) { 5174 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 5175 if (TLI && CI && TLI->hasExtractBitsInsn()) 5176 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 5177 5178 return false; 5179 } 5180 5181 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 5182 if (GEPI->hasAllZeroIndices()) { 5183 /// The GEP operand must be a pointer, so must its result -> BitCast 5184 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 5185 GEPI->getName(), GEPI); 5186 GEPI->replaceAllUsesWith(NC); 5187 GEPI->eraseFromParent(); 5188 ++NumGEPsElim; 5189 optimizeInst(NC, ModifiedDT); 5190 return true; 5191 } 5192 return false; 5193 } 5194 5195 if (CallInst *CI = dyn_cast<CallInst>(I)) 5196 return optimizeCallInst(CI, ModifiedDT); 5197 5198 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 5199 return optimizeSelectInst(SI); 5200 5201 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 5202 return optimizeShuffleVectorInst(SVI); 5203 5204 if (auto *Switch = dyn_cast<SwitchInst>(I)) 5205 return optimizeSwitchInst(Switch); 5206 5207 if (isa<ExtractElementInst>(I)) 5208 return optimizeExtractElementInst(I); 5209 5210 return false; 5211 } 5212 5213 // In this pass we look for GEP and cast instructions that are used 5214 // across basic blocks and rewrite them to improve basic-block-at-a-time 5215 // selection. 5216 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 5217 SunkAddrs.clear(); 5218 bool MadeChange = false; 5219 5220 CurInstIterator = BB.begin(); 5221 while (CurInstIterator != BB.end()) { 5222 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 5223 if (ModifiedDT) 5224 return true; 5225 } 5226 MadeChange |= dupRetToEnableTailCallOpts(&BB); 5227 5228 return MadeChange; 5229 } 5230 5231 // llvm.dbg.value is far away from the value then iSel may not be able 5232 // handle it properly. iSel will drop llvm.dbg.value if it can not 5233 // find a node corresponding to the value. 5234 bool CodeGenPrepare::placeDbgValues(Function &F) { 5235 bool MadeChange = false; 5236 for (BasicBlock &BB : F) { 5237 Instruction *PrevNonDbgInst = nullptr; 5238 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 5239 Instruction *Insn = &*BI++; 5240 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 5241 // Leave dbg.values that refer to an alloca alone. These 5242 // instrinsics describe the address of a variable (= the alloca) 5243 // being taken. They should not be moved next to the alloca 5244 // (and to the beginning of the scope), but rather stay close to 5245 // where said address is used. 5246 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 5247 PrevNonDbgInst = Insn; 5248 continue; 5249 } 5250 5251 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 5252 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 5253 // If VI is a phi in a block with an EHPad terminator, we can't insert 5254 // after it. 5255 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 5256 continue; 5257 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 5258 DVI->removeFromParent(); 5259 if (isa<PHINode>(VI)) 5260 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 5261 else 5262 DVI->insertAfter(VI); 5263 MadeChange = true; 5264 ++NumDbgValueMoved; 5265 } 5266 } 5267 } 5268 return MadeChange; 5269 } 5270 5271 // If there is a sequence that branches based on comparing a single bit 5272 // against zero that can be combined into a single instruction, and the 5273 // target supports folding these into a single instruction, sink the 5274 // mask and compare into the branch uses. Do this before OptimizeBlock -> 5275 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 5276 // searched for. 5277 bool CodeGenPrepare::sinkAndCmp(Function &F) { 5278 if (!EnableAndCmpSinking) 5279 return false; 5280 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 5281 return false; 5282 bool MadeChange = false; 5283 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 5284 BasicBlock *BB = &*I++; 5285 5286 // Does this BB end with the following? 5287 // %andVal = and %val, #single-bit-set 5288 // %icmpVal = icmp %andResult, 0 5289 // br i1 %cmpVal label %dest1, label %dest2" 5290 BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator()); 5291 if (!Brcc || !Brcc->isConditional()) 5292 continue; 5293 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 5294 if (!Cmp || Cmp->getParent() != BB) 5295 continue; 5296 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 5297 if (!Zero || !Zero->isZero()) 5298 continue; 5299 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 5300 if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) 5301 continue; 5302 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 5303 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 5304 continue; 5305 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); 5306 5307 // Push the "and; icmp" for any users that are conditional branches. 5308 // Since there can only be one branch use per BB, we don't need to keep 5309 // track of which BBs we insert into. 5310 for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); 5311 UI != E; ) { 5312 Use &TheUse = *UI; 5313 // Find brcc use. 5314 BranchInst *BrccUser = dyn_cast<BranchInst>(*UI); 5315 ++UI; 5316 if (!BrccUser || !BrccUser->isConditional()) 5317 continue; 5318 BasicBlock *UserBB = BrccUser->getParent(); 5319 if (UserBB == BB) continue; 5320 DEBUG(dbgs() << "found Brcc use\n"); 5321 5322 // Sink the "and; icmp" to use. 5323 MadeChange = true; 5324 BinaryOperator *NewAnd = 5325 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 5326 BrccUser); 5327 CmpInst *NewCmp = 5328 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 5329 "", BrccUser); 5330 TheUse = NewCmp; 5331 ++NumAndCmpsMoved; 5332 DEBUG(BrccUser->getParent()->dump()); 5333 } 5334 } 5335 return MadeChange; 5336 } 5337 5338 /// \brief Retrieve the probabilities of a conditional branch. Returns true on 5339 /// success, or returns false if no or invalid metadata was found. 5340 static bool extractBranchMetadata(BranchInst *BI, 5341 uint64_t &ProbTrue, uint64_t &ProbFalse) { 5342 assert(BI->isConditional() && 5343 "Looking for probabilities on unconditional branch?"); 5344 auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 5345 if (!ProfileData || ProfileData->getNumOperands() != 3) 5346 return false; 5347 5348 const auto *CITrue = 5349 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 5350 const auto *CIFalse = 5351 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 5352 if (!CITrue || !CIFalse) 5353 return false; 5354 5355 ProbTrue = CITrue->getValue().getZExtValue(); 5356 ProbFalse = CIFalse->getValue().getZExtValue(); 5357 5358 return true; 5359 } 5360 5361 /// \brief Scale down both weights to fit into uint32_t. 5362 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 5363 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 5364 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 5365 NewTrue = NewTrue / Scale; 5366 NewFalse = NewFalse / Scale; 5367 } 5368 5369 /// \brief Some targets prefer to split a conditional branch like: 5370 /// \code 5371 /// %0 = icmp ne i32 %a, 0 5372 /// %1 = icmp ne i32 %b, 0 5373 /// %or.cond = or i1 %0, %1 5374 /// br i1 %or.cond, label %TrueBB, label %FalseBB 5375 /// \endcode 5376 /// into multiple branch instructions like: 5377 /// \code 5378 /// bb1: 5379 /// %0 = icmp ne i32 %a, 0 5380 /// br i1 %0, label %TrueBB, label %bb2 5381 /// bb2: 5382 /// %1 = icmp ne i32 %b, 0 5383 /// br i1 %1, label %TrueBB, label %FalseBB 5384 /// \endcode 5385 /// This usually allows instruction selection to do even further optimizations 5386 /// and combine the compare with the branch instruction. Currently this is 5387 /// applied for targets which have "cheap" jump instructions. 5388 /// 5389 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 5390 /// 5391 bool CodeGenPrepare::splitBranchCondition(Function &F) { 5392 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 5393 return false; 5394 5395 bool MadeChange = false; 5396 for (auto &BB : F) { 5397 // Does this BB end with the following? 5398 // %cond1 = icmp|fcmp|binary instruction ... 5399 // %cond2 = icmp|fcmp|binary instruction ... 5400 // %cond.or = or|and i1 %cond1, cond2 5401 // br i1 %cond.or label %dest1, label %dest2" 5402 BinaryOperator *LogicOp; 5403 BasicBlock *TBB, *FBB; 5404 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 5405 continue; 5406 5407 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 5408 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 5409 continue; 5410 5411 unsigned Opc; 5412 Value *Cond1, *Cond2; 5413 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 5414 m_OneUse(m_Value(Cond2))))) 5415 Opc = Instruction::And; 5416 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 5417 m_OneUse(m_Value(Cond2))))) 5418 Opc = Instruction::Or; 5419 else 5420 continue; 5421 5422 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 5423 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 5424 continue; 5425 5426 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 5427 5428 // Create a new BB. 5429 auto *InsertBefore = std::next(Function::iterator(BB)) 5430 .getNodePtrUnchecked(); 5431 auto TmpBB = BasicBlock::Create(BB.getContext(), 5432 BB.getName() + ".cond.split", 5433 BB.getParent(), InsertBefore); 5434 5435 // Update original basic block by using the first condition directly by the 5436 // branch instruction and removing the no longer needed and/or instruction. 5437 Br1->setCondition(Cond1); 5438 LogicOp->eraseFromParent(); 5439 5440 // Depending on the conditon we have to either replace the true or the false 5441 // successor of the original branch instruction. 5442 if (Opc == Instruction::And) 5443 Br1->setSuccessor(0, TmpBB); 5444 else 5445 Br1->setSuccessor(1, TmpBB); 5446 5447 // Fill in the new basic block. 5448 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 5449 if (auto *I = dyn_cast<Instruction>(Cond2)) { 5450 I->removeFromParent(); 5451 I->insertBefore(Br2); 5452 } 5453 5454 // Update PHI nodes in both successors. The original BB needs to be 5455 // replaced in one succesor's PHI nodes, because the branch comes now from 5456 // the newly generated BB (NewBB). In the other successor we need to add one 5457 // incoming edge to the PHI nodes, because both branch instructions target 5458 // now the same successor. Depending on the original branch condition 5459 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 5460 // we perfrom the correct update for the PHI nodes. 5461 // This doesn't change the successor order of the just created branch 5462 // instruction (or any other instruction). 5463 if (Opc == Instruction::Or) 5464 std::swap(TBB, FBB); 5465 5466 // Replace the old BB with the new BB. 5467 for (auto &I : *TBB) { 5468 PHINode *PN = dyn_cast<PHINode>(&I); 5469 if (!PN) 5470 break; 5471 int i; 5472 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 5473 PN->setIncomingBlock(i, TmpBB); 5474 } 5475 5476 // Add another incoming edge form the new BB. 5477 for (auto &I : *FBB) { 5478 PHINode *PN = dyn_cast<PHINode>(&I); 5479 if (!PN) 5480 break; 5481 auto *Val = PN->getIncomingValueForBlock(&BB); 5482 PN->addIncoming(Val, TmpBB); 5483 } 5484 5485 // Update the branch weights (from SelectionDAGBuilder:: 5486 // FindMergedConditions). 5487 if (Opc == Instruction::Or) { 5488 // Codegen X | Y as: 5489 // BB1: 5490 // jmp_if_X TBB 5491 // jmp TmpBB 5492 // TmpBB: 5493 // jmp_if_Y TBB 5494 // jmp FBB 5495 // 5496 5497 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 5498 // The requirement is that 5499 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 5500 // = TrueProb for orignal BB. 5501 // Assuming the orignal weights are A and B, one choice is to set BB1's 5502 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 5503 // assumes that 5504 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 5505 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 5506 // TmpBB, but the math is more complicated. 5507 uint64_t TrueWeight, FalseWeight; 5508 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 5509 uint64_t NewTrueWeight = TrueWeight; 5510 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 5511 scaleWeights(NewTrueWeight, NewFalseWeight); 5512 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5513 .createBranchWeights(TrueWeight, FalseWeight)); 5514 5515 NewTrueWeight = TrueWeight; 5516 NewFalseWeight = 2 * FalseWeight; 5517 scaleWeights(NewTrueWeight, NewFalseWeight); 5518 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5519 .createBranchWeights(TrueWeight, FalseWeight)); 5520 } 5521 } else { 5522 // Codegen X & Y as: 5523 // BB1: 5524 // jmp_if_X TmpBB 5525 // jmp FBB 5526 // TmpBB: 5527 // jmp_if_Y TBB 5528 // jmp FBB 5529 // 5530 // This requires creation of TmpBB after CurBB. 5531 5532 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 5533 // The requirement is that 5534 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 5535 // = FalseProb for orignal BB. 5536 // Assuming the orignal weights are A and B, one choice is to set BB1's 5537 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 5538 // assumes that 5539 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 5540 uint64_t TrueWeight, FalseWeight; 5541 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 5542 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 5543 uint64_t NewFalseWeight = FalseWeight; 5544 scaleWeights(NewTrueWeight, NewFalseWeight); 5545 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5546 .createBranchWeights(TrueWeight, FalseWeight)); 5547 5548 NewTrueWeight = 2 * TrueWeight; 5549 NewFalseWeight = FalseWeight; 5550 scaleWeights(NewTrueWeight, NewFalseWeight); 5551 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5552 .createBranchWeights(TrueWeight, FalseWeight)); 5553 } 5554 } 5555 5556 // Note: No point in getting fancy here, since the DT info is never 5557 // available to CodeGenPrepare. 5558 ModifiedDT = true; 5559 5560 MadeChange = true; 5561 5562 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 5563 TmpBB->dump()); 5564 } 5565 return MadeChange; 5566 } 5567 5568 void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) { 5569 if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group)) 5570 I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID()); 5571 } 5572